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ABSTRACT 

A general method to prepare a catalytic coating on the surface of stainless steel microreactors 

has been developed. The catalytic support consists of a layer of randomly oriented, highly acces-

sible carbon nanofibers (CNFs), directly grown on the surface of the channels by chemical vapor 

deposition (CVD) of ethanol. These CNFs are functionalized to acquire a positive charge before a 

solution containing metallic nanoparticles (Pt) is flown through the channels. The nanoparticles 

adhere to the surface of the CNFs thanks to electrostatic interactions. This process is carried out 

in-situ and the method can be easily adapted to larger scale production. These catalyst-coated mi-

crochannel reactors have been tested in the selective oxidation (SELOX) of CO in the presence of 

H2. The results were compared to those obtained in a conventional fixed bed reactor packed with 

Pt/CNTs. The microreactor clearly outperformed the fixed bed reactor at the same space velocity 

(WSHV = 2220 l/h gPt),), achieving total CO conversion at temperatures 50 ºC lower. 
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1. Introduction 
 

Microstructured reactors represent a key technology in the increasingly important area of mo-

bile and decentralized energy production, where they are used in the purification of hydrogen 

streams for proton exchange fuel cells (PEFC) [1]. One of the bottlenecks in the implementation 

of microreactors for this application is the lack of scalable methods for the mass production of 

catalyst-coated channels. The methods used to deposit catalytic washcoatings in ceramic and me-

tallic monoliths for automotive applications are being adapted for channels in stainless steel reac-

tors, where the main challenges refer to improving adhesion and optimizing the distribution of the 

active sites in the catalyst layer [2, 3]. Other methods, different from washcoating, have been 

studied and reviewed by Meille et al. [4]. These methods include sol-gel techniques, and synthesis 

of zeolitic and carbon-based supports deposition on different structures[5]. In the case of metal 

supported catalysts, the deposition of the metal phase takes place in a second stage (after deposi-

tion of the support layer) and is usually accomplished by conventional techniques such as impreg-

nation, precipitation and ion exchange. 

The selective oxidation of CO, SELOX, it is a necessary step since the reformate stream fed to 

the PEFC should contain less than 100 ppm of CO, to avoid poisoning of the electrodes. The use 

of microreactors for SELOX has been recently reviewed by Kolb [1]. The most promising results 

include the use of bimetallic catalysts such as Pt/Rh (2.5 %wt.) [6] and Pt (1 %wt.)/Co(2 %wt.) 

[7] on conventional Al2O3 support, washcoated on the microreactor channels. Less than 100 ppm 

of CO were found in the outlet stream at 160 ºC with a WHSV=180 l/(h gcat) in the case of Pt/Rh 

[6]. With Pt/Co catalysts a temperature window of 130 to 180 ºC at a WHSV=120 l/ (h gcat) was 

necessary to achieve the desired CO reduction. A different approach was proposed in our group, 

using direct hydrothermal synthesis of zeolite layers (instead of a washcoated layer) on stainless 

steel microchannels, followed by ion exchange using Pt. The removal of CO was achieved at low 

temperatures, 120 ºC at WHSV=120 l/(h g cat), with a 5.6 %wt. Pt load on the zeolite [8]. 

While carbon nanotubes have been employed in the SELOX reaction as support of noble met-

als in fixed bed reactors packed with powdered catalysts (e.g. Pt-Co/CNTs [9], Ni-MgO-Pt/CNTs 

[10], Pt-Na/CNTs [11] and Ru-CNTs [12]), their use in microreactors for this process has not 

been reported, which can be probably attributed to the inherent difficulties in achieving a homo-

geneous and reproducible coating on the microchannels. The work of Thakur et al. [13] is helpful 

to picture the complexities involved in the preparation of a carbon nanofiber layer as catalyst sup-

port in microreactors. These authors used Ru/CNFs on the channels of a silicon microreactor for 

the catalytic reduction of bromate contaminants in aqueous phase. A number of steps were re-
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quired for the synthesis of the carbon nanofibers (CNFs) layer: First, thin films of nickel/tantalum 

(25 nm/10 nm) were deposited on the oxidized silicon substrates using electron-beam evaporation. 

