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Abstract The aim of this paper is the development of a model to propagate space debris
in the geostationary ring considering the J, effect due to the Earth oblateness, the Sun and
Moon perturbations, and the solar radiation pressure. We justify the importance of consider-
ing the J; effect when propagating space debris independently of the ratio A /m for short and
long-term propagation. We study the role of the Sun and the Moon in the period and ampli-
tude of the inclination for different values of A/m. Thanks to the Hamiltonian formulation
of the problem and the use of Poincaré’s variables it is possible to express the evolution of
the space debris through a simplified dynamical system. We test and validate our obtained
analytical solutions with the numerical ones, computed with a powerful integrator named
NIMASTEP. We analyse the improvements obtained when we include the J; effect and the
third body perturbations by a rigorous comparison with a previous model, which only con-
siders the solar radiation pressure. Finally, we study the effect of the area-to-mass ratio on
short and long-term propagation.

Keywords Space debris - solar radiation pressure - J, effect - third body perturbation -
Poincaré’s variables - Hamiltonian formulation - Long-term evolution

1 Introduction

In the last decades space debris population have dramatically increased becoming into a
real problem for existing, and even for future space missions since the risk of collision
between a satellite and a piece of space debris is real (Casanova et al., 2014; Bombardelli,
2013). Consequently, the study of the evolution of space debris is crucial and becomes a hot
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topic in Celestial Mechanics. The two main objectives are to avoid collisions, which create
space debris systematically, and to study their long-term evolution to know the behaviour
of the population in the near future. In particular, we focus our work on space debris in the
geostationary ring since this area is crowded of operating satellites and space debris. Then,
our model considers space debris whose semi-major axis is about 42164 km, and which are
initially in quasi-circular and planar orbits.

Different analytical and semi-analytical investigations of space debris, with high area-to-
mass ratio, orbiting in the geosynchronous region, have been developed by one of the authors
of this paper (see Valk et al. (2008); Valk and Lemaitre (2009); Valk et al. (2009); Lemaitre et
al (2009)); these studies have been completed by two other papers (see Hubaux and Lemaitre
(2013); Hubaux et al. (2012)) later on, focusing on the Earth shadowing effects. A semi-
analytical analysis of the resonant problem (the geosynchronism between the rotation of the
Earth and the orbit of the satellite) is presented in Valk et al. (2008), with the calculation of
the equilibria and their stability.

Consequently, the first goal of this paper is to improve the previous models, mainly
based on the solar radiation pressure effect. Indeed, for large values of the area-to-mass co-
efficient, it has been shown (see Fig. 1 in Valk et al. (2008)) that the solar radiation pressure
is the most important perturbation of the two-body problem; the J, effect due to the Earth
oblateness, and the effect of the Sun and the Moon as third bodies, are the next ones, in order
of magnitude, although the tesseral J,; effect appears as a much smaller perturbation in the
geosynchronous region. So in this work we neglect the tesseral terms, and concentrate our
attention to the behaviour of the inclination and of the eccentricity, due to the solar radiation
pressure, the J,, the lunar and solar perturbations. The results obtained in this paper could
be easily combined, if necessary, with resonant previous studies such as Valk et al. (2009)
or Belyanin and Gurfil (2010).

Our second and more important goal in this paper is to provide an efficient and reliable
analytical model to propagate thousands of pieces of space debris at the same time. We are
not interested in the precise position of any real body, but in the statistical evolution, on long
periods, of a cloud of virtual objects, characterized by high are-to-mass ratios, especially
in the values of the eccentricity and inclinations reached by these objects (Casanova et al.,
2015).

In this work we use the Poincaré’s variables. These variables are canonical and they are
non singular, when the eccentricity and inclinations are close to zero. Consequently, they
are useful for studying space debris orbiting the Earth in the geostationary ring. Thanks to
these variables, it is possible to obtain a complete Hamiltonian formulation of the problem,
which includes the J, effect, the third body perturbation and the solar radiation pressure.
Indeed, by means of averaging, the original Hamiltonian is replaced by the averaged one
becoming into a four degrees of freedom problem since we average over the mean anomaly
and consequently the semi-major axis becomes constant. This averaged Hamiltonian yields
good agreement with the actual dynamical system.

