
RESEARCH ARTICLE Open Access

Assessment of the retinal nerve fiber layer
in individuals with obstructive sleep apnea
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Abstract

Background: The effect of obstructive sleep apnea (OSA) syndrome in the peripapillary retinal nerve fiber layer
(RNFL) thicknesses remains unclear. The purpose of this study was to assess RNFL measurements acquired using
scanning laser polarimetry (SLP) and optical coherence tomography (OCT) in patients with OSA.

Methods: The sample of this cross-sectional study included 40 OSA patients and 45 age-matched controls,
consecutively and prospectively selected. All participants underwent at least one reliable standard automated
perimetry (SAP) test, while RNFL measurements were obtained using the SLP and OCT. The OSA group was divided
into 3 sub-groups based on the apnea/hypopnea index (AHI): mild, moderate, or severe OSA. SAP, SLP, and OCT
outcomes were compared between the control and OSA groups. The relationship between AHI and RNFL
parameters was also evaluated.

Results: Age was not different between both groups. Mean deviation of SAP was −0.47 ± 0.9 dB and −1.43 ± 2.3 dB
in the control and OSA groups, respectively (p = 0.01). RNFL thickness measured with OCT was similar between
groups. OSA patients showed increased nerve fiber indicator (NFI; 20.9 ± 7.9 versus 16.42 ± 7.82; p = 0.01) and
decreased superior average (59.74 ± 10.35 versus 63.73 ± 6.58; p = 0.03) obtained with SLP compared with healthy
individuals. In the total sample, NFI and AHI were moderately correlated (r = 0.358; p = 0.001). In severe OSA subjects
(n = 22), NFI and AHI had a Spearman correlation coefficient of 0.44 (p = 0.04).

Conclusion: RNFL thickness measured with OCT did not differ significantly between groups. Severe OSA was
related to a reduction of the RNFL thickness assessed by SLP.

Keywords: Retinal nerve fiber layer, Obstructive sleep apnea, Optic nerve head, Optical coherence tomography,
Scanning laser polarimetry

Background
Obstructive sleep apnea (OSA) syndrome is defined as a
repetitive partial or complete obstruction of the upper
airway during sleep [1]. OSA leads to hypoxia and
hypercapnia [2], and is associated with cardiovascular,
neurologic, and endocrine diseases [3]. Chronic hypoxia
leads to an increase in hypoxia-inducible factor-1alpha
and subsequent upregulation of a number of molecules,
such as endothelin-1 and vascular endothelial growth
factor, which stimulate neovascularization, weaken the

blood–retina barrier, and induce local vasoconstriction
of veins [4].
RNFL measurements provide a peripheral but accessible

window to central nervous system neurons that could be
damaged in association with OSA. Spectral-domain op-
tical coherence tomography (OCT) provides quantitative
and reproducible measurements for assessing RNFL thick-
ness. Numerous studies have confirmed the ability of
OCT to detect and monitor glaucoma [5–10], as well as
to diagnose and follow-up other disorders that affect the
optic nerve head (ONH), such as Parkinson disease, mul-
tiple sclerosis, and Alzheimer’s disease [11–14].
Scanning laser polarimetry (SLP) is a confocal scanning

laser ophthalmoscope based on the principle that polarized
light passing through the birefringent RNFL undergoes a
measurable phase shift, known as retardation, which is
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linearly related to the RNFL tissue thickness [15]. The
cornea also exhibits birefringent properties, which are
significantly neutralized in SLP utilizing variable corneal
compensation (VCC) [16]. Another confounder detected in
RNFL birefringence measurements is the presence of
atypical birefringence pattern images [17]. Thus, the latest
generation of SLP, SLP with enhanced corneal compen-
sation (ECC), includes an enhancement module that
improves the performance of SLP-VCC for detecting RNFL
damage [18–21] and progressive RNFL changes [22].
Recent studies revealed that the retardation measured by
SLP is reduced prior to loss of RNFL thickness measured
by OCT in experimental models [23–26].
Several studies have examined the relationship between

OSA and RNFL thickness [27–35]. Most of these evalu-
ated whether OSA patients have RNFL damage associated
with chronic and intermittent hypoxia. Some reported re-
duced RNFL thickness in OSA patients based on OCT
[28, 29, 31–33]. Ferrandez et al. [35] observed decreased
retinal sensitivity based on white-on-white perimetry
outcomes. Kargi et al. [27] and Moghimi et al. [30]
reported decreased RNFL thickness in OSA patients
measured with SLP compared with healthy subjects; both
studies used older versions of SLP than we used in the
present study (SLP-ECC).
To the best of our knowledge, this is the first study

to evaluate and compare the RNFL loss measured by
SLP-ECC and OCT in patients with OSA.

