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Abstract. Wind turbine failure and downtime can often compromise the profitability of a
wind farm due to their high impact on the operation and maintenance (O&M) costs. Early
detection of failures can facilitate the changeover from corrective maintenance towards a pre-
dictive approach. This paper presents a cost-e↵ective methodology to combine various alarm
analysis techniques, using data from the Supervisory Control and Data Acquisition (SCADA)
system, in order to detect component failures. The approach categorises the alarms according to
a reviewed taxonomy, turning overwhelming data into valuable information to assess component
status. Then, di↵erent alarms analysis techniques are applied for two purposes: the evaluation
of the SCADA alarm system capability to detect failures, and the investigation of the relation
between components faults being followed by failure occurrences in others. Various case studies
are presented and discussed. The study highlights the relationship between faulty behaviour in
di↵erent components and between failures and adverse environmental conditions.

1. Introduction

The rapid growth of wind turbines (WT) in terms of size, number of installations and rated
capacity has a huge impact on the operation and maintenance (O&M) costs. Indeed, turbine
failure and downtime can often compromise the profitability of a wind farm (WF). This
is especially valid for o↵shore WFs, where unexpected failures result in even more severe
consequences, in terms of additional downtime and costs. Early detection of these failures can
facilitate the changeover from corrective maintenance towards a predictive approach. Avoiding
unexpected failures will enable operators to reach their aim to maximise the annual energy
production (AEP) with the highest possible reliability of operation and the lowest O&M costs.

Over the last decade, many important contributions have been made to the study of WT
component reliability and failure predictability [1, 2]. Nonetheless, nor data collection on
WT failures is standardised, neither a standard taxonomy terminology has been defined yet.
Condition monitoring (CM) techniques have proved to be very e↵ective in detecting incipient
failures of a particular component, and some have even turned into real industrial applications
[3, 4]. Research on Supervisory Control and Data Acquisition (SCADA) signals has also been
successful in deriving systems for detecting developing faults [5, 6, 7].

The SCADA system provides a comprehensive overview of the historical and present status
of a WT. In addition to the operational and environmental parameters, it includes a detailed
record of alarms and fault logs, providing valuable information about the sub-assemblies and
components. Moreover, since this information is available for any WT, there is no need
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for additional investments while CM systems often require installations of specific sensors
and equipment. Recent studies have shown their success in predicting pitch failures using a
combination of operational SCADA data and alarm logs, by applying diverse methods like
Artificial Neural Networks [8], Bayesian Networks [9] or the RIPPER algorithm [10]. Data-
mining techniques were also applied to this data combination to predict the turbine status in
[2]. Additionally, the same combination has been explored to assess WT reliability [11]. However,
very little research has been conducted using only SCADA alarms [12].

In this context two shortcomings can be highlighted. The WT operates as a whole, and a
particular component fault may result in a failure of a di↵erent component. Consequently, there
is a need to improve the knowledge of the WT from a holistic approach in order to understand
the relation between di↵erent components and their failure mechanisms. The strongest drawback
posed by the alarm analysis is the overwhelming amount of data. The huge amount of alarms
triggered in a short period of time makes them unmanageable and no relevant component-
related information can be extracted. This paper combines previous research findings to provide
a cost-e↵ective methodology for processing and analysing SCADA alarms in order to detect any
component failure. The main objectives of the present research work are:

• Categorise the WT SCADA alarms according to a reviewed taxonomy; the taxonomy
developed for the ReliaWind project [13] has been used as a basis, incorporating certain
revisions.

• Analyse the component-related alarms by applying two methods, as suggested in [12], for
two purposes:

– Investigation of the relation between di↵erent components faults being followed by
failure occurrences in others;

– Demonstration of failure detection capability in various case studies, with known
component failures.

2. Data description and processing

2.1. Description of the SCADA alarm system
The SCADA system is primarily used in WTs for simple monitoring and control. It acquires data
to track environmental conditions, key performance parameters (power output, rotor speed), and
to measure several aspects of the components. Concerning the SCADA alarm system, an alarm
is activated when an incident occurs or to keep records of any operational status change. In
general, di↵erent categories of alarms can be found in the SCADA alarm logs:

• Grid conditions: WT performance can slightly deteriorate during grid events. For this
reason, grid-related alarms are recorded when some parameters exceed threshold limits,
e.g. during voltage dips or frequency fluctuations.

