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1. ABSTRACT 

This Thesis was developed throughout “Verkehrs und Maschinensystem” department 

belonging to TU-Berlin with the expectation of making an accurate inquiry in regarding to 

optimization methods of models based on a large quantity of parameters. 

It is specially oriented on Multidisciplinary optimization methods, concretely on multi-

objective optimization. The inquiry is focused on Evolutionary Algorithms (EA1), and how the 

objectives functions are maximized or minimized according to the operators applied. 

Identification of the effect of the chosen optimizer on the optimized design is desired, in the 

limits of suitable numbers of parameters and determinate the settings for the most 

promising solver for crash optimization 

The core of this work is founded on a reduced parametrically crash box. The response of this 

model has been previously studied through an optimization loop updated by a parametric 

CATIA Crash box-Model. This structure is in charge of the joining between the bumper and 

the chassis. Its duty consists of cushioning the impacts and making them less significant for 

the craft.  

The software utilized to carry the optimization process out is OptiSlang. This software is a 

product developed by Dynardo ANSYS GmlH, which allows whereby an intelligibly interface 

and graphics to read the output information and collect all the useful correlations between 

parameters, inputs and outputs in an intuitive way. 
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2. SCENARIO, STRUCTURE AND AIM 

Every engineering area is being calling somehow for continuous improvements on the field 

they are working on. Concretely on this thesis the automotive field is aboard, in order to 

minimize crash consequences against automobile frontal impacts. Optimization methods on 

this area are being currently studied and constantly improved to decrease the damages 

suffered when crashes take place. However, not only the automotive field is concerned 

about this topic but multi-objective optimization is also related to robotics, materials 

improvement, aerospace engineering… Practically every field which the amount of variables 

and their responses are too big to be analyzed, and its improvement becomes a tedious 

matter, multi-objective optimization is need to carry out the tasks other engineering 

methodologies cannot face.  

Before the model introduction, a scheme of the investigation working procedure is described 

below, in order to ease the optimization reasoning. Figure 2.1 

 

Figure 2.1: Investigation scheme 
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The working process starts with the sensitivity analysis, which lets to determinate the most 

relevant parameters according to the objectives established, as in will provide the designs 

that will be used as reference to initial population of the optimization process. Once the 

system is already pre-optimized by the sensitivity analysis, optimization can be run and 

finally the most suitable designs will be extracted from each method, in order to compare 

them and demarcate that one which optimizes the objectives the best. As can be observed 

in the previous scheme, crossover and mutation operator are the pillar on which the process 

is based. Goals of this thesis are summarize along the following points. 

 Regarding to the sensitivity analysis: Knowing the most important parameters, 

reduction of parameters ranges if it is possible and extraction of reference designs. 

 

 Regarding to the optimization processes: Knowing the importance of initial 

population, understanding of how mutation and crossover operator works. Identify the 

consequences of applying mutation on crossover offspring. Demarcating which the most 

suitable optimization solver is. Finding the best designs according to the objectives. 

Improving such designs as much as possible. 

 

The investigation is divided in two main groups: Batch process and OptiSLang. Figure 2.2 

shows a schematic of how the loop is carried out. Batch process gets inputs from OptiSLang 

and then it returns outputs to OptiSLang. 

 

Figure 2.2:Batch-Process and OptiSLang Loop
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3. INTRODUCTION TO THE MODEL 

The thesis is based on crash box model. The response of this structure against impacts 

produced by low velocities is crucial to guarantee the security of the chassis making less 

significant its reparation costs. In Figure 3.1 frontal (a) and lateral (b) views of one random 

model design are shown. The structure is already designed and automatically FEM2 meshed,  

  

a) Frontal view  b) Lateral view 

Figure 3.1: Crash box views 

The bumper is hitched by two crash boxes to the chassis, through the “Contact Shell 

(7000)l”, this element is represented in Figure above by number 4. Its shape is kept. Section 

3.1 delves into the different crash box parts, making a specific description and numbering of 

each one. In Figure 3.2 a) such coupling is illustrated. Bumper’s design is not part of this 

thesis, although logically its shape is essential to minimize the impact on the chassis. In 

Figure 3.2 b) is represented the sort of collision that will be analyzed. Car drives at 15 Km/h 

and frontally crashes to a rigid surface at an angle of ten degrees as is shown in the image . 

The surface tip is round with 150mm radius 

  

a) Bumper. Source: . (Werner, 2014) b) Crash box nodes  (RCAR, 7/2011) 

Figure 3.2: Bumper and impact overview 

(4) 

  

(2) 

(3) 

(1) 

(5) 

(6) 
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3.1 Structure of the model 

The model was designed with CATIA V5, automatically solved with LS-Dyna and the outputs 

are transferred back to the optimizer. It is formed by elements “Beam” and “Shell”. In order 

to provide a better idea of how the model is built, an itemization of it into several fractions is 

made. The goal of the thesis is not to clarify how the model was designed, but find the most 

suitable solve to optimize the crash box. Thus neither specifications of its shape nor how it 

was assembly, mesh or boundaries used will be detailed. 

Table 3.1: Model elements 

Beam elements: Shell elements: 

100001 BeamSpotWelds 

 

3000 Contact_shells 

7000 Contact_shells 

10000 Contact_shells 

2000120 FramebackcapL 

2000121 RailowerouterL 

 

BeamSpotWelds (100001): Welding that joints the “Railowerouter” to the front (10000) and 

back (7000) contact shells Figure 3.1 (1). 

Contact_shells (3000): It brings the energy that will collide to the crash box Figure 3.1 (2) 

Contact_shells (7000):  Its function is to connect the crash box to the chassis through the 

“Frameback” (2000120). It is a compact assemblage that is not easy to deformed Figure 3.1 

(3). 

Contact_shells (10000): It is in charge of modifying the impact angle Figure 3.1 (4). 

FramebackcapL (2000120): It is a thin square sheet that connects by welding the 

“Railowerouter” (2000121) to the “Contact_shell” (7000) Figure 3.1 (5). 

The central part of the structure “RailowerouterL (2000121)” Figure 3.1 (6). is in charge of 

cushioning the impact. Its response against the crash is where the inquiry is focused on. 

Absorbing as much energy as it was possible. Following sequence of images illustrated in 

Figure 3.3, let make an idea of how the crash box shape can be varied. 
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Figure 3.3: Railowerouter [2000121] designs 

 

3.2 Parameters 

Once the model has been presented and its shape is already known, it is possible to focus 

the investigation on the parameters which set it up. Every parameter regardless of its 

importance will be listed below in Table 3.2. Besides each parameter has a corresponding 

number assigned which demarcate its meaning in Figure 3.3.  