The averaged dynamical system is integrated to provide an analytical solution. We com-
pare the solution with the numerical one, that we compute with the powerful integrator
NIMASTEP (Delsate and Compere, 2012) considering exactly the same perturbative effects
as in our model. The goal of this comparison is to test the precession of our analytical ap-
proach, and the improve of this method with respect to the previous ones. We also study the
influence of the area-to-mass ratio A/m in the propagation of space debris. This ratio plays
an important role when the solar radiation pressure is considered in the propagation (See
Klinkrad (2006).)
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The paper is organized as follows: first, we show a numerical simulation to understand
the motion of space debris. Then, we recall the Poincaré’s variables and we summarize the
Hamiltonian formulation of the problem. Then, we obtain the averaged Hamiltonian of the
problem that maintains good agreement with the complete Hamiltonian and we solve the
dynamical system obtained; finally, we present our main results.

2 Numerical simulations

We are interested in the motion of space debris, especially those orbiting in the geostationary
region and for which the solar radiation pressure can not be neglected, i.e. with high values
A/m. We start the analysis by numerical integrations for two specific cases : A/m = 1m? /kg
and A /m = 20m? /kg. We include the J, perturbation, the third body perturbations from the
Sun and the Moon, and the solar radiation pressure.

All the numerical integrations have been performed by NIMASTEP (Delsate and Com-
pere, 2012) with the same initials conditions : @ = 42,164.137km, e = 0.01, i = 0.01 rad,
® = 2 =M = Orad considering a fourth-order Runge-Kutta method during 200 years with
a fix time step of 100 sec.

After many simulations, as we observe in Figures 1(a) and 1(b), we notice the following
behaviours:
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Fig. 1 Evolution of the eccentricity over 10 years (a) and evolution of the inclination over 200 years (b) of
two pieces of space debris with A/m =1 and A/m = 20, it is considered the J, effect, the Sun and Moon
perturbations, and the solar radiation pressure

— The eccentricity has a quasi-periodic motion, dominated by a period of 1 year; a longer
period appears in the simulation over 200 years, which modulates the amplitude. This
amplitude is dependent on the J, and mainly depends on the value of A/m. Over a
few years, the motion is dominated by these two effects. However over longer periods
of time, as 200 years a supplementary long period appears, due to the solar and lunar
perturbations, as it is shown in Figure 2

— The inclination is dominated by a long periodic motion, the period and amplitude of
which are dependent on A/m, J, and the presence of the Sun and of the Moon. Of
course, a shorter period of 1 year is also visible but its amplitude is negligible over the
long periodic motion.
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Fig. 2 Evolution of the eccentricity of a piece of space debris over 200 years with A/m = 1, considering the
J effect and the solar radiation pressure (red curve) and with the solar and lunar perturbations (blue curve)

The Moon plays a role in the motion of the inclination, as shown in Figure 3, where
a comparison is performed for 200 years with or without the Moon; it is obvious than the
periods and the amplitudes are modified by the presence of the Moon in the model. For
large values of A/m, the error is only about a few percents, but for A/m = 1 it is much more
important, modifying the amplitude and the period.

We propose to build a simple model, averaged over different periods, explaining the be-
haviour of the eccentricity over a period of 10 years and of the inclination over 200 years.
Further comments about longer periods in the eccentricity and modified periods in the incli-
nation will complete this analysis.

Our analytical model neglects the effect of the tesseral terms. This decision has been
motivated by a previous analysis (see Valk et al. (2008)) in which the authors show the orders
of magnitude of the radial components of the acceleration due to different perturbations
(see their Figure 1). At the altitude of the geostationary orbit, it is obvious that the tesseral
terms are two orders of magnitude smaller than the other perturbations. They also show
the classical presence of two stable and two unstable equilibria, due to the gravitational 1:1
resonance, they calculate the libration period and show its presence on the evolution of the
semi-major axis.

