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SHARP EXTENSIONS AND ALGEBRAIC PROPERTIES FOR
SOLUTION FAMILIES OF VECTOR-VALUED DIFFERENTIAL

EQUATIONS

LUCIANO ABADIAS1, CARLOS LIZAMA2∗ AND PEDRO J. MIANA1

Abstract. In this paper we show the unexpected property that extension
from local to global without loss of regularity holds for the solutions of a wide
class of vector-valued differential equations, in particular for the class of frac-
tional abstract Cauchy problems in the subdiffusive case. The main technique
is the use of the algebraic structure of these solutions, which are defined by
new versions of functional equations defining solution families of bounded oper-
ators. The convolution product and the double Laplace transform for functions
of two variables are useful tools which we apply also to extend these solutions.
Finally we illustrate our results with different concrete examples.

1. Introduction

Let A be a closed linear operator with domain D(A) defined in a complex
Banach space X and 0 < τ ≤ ∞. Suppose that A is the generator of a local

C0-semigroup {T (t)}t∈[0,τ) or, equivalently, the first order Cauchy problem
{

u′(t) = Au(t) + x, 0 ≤ t < τ

u(0) = 0
(1.1)

has a unique solution u ∈ C1([0, τ), X)∩C([0, τ), D(A)), i.e. is locally well-posed.

Then it is well known that A is the generator of a global C0-semigroup {T (t)}t≥0,
i.e. the problem is globally well-posed, see [2, Theorem 1.2], [1, Section 3.1] and
also [29]. We observe that this dynamic behavior of the solution for the Cauchy
problem (1.1), i.e. the extension property from local to global without loss of
regularity, heavily depends on the translation in time property of the Cauchy’s
functional equation, namely T (t + s) = T (t)T (s), t, s ≥ 0. In contrast, this
extension property is not more true for the class of local integrated semigroups ([2,
Example 4.6]). Furthermore, we have that if A generates a local (1∗k)-convoluted
semigroup on [0, τ), then A generates a local (1 ∗ k∗n)-convoluted semigroup on
an interval [0, nτ), see [9, Theorem 4.4] ([23, Theorem 3.3]). In other words, in
these cases there is evolution with jumps of regularity and naturally the need of
regularize the family of operators appears (in the sense of convolution) in order
to have extension. In all of these cases, the property of translation in time
of the associated functional equation is strongly connected with the problem of
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extension from a short to a long interval of definition for the corresponding family
of operators.

Fractional diffusion equations are widely used to describe anomalous diffusion
processes. From the point of view of operator theoretical-methods for Partial
Differential Equations, subdiffusion phenomena is modeled naturally by means of
fractional Cauchy problems in the form

{
Dα

t u(t) = Au(t) + x, 0 ≤ t < τ,

u(0) = 0,
(1.2)

where 0 < α < 1 and the fractional derivative is taken in the Caputo sense, see
[3, 25]. In [5] the existence of solutions of fractional Cauchy problems is studied
in detail, and in the reference [13] for the superdiffusive case 1 < α < 2. Suppose
that A generates a local one-parameter family of bounded operators that makes
the equation (1.2) locally well posed. The natural question that arises is: Can be
(1.2) globally well posed?.

We point out that (1.2) is included in the more general Volterra type equation

u(t) = k(t)x+ A

∫ t

0

a(t− s)u(s)ds, t ∈ (0, τ), (1.3)

for the special choice of kernel a(t) = k(t) = tα−1

Γ(α)
, for α, t > 0 and where Γ

is the Euler Gamma function. This Volterra type equation in case k(t) ≡ 1
has been deeply treated in the monograph [26] by J. Prüss. Further relevant
studies have been done in the monographs by M. Kostić [11, 12]. See also the
references [8, 9, 10, 15, 16, 17, 20] and [23] for related work. Therefore, we can set
our problem in a more general context: Classify the classes of pairs (a, k) where
extension of (1.3) from local to global and without loss of regularity holds.

We note that under certain conditions on the scalar-valued kernels a and k,
well posedness of the Volterra equation (1.3) is equivalent to the existence of a
one-parameter and strongly continuous family of bounded operators {S(t)}t>0

that satisfies a functional equation in the form

S(s)

∫ t

0

a(t− τ)S(τ)dτ − S(t)

∫ s

0

a(s− τ)S(τ)dτ

= k(s)

∫ t

0

a(t− τ)S(τ)dτ − k(t)

∫ s

0

a(s− τ)S(τ)dτ,

(1.4)

for t, s > 0, see [16, Theorem 3.1].

Explicitly, in this paper we will study the following questions:

(Q1) (Evolution with or without jumps of regularity): If A is the generator of
a local regularized resolvent family on the interval (0, τ), is A also the generator
of an local extended regularized resolvent family on the interval (0, (n+ 1)τ) for
n ∈ N; in particular for which class of pairs of kernels (a, k) we have that if A is
the generator of a local (a, k)-regularized resolvent family, then A is the generator
of a global (a, k)-regularized resolvent family? (Sections 4 and 5).
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(Q2) (Time translation): Determine the class of pairs (a, k) for which is pos-
sible to find an equivalent and explicit expression for equation (1.4) in terms of
the sum t + s instead of t and s. (Section 6)

We will first answer globally the problem of evolution (Q1), that is, the pos-
sibility to extend the family of operators S(t) from the interval (0, τ) to the
whole semiaxis (0,∞). More precisely, we prove: If A is the generator of a local
(a, k)-regularized resolvent family on (0, τ), then A is the generator of a local
(a, (a ∗ k)∗n ∗ k)-regularized resolvent family in (0, (n + 1)τ), see Theorem 4.3.
We remark that this problem, which has been studied in a series of papers in
the last years, is settled here in a simple way, making transparent the process
of regularization needed in each step of the extension. In particular, our result
intersects the papers [2], [9] and [23] where the problem of extension for local
integrated semigroups, local convoluted semigroups and local convoluted cosine
functions is studied, respectively. The question about extension for local convo-
luted semigroups and local convoluted cosine funtions, which is resolved in [9] and
[23] respectively, had been cited previously in the paragraph directly preceding
[11, Theorem 1.2.7]. Results related to the extension of local C-regularized semi-
groups and local C-regularized cosine functions appeared by the the first time in
[29].

However, note that if we restrict this result to the C0-semigroup family, we
do not obtain evolution conserving regularity. Under some conditions on a and
k, we improve this result and obtain extension without jump on regularity in
Theorem 5.1. We use this Theorem to prove one of the main results in this paper
concerning the fractional equation (1.2): If A is the generator of a local (gα, gα)-
regularized resolvent family on [0, τ), with 0 < α < 1, then A is the generator of
a global (gα, gα)-regularized resolvent family in [0,∞), see Corollary 5.2. These
results recover and widely extend the property of evolution without jumps of
regularity from the case of the solutions of first order Cauchy problems to the
case of fractional subdiffusive models.

In this paper, we are able to completely solve (Q2) establishing an equiva-
lent functional equation to (1.4), which defines global (a, k)-regularized resolvent
families, in the following form:

∫ t+s

t

∫ r

0

k(s + t− r)a(r − τ)S(τ)dτdr −

∫ s

0

∫ r

0

k(s+ t− r)a(r − τ)S(τ)dτdr

=

∫ t

0

∫ s

0

a(t + s− r1 − r2)S(r1)S(r2)dr1dr2,

(1.5)
for t, s ≥ 0 (Theorem 6.1). The above formula widely solves the problem of time
translation, not only extending all the several results existing in the literature,
but also proposing and finding a better expression for older and new cases. For
example, we will see that for a(t) = tα−1

Γ(α)
and k(t) = 1, for t > 0, the border cases

α = 1 and α = 2 are naturally included in our functional formula, unifying the
cases 0 < α < 1 and 1 < α < 2 mentioned before. We point out that functional
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equation (1.5) inspired the way to define extensions in local (a, k)-regularized
resolvent family commented above.

In last years, special interest has appeared in the study of algebraic function
equations (Q2) for (a, k)-regularized resolvent family only with a(t) = tα−1

Γ(α)
for

t > 0 (due mainly for its connection with fractional differential equations). First
results in this line appeared in [14] where an equivalent functional equation to

(1.4) in case a(t) = tα−1

Γ(α)
for 0 < α < 1, and k(t) = 1, (t > 0) is given in [14,

Formula (2.1)]. After that, a similar result for the case a(t) = k(t) = tα−1

Γ(α)
, is

shown in [18, Proposition 2.2]. In the recent paper [15], a further extension of

known result in case a(t) = tα−1

Γ(α)
and k(t) = tβ

Γ(β+1)
was proved ([15, Theorem

5]). We note that some restriction should be imposed for α ≥ 1, see Example

6.5. A further generalization, this time in case a(t) = tα−1

Γ(α)
for 0 < α < 1 and

k(t) =
∫ t

0
K(s)ds was successfully obtained in [20, Theorem 8]. Finally we point

out that in a very recent work [21], the authors have discovered a functional

equation which cover the case a(t) = tα−1

Γ(α)
and k(t) = 1 (t > 0) in the super

diffusive case 1 < α < 2 ([21, Definition 3.1]).
To handle both questions (Q1, Q2), we introduce an original technique in

this context: we consider scalar and vector-valued functions of two variables. In
second section we work with convolution product ∗2 (see formula (2.2)), and we
prove some needed technical results that play a key role in the paper. In third
section, we see results about simple and double Laplace transform, properties that
this transforms verifies and in which appear the above convolutions products (see,
for example, Theorem 3.4).

Double Laplace transform is an efficient and known tool to solve scalar dif-
ferential equations in two variables, see for example [6, Chapitre IV.15.3], [7],
[28, pp 226–228]. Other interesting applications of double Laplace transform is
to supply integral formulae ([6, Chapitre IV.15.1]) and bilinear expansions ([6,
Chapitre IV.15.2]). In [27] the structure of closed ideals of convolution algebra
L1(Rn) is studied and the Laplace transform for functions of several variables is
also considered.

Finally, in the last section we illustrate our main results with some particular
examples: we considerer some (a, k)-regularized resolvent families, some of which
are related with the solution of fractional Cauchy problems to conclude that the
extension process is possible with or without jump of regularity. We also give new
functional equations obtained as a consequence of the formula (1.5) for known
one-parametric family of operators: C0-semigroups, cosine families, convoluted
semigroups and resolvent families.

2. Convolution products in one and two variables

In this section we state some technical results for convolution products (in
one and two variables) that we use to prove the relevant results in the following
sections. The convolution product in several variables have been considered in
some relevant fields in Mathematical Analysis (see for example [27]). However, the
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convolution product in two variables is a new tool to apply to (a, k)-regularized
resolvent families.

We denote R+ = [0,+∞); R = (−∞,+∞), R2
+ = R+ × R+ and R2 = R × R.

We consider the space of locally integrable functions in one and two variables,
L1
loc(R+), and L1

loc(R
2
+). The space Cn(R+) is formed with continuous functions

f : R+ → C such f (j) is continuous for 0 ≤ j ≤ n for n ≥ 0. Some of the above
spaces will also be considered in (0, τ) or [0, τ) instead R+, with τ > 0.

Let f, g : R+ → C, we write ft(s) := f(s+t)χ[−s,+∞)(t) for t ∈ R; f+ : R2
+ → C

the function given by f+(t, s) := f(t + s); f− : R2 → C the function given by
f−(t, s) := f(|t − s|); f ⊗ g : R2

+ → C by f ⊗ g(t, s) := f(t)g(s) for (t, s) ∈ R2
+

and

f ∗ g(t) =

∫ t

0

f(t− s)g(s) ds, t > 0, (2.1)

the usual convolution product, for the functions f, g where the product is con-
vergent. We write f ∗2 instead f ∗ f and then f ∗n = f ∗ (f ∗(n−1)) for n ≥ 2 is the
n-fold convolution power of f.

For F,G : R2
+ → C be given, we define the convolution product in two variables

by

F ∗2 G(t, s) :=

∫ t

0

∫ s

0

F (t− u, s− v)G(u, v) dv du, t, s > 0. (2.2)

whenever is well defined. This product is commutative and associative, see [6,
Formula (13.9)] and [28, Formula (3-18-19)].

We define functions gα(t) := tα−1

Γ(α)
, eλ(t) := e−λt and eλ,µ(t, s) := e−λt−µs =

eλ ⊗ eµ(t, s) for α ∈ R\{0,−1,−2,−3 . . . }, λ, µ ∈ C and t, s > 0. Note that
(eλ)

+ = eλ,λ for λ ∈ C. It is direct to check the following well-known identities:

gα ∗ gβ = gα+β, α, β > 0;

eλ ∗ eµ = =
1

λ− µ
(eµ − eλ) , λ 6= µ;

eλ,λ′ ∗2 eµ,µ′ = =
1

(λ− µ)(λ′ − µ′)
(eλ,λ′ − eλ,µ′ − eµ,λ′ + eµ,µ′) , λ 6= µ, λ′ 6= µ′.