This was followed by a controlled reduction step at 650ºC that produced Ni nanoparticles, and 

then the gas mixture containing the carbon source (C2H4) was fed to generate the CNF layer. The 

ruthenium nanoparticles deposition was accomplished by one of two methods, namely homogene-

ous deposition precipitation (HDP) and pulsed laser deposition (PLD). HDP used an aqueous so-

lution of ruthenium nitrosyl nitrate and urea which decomposed producing OH- that locally hy-

drolyzed the metal salt which then precipitated as a hydroxide. Further calcination and reduction 

steps were needed. Furthermore, to achieve a good anchoring of the Ru nanoparticles the CNFs 

had to be previously oxidized, and the pH had to be carefully controlled during the precipitation 

process. All of these requirements make the method inherently complex and difficult to apply for 

production at a larger scale. 

In this work we present a general, scalable method, to prepare a catalytic coating on the surface 

of stainless steel microchannels. This method comprises three steps: first, the catalytic support (a 

layer of randomly oriented CNFs) is directly grown on the surface of the channels by chemical 

vapor deposition (CVD) of ethanol, second, the surface of the CNFs was modified to achieve a 

positive charge by a simple contact procedure (a poly-ethylenimine solution was pumped through 

the microchannels) and finally a solution containing preformed metallic Pt nanoparticles was 

flown through the channels to obtain highly dispersed Pt nanoparticles on the CNFs. The catalytic 

plates prepared using this method have been tested in the preferential oxidation of CO and their 

activity was compared to a very similar catalyst (i.e. the same Pt on commercial CNFs) as a pow-

der in a conventional fixed bed reactor configuration. 

 

2. Material and methods 
 
2.1. Chemicals 

Tetrakis (hydroxymethyl) phosphonium chloride solution (THPC, 80 wt. % Aldrich), 

poly(vinyl pyrrolidone) (PVP, MW # 10 000 Da, Aldrich), chloroplatinic acid 8 wt. % solution 

(HPtClO4, Aldrich), sodium hydroxide (NaOH, Aldrich), nitric acid (HNO3, 70 % Aldrich), Poly-

ethylenimine (PEI, branched, Aldrich), and CNTs (Baytubes C150P, Bayern) were all used as re-

ceived.  
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2.2. Preparation of catalytic microreactors 

The microreactors consist of stainless steel (AISI 316) plates (80 mm x 20 mm x 2 mm) con-

taining 12 semicircular microchannels (length = 50 mm, diameter = 500 µm). The plates were 

designed by us and manufactured using chemical etching by Exella (Exella Europe SRL- 

www.exella.es). The growth of the carbon nanofiber layer on the microchannels was performed 

by CVD of ethanol. The plates to be covered were placed in a quartz tube inside a horizontal fur-

nace with a total length 30cm. The temperature profile along the tube was measured to ensure that 

a central isothermal section of at least 12 cm length existed, and therefore could be used to host 

the plates under a homogeneous temperature. The microreactor was heated up to 750 °C with a 

heating rate of 40 °C/min, under an equimolar flow of H2/N2 (QT = 400 mL/min). This flow was 

maintained for 60 minutes. Finally, 10 g/h of ethanol and 400 mL/min of N2 were introduced, at 

atmospheric pressure, for 60 minutes.  

The synthesis of the Pt nanoparticles followed previously reported methods in our laboratory 

[14], based on the use of tetrakis-(hydroxymethyl)-phosphonium chloride, THPC, as both reduc-

ing and capping agent, controlling the kinetics of the nucleation-crystallization process in order to 

achieve a monodisperse distribution of  ultra-small Pt nanoparticles under the size of 1.5 nm. In a 

typical synthesis, 100 µL of H2PtCl6 in H2O (8 %wt.) were added to 15 mL of H2O. Then, 333 µL 

of THPC 65 mM in H2O and 165 µL of NaOH 1M in H2O were added. The mixture was covered 

with foil and stirred at 300 rpm for 4 days at room temperature. To estimate the synthesis yield, 

the solution was destabilized by addition of HNO3 to lower the pH to 3. Under these conditions 

the colloidal solution is not stable and the nanoparticles precipitate to the bottom. The Pt content 

of the supernatant liquid was then analyzed using Microwave Plasma-Atomic Emission Spectros-

copy, MP-AES (Agilent 4100-MP-AES). 

