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Sand 13, 72076 Tübingen, Germany

e-mail: hauck@informatik.uni-tuebingen.de

and M. D. PÉREZ-RAMOS∗
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Abstract

In this paper we study groups G generated by two subgroups A and B such
that ⟨a, b⟩ is nilpotent of class at most 2 for all a ∈ A and b ∈ B. A detailed
description of the structure of such groups is obtained, generalizing the classical
result of Hopkins and Levi on 2-Engel groups.
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1 Introduction

A well-known result, usually attributed to Levi [19] though already proved by Hop-
kins [15] and in parts by Burnside [4], states that a group G satisfying the 2-Engel
condition [x, y, y] = 1 for all x, y ∈ G is nilpotent of class at most 3 with [G′, G] of
exponent dividing 3, where G′ denotes the derived subgroup of G. (For the history
of this result and a presentation of the general theory of n-Engel groups we refer to
the survey of Traustason [22].)

In the present paper we assume the 2-Engel condition only for certain pairs of
elements. More precisely, we investigate groups generated by two subgroups A and
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B such that [a, b, b] = [b, a, a] = 1 for all a ∈ A and b ∈ B. Of course, this is
equivalent to saying that ⟨a, b⟩ is nilpotent of class at most 2 for all a ∈ A and
b ∈ B. In the terminology of [5] this property can be stated as A and B being
N2-connected where N2 denotes the class of nilpotent groups of class at most 2.
Therefore this paper can also be seen as a contribution to the study of C-connected
subgroups for various classes of groups C (cf. [2], [6], [8], [9], [10], [14]).

For N2-connected subgroups A and B, our main objective is to obtain infor-
mation about the structure and embedding of [A,B] and certain distinguished sub-
groups of A and B.

One of the basic results is that [A,B] centralizes A′ and B′ (Proposition 3.2 (i)).
Moreover, [A′, B] centralizes A whence, setting G = ⟨A,B⟩, [A′, B′] ≤ Z(G) (Theo-
rem 4.8 (i)).

Denoting by A2 the group ⟨a2|a ∈ A⟩, we show in Theorem 4.1 and Theorem 4.8
that [A2, B] ≤ Z([A,B]) ∩ Z3(G). In particular, if A2 = A or B2 = B, the com-
mutator [A,B] is abelian. The same is true if [A,B]′ does not contain an element
of order 2 (Corollary 4.3) or if A and B are normal in G (Theorem 6.1). However,
in general this need not be the case. In Section 7 we construct examples of finite
2-groups generated by N2-connected subgroups A and B where [A,B] is nilpotent
of arbitrarily large derived length (and hence also of arbitrarily large class).

It is easy to see that for infinite N2-connected subgroups A and B the commuta-
tor subgroup [A,B] need not be nilpotent (Remark 4.7). In yet unpublished work,
R. Dark has constructed examples of groups generated by two N2-connected ele-
mentary abelian subgroups A and B, each of order 4, where in one of these [A,B] is
infinite (and hence not nilpotent) and in the other [A,B] is finite and not nilpotent.

For finite groups, nilpotency of [A,B] is equivalent to the subnormality of A
and B in G (see Theorem 2.3). In light of Dark’s examples just mentioned it is
interesting that for arbitraryN2-connected subgroups A and B of G = ⟨A,B⟩ certain
characteristic subgroups of A and B are subnormal in G. It is shown in Theorem 5.1
that A2 is subnormal in G of defect at most 3, A′ is subnormal in G of defect at
most 2 and the higher terms of the lower central series of A centralize B and are
therefore normal in G.

Theorem 5.3 is concerned with the intersection of A and B: A∩B is a nilpotent
subgroup of class at most 3; it is subnormal in G of defect at most 3. Moreover,
[(A ∩B)′, G] is a central elementary abelian 3-subgroup of G. For A = B = G, this
is just the result of Hopkins and Levi.

We conclude these introductory remarks by pointing out that for normal N2-
connected subgroups A and B significantly stronger statements are possible than
those in the general situation. We mentioned already that in this case [A,B] is
abelian. Furthermore, A′ and B′ centralize each other (Theorem 6.1). Finally, if A
and B are nilpotent of class a and b, respectively, then G = AB has nilpotency class
at most max(a, b) + 1 (Theorem 6.3).
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2 Preliminaries

The group theoretical notation used in this paper is usually consistent with the one
used in [7].

In addition, if G and H are groups and G is isomorphic to a subgroup of H, we
write G / H.

Moreover, given a group G, we set G2 = ⟨g2 | g ∈ G⟩, the smallest normal sub-
group of G whose factor group is an elementary abelian 2-group (possibly infinite).

By O2(G) we denote the subgroup generated by all elements of (finite) odd order
in G; clearly, O2(G) ≤ G2. If G is periodic (that is, all elements of G have finite
order), then O2(G) is the smallest normal subgroup of G whose factor group is a
2-group (that is, all elements have 2-power order).

The terms of the lower central series of a group G are denoted by Γn(G) where
Γ1(G) = G and Γn+1(G) = [Γn(G), G] for n ≥ 1. Also G(n) denote the terms of the
derived series of G, i.e., G(0) = G and G(n+1) = [G(n), G(n)] for n ≥ 0. Occasionally
we write G′ for G(1) and G′′ for G(2).

We set Γ∞(G) =
∩

n≥1 Γ
n(G). Note that for finite G, Γ∞(G) = GN , the N -

residual of G, i.e. the smallest normal subgroup of G with nilpotent factor group.
For subsets S and T of a group G we set [S, T ] = ⟨[s, t] | s ∈ S, t ∈ T ⟩ and

⟨ST ⟩ = ⟨st | s ∈ S, t ∈ T ⟩. If X is a subgroup of G, then ⟨SX⟩ is the smallest
X-invariant subgroup of G containing S, that is ⟨SX⟩ = ⟨S⟩[X, ⟨S⟩]. For s ∈ G we
write ⟨sX⟩ for ⟨{s}X⟩.

Lemma 2.1. Let S, T be subsets and X,Y,C subgroups of a group. Then:

(i) ([21, 5.1.6, 5.1.7]) [X,T ] is X-invariant.

If X = ⟨S⟩, then [X,T ] = ⟨[S, T ]X⟩.
If X = ⟨S⟩ and Y = ⟨T ⟩, then [X,Y ] = ⟨[S, T ]⟨X,Y ⟩⟩ = ⟨[S, T ]XY ⟩.

(ii) If C is normal in ⟨X,Y ⟩ and centralizes [X,Y ], then [C,X, Y ] = [C, Y,X].

Proof (ii) We have [C,X] = [C,X[X,Y ] ], a normal subgroup of ⟨X,Y ⟩ contained
in C. Analogously, [C, Y ], [C,X, Y ] and [C, Y,X] are normal subgroups of ⟨X,Y ⟩.
Since [X,Y,C] = 1 and [Y,C,X] = [C, Y,X], it follows that [C,X, Y ] ≤ [C, Y,X] by
the Three Subgroups Lemma. Similarly, [C, Y,X] ≤ [C,X, Y ].

The following concept, due to Carocca [5], is central for this paper.

Definition. For a non-empty class of groups C, two subgroups A and B of a group
G are said to be C-connected if ⟨a, b⟩ ∈ C for all a ∈ A and b ∈ B.

We will focus here on the case C = N2, where we denote by Nc the class of
nilpotent groups of class at most c. The structure of products of finite N -connected
groups, N the class of nilpotent groups, is rather well understood (cf. [2], [5], [14])
and occasionally we will refer to the corresponding results. However, our main
interest is in N2-connected subgroups that do not necessarily permute, and in this
situation there is not much known in the N -connected case. We will need some
simple properties about the commutator of N -connected periodic subgroups that
are presented in the following lemma.
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Lemma 2.2. Let A and B be periodic N -connected subgroups of ⟨A,B⟩. Set
X = ⟨[a, b] | a ∈ A, b ∈ B, a, b 2−elements⟩ and
Y = ⟨[a, b] | a ∈ A, b ∈ B, a, b 2′-elements⟩.

Then:

(i) X and Y are normal subgroups of ⟨A,B⟩ and [A,B] = XY .

(ii) Y = [O2(A), O2(B)] = [O2(A), B] = [A,O2(B)]

= ⟨[a, b] | a ∈ A, b ∈ B, a 2′-element⟩
= ⟨[a, b] | a ∈ A, b ∈ B, b 2′-element⟩.

(iii) If A and B are finite, then [A,B] = [A2, B2]Y for any A2 ∈ Syl2(A), B2 ∈
Syl2(B).