Methods
The study protocol was approved by the Institutional Re-
view Board (Clinical Research Ethics Committee of Aragon;
CEICA), and informed written consent was obtained from
all participants. The design of the study followed the tenets
of the Declaration of Helsinki for biomedical research. The
control group comprised individuals without abnormal
ocular findings, obesity, or symptoms related to OSA. The
OSA group was prospectively recruited from among
patients at the respiratory department of our hospital.
The OSA group performed an overnight sleep study,

which included electroencephalography, electromyog-
raphy, electrocardiography, pulse oximetry measurements
and respiratory movements. Sleep and respiratory events
were recorded according to standard criteria [36]. OSA
syndrome patients were defined as those with an apnea/
hypopnea index (AHI) of at least 5 events/h. When the
AHI was between 5 and 14 events/h was considered as
mild OSA, when the AHI ranged from 15 to 19 events/h
was considered as moderate OSA, and when the AHI was
higher than 19 events/h was considered as severe OSA.
Inclusion criteria were best-corrected visual acuity of at

least 20/40, refractive error within ±5.00 diopters equiva-
lent sphere, and less than 2 diopters astigmatism; open an-
terior chamber angle; and transparent ocular media (lens

opacity <1) based on the Lens Opacities Classification Sys-
tem III system [37]. Individuals with previous intraocular
surgery, history of any ocular or neurologic disease, dia-
betes, previous treatment with non-invasive mechanical
ventilation or oxygen therapy were excluded. Subjects
with intraocular pressure higher than 20 mmHg, glau-
comatous optic nerve head appearance, or glaucomatous
visual field defects were also excluded.

Study protocol
Participants underwent a full ophthalmologic examination:
best-corrected visual acuity, slit-lamp biomicroscopy of the
anterior segment, applanation tonometry (Goldmann),
gonioscopy, ultrasound central corneal thickness measure-
ment (OcuScan RxP; Alcon Laboratories Inc, Irvine, CA),
and ophthalmoscopy of the posterior segment.
Two reliable standard automated perimetries (SAPs)

were performed using a Humphrey Field analyzer, model
750i (Zeiss Humphrey Systems, Dublin CA). The 24-2
Swedish Interactive Threshold Algorithm (SITA) Standard
program was selected. If fixation losses were greater than
20 % or false positive or false negative rates were greater
than 15 %, the perimetry was repeated at least 3 days apart
to avoid a fatigue effect. The SAPs were performed before
any clinical examination or imaging test. The data from
the second reliable SAP were used for the statistical ana-
lysis to minimize the learning effect.
The Cirrus OCT (Carl Zeiss Meditec, Dublin, CA;

Optic Disc Cube 200x200; software version 6.2) was
used to measure the peripapillary RNFL thickness after
mydriasis (0.5 % tropicamide; Alcon Laboratories Inc,
Fort Worth, TX). Images were focused and acquired
when subjects were properly positioned. Only scans with
a signal/strength ratio greater than 6/10 were accepted.
Left eye data were converted to a right eye format.
The SLP-ECC (GDx PRO, Carl Zeiss Meditec, soft-

ware version 1.0) was performed by the same operator
following a standard protocol. All scans were acquired
through undilated pupils with a low ambient light.
Subjects were asked to keep their head still during each
measurement, with their faces resting on the facemask
to allow for the best alignment between the instrument’s
anterior segment compensator and the eye position. A
primary scan was obtained before each measurement to
compensate for corneal birefringence.
The ECC algorithm introduced a predetermined large

birefringence bias to shift the measurement of the total
retardation to a higher value region to remove noise and
avoid the problem of atypical patterns [38]. After image
acquisition, the birefringent bias was removed mathem-
atically, point-by-point, from the final RNFL image.
Calculations were performed on a ring of fixed sized
tissue centered on the ONH head automatically deter-
mined by the SLP-ECC software.
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Images that were obtained during eye movement,
unfocused and/or poorly centered images, and those
with a quality scan score of less than seven were
excluded. Good-quality images from SLP were defined
by residual anterior segment retardation of 15 nm or less
and an atypical scan score not greater than 25. SLP
parameters used as outcome measures for this investigation
included nerve fiber indicator (NFI), temporal-superior-
nasal-inferior-temporal (TSNIT) average, superior average,
inferior average, and TSNIT standard deviation (SD). The
NFI is a global measure based on the entire RNFL thickness
map, and it is calculated using a support vector machine
algorithm based on several RNFL parameters. NFI ranges
from 1 to 100, with lower values (around <25) indicating
normal RNFL. Although some studies indicate that
the NFI is the most sensitive parameter of SLP for
glaucoma diagnosis [39, 40], its calculation method is
based on various parameters and therefore it does not
directly indicate RNFL thickness.
All tests were performed within 6 weeks of the partici-

pant’s date of enrollment into the study.