The anchoring of the Pt nanoparticles to the CNFs grown on the channels is based on electro-

static interactions, and was carried out in situ under continuous flow using the same microreactor 

employed for reaction. The CNFs surface was modified with a positively charge polymer, Poly-

ethylenimine (PEI) to promote the electrostatic interaction with the negatively charged Pt nano-

particles.  First, a 10 mL solution of PEI in H2O (4 g/L) was pumped (Harvard PHD Ultra) 

through the channels of the microreactor (Figure 1.a). Then, 250 µL of the Pt solution (0.23 mg 

Pt/l) were fed into the channels at a flow rate of 1 mL/min. The outlet solution, after passing 

through the microreactor, was clear compared to the initial dark solution. The Pt content of the 

inlet and outlet solution was analyzed using MP-AES. 
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For comparison, a similar catalyst in a powdered (unsupported) form was prepared from com-

mercial CNTs with two different Pt loadings following the procedure previously described by 

Zhou et al. [15]. Briefly, 100 mg of CNTs (Baytubes C150P) were sonicated in 15 mL of H2O for 

30 minutes. The pH of the solution was lowered to 2.5 with 1M HNO3. Finally, a given volume 

(15 mL and 30 mL) of the Pt solution containing nanoparticles was added to the CNTs at a flow 

rate of 1 mL/min while the mixture was kept under sonication. Then, the powder was vacuum fil-

tered and dried at 100 ºC for 12 h.  

2.3. Characterization of the catalysts 

The morphology of the catalysts was characterized, before and after the activity tests by scan-

ning electron microscopy, SEM (FEI Inspect S50), and transmission electron microscopy, TEM 

(FEI Tecnai T20 at 200 kV) at the Laboratory of Advanced Microscopies, LMA, University of 

Zaragoza.  

The loading of Pt catalysts was determined by MP-AES after digestion of the solid samples. 

Complete digestion of the powder samples was achieved using aqua regia in a ratio 1 mg catalyst: 

1 mL aqua regia, during 24 hours at room temperature. Since the stainless steel was also dissolved 

in the case of the microreactors, the layer of CNFs was first detached, immersing the plates in wa-

ter followed by sonication for 60 minutes. After that time it was possible to observe that the entire 

layer was detached.  

2.4. Catalytic activity test 

The SELOX reaction was carried out at atmospheric pressure using a feed stream with a com-

position of 97.4% H2, 1.28% CO and 1.28% O2, corresponding to =2 (double of the stoichio-

metric O2 necessary to fully oxidize the CO in the feed). The total flow rate was 10 ml/min for the 

microreactors and 100 mL/min for the unsupported CNTs catalyst, giving WHSV values from 

2220 to 13320 [l/ h gPt] depending on the Pt loading of the catalyst. The reaction temperature was 

increased from 50 to 250 °C in steps of 25 °C. Prior to the catalytic testing, an oxidation (Air, 10 

ml/min for 60 min) and reduction (50 % H2, 50 % N2, 10ml/min for 30 min) treatment was con-

ducted at 250 ºC. The activity tests in the microreactors were carried out with one, three, and six 

plates arranged in parallel (see scheme in Figure 1). The microreactors were placed in an alumi-

num housing block to provide thermal inertia. The temperature was regulated by four electrical 

resistances (Figure 1) controlled by a thermocouple located in the middle of the block. Reaction 

experiments on CNTs catalyst in powder form were carried out in a conventional fixed bed reac-

tor (100 mg catalyst, bed height = 1 cm, diameter = 6 mm).  
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The composition of the exit gases was analyzed by an on-line gas chromatograph (Varian Mi-

croGC-4900) equipped with thermal conductivity detectors and two columns, CP740148 MS5A 

and CP740150 PPQ, for the analysis of permanent gases (H2, O2 and CO) and H2O and CO2, re-

spectively. The detection limit for CO was 5 ppm. The CO conversion and selectivity were calcu-

lated according to the following expressions: 

Conversion ൌ
CO୧୬ െ CO୭୳୲

CO୧୬
ൈ 100																			ሺ1ሻ 

Selectivity ൌ 0.5 ൈ
CO୧୬ െ CO୭୳୲
Oଶ୧୬ െ Oଶ୭୳୲

ൈ 100									ሺ2ሻ 

 

Figure 1. Pt nanoparticles deposition scheme and microreactor assembly. 