Table 3.2: List of parameters that compounds the Crash box. 

Parameter 
Name 

Reference 
Value 

Value 
Type 

min max 

P_B  (1) 32 REAL 20 40 

P_H (2) 30 REAL 28 30 

Zwischenblench vertical (3) 0,9 REAL 0,2 0,99 

Blechdicke  3 REAL 2 4 

Zwischenblech (4) 0,9 REAL 0,1 0,99 

Verkürzung Box (5) 0 REAL 0 1 

Fase (6) 0,5 REAL 0,1 0,8 

 

Table 3.3: Parameters description 

Parameter Description 

P_B Crash box width. 
P_H Crash box height. 
Zwischenblech vertical Width of the vertical sheet metal along the crash box. 
Blechdicke Sheet metal thickness. 
Zwischenblech Width of the horizontal sheet metal along the crash box. 
Verkürzung Box: Crash box length 
Fase Cross position. 

 

1111 

1122 

1113 

14  4 

1115 
1116 
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It is important to point out that range values of the parameters might be modified as the 

Design of the Experiment requires it. Notice that one of the goals of the sensitivity analysis is 

to delimitate those ranges according to the results achieved. 

3.3 Inputs and Outputs 

Inputs are the necessary information about the model are already known and are used to 

run the analysis. During this Thesis, the inputs that will be used are the characteristic 

parameters of the model which were described within the previous part. 

By contrast, the outputs are the responses that have been obtained by a previous analysis of 

the model. In this case, the model was solved by LS-Dyna and results that were captured are 

listed in Table 3.4. 

Table 3.4: List of output values 

OUTPUT VALUE UNITS 

crash_Box_efficiency_per 0,57724 
- 

crash_Box_efficiency_per_deformed 0,82793 
- 

Maximalkraft 69779,1 
KN 

added_mass_perc_max 0,26671 
- 

hourglass_max 10727,4 
J 

 

 

Crash Box efficiency: Ratio of absorbed energy by the crash box to the maximal energy 

supplied to it considering the total crash box length. (Werner, 2014) 

     
     
 
   

           
 (3.1) 

Crash Box efficiency deformed: Ratio of absorbed energy by the crash box to the maximal 

energy supplied to it considering the crashed length. (Werner, 2014) 

        
       

 
    

 

                   
 (3.2) 



  3. Introduction to the model 

8 

Maximalkraft: Maximal reaction force at the end of the crash box. 

Added mass max: Maximum artificial mass added to the element in comparison to the real 

model 

Hourglass max: False deformation mode of a FEM, resulting from the excitation of zero 

energy degrees of freedom. 
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4. SENSITIVITY ANALYSIS 

By definition, Sensitivity Analysis is the study of how the uncertainty in the output of a model 

can be apportioned, qualitatively or quantitatively, to different sources of variation in the 

input of a model (A. Saltelli, 2008). 

It is necessary to delve into a more detailed explanation to make sure the procedure 

understanding. 

4.1 Definition and aim 

As a real model is tested, drawbacks come into sight and are materialized in different forms. 

The most frequent problem is the “curse of dimensionality”. The accuracy of a model 

decreases by the rise of variables number, what means that the quality of the results will be 

affected by the size of the model. 

The model is composed by seven parameters, what make it no simple to analyze. That is the 

reason for a sensitivity analysis is needed to do. As the sensitivity analysis is carried out, it is 

possible to assess which parameters, inputs or outputs are more relevant upon the model 

evaluation. That enables to focus the investigation on those aspects where the optimal crash 

box is more likely to find. 

4.2 Mathematical algorithms 

OptiSlang is the software used to optimize the model objectives. The mathematical 

methodology on which is based is constituted for some statistical terms. 

http://www.dynardo.de/en/software/optislang.html. 

4.2.1 Coefficient of Correlation (CoC3): 

It is a value that indicates the measure of relationship degree between two random variables 

X and Y. It can be calculated whereby the expression below. 

       
       

    
 (4.1) 

Where         means covariance of variables X and Y and   (must be finite and nonzero) is 

the deviation values of each variable (Dynardo, 2014) 

http://www.dynardo.de/en/software/optislang.html
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If the relationship between X a Y is lineal and N number of samples is supposed, the 

correlation can be illustrated by an easy plot. Figure 4.1. 

 

Figure 4.1: Coefficient of correlation Scatterplot. (Stattrek, 29.07.2015) 

 

As can be seen in Figure 4.1             , when the value tends to 1, the variables are 

close. By contrast, if it tends to -1, means that the variables are inverse and the increase of 

one of them implies a decrease of another. If the value is close to 0, indicates that a weak 

linear relationship exists and consequently samples are randomly plotted. 

4.2.2 Coefficient of Determination (CoD4): 

This value indicate how well detailed the quality of a polynomial regression model is. It is an 

important value upon knowing the accuracy of the regression and enables the designer to 

determinate when information ought to be neglected or saved. CoD is defined as follows: 

   
     

     
   

     

     
   (4.2) 

Where SSreg indicates the variation due to the regression, SStot is the equivalent to the total 

variation of the output Y and SSres quantifies the unexplained variation. 

The interpretation of CoD is simple, when R2 is closed to 1 the polynomial regression model 

has been represented with small error. By contrast if it tends to 0 the model is little 

accurate. 

4.2.3 Coefficient of Importance (CoI5): 

The Coefficient of Importance (CoI) was developed by Dynardo to quantify the input variable 

importance by using the CoD measure. Based on a polynomial model, including all 



 4. Sensitivity Analysis 

11 

investigated variables, the CoI of a single variable Xi with respect to the response Y is defined 

as follows: 

                        
        

  (4.3) 

Where     
  indicates the CoD of the full model, including all terms of the variables in X and 

      
   is the CoD of the reduced model, where all linear, quadratic and interactions terms 

belonging to Xi are removed from the polynomial basis (Dynardo, 2014). 

It must be stand out that CoI value of a variable is close to zero, means the importance of 

such variable is low. 

4.3 Coefficient of Prognosis and Metamodel of Optimal Prognosis 

In order to solve the “curse of dimensionaly”, the concept of Metamodel of Optimal 

Prognosis (MOP6) is introduced. In this approach the optimal input variable subspace 

together with optimal met-model are determined with help of an objective and model 

independent quality, the coefficient of prognosis. (Dynardo, 2014) 

The coefficient of prognosis (CoP) was proposed by (J. Will, 2009) and is defined as it is 

shown below. 

      
   

          

   
 (4.4) 

Where SSPrediction E is the sum of squared prediction errors and SST is equivalent to the total 

variation.  

