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Abstract. Radial breathing modes (RBMs) are widely used for the atomic structure characteri-
zation and index assignment of single-walled carbon nanotubes (SWNTs) from resonant Raman
spectroscopy. However, for double-walled carbon nanotubes (DWNTs), the use of conventional
ωRBMðdÞ formulas is complicated due to the van der Waals interaction between the layers, which
strongly affects the frequencies of radial modes and leads to new collective vibrations. This paper
presents an alternative way to theoretically study the collective radial breathing-like modes
(RBLMs) of DWNTs and to account for interlayer interaction, namely the continuous two-
dimensional membrane theory. We obtain an analytical ωRBLMðdo; diÞ relation, being the equiv-
alent of the conventional ωRBMðdÞ expressions, established for SWNTs. We compare our theo-
retical predictions with Raman data, measured on individual index-identified suspended
DWNTs, and find a good agreement between experiment and theory. Moreover, we show
that the interlayer coupling in individual DWNTs strongly depends on the interlayer distance,
which is manifested in the frequency shifts of the RBLMs with respect to the RBMs of the
individual inner and outer tubes. In terms of characterization, this means that the combination
of Raman spectroscopy data and predictions of continuous membrane theory may give addi-
tional criteria for the index identification of DWNTs, namely the interlayer distance. © 2015
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JNP.10.103599]
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1 Introduction

A double-walled carbon nanotube (DWNT) has two concentric carbon layers. This structure
makes it an ideal system for studying the effects of interwall coupling on the physical properties
of carbon nanotubes (CNTs). Compared with single-walled carbon nanotubes (SWNTs),
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DWNTs have higher mechanical strength and thermal stability and also possess interesting elec-
tronic and optical properties.1,2 A DWNT can have one of the four possible electronic configu-
rations with each wall being either semiconductor (S) or metallic (M): S@S, M@S, M@M, and
S@M (inner-tube@outer-tube). Every configuration may have different electronic properties.

The Raman scattering is the main analytical tool to study intrinsic properties of DWNTs.
Spectroscopic experiments on DWNTs have been initially performed on solution-based samples
or in bundles.3–5 Recently, more evolved experiments using combinations of different comple-
mentary techniques (e.g., atomic force microscopy, electron diffraction (ED), and resonant
Raman spectroscopy) were performed by our and other groups to measure Raman spectra of
individual DWNTs and to study the effects of van der Waals interaction.6–11

In our recent work, combining high-resolution transmission electron microscopy (HRTEM),
ED, and resonant Raman spectroscopy on individual free-standing DWNTs,11 we have shown
that the strength of this “inner” tube–“outer” tube interaction, which is dependent on the inter-
layer distance in DWNTs, strongly affects the out-of-phase radial breathing-like mode (RBLM)
frequencies. We thus proposed that the positions of the radial breathing-like modes (RBLMs)
and the difference between experimental and theoretical calculations within atomistic valence
force field model12 can be used as criteria to evaluate diameters of the inner and outer tubes in
nonindex-identified DWNTs.

This paper presents an alternative theoretical way to study low-frequency collective modes of
DWNTs based on the two-dimensional (2-D) continuous membrane theory. We show that this
approach provides a new and straightforward way to quantitatively analyze RBLMs of coupled
systems.

2 Experimental Details

The individual double-walled carbon nanotubes were synthesized by the catalytic chemical
vapor deposition directly onto commercial TEM grids (with holes up to 3 μm in diameter).13,14

To study individual single- and multiwalled carbon nanotubes, we developed an experimental
procedure based on the combination of resonant Raman spectroscopy, ED, and HRTEM. This
approach provides an unambiguous way to identify the chiral indices of CNTs.6,15,16 In this work,
TEM, HRTEM, and electron diffraction patterns (EDPs) were obtained in an FEI Titan micro-
scope operating at 80 kV to reduce damages induced by electron irradiation.14 TEM images and
EDPs were recorded within an average 5-s acquisition times.

Resonant Raman scattering measurements were carried out using a Jobin Yvon T64000 spec-
trometer equipped with a liquid nitrogen-cooled, silicon charge-coupled device detector. The
scattered light was collected through a microscope using a backscattering configuration. In
all the measurements, both incident and scattered light polarizations are along the nanotube
axis (// // polarized Raman spectrum). Incident excitations from Ar+ and Kr+ lasers, dye
laser, and tunable Ti/sapphire laser were used. To avoid heating effects, the laser power imping-
ing the sample was kept below 50 μW with a 100× objective (numerical aperture of 0.95). The
low-frequency part (RBM region) of Raman spectra was fitted following standard procedures
with a set of two Lorentzians in an OriginPro package.

