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Figure 1: High dynamic range image (HDRI) recovered from a single, coded, 8-bit low dynamic range (LDR) image using the proposed
sparse reconstruction method. Left: HDR image recovered with our framework, tonemapped for display purposes. The inset shows a cropped
region of the coded LDR image used as input to the reconstruction algorithm. Center left: Close-up of two exposures of the reconstructed
HDR image showing the ability of our method to reconstruct an extended dynamic range. Center right: normalized luminance plots of the
marked scanline (yellow line, rotated by 90◦) for the reconstructed image (green curve) and the ground truth image (blue curve). Right: false
color image of the reconstructed HDR scene (scale is in stops), showing the extremely large dynamic range that the original scene had and
our technique is able recover.

Abstract
Current HDR acquisition techniques are based on either (i) fusing multibracketed, low dynamic range (LDR) images, (ii) mod-
ifying existing hardware and capturing different exposures simultaneously with multiple sensors, or (iii) reconstructing a single
image with spatially-varying pixel exposures. In this paper, we propose a novel algorithm to recover high-quality HDRI im-
ages from a single, coded exposure. The proposed reconstruction method builds on recently-introduced ideas of convolutional
sparse coding (CSC); this paper demonstrates how to make CSC practical for HDR imaging. We demonstrate that the proposed
algorithm achieves higher-quality reconstructions than alternative methods, we evaluate optical coding schemes, analyze al-
gorithmic parameters, and build a prototype coded HDR camera that demonstrates the utility of convolutional sparse HDRI
coding with a custom hardware platform.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]: Digitization and
Image Capture—

1. Introduction

One of the fundamental characteristic of a sensor is its dynamic
range: the interplay of full-well capacity, noise, and analog to dig-
ital conversion. The ability to simultaneously record and distin-
guish very low signals alongside extremely bright scene parts is
critical for many applications in scientific imaging, microscopy,

and also consumer photography. Unfortunately, the hardware ca-
pabilities of available image sensors are insufficient to capture the
wide range of intensities observed in natural scenes. This has mo-
tivated researchers to develop computational imaging techniques
to overcome the dynamic range constraints of sensor hardware by
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co-designing image capture mechanisms and post-processing algo-
rithms.

Today, high dynamic range (HDR) photography is well-
established and usually done via one of three general approaches:
sequentially capturing and subsequently fusing multiple different
exposures (e.g., [MP95, DM97]), capturing different exposures si-
multaneously with multiple sensors (e.g., [TKTS11]), or coding
per-pixel or per-scanline exposures within a single image with
appropriate reconstruction algorithms [NM00, NN02, GHMN10,
WIH10, KGBU13, HST∗14, ZSFC∗15]. Whereas sequential im-
age capture is easily afforded by existing cameras, this method
makes it challenging to capture dynamic scenes and usually re-
quires additional motion stabilization and de-ghosting techniques.
Multi-sensor solutions are elegant, but more expensive and they
require precise calibration. In this paper, we advocate for coded
pixel exposure techniques and propose a new reconstruction al-
gorithm for this class of computational cameras. Our approach
builds on recent advances in convolutional sparse coding and re-
construction techniques. We show that a naïve application of tradi-
tional, patch-based (i.e. non-convolutional) sparse reconstruction
techniques [LBRN07, CENR10] struggles to deliver high image
quality for high contrast scenes. We make the key observation that
convolutional sparse coding (CSC) (e.g., [KSlB∗10]), is particu-
larly well-suited for the type of high-contrast signals present in
HDR images. Therefore, we pose the HDR recovery problem as
convolutional sparse coding problem and derive necessary formu-
lations to solve it efficiently. We make the following contributions:

• We introduce convolutional sparse coding (CSC) for high dy-
namic range image reconstruction.
• We propose forward and inverse methods that are tailored to re-

covering a high-contrast (HDR) image from a single, coded ex-
posure photograph.
• We demonstrate improved image quality over other existing ap-

proaches and over a naïve application of sparse reconstruction
techniques to HDRI. We also evaluate algorithmic parameters,
analyze different exposure coding schemes, and interpret HDR
image features.
• We build a prototype coded exposure camera and demonstrate

the utility of our algorithm using data captured with this proto-
type.

2. Related Work

One of the most common techniques to compute HDR images is ex-
posure bracketing. This technique, also known as multi-bracketing,
merges several LDR images of the scene taken with different brack-
eting exposures, into the final HDR image [MP95, DM97]. One of
the main drawbacks of this technique is that, if either the camera
or some scene elements move during the extended capture pro-
cess, ghosting artifacts appear. There have been many algorithms
designed to remove these artifacts by means of alignment and de-
ghosting [SS12]. Some recent works include the use of optical
flow [ZBW11], patch-based reconstruction [GGC∗09,SKY∗12], or
modeling the noise distribution of color values [GKTT13]. The
problem is further aggravated for HDR video (e.g., [KSB∗13,
MG11]): on the one hand, optical flow solutions fail in the pres-
ence of complex motion, on the other hand patch-based methods

lack built-in temporal coherence. In contrast, the proposed convo-
lutional sparse coding approach can produce an HDR image from a
single shot, thus removing the need for alignment, motion estima-
tion or, in general, any de-ghosting strategy.

