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ABSTRACT – Background and Objectives: Nanotechnology is becoming a tool for the
study of changes in the metabolome of patients in different states of disease. Analytical
techniques such as Electrospray Mass Spectrometry, allow to find biomarkers by determi-
nation of metabolites. Nowadays, there is not an objective analytical approach for diagno-
sis of stress. Thus, the objectives of this pilot work are:

– Describing the development of a fast, direct and non-invasive analytical protocol, ap-
plied for the first time, to study the metabolomic profile of patient s different states through
a disease.

– Testing the protocol in a pilot sample with non-stressed and stress-induced subjects.
Methods: High resolution direct infusion electrospray mass spectrometry has been used

to analyse the metabolome of blood samples (0.3 ml) from six subject s.
Results: Data prove a clear discrimination between non-stressed and stressed states in

the metabolome. Data showed different predominant metabolites in both states. Results
allow objective characterization of the state of the patient.

Conclusions: Although this is a pilot study, the method was successful in discriminating
different metabolites in non-stressed and stress-induced subjects.
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Introduction

The main aim of biochemical medicine is
to understand the molecular biological mech-
anisms and being able to monitor them1.
These mechanisms can be studied by ana -
lysing the expressed genes and their corre-
sponding proteins2. However, our interest
lies in knowing the differences in patients’
biosynthetic cycle, which can help us to un-
derstand the different disease processes in
subjects who present equivalent biological
and environmental conditions3. The human
cells produce small molecules known as
metabolites. A metabolic profile is impor-
tant to understand the human biology4,5.

Metabolomics allows fast and simultane-
ous measurement of hundreds of metabolites
of medical interest. Thus it is one of the tools
to open up new prospects with great potential
in the study of diseases6,7 such as coronary
artery disease11, in diagnostic protocols8, the
search for biomarkers9 and the development
of drugs10. The metabolomic analysis of cere-
brospinal fluid has enabled us to predict the
clinical outcome of subarachnoid haemor-
rhage12. Metabolomic profiling in serum has
also allowed us to classify patients with neu-
rological diseases such as amyotrophic lateral
sclerosis13.

Stress affects the biological functions caus-
ing biochemical instability and biological
failure14,15. Stressors can promote disturban -
ces ranging from immune system dysfunction
to psychiatric disorders16,17, and cause neu-
ropathological changes similar to those pro-
voked by Alzheimer’s disease18 or dementia19.

Stress is considered as a situation of bio-
logical and psychological activation triggered
by the interaction of the individual with ex-
ternal agents that force his/her capacity of
adaptation and survival20. Stress is associated
primarily with cortisol, the main stress hor-

mone which alters the body’s functions21,23.
The biosynthesis of the cortisol cycle has
been well-studied24-26. Cortisol has wide-
ranging systemic effects on the organism:
regulating insulin in blood27, linked to the de-
velopment of type II diabetes disease, to in-
flammatory processes (tumors) or immuno-
logical diseases28, obesity, cardiovascular
diseases, thyroid disorders, mental illness29

and depression30,31. The measurement of cor-
tisol does not provide an overview of the
biochemical profile, so individual specific
metabolomic conditions in each patient can-
not be known neither if there is a connection
to any other pathology32. Likewise, tests car-
ried out by psychologists to diagnose stress
are highly subjective. They are composed of
questions that the researched subject must
understand and also differentiate and com-
pare their emotional state. Besides, they also
depend on the therapist’s conclusions inter-
preting the answers and the morphological
analysis of the patient33.

Subsequently, stress has been considered, in
this work, as an important factor to be studied
under the metabolomic approach. The
metabolome is the response of an organism to
an alteration, and is a very useful tool for un-
derstanding the biological mechanisms of
complex organisms. It is a step beyond the
classical approach of biochemistry. This new
approach applied to the study of stress is of
importance since its method of diagnosis is
limited. Nor are we aware of the behaviour of
the metabolome in the early stages of any
symptoms (stress) or what future links, there
may be to any subsequent diseases occurring
in the individual. This could allow us to set a
specific diagnosis for each case and there-
fore initiate treatment prior to the develop-
ment of the disease. Therefore, the identifi-
cation of key biomarkers with a fast, simple
and complete analysis is important for the
early detection of certain diseases. In addition,



since stress is a multifactorial problem, it can
be understood that it is unlikely that just a sin-
gle biomarker (cortisol) is relevant to its pos-
sible diagnosis. A panel of biomar kers and
their values are likely to be a more sensitive
and specific approach to study the disease34.