 

3. Results and discussion 

3.1. Characterization of the catalysts 

The CNF layer grown by CVD uses the Fe in the stainless steel as catalysts [16, 17], avoiding 

the initial catalyst deposition step. CNF growth in this work was performed in separate experi-

ments in a total of 20 plates. The results show that, under optimal conditions (see below) in all the 

cases the CNFs layer was located exclusively inside the channels, while growth of CNFs on the 

channel interspaces was avoided. This could be observed just by visual inspection (see Figure 2a) 

and was corroborated on a closer inspection using microscopy. Optimal growth was achieved at a 

CVD temperature of 750 ºC. Higher temperatures led to uncontrolled growth throughout the mi-

croreactor, while at significantly lower temperatures the growth did not occur. The preferential 

growth of CNFs in the channel space at 750 ºC can be explained as a consequence of the acid 
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etching performed on the channels during preparation. This activated the surface and gave rise to 

a higher roughness of the metallic surface in the channel, allowing the preferential formation of 

CNFs at lower temperatures. After CVD the average weight of the CNFs per microreactor plate 

was 10 ± 1.26 mg, indicating a high reproducibility of the procedure.  

 

Figure 2. a) Image of the catalytic microreactor, showing the division in 3 sections used for chemical analysis b) 

SEM image top view of the channel c, d) SEM images of channel cross section at different magnifications, showing 

the CNFs layer (thickness = 20 microns) e) SEM image detailed top view of the CNFs grown on the microreactor 

channel.  

The SEM images of the microreactor channel top view and cross sections, Figure 2b and 2c, 

again confirm that the nanotubes were grown exclusively on the surface of the channels and not 

on the flat surfaces between channels. This is important since a clean interlayer surface is essential 

for a good sealing of the plates. Growth was homogeneous in all the semicircular section, com-

pared to the traditional washcoating method that in some cases gives rise to nonhomogeneous V-

shaped coatings [18]. The layer consists of a carbon nanofibers bush, with high porosity and a 

height of c.a. 20 µm (Figure 2c). The carbon layer consists mainly of CNFs, with an average di-

ameter of 72±15.4 nm (measured by TEM).  

As already explained in the experimental section, the deposition of the Pt nanoparticles on the 

CNFs was done using a continuous process based on electrostatic interactions (see Figure 3d), 

using PEI as cationic polymer. This process was previously used to functionalize individual car-

bon nanotubes with gold nanoparticles [19] but here it is applied for the first time to deposit nano-

particles on a supported CNF bush, where it is more difficult to guarantee a homogeneous contact 

of the CNFs first with the cationic polymer and then with the nanoparticle suspension. However, 
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as shown below, the in situ procedure used in this work provides an easy way to decorate the CNF 

bush with ultra-small Pt nanoparticles, since both the cationic polymer and the Pt colloid solutions 

are sequentially flown through the channels, providing an intimate contact with the supported 

CNFs. 

To study the distribution of the Pt nanoparticles, after deposition the CNFs were detached from 

the plates by sonication and observed by TEM. An image of the nanoparticles in the suspension 

used for decoration is shown in figure 3a, together with the particle size distribution (see inset), 

centered at 1.7 ± 0.2 nm. Figure 3b and 3c present arepresentative image of the Pt-decorated nano-

fibers. It can be seen that the Pt nanoparticles are well distributed throughout the surface of the 

CNFs and additional agglomeration upon deposition is largely avoided. Thus, the method of dep-

osition of the Pt nanoparticles is suitable, providing a good dispersion of metal nanoparticles on 

the CNFs grown in the channel.  
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Figure 3. a) TEM image of the Pt nanoparticles, inset histogram nanoparticle diameter, b) TEM image of the 

Pt/CNFs microreactor catalyst, b) STEM image of the Pt/CNFs microreactor catalyst (EDX insert), d) Pt/CNFs inter-

action scheme. 

The results concerning Pt loading are presented in Tables 1 and 2. To study the Pt loading and 

reproducibility and homogeneity of the Pt distribution along the length of the reactor, two reactors 

(M3 and M4) were opened, cut in three sections (see Figure 2.a), and subjected to chemical analy-

sis by MP-AES after detaching the CNFs using ultrasounds for 60 min. Another two microreac-

tors were analyzed (M1, M2) using the same procedure, but without cutting them in three sec-

tions. To check the validity of this method, the average loading of Pt nanoparticles in the reactor 

(M1 and M2) was estimated also non-destructively by the difference on the concentration of the 

inlet and outlet Pt solutions.  