Other works rely on multiple cameras [SBB14, BRG∗14], en-
hanced sensor control electronics performed in simulation [PZJ13],
or otherwise highly modified hardware designs [MRK∗13,
ZSFC∗15]. For instance, Tocci et al. [TKTS11] and Kronander et
al. [KGBU13] achieve single-shot HDR by acquiring several LDR
images with different sensors using a beam splitter. Our method
uses an off-the-shelf camera with a simple mask on the sensor or
using a per-pixel coding exposure, which greatly reduces complex-
ity, size and overall cost.

Previously proposed single-shot approaches rely on exposures
that vary per image scanline, for example implemented with coded
electronic shutters [CKL14], or sensors which allow different
gain settings simultaneously for alternating pixel rows [GHMN10,
HKU14, HST∗14]. In all of these cases, an image is reconstructed
using sophisticated interpolation methods, and often relies on ad-
ditional image priors. These methods present a trade-off between
the dynamic range that can be recovered with only two different
exposures, and the quality of the final reconstruction, determined
by how far apart the exposures are chosen. Other spatially-varying
gain methods aim at capturing increased dynamic range from a
single image, using a per-pixel coded exposures. Nayar and col-
leagues [NM00, NN02] place a mask of spatially varying neutral
density filters on the sensor, effectively coding different exposures
for adjacent pixels according to the optical pattern of the mask.
However, this method is limited by interpolation artifacts and alias-
ing resulting from the regular pattern of the mask. The work by
Aguerrebere and colleagues [AAD∗14] leverages recent advances
in solving inverse problems [YSM12] together with a spatially-
varying mask, but still relies on a complex MAP Expectation-
Maximization optimization framework which can lead to artifacts
in scenes of high dynamic range.

In this paper, we propose a sparse reconstruction framework that
takes advantage of the compressibility of visual information to re-
construct a high dynamic range image from asingle shot with pixel-
coded exposure. Sparse reconstruction has been used before in the
context of rendering [SD11], and image reconstruction and ac-
quisition [SD09b,MKU15], including high-speed video [LGH∗13,
SGM15], dual photography [SCG∗05, SD09a] and light transport
acquisition [PML∗09], light field capture [MWBR13], hyperspec-
tral imaging [LLWD14, JCK16], or even extended dynamic range
imaging using a Fourier basis [SBN∗12, SKZ∗13]. However, we
do not rely on a conventional, patch-based learning and reconstruc-
tion method as most of these works do because it has certain lim-
itations for the recovery of HDR images. Instead, we propose a
novel formulation based on convolutional sparse coding (CSC).
CSC has been used for learning hierarchical image representa-
tions [KSlB∗10, ZTF11, CPS∗13] and to solve transient imaging
problems [HXK∗14, HDL∗14]. We build on the basic idea of con-
volutional sparse coding and make it practical for coded, single-
shot HDR image acquisition.
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3. CSC framework for HDR reconstruction

In this section, we offer a brief review of sparse coding techniques
and introduce a new formulation of convolutional sparse coding
tailored to the problem of high dynamic image reconstruction from
a single image with spatially-varying pixel exposures.

3.1. Review of sparse coding and reconstruction

The traditional problem faced in sparse reconstruction is that of
solving an underdetermined system of linear equations y = ΦΦΦααα in
which ααα∈Rn is the signal we are interested in, y∈Rm is the signal
we actually can measure, and ΦΦΦ∈Rm×n is the sensing matrix, such
that m < n.

Solving the sparse reconstruction problem relies on the assump-
tion that the signal is sufficiently compressible in some basis or
dictionary ΛΛΛ ∈ Rn×l . This implies that ααα = ΛΛΛs, with most coef-
ficients of s ∈ Rl being zero or close to zero. This dictionary is
often learned from a training set representative of the images of
interest† [AEB06, MBPS09]. We can then recover ααα under certain
conditions by solving the following minimization problem [Ela10]:

min
s
‖s‖1 subject to ‖y−ΦΦΦΛΛΛs‖2 ≤ ε (1)

where ε represents uncertainties in the measurements, such as sen-
sor noise. This minimization is solved in a patch-based manner,
that is the image is divided into a series of overlapping patches and
each patch is reconstructed individually using Eq. 1. All the recon-
structed patches are subsequently merged, for example by comput-
ing a per-pixel average, to yield the final result.

