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ABSTRACT 

Some of the most promising novel tuberculosis (TB) vaccine strategies currently 

under development are based on respiratory vaccination, mimicking the natural 

route of infection. In this work, we have compared pulmonary and subcutaneous 

BCG immunization in the TB susceptible DBA/2 mouse strain, a model in which 

parenteral BCG does not protect. Our data show that intranasal but not 

subcutaneous BCG confers robust protection against pulmonary TB challenge. In 

addition, our results indicate that pulmonary vaccination triggers a TB-specific 

mucosal immune response orchestrated by IL17A. Thus, IL17A neutralization in 

vivo reduces protection, as well as it abrogates TB-specific IgA secretion to 

respiratory airways and lung expression of pIgR induced following intranasal 

vaccination. Altogether, our results demonstrate that pulmonary BCG vaccination 

can overcome lack of protection observed when BCG is given by parenteral route, 

suggesting that respiratory TB vaccines could have an advantage in TB endemic 

countries, where intradermal BCG results inefficient against pulmonary TB. 

 



3 

BACKGROUND 

Tuberculosis (TB) disease causes one and a half million deaths per year, and is one 

of the leading infectious diseases affecting mainly developing and underdeveloped 

countries. The rising spread of multidrug resistant strains with the increasing 

globalization makes TB an alarming global health problem [1]. Therefore, there is 

an urgent need for new effective TB vaccines. 

The only vaccine against TB in use today, the Bacille Calmette-Guerin (BCG), is a 

live attenuated strain of Mycobacterium bovis. BCG was initially designed as an oral 

vaccine, but since the 1970s intradermal administration at birth was established 

worldwide. Nowadays, BCG is considered effective in reducing the rate of severe 

forms of TB (meningitis and miliary TB) in children, but is inconsistent in 

preventing spread of pulmonary TB responsible of disease transmission [2]. 

Vaccination through the natural route of infection represents an attractive 

approach in vaccinology for priming the natural host immunity. In the case of TB, 

pulmonary mucosal tissue is the primary site for establishment of infection. 

Nevertheless, it is unclear which are the primary defence mechanisms of the 

mucosal immune response triggered during early TB infection. IL17A has emerged 

as a key molecule in the induction and maintenance of mucosal immunity [3-5]. 

Although this cytokine was initially described to participate in the elimination of 

extracellular pathogens and fungi [6, 7] due to its neutrophil recruitment capacity 

[8], it can also contribute to protection against intracellular bacteria [9, 10]. 

Results obtained with IL17A-knockout mice reveal no greater sensitivity to 

Mycobacterium tuberculosis (MTB) than wild-type mice in short-term TB challenge 

experiments [11]. However, a recent study has shown that this result depends on 

the virulence level of the MTB strain used for infection [12]. IL17A is known to 
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orchestrate the optimal organization of granuloma during TB infection in mice [13, 

14], which could explain the higher mortality rate of IL17RA-defficient mice in 

long-term TB infections [15]. Regarding the role of mucosal immunoglobulins (Ig) 

during mycobacterial infection, IgA-deficient mice are more sensitive to 

pulmonary challenge with BCG [16], suggesting a role for IgAs in mycobacterial 

infections. Mice knockout for the polymeric Ig receptor (pIgR), a protein expressed 

in the mucosal epithelium whose function is to translocate IgAs from lamina 

propria to the gut lumen or lung airways [17, 18], show greater susceptibility to TB 

challenge [19]. 

Depending on their sensitivity to TB infection, mouse strains have been classified 

into susceptible and non-susceptible [20]. Besides their different susceptibility 

profile to TB challenge, these strains also differ in the protective response 

following parenteral BCG vaccination. Whereas resistant strains C57/BL6 and 

BALB/c, the most used mouse models for TB vaccine comparison, show good 

vaccine-induced protection, parenteral immunization with BCG does not confer 

protective efficacy in susceptible strains CBA/J or DBA/2 [21, 22]. 

In this work, we carried out a comparative study of intranasal and subcutaneous 

BCG vaccination in the TB susceptible mouse strain DBA/2. Our data demonstrate 

that pulmonary BCG delivery overcomes lack of protection observed after 

subcutaneous vaccination in a process mediated by IL17A.  
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MATERIALS AND METHODS 

Bacteria 

Mycobacterial strains were grown at 37°C in Middlebrook 7H9 broth (BD 

Biosciences) supplemented with ADC (BD Biosciences) and 0.05% (v/v) Tween-

80, or on solid Middlebrook 7H11 (BD Biosciences) supplemented with ADC. 