The way that ∗ and ∗2 interact with operators ⊗, (·)t and (·)+ is shown in the
next theorem.

Theorem 2.1. Let f, g, h, j ∈ L1
loc(R+). Then

(i) (f ⊗ g) ∗2 (h⊗ j) = (f ∗ h)⊗ (g ∗ j).
(ii) (g+ ∗2 (f ⊗ h))(t, s) = h ∗ (f ∗ g)t(s)− ft ∗ (h ∗ g)(s), for t, s ≥ 0.
(iii)

(f+ ∗2 g
+)(t, s) =

{
(ft ∗M(g))(s) + s(fs ∗ gs)(t− s) + (M(f) ∗ gt)(s), 0 ≤ s ≤ t,
(fs ∗M(g))(t) + t(ft ∗ gt)(s − t) + (M(f) ∗ gs)(t), 0 ≤ t ≤ s,

where M(g)(s) := sg(s) for s ∈ R+.

Proof. The proof of part (i) is straightforward. To show (ii), note that if
g ∈ L1

loc(R+) then g+ ∈ L1
loc(R

2
+). We change variables to obtain the following
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equalities:
∫ t

0

∫ s

0
g(t+ s− r1 − r2)f(r1)h(r2) dr1 dr2 =

∫ t

0

∫ s

0
g(v + z)f(t− v)h(s − z) dv dz

=

∫ s

0
h(s − z)

∫ t+z

z

f(t+ z − u)g(u) du dz

=

∫ s

0
h(s − z)

∫ t+z

0
f(t+ z − u)g(u) du dz −

∫ s

0
h(s− z)

∫ z

0
f(t+ z − u)g(u) du dz.

Now, we apply Fubini theorem and change of variable s− z = r − u to get
∫ s

0
h(s − z)

∫ z

0
f(t+ z − u)g(u) du dz =

∫ s

0
g(u)

∫ s

u

f(t+ z − u)h(s − z) dz du

=

∫ s

0
g(u)

∫ s

u

f(t+ s− r)h(r − u) dr du =

∫ s

0
f(t+ s− r)

∫ r

0
h(r − u)g(u) du dr.

We express the above integrals in terms of convolution products to conclude the claim.
The proof of (iii) is similar to the proof of part (ii).

Corollary 2.2. Let f, g, h ∈ L1
loc(R+). Then

(i) (g+ ∗2 (f ⊗ h))(t, s) = f ∗ (h ∗ g)s(t)− hs ∗ (f ∗ g)(t), for t, s ≥ 0.
(ii) (g+ ∗2 (f ⊗ f))(t, s) = f ∗ (f ∗ g)t(s)− ft ∗ (f ∗ g)(s), for t, s ≥ 0.

Proof. (i) We apply the identity (g+ ∗2 (f ⊗ h))(t, s) = (g+ ∗2 (h ⊗ f))(s, t) for
(t, s) ∈ R2

+ and the Theorem 2.1 (ii).

Next lemma extends [9, Lemma 2.1] and will be applied several times in this paper.

Lemma 2.3. Take 0 ≤ τ ≤ t and f, g, h ∈ L1
loc(R+). Then

∫ t−τ

0
h(t− s)(g ∗ f)(s) ds +

∫ τ

0
f(t− s)(g ∗ h)(s) ds

= (f ∗ g ∗ h)(t)− g+ ∗2 (f ⊗ h)(t− τ, τ).

Proof. We use Fubini’s theorem and change of variables to obtain

(f ∗ g ∗ h)(t) −

∫ τ

0
f(t− r)

∫ r

0
g(r − s)h(s) ds dr

=

∫ t

0
f(r)

∫ t−r

0
g(t− r − s)h(s) ds dr −

∫ t

t−τ

f(r)

∫ t−r

0
g(t− r − s)h(s) ds dr

=

∫ t−τ

0
f(r)

∫ t−r

0
g(t− r − s)h(s) ds dr

=

∫ τ

0
h(s)

∫ t−τ

0
g(t− s− r)f(r) dr ds+

∫ t

τ

h(s)

∫ t−s

0
g(t− s− r)f(r) dr ds

=

∫ τ

0

∫ t−τ

0
g(t− s− r)h(s)f(r) dr ds+

∫ t−τ

0
h(t− s)(g ∗ f)(s) ds,

for t ∈ R+. This proves the claim.



SHARP EXTENSIONS AND ALGEBRAIC PROPERTIES 7

Remark 2.4. Let X be a Banach space and

L1
loc(R+,X) := {f : R+ → X : f is Bochner integrable on [0, τ ] for all τ > 0}.

We also consider L1
loc(R

2
+,X) for functions defined in two variables. The definitions of

∗ and ∗2, (see (2.1) and (2.2)), Theorem 2.1, Corollary 2.2 and Lemma 2.3 hold in the
case that one function is vector valued into X. The proof of these analogous results
involves the ideas already employed in the scalar case.

3. Laplace transform in one and two variables

In this section we study properties concerned with the Laplace transform for func-
tions in the above spaces. We say that f ∈ L1

loc(R+,X) is a Laplace transformable
function if there exists ωf ∈ R such that the usual Laplace transform

f̂(λ) :=

∫ ∞

0
e−λtf(t) dt = lim

τ→∞

∫ τ

0
e−λtf(t) dt, ℜλ > ωf ,

is well-defined, see for example [1, Section 1.4]. Let f : R+ → X be absolutely con-
tinuous and differentiable a.e. Note that in the scalar case X = C any absolutely
continuous function defined for t ≥ 0 (t > 0) is differentiable a.e. t ≥ 0 (t > 0) because

the space C has the Radon Nykodim property. If ℜλ > 0 and f̂ ′(λ) exists then f̂(λ)
exists and

f̂ ′(λ) = λf̂(λ)− f(0), (3.1)

see [1, Corollary 1.6.6].
Similarly, we say that F ∈ L1

loc(R
2
+,X) is a double Laplace transformable function

(or 2-Laplace transformable) if there exist ω1,F , ω2,F ∈ R such that

L2(F )(λ, µ) :=

∫ ∞

0

∫ ∞

0
e−λte−µsF (t, s) ds dt := lim

τ→∞

∫ τ

0

∫ τ

0
e−λte−µsF (t, s) ds dt

converges for ℜλ > ω1,F and ℜµ > ω2,F , see [6, Chapitre IV] and [28, Section 3.18]
in the scalar case; the Laplace transform L2 is commonly named the double Laplace
transform.

For further use we establish the following Theorem where we include some known
identities of Laplace transform and double Laplace transform.

Theorem 3.1. Let f ∈ L1
loc(R+,X) and g ∈ L1

loc(R+) be Laplace transformable func-
tions. Then the following identities hold.

(i) L2(f
+)(λ, µ) = 1

µ−λ
(f̂(λ)− f̂(µ)) for ℜλ,ℜµ > ωf with λ 6= µ.

(ii) L2(f
−)(λ, µ) = 1

λ+µ
(f̂(λ) + f̂(µ)) for ℜλ,ℜµ > ωf with ℜ(λ+ µ) > 0.

(iii) L2(f ⊗ g)(λ, µ) = f̂(λ)ĝ(µ) for ℜλ > ωf and ℜµ > ωg.

Let F ∈ L1
loc(R

2
+,X) and G ∈ L1

loc(R
2
+) be double Laplace transformable functions.

Then the following identity holds.

(iv) L2(F ∗2 G)(λ, µ) = L2(G)(λ, µ)L2(F )(λ, µ), for ℜλ > max(ω1,F , ω1,G) and
ℜµ > max(ω2,F , ω2,G).

Proof. The proof of (i) appears in [28, pp 221-222]; the proof of (ii) in [28, pp
223-224] and the equality (iii) appears in [28, (3-18-4)]. Finally the equality (iv) is
straightforward and it is commented in [28, (3-18-20)].
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In what follows, given an absolutely continuous and differentiable a.e. function
c : (0,∞) → X we denote by c′ its derivative and c(0+) := lim

t→0+
c(t), whenever both

limits exist.

Theorem 3.2. Let c ∈ L1
loc(R+,X) be an absolutely continuous on (0,∞), differen-

tiable a.e and Laplace transformable function.

(i) If (c′)+ : R2
+ → X is 2-Laplace transformable, then

L2((c
′)+)(λ, µ) =

1

µ− λ
(λĉ(λ)− µĉ(µ)), ℜλ,ℜµ > ωc, λ 6= µ.

(ii) If (c′)− : R2
+ → X is 2-Laplace transformable and c(0+) exists then

L2((c
′)−)(λ, µ) =

1

µ+ λ
(λĉ(λ) + µĉ(µ))−

2c(0+)

λ+ µ
, ℜλ,ℜµ > ωc, ℜ (λ+ µ) > 0.

Proof. (i) We integrate by parts to obtain
∫ ∞

0
e−λt

∫ ∞

0
e−µsc′(t+ s) ds dt =

∫ ∞

0
e−(λ−µ)t

∫ ∞

t

e−µvc′(v) dv dt

=

∫ ∞

0
e−(λ−µ)t

(
−c(t)e−µt + µ

∫ ∞

t

e−µvc(v) dv

)
dt.

We change the inner variable to get the following equality,
∫ ∞

0
e−λt

∫ ∞

0
e−µsc′(t+ s) ds dt = −ĉ(λ) + µL2(c

+)(λ, µ) =
λĉ(λ)− µĉ(µ)

µ− λ
,

for ℜλ,ℜµ > ωc, and λ 6= µ. (ii) For ℜλ,ℜµ > ωc, and ℜ (λ+ µ) > 0, note that

L2((c
′)−)(λ, µ) =

∫ ∞

0
e−λt

∫ ∞

−t

e−µ(v+t)(c′)−(t, v + t) dv dt

=

∫ ∞

0
e−(λ+µ)t

∫ ∞

0
e−µvc′(v) dv dt+

∫ ∞

0
e−(λ+µ)t

∫ t

0
eµvc′(v) dv dt,

where we have changed the inner variable. We integrate by parts to get that
∫ ∞

0
e−(λ+µ)t

∫ ∞

0
e−µvc′(v) dv dt =

1

λ+ µ

∫ ∞

0
e−µvc′(v) dv =

1

λ+ µ
[−c(0+) + µĉ(µ)].

On the other hand, we use Fubini’s theorem to obtain,
∫ ∞

0
e−(λ+µ)t

∫ t

0
eµvc′(v) dv dt =

∫ ∞

0
eµvc′(v)

∫ ∞

v

e−(λ+µ)t dt dv

=
1

λ+ µ

∫ ∞

0
e−λvc′(v) dv =

1

λ+ µ
[−c(0+) + λĉ(λ)],

and we conclude the proof of the theorem.

Remark 3.3. In the case that the function c′ is a Laplace transformable function, the
proof of Theorem 3.2 is a straightforward consequence of Theorem 3.1 (i) and (ii) and
the equality (3.1). The interesting example c = g1−α with 0 < α < 1 does not satisfy
this condition, however it is absolutely continuous on (0,∞) and Laplace transformable
and we can apply Theorem 3.2 (i) directly.

The following inversion theorem allows to express operators ( )+ and ( )− in terms
of double convolution products. These equalities play important roles in extension
formulae which are obtained in next sections.
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Theorem 3.4. Let a ∈ L1
loc(R+) be a Laplace transformable function and suppose there

exists c ∈ L1
loc(R+) absolutely continuous on (0,∞) and Laplace transformable such

that

(a ∗ c)(t) = 1, t > 0. (3.2)

(i) If (c′)+ is 2-Laplace transformable, then a+ = −((c′)+ ∗2 (a⊗ a)).
(ii) If (c′)− is 2-Laplace transformable and c(0+) = 0, then a− = ((c′)− ∗2 (a⊗ a)).

Proof. (i) We use Theorem 3.1 (i) and Theorem 3.2 (i) to prove that:

L2(a
+)(z, w) =

â(w)− â(z)

z − w
=

(
zĉ(z)− wĉ(w)

z − w

)
1

zwĉ(w)ĉ(z)

=

(
zĉ(z)− wĉ(w)

z − w

)
â(w)â(z) = L2((c

′)+ ∗2 (a⊗ a))(z, w).

Due to the uniqueness of the Laplace transform (see for example [6, p. 346]), we
conclude the equality. The proof of part (ii) is similar and involves Theorem 3.1 (ii)
and Theorem 3.2 (ii).

Example 3.5. In the case that c′ is a Laplace transformable function, we apply Corol-
lary 2.2 (ii) to obtain an alternative proof of Theorem 3.4 (i). However the interesting
example a = gα for 0 < α < 1 and c = g1−α does not satisfy this condition and the
direct proof given in Theorem 3.4 (i) is needed. Note that c′ = g−α and the equality
g+α = −((g−α)

+ ∗2 (gα ⊗ gα)), that is equivalent, after an algebraic manipulation, to the
formula

α sinαπ

π

∫ t

0

∫ s

0

uα−1vα−1

(t+ u+ s− v)α+1
ds dv = (t+ s)α−1, t, s > 0.