A drawback of dictionary-based sparse coding approaches is that
important spatial structures of the signal of interest can be lost
due to the subdivision into mutually-independent patches. Further,
patches (atoms) of the dictionaries learned with this approach are
often redundant and contain shifted versions of the same features.
This can be seen in Figure 2 (left), which shows sample atoms of
a dictionary learned from HDR images. Moreover, as we show in
Section 4.2 and Figure 5, due to the nature of the mathematical
formulation (a linear combination of learned patches), these patch-
based approaches can fail to adequately represent high-frequency,
high-contrast image features, which are particularly important in
HDR images.

An alternative to patch-based approaches is CSC, which instead
is based on an image decomposition into spatially-invariant convo-
lutional features, as explained in the following. Compared to the
atoms of a dictionary, the learned filters of our CSC scheme (Fig-
ure 2 (right)) show a much richer variance (e.g., they span a larger
range of orientations), which leads to better reconstructions.

Convolutional sparse coding models the signal of interest ααα∈Rn

as a sum of sparsely-distributed convolutional features [HHW15],
that is ααα is modeled as:

ααα =
K

∑
k=1

dk ∗ zk, (2)

† Alternatively, well-explored sparsity bases, such as the DCT or wavelets,
could be used.

Figure 2: Left: sample atoms of learned dictionary trained on HDR
images (patches are tonemapped for display). Right: sample filters
learned with a convolutional sparse coding framework. The convo-
lutional filter bank shows less redundancy, crisper features, and a
larger range of feature orientations.

In this case, the dictionary is a convolutional filter bank formed
by filters dk of fixed spatial support

√
p×√p, while zk are sparse

feature maps of size
√

n×
√

n.

Consequently, the signal recovery can be performed by solving

argmin
d,z

1
2
‖x−

K

∑
k=1

dk ∗ zk‖2
2 +β

K

∑
k=1
‖zk‖1

subject to ‖dk‖2
2 ≤ 1 ∀k ∈ {1, . . . ,K}.

(3)

Heide and colleagues [HHW15] generalized this formulation to be
able to handle incomplete data, as modeled by the general linear
operator M:

argmin
d,z

1
2
‖x−M

K

∑
k=1

dk ∗ zk‖2
2 +β

K

∑
k=1
‖zk‖1

subject to ‖dk‖2
2 ≤ 1 ∀k ∈ {1, . . . ,K}.

(4)

They also proposed a technique for efficiently solving this problem
via splitting of the objective function.

3.2. HDR image formation model

Based on the film reciprocity equation [DM97], we can describe
the image formation model at the sensor as:

y = f (p∗∆tL) (5)

where y ∈ Rn is the vectorized image captured at the sensor, ∆t
is the exposure time, L ∈ Rn represents radiance values, and the
function f models the camera response. The convolution by p is
modeling the effect of the point spread function (PSF) of the op-
tical system, which can also be expressed as a multiplication by a
convolution matrix P. Note that we use radiance L instead of irra-
diance since almost all modern cameras provide a nearly constant
mapping between both magnitudes, compensating for angular ef-
fects [DM97, KMH95]. We optically modulate the light arriving at
each pixel by placing a coded transmissivity mask ΩΩΩ on the sen-
sor or by applying a spatially-coded exposure readout. This can be
formulated as

y = f (ΩΩΩP∆tL) (6)

where ΩΩΩ ∈ Rn×n is a diagonal matrix containing the modulation
code of the mask. For RAW images, we can assume a linear re-
sponse of the digital sensor with respect to irradiance for all non-
saturated pixels [LMS∗13]. Thus, we can rewrite Equation 6 as
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yyy = ζΩΩΩPL, where ζ is a scale factor modeling the linear response
of the sensor and the influence of exposure time ∆t. This scaling
factor (and thus absolute radiance values) could be recovered by
imaging a calibrated light source and scaling all radiance values
accordingly. In our context, we aim at obtaining relative radiance
values, therefore we can remove ζ and rewrite Equation 7 in nor-
malized form as:

y = ΩΩΩPL∗ (7)

where L∗ represents relative radiance values. The mask ΩΩΩ will en-
sure that pixels are sampled with effectively different exposure val-
ues, so that in all image regions at least some of the pixels prop-
erly sample the dynamic range. The sparse reconstruction step de-
scribed next will be in charge of obtaining the radiance values from
these differently sampled pixels.

3.3. Convolutional sparse HDRI coding

Equation 4 allows for the recovery of contrast-normalized images
in which part of the data is missing or unreliable, as given by matrix
M. In the case of HDR reconstruction, however, our captured image
y—as given by Eq. 7—does not only have missing or unreliable
data, but also differently exposed pixels due to matrix ΩΩΩ. In the
case of HDR imaging the unreliable data M corresponds to both
saturated and noisy pixels. Incorporating the varying exposures ΩΩΩ

we pose the convolutional reconstruction of radiance values as:

argmin
z

1
2
‖y−ΩΩΩMP

K

∑
k=1

dk ∗ zk‖2
2 +β

K

∑
k=1
‖zk‖1 (8)

where β controls the relative weight of the sparsity term. Note that,
in contrast to Eqs. 3 and 4, we optimize only for z, since we assume
that we have already learned a dictionary of filters d.