(iv) If [A,B] is finite and nilpotent, then [A,B] = X × Y , X = O2([A,B]), Y =
O2′([A,B]).

Proof (i) Given x in A or in B, we use the decomposition x = x2x2′ where x2 is a
2-element in ⟨x⟩ and x2′ is a 2′-element in ⟨x⟩.

Let a ∈ A and b ∈ B. It follows from N -connection of A and B that [a2, b2′ ] = 1
and [b2, a2′ ] = 1 whence

[a, b] = [a2′ , b]
a2 [a2, b] = [a2′ , b2′ ]

a2 [a2, b2] = [a2′ , b2′ ][a2, b2].

Therefore [A,B] = ⟨X,Y ⟩ and

⟨[a, b] | a ∈ A, b ∈ B, a 2′-element⟩ = Y = ⟨[a, b] | a ∈ A, b ∈ B, b 2′-element⟩. (*)

Since A and B are subgroups, Y is normal in ⟨A,B⟩.
Analogously, X is normal in ⟨A,B⟩. Finally, [A,B] = XY .

(ii) The assertion follows from (*) and normality of Y .

(iii) For A2 ∈ Syl2(A), B2 ∈ Syl2(B) we have A = A2O
2(A) and B = B2O

2(B).
From this the assertion follows with (ii) and the normality of Y (by (i)).

(iv) By definition of X and N -connection of A and B, X is generated by 2-elements.
Since [A,B] is finite nilpotent, X ≤ O2([A,B]). Similarly, Y ≤ O2′([A,B]). Part (i)
yields the assertion.

There is one important result about (not necessarily permuting) N -connected
subgroups which follows from [1, Theorem 2] and [9, Corollary 1]:

Theorem 2.3. If A and B are N -connected subgroups of a finite group G, then
[A,B] is nilpotent if and only if A and B are subnormal in ⟨A,B⟩.

Remark 2.4. For N -connected subgroups A and B of a finite group, nilpotency of
[A,B] is in fact equivalent to [A,B] ≤ Z∞(⟨A,B⟩) by [1, Theorem 2] or [9, Corollary
1].
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3 N2-connected subgroups: commutator relations

Let A and B be two N2-connected subgroups of a group. Since [a, b] ∈ Z(⟨a, b⟩) for
all a ∈ A and all b ∈ B, the following statements are clear (cf. [16, III, 1.3 a)]):

1. [an, bm] = [a, b]nm for all n,m ∈ Z;

2. ⟨[a, b]⟩ = [⟨a⟩, ⟨b⟩].

We will use these facts repeatedly without further reference.

Lemma 3.1. Let G be a group, A, B subgroups of G.

(i) The following properties are equivalent:

(a) A and B are N2-connected.

(b) ⟨aB⟩ and ⟨bA⟩ are abelian for all a ∈ A and b ∈ B.

(ii) Assume that A and B are N2-connected , a ∈ A, α ∈ A, b ∈ B, β ∈ B.Then:

[a, bβ] = [a, b]β
2
and [a, b][a, β] centralizes bβ and [α, b][α, β].

Proof (i) That A and B are N2-connected is equivalent to the 2-Engel conditions
[a, b, b] = [b, a, a] = 1 for all a ∈ A and all b ∈ B. It is easy to see (cf. [16, III, 6.4])
that this is equivalent to [ba, b] = [ab, a] = 1 for all a ∈ A and all b ∈ B. Clearly,
this is equivalent to statement (b).

(ii) Since [a, βb] = [a, b][a, β]b = ([a, b][a, β])b, it follows that

[a, b][a, β] = [a, βb]b
−1

= [ab
−1
, bβ].

By N2-connection ⟨ab−1
, bβ⟩ = ⟨a, (bβ)b⟩b−1 ∈ N2, whence [a, b][a, β] = [ab

−1
, bβ]

centralizes bβ. Similarly, [α, b][α, β] = [α, βb]b
−1
. By (i), the subgroup ⟨(βb)A⟩ is

abelian, whence [a, βb] centralizes [α, βb] and thus [a, b][a, β] centralizes [α, b][α, β].
Since ⟨aB⟩ is abelian, we have [a, b][a, β] = [a, β][a, b] = [a, bβ]β

−1
. Therefore

[a, bβ]β
−1

= [a, βb]b
−1
. (*)

Equation (*) holds for all b ∈ B and all β ∈ B and thus

[a, (β−1b)β]β
−1

= [a, β(β−1b)](β
−1b)−1

= [a, b]b
−1β = [a, b]β.

Conjugating by β, [a, bβ] = [a, b]β
2
.

In the following we prove various results about commutators of elements in N2-
connected subgroups. They constitute the core for the proofs of the structural results
in the subsequent sections.

Proposition 3.2. Let G be a group, A, B N2-connected subgroups of G, a ∈ A,
b ∈ B. Then:

(i) [A,B] centralizes A′ and B′. In particular [a, b] centralizes ⟨aA⟩ and ⟨bB⟩.
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(ii) ⟨aB⟩ and B are N2-connected.

Proof (i) Let b1 ∈ B, b2 ∈ B and note that [b1, b2] = (b1
−1)2(b1b2

−1)2 b2
2. By

Lemma 3.1 (ii) we have [a, b][b1,b2] = [a, b(b1
−1)(b1b2

−1)b2 ] = [a, b]. Thus [A,B] central-
izes A′ and B′. In particular, [a, b] centralizes ⟨a⟩A′ and ⟨b⟩B′ and (i) follows.

(ii) Since ⟨aB⟩ is abelian, ⟨aB⟩ centralizes ⟨[aβ, b] | β ∈ B⟩. Therefore [⟨aB⟩, b] =
⟨[aβ, b] | β ∈ B⟩. By Lemma 3.1 (ii), if β ∈ B, then [a, bβ

−1
] = [a, b]β

−2
and

conjugating by β we have [aβ, b] = [a, b]β
−1
. Consequently, [⟨aB⟩, b] = ⟨[a, b]B⟩

centralizes b by (i) and centralizes ⟨aB⟩, which proves (ii).

Proposition 3.3. Let A and B be N2-connected subgroups of ⟨A,B⟩, a, a1, a2 ∈ A
and b1, b2 ∈ B. Then:

(i) [a, b2, b1] = [a, b1, b2]
−1 = [a, b−1

1 , b2] = [a, b1, b
−1
2 ] = [a−1, b1, b2] = [b1, a, b2]

centralizes a, b1 and b2.

(ii) [[a1, b1], [a2, b2]] = [[a1, b2], [a2, b1]] = [[a1, b1], [a2, b2]]
−1 centralizes [a1, b1] and

[a2, b2].

(iii) [a, b1, b2]
2 = [a, [b1, b2]] = [b2, b1, a]. If [a2, b2] ∈ B, then [a2, b2, b1, a1] = 1.

The corresponding statements hold with the rôles of A and B interchanged.

Proof Let x1, x2, y1, y2 be elements of a group such that 1 = [x1, y1] = [x2, y2] =
[x1x2, y1y2]. Then y1y2 = (y1y2)

x1x2 = y1
x1x2y2

x1x2 = y1
x2y2

x2
−1x1x2 and thus

[x2, y1] = [x1
x2 , y2

−1]. (*)

(i) By Lemma 3.1 (ii) we can take x1 = [a, b1], x2 = [a, b2], y1 = b1 and y2 =
b2. By (*) it follows that [a, b2, b1] = [[a, b1]

[a,b2], b2
−1] = [a, b1, b

−1
2 ] since ⟨aB⟩ is

abelian. By Proposition 3.2 (ii), ⟨aB⟩ and B areN2-connected, whence [a, b1, b2
−1] =

[a, b1, b2]
−1 = [[a, b1]

−1, b2] = [a, b−1
1 , b2] = [a−1, b1, b2] = [b1, a, b2]. Now the last

assertion is a consequence of the abelianness of ⟨aB⟩ and N2-connection of ⟨aB⟩ and
B.

(ii) By Lemma 3.1 (i) and (ii) we can take x1 = [a1, b2], x2 = [a1, b1], y1 = [a2, b2]
and y2 = [a2, b1]. By (*) we have that [x2, y1] = [x1

x2 , y2
−1] = [x1, y2

−1]. Similarly
[x1, x2] = 1 = [y1, y2] = [x1y1, x2y2] and therefore [y1, x2] = [x1

y1 , y2
−1] = [x1, y2

−1].
It follows that [x2, y1] = [x1, y2

−1] = [y1, x2] = [x2, y1]
−1. Consequently, since x2

centralizes x1 and y2, x2 centralizes [x2, y1]. Similarly, y1 centralizes [x2, y1] and y2
centralizes [x1, y2

−1]. Hence, [x1, y2] = [x1, y2
−1]−1 = [x2, y1] which proves part (ii).

