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ABSTRACT. 

Molar heat capacities at atmospheric pressure have been determined every 5 K for the mixture {1,8-

cineole (1) + ethanol (2)} in the temperature interval (304.7 to 324.5) K and the whole composition 

range with a Calvet type calorimeter Setaram C80. From the molar heat capacities, excess molar 

heat capacities have been calculated, their values being positive and increasing as the temperature 

rises. The solvation model COSMO-RS has been applied to predict the excess molar heat capacities. 

The model overestimates the values of the excess heat capacities but predicts well the trend of 

variation of the excess molar heat capacity with the temperature.  
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Introduction 

Extraction of volatile oils from plants can be carried out by several techniques, among them 

being hydro-ethanolic maceration and supercritical CO2 extraction which sometimes requires the 

addition of alkanols of short chain, usually ethanol, as modifiers in order to improve the extraction 

of polar compounds [1]. The knowledge of the thermophysical properties of mixtures of (volatile oil 

+ alkanol) would be necessary to optimize the supercritical extraction process and also to treat the 

liquid mixture obtained after the extraction, either supercritical or hydro-ethanolic. But, being the 

volatile oils themselves complex mixtures in many cases it is advisable to study the binary mixtures 

(a major compound of volatile oil + alkanol). For this reason, our research group has been 

investigating thermophysical properties of liquid mixtures of this kind during the last years.  

Among these, the mixture of 1,8-cineole (1,3,3-Trimethyl-2-oxabicyclo[2.2.2]octane) with 

alkanols has been the subject of an ample investigation in our research group, including properties 

such as excess molar enthalpy [2], density at low and high pressure [2-4] and (vapor +liquid) 

equilibrium [5,6]. 1,8-Cineole or eucalyptol, a monoterpenoid, is the main component of the volatile 

oils obtained from several plants and has many applications in the fields of flavour and fragrances, 

pharmacy. It also acts as insecticide and insect repellent [7,8].  

In order to extend that study on thermodynamic properties, we report in this paper 

measurements of the molar heat capacity at atmospheric pressure of the mixture {1,8-cineole (1) + 

ethanol (2)} in the temperature interval (304.7 to 324.5) K and the whole composition range. Then, 

excess molar heat capacities have been calculated for the mixture and the solvation model COSMO-

RS [9-11] has been applied in order to evaluate its ability to predict that excess property. It must be 

pointed out that, although there are measurements of heat capacity for pure 1,8-cineole and other 

terpenes, their mixtures have not been studied in this respect. Therefore this study could be of 



interest for both fundamental and applied purposes taking into account the special structure of their 

molecules that are in many cases bicyclic bridged ones. 

 

Experimental 

Materials   

The chemicals used were 1,8-cineole and ethanol. Additionally, water (milliQ quality) was 

used to perform the measurements. Their description can be found in table 1. Experimental values 

of density for the pure components at T = 298.15 K are reported in table 2 and compared with 

available bibliographic values [4,12-15]. A good agreement can be observed between both sets of 

data. 

 

TABLE 1 

Sample description. 

Chemical name Source Purity Purification method Analysis method 

1,8-cineole Aldrich 0.990a None GCc 

Ethanol Scharlau 0.999b None GCc 

Water  Laboratory MilliQd None Electrical resistivity

a Mole fraction purity. 
b Volume fraction purity. 
c Gas-Chromatography. 
d18.2 M·cm 
 

 

 

 

 

 



 

TABLE 2 

Experimental and literature densities for the pure liquids at T = 298.15 K and atmospheric pressure P 
= (0.1 ± 0.002) MPa. 

  / kg·m-3  

Experimentala Literature 

1,8-Cineole 
 920.68b 

920.51 921.8c 
 920.29d 

Ethanol 
 784.93c 

785.20 785.09e 
 785.49f 

a Measured with a densimeter Anton Paar DSA 5000, u(T) =±0.01 K; U() =±0.04 kg·m-3 (k = 2) 
bRef [4]; cRef [12]; dRef [13]; eRef [14]; fRef [15] 

 

Equipment 

Heat capacities at atmospheric pressure were determined through a Calvet type calorimeter, 

Setaram C80 (France). The calorimeter consists of two identical cells of stainless steel, a reference 

and a measurement one, which are located inside a cylindrical block of high thermal inertia and 

programmable temperature (software Calisto v1.11. Data Acquisition). When the equipment is 

working, every difference in temperature between a cell and the block would produce a heat flow 

that is transformed, via a set of thermocouples, to power data that are, in its turn, integrated 

(software Calisto v1.11 Processing) to obtain the exchanged heat. Measurement and reference cell 

are connected in opposition in such a way that non-desired effects that could affect the 

measurement cell are cancelled by the reference cell that would be also affected. These cells, 

provided by Setaram, are specially designed to avoid the presence of vapor phase in the zone of heat 

flow and also to ensure that the volume of the cell under control remains constant. 