The dictionary of filters d is learned using Eq. 4, and some of
the learned filters are shown in Figure 2 (right). We learn the filters
from a set of LDR images, after performing a local contrast normal-
ization on these images. This amounts to learning from whitened
data (normalized sigma and mean). As a consequence of this nor-
malization, the formulation cannot be used directly in a generative
model: While the correct scaling for recovery can be obtained dur-
ing the optimization by finding the correct values in the sparse maps
z, the offset cannot. To solve this, we introduce an offset term o that
we jointly estimate with the sparse feature maps. The smoothness
is ensured by a quadratic smoothness constraint, leading to:

argmin
z

1
2
‖y−ΩΩΩMP(

K

∑
k=1

dk ∗ zk +o)‖2
2+

β

K

∑
k=1
‖zk‖1 +λs‖∇o‖2

2

(9)

Thanks to this normalization, the filters generalize to different
means and scales—which are obtained during the optimization—,
and they are independent of dynamic range. We additionally ob-
serve that the learned filters have fewer data-specific features and
are more general this way, and the learning converges in fewer itera-
tions. Specific implementation details on the filter dictionary learn-
ing are given in Section 5.

We can elegantly fit this additional offset in the proposed opti-
mization framework by expressing it as the convolution o = dK+1 ∗
zK+1, where dK+1 is a Dirac delta, and Equation 9 thus becomes:

argmin
z

1
2
‖y−ΩΩΩM

K+1

∑
k=1

Pdk ∗ zk‖2
2+

β

K

∑
k=1
‖zk‖1 +λs‖∇zK+1‖2

2

(10)

where λs controls the relative weight of the smoothness term. Note
that only smoothness, and not sparsity, is enforced for this zK+1.

Finally, if we rewrite Equation 10 by substituting M̂ = ΩΩΩM and
d̂k = Pdk, our problem can be written as the CSC problem shown
in Equation 4, with the exception of the quadratic smoothness term:

argmin
z

1
2
‖y− M̂

K+1

∑
k=1

d̂k ∗ zk‖2
2+

β

K

∑
k=1
‖zk‖1 +λs‖∇zK+1‖2

2

(11)

We solve this problem using a modification of the ADMM algo-
rithm [BPC∗11]. To do so, we need to reformulate Equation 11 to
express the first two terms as a sum of functions, in the following
form:

argmin
z

I

∑
i=1

fi(Kiz)+λs‖∇zK+1‖2
2, (12)

For more details on this transformation please refer to [HHW15,
Sec. 2.1 and 2.2]. Once this is done, the modified ADMM algorithm
to solve for z in our case is shown in Algorithm 1. The update in line
2 of the algorithm is solved in the spectral domain, and thus the ad-
ditional smooth constraint does not increase the computational cost
significantly w.r.t. the original formulation [HHW15]. Also, the fil-
ter size does not matter in our case, since we are performing the
filter inversion in the frequency domain. This would not be com-
putationally efficient with traditional CSC methods such as that of
Szlam et al. [SKL10]. Finally, proxφ refers to the proximal opera-
tor of a function φ as described in Parikh and Boyd’s work [PB14].

Algorithm 1 ADMM for HDR recovery
1: for k = 1 to V do
2: yk+1 = argmin

y
‖Ky− z+λ

k‖2
2 +λs‖∇zK+1‖2

2

3: zk+1
i = prox fi

ρ

(Kiyk+1
i +λ

k
i )

4: λ
k+1 = λ

k +(Kyk+1− zk+1)
5: end for

4. Analyzing convolutional sparse HDRI coding

In this section, we provide an analysis of the proposed framework,
including choice of coded exposure patterns and algorithmic pa-
rameters. We also show advantages of this formulation over tradi-
tional, patch-based sparse reconstruction for HDR capture.
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4.1. Design of coded exposure patterns

There are several factors to take into account when designing the
optical mask ΩΩΩ. First, it needs to have a high light throughput, to
avoid noise and reduce required exposure time; second, its per-
pixel transmissivity values ei should cover a wide range of expo-
sures (that is, emax/emin should be large); and third, it should facil-
itate practical implementation. We tested several configurations for
the mask over a set of seven different images; in particular, these
configurations were: binary, Gaussian, uniform, uniform with four
fixed exposures, fixed pattern with four exposures, and interleaved
exposure. In the following we detail the formulation for each mask,
the motivation behind its testing, and its performance.