• Environmental conditions: Wind conditions determine WT control and operation. Alarms
are therefore activated when adverse environmental conditions are detected, e.g. high wind
speed, icing, low or high ambient temperature.

• WT operational state: Many SCADA alarm systems include state-related alarms to inform
about WT state, i.e. emergency, failure, stop, pause, warning or running. This information
is essential to understand if an urgent action is required from the operator.

• Manual stops or restrictions: Power output curtailments, due to grid restrictions, noise
problems or wind sector management strategies, are also frequently informed through alarms
activation.

• Maintenance activities: Some WT manufacturers include maintenance-related alarms, to
keep records of the work carried out.
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• Component malfunction: Modern WTs include more or less sophisticated condition
monitoring systems (CMS). Either way, when any signal (temperature, vibration, etc.)
from the CMS or the SCADA exceeds the threshold corresponding to normal operating
conditions, an alarm is triggered. In this manner, the alarm system can inform about the
component health status avoiding complex signal processing.

2.2. Historical SCADA alarm data
The data available for the research work presented in this paper was collected by SCADA systems
at 23 onshore WFs covering a period of three years of operation. The selected fleet aims to be
representative of very di↵erent situations since the considered WFs are located in geographic
regions with diverse climates and present a wide range of sizes. In addition, seven di↵erent
turbine types were included. A general description of the fleet is presented in table 1.

Table 1. Characteristics of the selected wind turbine fleet

WT make Technology Rated power (kW) Number of WTs Alarm system

A Geared Generator 1500 55 1
B Direct Drive 2000 37 2
C Direct Drive 2000 19 2
D Geared Generator 850 77 3
E Geared Generator 2000 133 4
F Geared Generator 1800 9 5
G Geared Generator 2000 76 5

Turbine types A, D, E, F and G correspond to three-blades turbines, with geared-drive
technology and doubly fed induction generators (DFIG). On the other hand, turbine types B
and C are three-blades turbines, with direct-drive technology and synchronous generators. The
number of WTs for each turbine type is also specified in table 1, as well as the rated capacity
and the SCADA system used.

As mentioned, alongside comprehensive signal information, SCADA systems record historical
alarm and fault log files detailing alarm codes and their corresponding description, start date
and duration. These files were collected from the described fleet covering a period of three years
of operation. Typical data instances of the SCADA alarm systems are shown in table 2. Alarm
IDs cannot be revealed for confidentiality reasons.

Table 2. Illustration of SCADA alarm data instances

WT a↵ected Alarm ID Description Start date End date

15 XXXX Lack of wind 2013-04-22 09:21:55 2013-04-22 10:36:10
9 XXXX Generator heating 2013-04-22 09:23:06 2013-04-22 09:35:08

2.3. Data processing methodology
• Alarms categorisation
In order to establish standard categories for the di↵erent turbine components, there is a
need to define a specific structure. The ReliaWind project [13] has been identified as the
most complete study on WT reliability to date. As part of the work accomplished within
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this project, a new WT taxonomy was developed, based on the terminology of system, sub-
system, assembly and sub-assembly. In order to adapt this taxonomy to the WTs selected
for the present work, certain revisions have been incorporated. More information about
these modifications as well as the full WT taxonomy can be found in an independent study
developed by the authors [14].
In addition to the operational SCADA alarm data, original technical documentation pre-
pared by the corresponding manufacturers was gathered. These alarm allocation lists doc-
ument all alarm codes and the following related information: detailed description of the
problem/failure, component a↵ected and turbine status. Based on these records , each
unique alarm code is manually associated to a specific sub-system and assembly, and even
a sub-assembly when possible. Since the same WT taxonomy is used for all the di↵erent
turbine types, it allows to create a homogeneous and standard categorisation.
It has to be mentioned that non component-related alarms are also associated to their cor-
responding category, i.e. grid conditions, environmental conditions, WT operational state,
manual restrictions and maintenance activities (see section 2.1).
In short, a “dictionary” is created where every alarm code, from any manufacturer and tur-
bine type, is mapped to a sub-system, assembly and sub-assembly or to a non component-
related category. In this manner, historical alarm logs can be automatically translated into
valuable information assessing WT status.
Moreover, when an alarm is triggered by the SCADA system it can lead to a WT shut-
down. In addition to the association of each alarm code to its corresponding sub-system
and assembly, it is categorised as braking or not, in order to distinguish between alarms
incurring in WT downtime and warnings.