Referring to the procedure, the incremental temperature mode (step method) was used. 

Specifically, the temperature was increased 5 K in every step with a heating rate of 0.2 K·min-1 



followed by an isothermal delay of 9000 s. To carry out a measurement, three runs are necessary. In 

all of them the reference cell was filled with air at atmospheric pressure. The measurement cell was 

also filled with air in the first run, whereas it was filled with water (milliQ quality) in the second run 

and with a sample of the liquid (pure compound or mixture) whose heat capacity was to be 

determined in the third run. Water was chosen as the reference liquid due to the high accuracy with 

which their heat capacity values are known [16]. The calorimeter provides the heat flows for a fixed 

volume of liquid that is always the same because the same measurement cell is used in every 

experiment. So the molar heat capacity is calculated through the equation 
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where CP,m is the molar heat capacity, M is the molar mass,  is the density and Q1, Q2 and Q3 are 

the heats exchanged in the first, second and third runs, respectively. The relative expanded 

uncertainty (coverage factor k = 2) in the molar heat capacity arising from uncertainties for the 

quantities in equation (1) is estimated to be ±0.003. 

The apparatus performance and procedure adequacy were tested by determining the molar heat 

capacities of ethanol. Densities of water [17] and ethanol [14] for applying equation (1) were 

obtained from the literature. The values of molar heat capacity obtained for ethanol can be found in 

table 3. They have been compared with the values provided by the polynomial proposed by 

Zábranský et al. [18], which is based in the critical review of the literature up to 2006. Also, a 

comparison with other bibliographic values reported after 2006 [19-22] has been done. The values 

of molar heat capacity for ethanol can be seen in figure 1a whereas the percentage relative 

deviations of our values from the bibliographic ones at the working temperatures in this paper are 

plotted in figure 1b, except in the case of the heat capacities of Tripathi [21] that clearly deviate 

from the rest. The values reported here are placed quite centered between the different literature 



heat capacities, being higher than those of Zábranský et al. [18] and Anouti et al. [20] and lower 

than those of García-Miaja et al. [19] and Vega-Maza et al. [22]. The deviations from the values 

calculated through the polynomial of Zábranský et al. [18], which are likely the best ones, range 

from 0.2% at the higher temperature to 0.4% at the lower one. From this comparison, it can be 

concluded that the equipment has a good performance. 
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Figure 1. (a) Molar heat capacity for ethanol: () this work; (      ) polynomial of Zábranský et al. 

[18] () García-Miaja et al. [19]; (▼) Anouti et al. [20]; () Tripathi [21]; () Vega-Maza et al. 

[22]. (b) Percentage relative deviations of experimental molar heat capacities for ethanol from 

literature ones (interpolated) at the working temperatures in this paper: () Zábranský et al., () 

García-Miaja et al.;. (▼) Anouti et al.; () Vega-Maza et al. 

 

It must be said that the experimental molar heat capacity for ethanol at each temperature is the 

average of five measurements carried out to test the repeatability, being the highest relative standard 



deviation 0.001. The repeatability was also checked by measuring three times the molar heat 

capacity at each temperature for both 1,8-cineol and a mixture of 1,8-cineole and ethanol in a zone 

rich in the most volatile compound (mole fraction of 1,8-cineole near 0.3), being the highest relative 

standard deviations 0.002 and 0.004, respectively.  All of these standard deviations are in good 

agreement with the expanded relative uncertainty estimated when applying equation 1. Given these 

good results only one measurement was performed for the remaining mixtures. The smooth 

variation in the molar heat capacities reported below seems to support this procedure. 