OptiSlang uses Latin Hypercube Sampling (LHS7) approach to detect the dependencies and 

correlations among the inputs. This method of sampling overcomes the problems that can 

be found by other variation of sampling, such as a Monte Carlo Simulation (MCS8), which is 

restricted for a small number of variables, due to its accuracy decreases radically.  

Using LHS the input distributions and the specified input correlations are represented very 

accurately even for a small number of samples. For the minimization of the undesired 

correlation the method according to Iman and Conover (1982) is used (Dynardo, 2014). 
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4.4 Sensitivity analysis 

4.4.1 Design of Experiment (DoE9) 

The sensitivity analysis is part of an iterative process that finishes when the convergence of 

the values is reached. The cycle follows a simple flowchart which is described below in Figure 

4.2. 

 

Figure 4.2: Flowchart of sensitivity analysis (Dynardo, 2014) 

 

First of all, the inputs of the system are defined, as in which responses will be taken into 

consideration establishing which variables are executing the main tasks during the 

experiment. 

The second step settles how the DoE will be created. It is needed to provide the criteria that 

will be analyzed. There are two essential features that must be defined in order to carry the 

sensitivity analysis out, objectives and constraints. 

Objectives are the functions which are desired to maximize or minimize. Both criteria can be 

established according to the function. Objectives selected were: “Crash box efficiency” and 

“Crash box efficiency deformed”, (equations 3.1 and 3.2 respectively), which were defined as 

objectives to maximize, “Difference” was the objective to minimize. It represents the 

difference between both efficiencies. Ideal case would be that such difference was zero, 

what means that all the energy would have been absorbed. Unfortunately in practice that is 

not feasible. On the other hand, constraints demarcate specific limits that must not be 

exceeded, “added mass max”, “Maximalkraft and “Hourglass max” were the constraints 

defined.  

To conclude the DoE, it is necessary to determine as which sampling type will be carried out 

as how many samples are analyzed. 
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The number of samples chosen for the sensitivity analysis was 600 because it allows making 

an accurate pre-optimization process what is beneficial for the initial population of the 

optimization. Advanced Latin Hypercube Sampling (ALHP10) was the approach selected as 

sampling type, due to its advantages when working with a large number of samples in 

regarding to MCS, as it was mentioned within section 3.3 of this thesis.  

However, at the end of this thesis the influence of the number of samples chosen for the 

sensitivity analysis will be analyzed. Throughout a comparison between the results obtained 

by the optimization calculations according to the initial population selected. 

4.4.2 Running the sensitivity analysis 

The first point to point out of the study is only 2 of the 600 samples were failed. This low 

number is regarded to good accuracy due to the parameters range. On the other hand 136 

of them were concluded as “No feasible”, because of the constraints violations, forces or FE’ 

limits. Although this number corresponds to more than 20% of the samples, it was 

considered not enough to modify the range limits, due to a large number of succeeded 

sample could be analyzed. 

As can be observed into the graphics below (Figure 4.3 and 4.4), OptiSlang creates an 

osl3.bin file that shows several intuitive multicolor plots, where all the information related to 

correlations between inputs and outputs can be analyzed. After making a results 

assessment, is simple to guess that there are some points that are located distant of the 

theoretical curve. This can be modified by deactivating outliers which are really deflected, 

due to a bad program calculation. Nevertheless, such a samples dismissal cannot be made 

lightly. Only those that were assured that do not affect the investigation were deactivated. 

Changes in correlations are visible in Figure 4.3 and Figure 4.4. 
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a) Before nodes deactivation b) After nodes deactivation 

Figure 4.3 Linear correlation Matrix 

   

a) Before nodes deactivation b) After nodes deactivation 

Figure 4.4 Quadratic correlation Matrix 

It is possible now to notice that the sensitivity analysis has increased its accuracy after the 

nodes deactivation, according to some visible factors such as below is described. 

-There is dependency between inputs neither on the quadratic correlation matrix nor on the 

linear. 

-As it was expected, there are as significant nonlinear correlations as linear between inputs 

and outputs.. 

-However, the quadratic relationship numbers were decreased, because of the deflected 

points, which caused an imprecise plotting and diverted the curve tendency. 
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- It is not difficult to assume that results of the analysis are right when modifying the 

parameter values on the parallel coordinates plot and looking the outputs variation over. 

There are no contradictions while varying the values. That can be checked out in [Appendix 

A.1.]. Four pictures are shown, Global indicates all results trajectories. If “Blechdicke” is 

reduced between 2.3 and 2 values, as it is shown on the second picture, it can be observed 

how the trajectory lines narrow when come by the objectives. The same effect happens 

when “Verkürzung” and “Fase” values are comprised between 60 and 90, and 0.39 and 0.5 

respectively. Parallel coordinate plots verify the strong correlations that exist between these 

parameters and both efficiencies. 

The other parameters relevance in regarding to the selected objectives is much lower as 

“Blechdicke” and “Verkuerzung” Hence they are concluded as the most influence 

parameters, and it has been done an approximate exploration of ranges that optimize the 

objective values established. 

 

4.4.3 Correlations and dependencies between variables. 

Taking as basis the results collected during the sensitivity analysis, the correlations linear 

and quadratic based on the CoI were analyzed. On the X axis is represented every analyzed 

output of the model, on the Y axis can be distinguished the different values in percentage 

of CoI of each input. 
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a) Efficiency b) Efficiency Deformed 

 

d) Maximalkraft 

Figure 4.5 Outputs dependences according to COI 

 

Previous plots let identify easily which parameters are more significant on objectives and 

force applied, and having a look over them, “Blechdicke” and “Verkuerzung” parameters 

are recognized as the most important ones again. Horizontal bars indicate the COI of every 

parameter according to the output. In Figure 4.6 a)“Blechdicke” dependences with the 

outputs is shown. As it can be observed, the thickness affects to every output, except for 

“Hourglass”, what it is not relevant due to its constraint condition. “Maximalkraft”, is the 

output affected the most by “Blechdicke” reaching 92% of COI follow by “Efficiency” (58%), 

“Added_Mass” (45%) and “Efficiency_Deformed” (32%). In Figure 4.6 b) the same 
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information for “Verkürzung” is gathered. Crash box length affects to “Added_mass” (34%), 

follow by “Efficiency” (24%) and “Efficiency_Deformed” (5%).  

It is obvious that “Blechdicke” COI values are higher, hence it is highly probably that the 

crash box response depends on the quality and properties of the material it is 

manufactured. It is not concern of this thesis to find out which one is the most suitable 

according to the impact sort. However it is suggested to analyze the crash box response for 

different materials, applying the conclusions obtained by this thesis. 

