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Abstract.
The probabilistic approach has an important place in the wind energy research field as

it provides cheap and fast initial information for experts with the help of simulations and
estimations. Wind energy experts have been using the Weibull distribution for wind speed data
for many years. Nevertheless, there exist cases, where the Weibull distribution is inappropriate
with data presenting bimodal or multimodal behaviour which are unfit in high, null and low
winds that can cause serious energy estimation errors. This paper presents a procedure for
dealing with wind speed data taking into account non-Weibull distributions or data treatment
when needed. The procedure detects deviations from the unimodal (Weibull) distribution and
proposes other possible distributions to be used. The deviations of the used distributions
regarding real data are addressed with the Root Mean Square Error (RMSE) and the annual
energy production (AEP).

1. Introduction

Wind Energy practitioners use wind speed data in order to evaluate the available power at
a selected site. The most common approach is to use the Weibull distribution to represent
the wind speed data due to its simplicity. Wind data collection is performed in an outdoor
environment usually with not favorable conditions for the measurement. In most of the cases,
achievement on 100% data availability is not possible due to harsh environmental conditions
and the limitations of the equipments. In practice, wind speed datasets are collections of values
consisting on 10 minutes of averaged raw wind speed observations. This methodology implies
that collected datasets are discrete by nature [1]. Nevertheless, it must be kept in mind that
wind speed is assumed to fit continuous distributions, as a continuous random variable in wind
statistics science [2].

Most of the authors tend to use the frequently cited probability density functions such
as Rayleigh [3] and Weibull [4] distributions which were first applied to wind speed data by
Davenport, while he was working on wind tunnel testing and structural loading in 1960’s [5], [6].
Indeed the Weibull distribution is very appropriate when dealing with unimodal, univariate
variables as is often the case with most of the wind speed data [7–10]. The suitability of
the application of the Weibull distribution to wind speed data was demonstrated by Tuller in
1980’s [11]. The fulfillment of special conditions related to orthogonal components of wind
velocity guaranteed the fit of the Weibull distribution to wind speed data. In general terms,
measured wind speed must follow a circular pattern or in another words be congruent with
circular normal distribution.
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Two main reasons have been reported for using the Weibull distribution in wind energy: it
is a positively skewed probability density distribution which favours moderate wind speeds; and
it has a relatively easy estimation requirements with only two parameters [12].

When the nature of wind speed data is taken into account, regional, climatic, seasonal and
diurnal e↵ects can be observed. These e↵ects must be accounted during the statistical processing
of data. Such is the case of some regions and sites where for several reasons, wind speed data
behaves as a bimodal and sometimes a multimodal distribution. This is due to the e↵ect of local
winds, including the Etesian winds in the Eastern Mediterranean (Turkey and Greece) [13], the
combination of mountain and sea winds such as seen in a Mexico site [14], and the channeling
as in Butler Grade region [15], among others.

Limitations of the Weibull distribution for wind speed data are also criticised in various
studies as it is not good enough to capture null, low and high wind speeds, which causes
overestimation or underestimation in terms of power production [16–19]. Weaknesses of Weibull
to explain tails are frequently emphasised, and the issues related to diurnality and annual
seasonality are already referred by literature [20]. Furthermore, fit between wind speed data
and Weibull does not perform well in comparison with other probability density distributions,
as shown in [21] and [22] where 59 and 5 distributions, respectively, where compared. In a
recent study the Weibull distribution was used to fit clear bi-modal input data just indicating
the superiority of Weibull on Rayleigh [23]. This was done after a detailed literature review
where the authors clearly gained awareness of the limitations of the Weibull distribution, just
for the sake of simplicity.

Wind speed data are simplified by measuring as averaged, treating as continuous variable,
grouping in 0.5 or 1 m/s bins and neglecting at the tails of Weibull, which result in a certain
estimation error when performing energy evaluations. It is a well known fact that application of
the Weibull distribution to wind speed data can cause systematic overestimation in long-term
energy studies on a global scale [12] due to wind speed’s cubic e↵ect on power [24].

The Weibull distribution is broadly used in wind energy to represent wind speed data even
knowing its limitations. Commercial softwares such as WAsP and WindSim tend to show
their simulation results and wind statistics with Weibull distribution [25] [23]. Even in the
the International Electrotechnical Commission (IEC) standards, the Weibull distribution is
suggested, as the default tool, for wind power production estimation and safety modelling [26],
[27].