Nevertheless, to check this hypothesis, we have performed several simulations. In Fig. 4(a)
and Fig. 4(b) we show the evolution of the eccentricity and of the inclination during 10 years
and 200 years of propagation respectively. Each figure shows the evolution of two pieces of
space debris (A/m = 20 and A/m = 1) considering two different models; one of them con-
siders the J; effect, the solar radiation pressure, the Sun and the Moon perturbations, and
the other one also includes the tesseral terms (Sy; and C»p). We confirm that the tesseral
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Fig. 3 Evolution of the inclination of two pieces of space debris with A/m = 1 and A/m = 20, with the J,
effect and the Sun perturbation, with or without the lunar perturbation
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terms can be omitted. They do not play any role on the eccentricity and inclination, when
the coefficients A /m are huge.
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Fig. 4 Evolution of the eccentricity over 10 years (a) and evolution of the inclination over 200 years (b) of
two pieces of space debris with A/m =1 and A/m = 20, with or without the S5, and Cx, effect

We also study numerically the particular case of a piece of space debris located in the
unstable GEO region, which presents a more complex evolution. For this purpose, Fig. 5(a)
and Fig. 5(b) show the evolution of a piece of space debris without or with the Cy; and S»,
contribution. We observe that the tesseral terms can also be neglected in this particular case.
These simulations confirm that in our goal of having a reliable and fast analytical model to
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propagate thousands of pieces of space debris with large values of A/m, the tesseral terms
can be omitted in the eccentricity and inclination motions.
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Fig. 5 Evolution of the eccentricity over 10 years (a) and evolution of the inclination over 200 years (b) of a
piece of space debris located in the unstable GEO region, with A/m = 1 and A/m = 20, with or without the
S77 and Cy; effect

3 Preliminaries

In this section we introduce the tools to be used henceforth in the paper: a specific type
of non-singular elements, named Poincaé’s variables, and the Hamiltonian formulation to
describe the orbital motion of an object around a rigid body in the solar system.

3.1 Poincaré’s variables

The classical orbital elements (a,e,i,£2,®,M) are used to describe the motion of an object
around a rigid body. However, when the eccentricity approaches zero, there is a large vari-
ation in @. Actually, when e = 0 the argument of perigee is undefined. A similar problem
happens when the inclination is zero. To overcome this problem, we use canonical and non-
singular variables named Poincaré’s variables. They are suitable for all eccentricities and
inclinations even for null eccentricities and inclinations. These variables are especially use-
ful for treating orbit problems with Hamiltonian dynamics (Vallado, 2001). The Poincaré’s
variables are given by:

xXp = \/ﬁsinp, y1 = v/2Pcosp,
xy =/20sing, y» = v/2Qcosq,
A, L, 1)
where A is the mean longitude, which is the sum of the mean anomaly (M), the argument of

perigee (), and the longitude of the ascending node (£2). L is one of the classical Delaunay’s
elements given by:

L=./ua, G=/pa(l-eé?), H = /ua(l—e?)cosi. 2)
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Finally, the modified Delaunay’s elements are defined by:

P=L-G, p=-0-9Q,
0=G-H, q =-Q. (3)

3.2 Hamiltonian formulation

Given the generalized coordinates (p,q,A) and the generalized momenta (P, Q, L) of a piece
of space debris orbiting around the Earth, it is possible to describe its motion following the
Hamiltonian formulation:

N Y
pf 8P7 - ap?
N Y
q_ 8Q7 - aqv
: o . o 4
r=Sr e @

The Hamiltonian function in this paper takes into account the attraction of the Earth as
a central body, the J, effect due to the non-spherical shape of the Earth, the solar radiation
pressure that affects the space debris, which is proportional to its area-to-mass ratio, and the
solar and lunar perturbations. Then, the Hamiltonian function for this problem is:

(X, V,X0,¥q ) = Hieprer(r,V) + Hy, () + Hspp(r,r0) + Haps(r,r0) + Hypy (r,rg ), (5)

where r and v are the Cartesian geocentric coordinates and velocities of any piece of space
debris, r, the Cartesian geocentric coordinates of the Sun and r , these of the Moon. All of
them are given with respect to an inertial equatorial geocentric frame. Hereinafter we denote
by r=[rl].ro = [[ra]l. r¢ = [Ir [l and v = 1v]|

Hiepier represents the attraction of the Earth as a central body, Hj, the potential function
that affects the space debris due to the Earth oblateness. In this work we only consider the
zonal harmonic J, which is the most representative of the potential function. Hsgp represents
the direct solar radiation pressure potential, H3pg the effect of the Sun, as third body, and
H3ppy this of the the Moon.