   

a) Blechdicke b) Verkürzung 

Figure 4.6 Relevant Inputs dependences according to COI 

 

4.4.4 Results 

Once the influence of each parameter is already identified, the second goal of the 

sensitivity analysis might be aboard, collection of reference initial population for 

optimization. The considered criteria was the crash box efficiency, those designs that 

provided a higher efficiency were selected. In the table 4.1, all the data related to the 

designs is gathered.  

Table 4.1: Elite Start designs set. 

Design P_B Dicke Verkürzung Fase P_H 
Zwischen 

Blech 

Zwischen 
Blech 

vertikal 
Efficiency 

Efficiency 
deformed 

338 26 2,1 78 0.49 33 0.34 0.97 0.48965 0.85050 

166 23 2 51 0.44 23 0.14 0.22 0.48274 0.81561 

197 24 2,1 71 0.49 32 0.56 0.32 0.47956 0.86156 

327 25 2,2 81 0.47 24 0.53 0.78 0.47269 0.77335 
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397 21 2,1 63 0.45 27 0.23 0.41 0.47246 0.84165 

144 21 2,2 88 0.5 27 0.71 0.34 0.47165 0.74340 

245 21 2,1 85 0.39 34 0.64 0.57 0.46746 0.80672 

243 27 2,1 58 0.46 27 0.72 0.82 0.4654 0.83048 

87 29 2 72 0.44 32 0.14 0.24 0.46282 0.76674 

541 24 2 38 0.44 24 0.4 0.93 0.45310 0.84840 

325 20 2,2 62 0.46 29 0.17 0.52 0.44561 0.85589 

407 26 2,3 75 0.49 29 0.21 0.21 0.44198 0.83982 

378 28 2,1 76 0.25 24 0.15 0.95 0.43470 0.84290 

580 25 2,2 87 0.48 26 0.75 0.69 0.43462 0.68018 

538 22 2,1 66 0.35 25 0.64 0.88 0.43369 0.84599 

82 29 2,2 84 0.47 36 0.36 0.2 0.43295 0.82201 

198 26 2,1 80 0.46 25 0.42 0.68 0.43138 0.67158 

 

Also a mix of best, bad and an average designs were extracted from the sensitivity results 

table, look up Table 4.2 Therefore the optimization development can be compared with two 

different initial population and identify not only how important the quality of initial parents 

provided to the optimizer is, but also how it affects to the optimization progress velocity. 

Table  4.2: Mix start designs set. 

Design P_B dicke 
Verkuerzung  

 
Fase 

 
P_H 

Zwischen 
blech 

 

Zwischen 
Blech 

Vertikal 
Efficiency 

Efficiency 
Deformed 

338 26 2,2 78 0.49 33 0.34 0.97 0.48965 0.85050 

166 23 2,1 51 0.44 23 0.14 0.22 0.48274 0.81561 

197 24 2,1 71 0.49 32 0.56 0.32 0.47956 0.86156 

327 25 2,2 81 0.47 24 0.53 0.78 0.47269 0.77335 

397 21 2,1 63 0.45 27 0.23 0.41 0.47246 0.84165 

144 21 2 88 0.5 27 0.71 0.34 0.47165 0.74340 

41 29 2 24 0.23 23 0.76 0.85 0.20234 0.78872 

535 31 3,4 11 0.19 24 0.6 0.58 0.20206 0.79170 

453 29 3 9 0.32 36 0.32 0.59 0.20205 0.80278 

409 27 2,9 35 0.4 33 0.68 0.41 0.20184 0.80908 

11 30 3,3 46 0.29 25 0.68 0.65 0.20148 0.51975 

261 28 3,3 70 0.42 37 0.79 0.47 0.20143 0.82285 

531 30 3,2 10 0.36 33 0.35 0.68 0.13092 0.75683 

15 31 2,4 7 0.3 22 0.35 0.69 0.12893 0.71054 

450 23 3,1 2 0.39 28 0.64 0.92 0.12873 0.71904 

342 30 2,1 4 0.23 33 0.79 0.33 0.12411 0.76416 

97 26 2,6 4 0.38 38 0.12 0.84 0.12255 0.74721 

323 21 2,1 80 0.23 36 0.48 0.27 0.10963 0.46292 

342 30 3,1 4 0.23 33 0.79 0.33 0.12411 0.76416 

535 31 2,3 11 0.19 24 0.6 0.58 0.20206 0.79170 
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4.4.5 Conclusions of Sensitivity Analysis 

Keeping in mind the two important parameters (“Blechdicke” and “Verkuerzung Box”) and 

observing the previous tables, it is singular that the values of “Blechdicke” which provide a 

higher efficiency are between 2 and 2,2, however the “Verkuerzung Box” range is much 

wider. This fact makes assumable that the smaller values of blechdicke are, the higher the 

efficiency of the crash box is. 

The rest of parameters seem to not having an especial influence on the objectives 

established, but for “Fase” whose optimized values fluctuates between 0.39 and 0.5, as it 

was mentioned in sensitivity analysis. 

“Efficiency deformed” values must be also pointed out. It might have made sense that the 

higher “Efficiency”, the higher values of “Efficiency deformed”. However, only one design of 

those which have a high efficiency deformed value is listed in the highest efficiency designs 

and underline in yellow in Table 4.3. 

Table 4.3: Best „Efficiency deformed“ designs 

Design Efficiecny Efficiency 
deformed 

403 0.4218212 0.8713147 

168 0.2824578 0.8663886 

203 0.3371895 0.8663656 

481 0.2981972 0.8636731 

255 0.402611 0.863366 

74 0.3999468 0.8625083 

197 0.4795601 0.8615645 

418 0.371755 0.8607197 

174 0.4024325 0.8591523 

 

Finally, in Figure 4.7 “Blechdicke” and “Verkürzung“ boxplots are illustrated. Through this 

plots is possible to determinate in which design space area the parameters are located. 

Rectangle above indicates those values between the median and the third quartile, whereas 

the rectangle beneath represents those between the median and the second quartile. As it is 

observed, for Elite start designs, parameter range is really shortened, especially for 

“Blechdicke”. By contrast, Mix start design values fluctuates between a much wider space. 

This fact lets deduced that the optimization process that will be carried out by Elite is more 
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restricted than Mix. But the exploitation of such space region will be deeper. So the space 

region that according to the Sensitivity Analysis is the most likely to find the most suitable 

solutions is smaller and parameter values combination might be more precise. That is why 

the election of the initial population is one of the most important criteria to develop the 

optimization process. 