Bacterial suspensions for vaccination or infection were prepared in PBS from 

glycerol stocks previously quantified. 

Mice 

All mice were kept under controlled conditions and observed for any sign of 

disease. Experimental work was conducted in agreement with European and 

national directives for protection of experimental animals and with approval from 

the competent local ethics committees.  

For protection studies, groups of eight week-old female C57/BL6 or DBA/2JRj 

mice (Janvier Biolabs) were vaccinated subcutaneously (100 l) or intranasally 

(40 l) with 106 CFU of BCG Danish 1331 in PBS. Eight weeks post-vaccination, 

mice were intranasally challenged with 100 CFU (low-dose challenge) or 1000 CFU 

(high-dose challenge) of MTB H37Rv in 40 l of PBS. Bacterial load from 

homogenized lungs and spleen was determined four weeks post-challenge by 

plating on solid medium. For survival experiments, disease-associated symptoms 

(including weight, aspect and individual/social behaviour) were monitored 

weekly, and mice were humanely euthanized according to pre-established 

endpoint criteria. Histological studies were performed according to a previous 

work [23]. 

For immunogenicity studies, eight week-old female DBA/2JRj mice were 

vaccinated subcutaneously or intranasally with 106 CFU of BCG Danish 1331 in 
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PBS. At the indicated time points, animals were euthanized and splenocytes and 

lung cells collected and stimulated with Purified Protein Derivative (PPD) (Statens 

Serum Institute, SSI) 5 g/ml overnight for intracellular staining (ICS), or during 

48 hours for supernatants collection and cytokine detection by ELISA. For 

bronchoalveolar lavage (BAL) collection, trachea was cannulated and BAL was 

performed with 0.8 ml of ice-cold PBS. Supernatant was separated from cells by 

centrifugation and frozen at -80ºC for further IgA detection analysis. 

IL17A neutralization in vivo 

IL17A neutralization was performed as described previously [24]. Briefly, mice 

were inoculated intraperitoneally with 500 g of antiIL17A clone 17F3 (BioXcell) 

or isotype control in 100 µl of PBS the day before vaccination and twice a week 

thereafter until experiment completion. 

Flow cytometry  

For intracellular staining (ICS), GolgiPlug (BD Biosciences) was added to cells 

during the last six hours of incubation with PPD. Then, cells were fixed and 

permeabilized with the Cytofix/Cytoperm Fixation/Permeabilization Kit (BD 

Biosciences) following manufacturer instructions. Cells were stained with 

antiIL17A-APC.Cy7 and antiIFN-APC (BD Biosciences). For surface staining, cells 

were labelled with antiCD4-FITC, antiCD8-PE, antiLy6G-Pacific Blue, CD11b-PE 

(BD Biosciences) or CD11c-FITC (Miltenyi Biotec) diluted in culture medium with 

10% FCS. Cells were acquired with a Gallios Flow Cytometer (Beckman). 

ELISA 

Cytokine concentration in supernatants was determined by using mouse IL17A or 

IFN specific ELISA kits (MabTECH). 
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For IgAs determination in BAL, maxisorp ELISA plates (NUNC) were coated with 

BAL (for total IgA) or 10 g/ml of H37Rv sonicate (for MTB-specific IgA) and 

incubated overnight at 4ºC. After a washing step with PBS-Tween20 0.05% (v/v) 

buffer, plate was blocked with Bovine Serum Albumin 1% (w/v) in washing buffer 

for 1 hour at 37ºC. Then, MTB sonicate-coated plates were incubated with 200 l 

of BAL during 90 minutes at 37ºC. Following washing, plates were incubated for 1 

hour at 37ºC with Horseradish Peroxidase (HRP)-conjugated goat anti-mouse IgA 

diluted 1:10000 (Sigma). Finally, enzyme-substrate reaction was developed using 

3,3′,5,5′-Tetramethylbenzidine (TMB) (Sigma) as substrate, and reaction was 

stopped with H2SO4 0.1N. Standard curve to calculate IgA concentration was 

performed using a mouse reference serum (Bethyl technologies). Optical density 

was measured at 450 nm. 