Statistical analysis
Statistical analyses were calculated using the IBM SPSS
(version 22.0; IBM Corporation, Somers, NY) statistical
software. For all analyses, p < 0.05 was considered statisti-
cally significant. Only one eye per participant was ran-
domly chosen, unless only one eye fulfilled the inclusion
criteria. All study variables were normally distributed, as
verified by the Kolmogorov-Smirnov test. Student’s t tests
were used to compare demographics, SAP, OCT, and SLP-
ECC parameters between groups. Pearson correlations
were calculated between the AHI and OCT and SLP-ECC
parameters, and Spearman correlations were calculated
between severe OSA and OCTand SLP-ECC parameters.

Results
The study sample comprised 45 controls and 40 OSA pa-
tients of Caucasian origin. Mean age was 48.67 ± 8.12 years
in the control group and 46.30 ± 9.31 years in the OSA
group (p = 0.21; Table 1). Intraocular pressure was signifi-
cantly lower in the OSA group (17.42 ± 2.6 mmHg in
healthy subjects and 14.23 ± 2.6 mmHg in OSA patients;
p < 0.001) and best-corrected visual acuity was higher in
the OSA group (0.93 ± 0.08 versus 0.98 ± 0.07; p = 0.006),
although these differences were not clinically meaningful.
Central corneal thickness did not differ between the
groups (557.44 ± 33.61 μm in healthy subjects and
555.75 ± 23.44 μm in OSA patients; p = 0.79).
In the OSA group, the mean Epworth Sleepiness

Scale score was 9.17 ± 4.31 (over 24). During the over-
night sleep study, systolic and diastolic blood pressures
were 121.34 ± 13.51 mmHg and 80.83 ± 8.08 mmHg,
respectively, while minimum oxygen saturation was

80.63 ± 8.28 % (range: 54–94 %), and sleep latency was
0.27 ± 0.25 min (range: 0.03–1.30 min). The mean AHI
was 41.46 ± 23.59 (range: 6–97).
Main indices of SAP were different between both

groups. Mean deviation (−1.43 ± 2.35 dB versus −0.47 ±
0.9 dB; p = 0.01) and the visual field index (98.03 ± 3.37
versus 99.47 ± 0.63; p = 0.007) were lower in the OSA
group, while pattern standard deviation was higher in
the OSA group (1.83 ± 0.76 versus 1.43 ± 0.21; p = 0.001).
The OCT parameters revealed no differences between

groups in peripapillary RNFL thickness at each of the 12
clock-hour positions, in the 4 quadrants, or in the
average thickness (Table 2).
Table 3 shows the comparison of SLP-ECC parameters

between the healthy and OSA patients. NFI was higher in
the OSA group (20.9 ± 7.9 versus 16.42 ± 7.82; p = 0.01),
and the superior average was lower in the OSA group
(59.74 ± 10.35 versus 63.73 ± 6.58; p = 0.03).
NFI obtained with SLP-ECC correlated moderately

with the AHI with a Pearson correlation coefficient of
0.358 (p = 0.001). In the 22 severe OSA patients, NFI
and AHI had a Spearman correlation coefficient of
0.44 (p = 0.04).

Discussion
OSA syndrome has a reported prevalence of more than
20 % but the pathogenesis of neurodegeneration in OSA re-
mains unclear [41, 42]. OSA is associated with arterial and
pulmonary hypertension, neurovascular and cardiovascular
disease, arrhythmia, and other systemic disorders [43].
OSA leads to secondary vascular dysregulation due to the

hypoxia and hypercapnia produced during the apnea
episodes. The hypoxia-hypercapnia process, the autonomic
dysregulation, and the endocrine and hemodynamic
changes lead to a state of oxidative stress, which is