The results in Table 1 show that the procedure used yields reproducible samples with a homo-

geneous Pt load along the reactor channels, around 0.45 %Pt. However, the calculations based on 

the concentration of the inlet and outlet solutions (see Table 2) show less Pt loading due to the 

deposition of same Pt nanoparticles in the holder and the sealing during the deposition step. The 

Pt content in the CNT powders was also measured giving loads of 2.81±0.19 and 5.7±0.31 wt. % 

in each of the two samples prepared. 

Table 1. Pt load in microreactors. Determination based on MPAES analysis of detached CNFs after sonication. 

Sample 
m CNFs

(mg) 

%Pt ±RSD% 

in CNFs in microreator 

M1 10.56 0.45±3.64% 

M2 9.67 0.47±0.89% 

M3.1 

M3average

3.59 0.55±3.33% 

0.47 M3.2 3.59 0.49±0.97% 

M3.3 3.59 0.39±3.03% 

M4.1 

M4average

3.26 0.46±2.84% 

0.43 M4.2 3.26 0.39±3.03% 

M4.3 3.26 0.43±2.14% 

NOTE: To calculate the load for each section it has been assumed that the CNF growth is homogeneous and each 

section accounts for one third of the total CNF mass. 
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Table 2. Pt load in microreactors. Determination based on the difference between the inlet and outlet Pt concentration 

in the solution used for NP deposition in microchannels. 

Sample 
m CNFs 
(mg) 

[Pt]inlet solution 

ppm 
[Pt]outlet solution 

ppm 
Pt in microreac-

tor (mg) 

Pt % wt. in 
CNFs in micro-

reator 
M1 10.56 229 ± 1.17% 71 ± 0.78% 0.0395 0.375 

M2 9.67 229 ± 1.17% 72 ± 0.64% 0.0393 0.406 

 

3.2. Activity tests SELOX reaction fixed bed and catalytic bed 

The conversions of CO and O2 together with CO2 selectivity are presented in Figure 4 for the 

three different space velocities in the microreactors, containing 1, 3 and 6 plates with an average 

of 0.45 %wt. Pt. It is necessary to use 6 plates, i.e. WHSV=9.6 l/h g, to completely remove carbon 

monoxide in the reformate stream (100% CO conversion, CO concentration below detection limit 

of GC 5 ppm), and this is achieved at a relatively low temperature 175ºC. This temperature is in 

the same range as the best results reported using microreactors for SELOX using more active bi-

metallic catalysts [6, 7], (see introduction section). 

The upper limit of the temperature window for total CO conversion is around 200 ºC. Above 

this temperature the selectivity decreases and a larger proportion of oxygen is consumed in the 

oxidation of hydrogen to water, causing a decrease in CO conversion. This temperature window 

could be broadened by increasing the amount of oxygen, as shown by Galetti et al. [20] using a 

microchannel coated with a Rh catalyst (0.5 wt.%) supported on mixed system 50% -Al2O3 50% 

3A-zeolite. The temperature window for total CO conversion broadened from 158-162ºC to 140-

200ºC when  increased from 2 to 3. 
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Figure 4. Catalytic behavior of the microreactor system (1, 3 and 6 plates) for the SELOX reaction. Flow rate 

10mL/min, Feed composition: H21.28% CO and 1.28% O2,: a) Conversion of CO as a function of tempera-

ture, b) O2 conversion as a function of temperature, c) Selectivity to CO2 as a function of temperature. 

The catalytic behavior of the powder catalyst vs. the microreactor, for the same value of space 

velocity, based on noble metal load (WHSV = 2220 l/h gPt), is presented in Figure 5. The microre-

actor clearly outperformed the fixed bed reactor, as observed previously in other catalytic systems 

[8]. In this case we believe that a higher accessibility to the catalytic nanoparticles, deposited in 

the open structure of the CNF bush together with shorter diffusion lengths, is responsible for the 

higher conversions observed at the same temperature. This also true for different space velocities, 
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see Figure 5b. Finally, the stability of the catalyst in the microreactor integrated by six plates was 

tested for sixty hours. The results are presented in Figure 5.c and show stable values for conver-

sion and selectivity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. a)  Conversion of CO as a function of temperature, WHSV=2220 (l/h gPt), 6 microreactor plates (0.45% wt. 

Pt) and fixed bed reactor (2.7%wt. Pt) b) Conversion of CO versus space time at T=175ºC for microreactors and fixed 

bed. c) Stability of the six parallel microreactors system at 125ºC, conversion of CO and selectivity of CO2 vs. time. 