Current analytical methods such as NMR
and mass spectrometry (MS) are often com-
bined with chromatography, which requires
several millilitres of sample and a specific clin-
ical protocol35. Chromatography gives good
analytical results but, it has limitations when it
comes to the yield and performance of the
sample. There are attempts to apply new tech-
niques to reduce analysis time and to increase
the information obtained from each analy-
sis36,37 the yield per sample and the reliability.

Recently, analytical science is searching for
direct methods injecting samples directly into
the mass spectrometer38 improving repro-
ducibility for the same non-target metabolites
and, increasing responsiveness and yield39.

The aim of this pilot study is to use a non-
invasive and precise technique as direct infu-
sion mass spectrometry, to find and charac-
terize metabolic differences in two different
biological situations of an individual: relaxed
and stressed states.

Materials and methods

Participants and sampling

This study has been run with volunteer
subjects from the University population. The
subjects had an age range from 18 to 30 years
(both gender). Before performing the ses-
sions for induced-stress and relaxation, each
volunteer read and completed a survey with
a questionnaire which was focused on: on the
volunteer’s habits and life style, consumption
of coffee, alcohol, psychotropic substances,
and smoking habits. Questions in relation to
chronic diseases or prescribed regular drug
intake were included. Possible depressed pa-
tients with pre-existing physical or mental
disorders, medication, and/or illicit drug use,
were excluded from the group after this per-
sonal evaluation.

Individuals were adequately informed, and
they gave their informed consent to participate
in the study which was approved by the Ethics
Committee at Clinical Hospital “Lozano Ble -
sa” of the University of Zaragoza, Spain.

Demographic data of the samples that
were selected are shown in Table 1.
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Table 1
Demographic data of selected samples for the study.

Sample number Age (years) Weight (kg) Height (cm) Gender

Sample 1 20 67 171 Male

Sample 2 19 78 180 Male

Sample 3 19 77 185 Male

Sample 4 19 54 162 Female

Sample 5 22 93 182 Male

Sample 6 24 68 176 Male

Sample 7 21 61 170 Female

Sample 8 20 70 175 Male



Design of the relaxation
and stress sessions

The design and preparation of the sessions
were performed under the framework of the
“ES3 project”40. Data acquisition and sample
preparation were done by the Zarademp team
in collaboration with BSICoS I3A team. Each
research subject underwent, a 35-minute re-
laxation session including audio and guided
relaxation, in a space with dimmed lights
while in a comfortable position. This state is
considered in this work as basal. Stress was
induced by a modification of the Trier Social
Stress Test, which is widely used in stress re-
search41,42. The protocol follows the one de-
scribed in reference43.

The State Trait Anxiety Inventory (STAI)44,
Spanish version45,46, measures both state anx-
iety and trait anxiety; The STAI has demon-
strated adequate reliability (Cronbach’s alpha
0.90 to 0.94 for trait anxiety and state anxi-
ety, respectively)45,46.

The Perceived Stress Scale (EEP) is the
most widely used psychological instrument
for measuring the perception of stress. This
Likert-type scale measures a person’s per-
ception of potentially stressful events47. The
Spanish version48 of the EEP demonstrated
adequate reliability (internal consistency, al-
pha = 0.81, and test-re-test r = 0.73) validity
(concurrent) and sensitivity. Additional data
indicate adequate reliability (alpha = 0.82,
test-retest, r = 0.77), validity and sensitivity
of the short version of 10 items which is used
in this study.

The stress sessions began after a prior 10-
minute relaxation session. To stress the re-
search subjects a protocol based on an emo-
tional stress test was used. Biophysical
parameters and biological sampling were car-
ried out once the session had ended and were

recorded throughout the entire test. Bio-
chemical parameters and blood pressure were
taken at the end of each session (Table 2).
The biological samples were stored in sterile,
airtight compartments at -80°C until the time
of analysis.

Reagents and samples

Blood samples for analysis were taken by
pricking participants’ fingers. Approximately
0.3 ml was collected in a sterilized container
tube with no chelating agent ethylene di-
amine tetraacetic acid (EDTA). The samples
were immediately protected from light and
stored at -80°C until analysis. No blood sam-
ple underwent any pre-treatment prior to
mass spectrometry analysis.

Mass spectrometry (LC-MS) grade metha -
nol and water for ESI analysis were used
(Fisher). Formic acid (99% purity- Fluka) was
applied as a protonate agent. 0.45 µm PVDF
sterile filters 100 PC2 ROTH (Carl Roth
GmbH.CoKG- TECNOCROMA) were used.