Analogously, let S, T : R+ → B(X) be strongly continuous operator families such
that S(·)x, T (·)x ∈ L1

loc(R+,X), for any x ∈ X. The operators S, T are said Laplace-
transformable functions if there exists ω ∈ R such that the Laplace transform of S
(respectively T )

Ŝ(λ)x =

∫ ∞

0
e−λtS(t)x dt, ℜλ > ω,

converges for x ∈ X, see for example [1, Definition 3.1.4]. For h ∈ R we shall denote
Sh the translation operator of S given by Sh(u) := S(u+ h)χ[−h,+∞)(u) for u ∈ R and
the convolution product between T and S, T ∗ S, given by

(T ∗ S)(t)x :=

∫ t

0
T (t− s)S(s)x ds, t > 0, x ∈ X.

If g ∈ L1
loc(R+) is a Laplace transformable scalar-valued function, then we define g ∗ S

by

(g ∗ S)(t)x :=

∫ t

0
g(t− s)S(s)x ds, t > 0, x ∈ X,

and

(g+ ∗2 (S ⊗S))(t, s)x :=

∫ t

0

∫ s

0
g(t+ s− r1 − r2)S(r1)S(r2)x dr1 dr2, t, s ≥ 0, x ∈ X,

where (S ⊗ S)(t, s) := S(t)S(s) is the composition operator for t, s ≥ 0. We recall the
following identities given in [8, Lemma 4.1]: for λ > µ > ω,
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Ŝ(λ)T̂ (µ)x =

∫ ∞

0
e−λt

∫ ∞

0
e−µsS(t)T (s)x ds dt, x ∈ X, (3.3)

and

1

µ− λ
(Ŝ(λ)− Ŝ(µ))x =

∫ ∞

0
e−λt

∫ ∞

0
e−µsS(t+ s)x ds dt, x ∈ X. (3.4)

If g : R+ → C is Laplace transformable, we also have

1

µ− λ
ĝ(µ)[Ŝ(λ)− Ŝ(µ)]x =

∫ ∞

0
e−λt

∫ ∞

0
e−µs(g ∗ St)(s)x ds dt, x ∈ X, (3.5)

and

1

µ− λ
T̂ (µ)[ĝ(λ)− ĝ(µ)]x =

∫ ∞

0
e−λt

∫ ∞

0
e−µs(T ∗ gt)(s)x ds dt, x ∈ X. (3.6)

Defining S(t) = S(−t) for t < 0, we have

1

µ+ λ
(Ŝ(λ) + Ŝ(µ))x =

∫ ∞

0
e−λt

∫ ∞

0
e−µsS(t− s)x ds dt, λ+ µ > 0, x ∈ X.

(3.7)
In fact equations (3.3), (3.4), (3.5) and (3.6) are valid for ℜλ, ℜµ > ω with λ 6= µ,
and (3.7) for ℜλ,ℜµ > ω with ℜ(λ+ µ) > 0.

The following theorem shows how some double Laplace transforms of the double
convolution product is also related with the single Laplace transform.

Proposition 3.6. Let g ∈ L1
loc(R+) and S : R+ → B(X) be a locally integrable and

strongly continuous function, both Laplace transformable functions. Then the following
identities hold

(i) L2(g
+ ∗2 (S ⊗ S))(λ, µ) =

1

µ− λ
[ĝ(λ) − ĝ(µ)]Ŝ(λ)Ŝ(µ) for ℜλ, ℜµ > ω with

λ 6= µ.

(ii) L2(g
− ∗2 (S ⊗ S))(λ, µ) =

1

λ+ µ
[ĝ(λ) + ĝ(µ)]Ŝ(λ)Ŝ(µ) for ℜλ, ℜµ > ω with

ℜ(λ+ µ) > 0.

Proof. It is sufficient to apply Theorem 3.1 (iv), (i) (or (ii)) and (3.3).

The proof of the next corollary is a straightforward consequence of Theorem 3.1 (iv),
Theorem 3.2 and (3.3).

Corollary 3.7. Let c ∈ L1
loc(R+) be an absolutely continuous on (0,∞) and Laplace

transformable function, and let S : R+ → B(X) be a locally integrable and strongly
continuous and Laplace transformable operator valued function.

(i) If (c′)+ : R2
+ → C is 2-Laplace transformable, then

L2((c
′)+ ∗2 (S ⊗ S))(λ, µ) =

1

µ− λ
[λĉ(λ)− µĉ(µ)]Ŝ(λ)Ŝ(µ), ℜλ,ℜµ > ω, λ 6= µ.

(ii) If (c′)− : R2
+ → C is 2-Laplace transformable and c(0+) exists then

L2((c
′)− ∗2 (S ⊗ S))(λ, µ) =

1

λ+ µ
[λĉ(λ) + µĉ(µ)]Ŝ(λ)Ŝ(µ)−

2c(0+)

λ+ µ
Ŝ(λ)Ŝ(µ),

for ℜλ,ℜµ > ω with ℜ(λ+ µ) > 0.
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Example 3.8. Let c = g1−α for 0 < α < 1 and ĉ(λ) =
1

λ1−α
for ℜλ > 0. Then

c′ = g−α and we obtain the following identity,

L2((c
′)+ ∗2 (S ⊗ S))(λ, µ) =

1

µ− λ
[λα − µα]Ŝ(λ)Ŝ(µ), (3.8)

by Corollary 3.7 (i). In particular, we recover [14, Formula (2.8)].

4. Local (a, k)-regularized resolvent families

In this section we prove extension theorems for local (a, k)-regularized resolvent
families. In the following we suppose that the function k satisfies that k(t) 6= 0 for all
t ∈ (0, σ), where σ is a sufficiently small positive number. We begin by recalling the
following definition.

Definition 4.1. Let 0 < τ ≤ ∞, a, k ∈ L1
loc([0, τ)) with k ∈ C(0, τ) that k(t) 6= 0 for

all t ∈ (0, σ) (σ small) and A be a closed operator. A strongly continuous operator
family {S(t)}t∈(0,τ) ⊂ B(X) is a local (resp. global in case τ = ∞) (a, k)-regularized
resolvent family generated by A if the following conditions are satisfied:

(i) lim
t→0+

S(t)x

k(t)
= x for all x ∈ X;

(ii) S(t)A ⊂ AS(t), t ∈ (0, τ);

(iii) (a∗S)(t)x ∈ D(A) for t ∈ (0, τ) and x ∈ X, and the following Volterra equation
holds

A(a ∗ S)(t)x = S(t)x− k(t)x, x ∈ X, t ∈ (0, τ). (4.1)

Remark 4.2. The reason why we do not consider directly the value of S(·) at the origin
is that k could have a singularity at the origin; for example, k(t) = gβ+1(t) has a
singularity at 0 if −1 < β < 0.

In the rest of the paper we will assume that the functions a, k are positive.
We note that loss of regularity arises because we treat with evolution equations corre-
sponding to regularization of certain base equation. The typical example is the local
α-times integrated semigroups, e.g. the evolution equation:

u′(t) = Au(t) + gα(t)x

where α > 0. In this case, the base equation, where no loss of regularity happens, is
the Cauchy problem:

u′(t) = Au(t),

where A is the generator of a C0-semigroup, i.e. it is known that a local C0-semigroup
can be extended without loss of regularity. In terms of (a, k)-regularized resolvent
families, it means that if A is the generator of a local (1, 1)-regularized resolvent family
on [0, τ) , then A is also the generator of a (1, 1)-regularized resolvent family on [0, 2τ)
and so on. However, this property is not longer true in the general case of (a, k)-
regularized resolvent families, where loss of regularity is present. This phenomena has
been observed for the case of k-convoluted semigroups [9] (in particular for α-times
integrated semigroups in [2, 22]) and k-convoluted cosine families [23].

In the next theorem we show the most general result about extension of (a, k)-
regularized resolvent families. It shows that we can extend a local (a, k)-regularized
resolvent family defined in (0, τ) to get a (a, (k ∗ a)∗n ∗ a)-regularized resolvent family
in (0, (n + 1)τ).
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Theorem 4.3. Let n ∈ N, 0 < τ ≤ ∞, a, k ∈ L1
loc([0, (n+1)τ)) with k ∈ C(0, (n+1)τ),

and {S1(t)}t∈(0,τ) be a local (a, k)-regularized resolvent family generated by A. Then the
family of operators {Sn+1(t)}t∈(0,(n+1)T ] defined recursively by

Sn+1(t)x := (k ∗ a ∗ Sn)(t)x, x ∈ X, t ∈ (0, nT ], and

Sn+1(t)x := (a+ ∗2 (Sn ⊗ S1)) (nT, t− nT )x+

∫ nT

0
k(t− r)(a ∗ Sn)(r)x dr

+

∫ t−nT

0
((k ∗ a)∗(n−1) ∗ k)(t− r)(a ∗ S1)(r)x dr,

for x ∈ X and t ∈ (nT, (n+1)T ], is a local (a, (k ∗a)∗n ∗k)-regularized resolvent family
generated by A for any T < τ. Then A generates a local (a, (k ∗ a)∗n ∗ k)-regularized
resolvent family {Sn+1(t)}t∈(0,(n+1)τ).

Proof. Note that the family {Sn+1(t)}t∈(0,(n+1)T ] is strongly continuous:

lim
t→(nT )+

Sn+1(t)x = lim
t→(nT )+

((
a+ ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x

+

∫ nT

0
k(t− r)(a ∗ Sn)(r)x dr +

∫ t−nT

0
((k ∗ a)∗(n−1) ∗ k)(t− r)(a ∗ S1)(r)x dr

)
.

The first summand tends to 0 using Corollary 2.2 (i) in the vectorial case, the second
one tends to (k ∗ a ∗ Sn)(nT )x, and the last term goes to 0. Furthermore, for ε > 0
there exists t > 0 sufficiently small such that

‖
Sn(s)x

(k ∗ a)∗(n−1) ∗ k(s)
− x‖ < ε, for 0 < s < t.

Then

‖
Sn+1(t)x

(k ∗ a)∗n ∗ k(t)
− x‖ = ‖

Sn+1(t)x− (k ∗ a)∗n ∗ k(t)x

(k ∗ a)∗n ∗ k(t)
‖

≤
1

(k ∗ a)∗n ∗ k(t)

∫ t

0
(k ∗ a)(t− s)‖Sn(s)x− (k ∗ a)∗(n−1) ∗ k(s)x‖ ds

≤
1

(k ∗ a)∗n ∗ k(t)

∫ t

0
(k ∗ a)(t− s)(k ∗ a)∗(n−1) ∗ k(s)‖

Sn(s)x

(k ∗ a)∗(n−1) ∗ k(s)
− x‖ ds ≤ ε.

So, lim
t→0+

Sn+1(t)x

(k ∗ a)∗n ∗ k(t)
= x for all x ∈ X. Note that {Sn+1(t)}t∈(0,nT ] is a local

(a, (k ∗ a)∗n ∗ k)-regularized resolvent family generated by A, see [17, Remark 2.4 (4)].
Now let t ∈ (nT, (n+ 1)T ] and x ∈ X. It is clear that Sn+1(t)A ⊂ ASn+1(t). We show
that (a ∗ Sn+1)(t)x ∈ D(A). Note

(a ∗ Sn+1)(t)x =

∫ nT

0
a(t− s)Sn+1(s)x ds +

∫ t

nT

a(t− s)Sn+1(s)x ds.

On the one hand,
∫ nT

0
a(t− s)Sn+1(s)x ds =

∫ nT

0
a(t− s)(k ∗ a ∗ Sn)(s)x ds ∈ D(A),

since (a ∗ Sn)(s)x ∈ D(A). On the other hand,
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∫ t

nT

a(t− s)Sn+1(s)x ds

=

∫ t

nT

a(t− s)

(∫ s−nT

0

∫ nT

0
a(s− r1 − r2)Sn(r1)S1(r2)x dr1 dr2

)
ds

+

∫ t

nT

a(t− s)

∫ nT

0
k(s− r)(a ∗ Sn)(r)x dr ds (4.2)

+

∫ t

nT

a(t− s)

∫ s−nT

0
((k ∗ a)∗(n−1) ∗ k)(s − r)(a ∗ S1)(r)x dr ds.

Note that (a ∗ Sn)(r)x, (a ∗ S1)(r)x ∈ D(A). Finally
∫ t

nT

a(t− s)

∫ s−nT

0

∫ nT

0
a(s− r1 − r2)Sn(r1)S1(r2)x dr1 dr2 ds

=

∫ nT

0
Sn(r1)

∫ t

nT

a(t− s)

∫ s

nT

a(u− r1)S1(s− u)x du ds dr1

=

∫ nT

0
Sn(r1)

∫ t

nT

a(u− r1)

∫ t

u

a(t− s)S1(s − u)x ds du dr1

=

∫ nT

0
Sn(r1)

∫ t

nT

a(u− r1)

∫ t−u

0
a(t− u− v)S1(v)x dv du dr1 ∈ D(A)

since (a ∗ S1)(t− u) ∈ D(A). To finish the proof, we prove that for t ∈ (nT, (n+ 1)T ]
and x ∈ X the equality (4.1) is satisfied. First observe that

A(a ∗ Sn+1)(t)x = A

∫ nT

0
a(t− s)(k ∗ a ∗ Sn)(s)x ds +A

∫ t

nT

a(t− s)Sn+1(s)x ds.