 

 

 

Figure 4.7: Initial population parameters Boxplots 
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5. OPTIMIZATION 

5.1 Definition and aim 

A system’s optimization is basically based on the search of maximums and minimum points 

of a real function, starting with a random selection of values that could be one possible 

solution of the system. However the difficulty of this topic goes further than that simply 

concept. As a real structure is optimized a lot of factors play an important role along the 

process, such as quantity of information about the structure is already known, grade of 

exploration is desired to obtain, what methodology will be follow… so that the problem 

cannot be reduced to the searching of maximum and minimum points. Some complex 

procedures based on mathematical approximation and correlations are made. In order to 

truncate the investigation range, an inquiry of the influential parameters was done, that is 

the sensitivity analysis. 

Throughout this thesis optimization concept is broached as a mathematical process, which 

looks for the most suitable solution of a problem among a large amount of possible 

alternatives. The model is run by a non-linear behavior. That kind of modeling involves a high 

level of complexity, due to the diverse subspaces generated from one variable and all the 

possibly solutions it entails. 

The investigation is based on evolutionary algorithms, which is deeper explained in section 

5.2.3. However a brief description of different optimization alternatives is following 

presented. 

5.2 Mathematical algorithms– Optimization method 

5.2.1 Gradient based 

These methods search for the points where the first derivate is equal to zero and then if the 

second derivate is known Newton methods are used in order to overcome the problem of 

nonlinearity (Kelley, 1999). 

Gradient based methods distinguish each other mainly in the way how the second order 

derivates are estimated and how additional constraint equations are considered (Dynardo, 

2014) 
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OptiSlang uses NLPQL approach (Nonlinear Programming by quadratic Lagrangian), which is 

recommendable when working with low dimensions, as It is the case broached on this thesis. 

A good overview over the approach is given in (Schittkowski, 1986). Nevertheless, the aim 

was to identify how multi-objective optimization is working. That is why another 

optimization methodology was chosen. 

5.2.2 Gradient free 

 Adaptive Response Surface Method (ARSM) 

The ARSM first employs an experimental strategy to generate design points in the design 

space, then applies either the first-order model or the second-order model to approximate 

the unknown system (G. Gary Wang, 2000) 

In the next iteration step a new DoE scheme is built around this optimal design. Depending 

on the distance between the optimal designs of the current and previous iteration steps, the 

DoE scheme is moved, shrunken or expanded. Further details can be found in (Etman, 1996). 

 

 Downhill simplex Method 

This method is commonly used in nonlinear regression programs and is due to (Mead, 1965). 

It requires only function evaluations, not derivatives and is convenient to use when the 

computational burden is small. 

The method uses the concept of a simplex, a polytope N + 1 points (or vertices) in N 

dimensions: a line segment in a line, a triangle in a plane, a tetrahedron in three dimensional 

spaces and so on. 

5.2.3 Natural inspired 

 Evolutionary Algorithms 

Evolutionary algorithms (EA) are stochastic searching methods that mimic processes of 

natural biological evolution. Every population contains x individuals, which represent a group 

of possible solutions. So that their combination through stochastic operators such as 

mutation and crossover can generate a new population of individuals called offspring. The 
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most suitable solutions according to the objectives established are used to restart the loop 

and create the next generation. 

 

5.3 Optimization process 

Optimization was set up on the solver after having finished the Sensitivity Analysis and 

interacts constantly with software installed on the Batch process, which is in charge of 

making the calculations and creating the geometry. Inputs and output considered into the 

optimization remained as was previously within section 2.3 explained. OptiSlang suggested 

using Evolutionary Algorithms-local for the optimization, due to the optimization 

characteristics. It might be useful to remind that it is being approached a multi-objective 

optimization without previous knowledge about the optimal solver, except for the 

information obtained through the Sensitivity Analysis, what can be considered as pre-

optimized solution.  

Above of all, the two main reasons that determined the chosen algorithm were the model 

type of parameters and the frequency of constraints violations during the sensitivity 

analyses. 

The scheme of the EA will be followed is represented in the Figure 5.1. Two operators will be 

applied on the start designs previously obtained by the sensitivity analysis, mutation and 

crossover.  

Mutation will be characterized by the use of two different mutation types, “Self Adaptive” 

and “Normal Distribution”. Finding which type is most suitable for the crash box 

optimization will be one of the aims at this section. In order to assess the optimization 

procedure, rates from 10% to 90% will be considered. In a similar way, crossover rates will 

be analyzed, this time from 5% to 95%. First it will be only studied one crossover type called 

“Simulated Binary”, results obtained by this type will be compared with those reached by 

“Hybrid” methodology. Definitions of every mutation and crossover type will be detailed in 

pages 24 and 25.  

Finally, it is desired to comprehend how mutations and crossover operator interact to each 

other. So that, mutation operator will be introduced on crossover offspring to verify if it 

exists an improvement of the objective values. 
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Figure 5.1 Evolutionary Algorithm investigation schematic 

 Initial population: Two categories were considered, a selection of the most suitable 

designs obtained by the Sensitivity Analysis which were shown in pages 17 and 18 of the 

thesis and a mixture of the best, average and bad designs obtained by the Sensitivity 

Analysis. So that, it can be studied which are the relationships between the results produced 

for two different groups of start designs and verify if the elitism of the initial population is 

relevant to determinate the result values. 

 Selection: This setting is used to ascertain how the new population of the next 

generation is created from the optimal solutions of the last loop, according to the ranking 

selected.  

Along the inquiry the selection operators were not modified, in order to get a more specific 

perspective of the optimization process when varying the crossover and mutation operators. 

Selection features are listed below: 

Ranking: Pareto, the election of this method is justified by the number of objectives to 

optimize. Three objectives are simple to compare by the Pareto´s 3-D frontier and the 

feasibility of solutions are rapidly and easily compared. 

Number of parents: 18 

Selection: Tournament, which is the mostly used type, due to its wide range and random 

election of each individual. Individuals compete between them and the algorithm chooses 

that one which provides the best solutions. 
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Tournament size: 4.This number represents the quantity of competitors that take part into 

the tournament selection at the same time. 

 

 Only mutation operators applied: Mutation is a genetic operator which is used to 

vary the genetic code of a population according to a random variable that modifies 

arbitrarily one or more bit of the sequence chain, changing definitely the chromosome of an 

individual. That is applied to increase the region of possible optimal solutions.  

Due to the lack of awareness of the model’s response, a large range of mutation rate was 

analyzed. In order to figure in which region of the space the optimal could be found. Rate 

values 10%, 30%, 50%, 79% and 90% were simulated. As it was mentioned before, as the 

most suitable as a mixture of the design obtained were set up as start designs. Every 

percentage rate value was also analyzed with a variation of the mutation type. Self adaptive 

and normal distribution were the mutation types selected according to the studied area’s 

characteristics.  

Table 5.1 shows a summary of the investigation field under the criteria above described. 