Western-Blot 

Lung protein lysates were prepared by adding 100 l of RIPA buffer (2x 

concentrated) to 100 l of homogenised lung followed by boiling at 100ºC for 1 

hour. Then, supernatant was separated by centrifugation at 14000 x g for 15 

minutes, and protein concentration measured with the QuantiPro BCA Assay kit 

(Sigma). Ten micrograms of protein per well were loaded and separated by SDS-

PAGE. Immunodetection was carried out using a polyclonal goat anti-pIgR (R&D 

systems). Then, membranes were incubated with HRP-conjugated anti goat IgG 

secondary antibody (Sigma) and developed with ECL Plus Western Blotting System 

(GE HealthCare). Band intensities were calculated with the ImageJ software. 

Statistical Analysis 

GraphPrism software was used for statistical analysis. For experiments with two 

experimental groups, unpaired t-student test was used. When three or more 
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groups were compared, One-Way ANOVA analysis with Bonferroni post-test was 

performed. Differences were considered significant at p<0.05. 

 

RESULTS 

Intranasal but not subcutaneous BCG vaccination confers protection to 

DBA/2 against Mycobacterium tuberculosis challenge 

Previous data indicated that subcutaneous vaccination with BCG does not protect 

against TB in the susceptible mouse strain DBA/2 [21, 22]. To confirm these data 

under our experimental conditions, groups of C57/BL6 and DBA/2 mice were 

subcutaneously vaccinated with BCG Danish and after intranasal challenge with a 

low dose of H37Rv, we measured bacterial burden in lungs four weeks later. 

Vaccinated C57/BL6 animals showed one-log reduction as compared to non-

vaccinated group (Figure 1A), whereas no difference was observed between both 

vaccinated and unvaccinated DBA/2 mice (Figure 1B). 

Recently, we reported that pulmonary BCG is more effective than subcutaneous 

vaccination in C57/BL6 mice [25]. As a result we considered extending these 

studies to DBA/2 mice in a short-term protection design to explore whether 

vaccination by the natural route of infection could protect against TB in a model 

where parenteral BCG immunization fails. After low dose H37Rv challenge, 

intranasal BCG reduced bacterial burden in lungs by about two logs (Figure 2A) 

and approximately by one log after high dose challenge, as compared to 

unvaccinated or subcutaneous group (Figure 2B). Comparable results were 

obtained in spleen.  

To test whether this considerable bacterial load reduction by intranasal 

vaccination could be translated into increased survival and reduced disease, we 
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conducted a long-term survival study comparing subcutaneous and intranasal 

vaccination following high dose H37Rv challenge. Concordant with lung-bacterial 

load data in the short-term protection study, intranasal vaccination significantly 

increased mouse survival with a median of around four months post-challenge, 

whereas median survival of subcutaneous and non-vaccinated animals was about 

one month (Figure 2C). Altogether, these results indicate that intranasal BCG 

delivery overcomes lack of protective efficacy by subcutaneous route in DBA/2 

mice. 

Additionally, we explored whether BCG intranasal immunization could induce lung 

damage in this mouse model. Tissue damage caused by exacerbated inflammation 

is probably the main concern for the use of live TB vaccines by the pulmonary 

immunization route in humans. Our results revealed the presence of some 

histopathological findings in the lungs from animals vaccinated intranasally. We 

detected the presence of discrete inflammatory aggregates in a small proportion of 

lung tissue and mainly surrounding blood vessels. These findings were not found 

when animals were vaccinated subcutaneously (Supplementary Figure 1). 

Intranasal BCG vaccination induces IL17A production  

Th17 response has been shown to correlate with vaccine-induced protection in 

preclinical animal models [26]. Given the protective efficacy obtained in the DBA/2 

mice after switching to the pulmonary route of vaccination, we analyzed T-helper 

17 induction in lungs induced by vaccination and before challenge. Higher 

frequency (Figure 3A) of PPD-specific IL17A-producing CD4+ T cells was 

observed in the mouse group vaccinated intranasally as compared to the 

parenteral or non-vaccinated groups. IL17A production measured by ELISA 

confirmed intracellular staining results (Figure 3B). Increased IL17Aproduction 
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was also observed in spleen from the intranasal group (Figure 3C), suggesting that 

in this model the pulmonary route of vaccination is immunogenic not only at local 

level in lungs, but also systemically. Concurring with these data, we observed a 

similar IFN induction profile in lungs (Figure 4A, 4B) and spleen (Figure 4C), as 

shown with IL17A.  