We apply the operator A to the first summand of (4.2), and we obtain that

A

∫ nT

0
Sn(r1)

∫ t

nT

a(t− s)

∫ s−nT

0
a(s − r1 − r2)S1(r2)x dr2 ds dr1

= A

∫ nT

0
Sn(r1)

∫ t

nT

a(t− s)

∫ s

nT

a(u− r1)S1(s− u)x du ds dr1

= A

∫ nT

0
Sn(r1)

∫ t

nT

a(u− r1)

∫ t

u

a(t− s)S1(s − u)x ds du dr1

= A

∫ nT

0
Sn(r1)

∫ t

nT

a(u− r1)

∫ t−u

0
a(t− u− v)S1(v)x dv du dr1

=

∫ nT

0
Sn(r1)

∫ t

nT

a(u− r1)

(
S1(t− u)− k(t− u)

)
x du dr1

=

∫ nT

0
Sn(r1)

∫ t−nT

0
a(t− r1 − r2)

(
S1(r2)− k(r2)

)
x dr2 dr1

In the second summand of (4.2) we write
∫ nT

0
(a ∗ Sn)(r)x

∫ t

nT

a(t− s)k(s− r) ds dr

=

∫ nT

0
(a ∗ Sn)(r)x

(∫ t−r

0
a(t− r − u)k(u) du −

∫ nT−r

0
a(t− r − u)k(u) du

)
dr.
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We apply the operator A to each of the above terms to get

A

∫ nT

0
(a ∗ Sn)(r)x

∫ t−r

0
a(t− r − u)k(u) du dr

= A

∫ t−nT

0
k(u)

∫ nT

0
a(t− u− r)(a ∗ Sn)(r)x dr du

+A

∫ t

t−nT

k(u)

∫ t−u

0
a(t− u− r)(a ∗ Sn)(r)x dr du

=

∫ t−nT

0
k(u)

∫ nT

0
a(t− u− r)

(
Sn(r)x− ((k ∗ a)∗(n−1) ∗ k)(r)x

)
dr du

+

∫ t

t−nT

k(u)

(
(a ∗ Sn)(t− u)x− (k ∗ a)∗n(t− u)x

)
du

=

∫ t−nT

0
k(u)

∫ nT

0
a(t− u− r)

(
Sn(r)x− ((k ∗ a)∗(n−1) ∗ k)(r)x

)
dr du

+

∫ nT

0
k(t− r)

(
(a ∗ Sn)(r)x− (k ∗ a)∗n(r)x

)
dr,

and

A

∫ nT

0
(a ∗ Sn)(r)x

∫ nT−r

0
a(t− r − u)k(u) du dr

= A

∫ nT

0
k(u)

∫ nT−u

0
a(t− u− r)(a ∗ Sn)(r)x dr du.

In the third summand of (4.2) we write

∫ t−nT

0
(a ∗ S1)(r)x

∫ t

r+nT

a(t− s)((k ∗ a)∗(n−1) ∗ k)(s − r) ds dr

=

∫ t−nT

0
(a ∗ S1)(r)x

(∫ t

r

a(t− s)((k ∗ a)∗(n−1) ∗ k)(s− r) ds

−

∫ r+nT

r

a(t− s)((k ∗ a)∗(n−1) ∗ k)(s − r) ds

)
dr.

We apply the operator A to each of the above terms to obtain

A

∫ t−nT

0
(a ∗ S1)(r)x

∫ t

r

a(t− s)((k ∗ a)∗(n−1) ∗ k)(s − r) ds dr

= A

∫ t−nT

0
(a ∗ S1)(r)x

∫ t−r

0
a(t− r − u)((k ∗ a)∗(n−1) ∗ k)(u) du dr

= A

∫ nT

0
((k ∗ a)∗(n−1) ∗ k)(u)

∫ t−nT

0
a(t− u− r)(a ∗ S1)(r)x dr du

+A

∫ t

nT

((k ∗ a)∗(n−1) ∗ k)(u)

∫ t−u

0
a(t− u− r)(a ∗ S1)(r)x dr du
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= A

∫ nT

0
((k ∗ a)∗(n−1) ∗ k)(u)

∫ t−nT

0
a(t− u− r)(a ∗ S1)(r)x dr du

+

∫ t

nT

((k ∗ a)∗(n−1) ∗ k(u))

(
(a ∗ S1)(t− u)x− (a ∗ k)(t− u)x

)
du

= A

∫ nT

0
((k ∗ a)∗(n−1) ∗ k)(u)

∫ t−nT

0
a(t− u− r)(a ∗ S1)(r)x dr du

+

∫ t−nT

0
((k ∗ a)∗(n−1) ∗ k)(t− s)

(
(a ∗ S1)(s)x− (a ∗ k)(s)x

)
ds

and

A

∫ t−nT

0
(a ∗ S1)(r)x

∫ r+nT

r

a(t− s)((k ∗ a)∗(n−1) ∗ k)(s − r) ds dr

= A

∫ nT

0
((k ∗ a)∗(n−1) ∗ k)(u)

∫ t−nT

0
a(t− u− r)(a ∗ S1)(r)x dr du.

Then we have that

A

∫ t−nT

0
(a ∗ S1)(r)x

∫ t

r+nT

a(t− s)((k ∗ a)∗(n−1) ∗ k)(s − r) ds dr

=

∫ t−nT

0
((k ∗ a)∗(n−1) ∗ k)(t− s)

(
(a ∗ S1)(s)x− (a ∗ k)(s)x

)
ds.

Finally note that

A

∫ nT

0
a(t− s)(k ∗ a ∗ Sn)(s)x ds

= A

∫ nT

0
(a ∗ Sn)(r)x

∫ nT

r

a(t− s)k(s− r) ds dr

= A

∫ nT

0
(a ∗ Sn)(r)x

∫ nT−r

0
a(t− r − u)k(u) du dr

= A

∫ nT

0
k(u)

∫ nT−u

0
a(t− u− r)(a ∗ Sn)(r)x dr du.

We join together all summands to conclude that

A(a ∗ Sn+1)(t)x =

∫ t−nT

0

∫ nT

0
a(t− r1 − r2)Sn(r1)S1(r2)x dr1 dr2

+

∫ nT

0
k(t− r)(a ∗ Sn)(r)x dr +

∫ t−nT

0
((k ∗ a)∗(n−1) ∗ k)(t− r)(a ∗ S1)(r)x dr

−

∫ t−nT

0
k(u)

∫ nT

0
a(t− u− r)((k ∗ a)∗(n−1) ∗ k)(r)x dr du

−

∫ nT

0
k(t− r)(k ∗ a)∗n(r)x dr −

∫ t−nT

0
((k ∗ a)∗(n−1) ∗ k)(t− r)(a ∗ k)(r)x dr

= Sn+1(t)x− (k ∗ a)∗n(t)x,
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where we have used Lemma 2.3.

The expression of {Sn+1(t)}t∈(0,(n+1)T ] is not unique; in the following theorem we
show {Sn+1(t)}t∈(0,(n+1)T ] in terms of {Sj(t)}t∈(0,jT ] for all 1 ≤ j ≤ n. The proof is
similar to the proof of Theorem 4.3 and therefore we omit it.

Theorem 4.4. Let n ∈ N, 0 < τ ≤ ∞, a, k ∈ L1
loc([0, (n+1)τ)) with k ∈ C(0, (n+1)τ),

and {S1(t)}t∈(0,τ) be a local (a, k)-regularized resolvent family generated by A. Then the
family of operators {Sn+1(t)}t∈(0,(n+1)T ] defined in Theorem 4.3 satisfies that

Sn+1(t)x :=

(
(k ∗ a)∗(n+1−j) ∗ Sj

)
(t)x, x ∈ X, t ∈ (0, jT ], and

Sn+1(t)x :=
(
a+ ∗2 (Sj ⊗ Sn+1−j)

)
(jT, t − jT )x

+

∫ jT

0
((k ∗ a)n−j ∗ k)(t− r)(a ∗ Sj)(r)x dr

+

∫ t−jT

0
((k ∗ a)∗(j−1) ∗ k)(t− r)(a ∗ Sn+1−j)(r)x dr,

for x ∈ X, 1 ≤ j ≤ n and t ∈ (jT, (n + 1)T ] for any T < τ.

The following result is related to [9, Theorem 4.4] and [23, Theorem 3.3]. However,
note that both results are not included in this corollary.

Corollary 4.5. Let n ∈ N, 0 < τ ≤ ∞ and {S1(t)}t∈(0,τ) be a local (gα, gβ+1)-
regularized resolvent family generated by A, with α > 0 and β > −1. Then the family
of operators {Sn+1(t)}t∈(0,(n+1)T ] defined by

Sn+1(t)x := (gβ+α+1 ∗ Sn)(t)x, x ∈ X,

for t ∈ (0, nT ] and

Sn+1(t)x :=
(
g+α ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x+

∫ nT

0
gβ+1(t− r)(gα ∗ Sn)(r)x dr

+

∫ t−nT

0
gn(β+1)+α(n−1)(t− r)(gα ∗ S1)(r)x dr,

for x ∈ X and t ∈ (nT, (n + 1)T ] is a local (gα, g(n+1)(β+1)+nα)-regularized resolvent
family generated by A for any T < τ. Then A generates a local (gα, g(n+1)(β+1)+nα)-
regularized resolvent family {Sn+1(t)}t∈(0,(n+1)τ) .

However, if we restrict for example to the α-times integrated semigroup case, the
above extension is not the sharpest extension. Then for certain cases of the functions a
and k there exist sharper extensions from the point of view of the regularized Cauchy
problems. The following theorem gives us this sharp extension for a class of (a, k)-
regularized resolvent families. Although the idea of the proof is similar to the proof of
Theorem 4.3, we have included it to make easier the reading because we use additional
methods.

Theorem 4.6. Let n ∈ N, 0 < τ ≤ ∞, a, k ∈ L1
loc(R+) with k ∈ C(0,∞), Laplace

transformable functions such that there exist b, c ∈ L1
loc(R+) Laplace transformable

satisfying that c is absolutely continuous on (0,∞), (c′)+ is 2-Laplace transformable,

(a ∗ b)(t) = k(t), (a ∗ c)(t) = 1, t > 0,
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and {S1(t)}t∈(0,τ) be a local (a, k)-regularized resolvent family generated by A. Then the
family of operators {Sn+1(t)}t∈(0,(n+1)T ] defined by

Sn+1(t)x := (b ∗ Sn)(t)x, x ∈ X,

for t ∈ (0, nT ] and

Sn+1(t)x :=

∫ nT

0
b(t− r)Sn(r)x dr +

∫ t−nT

0
b∗n(t− r)S1(r)x dr

−
(
(c′)+ ∗2 (Sn ⊗ S1)

)
(nT, t− nT )x

for x ∈ X and t ∈ (nT, (n + 1)T ], is a local (a, b∗n ∗ k)-regularized resolvent family
generated by A for any T < τ. Then A generates a local (a, b∗n ∗k)-regularized resolvent
family {Sn+1(t)}t∈(0,(n+1)τ).

Proof. Similarly to the proof of Theorem 4.3, lim
t→0+

Sn+1(t)x

(b∗n ∗ k)(t)
= x for x ∈ X. Note

that {Sn+1(t)}t∈(0,nT ] is a local (a, b∗n ∗k)-regularized resolvent family generated by A,
see again [17, Remark 2.4 (4)]. Now let t ∈ (nT, (n + 1)T ] and x ∈ X. It is clear that
Sn+1(t)A ⊂ ASn+1(t), and following the proof of Theorem 4.3 it is easy to see that
(a ∗ Sn+1)(t)x ∈ D(A).

Now we prove that for t ∈ (nT, (n + 1)T ] and x ∈ X the equality (4.1) is satisfied.
First observe that

A(a ∗ Sn+1)(t)x = A

∫ nT

0
a(t− s)(b ∗ Sn)(s)x ds +A

∫ t

nT

a(t− s)Sn+1(s)x ds.

Note that

∫ t

nT

a(t− s)Sn+1(s)x ds =

∫ t

nT

a(t− s)

(∫ nT

0
b(s− r)Sn(r)x dr

+

∫ s−nT

0
b∗n(s− r)S1(r)x dr

)
ds

−

∫ t

nT

a(t− s)

∫ s−nT

0

∫ nT

0
c′(s− r1 − r2)Sn(r1)S1(r2)x dr1 dr2 ds.