(iii) By N2-connection we have:

[b2, b1, a] =[a, [b2, b1]
−1] = [a, [b1, b2]] = [a, b1

−1b1
b2 ]

=[a, b1
b2 ][a, b1

−1](b1
b2 ) = [a, b1

b2 ][a, b1]
−1,

since [a, b1
−1] = [a, b1]

−1 centralizes ⟨b1B⟩ by Proposition 3.2 (i). By Lemma 3.1 (ii),

[a, b1
b2 ] = [a, b1]

b2
2

.
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Since ⟨aB⟩ is abelian, it follows that

[b2, b1, a] = [a, b1]
−1[a, b1]

b2
2

= [a, b1, b2
2] = [a, b1, b2]

2

by N2-connection of ⟨aB⟩ and B (Proposition 3.2 (ii)). If [a2, b2] ∈ B, then

[a2, b2, b1, a1] = [a1, b1, [a2, b2]]
2 = 1

by (ii).

Proposition 3.4. Let A and B be N2-connected subgroups of ⟨A,B⟩, m,n ∈ Z,
n > 0. Then for all a ∈ A and b1, . . . , bn ∈ B the following hold:

(i) [am, b1, . . . , bn] = [[a, b1, . . . , bi]
m, bi+1, . . . , bn] =

= [a, b1, . . . , bi−1, b
m
i , bi+1, . . . , bn] = [a, b1, . . . , bn]

m for all i = 1, . . . , n.

(ii) If n ≥ 3, then [a, b1, . . . , bn]
2 = 1.

(iii) If n ≥ 3, then [a, b1, . . . , bn] = [a, bσ(1), . . . , bσ(n)] for all σ ∈ Sym(n).

(iv) If n ≥ 2 and ⟨bi⟩ ≤ ⟨bj⟩ for some i ̸= j, then [a, b1, . . . , bn] = 1.

The corresponding statements hold with the rôles of A and B interchanged.

Proof (i) This follows from repeated use of N2-connection of ⟨aB⟩ and B (Proposi-
tion 3.2 (ii)).

(ii) Let n ≥ 3. By Proposition 3.3 (iii) and N2-connection of ⟨aB⟩ and B we have
[a, b1, . . . , bn]

2 = [a, b1, . . . , bn−2, [bn−1, bn]] = 1 since [A,B] centralizes B′ (Proposi-
tion 3.2 (i)).

(iii) Let n ≥ 3. Since the transpositions (1, 2), (2, 3), . . . , (n−1, n) generate Sym(n),
we may assume that σ = (i, i + 1), i = 1, . . . , n − 1. By (i) and Proposition 3.3 (i)
we have [a, b1, . . . , bn]

−1 = [a, bσ(1), . . . , bσ(n)] and the result follows from (ii).

(iv) If n = 2, then this follows from N2-connection.
If n ≥ 3, choose a permutation σ such that σ(i) = 1 and σ(j) = 2. Then by (iii)

and case n = 2, [a, b1, . . . , bn] = [a, bi, bj , . . . , bn] = 1.

Corollary 3.5. Let A and B be N2-connected subgroups of ⟨A,B⟩, x ∈ A ∩ B,
a ∈ A, b ∈ B. Then:

[x, a, b] = [a, b, x] = [b, x, a] = [x, b, a]−1 = [b, a, x]−1 = [a, x, b]−1 ∈ Z(⟨A,B⟩),

and [x, a, b]3 = 1.

Proof Since x ∈ A, Proposition 3.3 (iii) yields (with rôles of A and B interchanged)
[b, a, x]2 = [x, a, b]. As x ∈ B, [x, a, b] = [a, x−1, b] = [a, x, b]−1 and Proposi-
tion 3.3 (i) yields [x, a, b] = [a, b, x] = [b, a, x]−1. Hence [x, a, b]3 = [b, a, x]−3 = 1.
Moreover, [x, b, a]−1 = [b, x, a] = [b, a, x]−1 since x ∈ A. Finally, we prove that
[b, x, a] ∈ Z(⟨A,B⟩):

Let α ∈ A and β ∈ B. We have [b, x, a, α]3 = [[b, x, a]3, α] = 1. By Proposi-
tion 3.4 (ii), [b, x, a, α]2 = 1, whence [b, x, a, α] = 1. Since [b, x, a] = [a, b, x], a similar
argument shows that [b, x, a, β] = 1. Thus [b, x, a] ∈ Z(⟨A,B⟩).
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Remark 3.6. We note that some of the arguments in this section have been used
frequently before by different authors in investigations on 2-Engel-elements or gen-
eralizations thereof. Also some special cases of the results above have been obtained
(usually when at least one of the subgroups A or B is the whole group). We just
mention the classical papers of Hopkins [15] and Levi [19] (see also [16, III.6]) and
the papers [12], [13] of Gruenberg and [17], [18] of W. Kappe.

4 Structure and embedding of [A,B]

Since ⟨A,B⟩ = AB[A,B], it is necessary to investigate properties of [A,B] for N2-
connected subgroups A and B in order to obtain information about ⟨A,B⟩. This is
the aim of this section. We first consider the subgroup [A2, B] of [A,B].

Theorem 4.1. Let A and B be N2-connected subgroups of ⟨A,B⟩. Then:

(i) [A2, B] = ⟨[a2, b] | a ∈ A, b ∈ B⟩ = ⟨[a, b]2 | a ∈ A, b ∈ B⟩
= ⟨[a, b2] | a ∈ A, b ∈ B⟩ = [A,B2].

(ii) [A2, B] ≤ Z([A,B]).

(iii) [A2, B]� ⟨A,B⟩.

Proof Let a1, a ∈ A and b1, b ∈ B. Proposition 3.3 (ii) implies that 1 = [[a1, b1], [a, b]]
2 =

[[a1, b1], [a, b]
2], that is, [a, b]2 = [a2, b] = [a, b2] ∈ Z([A,B]) for all a ∈ A, b ∈ B.

Since ⟨[a2, b] | a ∈ A, b ∈ B⟩ = ⟨[a, b2] | a ∈ A, b ∈ B⟩, we deduce from Lemma 2.1
that this subgroup is A-invariant and B-invariant and

[A2, B] =⟨⟨[a2, b] | a ∈ A, b ∈ B⟩A
2

⟩ = ⟨[a2, b] | a ∈ A, b ∈ B⟩

=⟨[a, b2] | a ∈ A, b ∈ B⟩ = ⟨⟨[a, b2] | a ∈ A, b ∈ B⟩B
2

⟩ = [A,B2].

Corollary 4.2. Let A and B be periodic N2-connected subgroups of ⟨A,B⟩. Let
Y = ⟨[a, b] | a ∈ A, b ∈ B, a, b 2′-elements⟩ as in Lemma 2.2. Then:

(i) Y = [O2(A), O2(B)] = [O2(A), B] = [A,O2(B)] ≤ Z([A,B]).
In particular, if A and B are finite, A2 ∈ Syl2(A), B2 ∈ Syl2(B), then

[A,B] = [A2, B2] · Z([A,B]).

(ii) If [A,B] is finite and nilpotent, then Y = O2′([A,B]) = O2′(Z([A,B])).

Proof (i) Since O2(A) ≤ A2, this follows from Lemma 2.2 (ii) and Theorem 4.1 (ii).
Now the second assertion is a consequence of Lemma 2.2 (iii).

(ii) This follows from (i) and Lemma 2.2 (iv).

Corollary 4.3. Let A and B be N2-connected subgroups of ⟨A,B⟩. Suppose that
A2 = A or B2 = B or that [A,B]′ contains no element of order 2.

Then [A,B] is abelian.
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Proof If A2 = A or B2 = B, the assertion follows from Theorem 4.1 (i) and (ii). If
[A,B]′ contains no element of order 2, Proposition 3.3 (ii) yields the assertion.

Remark 4.4. a) In connection with Theorem 4.1 (i) we note that for N2-connected
subgroups A and B in general

[A,B]2 ̸= ⟨[a, b]2 | a ∈ A, b ∈ B⟩ = [A2, B] = [A,B2].