BCG-conferred protection correlates with pulmonary IL17A induction post-

challenge 

To investigate whether Th17 response induced by pulmonary vaccination in 

DBA/2 mice correlated with protection in lungs, we measured IL17A production in 

parallel with bacterial load reduction four weeks post-low-dose H37Rv challenge. 

Our results indicated that induction of IL17A-secreting CD4+ T cells after challenge 

was restricted to the intranasal BCG-vaccinated group (Figure 5A left panel). 

Linear regression comparing percentage of IL17A+ CD4+ T cells and bacterial load 

in lungs (Figure 5A right panel) indicated a significant correlation between 

reduction in lung bacterial burden and Th17 response induction, providing 

evidence that IL17A could mediate BCG-induced protective efficacy by the 

intranasal route.  

Conversely, we observed no differences in percentage of IFN-producing CD4+ T 

cells post-challenge between vaccinated and non-vaccinated animals (Figure 5B 

left panel). Indeed, comparing Th1 induction and lung bacterial load we found a 

weak but significant positive correlation between cytokine production and CFU 

counts (Figure 5B right panel). 

IL17A contributes to protection conferred by intranasal vaccination  

To study the contribution of IL17A production to protection conferred by 

pulmonary vaccine delivery, we neutralized IL17A in intranasally vaccinated 
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animals. As shown in Figure 6A, IL17A blocking with a specific antibody partially 

diminished BCG efficacy conferred by intranasal vaccination, confirming a role of 

this cytokine in protection. IL17A neutralization was confirmed by the substantial 

cytokine reduction produced in lungs after antibody treatment (Figure 6B). 

Residual IL17A production found in the antibody-treated group could explain the 

remaining protection still detected after IL17A neutralization, although IL17A-

independent factors cannot be excluded. In contrast to IL17A, IFN lung 

production was unaffected in the absence of IL17A (Figure 6C). 

We studied whether neutrophil recruitment in lungs was affected by IL17A 

neutralization, as this process had been previously related with Th17 response 

[13]. Intranasal BCG vaccination caused neutrophil infiltration in lungs. 

Interestingly, IL17A inhibition led to a drop of the percentage as well as the 

number of neutrophils. However, total cell infiltration occurred in the two 

intranasal groups regardless of IL17A neutralization, suggesting that this process 

is mediated by IL17A-independent inflammatory events triggered following 

pulmonary vaccination with BCG (Figure 6D). 

IL17A mediates MTB-specific IgA secretion to lung airways 

IgA represents one of the main defence barriers of the mucosal immune system. 

Therefore, we analysed BAL samples to determine the presence of total and MTB-

specific IgA in the lung airways induced eight weeks post-vaccination. Our results 

showed an increment of total and MTB-specific IgA in BAL from intranasally BCG 

vaccinated mice (Figure 7A). Interestingly, following IL17A-neutralization only 

presence of MTB-specific IgA in BAL was significantly diminished, whereas total 

IgA was unaffected by antibody treatment. Provided that pIgR is the receptor 

molecule responsible for the transport of IgA across lung epithelium, we analysed 
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whether pIgR expression would be altered upon vaccination. Our data indicated an 

increase of pIgR protein expression in the lungs of intranasally BCG vaccinated 

mice (Figure 7B), which correlated with higher IgA concentration in BAL found in 

these groups. Moreover, our results suggested that pIgR upregulation depended on 

IL17A production, as pIgR protein expression levels were significantly lower in the 

anti-IL17A-treated group as compared to the intranasally immunized untreated 

group. These results suggest that translocation of MTB-specific IgA to respiratory 

airways and increased pIgR expression levels correlates with IL17A-mediated 

protection upon pulmonary BCG immunization in DBA/2 mice. 