• Failure data
In a parallel study [14], failure data were collected from more than 4300 WTs over the same
operational period of three years. The reviewed taxonomy was also manually applied to the
failure logs, allowing the combination of both datasets during the analysis, by locating real
failures in time.
Failure logs were analysed to assess failure occurrence and the consequent downtime,
allowing to highlight the most critical cases. As a result, six assemblies were identified
as the most severe: the gearbox, the generator, the pitch system, the yaw system, the
frequency converter and the transformer. Moreover, expertise was sought from specialists
in the WF O&M field, in order to gain insight into the incurred maintenance costs in case
of full replacement. Following the consultation, WT blades were included as a critical
component. Consequently, the most severe failures would involve the components listed
in figure 1, alongside their normalised failure rates and downtime. Further details can be
found in [14].
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Figure 1. Critical components in terms of normalised downtime and failure rate
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Hence, investigation of the relation between di↵erent component-related alarms before real
failures of the listed components is prioritised against other less severe cases.

A scheme of the proposed methodology is shown in figure 2. Historical alarms are automatically
translated into component-related alarms, based on the categorisation established previously.
Historical failure logs allow then to locate component failures in time. Finally component-
related alarms prior to particular failures can be analysed using the techniques selected in [12]:
time-sequence and probability-based analysis.

Historical
SCADA
Alarms

Component
Related
Alarms

Taxonomy

Time-Sequence
Analysis 

before Failure

Probability-Based
Analysis 

before Failure
Historical

Failure
Logs

Categorisation

Component
Related
Failures * Select most severe failures

* Place failures in time

Analyse all alarms in 
affected turbine

Figure 2. Scheme of the methodology for SCADA alarms and failure data processing

3. SCADA alarm analysis

Historical alarm logs can be understood as a succession of events. As suggested in [8], a specific
fault is usually preceded by a certain alarm pattern. The purpose of analysing SCADA alarms
is therefore the recognition of alarm patterns before real failures. On-line fault diagnosis could
then be accomplished by relating present known alarm patterns to failures that are more likely
to occur. Qiu et al. [12] applied time-sequence and probability-based methods separately to
analyse SCADA alarms. In this paper, the time-sequence approach is used to recognise any
alarm pattern. Then, the most frequent patterns are identified before the occurrence of actual
failures. Both approaches are briefly described hereafter. All the analyses in the present study
have been carried out using the R statistical software platform [15].

3.1. Time-sequence analysis
Given two di↵erent alarms A and B, the relationship between them is directly governed by their
succession over time, as illustrated in figure 3; tS and tE state for start time and end time.
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Figure 3. Time-sequence analysis of alarms A and B
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Two alarms starting at the same time would imply a two-way relationship of causality (1).
On the contrary, if B starts while A is activated, A could be assumed to be the cause of B (2).
Finally, if B is triggered after the end of A, no relationship would be established (3). As a result,
this analysis technique allows us to identify any alarm pattern of the type A ! B and A $ B.
It is important to mention that the first assumption made for situation (2) could be confirmed
by the analysis of historical data, as presented in section 4.1.

3.2. Probability-based analysis
The probabilistic approach is used here to reveal the more frequent alarm patterns before real
failures. Less frequent patterns are then considered to be unrelated to failures. Over a period
of time T ahead of a specific failure, a total number of N alarms are triggered. The probability
of occurrence of alarms A and B is:

P (A) =
N(A)

N
and P (B) =

N(B)

N

Then, the probability of occurrence of the pattern A ! B can be estimated as follows:

P (A ! B) =
N(A ! B)

N
=

N(A ! B)

N(B)

N(B)

N
= P (A | B)P (B)

The dependency of both alarms before a failure can be illustrated through a Venn diagram.