We initially tested and compared the performance three optical
masks: a binary mask, a mask where exposure values are drawn
from a Gaussian distribution (ΩΩΩG = {ei ; ei ∼N (0.6,0.1)}), and
a mask obtained by drawing values from a uniform distribution
(ΩΩΩU = {ei ; ei∼U(0,1)}). The reconstruction results are shown in
Figure 3. The binary mask is limited when modulating the incom-
ing light, and, as a result, is very limited in terms of the recovered
dynamic range; large saturated areas, for instance, will be impossi-
ble to recover since all the pixels will be degraded due to the binary
sampling. Both the uniform and the Gaussian masks yield good re-
sults, and choosing between them represents a trade-off between
transmissivity and dynamic range. The Gaussian mask offers bet-
ter light throughput, but a more limited recoverable dynamic range:
most of the values of the Gaussian distribution will be close to the
mean, with few very low values. As a result, large bright areas (such
as in Figure 3, around the sun) may still remain saturated. A uni-
form mask allows recovery of a larger dynamic range because it
more uniformly samples the range of exposures, minimizing the
risk of large under- or over-exposed areas even in scenes of very
high dynamic ranges.

While a uniform mask works well in practice, for a practical
hardware implementation having a low number of discrete expo-
sure values is beneficial. We therefore compare the uniform mask
ΩΩΩU with a uniform 4-exposure mask ΩΩΩF , that is one in which
each pixel randomly takes one of four exposure values {e1..e4}.
We choose the exposure values such that the ratio emax/emin covers
6 f-stops, i.e., e4/e1 = 26; this, with the dynamic range of 1000:1
that a standard CMOS sensor has [EG02], allows us to recover up
to 16 stops in dynamic range. Figure 4 shows the quality of the
resulting reconstruction for ΩΩΩU and ΩΩΩF , which can be seen to be
very similar in both. Thus, ΩΩΩF allows us to recover a very simi-
lar range to the uniform one, without artifacts, and has an easier
implementation. Consequently, in the remainder of the paper, we
opt for a uniform, 4-exposure pattern (ΩΩΩ = ΩΩΩF ), since it offers the
best trade-off between quality of the results—in terms of recovered
dynamic range and absence of artifacts—, and ease of implemen-
tation in hardware. The exception to this is our hardware prototype
(Section 5.1): since it exhibits significant light loss (mainly due
to the LCoS and the beamsplitter) we do use a Gaussian mask to
minimize the impact of the reduced light throughput. However, fu-
ture chip designs with built-in per-pixel exposure will overcome
this prototype’s limitations; taking this into account the best option
among the configurations we tested is ΩΩΩF .

Additionally, to highlight the versatility of our reconstruction

Figure 3: HDR images in false color (color scale shows f-stops)
showing (from left to right): ground truth radiance, radiance re-
covered using a binary mask ΩΩΩB as optical code, a Gaussian
mask ΩΩΩG, and a uniform mask ΩΩΩU (more details in the text). The
first two masks clearly fall short when recovering dynamic range,
while the uniform one offers results very close to the original. The
tonemapped ground truth image can be seen in Figure 4, left.

Figure 4: Left: a tonemapped HDR ground truth image. Right:
quality of different optical masks when attempting to recover the
ground truth scene radiance. From left to right: a uniform mask
ΩΩΩU , a 4-exposure mask ΩΩΩF , an interleaved mask ΩΩΩI , and a fixed
pattern mask ΩΩΩP. For each one, the left part shows the recon-
structed image, and the right part the error with respect to the
ground truth displayed as (1− SSIM) [WBSS04]. The top row
shows a sample region of the corresponding mask. We choose ΩΩΩF
for its ability to faithfully recover a wide dynamic range and its
ease of implementation. Please refer to text for more details.

framework, we tested two additional exposure patterns which have
been used before in the context of HDR imaging. Their results are
also shown in Figure 4 (in the two rightmost images). In particu-
lar, we show a reconstruction result for a fixed pattern ΩΩΩP, using
four exposures (that is, the mask shows a repeating, fixed 2× 2
pattern), and a result for an interleaved exposure pattern. The for-
mer has been proposed before for HDR imaging, but with the re-
construction done by means of interpolation [NM00], which can
lead to aliasing effects. The latter is inspired by the Magic Lantern
software package, which offers a firmware upgrade to capture an
interleaved exposure consisting of alternating rows with two differ-
ent exposures ΩΩΩI for some off-the-shelf cameras. Our framework
allows for a plausible result even with these exposure patterns.

4.2. Advantage of CSC HDRI over patch-based approaches

Patch-based sparse reconstruction approaches have been widely
used in computational imaging problems [LGH∗13, MWBR13,
LLWD14]. In this section, we illustrate and explain how directly
applying such approaches to the problem of HDR reconstruction
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Figure 5: Detail of an HDR image reconstructed using a patch-
based sparse reconstruction approach (left) and our convolutional
sparse coding framework (right). The former is unable to recover
very high-contrast sharp edges, while the latter offers good re-
sults in this case. The images are tonemapped for display us-
ing [MDK08].

from a single, exposure-coded image would produce undesired re-
sults in a number of cases.