 

DISCUSSION 

Pulmonary vaccination with BCG has been previously reported to improve 

protection when compared with parenteral (subcutaneous or intradermal) 

inoculation [25, 27-29]. Nevertheless, experiments showing these results have 

been usually performed in TB resistant mouse strains (C57BL/6 and BALB/c) in 

which parenteral BCG is considered to be protective. In this work, we demonstrate 

for the first time to our knowledge that a change in the route of vaccination from 

parenteral to pulmonary can overcome the absence of protection observed in a 

model where parenteral BCG does not protect, as it occurs in the TB susceptible 

DBA/2 mouse strain. Extrapolation of these data to TB endemic countries, where 

protection conferred by intradermal BCG is limited, suggests that pulmonary BCG 

administration could have an impact against respiratory TB. Nonetheless, our data 

suggest caution when using BCG by the respiratory route due to the inherent 

safety risks associated with dissemination and unspecific inflammation. Intranasal 

BCG vaccination of DBA/2 mice was accompanied by lung inflammatory aggregate 
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formation and neutrophil infiltration, events usually associated with acute 

inflammation and tissue damage (Supplementary Figure 1 and Figure 6C, 

respectively). In agreement with these data, a previous work described that the 

number of pulmonary BCG immunizations is also critical to induce an exacerbated 

damaging inflammatory response [30].  In addition, considerable number of BCG 

bacilli was found in lungs two months post-vaccination (Supplementary Figure 

2), which could entail some safety concerns in immunocompromised individuals. 

Nevertheless, it is important to remark that BCG administration by the aerosol 

route has been already tested in humans as lung cancer immunotherapy approach, 

showing satisfactory safety results [31], indicating that inflammatory events 

caused by pulmonary BCG vaccination are most likely transient and are not 

harmful at long-term. 

Some authors have described a reduced expression of adhesion molecules on the 

surface of circulating lymphocytes from TB susceptible mice including DBA/2, 

which correlates with a poor presence of lymphocytes in lungs after TB infection 

[21, 32]. Therefore, a plausible explanation as to why subcutaneous BCG 

immunization does not protect in DBA/2 mice could be that vaccine-induced 

systemic immune response is unable to efficiently reach the site of infection. 

Intranasal vaccination could eventually overcome these deficiencies leading to 

antigen presentation directly in the lung draining lymph nodes and the subsequent 

local immune response establishment prior to pathogen encounter. Supporting 

this hypothesis, we have shown that intranasal but not subcutaneous BCG 

vaccination triggers robust Th1 and Th17 responses in lungs of DBA/2 mice. Our 

data strongly suggest that Th17 response induction is particularly important for 

protection against TB conferred by pulmonary BCG vaccination, which is in 
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accordance with previous observations made with other TB vaccines [11, 33]. A 

recent report in TB-infected macaques has demonstrated higher presence of IL17-

producing cells in sterile granulomas as compared to non-sterile ones [34]. The 

induction of Th17 response by intranasal but not subcutaneous vaccination could 

be related with the local inflammatory ambient caused by the presence of BCG in 

the lungs, which would likely provide pro-inflammatory cytokines crucial for the 

differentiation of Th17 cells [35]. Contribution of other IL17-expressing cellular 

subsets, as gamma delta T cells or neutrophils [36], should not be discarded as 

potential contributors of vaccine-induced IL17 production, in addition to Th17 

cells. Our data indicate that IL17A neutralization did not totally abrogate BCG 

intranasally-induced protection, suggesting that other factors may possibly be 

implicated. Further work is needed to understand whether IL17A-independent 

pathways (i.e. IFN production, other IL17 family cytokines) are implicated in 

protective efficacy conferred by pulmonary vaccination. 

A previous work by Khader et al. found that vaccination-induced IL17A enhances 

IFN-producing CD4+ T cell recruitment to the lungs, mainly at very early 

timepoints post challenge [26]. Our data are in apparent discordance with these 

results as we found similar IFN production induced by intranasal vaccination 

independently of IL17A (Figure 6C). However, at the time when we measured 

cytokine production (at two months post-vaccination) IFN-producing cells could 

likely have already been recruited to the lungs independently of IL17A. Indeed, 

these authors detected IFN production in lungs in the absence of IL17A at longer 

time points post-challenge. 