A comparison between our system and imilar catalyst based on Pt supported on CNTs, tested in 

fixed bed configuration is shown in Table 3. The temperatures to achieve 100% conversion of CO 
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over unpromoted catalyst lie in the same range, considering the space velocity based on the total 

amount of metal. The catalyst promoted with Na show better performance compared to our re-

sults. 

Table 3. Comparison between literature data of Pt catalyst supported on CNTs in fixed bed reactors and our work. 

Catalyst Temp. 
[K] 

Conv. 
CO 

WSHV 
[l/gmetal/h] 

Ref. 

4%Pt-CNTs 450 100 600 [9] 

4%Pt/1%Co-CNTs 390 100 600 [9] 

5%Pt/5%Ni/5%Mg-CNTs 350 100 210 [10] 

5%Pt/Na-CNTs 313 100 4200 [11] 

Fixed bed 2,7%Pt-CNFs 498 100 2200 This work 

6 MRPlates 0.45%Pt-CNFs 448 100 2200 This work 

 

The distribution of the nanoparticles in the commercial nanotubes (used for the fixed bed ex-

periments) and in the microreactors grown CNFs, was examined after 60 hours of reaction (see 

Figure 6). It can be observed that the nanoparticle size undergoes similar increases in both cases, 

from 1.7 ± 0.2 (see Figure 3b) to roughly 5 ± 0.8 nm in both cases. In spite of this increase, as we 

have already seen, the catalyst activity is maintained for at least 60 h on stream. 

 

Figure 6. TEM images of catalyst after 10 h in stream: a) Pt/CNFs Microreactor; b) 2.8 % Pt/CNTs Fixed bed; c) 5.7 
% Pt/CNTs Fixed bed. 

 

4. Conclusions 

The novel in situ method presented in this work allows the preparation of highly accessible Pt 

catalyst on a carbon nanofiber support directly grown on the channels of a stainless steel microre-

actor. The protocol is effective in controlling the selective growth of the CNFs bush in the micro-
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reactor channels exclusively. The method to attach the Pt catalyst nanoparticles to the CNFs by a 

continuous flow of the nanoparticle suspension produces a highly dispersed, homogeneous Pt dis-

tribution on the carbon nanofibers. These microreactors clearly outperform the fixed bed reactor 

packed with Pt/CNTs, for the same value of space velocity, obtaining 100% CO conversion at 

temperatures 50º C lower. 

Acknowledgments 

Authors acknowledge the financial support of the DGA-La Caixa (Grant: 2012/GA LC 086). 

People Program (Marie Curie Actions) of the EU under the REA grant agreement no. 321642 is 