In Section 7, Example 7.1 we present a finite 2-group G = AB, A and B N2-
connected, where [A2, B] = 1 but [A,B]2 ̸= 1.

b) The same example also shows that for A and B N2-connected, [A,B] need not be
abelian (cf. Corollary 4.3). In this example even one of the factors can be chosen to
be normal. In contrast, if a group is the product of two N2-connected normal sub-
groups A,B, then we will show in Section 6 that [A,B] is abelian (Theorem 6.1 (i)).

c) The example mentioned before has the property that [A,B] has nilpotency class
2. In Section 7 we will construct a series of finite 2-groups (Example 7.2) generated
by N2-connected subgroups A and B such that [A,B] has arbitrarily high derived
length.

d) With regard to the hypotheses in Corollary 4.3 we note that if A is finite and A
and B are N2-connected, A = A2 implies that [A,B] contains no element of order 2:

For, if A = A2 is finite, then A = O2(A) is generated by elements of odd
order. Hence every element in [A,B] can be written as a product of conjugates of
commutators of the form [a, b] where a ∈ A, b ∈ B and a has odd order. By N2-
connection, each such commutator has odd order. Since A = A2, [A,B] is abelian
by Corollary 4.3. Thus every element in [A,B] has odd order.

The next result gives information about the structure of [A,B]/Γ∞([A,B]) for
N2-connected subgroups A,B.

Proposition 4.5. Let A and B be N2-connected subgroups of ⟨A,B⟩. Then:

(i) [A,B]/[A,B]′Z([A,B]) is an elementary abelian 2-group.

(ii) Γn([A,B]′)/Γn+1([A,B]′) is an elementary abelian 2-group for all n ≥ 1.

In particular, the residually nilpotent group [A,B]′/Γ∞([A,B]′) is residually a
2-group.

(iii) If [A,B] is finite, then [A,B]N = ([A,B]′)N and [A,B]/[A,B]NZ([A,B]) is a
2-group.

Proof (i) This follows from Theorem 4.1 (i) and (ii).

(ii) By Lemma 2.1, the subgroup [A,B]′ is generated by all [[a1, b1], [a2, b2]]
c with

a1, a2 ∈ A, b1, b2 ∈ B and c ∈ [A,B]. These generators all have order at most 2 by
Proposition 3.3 (ii). Hence [A,B]′/[A,B]′′ is an elementary abelian 2-group. The
assertion follows now from [16, III, 2.13 b)].

(iii) Since [A,B]/([A,B]′)NZ([A,B]) is a 2-group by (i) and (ii), [A,B]/([A,B]′)N ∈
N whence [A,B]N ≤ ([A,B]′)N . The reverse inclusion being clear, (iii) follows.
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Corollary 4.6. Let A and B be N2-connected subgroups of ⟨A,B⟩. If [A,B] is finite
and [A,B]′ is nilpotent, then [A,B] is nilpotent.

Proof This follows from Proposition 4.5 (iii).

Remark 4.7. If G = AB is finite with N -connected subgroups A and B, then
[A,B] is nilpotent; even more, [A,B] ≤ Z∞(G) ([1, Theorem 2] or [14, Proposition
1(8)]). This need not be the case anymore if A and B do not permute. In fact, there
is a finite group ⟨A,B⟩ with N3-connected subgroups A and B such that [A,B] is
not nilpotent ([1, Example], [14, Example]).

For N2-connected (not necessarily permuting) subgroups A, B, Corollaries 4.3,
4.6 show nilpotency (or even abelianness) of [A,B] in special situations.

However, for infinite N2-connected subgroups A and B, [A,B] need not be nilpo-
tent. This follows from Example 7.2 in Section 7 where we construct finite 2-groups
Gi = ⟨Ai, Bi⟩ with N2-connected subgroups Ai and Bi such that [Ai, Bi] is nilpotent
of class at least 2i−1, i ∈ N. Taking G to be the direct product of the Gi, A the direct
product of the Ai and B analogously, then G = ⟨A,B⟩, A and B are N2-connected,
but [A,B] is not nilpotent (albeit residually nilpotent and hypercentral).

But even if A and B are finite N2-connected subgroups, [A,B] need not be
nilpotent: In yet unpublished work, R. Dark constructed an example of a group
generated by two N2-connected elementary abelian groups of order 4 such that
[A,B] is not finite. In particular, [A,B] is not nilpotent (since [A,B] is generated by
a finite number of elements of finite order and nilpotent groups with this property
are finite (cf. [21, 5.2.6])).

R. Dark also constructed an example of a finite group ⟨A,B⟩ with N2-connected
elementary abelian subgroups of order 4 where [A,B] is not nilpotent.

In the following we prove a series of results on the embedding of [A,B] in ⟨A,B⟩
for N2-connected subgroups A and B. They yield rather precise insight into the
structure of groups generated by N2-connected subgroups. We obtain results show-
ing that [A,B], if not nilpotent, is not too far from being nilpotent. For instance,
Proposition 3.2 (i) and Theorem 4.8 (i),(ii) say that [A,B] centralizes A′ and B′,
[A′, B′] is contained in Z(⟨A,B⟩), and [A,B]′ centralizes A2 and B2.

Theorem 4.8. Let A and B be N2-connected subgroups of G = ⟨A,B⟩. Then:

(i) [A,B′] = [A,B2, B] = [A2, B,B] = [A,B,B2] = ⟨[a, b1, b2]2 | a ∈ A, b1, b2 ∈ B⟩
centralizes B[A,B]. The corresponding statements hold with the rôles of A
and B interchanged. In particular, [A,B′] is normal in G and [A′, B′] ≤
[A,B′] ∩ [A′, B] ≤ Z(G).

(ii) [A,Γ3(B)] = 1 = [B,Γ3(A)] and [A,B]′ centralizes A2 and B2.

(iii) [B′, A,A] = [A,B2, B,A] = [A,B2, A,B] = [A′, B,B] ≤ Z(G).

(iv) [A,B′][B,A′] ≤ Z2(G) and [A,B2] ≤ Z3(G).
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Proof (i) Let a ∈ A and b, b1, b2 ∈ B. By Proposition 3.3 (iii) and Proposi-
tion 3.4 (i) and (ii), it follows that [a, [b1, b2]] = [a, b1, b2]

2 = [[a, b1]
2, b2] = [a, b1, b2

2]
and [[a, b1, b2]

2, b] = [a, b1, b2, b]
2 = 1. We set H = ⟨[a, b1, b2]2 | a ∈ A, b1, b2 ∈ B⟩.

By Theorem 4.1 we have that [A2, B] = ⟨[a, b]2 | a ∈ A, b ∈ B⟩ = [A,B2] is a normal
subgroup of G and centralizes [A,B]. Therefore H centralizes B[A,B]. Moreover,
using Lemma 2.1 (i), it follows that [A,B′] = ⟨HB′⟩ = H, [A2, B,B] = [A,B2, B] =
⟨H [A,B2]⟩ = H and [A,B,B2] = ⟨H [A,B]B2⟩ = H. In particular, we have that
[A,B′] is normal in G and centralizes B. Similarly [B,A′] centralizes A, whence
[A′, B′] ≤ Z(G).

(ii) Since [A,B′, B] = 1 by (i) and [B,A,B′] = 1 by Proposition 3.2 (i), the Three
Subgroups Lemma yields [B′, B,A] = 1. Similarly, [A′, A,B] = 1. Furthermore, by
(i), [B2, [A,B], [A,B]] = [A,B,B2, [A,B]] = [A,B′, [A,B]] = 1 and part (ii) follows.

(iii) By Theorem 4.1 we have that [A2, B] = [A,B2] is a normal subgroup of G and
centralizes [A,B]. Using Lemma 2.1 (ii), it follows that [A,B2, B,A] = [A,B2, A,B].

Since [A,B2, B] is A-invariant, [A,B2, B,A] centralizes B by (i). Analogously,
[A,B2, A,B] = [B,A2, A,B] centralizes A. Hence, [A,B2, A,B] ≤ Z(G). The re-
maining statements follow from (i).

(iv) By (i) and (iii), [A,B′, G] = [A,B′, B[A,B]A] = [A,B′, A] = [B′, A,A] ≤ Z(G)
and similarly [B,A′, G] ≤ Z(G). By Theorem 4.1 (ii) and parts (i) and (iii),
[A,B2, G] = [A,B2, A][A,B2, B] = [B,A′][[A,B′] ≤ Z2(G) and part (iv) follows.

Corollary 4.9. Let A and B be N2-connected subgroups of G = ⟨A,B⟩. Then:

(i) [A,G,G] = Γ3(A)[A′, B][A,B,G], [A,G,G,G] = Γ4(A)[A′, B,B][A,B,G,G],
and

[A,G, (n). . ., G] = Γn+1(A)[A,B,G, (n−1). . . , G] for all n ≥ 4.