More precisely,

ro

2
1%
erpler(rav) = ? - %a (6)

where U = Mg, with ¢ the standard gravitational constant, My, the mass of the Earth.
The expression of Hy, in terms of the position is:

Hy,(r) = %12 (*B)zpz (sin Pyar)

-
“L () ),

where ¢y, represents the latitude of the satellite, and consequently sin ¢y, = z/7.
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Following Valk et al. (2008), the expression for Hsgp is,

A 1
Hsgp(r,xe) = G, P; % Tr—roll
A n
=GP —ag (*) Py(cos9), ®
r rm ,Eb o n

where C, (fixed to 1 in this paper) is a dimension-free reflectivity coefficient, Pr = 4.56 x
10°°N /m? is the radiation pressure for an object located at a distance of 1 AU from the
Sun, A/m is the area-to-mass ratio of the space debris given in m” /kg and a, is equal to the
mean distance between the Sun and the Earth (i.e. a;, = 1 AU). We consider that ¢, ~ ac,
and P, is the Legendre polynomials of order n, and finally, ¢ represents the angle between
the satellite and the Sun positions.

In this work we split the expression of the Hamiltonian function concerning the solar
radiation pressure in three different expressions, which become very useful in the average
process that we apply in the following section.

Hoap(r) = G a1 - cos(9) + A Z( )"e<cos¢>

n>2
o~ Hggrp, + Hsrp, + Hgrp, ©))

where Hggp, is only a constant term, the Hsgp,,i = 1,2 correspond to the first and second
order in -, neglecting terms with higher order in the distance ratio.
The solar perturbation can be expressed by:

r-ro
Hyps(r,r0) = — o +Uo P
_Ho rac cos(9)
= n(COSQ)+ Uo ——5—
o ;}( ) (cos )+ )
:_d1+2( ) (05 9)), (10)
© n>2

where o = 9 M with M, the mass of the Sun.
Similarly, the lunar perturbation writes:

Hypy (r,r ) = 1+Z< ) % (cos our)), (11)

n>2

where g = %M with Mg the mass of the Moon, and ¢, representing the angle between
the satellite and the Moon positions. The Moon is also assumed to follow a circular orbit,
i.e. rq =ag-

Thanks to Eq. (9) and Eq. (10) the Hamiltonian formulation for the solar radiation pres-
sure plus the solar perturbation can be expressed as follows:

Hgpp(r,r0) + Haps(r,re) =~ Hsgp, (r,xe) + Hsgp, (Y,x0) + Haps (1, 10)

fCPArcos((p) {CPAaf\—‘uQ} ( 4

ae ae

2
> Py(cos @), (12)

where the second term gathers terms with a quadratic dependence on _—; we consider that
the other terms with higher orders in the distance ratio can be neglected
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For the Moon, we only keep the quadratic term:

2
r
H3bM(I',I‘@) ~ —Z% (a(> Pz(COS(PM). (13)

4 Averaged Hamiltonian

Several periods are present in the Hamiltonian, a 1-day-period (for geostationary orbits),
a 1-month-period (in the Moon motion), a 1-year period (the Sun orbital motion), periods
linked to the J; perturbation, and longer periods appear clearly in the numerical integrations.
Several averaging processes are then applied to isolate those main frequencies.

4.1 Very short period averaging process : over 1 day

We average the Hamiltonian function over the mean longitude (1) since, for long-time
propagations, the short periodic oscillations caused by the mean longitude are meaning-
less. Hereinafter, the averaged Hamiltonians will be represented with an over-line, but we
keep the same notations for the orbital elements and the canonical variables and momenta.
Under the averaging assumption, our problem becomes a four degree of freedom problem
in the averaged variables x1, ¥, x» and y», since the mean longitude is not present anymore;
consequently the semi-major axis (a) or the momentum associated to the mean longitude (L)
will be constants. The averaged Hamiltonian function is given by:

C(x1,y1,X%2,¥2) = Hepier +Hp, (X1,y1,%2,¥2)
+ Hsgp, (X1,Y1,%2,Y2,X0) + Hrp, +365(X1,Y1,X2,Y2,X6)

+ Hapy (x1,51,%2,¥2,X¢ ), (14)
where
— uz
erpler = _E (15)

is now a constant term and will be omitted.
To obtain an expression for H, we use the averaged Lagrange Planetary Equations (Abad,

2012):
do _3 [u, 5 4=5sin’i G 4—5sin’i
d A\ @72 (1= 2 (1-e)2°
dQ 3 /u rZB cosi cosi
et B -0
dt 2V a3 " a? (1—e2)2 (1—e2)2