Table 5.1: Mutation strategy 

Mutation 
rate 

10% 30% 50% 70% 90% 

ELITE self adaptive self adaptive self adaptive self adaptive self adaptive 

MIXTURE self adaptive self adaptive self adaptive self adaptive self adaptive 

MIXTURE 
Normal 

distribution 
Normal 

distribution 
Normal 

distribution 
Normal 

distribution 
Normal 

distribution 

 

Self adaptive mutation “Technically, this so-called self-adaption principle combines the 

representation of a solution and its associated strategy parameters within each individual, 

and the strategy parameters are subject to mutation and recombination just as the object 

variables“ (Bäck, 1996) 

Normal distribution: Variables are distributed forming a bell curve symmetrically in 

concordance to a specific statistical parameter. Further information can be found on 

(Waeber, 2008). 

 

 Only crossover applied: Crossover is the other important genetic operator 

considered for the optimization. On the contrary to mutation operator, chromosomes are 
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not randomly modified, but an offspring is created by more than one parent through 

information exchange, miming “sexual reproduction”.  

Crossover range from 5% to 95% will be applied, so a vast extension of the space can be 

explored. The same shall apply to crossover operators, simulating every percentage as for 

mix as elite start designs. 

The method selected was Simulated Binary, because it allows vary widely the crossover rate, 

in Table 5.2 are shown those rates which were tested by only “Simulated Binary” and those 

that also “Hybrid” crossover type was applied. Hybrid allows to combining two crossover 

operators, as it will be analyzed in section 5.5.3. The effectiveness of that tool on the crash 

box will be also tested. 

Table 5.2: Crossover Strategy 

Crossover rate 5% 25% 50% 75% 95% 

ELITE 
Simulated 

binary/Hybrid 
Simulated 

binary 
Simulated 

binary/Hybrid 
Simulated 

binary 
Simulated 

binary/Hybrid 

MIXTURE 
Simulated 

binary/Hybrid 
Simulated 

binary 
Simulated 

binary/Hybrid 
Simulated 

binary 
Simulated 

binary/Hybrid 

       

Simulated Binary: The genes of the new individuals are determined from intervals defined in 

neighborhoods of the parent genes throughout probability distributions (K. Deb, 1995). 

 Crossover and mutation: The last point of the researching will be to analyze the 

influence when the optimizer applies mutation on crossover offspring, so an exploitation of 

the explored space could be carried out.  

This section will let to know how the optimization interacts when both criteria (mutation and 

crossover) are applied and its significance to optimize the model. 

Mutation rates will vary from 1% to 5%. The selection of these values is due to higher values 

might have brought a too wide exploitation, what entails a non accurate searching and 

makes it a randomly variation of the parameters. 

The chosen offspring are those produced by applying 5%, 50% and 95% crossover rates 
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5.4 Results optimization process after applying only mutation operator 

At this point the development of the different optimization methods according to their 

mutation rates and start designs selected will be analyzed. The goal of this approaching is to 

understand the exploration methods used by OptiSLang and how the variation of mutation 

operator affects to the designs obtained. 

5.4.1 Optimization procedure Analysis 

Assessing the optimizer trends is an essential factor to comprehend how the optimization 

process is working. Table 5.3 illustrates the tendency lines based on “moving average”, 

according to mutation type and rate. So that the settings applied on each one could be 

understood. The X axis, which is not drawn, indicates the design number from 1 to 208. As 

the number of selected parents was 18, designs from 1 to 18 correspond to results obtained 

by the Sensitivity Analysis and considered as start designs. The Y-axis indicates the 

“Efficiency” and “Efficiency deformed” values, in every plot the tendency line that is above 

belongs to “Efficiency deformed”, by contrast the tendency line beneath represents 

“Efficiency” objective. Such plots allow to identify the yield of the optimizer, as much 

irregular the trend is, the more number of false designs have been calculated. If an objective 

value goes under 0,1 means that this design has been not succeed. 

Table 5.3: Mutation objectives distribution according to rate and mutation type applied. 
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In Table 5.4 balances of how many succeed (green number) and false (red number) designs 

of every mutation methodology have been calculated, are shown below.  

Table 5.4: Summary of feasible designs according to rate and mutation type applied. 

Mutation rate Elite Mix_SA Mix_ND 

10% 8/200 21/197 20/181 

30% 6/202 29/179 13/195 

50% 10/198 14/194 8/200 
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70% 4/204 20/188 18/190 

90% 9/199 19/189 14/194 

 

There is not any relationship between the amount of false designs calculated and mutation 

rate. However, it is remarkable that for each rate elite got fewer false designs and Mix_SA 

the more. 

Information of the two main objectives collected from the previous table is fully gathered on 

the table below.  

Table 5.5: Objectives comparison according to start designs and mutation type. 

 ELITE MIX_SA MIX_ND 

Ef
fi

ci
en

cy
 

Increases softly progressively, as 

the optimization process is run, 

due to high values of the best 

sensitivity designs. For middle 

and low mutation rates, the 

optimal search is irregular. By 

contrast, as the mutation rate 

grows, process get more 

constant 

In every mutation rate is visible the 

effect of the “random” start 

designs at the beginning of the 

optimization process. However, the 

bad designs are clearly improved 

by the mutation operator and the 

efficiency results are getting bigger, 

as the optimization is run. 

The process ends with similar 

values as it was set, and the 

mutation rate does not affect the 

tendency. 

When the mutation rates were 

between 10% and 50%, it is evident 

that the optimal searching is 

regular without big deviations of 

the objective maximum peak. 

Applying higher mutation rates, 

such regularity turns to a non 

uniform increase of the objective, 

although more optimal efficiency 

values are achieved. 

Ef
fi

ci
en

cy
 d

ef
o

rm
ed

 

The optimizer did not find a clear 

region of the design-space where 

to look for the optimal. That is 

the reason why the trend line 

does not make a regular 

progression. 

The objective is not highly 

improved and remains mainly 

constant along the optimization 

process, although some designs 

obtain values that exceed those 

previously reached by the 

sensitivity analysis. However 

sometimes big fluctuation appears 

due to those non feasible designs 

calculates that provide values 

under 1% 

A similar response occurs with 

efficiency deformed values. As the 

mutation rate increases, the 

optimization process becomes 

more irregular, without a 

significant improvement of the 

objective. 
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5.4.2 Comparison Elite Vs. Mix start designs 

One of the goals of this thesis was to know if the start designs set up on the optimizer solver 

(EA) was actually relevant along the process observing how the objectives were modified 

according to this criteria. 