(4.3)

We apply the operator A to the third summand of (4.3), and we obtain that

−A

∫ nT

0
Sn(r1)

∫ t

nT

a(t− s)

∫ s−nT

0
c′(s− r1 − r2)S1(r2)x dr2 ds dr1

= −A

∫ nT

0
Sn(r1)

∫ t

nT

a(t− s)

∫ s

nT

c′(u− r1)S1(s − u)x du ds dr1

= −A

∫ nT

0
Sn(r1)

∫ t

nT

c′(u− r1)

∫ t

u

a(t− s)S1(s− u)x ds du dr1
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= −A

∫ nT

0
Sn(r1)

∫ t

nT

c′(u− r1)

∫ t−u

0
a(t− u− v)S1(v)x dv du dr1

= −

∫ nT

0
Sn(r1)

∫ t

nT

c′(u− r1)

(
S1(t− u)− k(t− u)

)
x du dr1

= −

∫ nT

0
Sn(r1)

∫ t−nT

0
c′(t− r1 − r2)

(
S1(r2)− k(r2)

)
x dr2 dr1.

In the first summand of (4.3) we write

∫ nT

0
Sn(r)x

∫ t

nT

a(t− s)b(s − r) ds dr =

∫ nT

0
Sn(r)x

∫ t−r

0
a(t− r − u)b(u) du dr

−

∫ nT

0
Sn(r)x

∫ nT−r

0
a(t− r − u)b(u) du dr.

We apply the operator A to each of the above terms to get

A

∫ nT

0
Sn(r)x

∫ t−r

0
a(t− r − u)b(u) du dr

= A

∫ t−nT

0
b(u)

∫ nT

0
a(t− u− r)Sn(r)x dr du

+A

∫ t

t−nT

b(u)

∫ t−u

0
a(t− u− r)Sn(r)x dr du

= A

∫ t−nT

0
b(u)

∫ nT

0
a(t− u− r)Sn(r)x dr du

+

∫ t

t−nT

b(u)

(
Sn(t− u)x− (b∗(n−1) ∗ k)(t− u)x

)
du

= A

∫ t−nT

0
b(u)

∫ nT

0
a(t− u− r)Sn(r)x dr du

+

∫ nT

0
b(t− r)

(
Sn(r)x− (b∗(n−1) ∗ k)(r)x

)
dr,

and
∫ nT

0
Sn(r)x

∫ nT−r

0
a(t− r − u)b(u) du dr =

∫ nT

0
b(u)

∫ nT−u

0
a(t− u− r)Sn(r)x dr du.

In the second summand of (4.3) we write

∫ t−nT

0
S1(r)x

∫ t

r+nT

a(t− s)b∗n(s − r) ds dr

=

∫ t−nT

0
S1(r)x

(∫ t

r

a(t− s)b∗n(s− r) ds−

∫ r+nT

r

a(t− s)b∗n(s− r) ds

)
dr.
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We apply the operator A to each of the above terms to obtain

A

∫ t−nT

0
S1(r)x

∫ t

r

a(t− s)b∗n(s− r) ds dr

= A

∫ t−nT

0
S1(r)x

∫ t−r

0
a(t− r − u)b∗n(u) du dr

= A

∫ nT

0
b∗n(u)

∫ t−nT

0
a(t− u− r)S1(r)x dr du

+A

∫ t

nT

b∗n(u)

∫ t−u

0
a(t− u− r)S1(r)x dr du

= A

∫ nT

0
b∗n(u)

∫ t−nT

0
a(t− u− r)S1(r)x dr du

+

∫ t

nT

b∗n(u)

(
S1(t− u)x− k(t− u)x

)
du

= A

∫ nT

0
b∗n(u)

∫ t−nT

0
a(t− u− r)S1(r)x dr du

+

∫ t−nT

0
b∗n(t− s)

(
S1(s)x− k(s)x

)
ds

and
∫ t−nT

0
S1(r)x

∫ r+nT

r

a(t−s)b∗n(s−r) dsdr =

∫ nT

0
b∗n(u)

∫ t−nT

0
a(t−u−r)S1(r)x drdu.

Then we have that

A

∫ t−nT

0
S1(r)x

∫ t

r+nT

a(t− s)b∗n(s− r) ds dr =

∫ t−nT

0
b∗n(t− s)

(
S1(s)x− k(s)x

)
ds.

Furthermore note that

A

∫ nT

0
a(t− s)(b ∗ Sn)(s)x ds = A

∫ nT

0
Sn(r)x

∫ nT

r

a(t− s)b(s− r) ds dr

= A

∫ nT

0
Sn(r)x

∫ nT−r

0
a(t− r − u)b(u) du dr

= A

∫ nT

0
b(u)

∫ nT−u

0
a(t− u− r)Sn(r)x dr du.

We join together all summands to conclude that

A(a ∗ Sn+1)(t)x = Sn+1(t)x+A

∫ t−nT

0
b(u)

∫ nT

0
a(t− u− r)Sn(r)x dr du

−

∫ nT

0
b(t− r)(b∗(n−1) ∗ k)(r)x dr −

∫ t−nT

0
b∗n(t− r)k(r)x dr

+

∫ nT

0
Sn(r1)x

∫ t−nT

0
c′(t− r1 − r2)k(r2) dr2 dr1.
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Now we use induction. As {Sn(t)}t∈(0,nT ] is a local (a, b∗(n−1) ∗k)-regularized resolvent
family generated by A, then

Sn(r1)x = A(a ∗ Sn)(r1)x+ (b∗(n−1) ∗ k)(r1)x = A(a ∗ Sn)(r1)x+ (b∗n ∗ a)(r1)x,

and so

∫ nT

0
Sn(r1)x

∫ t−nT

0
c′(t− r1 − r2)k(r2) dr2 dr1

= A

∫ nT

0
(a ∗ Sn)(r1)x

∫ t−nT

0
c′(t− r1 − r2)(a ∗ b)(r2) dr2 dr1

+

∫ nT

0
(b∗n ∗ a)(r1)x

∫ t−nT

0
c′(t− r1 − r2)(a ∗ b)(r2) dr2 dr1.

On one hand,

A

∫ nT

0
(a ∗ Sn)(r1)x

∫ t−nT

0
c′(t− r1 − r2)(a ∗ b)(r2) dr2 dr1

= A

∫ nT

0
Sn(u)x

∫ t−nT

0
b(v)

∫ nT

u

∫ t−nT

v

a(r1 − u)a(r2 − v)c′(t− r1 − r2) dr2 dr1 dv du

= −A

∫ nT

0
Sn(u)x

∫ t−nT

0
a(t− u− v)b(v) dv du

and on the other hand
∫ nT

0
(b∗n ∗ a)(r1)x

∫ t−nT

0
c′(t− r1 − r2)(a ∗ b)(r2) dr2 dr1

=

∫ nT

0
b∗n(u)x

∫ t−nT

0
b(v)

∫ nT

u

∫ t−nT

v

a(r1 − u)a(r2 − v)c′(t− r1 − r2) dr2 dr1 dv du

= −

∫ nT

0
b∗n(u)x

∫ t−nT

0
a(t− u− v)b(v) dv du,

where we have applied Theorem 3.4 (i). Applying Lemma 2.3 we get that

A(a ∗ Sn+1)(t)x = Sn+1(t)x−

∫ nT

0
b(t− r)(b∗(n−1) ∗ k)(r)x dr

−

∫ t−nT

0
b∗n(t− r)k(r)x dr −

∫ nT

0
b∗n(u)x

∫ t−nT

0
a(t− u− v)b(v) dv du

= Sn+1(t)x−

∫ nT

0
b(t− r)(b∗n ∗ a)(r)x dr

−

∫ t−nT

0
b∗n(t− r)(a ∗ b)(r)x dr −

∫ nT

0
b∗n(u)x

∫ t−nT

0
a(t− u− v)b(v) dv du

= Sn+1(t)x− (b∗(n+1) ∗ a)(t)x = Sn+1(t)x− (b∗n ∗ k)(t)x.
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Finally we check that the family {Sn+1(t)}t∈(0,(n+1)T ] is strongly continuous. It is
direct to check that {Sn+1(t)}t∈(0,(n+1)T ] is uniformly bounded on [nT − ε, nT + ε] for
all 0 < ε < T, and strongly continuous on (0, nT ) ∪ (nT, (n + 1)T ]. Note that for
t → (nT )+, we have that

Sn+1(t)x− (b∗n ∗ k)(t)x = A

(∫ nT

0
a(t− s)Sn+1(s)xds

)

+A

(∫ t

nT

a(t− s)Sn+1(s)xds

)
→ A

(∫ nT

0
a(nT − s)Sn+1(s)xds

)

= Sn+1(nT )x− (b∗n ∗ k)(nT )x, x ∈ X,

and we conclude that the family {Sn+1(t)}t∈[0,(n+1)T ] is strongly continuous.

The following result extends [22, Theorem 2], because we obtain the sharp extension
of (gα, gβ+1)-regularized resolvent families when 0 < α < 1 and β − α > −1, and
when α → 1− we recover the α-times integrated semigroup case, considered in [22].
More generally one could consider the case of K-convoluted resolvent families, i.e.
(gα, (1 ∗K))-regularized resolvent families for 0 < α < 1 and compare it to the limit
case when α → 1−, see [9, Theorem 4.4].

Corollary 4.7. Let n ∈ N, 0 < τ ≤ ∞ and {S1(t)}t∈(0,τ) be a local (gα, gβ+1)-
regularized resolvent family generated by A with 0 < α < 1 and β − α > −1. Then
the family of operators {Sn+1(t)}t∈(0,(n+1)T ] defined by

Sn+1(t)x := (gβ−α+1 ∗ Sn)(t)x, x ∈ X,

for t ∈ (0, nT ] and

Sn+1(t)x :=

∫ nT

0
gβ−α+1(t− r)Sn(r)x dr +

∫ t−nT

0
gn(β−α+1)(t− r)S1(r)x dr

− ((g−α)
+ ∗ (Sn ⊗ S1)) (nT, t− nT )x,

for x ∈ X and t ∈ (nT, (n+ 1)T ], is a local (gα, gn(β−α+1)+β+1)-regularized resolvent
family generated by A for any T < τ. Then A generates a local (gα, gn(β−α+1)+β+1)-
regularized resolvent family {Sn+1(t)}t∈(0,(n+1)τ) .

5. Solutions of evolutionary problems without jumps of regularity

In this section, we identify a wide class of evolution equations where no loss of
regularity happens. It is interesting to note that it was not known until now if this
property goes beyond the cases of the heat and wave equations, i.e., the semigroup and
cosine cases. We begin with the following result which is subordinated to the semigroup
case in the sense that we cannot go beyond of α > 1 when we restrict to the particular
case of (gα, gα)-regularized resolvent families. See the next corollary.

Theorem 5.1. Let n ∈ N, 0 < τ ≤ ∞, a ∈ L1
loc(R+) with a ∈ C(0,∞), be a Laplace

transformable function such that there exists c ∈ L1
loc(R+) Laplace transformable sat-

isfying that c is absolutely continuous on (0,∞), (c′)+ is 2-Laplace transformable and
(a∗c)(t) = 1 for all t > 0, and {S1(t)}t∈(0,τ) be a local (a, a)-regularized resolvent family
generated by A. Then the family of operators {Sn+1(t)}t∈(0,(n+1)T ] defined by

Sn+1(t)x := Sn(t)x, x ∈ X,
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for t ∈ (0, nT ] and

Sn+1(t)x := −((c′)+ ∗2 (Sn ⊗ S1))(nT, t− nT )x, x ∈ X,

and t ∈ (nT, (n + 1)T ] is a local (a, a)-regularized resolvent family generated by A for
any T < τ. Then A generates a global (a, a)-regularized resolvent family {S(t)}t∈(0,∞).

Proof. Note that lim
t→0+

Sn+1(t)x

a(t)
= x for x ∈ X and the family {Sn+1(t)}t∈(0,(n+1)T ]

is strongly continuous. The proof of this fact is similar to Theorem 4.6. Obviously,
{Sn+1(t)}t∈(0,nT ] is a local (a, a)-regularized resolvent family generated by A. Now let
t ∈ (nT, (n + 1)T ] and x ∈ X. It is clear that Sn+1(t)A ⊂ ASn+1(t). We show that
(a ∗ Sn+1)(t)x ∈ D(A). Note

(a ∗ Sn+1)(t)x =

∫ nT

0
a(t− s)Sn(s)x ds+

∫ t

nT

a(t− s)Sn+1(s)x ds, x ∈ X.

On one hand, note that

∫ nT

0
a(t− s)Sn(s)x ds ∈ D(A), see (5.1) at the end of the proof.