Samples of the mixtures of 1,8-cineole and ethanol were prepared by weighing with a Mettler-

Toledo analytical balance, model AB265-S, with a precision of ±10-4 g. Hence, the expanded 

uncertainty (k = 2) in the mole fraction was estimated to be less than ±0.0005.  

Molar heat capacities of pure 1,8-cineole obtained in the laboratory of the Group of Applied 

Thermal Engineering in the Universitat Rovira i Virgili (set II in table 5) were determined with a 

calorimeter Setaram microDSC-III using a step method. Toluene was used as reference liquid. The 

uncertainty in molar heat capacity is lower than ±0.005. 

 

Results and discussion 

Molar heat capacities for the pure compounds and their mixtures in the temperature range 

(304.7-324.5) K are gathered in table 3 and depicted in figure 2. In order to apply equation (1), the 

densities for water [17], ethanol [14] and 1,8-cineole as well as those of the mixtures (1,8,cineole + 

ethanol) [3] were obtained from the literature. At each temperature the values of the molar heat 

capacities were fitted to the mole fraction of 1,8-cineole according to the following equation 

2
11m, C  B A   xxCP   (2) 

where A, B and C are adjustable parameters whose values can be found in table 4 along with the 

standard deviation of the fitting, , defined by 



  2

1

2
calm,,expm,,

nm

 - 



























m

1j
PP CC

σ  (3) 

where the subscripts exp and cal indicate the experimental and calculated values, respectively, m is 

the number of experimental points, and n is the number of coefficients used in the fitting equation 

(three in this case). The fitting curves appear in figure 2. 

 

 

 

 

 

 

 

 

 

Figure 2. Experimental values of molar heat capacity, m,PC , at atmospheric pressure for the 

mixture {1,8-cineole (1) + ethanol (2)} along with the curves for the fitting to the mole fraction 

(equation 2). 



TABLE 3 

Mole fraction, 1x , and molar heat capacity, m,PC , for the mixture {1,8-cineole (1) + ethanol (2)} and the pure compounds at T = (304.7, 309.6, 314.6, 

319.5, 324.5) K and atmospheric pressure P = (0.1 ± 0.002) MPa. 

 m,PC  / J·mol-1·K-1 

1x   T / K = 304.7 T / K = 309.6 T / K = 314.6 T / K = 319.5 T / K = 324.5 
0 115.3 117.3 119.6 121.9 124.2 

0.0506 123.9 126.2 128.6 131.1 133.5 
0.0990 132.0 134.6 137.1 139.7 142.1 
0.1999 149.0 151.8 154.6 157.1 160.0 
0.3007 166.0 169.0 171.8 174.9 177.7 
0.3956 181.7 184.9 188.1 191.1 194.1 
0.5002 199.4 202.5 205.5 208.5 211.3 
0.5975 214.3 217.4 221.5 224.5 227.4 
0.7017 231.6 235.1 238.0 241.2 244.1 
0.8065 247.2 250.5 253.6 256.7 259.3 
0.8964 259.8 263.7 267.0 269.9 272.5 
0.9501 267.0 269.9 273.4 275.8 279.0 

1 273.3 276.4 279.5 282.6 285.1 
U(x1) = ±0.0005 (k = 2); u(T) =±0.1 K; 0.003  m, )C(U Pr  (k = 2) 

TABLE 4 

Fitting coefficients in equation (2) along with the corresponding standard deviation, , for the mixture {1,8-cineole (1) + ethanol (2)} at T = (304.7, 
309.6, 314.6, 319.5, 324.5) K and atmospheric pressure P = (0.1 ± 0.002) MPa. 

 T / K = 304.7 T / K = 309.6 T / K = 314.6 T / K = 319.5 T / K = 324.5 
A / J mol-1 K-1 114.65 116.81 119.04 121.38 123.76 
B / J mol-1 K-1 178.50 181.90 185.0 187.30 189.10 
C / J mol-1 K-1 -19.00 -21.3 -23.5 -25.20 -26.8 
  / J mol-1 K-1 0.68 0.74 0.67 0.67 0.60 



Values of molar heat capacities have been previously reported for 1,8-cineole by Aparicio et al. 