(ii) G′′ = A′′B′′[A,B]′[A′, B′] and G(n) = A(n)B(n)[A,B](n−1) for all n ≥ 3.

Proof (i) Note that [A,G] = A′[A,B] and [A,G,G] = [A′, G][A,B,G]. The first
equation and the second one follow from the fact that [A,B] centralizes A′ and
Theorem 4.8 (i) and (ii). Using Theorem 4.8 (iii) and induction, the last part
follows.

(ii) This follows by the same arguments as in the proof of (i).

Theorem 4.10. Let A and B be N2-connected subgroups of G = ⟨A,B⟩. Assume
that [A,B] contains no element of order 2. Then:

(i) If, in addition, [A,B] is periodic, then [A,B′] = [A,B,B] and [A′, B] = [A,B,A].

(ii) [A,B,B,B] = [A,B,A,A] = 1.

(iii) [A,B,A,B] = [A,B,B,A]. If, in addition, [A,B] is periodic, then

[A2, B,B,A] = [A,B,B,A] = [A,B,A,B] = [A2, B,A,B].

(iv) [A,B] ≤ Z3(G).
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Proof We notice first that if [A,B] has no element of order 2, then [A,B] is abelian
by Corollary 4.3. Thus, Lemma 2.1 (i) yields

[A,B,B] = ⟨[a, b1, b2] | a ∈ A, b1, b2 ∈ B⟩ and
[A,B,B,B] = ⟨[a, b1, b2, b3] | a ∈ A, b1, b2, b3 ∈ B⟩.

(i) By Theorem 4.8 (i), [A,B′] = ⟨[a, b1, b2]2 | a ∈ A, b1, b2 ∈ B⟩. Since by hypothesis
[a, b1, b2] has odd order, ⟨[a, b1, b2]⟩ = ⟨[a, b1, b2]2⟩, and the assertion follows.

(ii) By Proposition 3.4 (ii), each generator [a, b1, b2, b3] of [A,B,B,B] has order 1 or
2. By hypothesis, [A,B,B,B] = 1.

(iii) The first part follows from Lemma 2.1 (ii) using the fact that [A,B] is abelian.
The second part follows from (i) and Theorem 4.8 (i).

(iv) We have to show [A,B,W1,W2,W3] = 1 for all choices Wi ∈ {A,B}, i = 1, 2, 3.
If W1 = W2, then [A,B,W1,W2,W3] = 1 by (ii). If W1 ̸= W2, we may assume that
W2 = W3 by (iii). Then [A,B,W1,W2,W3] ≤ [A,B,W2,W3] = 1 by (ii).

Corollary 4.11. Assume that A and B are N2-connected subgroups of G = ⟨A,B⟩
and that [A,B] has no element of order 2. Then:

Γ3(G) = Γ3(A)Γ3(B)[A,B,A][A,B,B], Γ4(G) = Γ4(A)Γ4(B)[A,B,A,B], and
Γn(G) = Γn(A)Γn(B) for all n ≥ 5.

Proof Clearly, G′ = A′B′[A,B]. By Corollary 4.3 and Proposition 3.2 (i), [A,B] is
abelian and centralizes A′ and B′. Using this and the fact that [A′, B] ≤ [A,B,A]
(Theorem 4.8 (i)), the first equation follows.

By the same reasoning and additionally using Theorem 4.10 (ii) and (iii), the
second equation follows.

By Theorem 4.10 (iv), [A,B,A,B] ≤ Z(G) which yields the final assertion.

Corollary 4.12. Assume that A and B are N2-connected subgroups of G = ⟨A,B⟩
and that [A,B] has no element of order 2. Then:

(i) If A and B are nilpotent of class at most 3, then G is nilpotent of class at most
4.

If A and B are nilpotent of class at most n ≥ 4, then G is nilpotent of class
at most n.

(ii) If A and B are abelian, then G is metabelian.

If A and B are metabelian, then G is central-by-metabelian.

If A and B are soluble of derived length at most n ≥ 3, then G is soluble of
derived length at most n.

Proof Using the fact that [A,B] is abelian (Corollary 4.3) and that both [A,B,A,B]
and [A′, B′] are contained in the center of G (Theorem 4.10 (iv) and Theorem 4.8 (i)),
the assertions follow from Corollary 4.11 and Corollary 4.9 (ii), respectively.

Remark 4.13. a) In connection with Theorem 4.10 (i) we remark that the hypoth-
esis that [A,B] contains no elements of order 2 cannot be avoided. Example 7.1
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in Section 7 presents a finite 2-group with N2-connected subgroups A,B satisfying
[A′, B] = 1 and [A,B,A] ̸= 1.

b) Theorems 4.8 (i) and 4.10 (ii) cannot be improved to [A,B′] = [A2, B,B] = 1 (or
[A,B,B] = 1 in the case when [A,B] contains no element of order 2) as is shown
in Example 7.3 of Section 7. Here, for any odd prime p, a finite p-group G = AB
with N2-connected subgroups A and B is constructed such that [A,B,B] ̸= 1. In
this example [A,B,A] = 1. However, with a simple extension it is also possible to
obtain a p-group example with [A,B,A] ̸= 1 and [A,B,B] ̸= 1: Take two copies G1

and G2 of the group G above. Setting G̃ = G1×G2, Ã = A1×B2 and B̃ = B1×A2,
Ã and B̃ are N2-connected, [Ã, B̃, Ã] ̸= 1 and [Ã, B̃, B̃] ̸= 1.

c) In Theorem 4.10 (ii) and (iv), the hypothesis that [A,B] contains no element of
order 2 cannot be omitted. Given n ∈ N, we present a simple example (already
contained in [13]) of a finite 2-group G = AB with N2-connected subgroups A,B

such that [[A,B], A, (n). . ., A] ̸= 1; in particular, [A,B] is not contained in Zn(G):
Consider G the regular wreath product of the cyclic group Z2 of order 2 with

an elementary abelian group E of order 2n+1 and let B the base group of G. Then
G = BE, A := G and B are N2-connected and satisfy [[A,B], A, (n). . ., A] ̸= 1.

d) The statements of Theorem 4.8 (i),(iv) and Theorem 4.10 (iv) are all best possible.
In Section 7 the p-groupG (p any odd prime) constructed in Example 7.4 is generated
by twoN2-connected subgroups A and B, both of nilpotency class 2, such that [A′, B]
is not contained in Z(G), [A′, B′] ̸= 1 and [A,B] is not contained in Z2(G). This
also shows that in the second statement of Corollary 4.12 (ii) one cannot conclude
that G is metabelian.

e) With regard to Theorem 4.8 (ii), [A,B]′ need not be contained in Z(G). Actually,
the finite 2-groups constructed in Example 7.2 of Section 7 show that there is no
fixed n such that [A,B]′ is contained in Zn(G).

5 Particular subgroups of A and B

The aim of this section is to investigate the embedding of certain distinguished
subgroups of A and B in ⟨A,B⟩ for N2-connected subgroups A and B.

Theorem 5.1. Let A and B be N2-connected subgroups of G = ⟨A,B⟩. Then:

(i) A2 is subnormal in G of defect at most 3.

(ii) A′ is subnormal in G of defect at most 2.

(iii) Γn(A) and A(m) are normal in G for all n ≥ 3 and m ≥ 2.

Proof (i) A2[A2, B] is normal in G since [A2, B] is normal in G by Theorem 4.1 (iii).
Clearly, A2[A2, B,A2] is normal in A2[A2, B]. Since [A2, B,A2] centralizes A2 ac-
cording to Theorem 4.8 (i), A2 is normal in A2[A2, B,A2], and the assertion follows.

(ii) Clearly, A′[A,B] is normal in G. Since A′ centralizes [A,B], part (ii) holds.

(iii) This follows from Theorem 4.8 (ii).
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Remark 5.2. a) The statement in Theorem 5.1 (i) cannot be improved, that is, A2

need not have defect at most 2 in G. This can be seen by taking the group G of
Example 7.3 in Section 7 with p = 3. This group has class 3 and exponent 3 and is
therefore a 2-Engel group by a result of Burnside [3], reproved by Levi and van der
Waerden [20] (see also [16, III, 6.6]); that is, every pair of elements generates a group
in N2. In the notation of Example 7.3, taking A = ⟨g1, g2⟩, an extraspecial group
of order 27 with center ⟨g4⟩, and B = G, A and B are N2-connected subgroups of
G = AB. Since A2 = A is not normalized by g5 ∈ [A,G] = ⟨g4, g5, g6, g7⟩, A has
defect exactly 3 in G.

b) The statement in Theorem 5.1 (ii) cannot be improved, that is, A′ need not be
normal in G. This will be shown with Example 7.4 in Section 7.