On the other hand,

∫ t

nT

a(t− s)Sn+1(s)x ds

= −

∫ t

nT

a(t− s)

∫ s−nT

0

∫ nT

0
c′(s− r1 − r2)Sn(r1)S1(r2)x dr1 dr2 ds

= −

∫ nT

0
Sn(r1)

∫ t

nT

a(t− s)

∫ s−nT

0
c′(s− r1 − r2)S1(r2)x dr2 ds dr1

= −

∫ nT

0
Sn(r1)

∫ t

nT

a(t− s)

∫ s

nT

c′(u− r1)S1(s − u)x du ds dr1

= −

∫ nT

0
Sn(r1)

∫ t

nT

c′(u− r1)

∫ t

u

a(t− s)S1(s− u)x ds du dr1

= −

∫ nT

0
Sn(r1)

∫ t

nT

c′(u− r1)

∫ t−u

0
a(t− u− v)S1(v)x dv du dr1 ∈ D(A)

since (a ∗ S1)(t− u) ∈ D(A). To finish the proof, we prove that for t ∈ (nT, (n+ 1)T ]
and x ∈ X the equality

A(a ∗ Sn+1(t))x = Sn+1(t)x− a(t)x,

is verified. First observe that

A(a ∗ Sn+1)(t)x = A

∫ nT

0
a(t− s)Sn(s)x ds +A

∫ t

nT

a(t− s)Sn+1(s)x ds.
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Now, we develop the second term applying change of variables and Fubini’s theorem:

A

∫ t

nT

a(t− s)Sn+1(s)x ds

= −A

∫ t

nT

a(t− s)

∫ s−nT

0

∫ nT

0
c′(s− r1 − r2)Sn(r1)S1(r2)x dr1 dr2 ds

= −A

∫ nT

0
Sn(r1)

∫ t

nT

a(t− s)

∫ s−nT

0
c′(s− r1 − r2)S1(r2)x dr2 ds dr1

= −A

∫ nT

0
Sn(r1)

∫ t

nT

a(t− s)

∫ s

nT

c′(u− r1)S1(s− u)x du ds dr1

= −A

∫ nT

0
Sn(r1)

∫ t

nT

c′(u− r1)

∫ t

u

a(t− s)S1(s− u)x ds du dr1

= −A

∫ nT

0
Sn(r1)

∫ t

nT

c′(u− r1)

∫ t−u

0
a(t− u− v)S1(v)x dv du dr1

= −

∫ nT

0
Sn(r1)

∫ t

nT

c′(u− r1)(S1(t− u)− a(t− u))x du dr1

= −

∫ nT

0
Sn(r1)

∫ t−nT

0
c′(t− r1 − r2)(S1(r2)− a(r2))x dr2 dr1,

where we have used that {S1(t)}t∈(0,T ] is a local (a, a)-regularized resolvent family
generated by A. Then

A(a ∗ Sn+1)(t) = A

∫ nT

0
a(t− s)Sn(s)x ds + Sn+1(t)x

+

∫ nT

0
Sn(r1)x

∫ t−nT

0
c′(t− r1 − r2)a(r2) dr2 dr1.

As {Sn(t)}t∈(0,nT ] is a local (a, a)-regularized resolvent family generated by A, then

Sn(r1)x = A(a ∗ Sn)(r1)x+ a(r1)x,

and

∫ nT

0
Sn(r1)x

∫ t−nT

0
c′(t− r1 − r2)a(r2) dr2 dr1

=

∫ nT

0
(A(a ∗ Sn)(r1) + a(r1))x

∫ t−nT

0
c′(t− r1 − r2)a(r2) dr2 dr1.
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On the one hand, we obtain the following identity by change of variables and Fubini’s
theorem:

A

∫ nT

0
(a ∗ Sn)(r1)x

∫ t−nT

0
c′(t− r1 − r2)a(r2) dr2 dr1

= A

∫ nT

0
(

∫ r1

0
a(r1 − u)Sn(u)x du)

∫ t−nT

0
c′(t− r1 − r2)a(r2) dr2 dr1

= A

∫ nT

0
Sn(u)x

∫ nT

u

a(r1 − u)

∫ t−nT

0
c′(t− r1 − r2)a(r2) dr2 dr1 du

= A

∫ nT

0
Sn(u)x

∫ nT−u

0

∫ t−nT

0
c′(t− u− v − r2)a(v)a(r2) dr2 dv du

= A

∫ nT

0
Sn(u)x((c

′)+ ∗2 (a⊗ a))(nT − u, t− nT ) du

= −A

∫ nT

0
a(t− u)Sn(u)x du,

(5.1)

where we have used Theorem 3.4. On the other hand, we use Theorem 3.4 again to
get

∫ nT

0
a(r1)x

∫ t−nT

0
c′(t− r1 − r2)a(r2) dr2 dr1 = −((c′)+ ∗2 (a⊗ a))(t− nT, nT )x

= −a(t)x.

We join all the terms and we obtain the result.

The next result considers the special case of (gα, gα)-regularized resolvent families.
Here we have to restrict to the range 0 < α < 1 according to the given hypothesis in
the above Theorem. We observe that this condition is optimal in the following sense:
When α = 1 we are treating with the parabolic case, i.e. the equation

{
u′(t) = Au(t) + x, t ∈ [0, τ), x ∈ D(A),
u(0) = 0,

where A is the generator of a C0-semigroup, or, equivalently, a (1, 1)-regularized re-
solvent family. We known that in this case no loss of regularity happens. Now, for
0 < α < 1 we have to consider the fractional order differential equation:

{
RD

α
t u(t) = Au(t) + gα(t)x, t ∈ (0, τ), x ∈ D(A),

(g1−α ∗ u)(0) = 0,
(5.2)

where RDt denotes the fractional derivative in the Riemann Liouville sense, and A is
the generator of a (gα, gα)-regularized resolvent family (see also [12, Example 2.1.38]
and the paragraph preceding it). The following corollary shows that again no loss of
regularity happens for equation (5.2). In passing, we conclude the remarkable fact that
equation (5.2) is at the basis of the process of regularization for 0 < α < 1, where the
solutions of the regularized problems correspond to the families of the Corollary 4.7.

In the following picture we can see graphically the previous comments for (gα, gβ+1)-
regularized resolvent families with 0 < α < 1. Note that the straight line formed by
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the points (α,α − 1) corresponds to (gα, gα)-regularized families, which is the basis of
the process of regularization for 0 < α < 1. For α = 1, the point (1, 0) corresponds to
a C0-semigroup, and the points (1, β) correspond to β-times integrated semigroups for
β > 0.

α

β

1

-1

0

1

β − α > −1

Corollary 5.2. Let n ∈ N, 0 < τ ≤ ∞, 0 < α < 1 and {S1(t)}t∈(0,τ) be a lo-
cal (gα, gα)-regularized resolvent family generated by A. Then the family of operators
{Sn+1(t)}t∈(0,(n+1)T ] defined by

Sn+1(t)x = Sn(t)x, x ∈ X,

for t ∈ (0, nT ] and

Sn+1(t)x =
α

Γ(1− α)

∫ t−nT

0

∫ nT

0

Sn(r1)S1(r2)x

(t− r1 − r2)1+α
dr1 dr2

for x ∈ X and t ∈ (nT, (n+1)T ] is a local (gα, gα)-regularized resolvent family generated
by A for any T < τ. Then A generates a global (gα, gα)-regularized resolvent family
{S(t)}t∈(0,∞).

Now, we consider a different class of (a, k)-regularized resolvent families such that
we can solve the extension problem without loss of regularity.

Theorem 5.3. Let n ∈ N, 0 < τ ≤ ∞, a ∈ L1
loc(R+) with a ∈ C(0,∞), Laplace

transformable function such that there exists c ∈ L1
loc(R+) Laplace transformable sat-

isfying that c is absolutely continuous, differentiable a.e., c(0+) = 0, (c′)+ and (c′)−

are 2-Laplace transformable, and (a ∗ c)(t) = 1 for all t > 0, and {S1(t)}t∈(0,τ) be a
local (a ∗ 1, a)-regularized resolvent family generated by A. Then the family of operators
{Sn+1(t)}t∈(0,(n+1)T ] defined by

Sn+1(t)x := Sn(t)x, x ∈ X,

for t ∈ (0, nT ] and

Sn+1(t)x := −Sn(2nT − t)x+ ((c′)− ∗2 (Sn ⊗ S1))(nT, t− nT )x

−((c′)+ ∗2 (Sn ⊗ S1))(nT, t− nT )x
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for x ∈ X and t ∈ (nT, (n + 1)T ] is a local (a ∗ 1, a)-regularized resolvent family
generated by A for any T < τ. Then A generates a global (a ∗ 1, a)-regularized resolvent
family {S(t)}t∈(0,∞).

Proof. Note that lim
t→0+

Sn+1(t)x

a(t)
= x for x ∈ X and the family {Sn+1(t)}t∈(0,(n+1)T ]

is strongly continuous, see the proof in Theorem 4.6; in particular, {Sn+1(t)}t∈(0,nT ] is
a local (a∗1, a)-regularized resolvent family generated by A. Now let t ∈ (nT, (n+1)T ]
and x ∈ X. It is clear that Sn+1(t)A ⊂ ASn+1(t). Following the same ideas as in the
proofs of the previous theorems, we conclude that (a ∗ 1 ∗ Sn+1)(t)x ∈ D(A).

To finish the proof, it remains to prove that for t ∈ (nT, (n + 1)T ] and x ∈ X the
equality A(a ∗ 1 ∗ Sn+1(t))x = Sn+1(t)x− a(t)x, is satisfied. First observe that

A(a ∗ 1 ∗ Sn+1)(t)x = A

∫ nT

0
(a ∗ 1)(t− s)Sn(s)x ds +A

∫ t

nT

(a ∗ 1)(t − s)Sn+1(s)x ds.

Note that
∫ t

nT

(a ∗ 1)(t− s)Sn+1(s)x ds =

∫ t

nT

(a ∗ 1)(t− s)

(
−Sn(2nT − t)x

+

∫ s−nT

0

∫ nT

0
(c′)−(nT − r1, s− nT − r2)Sn(r1)S1(r2)x dr1 dr2

−

∫ s−nT

0

∫ nT

0
(c′)+(nT − r1, s− nT − r2)Sn(r1)S1(r2)x dr1 dr2

)
ds.

We take the second term and apply the operator A, to obtain, using change of variables
and Fubini’s theorem, that

A

∫ nT

0
Sn(r1)

∫ t

nT

(a ∗ 1)(t− s)

∫ s−nT

0
(c′)−(nT − r1, s− nT − r2)S1(r2)x dr2 ds dr1

= A

∫ nT

0
Sn(r1)

∫ t

nT

(a ∗ 1)(t− s)

∫ s

nT

(c′)−(nT − r1, u− nT )S1(s− u)x du ds dr1

= A

∫ nT

0
Sn(r1)

∫ t

nT

(c′)−(nT − r1, u− nT )

∫ t

u

(a ∗ 1)(t− s)S1(s − u)x ds du dr1

= A

∫ nT

0
Sn(r1)

∫ t

nT

(c′)−(nT − r1, u− nT )

∫ t−u

0
(a ∗ 1)(t− u− v)S1(v)x dv du dr1

=

∫ nT

0
Sn(r1)

∫ t

nT

(c′)−(nT − r1, u− nT )(S1(t− u)− a(t− u))x du dr1

=

∫ nT

0
Sn(r1)

∫ t−nT

0
(c′)−(nT − r1, t− nT − r2)(S1(r2)− a(r2))x dr2 dr1

= ((c′)− ∗2 (Sn ⊗ S1))(nT, t− nT )x

−

∫ nT

0

∫ t−nT

0
(c′)−(nT − r1, t− nT − r2)a(r2)Sn(r1)x dr2 dr1,
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where we have used that {S1(t)}t∈(0,T ] is a local (a ∗ 1, a)-regularized resolvent family
generated by A. Now, observe that because {Sn(t)}t∈(0,nT ] is a local (a∗1, a)-regularized
resolvent family generated by A, then Sn(r1)x = A(a ∗ 1 ∗ Sn)(r1)x+ a(r1)x, and

−

∫ nT

0

∫ t−nT

0
(c′)−(nT − r1, t− nT − r2)a(r2)Sn(r1)x dr2 dr1

= −

∫ nT

0

∫ t−nT

0
(c′)−(nT − r1, t− nT − r2)a(r2)(A(a ∗ 1 ∗ Sn)(r1) + a(r1))x dr2 dr1.

On the one hand,

−A

∫ nT

0

∫ t−nT

0
(c′)−(nT − r1, t− nT − r2)a(r2)(a ∗ 1 ∗ Sn)(r1)x dr2 dr1

= −A

∫ nT

0
(1 ∗ Sn)(u)x

∫ nT−u

0

∫ t−nT

0
(c′)−(nT − u− v, t− nT − r2)a(v)a(r2) dr2 dv du

= −A

∫ nT

0
((c′)− ∗2 (a⊗ a))(nT − u, t− nT )(1 ∗ Sn)(u)x du

= −A

∫ nT

0
a−(nT − u, t− nT )(1 ∗ Sn)(u)x du

= −A

(∫ 2nT−t

0
a(2nT − t− u)(1 ∗ Sn)(u)x du +

∫ nT

2nT−t

a(t+ u− 2nT )(1 ∗ Sn)(u)x du

)
,

and on the other hand

−

∫ nT

0

∫ t−nT

0
(c′)−(nT − r1, t− nT − r2)a(r1)a(r2)x dr2 dr1

= −((c′)− ∗2 (a⊗ a))(nT, t− nT )x = −a−(nT, t− nT )x

= −a(2nT − t)x = A(a ∗ 1 ∗ Sn)(2nT − t)x− Sn(2T − t)x,

where we have applied Theorem 3.4 (ii) and that {Sn(t)}t∈(0,nT ] is a local (a ∗ 1, a)-
regularized resolvent family generated by A. Then the second term is equal to

A

∫ nT

0
Sn(r1)

∫ t

nT

(a ∗ 1)(t− s)

∫ s−nT

0
(c′)−(nT − r1, s− nT − r2)S1(r2)x dr2 ds dr1

= ((c′)− ∗2 (Sn ⊗ S1))(nT, t− nT )x− Sn(2T − t)x

−A

∫ nT

2nT−t

a(t+ u− 2nT )(1 ∗ Sn)(u)x du.