In order to determinate such an influence, the results of every mutation rate from 10% to 

90% are compared below after applying a good result filter. Both were set using Self-

adaptive mutation type. Only those designs that exceed 0.48 of efficiency and 0.85 of 

efficiency deformed were displayed. Every plot in Figure 5.3 represents on the X axis the 

design number, so from 1 to 18 are the start designs and from 190 to 200 the last 

generation. On the Y axis efficiencies values are represented, dispersion points above 

indicate “Efficiency deformed” values and points beneath “Efficiency”. 
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Figure 5.3: Good mutation results compared by initial population and rate
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Elite start designs always obtains a bigger quantity of good results, as it can be verified 

observing the number of dispersion points. Moreover for every mutation rate but especially 

for high ones, the number of good results is not the only remarkable point, but also the 

values themselves. As “Efficiency” as “Efficiency deformed” objective reached higher values 

when Elite Start designs were used. Exceeding normally 0.50 “Efficiency” value and 0.87 

“Efficiency deformed”. 

5.4.3 Comparison Self-Adaptive Vs. Normal distribution 

In the same way it was done to compare Elite with Mix start design, Figure 5.4 compares the 

number of good results, (same filter applied, page 29), according to the objectives values 

reached.  

According to the results, using Mix, independently whether the mutation type Self Adaptive 

or Normal distribution is, the optimization process is slower, and good results are 

approximately reached from design 100 for Self-adaptive and even later for Normal 

Distribution. In fact, for 30% and 50% mutations rates when Normal distribution was 

applied, none good result could exceed the filter limits. 

Despite having softly improved the objectives established can be observed how start design 

obtained by the Sensitivity Analysis are still displayed on the plots.  

Normal distribution mutation type provides a more secure line of analysis due to its 

regularity, although the optimization process is slower, because of its parameter variation is 

established beforehand, instead of varies while the process is being developed, as self 

adaptive type does. However, self adaptive achieves normally higher objective values.  
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Figure 5.4: Good mutation results compared by mutation type and rate 
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5.4.4 Searching the maximal Optimum 

In order to locate those designs which maximize the objectives that have been established, 

three designs from every mutation rate and type were extracted. The criteria chosen for the 

design election were maximal efficiency (objective 1), maximal efficiency deformed 

(objective 2) and the best design according to Pareto ranking. Information is detailed on 

[Appendix A.2.]  

In most of the cases coincide that the best Pareto design is that one which “Efficiency” is the 

highest, curiously when normal distribution mutation type is applied for rates 30% and 70% 

does not occur. In order to provide a better understanding of how Pareto’s front is working 

and to find the optimal design, plots are illustrated in Appendix A.3. It should be pointed out 

that “difference” as third objective is considered. Despite having not given so much 

relevance to this third objective before, it will acquire importance to decide which designs 

are most suitable. If it is desired to delve into how the different settings distribute the 

designs in the space, Pareto 3-D plots are included [Appendix A.4 and A.5]. 

Table 5.6 gives a review of those designs that maximize the objectives the best. Three 

objectives for every design are evaluated and only those which satisfy both criteria 

established by the filters were extracted for a final assessment. “Difference” is also indicated 

to make the designs assessment. 

Efficiency Efficiency deformed 

>0.48 >0.86 

 

Table 5.6: Most suitable designs obtained by mutation 

 Design 
Crashbox 
Efficiency 

Crashbox 
Efficiency 
Deformed 

Difference 

Elite 30 140 
0,49682 
 

0,85824 
 

0,36142 
 

Elite 50 82 
0,49033 
 

0,85753 
 

0,36719 
 

Elite 70 205 
0,5441 
 

0,88173 
 

0,33759 
 

Elite 70 183 
0,5439 
 

0,8590 
 

0,31513 
 

Mix ND 70 130 
0,49527 
 

0,86381 
 

0,36853 
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Elite 90 61 
0,50654 
 

0,87824 
 

0,3717 
 

Elite 90 123 
0,52079 
 

0,87316 
 

0,3523 
 

Elite 90 130 
0,50206 
 

0,88477 
 

0,38271 
 

Elite 90 148 
0,5044 
 

0,87146 
 

0,36705 
 

Elite 90 201 
0,50392 
 

0,88448 
 

0,38056 
 

Mix SA 90 207 
0,50587 
 

0,85604 
 

0,35016 
 

 

The most suitable designs were compared and it was concluded that design 205 of elite_70 

provides the best objective values. Thus, there is no doubt that is the most suitable design to 

improve the crash box response after using mutation settings. Nevertheless if “Difference” 

objective is considered as the most relevant criteria, the election changes in benefit of Elite 

70 – 183.  

On the other hand it is interesting to notice how most suitable designs shape are. In most 

cases are comparable. Figure 5.5 shows how the preferable shape is a hexagonal prism with 

the cross on the left side of the crash box.  
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Elite 30-140 Elite 50-82 Elite 70-205 Elite 70-183 

 

Mix-ND 70-130 Elite 90-61 Elite 90-123 Elite 90-130 

 

Elite 90-148 Elite 90-201 

Figure 5.5: Most suitable designs compared by crash box shape 

 

5.4.5 Mutation methodology and influence parameters 

As the sensitivity analysis had predicted, “Blechdicke” and “Verkürzung” are the most 

important parameters for the objectives. It is simple to identify how the parameters space 

distribution is. In Figure 5.6 “Blechdicke” distribution is illustrated, on the other hand, Figure 

5.7 shows “Verkürzung” distribution. 

Black bar in boxplots indicates the entire range of values of each parameter. “Blechdicke” 

range fluctuates from 2 to 3.8 and “Verkürzung” from 0 to 90. Underneath box gathers every 

data located between the median and the second quartile and above box does it for those 

data between the median and the third quartile. Once the most suitable designs have been 

identified and is already known which range of values are the best,  this sort of graphic lets 

deduce intuitively how every mutation methodology works on the optimal searching,  
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It can be observed how the range is symmetrically shortened for Elite Start designs, what 

makes sense due to the biggest amounts of good results were found using Elite. Moreover 

high mutation rates provide values closer to the minimum (Blechdicke) or maximum 

(Verkürzung) indicating where the best parameter values are. 

If Self-adaptive and Normal distribution mutation types are compared, it is visible that their 

distribution differences are not significant. Ranges are much wider than Elite and in some 

cases the symmetry is broken. More data is located on the second or third quartile and 

therefore distancing the searching of the goal.  

Remembering boxplots illustrated in Figure 4.7 of section.4.4.5 where initial population 

distributions were shown. It is indispensable to point out resemblances between the 

beginning and the final distributions. Elite keeps a high grade of similarity, thus, it can be 

claimed that the sensitivity analysis 600 samples is a precise tool to approach faultless a first 

exploration of the global optimum. 
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Figure 5.6: Blechdicke Boxplots for every mutation rate, type and initial population 
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Figure 5.7: Verkürzung Boxplots for every mutation rate, type and initial population 
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5.5 Results only crossover 

In the same way as it was done during the application of mutation operator. The effect of 

start designs when the crossover rate is varied is following analyzed and the consequences it 

produces along the optimization process development. The rates that were applied fluctuate 

between 5% and 95% and Simulated Binary was the crossover method used. 