It follows from Remark 4.7 and Theorem 2.3 that in a finite group G = ⟨A,B⟩
the N2-connected subgroups A and B need not be subnormal in G. Nevertheless,
we show in the next result, among others, that A∩B is subnormal in G; even more,
it is contained in Z∞(G).

Theorem 5.3. Let A and B be N2-connected subgroups of G = ⟨A,B⟩. Then:

(i) Z := ⟨[x, a, b] | x ∈ A ∩ B, a ∈ A, b ∈ B⟩ = [A ∩ B,A,B] = [A ∩ B,B,A] =
[A ∩B, [A,B]] is an elementary abelian 3-subgroup of Z(G).

In particular, if [A ∩ B, [A,B]] contains no elements of order 3, then [A,B]
centralizes A ∩B.

(ii) A∩B is subnormal in G of defect at most 3 and is nilpotent of class at most 3.

(iii) [(A∩B)′, G] ≤ Z. In particular, (A∩B)′ ≤ Z2(G) and (A∩B)′′ = 1. If [A,B]
does not contain elements of order 3 or if (A ∩ B)′ is periodic and does not
contain elements of order 3, then (A ∩B)′ ≤ Z(G).

(iv) If n ≥ 3, then [A ∩B,G, (n). . ., G] = [A ∩B,A, (n). . ., A][A ∩B,B, (n). . ., B].

(v) If G is finite, then A ∩B ≤ Z∞(G).

Proof (i) Let x ∈ A ∩ B, a ∈ A and b ∈ B. By Corollary 3.5, [x, a, b] = [a, b, x] =
[x, b, a]−1 ∈ Z(G) and [x, a, b]3 = 1. We set Z := ⟨[x, a, b] | x ∈ A∩B, a ∈ A, b ∈ B⟩.
Thus, Z ≤ Z(G) and Z is an elementary abelian 3-group. Using Lemma 2.1, it
follows that [A ∩ B,A,B] = ⟨Z [A∩B,A]⟩ = Z, [A ∩ B,B,A] = ⟨Z [A∩B,B]⟩ = Z and
[A ∩B, [A,B]] = [A,B,A ∩B] = ⟨Z [A,B]⟩ = Z.

(ii) Clearly, [G,A∩B] ≤ [A,B]. Hence [G,A∩B,A∩B] ≤ [A,B,A∩B] ≤ Z(G) by (i).
In particular, [G,A∩B,A∩B,A∩B] = 1 ≤ A∩B and [A∩B,A∩B,A∩B] ≤ Z(A∩B),
which proves part (ii).

(iii) By (i), [(A ∩ B)′, A] ≤ Z and [(A ∩ B)′, B] ≤ Z, whence [(A ∩ B)′, G] ≤ Z ≤
Z(G) ∩ [A,B]. Hence (A ∩ B)′ ≤ Z2(G) which implies (A ∩ B)′′ = 1 by the Three
Subgroups Lemma. If [A,B] does not contain elements of order 3, then Z = 1 and
(A∩B)′ ≤ Z(G). Let x ∈ (A∩B)′, u ∈ A∪B. If (A∩B)′ is periodic and does not
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contain elements of order 3, then ⟨x⟩ = ⟨x3⟩ centralizes A and B since [x, u] ∈ Z
and 1 = [x, u]3 = [x3, u] by N2-connection. This completes the proof of part (iii).

(iv) Since [A ∩ B,A] ≤ [A,B] ∩ A′, we have [A ∩ B,A] ≤ Z([A,B]) by Proposi-
tion 3.2 (i). By (i), ⟨[A ∩ B,A]B⟩ = [A ∩ B,A]Z, a normal subgroup of G con-
tained in Z([A,B]). It is clear that [⟨[A∩B,A]B⟩, G] = [A∩B,A,A][A∩B,A,B] =
[A∩B,A,A]Z, a normal subgroup of G contained in Z(B[A,B]) by Theorem 4.8 (ii).
Therefore

[A ∩B,G] = ⟨[A ∩B,A]B⟩⟨[A ∩B,B]A⟩ = [A ∩B,A]Z[A ∩B,B],

[A ∩B,G,G] = [A ∩B,A,A]Z[A ∩B,B,B],

[A ∩B,G,G,G] = [A ∩B,A,A,A][A ∩B,B,B,B].
Using the previous arguments again, part (iv) is proven by induction.

(v) As we have mentioned in Remark 4.7, if H = XY is finite with N -connected
subgroups X and Y , then [X,Y ] ≤ Z∞(H). Since A = A(A ∩ B) is finite and
A and A ∩ B are N -connected, we have that [A ∩ B,A] ≤ Z∞(A). Similarly,
[A ∩B,B] ≤ Z∞(B). Thus, part (v) follows from (iv).

As a consequence of Theorem 5.3 we obtain the well-known Hopkins-Levi result
([15, 19], cf. [16, III, 6.5]) on 2-Engel-groups:

Corollary 5.4. If G is a group such that [g, h, h] = 1 for all g, h ∈ G, then G is
nilpotent of class at most 3. Γ3(G) is an elementary abelian 3-group.

Proof This follows from Theorem 5.3 (i) with A = B = G.

Remark 5.5. a) The example given in Remark 5.2 a) shows that the first statement
in Theorem 5.3 (ii) cannot be improved to defect 2.

b) The same group, this time with A = B = G, shows that (A∩B)′ need not be con-
tained in Z(G) (cf. Theorem 5.3 (iii)). Also the last statement in Theorem 5.3 (iii)
cannot be improved to (A ∩ B)′ = 1 as any nilpotent 3′-group G of class 2 with
A = B = G shows.

c) With respect to Theorem 5.3 (iv),(v) we mention that the example in Remark 4.13 c)
shows that for every n there exists a group G = AB with normal N2-connected sub-
groups A,B such that [[A,B], B, (n). . ., B] ̸= 1. In particular, [A,B] is not contained
in Zn(G) whence A ∩B is not contained in Zn(G).

6 The case of normal subgroups A and B

If G = AB with normal N2-connected subgroups A and B, then the results of
Section 4 can be considerably sharpened.

Theorem 6.1. Let G = AB with normal N2-connected subgroups A and B. Then:

(i) [A,B] is abelian.

(ii) [A,B,A,B] = [A,B,B,A] = 1.

(iii) [A,B2] ≤ Z2(G) and [A,B′] ≤ Z(G).
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(iv) [A′, B′] = 1.

Proof (i) This follows from Theorem 5.3 (i) and Proposition 4.5 (ii) with n = 1.

(ii) By (i) and Lemma 2.1 (i) we have [A,B,B] = ⟨[a, b1, b2] | a ∈ A, b1, b2 ∈ B⟩. If
a1, a2 ∈ A and b1, b2 ∈ B, then [a2, b2, b1, a1] = 1 by Proposition 3.3 (iii). Therefore
[A,B,B] centralizes A. The result [A,B,A,B] = [B,A,A,B] = 1 follows from
symmetry.

(iii) [A,B2] ≤ Z2(G) follows from (ii) and Theorem 4.8 (i). Since [A,B′] = [A,B2, B]
by Theorem 4.8 (i), the second assertion follows from the first one.

(iv) Since [A,B′, A] = [B′, A,A] = 1 by (iii), the assertion follows from the Three-
Subgroups-Lemma.

Remark 6.2. a) The example given in Remark 5.5 b) also shows that the results
in Theorem 6.1 are best possible.

For part (iii) of Theorem 6.1, also the p-groups (p an odd prime) of Example 7.3
show that [A,B] need not be contained in Z(G) and that A′ need not centralize B.

b) If A and B are normal N2-connected subgroups of G = AB, then by Theo-
rem 6.1 (ii) we have that [A,B,A,B] = [A,B,B,A] = 1. However, it is not true
that [A,B,A,A] = [A,B,B,B] = 1 (unless A = A2 or B = B2 by Theorem 4.8 (i)).

In fact, for every n ∈ N there is a finite 2-group G = AB with normal N2-
connected subgroups A,B such that [[A,B], B, (n). . ., B] ̸= 1 and [[A,B], A, (n). . ., A] ̸= 1
(but note that, of course, [A,B] ≤ Z∞(G) as this is true for any product of finite
N -connected groups): Using the group G of Remark 4.13 c) (for the given n) and
performing the same kind of construction as at the end of Remark 4.13 b) yields
such an example.