Immunoglobulins can be translocated to respiratory tract passively via blood 

leakages, or actively crossing lung epithelium via pIgR interaction, which is specific 
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for IgA and IgM subtypes [37]. IL17A dependence on both MTB-specific IgA 

translocation and pIgR upregulation suggests that specific IgAs are produced 

locally in lung mucosal tissue, where mycobacterial antigens are abundant after 

pulmonary vaccination, and translocated to respiratory airways exclusively via 

pIgR. Conversely, IL17A-independent translocation of total unspecific IgAs, which 

occurs in the absence of pIgR upregulation, likely indicates that in this case it 

arises from blood leakages. Previous works have described that IL17A contributes 

to IgA secretion in gut and airways as well as pIgR expression in lung epithelium 

[17, 38]. However, the link between IL17A with pIgR expression and IgA secretion 

in the context of mucosal TB vaccines was unreported. Both pIgR and IgA knockout 

mice have shown to be defective in controlling mycobacterial replication [16, 19], 

which could suggest a role of IgAs in protection. Nevertheless, our data do not 

discern whether IgA-induction is a causative factor that contributes to 

intranasally-induced BCG protection. 

Even though different works already showed some decades ago the advantages of 

pulmonary vaccination to protect against TB, no significant attempts to translate 

these results to clinic have been made during the last 20 years. However, and 

probably influenced by the failure of intradermal MVA85A vaccine to improve BCG 

protection in clinic [39], in the last few years a new awareness among the TB 

vaccine scientific community has emerged suggesting that elimination of TB will 

not be achieved only with new vaccine candidates, and exploration of novel 

approaches including new routes of immunization is necessary. In this regard, a 

rising and renewed interest in mucosal immunization has appeared among vaccine 

developers, which is demonstrated by the recently published first clinical trial to 

test the MVA85A subunit vaccine delivered by aerosol route [40]. Therefore, 
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elucidation of protective mechanisms triggered by mucosal immunization might be 

highly valuable in the near future for the rational design of new pulmonary 

vaccines, as well as for the identification of specific biomarkers for these vaccines 

that could predict protection against TB. 
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Figure Legends 

Figure 1. BCG subcutaneous vaccination protects C57/BL6 but not DBA/2 

mice against a pulmonary challenge. Groups of six C57/BL6 (A) or DBA/2 (B) 

mice were vaccinated by the subcutaneous route with BCG Danish vaccine 106 CFU. 

At two months post-vaccination, mice were inoculated intranasally with a low dose 

H37Rv challenge (100 CFU), and one month later lung bacterial burden was 

determined. A representative experiment of two independent is shown. Data in the 

graphs are represented as mean ± SEM. Unpaired t-student test was performed to 

calculate statistical significance. * p<0.05; ** p<0.01; *** p<0.001. 

Figure 2. BCG intranasal vaccination protects DBA/2 against a pulmonary 

challenge. Groups of six DBA/2 mice were vaccinated by the subcutaneous (BCG 

sc), intranasal (BCG in) route, or non-vaccinated (NV) with BCG Danish vaccine 106 

CFU. At two months post-vaccination, mice were inoculated intranasally with a low 

dose (100 CFU) (A) or high dose (1000 CFU) (B) H37Rv challenge, and one month 

later bacterial burden in lungs and spleen was determined. A representative 

experiment of two independent is shown. Data in the graphs are represented as 

mean ± SEM. One-way ANOVA test with Bonferroni post analysis was performed to 

calculate statistical significance. (C) For survival experiments, groups of eight 

animals were vaccinated and challenged with a high dose H37Rv challenge two 

months post-vaccination. Animal survival was determined according to pre-

established endpoint criteria approved by ethical committee. Data from one 

experiment are represented in a Kaplan-Meier survival curve and statistical 

significance calculated by a Logrank test. * p<0.05; ** p<0.01; *** p<0.001. 

Figure 3. BCG intranasal vaccination induces a higher Th17 response prior to 

challenge. Groups of six DBA/2 mice were vaccinated by the subcutaneous (BCG 
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sc) or intranasal (BCG in) route, or non-vaccinated (NV) with BCG Danish vaccine 

106 CFU. At two months post-vaccination, a cellular suspension from harvested 

lungs (A, B) or spleen (C) was obtained. Cells were stimulated with PPD as 

described in materials and methods section. CD4+IL17A+ cells frequency in lungs  

was determined by flow cytometry (A). IL17A concentration in lung (B) or spleen 

(C) cell supernatants was measured by ELISA. Pooled data from two independent 

experiments are shown. Data in the graphs are represented as mean ± SEM. One-

way ANOVA test with Bonferroni post analysis was performed to calculate 

statistical significance. * p<0.05; ** p<0.01; *** p<0.001. 