2
where C; = %, / a%]z%.
The coordinates p and ¢ are linked to the argument of perigee () and right ascension
of the ascending node () through p = —w — 2 and ¢ = —Q. Following the Hamiltonian
formulation:

. JHy
p (Y 8P Cp7
. OJH,
q__Q: Z_qu



10 Daniel Casanova et al.

and consequently, if we choose constant values for C;, and C,,

_ C (@
Hp=Cp P+Cq Q= "C(ai+31) + 5 (3 +3). (16)
In the case of e =0 and i = 0, we obtain : C,, = —C; and C; = C;.
HSRPI can be expressed, following Hubaux and Lemaitre (2013), after averaging on A4
and without any truncation on e, as:

_ 3 A
HSRPI = _ECrPr*aeév (17
m
where
L’ G?
= — =14/1—— =Gire I'c o3,
a=n € R E=&iro 1 +&ron+ 6103
&1 = cosQcosw —sinQ cosisin®,
&) = sinQ cos @ + cos 2 cosisin @,
&3 = sinisin @,
and

ro,1 = C0SAq,

re, = sindg cose,

ros3 = Sil’ll@ SinS,

where a simplified circular motion for the Sun has been assumed, only depending on its
mean longitude As, = net + Ag o (With ng = 27 /year and A o the initial position of the
Sun) and on the Earth’s obliquity €.

The averaged Hamiltonian HSRPI can be expressed in terms of Poincaré’s variables,

truncated at €2 or i2, as:

Hsgp, = —nok[ro, 1 (xiRa +y1R1) = ro2(x1R3 +y1R2) — 16 3(x1Rs — y1R4)] (18)
where
Ril) = 1= 2 Ro(iayn) = 22, Ry —1-2
1(x2 50 Rey) =57 R 5
x y2
Ri(xy) = —=, R = —,
4(x2) N3 5(2) /3
(19)
and 3 A
a
k= -C.P———.
ne ) r rm\/z

Consequently the averaged Hamiltonian given in Eq. (14) writes now:

-7 _ (i B4y
%’:(12‘)Cp+< 5 )Cq

— nek[ro 1 (xiRy +y1R1) — 1o 2(x1R3 +y1R2) — 1o 3(x1Rs — y1R4)]
+ Hgrpy 1365 (X1,Y1,%2,¥2,¥0) + H3pp (X1,1,%2,y2,X¢ ). (20)
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The second order part of the solar radiation pressure, the solar and lunar perturbations
have also to be averaged over the fast variable A. As they are second order terms in a%, we

limit their expansion to the first term, neglecting the following terms proportional to 2. In
. ge? . . .
other words, we keep the terms in %% but not those in (3—9)2 The immediate consequence

is the dependence of the averaged perturbation HSRP2+3bS only on x, and y, and not on x;
and y;:

2,2
— — a-e
Hsgrp,13bs = Hsrp,1365(—, —%2,¥2,T0) + O( 2 )- 2D
]
With this assumption, we obtain :
_ (A o] 3a* , 3a® ,
Hgrp, +305(x2,y2,70) = = |CPr—as — — | —5 V5 =—f —5 Vg (22)
L m ac | 4ag 4at,
where Vs = Ug(x2,y2,ro) = —sing sinirg ; —cosq sinire s +cosirg 3, and
_ A 0]
B=|CP=a,— . (23)
L m ao ]
With the same assumptions, the lunar perturbation is given by:
2
— U 3a 2
Hapm (22,0 ) = =&~ v} (24)
ag 4(1((
where Uy = —sing sinirg ; —cosg sinirg 5 +cosirg 3.

The Hamiltonian formulation of the problem given in Eq. (20) allows us to express the
time evolution of the Poincaré’s variables through the following dynamical system:

X ([) — @ X (1) = E
T gy ~dn
o4 oA
Vi (t) = - axl ) _)fz(l) = ax2 . (25)

4.2 Solving the dynamical system in eccentricity : SRP; and J

Considering the system given in Eq. (25), limited to the solar radiation pressure, Hggp, and
to Hy, and setting x; = 0 = y,, we have the following equations, at first order in e :

x1(t) = —Coy1 —ng kro 1,
yi(?)

and the explicit solution is given by (with 1] = ,%):

=Cyx) —ne krop,

x1(t) = & sin(Cot + P) + %{;AOO) [N cose+1],
k of + Ac
y1(t) = o cos(Cot + D) + keos(nol 1 Aoo) [cose+ 1], (26)

1—n?
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where the constants ./ and @ are determined by the initial conditions.