Sample preparation

Samples were thawed on ice and homoge-
nized with vortex agitation. 100 µl of unclo -
thed blood was taken and 100 µl of water
was added and homogenized. 100 µl of the so-
lution was collected and added to 300 µl of
LC-MS grade methanol. The resulting solu-
tion was homogenized and left to stand for 30
minutes at -20°C. Subsequently, samples were
centrifuged at 10,000 rpm for 10 minutes at
4°C and the supernatant filtered with a sterile
PVDF 0.45 µm filter avoiding the dead vol-
ume. For positive mode detection, LC-MS
grade methanol containing 0.1% formic acid
(99% purity) was added to the sample, ob-
taining a sample dilution of 1:1000.

262 MÓNICA LORENZO-TEJEDOR ET AL.



Instrumentation

Measurements were taken using a hybrid
triple quadruple/linear ion trap mass spec-
trometer 4000 QTRAP LC/MS/MS System
(AB Sciex.) with an electrospray ionization
(ESI) source interface for high-sensitivity, full-
scan MS and MS/MS spectra with high selec-
tivity. The system was operated using Analyst
software version 1.5.2 (Build 5704) (AB
Sciex) for data acquisition and pre-processing.

For MS/MS analysis collision-induced dis-
sociation (CID) mode was used and was set to
30% to 50% normalized collision energy (CE)
for selected molecular Mass/Charge peaks.

Data Processing and compound
identification

Data was processed by using the Marker
View 1.2 software (AB SCIEX) for statistical
analysis, by picking and matching m/z across
samples resulting into a two dimensional ma-
trix of peaks and intensities after data nor-
malization. m/z tolerance equalled to 50 ppm
and presence of each feature in at least 3
samples. After performing a T-test, the sub-
sequence principal component analysis
Pareto (PCA) was performed. Metabolites
with p-value lower than 0.05 were considered
statistically significant. In order to find dif-
ferences of biomarker concentration between
stressed and relaxed groups Variable Impor-
tance in Projection (VIP) was used for pre-
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Table 2
Physiological measurements in the relalaxation-stress sessions.

Biophysical variables Location on the body Measurement features

Skin temperature (ST) Little finger of non-dominant Continuous (250 Hz)
hand and cheek

Skin conductance (SC) First phalanx of ring and index fingers, Continuous (250 Hz)
non-dominant hand

Electrocardiogram (ECG) (3 sources) thorax Continuous (1 KHz)

Respiratory signal (RR) Thorax Continuous (250 Hz)

Non-continuous
Blood pressure (BP) Arm (at the beginning and end

of each session)

Wave pulse (PPG) Middle finger of non-dominant hand Continuous (250 Hz)

Electromyogram (EMG) Left trapezium and orbicular muscles Continuous (1 KHz)

Biochemical variables Location Measurement features

Prolactin Blood At the end of session (10:45)

Copeptin

Glucose

10 minutes following relaxation
Cortisol Saliva (10:20) and at the end of the

session (10:45)

a-amylase



dominant m/z selection in each group of data.
R2 and Q2 values provided good quality of the
resulting model.

Identification of significant compounds was
made manually matching the experimental ac-
curate mass and spectra with available infor-
mation contained in metabolic databases. By
means of MS/MS analysis, metabolite struc-
ture was confirmed by characteristic frag-
ments described in literature or compared to
standard compounds.

Results

Only the hydrophilic portion of the
metabolome is presented in this paper, sam-
ple profiles were acquired for each research
subject in relaxed (basal) and stress-induced
condition (Figure 1). Each of these profiles
showed a large number of signals, around
1500 m/z49. Each spectrum can be considered
a metabolomic fingerprint of the subject in
each state. The matrix effect on metabolomic
profiles is a significant factor and is taken into
account in the study. It was attenuated by
optimizing the dilution factor, so the intensity
of the m/z signal of each metabolite has a lin-
ear relationship with the concentration when
dilutions are high50,51.

