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Abstract –We characterize the systematic changes in the topological structure of chaotic at-
tractors that occur as spike-adding and homoclinic bifurcations are encountered in the slow-fast
dynamics of neuron models. This phenomenon is detailed in the simple Hindmarsh-Rose neuron
model, where we show that the unstable periodic orbits appearing after each spike-adding bifur-
cation are associated with specific symbolic sequences in the canonical symbolic encoding of the
dynamics of the system. This allows us to understand how these bifurcations modify the internal
structure of the chaotic attractors.

The wide-range assessment of brain and behaviors is one
of the pivotal challenges of this century. To understand
how an incredibly sophisticated system such as the brain
per se functions dynamically, it is imperative to study the
dynamics of its constitutive elements – neurons. There-
fore, the design of mathematical models for neurons has
arisen as a trending topic in science for a few decades,
since Hodgkin and Huxley developed the first model of ac-
tion potentials in the neuron membrane [1]. Starting from
that seminal mathematical model, a lot of variant models
describing different kinds of neuron cells in numerous an-
imals have been proposed in the literature. For instance,
a reduced model [2–4] of the bursting of leech heart neu-
ron is specified by the following three equations derived
through the Hodgkin-Huxley gated variable formalism:

CV ′ = −INa − IK2 − IL − Iapp − Isyn,

τNa h′
Na = h∞

Na(V )− hNa,

τK2m
′
K2 = m∞

K2(V )−mK2,

(1)

with the steady-state values of Boltzmann gating variables
given by (see [4] for a detailed description of parameter
values and their biological meaning)

(a)E-mail: rbarrio@unizar.es

h∞
Na(V ) = [1 + exp(500(V + 0.0325))]−1,

m∞
K2(V ) = [1 + exp(−83(V + 0.018 + V shift

K2 ))]−1.

As control parameters of the system are varied, its dy-
namics undergoes bifurcations such as classified by dy-
namical systems theory that match qualitative metamor-
phoses in terms specific to neuroscience. A broad range
of non-stationary activity types can be observed, which
includes regular and irregular tonic spiking, bursting and
mixed-mode oscillations and combinations of them, as well
as oscillatory transients toward quiescent states. In terms
of dynamical system theory, these behaviors correspond
to stable periodic and deterministically chaotic orbits in
the phase space of the model. Figure 1 represents a two-
parameter sweep of the leech model in the (τK2, Iapp)-
plane, where the number of spikes per period, measured
with the spike-counting method (SPC) [5], is color-coded.
Banded structures correlated with zones of chaotic behav-
ior appear clearly in this diagram. They are associated
with spike-adding bifurcations, where the number of spikes
is incremented by one, as indicated in the figure.
Spike-adding bifurcations are special bifurcations that

are common in fast-slow systems. They lead to the ap-
pearance of extra spikes (turns) in the fast manifold re-
gion and are quite important in that they progressively
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Figure 1: (Color online) (τK2, Iapp)-parametric sweep of the
leech heart neuron model using the SPC approach.

modify the spectrum of periodic orbits of the system and
the structure of chaotic attractors. Important examples
of such fast-slow dynamics [6–8] are found in chemical re-
actions, laser dynamics and in mathematical neuron mod-
els. Understanding how to generate and control a burst
of spikes in neuron cells, and how chaotic behavior can
appear in such systems [9–11] are some of the most funda-
mental questions in neuroscience. The key questions that
we want to address are: how is this chaotic behavior orga-
nized? How do spike-adding bifurcations influence chaotic
behavior?

Most neuronal systems are strongly dissipative, with the
contraction of the flow along the stable manifolds being
much greater than expansion along the unstable mani-
folds of the equilibria [12–14]. Thus, they accept a qual-
itative description through one-dimensional maps, as the
intersection of the attractor with a section plane can be
described by a single coordinate. The standard way to
obtain such maps is to compute the Poincaré First Return
Map (FRM) of the attracting invariant sets or to follow
data from limit cycles of the fast subsystem, like in [15].