We have already seen how the filters in our framework show
a richer variance (less redundancy and a larger range of orienta-
tions) compared to traditional atoms in a learned dictionary (Fig-
ure 2). Consequently, CSC dictionaries are more descriptive and
better capture the essence of the signals (e.g., they avoid the need
to have shifted versions of the patches), which results in better re-
constructions. More importantly, in patch-based approaches, the
signal (a given image patch that is to be reconstructed) is repre-
sented as a linear combination of dictionary patches with their asso-
ciated coefficients. This is problematic when attempting to recon-
struct patches which contain very large contrast edges (common
in HDR images), because an extremely large number of patches
with high-valued coefficients is needed to properly reconstruct the
edge. This is of course not only the case with learned dictionary
patches, but also if any other basis (e.g., DCT) is used. As such, this
problem was also encountered in the past in HDR image compres-
sion [MKMS04, Fig. 5]. Consequently, when reconstructing HDR
images with a patch-based approach the reconstruction fails in the
presence of very high contrast edges, yielding artifacts as shown
in Figure 5, left. CSC, in contrast, can naturally handle these large
contrast edges—as shown in Figure 5 (right)—thanks to the formu-
lation of the signal as a sum of convolutions of the filters by sparse
feature maps as opposed to a linear combination of dictionary ele-
ments.

Moreover, the convolutional sparse coding framework converges
significantly faster than the patch-based approach (for which we
use the well-known OMP algorithm [TG07]). Specifically, in an In-
tel Xeon E5-1620 @3.50GHz with 16GB RAM our CSC approach
is around 2.5x faster.

4.3. Optimization parameters

As explained in Section 3.3, β controls the relative weight of the
sparsity term with respect to the data term (see Equation 11). In-
creasing the value of β will therefore result in a degradation of
the high frequencies in the reconstructed scene, since the feature
maps z will be too sparse to represent fine details. Decreasing
β, on the contrary, will lead to an excessive relative weight of
the data term, which can result in artifacts due to approximations
of non-linearities of the process (such as the quantization). Fig-

Figure 6: Reconstructed HDR image (tonemapped for display)
showing the effect of β, the relative weight of the sparsity term,
in the optimization. Please refer to the text for details.

ure 6 shows this behavior. We choose an intermediate value of β,
βchosen = 1.5 ·10−5, which we use in all the reconstructions shown
in this work.

The other relevant parameter in the optimization is the relative
weight of the quadratic smoothness term, λs in Equation 11; we
choose λs = 0.5 · 10−5. In this case, it is important that a good
estimate of the offset term zK+1 is given as initial value to the opti-
mization. We provide a blurred version of the captured LDR image
divided by the optical mask, which yields good results and fast con-
vergence.

5. Results

We show here reconstruction results using both existing HDR im-
ages‡, and data captured with our prototype camera. All results
shown have been reconstructed using our single-shot method de-
scribed in this paper, with the same optical mask ΩΩΩF described in
Section 4.1, consisting of four randomly sampled exposure values
with emax/emin = 26, except where otherwise indicated. The filter
bank dk used for the reconstruction is learned from a collection
of ten natural LDR images using the method proposed by Heide
et al. [HHW15]; a representative sample of these learned filters
is shown in Figure 2 (right). When choosing the training images
we learn the filters from, we found our framework robust enough
to provide similar results when learned from different sets of im-
ages: Learning the filter bank from a dataset of images used in the
work of Heide et al. or learning from tonemapped images from
Fairchild’s database (on a set not used for testing) yielded recon-
structions which differed in less than 0.5 dB in PSNR. The size of
the filters is determined by the resolution of the training data; the
filters need to be large enough so they contain useful information,
yet small enough not to overfit to specific features of the training
data. We find that learning K = 100 filters of size 11× 11 pixels
fulfills these conditions for our data and works well for all the im-
ages tested. All HDR results shown have been tonemapped using
the same algorithm [MDK08]. We additionally compare our results

‡ We use images from the HDR Photographic Survey (http://rit-
mcsl.org/fairchild/HDR.html), and the EMPA HDR Image Database
(http://www.empamedia.ethz.ch/hdrdatabase/index.php).
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Figure 7: Top row: Recovered HDR images from a single-shot coded image (tone mapped using [MDK08]), and PSNR values. The insets
show the squared, per-pixel difference with respect to the ground truth luminance. Bottom row: False color (split) images depicting luminance
of the original scene, and of our reconstructed scene; we use a base-2 logarithm to properly display the extremely large dynamic range.

to two other spatially varying exposure methods [NM00, HKU14].
For results using existing HDR images as input, we simulate the
process of capturing the coded LDR image as follows: We first ap-
ply a convolution kernel p simulating the optical PSF of the cam-
era, and modulate light arriving at the sensor multiplying the ra-
diance values of the input HDR by our coded mask. We bracket
these values taking into account that a typical CMOS sensor has
a dynamic range of around 1000 : 1. In doing so, we assume a
reasonably well-exposed LDR image, but nevertheless we simu-
late the metering of a camera and take into account saturation and
under-exposure by placing the sensor range so that the number of
saturated and under-exposed pixels is minimized. Then we normal-
ize these bracketed values and apply a camera response function§.
Last, we quantify the resulting values to store the LDR image which
will be used as input for the reconstruction.