A=B

A $ B (1)

A B

A ! B (2)

A B

A \B = 0 (3)

Figure 4. Venn diagrams for di↵erent grade of dependency between alarms A and B

4. Results and Discussion

4.1. Alarm pattern recognition
Time-sequence analysis was applied to historical SCADA alarms on a WT basis. All the WTs
included in the selected fleet, described in table 1, were analysed over a period of three years
of operation. Nevertheless, some alarms were excluded before performing the analysis. Since
alarms related to manual stops or restrictions and to maintenance activities (see section 2.1)
result from manual interventions, they were removed. Similarly, alarms informing about the
WT operational state were excluded from the analysis.

For each WT, all the alarm patterns of type A ! B and A $ B were recognised and
then grouped by the alarm system used, in order to asses the capability of failure detection.
The assumption that A may be the cause of B can be confirmed by the pattern occurrence.
Consequently, patterns with a low occurrence were excluded. The final number of di↵erent
patterns identified per alarm system is shown in table 3.

As one can see, systems 3 and 4 show an important number of alarm patterns detected,
whereas a lower number of patterns were identified for systems 1, 2 and 5. From this,
an important conclusion can be drawn: the proposed technique is highly dependent on
the characteristics of the SCADA system, directly corresponding to the WT manufacturer.
Moreover, the number of alarm patterns detected could be correlated to the number of failures
experienced by each group of WTs and their age, which was not considered in the present study.
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Table 3. Alarm patterns identified per system

Alarm system Number of WTs Number of alarm patterns

1 55 36
2 56 12
3 77 990
4 133 2499
5 85 60

At first glance, systems 3 and 4 show a higher capability of failure detection through a correlation
with alarm patterns.

At this stage, a shortcoming has to be highlighted. Some alarm patterns may remain
unrecognised due to the accuracy of the alarm system. Indeed, a delay might exist between the
incident start and its detection, followed by the corresponding alarm activation. This problem
is illustrated in figure 5. Alarm A should be recognised as the cause of alarm B. However,
the suggested methodology interpret both alarms to be independent due to the delay between
the real incident start time, tS⇤,B and the recorded alarm start time, tS,B, when the incident is
acknowledged by the system. This could explain the low number of alarm patterns observed for
WTs using SCADA alarm systems 1, 2 and 5.
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t
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t
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Figure 5. Alarm pattern unrecognised due to a slow response of the system

In future research work, this problem is intended to be overcome by applying more complex
pattern recognition algorithms, based on machine learning techniques.

4.2. Case studies
From the previous analysis, SCADA alarm systems 3 and 4 show a higher capability of failure
detection through alarm pattern recognition. These systems correspond to WT makes D and E
(see table 1). In order to relate the recognised patterns to real failures, several WTs experiencing
failures of critical components were selected. For the sake of clarity, two case studies from WT
make E are presented here below.

• Case 1: Gearbox failure
The selected WT is located in a WF which comprises 30 WTs. The site, which has been
in operation for more than eight years, gives an installed capacity of 60 MW. It is located
in a terrain of moderated complexity and no areas of important forest can be founded in
the surroundings. Layout spacing generally maintains a distance of five rotor diameters in
the predominant wind direction; this is considered su�cient spacing for wake recovery on
a WF of this size.
Historical alarm logs from the a↵ected WT were analysed over a period of one month prior
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to the gearbox failure. The period of time before the failure was determined to be su�cient
to schedule a necessary intervention. Three main gearbox-related alarms were identified
(a13, a14, a15). Alarm patterns leading to these alarms appearance are shown in figure 6
together with their corresponding occurrences. Each alarm is represented as a vertex in the
network diagram characterised by its code and the component a↵ected. Alarm codes are
replaced by random numbers and the corresponding descriptions are not revealed, in order
to ensure confidentiality.