also gratefully acknowledged 

References 

[1]  G.  Kolb,  Review: Microstructured  reactors  for  distributed  and  renewable  production  of  fuels  and 
electrical energy, Chemical Engineering and Processing: Process Intensification, 65 (2013) 1‐44. 
[2] R. Zapf, G. Kolb, H. Pennemann, V. Hessel, Basic study of adhesion of several alumina‐based washcoats 
deposited on stainless steel microchannels, Chemical Engineering and Technology, 29 (2006) 1509‐1512. 
[3] R. Zapf, C. Becker‐Willinger, K. Berresheim, H. Bolz, H. Gnaser, V. Hessel, G. Kolb, P. Löb, A.K. Pannwitt, 
A.  Ziogas,  Detailed  characterization  of  various  porous  alumina‐based  catalyst  coatings  within 
microchannels  and  their  testing  for  methanol  steam  reforming,  Chemical  Engineering  Research  and 
Design, 81 (2003) 721‐729. 
[4] V. Meille, Review on methods to deposit catalysts on structured surfaces, Applied Catalysis A: General, 
315 (2006) 1‐17. 
[5] G.A. Kovalenko, O.V. Komova, A.V. Simakov, V.V. Khomov, N.A. Rudina, Macrostructured carbonized 
ceramics as adsorbents  for  immobilization of glucoamylase,  Journal of Molecular Catalysis A: Chemical, 
182‐183 (2002) 73‐80. 
[6] V. Cominos, V. Hessel, C. Hofmann, G. Kolb, R. Zapf, A. Ziogas, E.R. Delsman, J.C. Schouten, Selective 
oxidation of carbon monoxide  in a hydrogen‐rich  fuel cell  feed using a catalyst coated microstructured 
reactor, Catalysis Today, 110 (2005) 140‐153. 
[7] H. Li, X. Yu, S.T. Tu, J. Yan, Z. Wang, Catalytic performance and characterization of Al2O3‐supported Pt‐
Co  catalyst  coatings  for preferential CO oxidation  in a micro‐reactor, Applied Catalysis A: General, 387 
(2010) 215‐223. 
[8] V. Sebastian, S. Irusta, R. Mallada, J. Santamaría, Microreactors with Pt/zeolite catalytic films for the 
selective oxidation of CO in simulated reformer streams, Catalysis Today, 147 (2009) S10‐S16. 
[9] C. Wang, B. Li, H. Lin, Y. Yuan, Carbon nanotube‐supported Pt‐Co bimetallic catalysts for preferential 
oxidation of CO in a H2‐rich stream with CO2 and H2O vapor, Journal of Power Sources, 202 (2012) 200‐
208. 
[10] H. Yang, C. Wang, B. Li, H. Lin, K.‐i. Tanaka, Y. Yuan, Doping effects of Ni–MgO on the structure and 
performance of carbon nanotube‐supported Pt catalysts for preferential oxidation of CO in a H2 stream, 
Applied Catalysis A: General, 402 (2011) 168‐175. 
[11] C. Wang, G. Yi, H. Lin, Y. Yuan, Na+‐intercalated carbon nanotubes‐supported platinum nanoparticles 
as new highly effective catalysts for preferential CO oxidation in H2‐rich stream, International Journal of 
Hydrogen Energy, 37 (2012) 14124‐14132. 
[12] Y. Gao, K. Xie, S. Mi, N. Liu, W. Wang, W. Huang, Preferential oxidation of CO in a H2‐rich stream over 
multi‐walled  carbon  nanotubes  confined  Ru  catalysts,  International  Journal  of  Hydrogen  Energy,  38 
(2013) 16665‐16676. 



15 
 

[13]  D.B.  Thakur,  R.M.  Tiggelaar,  T.M.C.  Hoang,  J.G.E.  Gardeniers,  L.  Lefferts,  K.  Seshan,  Ruthenium 
catalyst  on  carbon  nanofiber  support  layers  for  use  in  silicon‐based  structured microreactors,  Part  I: 
Preparation and characterization, Applied Catalysis B: Environmental, 102 (2011) 232‐242. 
[14] J.L. Hueso, V. Sebastián, Á. Mayoral, L. Usón, M. Arruebo, J. Santamaría, Beyond gold: Rediscovering 
tetrakis‐(hydroxymethyl)‐phosphonium  chloride  (THPC) as an effective agent  for  the  synthesis of ultra‐
small noble metal nanoparticles and Pt‐containing nanoalloys, RSC Advances, 3 (2013) 10427‐10433. 
[15] Q. Zhou, P.  Li, X. Wang, X. Zhou, D. Yang, D. Chen, Preparation of CNF‐supported Pt  catalysts  for 
hydrogen evolution from decalin, Materials Chemistry and Physics, 126 (2011) 41‐45. 
[16] R.L. Vander Wal, L.J. Hall, Carbon nanotube synthesis upon stainless steel meshes, Carbon, 41 (2003) 
659‐672. 
[17]  B.  Kim,  H.  Chung,  K.S.  Chu,  H.G.  Yoon,  C.J.  Lee, W.  Kim,  Synthesis  of  vertically‐aligned  carbon 
nanotubes on  stainless  steel by water‐assisted chemical vapor deposition and characterization of  their 
electrochemical properties, Synthetic Metals, 160 (2010) 584‐587. 
[18] A. Stefanescu, A.C. van Veen, C. Mirodatos, J.C. Beziat, E. Duval‐Brunel, Wall coating optimization for 
microchannel reactors, Catalysis Today, 125 (2007) 16‐23. 
[19]  L.  Jiang,  L.  Gao, Modified  carbon  nanotubes:  an  effective  way  to  selective  attachment  of  gold 
nanoparticles, Carbon, 41 (2003) 2923‐2929. 
[20] C. Galletti, S. Specchia, G. Saracco, V. Specchia, CO preferential oxidation  in H2‐rich gas for fuel cell 
applications:  Microchannel  reactor  performance  with  Rh‐based  catalyst,  International  Journal  of 
Hydrogen Energy, 33 (2008) 3045‐3048. 

 
 