Similarly, we repeat the process for the third term, and we get

−A

∫ nT

0
Sn(r1)

∫ t

nT

(a ∗ 1)(t− s)

∫ s−nT

0
(c′)+(nT − r1, s− nT − r2)S1(r2)x dr2 ds dr1

= −((c′)+ ∗2 (Sn ⊗ S1))(nT, t− nT )x− a(t)x−A

∫ nT

0
a(t− u)(1 ∗ Sn)(u)x du,
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where we have applied Theorem 3.4 (i). We join all the terms and we get

A(a ∗ 1 ∗ Sn+1)(t)x = Sn+1(t)x− a(t)x+A

(∫ nT

0
(a ∗ 1)(t− s)Sn(s)x ds

−

∫ t

nT

(a ∗ 1)(t− s)Sn(2T − s)x ds−

∫ nT

2nT−t

a(t+ u− 2nT )(1 ∗ Sn)(u)x du

−

∫ nT

0
a(t− u)(1 ∗ Sn)(u)x du

)
.

Note that
∫ nT

0
(a ∗ 1)(t− s)Sn(s)x ds −

∫ nT

0
a(t− u)(1 ∗ Sn)(u)x du

=

∫ t

t−nT

(a ∗ 1)(u)Sn(t− u)x du−

∫ nT

0
a(t− u)(1 ∗ Sn)(u)x du

= (1 ∗ a)(t− nT )(1 ∗ Sn)(nT )x

=

∫ nT

2nT−t

a(t+ u− 2nT )(1 ∗ Sn)(u)x du −

∫ t−nT

0
(a ∗ 1)(u)Sn(2T − t+ u)x du

=

∫ nT

2nT−t

a(t+ u− 2nT )(1 ∗ Sn)(u)x du −

∫ t

nT

(a ∗ 1)(t− s)Sn(2T − s)x ds,

where we have used change of variables and [23, Lemma 2.2] (note that this Lemma
is true when one of the two functions is a vector valued function). Then we conclude
the result.

6. Algebraic time translation identities for (a, k)-regularized resolvent
families

In this section, applying Laplace transform methods, we solve the problem of time
translation in case of global (a, k)-regularized resolvent families. Under certain condi-
tions on the kernels (a, k), we know that Definition 4.1 of (a, k)-regularized resolvent
families is equivalent to the existence of a commutative and strongly continuous family

of bounded and linear operators that satisfy lim
t→0+

S(t)x

k(t)
= x for all x ∈ X and the

functional equation

S(s)

∫ t

0
a(t− τ)S(τ)x dτ − S(t)

∫ s

0
a(s− τ)S(τ)x dτ

= k(s)

∫ t

0
a(t− τ)S(τ)x dτ − k(t)

∫ s

0
a(s− τ)S(τ)x dτ,

(6.1)

for t, s ∈ (0, τ), see [16, Theorem 3.1].
Let S(t) be an (a, k)-regularized resolvent family in a Banach space X. In what

follows, we will suppose that the commutative and locally integrable family {S(t)}t>0

as well as the kernels a, k ∈ L1
loc(R

+) are Laplace transformable, with k ∈ C(0,∞). We
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note that an application of the double Laplace transform to (6.1) gives the following
identity which appears in [16, Remark 3.2]:

Ŝ(λ)Ŝ(µ)x =
k̂(λ)

â(λ)

1
1

â(λ)
−

1

â(µ)

Ŝ(µ)x−
k̂(µ)

â(µ)

1
1

â(λ)
−

1

â(µ)

Ŝ(λ)x, (6.2)

valid for all sufficiently large ℜµ,ℜλ, and x ∈ X. Using the notations in the preceding
section, and the above identity, we arrive to the following notable characterization.

Theorem 6.1. A Laplace transformable and strongly continuous family of bounded
and linear operators {S(t)}t>0 is an (a, k)-regularized resolvent family if and only if

lim
t→0+

S(t)x

k(t)
= x for all x ∈ X and the following functional equation holds

(a+ ∗2 (S ⊗ S))(t, s)x = k ∗ (a ∗ S)t(s)x− kt ∗ (a ∗ S)(s)x, t, s > 0, x ∈ X. (6.3)

Proof. From (6.2) we get the equivalent identity

(â(µ)− â(λ))Ŝ(λ)Ŝ(µ)x = k̂(λ)[â(µ)Ŝ(µ)x− â(λ)Ŝ(λ)x] + â(λ)[k̂(λ)− k̂(µ)]Ŝ(λ)x

valid for all ℜλ,ℜµ sufficiently large. In turn, the above identity is equivalent to

1

λ− µ
(â(µ)− â(λ))Ŝ(λ)Ŝ(µ)x =

1

λ− µ
k̂(λ)[(̂a ∗ S)(µ)x− (̂a ∗ S)(λ)x]

+
1

λ− µ
[k̂(λ)− k̂(µ)](̂a ∗ S)(λ)x.

Using the identities (3.5) and (3.6), Proposition 3.6 (i) and uniqueness of the Laplace
transform, we have the result.

An interesting particular case is the following corollary, that we quote here for further
reference.

Corollary 6.2. A Laplace transformable and strongly continuous family of bounded
and linear operators {S(t)}t>0 is an (a, a)-regularized resolvent family if and only if

lim
t→0+

S(t)x

a(t)
= x for all x ∈ X and the following functional equation holds

∫ t

0

∫ s

0
a(t+s−r1−r2)S(r1)S(r2)x dr2 dr2 =

∫ t

0

∫ s

0
a(r1)a(r2)S(t+s−r1−r2)x dr1 dr2

for all t, s > 0 and x ∈ X.

Proof. We use Corollary 2.2 in Theorem 6.1 and the result is obtained directly.

Our next results have the objective of extend and recover some of the results men-
tioned in the introduction. We will see that in order to do that, we need to impose
regularity conditions on the kernels a and k, and therefore, the results are less general
than our Theorem 6.1 above.

Theorem 6.3. Let a, k ∈ L1
loc(R+) be given, with k ∈ C(0,∞). Suppose there exist

functions b, c ∈ L1
loc(R+) Laplace transformable such that c is absolutely continuous on

(0,∞) and (c′)+ is 2-Laplace transformable, satisfying

(a ∗ b)(t) = k(t), (a ∗ c)(t) = 1, t > 0.
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A Laplace transformable and strongly continuous family of bounded and linear operators

{S(t)}t>0 is an (a, k)-regularized resolvent family if and only if lim
t→0+

S(t)x

k(t)
= x for all

x ∈ X and the following functional equation holds

((c′)+ ∗2 (S ⊗ S))(t, s)x = bt ∗ S(s)x− b ∗ St(s)x, t, s > 0, x ∈ X.

Proof. From (6.2) we obtain the equivalent identity

1

µ− λ
(λĉ(λ)− µĉ(µ))Ŝ(λ)Ŝ(µ)x =

1

µ− λ
b̂(λ)Ŝ(µ)x−

1

µ− λ
b̂(µ)Ŝ(λ)x

=
1

µ− λ
b̂(λ)[Ŝ(µ)x− Ŝ(λ)x] +

1

µ− λ
[̂b(λ)− b̂(µ)]Ŝ(λ)x.

Hence, the result follows from Corollary 3.7 (i) and formulas (3.5) and (3.6).

Example 6.4. We set a := gα for 0 < α < 1 and k(t) :=
∫ t

0 K(s)ds, for t > 0. In this
case we can choose c = g1−α and b = g1−α ∗K satisfying the hypothesis. Therefore, we
recover the functional equation
(∫ t+s

t

−

∫ s

0

)
(g1−α ∗K)(t+ s− σ)S(σ)x dσ = α

∫ t

0

∫ s

0

S(r1)S(r2)x

(t+ s− r1 − r2)1+α
dr1 dr2,

(6.4)
which appeared in [20, Theorem 8], and mentioned in the introduction. Here, we
include as particular case the identity

(∫ t+s

t

−

∫ s

0

)
S(τ)x

(t+ s− τ)α
dτ = α

∫ t

0

∫ s

0

S(r1)S(r2)x

(t+ s− r1 − r2)1+α
dr1 dr2. (6.5)

see [14, Definition 3] and the more general identity developed in [15, Theorem 5].

Example 6.5. Let a := gα and k := gβ+1 where α > 0, β > −1. This choosing of
the pair (a, k) produces the theory of (α, β)-ROF families introduced in [4] (see also
[16, Example 3.10] for a more general approach in terms of (a, k)-regularized resolvent
families). As mentioned in the introduction, a time translation formula for (α, β)-ROF
families was developed recently in [15]. Now observe that for a and k as before, we can
choose c = g1−α whenever 0 < α < 1, and b = gβ−α+1 whenever β − α > −1 to obtain

a ∗ c = gα ∗ g1−α = 1 and a ∗ b = gα ∗ gβ−α+1 = gβ+1.

Therefore, the hypothesis of Theorem 6.3 are satisfied and, in consequence, we recover
the formula (∫ t+s

t

∫ s

0

)
(s+ t− r)β−αS(r)x dr (6.6)

= α
Γ(β − α+ 1)

Γ(1− α)

∫ t

0

∫ s

0

S(r1)S(r2)x

(t+ s− r1 − r2)1+α
dr1 dr2,

whenever α ∈ R+ \ N0, β ∈ R+ and β − α > −1 discovered in [15, Theorem 5], but
now under the restrictions 0 < α < 1 and β − α > −1. We observe that our result
correct the above formula where a more relaxed condition on α is assumed, namely
α ∈ R+ \ N0. However, we note that for α ≥ 1 the double integral on the right hand
side of (6.6) diverges, as can be easily seen.

Our next result widely extends the well known semigroup functional equation to a
more general class of strongly continuous families of operators. They are connected
with integral equations of Volterra type, as we will see in the next section.
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Theorem 6.6. Let a ∈ L1
loc(R+) be given, with a ∈ C(0,∞). Suppose there exists

c ∈ L1
loc(R+) Laplace transformable function such that c is absolutely continuous on

(0,∞), and (c′)+ is 2-Laplace transformable, satisfying (a ∗ c)(t) = 1 for all t > 0. A
Laplace transformable and strongly continuous family of bounded and linear operators

{S(t)}t>0 is an (a, a)-regularized resolvent family if and only if lim
t→0+

S(t)x

a(t)
= x for all

x ∈ X and the following functional equation holds

S(t+ s)x = −((c′)+ ∗2 (S ⊗ S))(t, s)x, t, s > 0, x ∈ X.

Proof. From (6.2) we get the equivalent identity

1

λ− µ
(λĉ(λ)− µĉ(µ))Ŝ(λ)Ŝ(µ)x =

1

λ− µ
(Ŝ(µ)x− Ŝ(λ)x).

Hence, the result follows from Corollary 3.7 (i) and formula (3.4).

Example 6.7. If a = gα, then â(λ) = 1
λα and hence we can choose c = g1−α with

0 < α < 1 satisfying the hypothesis. Note that this example recovers the functional
equation

S(t+ s)x =
α

Γ(1− α)

∫ t

0

∫ s

0

S(r1)S(r2)x

(t+ s− r1 − r2)1+α
dr1 dr2, (6.7)

for 0 < α < 1 as stated in [18, Definition 2.1 (ii)].

Now we consider more relaxed assumptions on the functions a and k than the previous
theorems. In contrast, the obtained functional equations are more involved and difficult
to handle. The advantage is that it permits to extend the range from 0 < α < 1 to
1 < α < 2 extending recent results and producing new formulas in cases where they
were not known.

Theorem 6.8. Let a, k ∈ L1
loc(R+) be given, with k ∈ C(0,∞). Suppose there exist

b, c ∈ L1
loc(R+) Laplace transformable functions satisfying (a ∗ c)(t) = t and (a ∗ b)(t) =

(1 ∗ k)(t) for all t > 0. A Laplace transformable and strongly continuous family of
bounded and linear operators {S(t)}t>0 is an (a, k)-regularized resolvent family if and

only if lim
t→0+

S(t)x

k(t)
= x for all x ∈ X and the following functional equation holds

b ∗ (1 ∗ S)t(s)x− bt ∗ (1 ∗ S)(s)x = (c ∗ S)(t)(1 ∗ S)(s)x

+(1 ∗ S)(t)(c ∗ S)(s)x− (c+ ∗2 (S ⊗ S))(t, s)x,

for t, s > 0, and x ∈ X.