Figure 7 shows four of our reconstructed HDR images. In ad-
dition to our reconstruction (top row), we show, for each scene, a
false color image of the ground truth scene and our reconstruction
(bottom row, split images) to show our ability to recover the large
dynamic range present in the original scene. Since we recover rel-
ative radiance, and given the large dynamic range, we plot in false
color log2 radiance normalized to the ground truth. Further, the
insets in the top row show the error, computed as the square of
the per-pixel difference between ground truth and our reconstruc-
tion, scaled for visualization purposes. We also report the PSNR for
each one, which is always above 40 dB. This figure shows how our

§ http://www1.cs.columbia.edu/CAVE/software/softlib/dorf.php

Figure 8: Additional results obtained by our technique for two
HDR scenes. Top row: tonemapped HDR image (using [MDK08].
Middle row: Normalized luminance plots for the corresponding
marked scanlines for our recovered image (green curve) and the
ground truth image (blue curve). Bottom row: Close-up of two ex-
posures of the corresponding highlighted regions, displaying very
high-contrast edges.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Serrano, F. Heide, D. Gutierrez, G. Wetzstein & B. Masia / Convolutional Sparse Coding for Single-shot HDR Imaging

Figure 9: Comparison with two representative spatially varying
exposure methods [NM00,HKU14]. The inherent interpolation step
in such methods leads to visible artifacts in areas of high contrast
or very fine detail.

Figure 10: HDR reconstruction of an animated scene. Left: Coded
sensor images using our optical code ΩΩΩF . Center and right:
Two example frames exhibiting temporal coherence in the re-
construction. Input video from the LiU HDR video repository
(http://www.hdrv.org).

method is able to recover scenes with very high dynamic range,
faithfully reproducing contrast in the original scene. More recon-
structed scenes can be found in Figure 8, in which we show our re-
constructed HDR image (top row), normalized luminance of sam-
ple scanlines, both recovered and ground truth (middle row), and
two exposures of the reconstructed scene to better show the qual-
ity of the reconstruction across the dynamic range, including the
challenging case of high-contrast sharp edges (bottom row).

Different from other common spatially varying exposure meth-
ods, our approach does not rely on interpolation of the captured
samples to reconstruct the image. Instead, it exploits information
of the structure of natural images through the learned convolutional
filter bank, which greatly minimizes the presence of visible artifacts
in areas of high contrast or very fine detail. We show this by explic-
itly comparing our results against the spatially varying exposure
methods of Nayar et al. [NM00] and Hajisharif et al. [HKU14],
which makes use of the Magic Lantern software to capture inter-
laced, dual-ISO images. Our method preserves edges better, min-
imizing the aliasing artifacts that arise from the trade-off between
spatial resolution and dynamic range in Nayar’s method, while Ha-
jisharif’s method has difficulties recovering thin structures, such as
the small branches of the tree (Figure 9).

Our technique can be applied to the reconstruction of HDR ani-
mated scenes as well, using the same optical code for each frame.
Our reconstruction framework yields a very faithful recovery of the
original signal, naturally leading to temporal coherence, without
the need for explicit enforcement. We show this in Figure 10, using

an existing HDR video from the LiU HDR video repository¶, and
also include this video in the supplementary material. The HDR
video recovering is performed frame by frame from LDR capture
simulations from the aforementioned HDR video.

Finally, our framework can also be used for compression of HDR
images. Traditional techniques used for compression of images can
fail when applied to HDR images, due to the high-contrast sharp
edges that can be present in them. Consequently, techniques have
been developed to compress this type of content [MKMS04]. Our
framework allows for compression of HDR images, since we can
represent them with a set of sparse feature maps. We have shown in
Figure 5 how for HDR content we avoid artifacts that appear when
codification and reconstruction with patch-based schemes is used.
Note that DCT was also proven to not work well by Mantiuk et
al. [MKMS04], requiring more complex processing for compres-
sion.