Table 1 Clinical characteristics of the study population

Control OSA

Mean SD Mean SD p*

Age (years) 48.67 8.12 46.30 9.31 0.214

BCVA (Snellen) 0.93 0.08 0.98 0.07 0.006

SE (Diopters) −0.23 2.17 0.12 1.24 0.372

IOP (mmHg) 17.42 2.60 14.23 2.64 <0.001

Pachymetry (μm) 557.44 33.61 555.75 23.44 0.792

MD SAP (dB) −0.47 0.90 −1.43 2.35 0.014

PSD SAP 1.43 0.21 1.83 0.76 0.001

VFI SAP 99.47 0.63 98.03 3.37 0.007

n 45 40

OSA Obstructive sleep apnea, SD Standard deviation, BCVA Best-corrected
visual acuity, SE Spherical equivalent, IOP Intraocular pressure, MD Mean
deviation, SAP Standard automated perimetry, PSD Pattern standard deviation,
VFI Visual field index, n number of cases
*Student’s t test
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an important factor in many intermediary mechanisms of
diverse pathologies. This dysregulation results in increased
circulating blood endothelin-1 levels in the OHN among
other tissues. Increases in circulating endothelin-1 are
also associated with other diseases like multiple scler-
osis [44], fibromyalgia [45], and transiently during optic
neuritis [46].
Our hypothesis was based on the idea that ONH

vascularization in OSA patients is compromised as sug-
gested by the vascular theory proposed by Anderson [47],
which states that axonal nutrition and axoplasmic flow are
affected by impaired ONH microcirculation. Persistent or
temporary ischemia can block the blood supply from the
posterior ciliary arteries to the short posterior ciliary

arteries, thus leading to non-perfusion of the anterior part
of the ONH and neuronal ischemia. Continuous poor
vascularization of the ONH during apneic episodes could
alter the ONH morphology, which could be detected by
OCTand SLP-ECC.
Previous studies, performed with different imaging

devices, reported contradictory outcomes regarding the
RNFL thickness in OSA patients [27–35]. Some of them
found decreased RNFL thickness in OSA individuals
[27–34], while others found no reduction [35, 48] or no
relationship between the RNFL thickness and disease
severity [30, 31].
Although we could not evidence changes in the RNFL

thickness assessed by OCT, there were differences in the

Table 2 Differences in peripapillary RNFL thickness measured by OCT between the control group and OSA group

Control OSA

Min Max Mean SD Min Max Mean SD p*

H1 58 161 117.15 21.96 30 163 112.72 24.18 0.394

H2 19 139 87.93 23.26 64 160 93.85 18.39 0.210

H3 15 83 58.43 13.51 45 77 59.90 7.82 0.552

H4 41 115 73.38 17.28 30 104 68.45 13.03 0.154

H5 61 162 108.55 25.69 81 210 120.03 29.37 0.067

H6 104 211 148.85 25.04 103 213 150.10 24.01 0.820

H7 11 180 141.35 28.22 92 181 134.93 21.99 0.260

H8 49 86 68.17 10.36 42 95 64.45 11.83 0.138

H9 34 73 50.15 8.21 36 66 51.78 6.85 0.340

H10 55 144 78.18 16.22 43 100 73.58 12.89 0.164

H11 102 184 132.28 18.50 10 169 122.37 30.21 0.081

H12 86 195 133.63 27.11 39 183 128.48 32.80 0.446

Superior 101 161 127.65 15.58 55 151 120.75 19.86 0.088

Inferior 101 165 133.70 16.10 110 171 134.13 15.61 0.905

Nasal 38 110 74.07 14.61 52 148 77.72 17.78 0.319

Temporal 47 88 65.32 8.95 51 79 63.95 7.55 0.460

Average thickness 84 120 100.20 8.53 61 114 97.00 10.43 0.137

Values are expressed in microns (μm)
OSA Obstructive sleep apnea, Min Minimum, Max Maximum, SD Standard deviation, H retinal nerve fiber layer thickness at every clock hour position for a
right eye
*Student’s t test

Table 3 SLP-ECC parameter values for control group and OSA patients. Values are expressed in polarimetric microns (p-μm), except
for the NFI (learning classifier)