3 Results

The Raman spectra of 14 identified individual free-standing DWNTs have been recorded and
analyzed in detail. Figure 1 shows the RBLM range of the Raman spectrum measured on one of
these individual DWNTs, namely (23,5)@(22,17), with the corresponding HRTEM image and
EDP. Our individual DWNTs are ultralong, clean from amorphous carbon, and have no signature
of the D-band (not shown) in Raman spectra.13,14 Only five of these 14 individual DWNTs had
both RBLMs observed in the Raman spectra. All the structural parameters for these five tubes
and the measured ωRBLMs are listed in Table 1. In addition to our own data, we will use the results
of Liu et al.8 for the evaluation of our theoretical approach.

Recently, we have described the low-frequency dynamics of DWNTs in the framework of the
continuous 2-D membrane theory (for its detailed theoretical description, applicability, and
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comparison with other models describing RBLMs, see Ref. 17). We treated each layer of
DWNTs as a 2-D membrane composed of single atoms (or in other words having zero thickness)
and not as a finite-thickness plate. Following this approach, we obtained the equation17

EQ-TARGET;temp:intralink-;e001;116;347½di · ðω2
i;SWNT − ω2Þ þ 2G% · ½do · ðω2

o;SWNT − ω2Þ þ 2G% − 4G2 ¼ 0; (1)

where ω are the RBLM frequencies of DWNT; do and di are the diameters of outer and inner
layers respectively; G ¼ fðdo; diÞ (G unit is cm−2 nm when the frequencies are in cm−1 and the
diameters in nm, see Ref. 16) is a coupling function between the two layers (see below for more
information); and finally ω2

i;SWNT and ω2
o;SWNT are the RBM frequencies of the isolated individ-

ual inner and outer layers.
We now further develop the ideas of the above-mentioned work. By simplifying Eq. (1), we

obtain the formula

EQ-TARGET;temp:intralink-;e002;116;230ωRBLM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b'

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4c

p

2

s

; (2)

with parameters b; c being defined as

EQ-TARGET;temp:intralink-;e003;116;167b ¼ ω2
o;SWNT þ ω2

i;SWNT þ
2G · ðdo þ diÞ

do · di
; (3)

EQ-TARGET;temp:intralink-;e004;116;122c ¼ 2G ·
"
ω2
o;SWNT

di
þ

ω2
i;SWNT

do

#
þ ðωo;SWNT · ωi;SWNTÞ2; (4)

and

Table 1 The structural and vibrational information on the double-walled carbon nanotubes
(DWNTs) studied in this work. The diameters d are given in nm and frequencies ω in cm−1.

# (n,m) indices di do Δd ωexp
L ωexp

H

1 (12,8)@(16,14) 1.37 2.04 0.67 133 186

2 (13,9)@(24,7) 1.50 2.21 0.71 123 169

3 (18,2)@(20,12) 1.49 2.19 0.70 122 167

4 (22,11)@(27,17) 2.28 3.01 0.73 98 121

5 (23,5)@(22,17) 2.03 2.65 0.62 113 154

Fig. 1 (a) High-resolution transmission electron microscopy (HRTEM) image, (b) electron diffrac-
tion pattern, (c) and measured radial breathing-like modes (RBLMs) (633 nm) of the (23,5)@
(22,17) double-walled carbon nanotube (DWNT) studied in this paper. Green lines correspond
to the two individual Lorentzians, while red line stands for their superposition.
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EQ-TARGET;temp:intralink-;e005;116;735ωiðoÞ;SWNT ¼ 227

diðoÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ce · d2iðoÞ

q
: (5)

Equation (2) is an equivalent of well-known ωðdÞ relations established for SWNTs.18 It pro-
vides a powerful and easy-to-use tool to analyze coupled radial breathing-like vibrations as it
considers (a) all different interlayers distances Δd and (b) different environment conditions (con-
stant Ce). For every DWNT, defined by a couple of diameters (do, di), Eq. (2) gives two frequen-
cies corresponding to the in-phase RBLM [ωL, sign “–” in Eq. (2)] and the out-of-phase RBLM
[ωH , sign “+” in the Eq. (2)]. The constant Ce in Eq. (5) describes different environments for the
CNTs.18