In order to compare profiles of subjects in
both states, two groups of m/z signal/intensity
were established (X-B for basal-non-stressed
state, X-E for induced-stress state). A chemo-
metric partial least squares discriminant
(PLS-DA) analysis was performed using the
m/z signal/intensities of the samples from the
two groups52. The models gave rise to a good
classification outcome as shown in the score
plots (Figure 2). These groups of results were
evaluated statistically and the resulting mod-
els showed values in line with quality para-

meters R2 and Q2 (explained variance of ap-
proximately 99% and a predicted variance
above 50%)53. T-test analysis with p-values
and data modelling using the PLS (Principal
Least Squares) progression were carried
out54,55. A large number of signals could be
studied in the discrimination of classes con-
sidering the Variable-Importance-in-Projec-
tion-(VIP) which was set at a minimum value
of 2. Generally, VIP set at 1 can be consid-
ered important in a given model56. With re-
gard to the reproducibility of the method,
this could be considered good with variation
coefficients (CV%) below 20% for the
metabolites identified. Thus, subjectivity in
the selection process is avoided57.

A complex metabolite profile was obtained
since there has not been any pre-treatment in
the process of analysis. Around 1500 of MS
peaks out of a sample were detected (Figure
1). All peaks were analyzed, evaluated and
exported for statistical analysis. In order to
differentiate between subjects in a basal and
stress-induced state, the normalized data was
classified into two sets (basal and stressed),
and evaluated by T-test and partial least
squares discriminant analysis-PCA (Figure 2).

Statistic results are shown in Table 3.
Model built with the data, provided a good
classification in two groups. Thus, by PCA
we could confirm that the observed behavior
is real and not random and study m/z peaks
that can be specific for one group.

The more discriminant signals were se-
lected according to Variable-Importance-in-
the-Projection-(VIP) for later study by MS/
MS and molecule identification (Table 3).
After the data processing, we selected m/z
values that presented a p-value which de-
noted a correct statistical hypothesis. Many
low molecular weight metabolites presented
alterations in stressed state samples as com-
pared to basal state samples.
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In order to distinguish prevailing metabo-
lites in both basal and stress groups, peaks
with specific p-value and good CV where
evaluated considering the VIP. Together with
their VIP value, the PCA statistical analysis
clarifies if the metabolite is of greater im-
portance in each group (Table 3).

Examples of specific molecules for stressed
subjects are the peak m/z 363.4653 [M+H]+,
(-7.26 Δppm) (Table 3) which was identified
as Cortisol/Hydrocortisone and Estrone m/z
271.1706 [M+H]+. Following this same pro-
cedure other compounds from steroid hor-
mone metabolism were detected. Similarly,
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Figure 1. Example of full spectra metabolome profile of a subject detected
for Basal (non-stressed) and stress-induced states.

(Range m/z (mass/charge): 100 to 1000). a) Basal state subject, b) stress-induced state subject.
More than 1500 signals (m/z for possible compounds) were detected for each sample in each group of subjects.
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Figure 2. Diagrams of the statistical results of the whole MS (Mass Spectrometry)
data found in both groups of subject states after using bioinformatics:

a) Scores plots of Pareto PCA for basal state subject (squares), stress-induced state subjects (circles).
b) Pareto loadings for PCA m/z (molecular mass/charge) peaks.
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statistical values expressed specificity for other
metabolites in the metabolism of Serotonine
(m/z 177.1039 [M+H]+), such as L-Trypto-
phan (m/z 205.0967 [M+H]+) or Melatonine
(m/z 233.1270 [M+H]+), which were pre-
dominant in samples of basal state (Table 3).

MS/MS analysis was performed to con-
firm elemental composition of the peaks and
identify the studied biomarkers (Table 4).

Discussion

This pilot study was designed to use direct
infusion mass spectrometry as a non-invasive
and precise technique to perform a meta-
bolic-profiling screening and characterized
metabolic differences in relaxed and stressed-
induced subjects.

The comparison of the metabolomic com-
position profiles of the different states of the
subject will form the basis of the search for
biochemical data. The results show that the
characterized metabolites by means of the
new technique applied in this pilot work were
different in the two compared states; relaxed
and stressed-induced situations. The cortisol
and their related metabolites are predomi-
nant in the stress state while serotonine and
melatonine, among other metabolites, were
found to be predominant in the relaxed state
when comparing both groups of metabolic-
profiling data.

Through studies in the past we know sig-
nificantly more about the neurobiological
correlations of stress58. What we do not know
is why these changes are associated with the
development of disorders in some people but
not in others. The importance of understand-
ing the individual differences is key to the
whole comprehension of stress.

Therefore, the possibility of developing a
non-invasive, direct and fast method of analy-

sis, to assist the study of stress in an objective
manner, can be considered a step forward
both patient correct diagnosis and treatment
Moreover, given the risk that a patient will
develop a neurological disease of greater
medical significance, it would be very valu-
able to have, a prior basal and stressed state
metabolomic profile to assist professionals
treating said patient.