Two periods are present : the 1-year periodic motion is the most important, over a few
years, and the period associated to C; contributes to the fluctuation visible on 200 years. The
amplitude of the 1-year motion is proportional to k, which means proportional to %.

For short periods of time, of a few years, the result is simply :

ksin(ng :
x1 (1) :Cx—i-w[n cose+1],
-1
kcos(nat + Ag
yi(t) = CYJF—(IH, 3 o) [cose+ 1], 7N

where C, and Cy are fixed by the initial conditions.

We plot in Figure 6 the motion of the eccentricity over 10 years, for A/m = 1 and
A/m = 20, with or without J,. The only significant effect of J; is to increase the period,
slightly over 10 years, more obviously over 200 years. We calculate the maximum of the
eccentricity as a function of A/m and plot the result in Figure 7

Eccentricity

Time (year)

Fig. 6 Evolution of the eccentricity of two pieces of space debris over 10 years withA/m =1 and A/m = 20,
considering the J, effect, and the solar radiation pressure

Let us remind that our model is truncated at e2, which explains the differences with the
numerical integrations for the highest amplitudes.

Finally we represent the motion of the eccentricity on 200 years in Figure 8(b) and
compare our result with a similar numerical integration in Figure 8(a) ; we clearly see the
superposition of the long and short motions on both figures.
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Fig. 7 The maximum of the short periodic motion of the eccentricity as a function of A/m
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(@) (b)
Fig. 8 Evolution of the eccentricity over 200 years, with SRP and J,, for A/m = 1, obtained by numerical

integration (a) and obtained by our model (b)

4.3 The second averaging process : over 1 year

Let us write the dynamical equations corresponding to the inclination, i.e. to x, and y;.
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VL

. X122 =2x1y2 | Y1xX2 x|
Xa(t) = Cyyr —nok {V@,l(j)— o2( oL Z) —7103( )}

IHsrp, 13bs n H3py

28)
dy> dys (
) —2xoy1 | X1y2 yiy2 Vi
W2(t) = —Cyxa +nek {”@,1( oL f)— @,2(§) - ‘93(_ﬁ)
_ 9Hsgpy3ps  IHzpu 29)

oxa 0xy

Using the 1-year periodic expressions for x;(z) and y;(¢) given by (27), we substitute
them in the system of Eq. (28) and we seek the expressions for x,(¢) and y,(¢). We are
interested in the long term evolution of the inclination, and then we average over the angle
A to obtain a simple long period expression for < x»(t) >, and < y»(t) >3 .

To calculate the variables C;, we use the value i = 0, in agreement with the truncation
in i, and we replace e by its averaged value over A.

The result is :

C,=C (1428 (30)
with
1

L& =
)

1
k2+§k2 COSZS+C)%+C)2,. 31)

For the contribution HSRPZH,,S, the average process over A, is applied to vsz, so to get:

< Hsrpy43bs >2,= B (x% 4 x5 c082€ +2y3 cos2e —2 VLy, sinZs) . (32

a
16 La%

For the lunar contribution, we average the Hamiltonian over the angle A¢ which can be
considered as a faster angle that its solar equivalent, but nevertheless slower than the first
period of 1-day.

_be 3
ag 16Laé

< Hspm > = (x% + x5 €08 28y +2y3 cos2ey —2 VL y, sin ZSM) , (33)

with &y the obliquity of the Moon.
Thus, we have averaged the equations x»(¢) and y» () over the variables A, and A¢ , and
we obtain the following simplified linear equations:

X2(t) = dy y2 +ds,

Wa(t) = —da x2, 34
k2 C
di = ng il cos£+7q—5—5 COS2€ — Y — Y cos &y,
d) = i cose+Cq 26 cos2e —2 Y cos2g
2= o g 2 4 M

2

k
d3 = —ne —— sine+2 8 VL sin2e +2 v VL sin2¢y,
3 O2ﬁ Y M



Long-term evolution of space debris 15

_Bg 34?2
andy = aq T6Lay

We write the corresponding solution for x,(¢) and y»(¢):

2
where 6 = + 63Z —

xz(l‘) =9 Sin(\/d]dztf l[/),
d3

¥2(t) = 7|2 cos(/drdy 1 — ) - 2. (35)
d1 dl

These equations represent an oscillatory motion, & is the amplitude and y the phase space.
Both of them are calculated through the initial conditions. Egs. (26) and Egs. (35) are the
analytical solution of the problem of space debris orbiting around the Earth in the geosta-
tionary ring.