It is also clear from Eqs. (2)–(4) that the knowledge of the coupling function G ¼ fðdo; diÞ
is necessary for the calculations of ωRBLM. In the absence of the exact theoretical form, it is
possible to determine it from the fit of experimental data. For instance, the empirical form
of the coupling functionG ¼ fðdo; diÞwas previously determined17 on the basis of experimental
data of Liu et al.,8 for which the absence of external interaction (Ce ¼ 0) on both tubes was
stated. It is expressed as G ¼ ½Aþ Bðdo − diÞ þ Cðdo þ diÞ%ðdo þ diÞ with A ¼ 7210 cm−2,
B ¼ −9670 cm−2∕nm, and C ¼ 61 cm−2∕nm.16 The normalized intertubes coupling, Gnorm

(equivalent to unit-area force constant of Ref. 8), defined as G∕hdi with hdi ¼ ðdo þ diÞ∕2,
provides a unique way to evaluate how the van der Waals interactions vary with Δd. For
the Liu et al. data, this function is plotted in Fig. 2 (black circles).

We now calculate theGnorm values for our individual DWNTs. It was previously found that in
the framework of the atomistic model, RBLM frequencies of (12,8)@(16,14) DWNT are best
described, if Ce ¼ 0.065 for the outer layer and Ce ¼ 0 for the inner layer are considered.6,11

Because all DWNTs, studied in this work, were synthesized following the similar procedure, we
use the same Ce values. Under this assumption, we find that the calculated Gnorm values for our
DWNTs (red rhombs in Fig. 2) wind around the Gnorm values derived from the fit of Ref. 8. This
confirms that the intertubes coupling Gnorm mainly dependent on the interlayer distance Δd,
independently of the structure and environment of the constituent outer and inner SWNTs.

Finally, we illustrate the practical use of our model on the example of the work of Liu et al.,8

for which more experimental data are available and the G function is better established. By
choosing the proper form of G (see above) and using the Eq. (2), we can calculate a set of
ωðdÞ relations for different interlayer distances, Δd ¼ do − di, both for in-phase ωL and
out-of-phase ωH RBLMs. These calculated curves are shown in Fig. 3 as solid thin lines,
with Δd in the range 0.60 to 0.76 nm with a step of 0.02 nm. In addition, the results of cal-
culations are compared with the ω ¼ 228∕d relation (black-dotted dashed line) and ωRBLMsðdÞ
relation, obtained from the atomistic valence force field model with Δd ¼ 0.68 nm and without
adjustable parameters, (thick black-dashed line), which was used in our previous works.6,7,11,19
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Fig. 2 The coupling Gnorm as a function of interlayer distance calculated within continuous mem-
brane theory using the available experimental data from Ref. 8 (black circles) and from the present
work (red rhombs). The line is a guide for eyes.
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The experimental data of Liu et al.8 are represented by open circles in Fig. 3. As expected, at
large Δd the ωRBLMðdÞ relations tend to ω ¼ 228∕d, or in other words to the case of noninter-
acting layers. From the analysis of Fig. 3, we can clearly see that the out-of-phase mode, ωH, is
much more affected by the change of the interlayer distance than the in-phase mode, ωL.
Therefore, it is possible to estimate the interlayer distance of the given DWNT from the com-
parison between the relative position of the measured out-of-phase ωH and the calculated
ωRBLMðdÞ relations. In this way, the predictions of continuous membrane theory may give addi-
tional criteria for the index-identification of DWNTs.

4 Conclusions

We presented an alternative way to calculate low-frequency collective modes of DWNTs: 2-D
continuous membrane theory. Following this approach, we have obtained a ωRBLMðdo; diÞ rela-
tion being an equivalent to the conventional formulas established for individual SWNTs.

This approach was first applied to the understanding of the experimental data of Ref. 8 for
which the absence of external interaction (Ce ¼ 0) on both tubes was stated. A monotonic
dependence of the normalized intertubes coupling, Gnorm, with Δd is clearly stated. A close
dependence of Gnorm is found from the fit of our data meaning that the normalized intertubes
coupling in DWNTs indeed depends on the interlayer distance Δd.

In terms of characterization, the combination of Raman spectroscopy data and the predictions
of continuous membrane theory may give additional criteria for the index identification of
DWNTs.
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(a) out-of-phase (ωH ) and (b) in-phase (ωL) RBLMs for different interlayer distances (with Δd
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