Nevertheless, still some studies of other distributions applied to wind speed data can be found
in the literature, although these cases are out numbered. As an example, Jung [21] compares the
goodness of fit of several probability distributions concluding that Log-normal distribution gives
a better fit than Weibull, using also two parameters. Other studies claim that Mixture Weibull
distribution is superior to traditional Weibull, specially for bi-modal wind regimes [22], [18], but
having as disadvantage the increased number of parameters and the model complexity. Celik
also provides an evaluation tool for selecting the best probability distribution [22].

In this paper a time-e�cient compact methodology to enhance the goodness of fit, based on
characteristics of input data, is provided. A procedure is presented with well defined guidelines
for the task of processing wind speed data and with the capability to distinguish between
unimodal and multimodal data distributions. The Classical Weibull probability density function
(PDF) approach is combined with data subdivision into several unimodal Weibull PDF’s and
the multi-modality approach using more sophisticated PDF’s such as the Beta Exponentiated
Power Lindley (BEPL) [28] distribution and the Mixture Weibull. The figures of merits are the
annual energy production (AEP) and the root mean square error(RMSE) results.

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 032067 doi:10.1088/1742-6596/753/3/032067

2



2. Approach and Methods

The developed procedure is as follows. First, data are inspected using Silverman test [29] and
visual inspection in order to detect the type of distribution to be used (uni/multi modal). Then
in case of unimodal distribution, classical Weibull PDF approach is used. On the contrary,
when data present multimodal behaviour, two possibilities are proposed. If the origin of the
multimodal behaviour can be determined, input data are processed through a transformation
procedure finishing into several unimodal Weibull PDF’s. This is done with the help of the
other meteorological variables, temperature, pressure, humidity, wind direction, seasonality and
diurnal variability. In the case that the origin of the multi-modaltiy can not be clearly found,
the recently announced Beta Exponentiated Power Lindley (BEPL) [28] and Weibull mixture
distributions are used as probability density functions in order to determine which one fit best.
Mathematical expressions for the Weibull and the Weibull mixture distributions [30] are given
in (1) and (2) respectively:
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where ↵ is the shape, � is the scale, mix is the mixture factor and v represents the wind speed
variable. The Beta Exponential Power Lindley [28] is given by equation (3):
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where ↵ is the shape, � is the scale and v represents the wind speed variable, as before, and a,
b, and ! are the BEPL parameters. Finally, B(a, b) is the well known Beta function shown in
equation (4):

B(a, b) =
�(a) ⇤ �(b)

�(a+ b)
,with �(x) = (x� 1)! (4)

The selection of the model parameters of equations (1), (2) and (3) is a crucial step in
order to obtain a good representation of the stochastic variable, wind speed in our case. These
parameters are obtained using the Maximum Likelihood estimation model. This model has been
proven superior among others in various studies but it has to be taken into account that this
claim is valid in average because the terrain and the weather characteristics can cause di↵erences
[31–35]. The R system [36] with the help of the packages fitdistrplus [37] and bbmle [38] were
used for the estimation of the parameters.

The performance of the method is evaluated using the annual energy production (AEP) of
a known wind turbine. Here, the Energcon E-48 power curve has been used [39]. Wind speed
values have been obtained from the actual data and from the fitted distribution functions are
combined with the wind turbine power curve for the estimation of AEP values. These values
are then compared using the absolute di↵erences and the Root Mean Square Error (RMSE).

Figure 1 presents the flowchart of the proposed methodology. This process can produce
three possible outcomes as a solution to the misfit occurrence between wind speed data and the
classical uni-modal Weibull PDF.
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Figure 1. Flow Chart of Algorithm

3. Results

As a case study we used a training data-set covering 1 year of data for wind speed, wind direction
and pressure. The wind speed distribution is shown in Figure 2. Multi-modality for this dataset
can be detected by visual inspection without performing any detailed test. Anyway, it would
also be possible to come across with challenging datasets where multi-modality detection is not
possible using only visual inspection. Then, some statistical steps for the detection of multi-
modality were added to the methodology. The reader should remind that when the data is
subsetted, total observation number changes. In another words the change on sample space
occurs, because of that y axis maximum density limits can vary between di↵erent inspections
related to subset type.

Bimodality test results are consistent with the outcome of the visual inspection for the wind
speed data. The smaller P-Values indicate bimodality occurrence in data set. In our case, test
resulted with 0 value. Figure 3 is given as an illustrative example, to understand results of
bimodality test with the typical bi-modal and uni-modal input data.

• Bi-Modal input and bimodality test result P-Value=0

• Uni-Modal input and bimodality test result P-Value=0.5

The second test is the Silverman test. The di↵erence between the Silverman and the
bimodality tests comes from the Silverman test’s flexibility to multi-modality (higher degree
than 2 modes) and the definition of the null hypothesis type. The significance value is taken as
0.05 to test validity of null hypothesis. The Silverman test results are given in below. The first
test indicates uni-modality with its null hypothesis definition and it is rejected. The second test
indicates bi-modality which can not be rejected.