Proof. From (6.2) we obtain the equivalent identity

k̂(λ)

â(λ)
Ŝ(µ)x−

k̂(µ)

â(µ)
Ŝ(λ)x = (

1

â(λ)
−

1

â(µ)
)Ŝ(λ)Ŝ(µ)x.

We multiply the identity by 1
(λ−µ)λµ , and we obtain that

1

λ− µ

(
b̂(λ)

µ
Ŝ(µ)x−

b̂(µ)

λ
Ŝ(λ)x

)
=

(
ĉ(λ)

µ
+

ĉ(µ)

λ

)
Ŝ(λ)Ŝ(µ)x

−
1

λ− µ

(
ĉ(µ)− ĉ(λ)

)
Ŝ(λ)Ŝ(µ)x.
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Note that

1

λ− µ

(
b̂(λ)

µ
Ŝ(µ)x−

b̂(µ)

λ
Ŝ(λ)x

)

=
1

λ− µ

(
b̂(λ)((̂1 ∗ S)(µ)x− (̂1 ∗ S)(λ)x)− (b̂(µ)− b̂(λ))(̂1 ∗ S)(λ)x

)
.

The result follows from Proposition 3.6 (i) and formulas (3.5) and (3.6).

Example 6.9. Set a = gα, with 1 < α < 2 and k = g1. In this case we can choose
b = c = g2−α to satisfy a ∗ c = g2 and a ∗ b = 1 ∗ k. Therefore we recover the functional
equation

(∫ t+s

t

−

∫ s

0

)∫ σ

0

S(τ)x

(t+ s− σ)α−1
dτ dσ =

∫ t

0

∫ s

0

S(σ)S(τ)x

(t− σ)α−1
dτ dσ

+

∫ t

0

∫ s

0

S(σ)S(τ)x

(s− τ)α−1
dτ dσ−

∫ t

0

∫ s

0

S(σ)S(τ)x

(t+ s− σ − τ)α−1
dτ dσ. (6.8)

developed in [21, Definition 3.1] and cited in the introduction.

Example 6.10. Let a = gα and k = gβ+1 where α > 0, β > −1. In this case we obtain
a new functional equation for (α, β)-ROF families (introduced in [4]) in contrast with
those developed in [15]. See also Example 6.5 for a correction on the assumptions on
α and β. Indeed, we can choose c = g2−α and b = gβ−α+2 under the assumptions
0 < α < 2 and β − α > −2.

7. Examples, applications and final comments.

7.1. Multiplication local regularized families in Lp(R). We consider the Lebesgue
space Lp(R), 1 ≤ p ≤ ∞, and a = gα with α ∈ (0, 2). Define the multiplication operator

Af(x) := (1 + x+ ix2)α, x ∈ R, f ∈ Lp(R),

with maximal domain in Lp(R). Assume s ∈ (1, 2), δ = 1
s
and Kδ(t) = L−1(e−λδ

)(t),

t > 0, where L−1 is the inverse Laplace transform. Then A generates a global (a,Kδ)-
regularized resolvent family in Lp(R). Furthermore, when s = 2 there exists τ > 0
such that A generates a local (a,K 1

2

)-regularized resolvent family on [0, τ), see [10,

Example 2.31]. Then we can apply Theorem 4.3, and conclude that A generates a local
(a, (K 1

2

∗ a)∗n ∗K 1

2

)-regularized resolvent family on (0, (n + 1)τ), for all n ∈ N.

7.2. Local regularized families in sequence spaces. Let l2(N) = {x = (xm)∞m=1 ⊂

C :

∞∑

n=1

|xm|2 < ∞} be the Hilbert space of all square-summable sequences with the

norm ‖x‖ = (

∞∑

n=1

|xm|2)
1

2 . We take τ > 0, and

am =
m

τ
+ i

((
em

m

)2

−

(
m

τ

)2) 1

2

, m ∈ N,

where i is the imaginary identity. We note that for all n ∈ N, the sequence (am)∞m=1

generates a local n-times integrated semigroup on l2(N) for t ∈ [0, nτ), see [24, p.75-76].
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The Mittag-Leffler functions are defined by

Eα,β(z) :=

∞∑

n=0

zn

Γ(αn+ β)
, α, β > 0, z ∈ C.

For short, Eα := Eα,1. We take 0 < α < 2. Observe that the function Eα is a (gα, 1)-
regularized resolvent family.

For any β ∈ R+, (Tα,β(t))t∈(0,βτ), defined by

Tα,β(t)x =

(
1

Γ(β)

∫ t

0
(t− s)β−1Eα((ams)α)xm ds

)∞

m=1

, for x ∈ l2(N),

is a local (gα, gβ+1)-regularized resolvent family on l2(N) :
Note that am ∈ C+, the set of imaginary numbers with positive real part. Then for

all s ≥ 0 and 0 < α < 2, |arg (ams)α| ≤ απ
2 . So, the asymptotic expansion [3, (1.27)]

and the continuity of the Mittag-Leffler function imply that there are constants c, C
such that ceams ≤ Eα((ams)α) ≤ Ceams. Observe that

‖Tα,β(t)‖ = sup
m∈N

|
1

Γ(β)

∫ t

0
(t− s)β−1Eα((ams)α) ds| < ∞

if and only if

sup
m∈N

|
1

Γ(β)

∫ t

0
(t− s)β−1eams ds| < ∞,

which happens if only if 0 ≤ t < βτ, see [22, Example 1]. It is clear that {Tα,β(t)}t∈(0,βτ)
is strongly continuous and verifies any functional equation associated to (gα, gβ+1)-
regularized families. The case α = 1 is made in [22].

7.3. A new class of regularized families without jumps of regularity. Let
0 < τ ≤ ∞ and b ∈ L1

loc(R
+). We define a = b∗b. Suppose that {R1(t)}t∈(0,τ) is a local

(a, a)-regularized resolvent family generated by A, such that A verifies condition (H5)
of [10] (for example A densely defined). Then by [10, Theorem 2.34], we have that

A ≡

(
0 I
A 0

)

is the generator of a local (b, b∗3)-regularized resolvent family {S1(t)}t∈(0,τ) given ex-
plicitly by

S1(t) =

(
(b ∗R1)(t) (a ∗R1)(t)

R1(t)− a(t)I (b ∗R1)(t)

)
, 0 < t < τ.

Now, we suppose that there is a c ∈ L1
loc(R

+) Laplace transformable such that c
is absolutely continuous, differentiable a.e., and (c′)+ is 2-Laplace transformable, and
satisfying (a ∗ c)(t) = 1 for all t > 0. Then we conclude A generates a global (a, a)-
regularized resolvent family {R(t)}t∈(0,∞) which extends {R1(t)}t∈(0,τ), see Theorem
5.1. Then, we can extend {S1(t)}t∈(0,τ) without loss of regularity, i.e, A generates a

global (b, b∗3)-regularized resolvent family {S(t)}t∈(0,∞) given by

S(t) =

(
(b ∗R(t) (a ∗R)(t)

R(t)− a(t)I (b ∗R)(t)

)
, 0 < t.

In the particular case b = gα
2
with 0 < α < 1, a = gα and {R1(t)}t∈(0,τ) be a local

(gα, gα)-regularized resolvent family generated by A, we can extend {S1(t)}t∈(0,τ) with-
out loss of regularity, i.e, A generates a global (gα

2
, g 3α

2

)-regularized resolvent family

{S(t)}t>0 such that S(t) = S1(t) for 0 < t < τ.
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7.4. Applications to obtain new functional equations. We give several examples
of the abstract results in section 6. They show that we can recover, extend and produce
new functional equations that in some cases are interesting for their own nature.

Example 7.1. C0-semigroups. Choose a(t) = 1 and k(t) = 1 for t > 0. Then, for
x ∈ X, we obtain
∫ t

0

∫ s

0
S(τ1)S(τ2)x dτ2 dτ2 =

∫ t+s

t

∫ r

0
S(τ)x dτ dr −

∫ s

0

∫ r

0
S(τ)x dτ dr, t, s > 0.

Taking the derivative one time with respect to the variable t we obtain

S(t)

∫ s

0
S(τ2)x dτ2 =

∫ t+s

0
S(τ)x dτ −

∫ t

0
S(τ)x dτ, t, s > 0,

which was introduced in [16, Example 3.4]. Hence taking the derivative with respect
to the variable s we get the Cauchy formula S(s)S(t) = S(t+ s). Observe that in this
way we deduce easily Cauchy’s functional equation from the formula in the Theorem
6.1.

Example 7.2. Cosine families. Choose a(t) = t and k(t) = 1 for t > 0. Then, for
x ∈ X and t, s > 0 we have

∫ t

0

∫ s

0
(t+ s− r1 − r2)S(r1)S(r2)x dr2 dr1 =

(∫ t+s

t

−

∫ s

0

)∫ r

0
(r − τ)S(τ)x dτdr.

To see directly why the above formula is equivalent to the D’Alembert functional equa-
tion S(t+ s)+S(|t− s|) = 2S(t)S(s) we proceed as in the above example, first taking
derivative with respect to the variable t, to obtain

S(t)

∫ s

0
(s − r2)S(r2)x dr2 +

∫ t

0
S(r1)

∫ s

0
S(r2)x dr2dr1

=

∫ t+s

0
(t+ s− τ)S(τ)x dτ −

∫ t

0
(t− τ)S(τ)x dτ,

and then taking derivative with respect to the variable s, to have

S(t)

∫ s

0
S(r2)x dr2 +

∫ t

0
S(r1)S(s)x dr1 =

∫ t+s

0
S(τ)x dτ, t, s > 0.

By [19, Theorem 2] the above functional equation is equivalent to the cosine functional
equation.

Example 7.3. Convoluted semigroups. Choosing a(t) = 1 for t > 0 and k ∈
C2(R+) and proceeding as in the above examples, we obtain a new functional equation
for convoluted semigroups:

S(t)S(s)x = k(0)S(t + s)x+ k′(0)

∫ t+s

0
S(τ)x dτ − k′(s)

∫ t

0
S(τ)x dτ

− k′(t)

∫ s

0
S(τ)x dτ +

∫ t+s

t

k′′(t+ s− r)

∫ r

0
S(τ)x dτ dr

−

∫ s

0
k′′(t+ s− r)

∫ r

0
S(τ)x dτ dr,
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for t, s > 0 and x ∈ X. Setting k(t) := (1− ǫ)+ ǫt for 0 ≤ ǫ ≤ 1, and t ≥ 0, this formula
shows an interesting fact: How continuously moves the functional equation from the
case of semigroups to the case of 1-times integrated semigroup as ǫ varies from 0 to 1:

S(t)S(s)x = (1− ǫ)S(t+ s)x+ ǫ

((∫ t+s

t

−

∫ s

0

)
S(τ)x dτ

)
, t, s > 0, x ∈ X.

Example 7.4. Resolvent families. Now we take k(t) = 1 for t > 0; a ∈ C2(R+) and
we proceed as above. We get this (new) functional equation:

a(0)S(t)S(s)x + S(t)

∫ s

0
a′(s− τ)S(τ)x dτ + S(s)

∫ t

0
a′(t− τ)S(τ)x dτ

+ 2

∫ t

0

∫ s

0
a′′(t+ s− r1 − r2)S(r1)S(r2)x dr2 dr1

= a(0)S(t + s)x+

∫ s

0
a′(t+ s− τ)S(τ)x dτ,

for x ∈ X. For 0 ≤ ǫ ≤ 1, we set a(t) := (1 − ǫ) + ǫt, and we see how the formula
continuously moves from the semigroup to the cosine family cases when ǫ goes from 0
to 1:

(1− ǫ)[S(t)S(s)x− S(t+ s)x] = ǫ[

∫ t+s

0
S(τ)x dτ −

∫ s

0
S(τ)x dτ −

∫ t

0
S(τ)x dτ ],

for x ∈ X. Note the intriguing case ǫ = 1/2 where the difference between both functional
equations is the same, which indicates that in some suitable norm the study of the
topology of the set of all functional equations satisfying (1.4) should be relevant.

Acknowledgement. We thank an anonymous referee for several comments, ideas
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Moscou (1983).

7. J.C. Jaeger, The solution of boundary value problems by a double Laplace transformation,
Bull. Amer. Math. Soc. 46 (8) (1940), 687–693.

8. V. Keyantuo, C. Lizama and P.J. Miana, Algebra homomorphisms defined via convoluted
semigroups and cosine functions, J. Funct. Anal. 257 (11) (2009), 3454–3487.

9. V. Keyantuo, P.J. Miana and L. Sánchez-Lajusticia, Sharp extensions for convoluted solu-
tions of abstract Cauchy problems, Integr. Equ. Oper. Theory. 77 (2) (2013), 211–241.
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