The topological structure of the 3D chaotic invariant
set can be described in terms of its topological template
[12–14], a branched two-dimensional manifold such that
all periodic orbits in the invariant set can be projected
to the template without changing their knot and link in-
variants. This topological model can be quantified by a
set of integer invariants. These characteristic numbers de-
scribe the torsion of the branches (associated with the ro-
tation of the unstable manifold of period-1 orbits), their
linking as well as how branches stack onto each other as
they merge. All self-linking and linking numbers charac-
terizing the intertwining of periodic orbits can be com-
puted from these invariants. Conversely, computing a few
knot and link invariants from these orbits then suffices
to determine the template uniquely [12, 14]. Understand-
ing how the template and the spectrum of orbits populat-
ing it change across bifurcations is a robust way to char-
acterize how the chaotic dynamics unfolds in parameter
space. For example, it was shown recently in [16, 17] how

a global bifurcation can increase the number of branches
in the topological template of dissipative systems like the
Rössler model (see also [18,19]). Here, we observe in neu-
ron models that changes in the topological structure along
a series of spike-adding bifurcations is more gradual: the
number of branches does not change, however the spec-
trum of periodic orbits is modified in a systematic way,
and accordingly how the attractor is visited by chaotic
orbits. We now detail these changes.

In order to help in the analysis of neuron models sim-
ulated realistically within the Hodgkin-Huxley framework
[1], a common approach is to use some simplified mod-
els. In particular, the 3D Hindmarsh-Rose (HR) model
[20] reproduces fairly well the basic oscillatory activities
routinely observed in isolated biological cells and in neural
networks. Therefore, in our detailed analysis we will con-
sider the HR model, but a similar analysis can be applied
to other neuron and fast-slow models. The HR model is
described by three nonlinear ODEs: ẋ = y − ax3 + bx2 − z + I,

ẏ = c− dx2 − y,
ż = ϵ[s(x− x0)− z],

(2)

where x is the membrane potential, y the fast and z the
slow gating variables for ionic current. The parameters
are typically set as follows: a = 1, c = 1, d = 5, s = 4,
x0 = −1.6, ϵ=0.01. We will study the system for several
values of the remaining parameters: I, the ‘external ap-
plied current’, and b. Note that decreasing the value of
the small parameter ϵ increases the number of spikes but
not change the global behavior. This model fulfills the
two basic conditions of being computationally simple but
still able to reproduce the main behaviors (the rich firing
patterns) exhibited by the real biological neurons.

In Fig. 2 we show in the main panel the (b, I)-
parametric sweep using the SPC method. This technique
permits to detect automatically the spike-adding bifurca-
tions as the loci of parameter space where the number of
spikes is incremented. We also observe a main chaotic re-
gion with different stripes, where each lobe is clearly con-
nected with the spike-adding process, similarly to Fig. 1
for the leech heart neuron model. Focusing on the chaotic
region, the evolution of the largest Lyapunov exponent
along the white line (I = (1 − 0.265 · b)/0.0691) is shown
in the top panel. Color points indicate the chaotic regimes
that have been selected in different lobes for further study.
The chaotic attractors observed in these regimes and their
FRM are shown on the left pictures. Fig. 3 depicts
schematically the global organization of the chaotic re-
gion as being “onion-like” [21], with different lobes that
are concentric and going deeper moving from right to left
but in a exponentially small scale from left to right be-
ginning on the other side. This structure governs directly
the systematic evolution in the spectrum of UPOs and the
topological structure of the chaotic attractors in square-
wave bursters (or fold/hom bursters) when control param-
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Figure 2: (Color online) (b, I)-parametric sweep of the Hindmarsh-Rose model using the SPC approach. The spike number is
color-coded as indicated by the bar on the right. On top we show the variation of the Lyapunov exponent along the selected
white line (I = (1− 0.265 · b)/0.0691). At different values of the b parameter, indicated by color dots along the white line, we
found different chaotic attractors shown on the left, together with their FRM which are all unimodal.

eters change. A similar structure is observed in the leech
model.

chaotic-layers

spike-adding

bifurcations

chaotic-layers

B(2)B(3)B(4)B(n)

symbolic sequences opened 

Figure 3: (Color online) Scheme of the “onion-like” structure
of the main chaotic region. The chaotic layers are accumulated
in the left side. The spike-adding process changes the stable
periodic orbits outside the chaotic region.

Bifurcation analysis provides several insights into the
spike-adding process and the creation of chaotic lobes.
Fig. 4 provides a magnification of Fig. 2, specify-
ing several codimension-one bifurcation lines: homoclinic,
period-doubling, and fold bifurcations (or saddle-node of
limit cycles) as well as spike-adding and some codimen-

sion two orbit-flip homoclinic bifurcation points. These
bifurcation lines have been obtained using the continua-
tion software AUTO and the SPC technique. In [5,21,22],
the role of these bifurcations in the spike-adding process
and their influence in the creation of the chaotic structures
has been shown.