Control group OSA patients

Min Max Mean SD Min Max Mean SD p*

NFI 2 29 16.42 7.82 2 47 20.90 7.90 0.010

TSNIT Average 37.4 63.1 51.68 5.01 45.6 62.4 51.13 3.29 0.550

Superior Average 48.1 77.8 63.73 6.58 6.6 81.8 59.74 10.35 0.035

Inferior Average 45.9 87.4 64.70 7.73 53.2 78.2 63.40 6.36 0.402

TSNIT SD 17.3 34.2 25.52 3.75 14.8 35 24.25 3.97 0.132

OSA Obstructive sleep apnea, Min Minimum, Max Maximum, SD Standard deviation, NFI Never Fiber Index, TSNIT Temporal-Superior-Nasal-Inferior-Temporal
*Student’s t test
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main indices of SAP, and NFI and superior average
measured with SLP-ECC. The RNFL thickness at the
superior quadrant measured by OCT did not reach
statistical significance (p = 0.088), but tended to follow a
similar pattern as the SLP-ECC findings (lower value in
the OSA group), demonstrating that the results from the
two methods are not at variance, but that SLP-ECC is
more sensitive.
The RNFL thickness values acquired with these

devices cannot be compared directly or used inter-
changeably, because the measurements are based on
different optical techniques. The ability of SLP to detect
RNFL defects has been widely validated [49–51], but
some experimental studies suggest that the birefringence
of the RNFL may be decreased prior to reduction of the
RNFL thickness [23–26]. This characteristic of the RNFL
would lead to better performance of the SLP-ECC
compared with spectral-domain OCT to detect changes
in OSA patients.
The OSA group exhibited a diffuse depression of the vis-

ual field, without typical patterns of other pathologies such
as glaucoma [35]. It seems that OSA syndrome mainly
leads to a dysfunction of the retinal ganglion cells instead of
their death. Consequently, while the retinal anatomy is rela-
tively preserved, SAP is more sensitive to detect the mal-
function of the visual pathway than imaging test.
Huseyinoglu et al. reported worse mean indices of

Octopus perimetry in OSA patients compared to healthy
individuals [32]. Nevertheless, Lin et al. observed similar
mean deviation of SAP (30–2 SITA Standard program)
between the control and OSA groups [28]. Different
protocol designs and samples make it difficult to compare
the results among studies.
Recent evidence demonstrates that RNFL retardation

measured by SLP is reduced earlier than RNFL thickness
thinning measured by OCT in experimental models,
including experimental glaucoma [17–20]. SLP assesses
RNFL thickness around the optic disc. Because the tech-
nology is based on reflectivity, measurement is hampered
by polarization of the ocular media, and this can lead to
confounding by non-RNFL birefringence. Improvements
in this technology, including ECC, have led to more repro-
ducible results and more accurate discrimination between
healthy and glaucomatous eyes [52, 53].
Although other authors have evaluated RNFL meas-

urement using SLP-VCC [27, 30], to our knowledge, this
is the first study evaluating RNFL thickness measured
with SLP-ECC in OSA patients. Kargi et al. [27] used
the SLP with a fixed corneal polarization compensator
(FCC) and Moghimi et al. [30] used the SLP-VCC,
whose measurements are not as accurate as those
obtained using the SLP-ECC or spectral-domain OCT.
Individual variations in corneal birefringence, which are
not completely corrected by FCC, result in over- or

underestimation of RNFL parameters [54]. Moghimi et al.
[30] investigated the presence of ocular hypertension and
glaucoma in OSA syndrome using functional and struc-
tural tests. They found that 6.7 % of OSA patients had an
intraocular pressure higher than 21 mmHg, and 3.9 % of
OSA patients had glaucoma, while the group included no
patients with ocular hypertension or glaucoma. In our
study, we excluded glaucoma patients or patients with
intraocular hypertension because our purpose was to
study the effect of intermittent hypoxia, which occurs in
OSA syndrome, on the peripapillary RNFL thickness.
The NFI and superior average acquired with SLP-ECC

differed significantly between healthy controls and OSA
patients. It is noteworthy, however, that the NFI meas-
urement is a machine learning classifier based on a
linear support vector machine, not a parameter used to
measure disease severity.
A limitation of our study was that healthy controls did

not perform an overnight sleep study because this exam-
ination is costly. We assumed that the control group did
not include individuals with apnea/hypopnea events,
because obesity and symptoms related to OSA (fatigue,
snoring, sleepiness, adenoid facies, etc.) were exclusion
criteria for this group.

Conclusions
In the present study, OCT did not demonstrate neuro-
degenerative changes in OSA patients, but SAP and
some SLP-ECC parameters were significantly reduced in
OSA patients compared with healthy individuals. Further
prospective longitudinal studies are required to clarify
the role of visual field, OCT and SLP-ECC as neurode-
generative markers in OSA syndrome.
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