By the well-known result of Fitting (cf. [16, III, 4.1]), a product of two normal
nilpotent subgroups is nilpotent and the nilpotency class of the product is bounded
by the sum of the nilpotency classes of the subgroups. We shall finish this section
with a result that shows that for nilpotent N2-connected normal subgroups the
bound on the nilpotency class of the product is significantly lower.

Theorem 6.3. Let A and B be N2-connected normal subgroups of G = AB. Then:

(i) Γn+1(G) ≤ Γn(A)Γn(B) for all n ≥ 1.

(ii) If A and B are nilpotent of nilpotency class a and b, respectively, then G has
nilpotency class at most max(a, b) + 1.

Proof (i) The statement is trivially true for n = 1.

Clearly, Γn+1(G) = [A,G, (n). . ., G][B,G, (n). . ., G]. By symmetry, it suffices to prove

that [A,G, (n). . ., G] ≤ Γn(A)Γn(B) for all n ≥ 2.
Since [A′, B] ≤ Γ2(A) and [A′, B,B] = 1 (by Theorem 6.1 (iii)), Corollary 4.9 (i)

yields [A,G, (n). . ., G] ≤ Γn(A)[A,B,G, (n−1). . . , G] for all n ≥ 2.

Hence, it suffices to prove that (*): [A,B,G, (n−1). . . , G] ≤ Γn(A)Γn(B) for all n ≥ 2.
Note that we have [A,B,G] = [A,B,A][A,B,B] ≤ Γ2(A)Γ2(B). By Theorem 6.1 (ii)
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[A,B,G,G] = [[A,B,A][A,B,B], A][[A,B,A][A,B,B], B] = [A,B,A,A][A,B,B,B],
proving (*) for n = 3. Finally, by Theorem 5.3 (iv), (*) holds for all n ≥ 4.

(ii) This follows from (i).

Remark 6.4. a) The bound in Theorem 6.3 (ii) is sharp for every nilpotency class
of G: This can be seen by taking the group G = BE (for the given nilpotency class)
of Remark 4.13 c), but this time with A = [B,E]E.

b) If G = AB, A, B nilpotent and N2-connected, then G is nilpotent (already by
N -connection). However, if not both factors are normal, there is no general bound
for the nilpotency class of G in terms of the nilpotency classes of A and B:

To show this, we use again the groups G = BE of Remark 4.13 c), this time with
A = E. They have arbitrary high nilpotency class and are products of two abelian
N2-connected subgroups, one of them normal.

7 Examples

This section contains the construction of groups to which we have referred in the
previous sections. Some of the calculations have been performed with GAP [11].

Example 7.1. We present an example of a group G = AB of order 211 where A
and B are N2-connected subgroups, A normal in G, [A,B] not abelian:

G is generated by gi, i = 1, . . . , 11, subject to the following defining relations:

g2i = 1, i = 1, . . . , 11,

[g1, g3] = g7, [g1, g4] = g5, [g1, g10] = g11,

[g2, g3] = g6, [g2, g4] = g8, [g2, g9] = g11,

[g3, g5] = g9, [g3, g8] = g10,

[g4, g6] = g10, [g4, g7] = g9,

[g5, g6] = g11, [g7, g8] = g11,

all other [gi, gj ] = 1.

It’s straightforward to verify that | G |= 211 and

Z(G) = ⟨g11⟩, Z2(G) = ⟨g9, g10⟩Z(G), Z3(G) = ⟨g5, g6, g7, g8⟩Z2(G), Z4(G) = G

G′ = Z3(G), Γ3(G) = Z2(G), G′′ = Γ4(G) = Z(G), G′′′ = Γ5(G) = 1.

We set
A = ⟨g1, g2, g5, g6, g7, g8, g9, g10, g11⟩, B = ⟨g3, g4⟩.

Then | A |= 29 and | B |= 22, G = AB and A ∩ B = 1. A′ = Z(A) = ⟨g11⟩ whence
A has nilpotency class 2 and B is abelian.

Moreover,

[A,B] = ⟨g5, g6, g7, g8, g9, g10, g11⟩, [A,B]2 = [A,B]′ = ⟨g11⟩.
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Hence A is normal in G and [A,B] is not abelian (cf. Remark 4.4 b)). Note also
that [A2, B] = [A,B2] = 1 ̸= [A,B]2 (cf. Remark 4.4 a)).

We show that A and B are N2-connected. Let a ∈ A and b ∈ B. To prove that
⟨a, b⟩ ∈ N2 it suffices to consider the case

a = gd11 gd22 gd55 gd66 gd77 gd88 and b = ge33 ge44 with di, ej ∈ {0, 1}

since g9, g10, g11 ∈ Z2(G). A little calculation shows

[a, b] = gd1e45 gd2e36 gd1e37 gd2e48 gd7e4+d1e3e4+d5e3
9 gd6e4+d2e3e4+d8e3

10 z

with z ∈ Z(G). Now
[a, b, a] =

gd1e4d611 gd2e3d511 gd1e3d811 gd2e4d711 gd7e4d2+d1e3e4d2+d5e3d2
11 gd6e4d1+d2e3e4d1+d8e3d1

11 = 1,

[a, b, b] = gd1e4e39 gd2e3e410 gd1e3e49 gd2e4e310 = 1.

This proves the assertion.

We conclude with one remark. This example is a product of a nilpotent subgroup
A of class 2 and an abelian subgroup B that are N2-connected with non-abelian
[A,B]. With regard to the structure of A and B this is the simplest possible example:
For abelian A and B, the commutator [A,B] is abelian by the well known result of
Ito on products of abelian groups (cf. [16, VI, 4.4]).

However, we will see in Example 7.2 that for groups generated by elementary
abelian N2-connected 2-groups A, B, the commutator [A,B] can have arbitrary
derived length.

Example 7.2. We construct a series of 2-groups Gn = ⟨An, Bn⟩ such that An and
Bn are N2-connected elementary abelian subgroups and [An, Bn] has derived length
at least n and nilpotency class at least 2n−1.

In particular, [An, Bn]
′ is not contained in Zm(Gn) with m = 2n−1 − 2 (cf.

Remark 4.13 e) of Section 4):

For the following we note the fact that in the regular wreath product G ≀Z2 the
base group and Z2 are N2-connected if (and only if) G is an elementary abelian
2-group.

With a slight abuse of notation we write the base group of G ≀ Z2 as G × Gz if
Z2 = ⟨z⟩. In particular, if Y is a subgroup of G, we view Y also as a subgroup of
the first factor in the base group of G ≀ Z2.

For the construction we need the following result:

Lemma. Assume that X, Y are N2-connected subgroups of a group G, Y an elemen-
tary abelian 2-group. Let Z2 = ⟨z⟩ and D(X) = {xxz | x ∈ X}, X = D(X)× ⟨z⟩ ≤
G ≀ Z2.
Then X and Y are N2-connected in G ≀ Z2.
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Proof Let xxz ∈ D(X), x ∈ X, y ∈ Y . Then, since [xz, y] = 1, we deduce that
[xxz, y] = [x, y] centralizes both xxz and y because X and Y are N2-connected. We
prove next that [xxzz, y] centralizes y and xxzz.

We notice that

[xxzz, y] = [xxz, y]z[z, y] = [x, y]z[z, y].

But
[x, y]zy = [x, y]y

zz = [x, y]z.

Hence y centralizes both [x, y]z and [z, y], which implies that y centralizes [xxzz, y].
On the other hand, using that xxz centralizes z and the N2-connection of Y with

Z2 and with X, it follows that

[xxzz, y]xx
zz =([x, y]z)xx

zz[z, y]xx
zz = [x, y][z, yx]

=[z, yx][x, y] = [z, yxx
z
][xxz, y] = [z, y]xx

z
[xxz, y] = [zxxz, y],

because [z, yx] = (yx)zyx centralizes [x, y]. This proves that xxzz centralizes [xxzz, y]
and concludes the proof.

We are now ready for the construction:

Define, inductively,

Z2 ≀0 Z2 = Z2

Z2 ≀n Z2 = (Z2 ≀n−1 Z2) ≀ Z2, n ≥ 1

Let A1, B1 be two copies of Z2 and consider

⟨A1, B1⟩ ≤ A1 ≀B1 = Z2 ≀ Z2 = Z2 ≀1 Z2

For n ≥ 1, assume inductively subgroups An, Bn
∼= Z2 ×

(n)
· · · × Z2 such that

⟨An, Bn⟩ ≤ Z2 ≀2n−1 Z2.