• Silvermantest: Testing the hypothesis if the number of modes is <= 1, the P-Value is 0
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• Silvermantest: Testing the hypothesis if the number of modes is <= 2, the P-Value is
0.3243243

Figure 2. Raw wind speed data distribution

Figure 3. Uni-Modal vs Bi-Modal Data

These results lead to Bi-modality reasoning inspection using other recorded variables as wind
direction, pressure and day time (mainly day/night). In the next paragraphs, the inspection of
the raw data, taking into account the influence of the wind direction, the atmospheric pressure
and the day time variables is presented.
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Figure 4. Wind rose and sectoral frequencies

Figure 5. Separation due to directional data

Directional inspection: The wind speed dataset was divided into 36 wind direction sectors.
Taking into account the wind rose, showed in Figure 4, three sub-sets were constructed to
separate data as shown in Figure 4 and Figure 5 where it can be seen that bi-modality disappears
in some degree with this filtering. The cumulative freguency histogram is plotted to illustrate the
e↵ects of wind speed subsets via sectors, intersection of di↵erent sectors causes the occurrunce
of multi modality.
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In Figure 5, wind speed subsets with positively skewed histograms fit well to Weibull
distribution. An example comparison is added to figure for the leading sector subset. This
division seem normally distributed however when the goodness of fit comparison is performed
Weibull distribution gives better fit than normal distribution.

Figure 6. Inspection based on pressure

Pressure based inspection: Figure 6 shows the e↵ect of the atmospheric pressure
anomalies into wind speed. The mean value of the measured atmospheric pressure was used
in the sub-setting process.

Figure 7. Inspection based on diurnal e↵ects

Diurnal inspection: Herein day period is defined as the time interval between sun-rise and
sun-set in order to sub-setting wind speed data. In case of day period, bi-modality disappears
however in case of night period bi-modality still remains as shown in Figure 7.

Although multi-modality was cleaned to a certain degree, the third phase of the proposed
methodology is presented in the following.
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Table 1. Relative AEP di↵erence and RMSE obtained with di↵erent PDF’s

Weibull BEPL MixW Wdivided

Relative AEP di↵erence 5.73% 2.45% 0.85% 0.82%

RMSE 21.81% 9.33% 3.23% 3.11%

Table 1, shows the bechmark between Weibull, Beta Exponentiated Power Lindley (BEPL),
Mixture Weibull (MixW) and 3Weibull distributions (Wdivided =Wind speed dataset is divided
into 3 sub-sets due to wind direction sectors to clean multi-modality) is presented. It can be
seen that in this case of study, the Weibull approach can be improved significantly using both,
the Mixture Weibull distribution or the division of data into three Weibull PDF’s. Figure 8
presents the comparison of the PDF’s fits to actual raw data. It can be seen how the traditional
Weibull fails not only with the number of modes but also in the fitting of the body and the tail
of the distribution.

Figure 8. Comparison of Weibull and Mixture Weibull fits (left) and Weibull and BEPL fits
(right) with wind speed raw data.

4. Conclusion

Weibull PDF approach is used systematically to process wind data. Nevertheless, there exist
cases where this approach is not good enough for obtaining accurate power production and
AEP results. A combined approach using multi-modal PDF’s and/or multi-modality cleaning,
separating input data into several Weibull PDF’s, has been proposed. Results obtained with
both methods are similar and present a significant improvement when compared with the Weibull
approach, so the multi-modal methodology can be used even in the case of not finding the
root origin of data behavior. The multi-modality cleaning approach is performed with sub-
setting of the wind speed, based on the wind direction data, the atmospheric pressure anomalies
and the wind speed changes on diurnal periods. However this sub-setting approach can be
performed with di↵erent variables and in di↵erent data cases. Regarding the usage of multi-
modal PDF’s, model parameter estimation is still the most challenging issue. We experienced
also this phenomena. Model parameter estimation process of multi-modal PDF’s is quite time-
consuming due to the computational complexity. Nevertheless, the input data is the decision
making mechanism for the selection of the distribution type. The high computational complexity
or the amount of the required input variables determine the level of accuracy.
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Another outcome of the results is the importance of the data collection, not only wind
speed and direction but also the other meteorological parameters such as humidity, pressure
and temperature have a significant place in wind energy applications. The authors desire to
encourage wind farm owners to continue on data gathering of all possible meteorological variables
to track anomalies and prevent losses or increase the accuracy in estimations during the whole
lifetime of a wind turbine.
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