5.1. Hardware prototype implementation

Per-pixel exposure cameras are not commercially available yet, al-
though a per-pixel exposure patent has already been filed by Sony
Corporation [Jo14]. We have built a prototype that simulates this
feature to demonstrate our method with real scenes. To this end,
we have implemented a capture system based on a liquid crystal
on silicon (LCoS) display (Figure 11, left). This device, together
with a beamsplitter and relay optics, simulates a Gaussian attenu-
ation mask placed before the sensor. In this setup, the SLR cam-
era lens (Canon EF-S 60 mm f/2.8 Macro USM) is focused on the
LCoS, virtually placing the mask at the sensor. Our imaging lens
is a Canon EF 50 mm f/1.8 II, focused at 50 cm; scenes are placed
at 80 - 100 cm. The f-number of the system is f/2.8, the maxi-
mum of both lenses. Since a single pixel of the LCoS cannot be
well-resolved with this setup, we treat LCoS pixels in blocks of
8× 8 pixels, resulting in a mask with a resolution of 240× 135.
Figure 11 (right) shows results with real scenes captured with our
prototype optical setup. The figure includes a close-up of the LDR
coded image captured at the sensor, the final tone mapped HDR re-
construction, and several details with varying exposure levels. Our
lab prototype is not artifact-free, although it demonstrates the via-
bility of our approach. The LCoS displays some birefringence, de-
creased light throughput, and a severe loss of contrast, all of which
degrade the LDR captured signal. Future chip designs such as the
Sony patent could overcome these limitations. Nevertheless, our
reconstruction does not introduce additional degradation in the re-
sults, as Figures 7 and 8 show.

Additionally, we have applied our technique to an image cap-
tured using an interlaced exposure with dual ISO 100/800 on a
Canon EOS 500D camera with the Magic Lantern sofware. The
result is shown in Figure 12.

6. Discussion and conclusion

Limitations In some cases, it is possible that the image
y captured with the optical mask contains large saturated ar-
eas despite the presence of the mask; the low transmissivity

¶ http://www.hdrv.org
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Figure 11: Left: Our prototype hardware implementation. Our optical system is made up of an imaging lens, a beamsplitter, an LCoS, and an
SLR camera. Objects are placed for illustration purposes only; when photographing the scene, they are placed at a distance of 80 - 100 cm
from the imaging lens. Middle and right: Two reconstructions of real scenes. For each scene we show the tonemapped HDR reconstruction
(top), two different exposures of the highlighted areas revealing the dynamic range (bottom), as well as a partial detail of the LDR coded
image captured at the sensor (inset).

Figure 12: Reconstruction of an HDR image captured with dual
ISO 100/800 with a Canon EOS 500D: original scene (left),
and close-ups of coded and reconstructed regions, the latter
tonemapped using [MDK08] (right).

pixels of the mask typically prevent this, but in images with
extremely large dynamic range it can happen. In these cases
when no information at all is captured, the recovery may have
some artifacts. An example of this is shown in the inset fig-
ure with a light bulb. This light bulb is a close-up region of the
scene in Figure 8 (right
column). This scene has a
very large dynamic range
(over 17 stops), since it
captures both the very dark
inside of the room and the
bright light bulb outside.
Therefore, if the inside is
to be recovered, there is a saturated area in the captured image y.
Nevertheless, as we show in the paper, we are able to faithfully
reconstruct scenes of very large dynamic range.

Benefits We have presented a framework for convolutional
sparse coding of HDR images. From a single, optically coded im-

age, we reconstruct dynamic range using a trained convolutional
filter bank. Our approach follows a current trend in computational
photography, leveraging the joint design of optical elements and
processing algorithms. Once trained, the obtained filter bank can
be used to reconstruct a wide variety of HDR images greatly dif-
fering from the training set. Since our reconstruction is based on a
convolutional approach, it does not rely on the linear combination
of patches common in sparse reconstruction methods; this greatly
reduces reconstruction artifacts, in particular in high-contrast sharp
edges present in HDR images. We are not limited to a restricted
number of captured exposures, nor do we face the implicit trade-
off between captured dynamic range and interpolation quality that
other methods based on spatially-varying exposures face. In com-
parison to other CSC approaches, the algorithm we base our for-
mulation on has demonstrated (see [HHW15, Sec. 3]) that it has a
lower complexity and better convergence than previously proposed
methods for CSC [ZKTF10,BEL13,BL14], benefits which directly
carry over to our method.

As an additional advantage, our framework naturally accounts
for the optical PSF of the system, since we incorporate it in our
model (P in Equation 10). Moreover, it can be easily extended to
perform demosaicking, by properly designing matrix M in Equa-
tion 10, which models missing pixels. Last, we have not only built
a physical prototype, but have also shown how our approach can
yield good results with off-the-shelf consumer hardware that cap-
tures interleaved exposures using the Magic Lantern software.

Future work The development of patents like Sony’s per-
pixel, double-exposure method will progressively introduce vary-
ing exposure and optically modulated systems, thus allowing for
increased capabilities of commercial cameras. Our optimization
could incorporate explicit modeling of image noise to perform de-
noising in particularly noisy images. Finally, an exciting avenue of
future work lies at the convergence between acquisition and display
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technologies, for the full plenoptic function and taking perceptual
considerations into account [MWDG13]; compressive sensing and
sparse coding techniques may be able to handle the high dimen-
sionality of this challenging problem.
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