Since the complexity of the human meta -
bolome is of a great magnitude, different com-
plementary techniques for its study are being
developed59-61. The techniques most commonly
used have been those based on NMR34,62-64.
However, it has its drawbacks since it cannot
detect metabolites in very low concentrations,
it requires blood samples in millilitres and a
protocol that is slow and costly.

Therefore, the application of nanotechnol-
ogy techniques in search of a non-invasive, fast
and direct analytical method that could offer a
patient’s metabolomic-profile at a specific
time is needed. In the method that we have de-
veloped the required sample amount is in mi-
crolitres (one drops of blood from the subject’s
fingers is enough). The sample does not un-
dergo pre-treatment which might adulterate
or remove biochemical data, so a more com-
plete metabolomic fingerprint is expected.

Many authors in psychiatric or neurologi-
cal disease research use metabolic-profiling
associated to these diseases including LC/
MS, GC/MS and EC/MS60,65,66. However di-
rect infusion mass spectrometry used in this
work is completely unexplored.

This tool provides for the possibility of an
analysis of multiple metabolites in a simple
run, obtaining a metabolomic-fingerprint. Fur-
thermore, the low-time-consuming step before
MS allows for a faster analysis of samples,
which reduces instrumental work and drift be-
tween analysis, increasing reproducibility and
improving accuracy67. This means an im-
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provement in metabolomics applied to biolog-
ical samples as previously described.

Since there are no published papers simi-
lar to this proposed-one, statistical models
whose quality would be comparable or higher
than other studies of psychiatric or neuro-
logical disorders have been used27,39.

Data Information Management Systems
(Bioinformatics), which has been already
used in similar approaches in metabolomics
applied to diseases10,11,12,27,39, allowed a
faster and more effective filtering and selec-
tion of data.

Mass spectrometry which will enable a
more accurate measurement of mass and a
better structural elucidation of the compounds
to be studied using MS/MS was selected68,69.
Direct infusion mass spectrometry can be con-
sidered an effective tool in the study of
metabolomic anomalies in stress research as
proposed in this paper, since it has been suc-
cessful in other diseases or pathologies70,71.
Direct injection analysis into the ionization
source of the mass spectrometer without prior
chromatographic separation is a technique
commonly used with atmospheric pressure
ionization techniques (ESI). It is a high-thro -
ughput approach already used in metabolic-
fingerprinting in crude fungal extracts58 and
yeast intracellular metabolomics72. There is
not yet any study done in the study of stress.
However, the results prove that the methology
applied is robust.

Since the predominant metabolites are dif-
ferent between the two studied states, this al-
lows to objectively characterizing in which
state is any of the subjects.

According to Cowen P.J.58 and other au-
thors72-74 our results confirm that serotonin
and related metabolites decrease in stress sit-
uation. While during stress induction, gluco-
corticoid secretion increases as a response to
stress58,73-76 becoming predominant.

Therefore, an objective tool, as the pre-
sented protocol, could provide important in-
formation to aid in this aim and, although the
presented results emerged from a pilot trial,
they seem promising.

Though the specificity and sensibility of
Mass Spectrometry techniques for low-vol-
umes and low-concentration samples have
been already demonstrated, there is yet the
need to address the problem of false nega-
tives/positives when compared with the psy-
chometric evaluation. Further research is cur-
rently being done to complete the evaluation
of this technique.

Conclusion

The described method, based in this pilot
study, is presented as a tool to identify bio-
markers in stress-induced subjects. Direct In-
fusion Mass Spectrometry protocol in this
work has been adapted to be applied for the
first time in the classification stress-induced
subjects. The results provide a preview of
preliminary measurable outcomes of the ini-
tial objectives discriminating among stressed
or relaxed subjects. It opens the possibility to
compare metabolomic profiles. Furthermore,
this methodology is a quick, direct and non-
invasive method for patients. Nevertheless,
further work needs to be done, such as, accu-
rate quantification of compounds. On the
other hand, a more exhaustive and complete
research should be developed to be able to
have a full screening of results among differ-
ent types of patients and a comparative analy-
sis between metabolomic/biological data and
psychological diagnose. However, we con-
sider that it can be foreseen many applications
for the proposed protocol such as quick-qual-
ity-diagnose, pre-treatment of side effects,
therapeutic target search etc., which can be of
interest in the present-day analytical field.
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