Once we have located the chaotic structures and es-
tablished their relation with the spike-adding process, we
want to characterize their influence on the structure of the
different chaotic attractors. To this aim, the appropriate
tool is the study of the topological templates obtained by
characterizing the intertwining of the UPOs embedded in
the chaotic attractors. As illustrated in Fig. 5, a topo-
logical template is a branched surface which combines ori-
entable and non-orientable, twisted, stripes (like a Möbius
band) [12, 14]. The procedure followed is similar to that
described in previous works [12,14,23,24] so that we only
sketch it briefly here.

First, the lowest-period periodic orbits must be located.
We typically considered orbits up to topological period 5,
where the topological period corresponds to the number of
intersections with the Poincaré section (which is also the
number of loops of the orbit in phase space). In dynami-
cal systems defined by a set of differential equations, this
task can easily be carried out with high precision, as it is
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Figure 4: (Color online) Magnification of Fig. 2 with several
bifurcation lines of limit cycles (Black: homoclinic bifurcation,
Red: period-doubling (PD), Yellow: fold bifurcation (SN) and
Green: spike-adding (SA)) and some codimension two bifurca-
tion points (Green dots: orbit-flip (OF)).

equivalent to a zero-finding problem. Then, the intertwin-
ing of closed trajectories associated with these periodic
orbits are characterized using topological invariants. Here
we use topological periods and linking numbers. The link-
ing number of a pair of orbits indicates how many turns
one orbit winds around the other. In this work, we de-
termine its value using a recently proposed algorithm [25]
for computing the Gauss linking integral [24,26], which is
well suited to systems of differential equations (an alterna-
tive and more common method is to compute the sum of
signed crossings between the projections of the two orbits
onto a plane [23]).

The next step is to determine the simplest template
which carries a set of periodic orbits with the same link-
ing numbers as the detected periodic orbits. The tem-
plate is easier to determine when a one-dimensional FRM
is available. In our case, the FRM of the HR system is
unimodal, which indicates that we only need two sym-
bols to describe the whole spectrum of orbits and that
accordingly the template should have two branches (the
leech heart neuron model also presents a unimodal FRM
[4]). The FRM can be used to assign a symbolic name to
periodic orbits, which describes how the two branches of
the FRM are successively visited, with symbol “0” (resp.,
“1”) denoting the positive (resp., negative) slope branch.
Similarly, periodic orbits on a template can be assigned
a symbolic name by labeling template branches with dif-
ferent symbols. By definition of the template, any set of
periodic orbits with given symbolic names in the attrac-
tor should have exactly the same topological invariants as
periodic orbits with the same names on the template.

Given a set of periodic orbits with given symbolic names

Table 1: Number of UPOs of topological period m for a few
selected chaotic attractors and the symbolic forbidden chains
(FCh).

b m = 1 m = 2 m = 3 m = 4 m = 5 FCh
3.05 1 1 0 1 2 00
2.97 1 1 2 1 4 000
2.915 1 1 2 3 4 0000
2.6285 1 1 2 3 4 0000
2.628 1 1 2 1 4 000
2.626 1 1 0 1 2 00

and linking numbers, the equations expressing the link-
ing number as a function of the template characteristic
numbers can then be inverted to determine the template
structure (see, e.g., [27] or appendix A of [14]). The tem-
plate can also be determined without using a symbolic
encoding. In this case, the algorithm performs a combina-
torial search over all possible symbolic names to identify
the set of symbolic names for which topological invari-
ants of template orbits match those determined experi-
mentally [14, 28, 29]. The analysis thus yields the candi-
date symbolic names for the periodic orbits detected as
a byproduct of template determination. In our study, we
followed this encoding-free approach and found that the
symbolic names obtained were identical to those derived
using the FRM. The symbolic dynamical analysis carried
out below is therefore both dynamically and topologically
significant.

In Table 1 we show the number of UPOs of different
topological period for different values of the parameter b
along the selected line in parameter space. We also indi-
cate the irreducible forbidden symbol chains that specify
the spectrum of periodic orbits. More precisely, those are
the symbol chains that never appear in the symbolic names
determined from template analysis and do not contain any
shorter forbidden chain. For b = 2.97, for example, sym-
bolic names never contain the sequence “000” but some
contain “00”. The list of irreducible forbidden chains de-
fines the “grammar” of chaos.