[23] and Štejfa et al. [24] at several temperatures. But, it is the case that they are very different one 

from each other as the values provided by Aparicio et al. range from 300 J·mol-1·K-1 at 298.15 K to 

328.15 J·mol-1·K-1 at 328.15 K. . A comparison of the molar heat capacities of 1,8-cineole here 

measured, called set I and collected in table 3, with those mentioned shows a good agreement with 

Štejfa et al. and, consequently, a great deviation from the values of Aparicio et al. Then, our data 

corroborate the results of Štejfa et al. To fully ascertain this point, an independent determination of 

molar heat capacities of the 1,8-cineole used in this work was carried out in the laboratory of the 

Group of Applied Thermal Engineering of Dr. Coronas in the Universitat Rovira i Virgili. The 

results obtained and called set II are listed in Table 5. The values of the property, experimental and 

bibliographic, are represented in figure 3a and the percentage relative deviations for our two set of 

data from those of Štejfa et al. can be found in figure 3b. Deviations range from -0.2 to 0.3%.. So, 

the molar heat capacities of Štejfa et al. (and those here reported) for 1,8-cineole seem to be correct.  

 

TABLE 5 

Molar heat capacity of 1,8-cineole (set II) at several temperatures and atmospheric pressure P = (0.1 

± 0.002) MPa determined by the Group of Applied Thermal Engineering. 

T / K m,PC  / J·mol-1·K-1 

293.26 266.9 
303.48 273.0 
313.71 279.5 
323.93 285.2 
334.16 290.8 
344.38 297.7 

                                              u(T) =±0.02 K; 0.005  m, )C(U Pr  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Molar heat capacity for 1,8-cineole: () set I (Universidad de Zaragoza); () set II 

(Universitat Rovira i Virgili); () Štejfa et al.[24]. Percentage relative deviations of experimental 

molar heat capacities for 1,8-cineole: () set I (Universidad de Zaragoza); () set II (Universitat 

Rovira i Virgili) from those of Štejfa et al. (interpolated) at the working temperatures in this paper:  

 

On the other hand, the molar heat capacity of 1,8-cineole extrapolated at 298.15 K is 

comparable to those of several monoterpenes [25,26] of similar molar mass and bicyclic structure as 

can be seen in table 6. In any case, the molar heat capacity of 1,8-cineole is quite large and a 

significant part of it can be attributed to the presence of two rings fused forming a bridge, a feature 

that would bring about a remarkable structural strain. That this is the case can be corroborated by 

the calculation of the heat capacity of 1,8-cineole through the method of Rùzicka and Domalski 

[27,28] that gives a value of 215.61 J·mol-1·K-1 at 298.15 K. The heat capacity is clearly 



underestimated by this group contribution method although strain ring contributions have been 

introduced by supposing that the cineole molecule is formed by two tetrahydropyran and one 

cyclohexane rings. Probably the strain ring contributions in the method are for independent rings 

and not for bridged ones that would add additional strain. 

However, a new and improved group contribution method [29] that takes into account specific 

contributions for carbon atoms in cycles and also for carbon atoms pertaining to two rings provides 

much better results. The heat capacity predicted for 1,8-cineole at T = 298.15 K are 271.0 J·mol-

1·K-1 in the non-hierarchic approach and 253.6 J·mol-1·K-1 in the hierarchic approach. Then, this 

new method is a powerful tool to calculate heat capacities. 

 

TABLE 6 

Molar mass and molar heat capacities at 298.15 K of 1,8-cineole and several compounds.  

Compound M / g·mol-1 m,PC / J·mol-1·K-1 

1,8-Cineole 154.25 268.6a 

  269.8b 

  270.0c 

(+)-Fenchone 152.23 269.2d 

(-)-Verbenone 150.22 268.3e 

-Pinene 136.24 251.9e 

-Pinene 136.24 242.7e 
aExtrapolated from this work (set I); bInterpolated form this work (set II); cInterpolated from values 
of ref.[29]; dInterpolated from values of ref.[30]; eInterpolated from values of ref. [31] 

 