Figure 4. BCG intranasal vaccination induces a higher Th1 response prior to 

challenge. Groups of six DBA/2 mice were vaccinated by the subcutaneous (BCG 

sc) or intranasal (BCG in) route, or non-vaccinated (NV) with BCG Danish vaccine 

106 CFU. At two months post-vaccination, a cellular suspension from harvested 

lungs (A, B) or spleen (C) was obtained. Cells were stimulated with PPD as 

described in materials and methods section. CD4+IFN+ cells frequency in lungs 

was determined by flow cytometry (A). IFN concentration in lung (B) or spleen 

(C) cell supernatants was measured by ELISA. Pooled data from two independent 

experiments are shown. Data in the graphs are represented as mean ± SEM. One-

way ANOVA test with Bonferroni post analysis was performed to calculate 

statistical significance. * p<0.05; ** p<0.01; *** p<0.001. 

Figure 5. Th17 response induced post challenge correlates with a lower 

bacterial load in lungs. Groups of six DBA/2 mice were vaccinated by the 

subcutaneous (BCG sc) or intranasal (BCG in) route, or non-vaccinated (NV) with 

BCG Danish vaccine 106 CFU. A control group of non-vaccinated, non-infected mice 

was also included (NV/NI). At two months post-vaccination, mice were challenged 
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intranasally with a low H37Rv dose (100 CFU), and one month later animals were 

euthanized. Right and left lungs from the same animal were used to determine 

bacterial load and IL17A- (A) or IFN- (B) producing CD4+ cells, respectively. Data 

in left panels correspond to percentage of cytokine-producing cells measured by 

flow cytometry, and are represented as mean ± SEM. One-way ANOVA test with 

Bonferroni post analysis was performed to calculate statistical significance. * 

p<0.05; ** p<0.01; *** p<0.001. Data from lung CFU and cytokine- producing CD4+ 

cells obtained for each mouse were graphically represented (right panels). Linear 

regression was calculated and the p-value obtained in each case is shown in the 

graph. Pooled data from two independent experiments are shown in the figure. 

Figure 6. IL17A neutralization in vivo impairs protection conferred by BCG 

intranasal vaccination. Groups of six DBA/2 mice were vaccinated by the 

subcutaneous (BCG sc) or intranasal (BCG in) route, or non-vaccinated (NV) with 

BCG Danish vaccine 106 CFU. Intranasal vaccinated mice were treated twice a week 

with 500 g of antiIL17A or isotype control inoculated intraperitoneally. (A) At 

two months post-vaccination, mice were challenged intranasally with a low H37Rv 

dose (100 CFU), and one month later lung bacterial burden was determined. (B, C) 

A group of mice was euthanized prior to challenge and IL17A (B) or IFN (C) 

concentration measured in lung cell culture supernatants after PPD stimulation. D, 

total cell number (left panel), % of neutrophils (defined as Ly6G+CD11b+CD11c- 

cells) (mid panel), and number of neutrophils (right panel) were determined in 

lungs prior to challenge. A representative experiment of two independent is 

shown. Data in the graphs are represented as mean ± SEM. One-way ANOVA test 

with Bonferroni post analysis was performed to calculate statistical significance. * 

p<0.05; ** p<0.01; *** p<0.001. 
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Figure 7. BCG intranasal vaccination induces secretion of MTB-specific IgAs 

and pIgR expression in lungs in an IL17A-dependent manner. Groups of six 

DBA/2 mice were vaccinated by the subcutaneous (BCG sc) or intranasal (BCG in) 

route, or non-vaccinated (NV) with BCG Danish vaccine 106 CFU. Intranasal 

vaccinated mice were treated twice a week with 500 g of antiIL17A or isotype 

inoculated intraperitoneally. (A) At two months post-vaccination, animals were 

euthanized and total and MTB-specific IgA levels measured in BAL as described in 

materials and methods section. (B) Expression of pIgR was measured in 10 g of 

lung lysates by western-blotting. Representative data from two mice per group are 

shown in the western-blot. Pooled data from two independent experiments are 

shown in the graphs. Data in the graphs are represented as mean ± SEM.  One-way 

ANOVA tests with Bonferroni post analysis were performed to calculate statistical 

significance. * p<0.05; ** p<0.01; *** p<0.001. 
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