0 1

Figure 5: (Color online) Generic topological template of the
Hindmarsh-Rose system (Smale template) for the complete
parametric plane of Fig. 2.

Along the parameter path considered, we observe a sys-
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tematic evolution of the number of UPOs, which increases
as one goes from both extremes of the path towards the
center. This reinforces the “onion-like” picture of the
structure of the HR bifurcation diagram (also common in
other neuron systems in parameter regions with squared-
wave bursters). For each parameter set, we identified low-
period UPOs embedded in the attractor and determined
the template describing their topological organization as
described above. In each case, enough orbits were used to
ensure that their linking numbers significantly overdeter-
mine the template.
A remarkable result is that for all the attractors of

the Hindmarsh-Rose model we analyzed, the topological
template was embedded in the Smale horseshoe template
[12,14] represented in Fig. 5. To achieve a finer description
of the chaotic regimes, we characterized them through the
symbolic dynamics of their spectrum of periodic orbits,
more precisely by their “grammar”.
We found that the “onion-like” structure associated

with the spike-adding bifurcations is easily described in
terms of this grammar. When moving from the bottom
right to the upper left of the path in Fig. 2, new peri-
odic orbits with additional spikes are successively created,
with more and more consecutive 0’s becoming allowed in
successive chaotic zones (see Table 1). A similar progres-
sive unfolding of the symbolic dynamics has already been
reported in a laser [30], however here we also observe a
novel phenomenon where this unfolding is reversed: as
one reaches the upper extreme end of the path, the symbol
chains newly allowed disappear in a very short parameter
range. For instance, from the value b = 3.05 to b = 2.97
the chain 00 is allowed, but from b = 2.628 to b = 2.626 it
is again forbidden.
Each spike-adding bifurcation increases the maximum

length of allowed chains of 0’s by one, thus this length is
bounded by the number of such bifurcations in parameter
space. For a fixed value of ϵ, this number is finite so that
arbitrary long chains of 0’s cannot be observed. When
ϵ decreases, more and more spike adding bifurcations are
found in the diagram (in fact, their number depends expo-
nentially on ϵ), which implies that the spectrum of orbits
populating the topological template is closer and closer
to that of the full hyperbolic Smale horseshoe template.
When forbidden symbol chains exist, they give a Cantor
structure to the subset of the topological template which
carries out orbits mapped from the attractor orbits (see
Fig. 6), the holes corresponding to orbits whose name
contains the forbidden symbolic sequences. This structure
reflects that of the attractor and how it evolves when con-
trol parameters are swept and spike-adding bifurcations
are encountered.
In conclusion, we have shown that the topological tem-

plates of the chaotic attractors of the Hindmarsh-Rose
model, and probably of other neuron models, are sub-
templates of the Smale topological template. The spike-
adding processes and the bifurcations associated to them
are accompanied by a gradual change in the spectrum of
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Figure 6: (Color online) Cantor-like structure of the allowed
and some forbidden routes in the complete Smale topological
template (0 → 0 sequence forbidden). On the right, example
of the allowed periodic orbit 0111 in the template.

periodic orbits embedded in the attractor, and the onion-
like structure in parameter space can be understood di-
rectly in terms of symbolic dynamics, each chaotic zone
corresponding to a specific maximal number of consec-
utive 0’s in the symbolic dynamics. As parameters are
varied, the fine structure of the topological template and
accordingly of the attractor change continuously in a way
that is well described by the appearance and disappear-
ance of symbol sequences in the symbolic dynamics. The
extent to which the symbolic dynamics can approach that
of the complete Smale horseshoe template (with no for-
bidden symbol chains) seems to be controlled by the small
parameter of the fast-slow neuron model. This is consis-
tent with the fact that according to the “pruning front
conjecture” [31], less dissipative systems are character-
ized by more irreducible forbidden symbol sequence and
thus they face more obstructions to achieve fully developed
chaos. We remark that, for the Hindmarsh-Rose system,
the smaller ϵ, the more dissipative the system and so we
are in this situation.

∗ ∗ ∗

R.B. and S.S. have been supported during this re-
search by the Spanish Research Grant MTM2012-31883
and R.B., M.A.M. and S.S. by the Diputación General
de Aragón (group E48). The authors thank their col-
league and friend Prof. Andrey Shilnikov for many in-
teresting discussions and common work on this subject.
M.L has been supported by Ministry of Higher Educa-
tion and Research, Nord-Pas de Calais Regional Council
and FEDER through the Contrat de Projets État-Région
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