We consider the group

((Z2 ≀2n−1 Z2) ≀ ⟨a⟩) ≀ ⟨b⟩ = ((Z2 ≀2n−1 Z2) ≀ Z2) ≀ Z2 = Z2 ≀2n+1 Z2

and construct subgroups as follows:

A = {xxa | x ∈ An} ≤ (Z2 ≀2n−1 Z2) ≀ ⟨a⟩
An+1 = A× ⟨a⟩ ≤ (Z2 ≀2n−1 Z2) ≀ ⟨a⟩

An+1 = A× ⟨a⟩ ∼= An × ⟨a⟩ ∼= Z2 ×
(n+1)
· · · × Z2

and

B = {yyb | y ∈ Bn} ≤ ((Z2 ≀2n−1 Z2) ≀ ⟨a⟩) ≀ ⟨b⟩
Bn+1 = B × ⟨b⟩ ≤ ((Z2 ≀2n−1 Z2) ≀ ⟨a⟩) ≀ ⟨b⟩

Bn+1 = B × ⟨b⟩ ∼= Bn × ⟨b⟩ ∼= Z2 ×
n+1)
· · · × Z2
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Hence An+1, Bn+1
∼= Z2 ×

(n+1)
· · · × Z2 and

⟨An+1, Bn+1⟩ ≤ Z2 ≀2n+1 Z2.

It should be noticed that

[⟨An, Bn⟩, Aa
n] = [⟨An, Bn⟩, Bb

n] = [Aa
n, B

b
n] = 1.

From the construction and the lemma we can deduce:

(i) An+1 and Bn are N2-connected for all n ≥ 1.

(ii) An and Bn are N2-connected for all n ≥ 1.

We now show:

With the previous notation, Z2 ≀n−1 Z2 / [An, Bn] for all n ≥ 1.

This yields, together with [16, III, 15.3], that the groups Gn = ⟨An, Bn⟩ satisfy
the properties stated at the beginning of the example.

To prove the assertion above, we assume inductively that Z2 ≀n−1 Z2 / [An, Bn]
for some n ≥ 1 and show that Z2 ≀n Z2 / [An+1, Bn+1].

We notice first that

[An+1, Bn+1] ≥ [An+1, B] = ⟨[A,B], [⟨a⟩, B], [ta, r] | t ∈ A, r ∈ B⟩.

Now,

[A,B] = ⟨[xxa, yyb] | x ∈ An, y ∈ Bn⟩ = ⟨[x, y] | x ∈ An, y ∈ Bn⟩ = [An, Bn].

On the other hand, for t ∈ A, r ∈ B,

[ta, r] = [t, r]a[a, r],

which implies that

⟨[⟨a⟩, B], [ta, r] | t ∈ A, r ∈ B⟩ = ⟨[⟨a⟩, B], [A,B]a⟩ = ⟨[⟨a⟩, B], [An, Bn]
a⟩.

Consequently,

[An, Bn], [An, Bn]
a = [An, Bn]

aab ≤ [An+1, Bn+1],

and also ⟨aab⟩ ≤ [An+1, Bn+1].
Therefore,

Z2≀nZ2 = (Z2≀n−1Z2)≀Z2 / [An, Bn]≀Z2
∼= ([An, Bn]×[An, Bn]

aab)·⟨aab⟩ ≤ [An+1, Bn+1],

and we are done.
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Example 7.3. Let p be an odd prime. We give an example of a group G = AB of
order p7 with N2-connected subgroups A and B, both normal in G, such that [A,B]
is not contained in the center of G:

G is generated by g1, . . . , g7 subject to the following relations:

gpi = 1, i = 1, . . . , 7,

[g1, g2] = g4, [g1, g3] = g5, [g1, g6] = g27,

[g2, g3] = g−1
6 , [g2, g5] = g−1

7 , [g3, g4] = g7,

all other [gi, gj ] = 1.

It is easy to check that | G |= p7 and

Z(G) = Γ3(G) = ⟨g7⟩, Z2(G) = G′ = ⟨g4, g5, g6, g7⟩, Z3(G) = G, G′′ = 1.

We set A = ⟨g1, g4, g5, g7⟩ and B = ⟨g2, . . . , g7⟩. Then G = AB, A and B are normal
in G, A is abelian and B is of nilpotency class 2 (with B′ = ⟨g6, g7⟩).

Moreover,

[A,B] = ⟨g4, g5, g7⟩, [A,B,B] = ⟨g7⟩ ̸= 1 and [A,B′] = ⟨g7⟩

(cf. Remark 4.13 b) and Remark 6.2 a)).

We show that A and B are N2-connected. Let a ∈ A and b ∈ B. To prove
that ⟨a, b⟩ ∈ N2 it suffices to consider the case a = g1 and b = gd2g

e
3 with d, e ∈

{0, . . . , p− 1} since g4, g5, g6, g7 ∈ Z2(G).
Then [a, b] = ge5g

d
4g

−de
7 and [a, b, a] = 1, [a, b, b] = ged7 g−de

7 = 1.

We note that for p = 3 the group constructed above is just the free Burnside
group B(3, 3) on 3 generators of exponent 3 which is a 2-Engel group ([3, 20]).

Example 7.4. Let p be an odd prime. We construct a group G = ⟨A,B⟩ of order
p15 with N2-connected subgroups A and B where A′ and B′ are not normal in G,
[A,B,A,B] ̸= 1, [A,B,B,A] ̸= 1, [A′, B] not contained in Z(G) and [A′, B′] ̸= 1:

G is generated by g1, . . . , g15 subject to the following relations:

gpi = 1, i = 1, . . . , 15,

[g1, g2] = g5, [g1, g3] = g6, [g1, g4] = g8, [g1, g7] = g11,

[g1, g9] = g12, [g1, g10] = g13, [g1, g14] = g15,

[g2, g3] = g−1
7 , [g2, g4] = g−1

9 , [g2, g6] = g11,

[g2, g8] = g12, [g2, g10] = g−1
14 , [g2, g13] = g15,

[g3, g4] = g−1
10 , [g3, g5] = g211, [g3, g8] = g

(p−1)/2
13 ,

[g3, g9] = g
(p−1)/2
14 , [g3, g12] = g

(p−1)/2
15 ,
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[g4, g5] = g212, [g4, g6] = g
(p+1)/2
13 , [g4, g7] = g

(p+1)/2
14 , [g4, g11] = g

(p+1)/2
15 ,

[g5, g10] = g−2
15 ,

all other [gi, gj ] = 1.

With some calculations one checks that actually | G |= p15 and

Z3(G) = G′ = ⟨g5, . . . , g15⟩, | Z3(G) |= p11,

Z2(G) = Γ3(G) = ⟨g11, . . . , g15⟩, | Z2(G) |= p5,

Z(G) = G′′ = Γ4(G) = ⟨g15⟩, | Z(G) |= p.

We set A = ⟨g1, g2, g5⟩ and B = ⟨g3, g4, g10⟩. A and B are extraspecial of exponent
p and order p3, G = ⟨A,B⟩ and A ∩B = 1.

Moreover, A′ = ⟨g5⟩ and B′ = ⟨g10⟩. Thus A′ and B′ are not normal in G (cf.
Remark 5.5 b)). Also [A′, B] = ⟨g11, g12, g15⟩ ̸≤ Z(G) and [A′, B′] = ⟨g15⟩ ̸= 1.

Furthermore,

[A,B] = ⟨g6, g7, g8, g9, g11, g12, g13, g14, g15⟩,

[A,B,A] = ⟨g11, g12, g15⟩, [A,B,B] = ⟨g13, g14, g15⟩,

[A,B,A,B] = [A,B,B,A] = Z(G) ̸= 1

(cf. Remark 4.13 d)).

We show that A and B are N2-connected. An easy calculation shows that

[ga1g
b
2, g

c
3g

d
4 ] = gac6 g−bc

7 gad8 g−bd
9 g−abc

11 g−abd
12 g

(p−1)acd/2
13 g

(p+1)bcd/2
14 g

(p+1)abcd/2
15 .

It follows that [ga1g
b
2, g

c
3g

d
4 ] is centralized by ga1g

b
2, g

c
3g

d
4 , g5 and g10.

Now
[ga1g

b
2g

e
5, g

c
3g

d
4g

f
10] = g2ec11 g2ed12 gaf13 g

−bf
14 g2af15 [ga1g

b
2, g

c
3g

d
4 ].

One checks that g2ec11 g2ed12 gaf13 g
−bf
14 g2af15 is centralized both by ga1g

b
2g

e
5 and gc3g

d
4g

f
10.

Hence A and B are N2-connected.
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