From the molar heat capacity data, the excess molar heat capacities, E
m,PC , have been 

calculated by means of the equation 

m,2,2m,1,1m
E

m,   -  -   PPP,P CxCxCC   (4) 



being m,PC  the heat capacity of the mixture, xi, the mole fraction of pure component i and im,,PC  

is the molar heat capacity of pure component i. As an example, values of the excess molar heat 

capacity corresponding to the temperatures (304.7, 314.6, and 324.5) K are represented in figure 4 

along with the uncertainty in the form of error bars at 324.5 K, being the error the same for all of 

the temperatures. The excess molar heat capacities are positive over the whole composition range, a 

result that agrees with the fact that the excess molar enthalpy for the mixture increases when 

temperature increases in the temperature interval comprised between (298.15 and 313.15) K [2] 

and, according to our values of excess heat capacity, would continue increasing at the higher 

temperatures considered in this work. As the positive values of excess molar enthalpy indicate that 

there is a breaking of interactions, mainly the hydrogen bonds in ethanol, in the mixing process, the 

 

 

 

 

 

 

 

 

 

 

Figure 4. Excess molar heat capacity, E
m,PC , at atmospheric pressure for the mixture {1,8-cineole (1) 

+ ethanol (2)} at several temperatures: () 304.7 K, () 314.6 K, () 324.5 K; along with the values 

of the property predicted by the COSMO-RS model at the same temperatures: ( ___) 304.7 K, ( __ __) 

314.6 K, ( __ . __ ) 324.5 K. Error bars are shown at 324.5 K, being equal for the other temperatures. 



positive values of excess heat capacities show that the breaking would increase with rising 

temperatures. Besides, given that the higher the temperature the higher the excess heat capacities, 

the breaking of interactions would become more and more pronounced for increased temperatures 

within the range studied. The variation of the excess heat capacity data over the composition range 

is quite smooth but a trend towards a W shaped behavior can be observed at the lower temperature. 

The maxima in excess heat capacity are placed at x1 = 0.6 as also occurred for the excess enthalpies 

[2]. For mixtures (1-alkanol + alkane) this deviation has been attributed [30] to the fact that the 

structure of the alkanol is not completely broken during the mixing process. This behavior can be 

likely extended for the mixtures here considered.  

The COSMO-RS model has been used to predict the excess molar heat capacity of the mixture. 

This method allows the calculation of the excess molar enthalpies from which the excess molar heat 

capacities at constant pressure are obtained by derivation with respect to the temperature 
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COSMO-RS, first proposed by Klamt [9] and subsequently refined [10,11], is a method that 

proceeds in two-steps. In the first one, the molecular geometry was optimized for the pure 

compounds by adjusting the polarization charge density, , according to the continuous solvation 

model COSMO. This is carried out through quantum chemical, specifically DFT (density functional 

theory), calculations at the BP86/TZVP/DGA1 theory level, that is, functional B88P86 [31,32] with 

a triple zeta valence polarized (TZVP) basis set [33] and a density fitting function DGA1 [34]. The 

most stable conformers of 1,8-cineole and ethanol were considered. In the second step, statistical 

thermodynamics was applied to quantify the molecular interactions in the liquid phase using the 

polarization charge densities. For this purpose, the parameterization BP_TZVP_C11_0101 [35] was 

used. The optimization of the model parameters [10] only requires the vapor pressures of the pure 



compounds which were obtained from the literature [5]. Excess molar enthalpies and excess molar 

heat capacities are then obtained from the molecular interactions. 

The results of the predictions are shown in figure 4 for the temperatures (304.7, 314.6, and 

324.5) K. The method overestimates the values of the excess heat capacities but the results are quite 

acceptable. It predicts well the trend of variation of the excess molar heat capacity with the 

temperature.  

 

Conclusions 

The molar heat capacity at atmospheric pressure of the mixture {1,8-cineole (1) + ethanol (2)} 

has been measured in the temperature interval (304.7 to 324.5) K and the whole composition range. 

For this purpose a calorimeter Setaram C80 has been used after being checked with ethanol. The 

molar heat capacity values for 1,8-cineole have led to corroborate the data previously reported by 

Štejfa et al. The molar heat capacity of 1,8-cineole is quite high but the values are comparable with 

those of similar compounds such as fenchone, verbenone and pinenes. The molar heat capacity of 

the mixture {1,8-cineole (1) + ethanol (2)} for each temperature can be adjusted to a polynomial of 

second order in the mole fraction. From the heat capacity data, the excess molar heat capacities 

have been calculated, being positive in the whole composition range, a fact which is in agreement 

with measured excess molar enthalpies for this mixture. The COSMO-RS model has been applied 

to predict the excess molar heat capacity of the mixture and provides acceptable predictions.  
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