The period in the inclination motion depends on the motion of the Moon; we represent in
Fig. 9 the period (given in years) present in the inclination, as a function of A/m. The upper
curve represents the period including the Moon, and the lower curve without the Moon.
We clearly confirm the result of the numerical integration given in Fig. 3: for A/m =1 the
presence of the Moon increases the period by more than 12 years (from 52 to 65 years) while
for A/m = 20, the increase is much smaller (from 23 to 25 years).

70

Period

0 5 10 15 20 25 30 35 40
A/m

Fig. 9 The long period associated with the motion of the inclination, as a function of A/m, with the Moon
(red curve) and without the Moon (green curve)

For the motion on the inclination, we can notice in Fig. 10 that each supplementary
effect (J2, Sun, Moon) reduces the main period if the value of A/m is small (a few units)
while for the largest values of A /m, the solar radiation pressure is really the main perturber,
the other perturbations do play a very small role.
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200

100

period (years)

50

Fig. 10 Calculation of the period of the inclination motion, as a function of A /m, with only the solar radiation
pressure (red curve), with SRP and J, (green curve), with SRP, J, and the Sun (blue curve), and finally with
SRP, J,, the Sun and the Moon (magenta curve); A/m is given in m? /kg and the period in years

5 Results

To compare the influence of the different perturbations, we represent the motion of the in-
clination in 4 cases : SRP, SRP + J,, SRP + J, + Sun, and SRP + J, + Sun + Moon, for
a piece of debris with A/m = 1 in Fig. 11(a) and with A/m = 20 in Fig. 12(a). Numerical
integrations have been performed with the same assumptions in Fig. 11(b) and in Fig. 12(b).
The agreement is very good, except for the highest amplitudes, due to the second order
truncation in .

[rad]

Inclination (rad)

Inclination

o 50 100 150 200
Time (year)

Time [year]

(a) (b)

Fig. 11 Evolution of the inclination over 200 years by using 4 different models of one piece of space debris
with A/m = 1, obtained by our model (a) and obtained by numerical integration (b)
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Inclination (rad)
[rad]

Inclination

Time [year]

(b)

Fig. 12 Evolution of the inclination over 200 years by using 4 different models for one piece of space debris
with A/m = 20, obtained by our model (a) and obtained by numerical integration (b)

6 Conclusion and Future work

In this paper, we present an analytical model to propagate space debris in the geostationary
ring, which includes the effect of the J, due to the Earth oblateness, the solar radiation pres-
sure, and the solar and lunar perturbations. The solution provided by this model has been
tested through the numerical integrator NIMASTEP proving its reliability. This model im-
proves the previous one presented by Hubaux and Lemaitre (2013), which only considers
the solar radiation pressure. We justify the importance of considering the J, effect when
propagating space debris independently of the ratio A/m for short and long-term propaga-
tion. The lunar and solar perturbations play an important role in the period and amplitude
of the inclination, especially for values of A/m close to unity. For higher values of A/m the
solar radiation pressure remains the dominant dynamics.

This work helps to improve the knowledge of space debris evolution for short and long-
term propagation, to design future missions and also to avoid space debris collisions (Rossi
and Valsecchi, 2006). However, our final goal is to use a simple but reliable analytical ap-
proach to propagate thousands of pieces of space debris at the same time, to get reliable
statistical results concerning the location of this population of space debris (see Casanova et
al. (2015))

Finally, this new model can also be applied to design satellite constellations, especially
to improve the lattice-preserving Flower Constellations (Casanova et al., 2015; Avendafio et
al., 2013). This particular satellite constellations are characterized by maintaining the initial
configuration under the J, effect. If solar sails are included in the satellites, the analytical
model presented in this paper can be easily applied to reproduce the time evolution of this
kind of satellite constellation.
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