Figure 6. Network diagram of the SCADA alarm patterns before a specific gearbox failure

As can be seen, the gearbox failure did occur following many alarms involving the hydraulic
system (a2, a3, a4, a5) and the cooling system (a6, a7, a8). Based on the number of
occurrences, a causal relationship between these assemblies and the gearbox could be
assumed. Alarms of a certain component resulted in a failure of another component.
Moreover, the high number of occurrences of each pattern over a month before the gearbox
failure confirms the assumption that a failure can cause a previous alarm pattern. We
can conclude that this technique is successful in showing the relation between di↵erent
components, by providing a holistic overview of the system before a certain failure.

• Case 2: Yaw system failure
The a↵ected WT is part of a WF, with similar characteristics to the site described in the
previous case study. Analogously, historical alarm logs were analysed over a period of one
month prior to a failure of the yaw system. Alarm patterns recognised throughout the
month ahead of the failure are shown in 7, together with their corresponding occurrences.
Contrary to the previous case, a significantly lower number of patterns were detected. The
three yaw-related alarms are linked to three other alarms (a20, a25, a26), being the weather-
related the most significant. Indeed, alarm 26 indicates that high wind speed was detected.
Nevertheless, this technique does not appear to be as robust as in the previous case, since it
does not show any clear relationship between di↵erent alarms. The Venn Diagram showing
the relation between the yaw alarms and the high wind speed alarm is presented in figure

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 072019 doi:10.1088/1742-6596/753/7/072019

8



8, alongside the alarm statistics. Each circle corresponds to a specific alarm; the area of
the circle is proportional to the number of occurrences, which is also indicated.
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Figure 7. Network diagram of the SCADA alarm patterns before a failure of the yaw system

Number of occurrences
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Figure 8. Alarm statistics and Venn diagram before a failure of the yaw system

As can be seen, the high wind speed alarm was activated several times, regardless the time-
sequence patterns with the yaw-related alarms. In terms of probability, there is a much
greater likelihood of emergence of the alarm 26 than the alarm pattern. Moreover, two of
the three alarms indicating a yaw fault (23 and 24) were triggered whenever the high wind
speed alarm was activated.
As a result, this probabilistic approach seems to be more convenient for detecting the yaw
system failure before its appearance. Indeed, the analysis of the historical alarms reveals
the link between alarms related to the a↵ected system and alarms informing about adverse
environmental conditions. In this particular case, the alarm pattern detected before the
failure would not be of type A ! B; the significant number of times a certain alarm is
triggered could be considered as an indicator of a failure likely to occur in the future; the
high rate of high wind speed detection could be understood as the cause for the yaw failure.
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Both case studies show the capability of the WT SCADA alarm system to provide a holistic
overview of the condition of the turbine and so that failures at some components could be
predicted way ahead of their actual appearance. Depending on the case, one technique seems to
be more successful than the other in providing an alarm pattern before the failure. Nevertheless,
since the methodology has only been applied to two case studies, a large number of thoroughly
executed case studies would be needed to confirm the conclusion for other components.

Future research work will focus on identifying the most suitable technique for detecting
failures of the seven critical components listed in section 2.3. This future study will rely on
several historical failures of each component. In addition, specific alarm patterns will be related
to particular failure modes issued from the analysis of the available failure data.

5. Conclusion

This paper presents a cost-e↵ective methodology to process and analyse WT SCADA alarms
for component failure detection purposes. The suggested categorisation has showed its success
in improving alarm handling process, by translating overwhelming data into component-related
valuable information. Its cost-e↵ectiveness relies on the automatic use of SCADA data, avoiding
additional equipment and complex signal analysis processes. As illustrated through case studies,
the present work highlights the relationship between faulty behaviour in di↵erent components
and between failures and adverse environmental conditions. In other words, certain alarms could
be directly related to upcoming component failures. The results show also the capability of the
WT SCADA alarm system to provide a holistic overview of the condition of the turbine and so
that failures at some components could be predicted way ahead of their actual appearance.

Nevertheless, the suggested analysis technique, based on time-sequence pattern recognition,
presents some drawbacks; further research work will aim at overcoming these problems by
applying more complex machine learning techniques.

Finally, the authors are also currently exploring other applications of the proposed
methodology for SCADA alarms processing. Component-related alarms are being correlated
to deviations from normal WT operating conditions. In other words, the contribution to WT
underperformance events of specific component failures is being investigated.
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