5.5.1 Optimization procedure analysis 

Table 5.7 illustrates the tendency lines based on “media movil”, according to crossover rate. 

The X axis, which is only represented for 5%, indicates the design number from 1 to 208, the 

number of selected parents was 18, designs from 1 to 18 correspond to results obtained by 

the sensitivity analysis and considered as start designs. The Y-axis indicates the “Efficiency” 

and “Efficiency deformed” lines beneath and above respectively. Optimizer yield is 

represented as it was explained within section 3.5.1 of this thesis. 

Table 5.7: Objectives development according to crossover rate and initial population. 

 ELITE MIX 
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50% 

 
 

75% 

  

95% 

  

 

In Table 5.8 verification of every crossover yield is shown. False design (left), succeed designs 

(right). As it was mentioned in section 5.4.1, a false design is considered when one of the 

objectives goes under 0.1. 

Table 5.8: Summary of feasible designs according to rate and crossover type. 

CROSSOVER RATE ELITE MIX_SA 

5% 14/194 35/173 

25% 15/193 16/192 

50% 30/178 22/186 

75% 6/202 12/196 

95% 17/191 25/183 
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The lesser false designs, the more regular the graphics above are represented. Generally, 

elite obtains fewer false designs, but for 50% rate. It is no possible to extract a clear 

correlation between crossover rates, start designs election and their influence on the 

quantity of false designs calculated. 

Information of the two main objectives collected from the previous table is fully gathered on 

the table below.  

Table 5.9: Objectives comparison according to start designs 

 ELITE MIX_SA 

Efficiency Due to the high efficiency values at the 

beginning of the optimization process, the 

results are practically constant. Results do 

not fluctuate along a wide range of values, 

so the crossover rate is not a significant 

operator. 

 

In the same way it happened with mutation operator, it is 

evident the use of mix start designs. Tendency of 

efficiency values is increased, as the process is developed. 

Bad offspring are rapidly eliminated however as can be 

observed in previous plots, the efficiency improvement is 

not really substantial. 

Efficiency 

deformed 

Some progresses on the results are found, but it can be appreciated that the trend is completely 

irregular. The optimizer did not focused on one space region, instead was searching randomly the 

parameters which made higher the objective, finding some good results. 

 

5.5.2 Comparison Elite Vs. Mix start designs 

The goal of this point is to determine if there is any difference when start design are 

different on crossover settings application, as it was when applying mutation. In Figure 5.8 

dispersion plot for both initial populations are illustrated. As can be observed “Efficiency” 

objective is better optimized for Elite start designs. The number of good results obtained by 

Mix is extremely low and additionally in most cases are those used as initial population. This 

fact involves that crossover operator does not work properly for Mix start designs or 

because of the large DoE3 carried out by 600 designs. If “Efficiency deformed” objective is 

compared, the difference is not so significant, especially for high crossover rates. However, 

Elite gets the results faster, gradually along the optimization process, contrary to Mix, whose 

good results appear around design 100. 

Remembering the comparison of the same criteria in mutation results, it was obvious that 

elite provides better objective results. Under crossover control, this fact is also clear. It is 
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certain that elite achieves normally higher objectives values than mix start design, especially 

for low crossover rates, but it cannot be omitted those singular spots achieved through the 

Mix application. At the end one of the main goals is to demarcate the most suitable design, 

so the omission of these possibilities would be mistake. 
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Figure 5.8: Good results compared by crossover rate and initial population 
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5.5.3 Alternative crossover methods/Hybrid 

Hybrid combines diverse crossover operators on the parent chromosomes in order to take 

advantage of their distinct offspring generation mechanism. OptiSLang provides the 

selection of two crossover operators to keep the number of control parameter as low as 

possible (J. Will, 2009) 

This operator was used in order to check if the most suitable designs achieved by normal 

crossover are improved. Exploitation should be more accurate due to the parameter control.  

Multipoint and Simulated Binary was the crossover settings selected to observe the effect of 

hybrid method in crash box optimization. [Multipoint (7 number of points) crossover calls for 

seven points to be selected on the parent organism strings. Everything between the seven 

points is swapped between the parent organisms, rendering seven child organisms]. 

Crossover (Wikipedia). 

Simulations for elite start design were made again and their results are in Figure 5.9 

compared with those obtained by applying only Simulated Binary operator. 

 

For rates from 5% to 50% “Efficiency” objective is very softly improved, reaching values that 

exceed 0.5, however surprisingly the number of good results achieved by hybrid 

methodology is lower than using only Simulated Binary, especially if “Efficiency deformed” 

objective is compared. 

Rates from 75% to 95% show a similar behavior, so hybrid did not get an improvement f the 

objectives, are even slightly worsened. 
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Figure 5.9: Good results compared by crossover operator and rate 
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5.5.4 Searching the best optimal solver and design 

Once the crossover optimization process has been analyzed, it is possible to focus the 

investigation to find the best design. In Appendix A.6, the best objectives results obtained 

during the application of crossover rates are indicated according to different criteria, in the 

same way it was done for mutation best design searching. Those criteria are best efficiency, 

best efficiency deformed and Pareto. 

It can be claimed that the optimal crossover solver for the crash box depends on the strategy 

the investigation is following. If what is desired to achieve is higher values on one specific 

objective to use elite start design and crossover rates from 50% to 95% is the correct way to 

proceed. However, if reducing the difference between objectives, as long as both objectives 

keep still a reasonable value, this inquiry concludes that mix start designs and crossover 

values from 5% to 50% is the correct choice. 

It is time now to determine which designs provides the best crash box characteristics, this 

will be done throughout Pareto’s front analysis. In Appendix A.7 every Pareto front collected 

from each one of the crossover methods employed are illustrated.  

Several designs were selected, from each plot according to their space position which 

depends on the objective values, the procedure to achieve the most suitable design was to 

analyzed all of them and compare. 
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Finally in Table 5.10 information related to the possible best solutions is collected. Two 

filters were applied to decide which designs were the most suitable. Only those that satisfied 

both are listed: “Efficiency”>0.48 and “Efficiency deformed”>0.85. The third objective 

“Difference” is used to demarcate the best one. 

Table 5.10; Most promising designs obtained by crossover 

 Design 
Crasbox 
Efficiency 

Crashbox 
Efficiency 
Deformed 

Difference 

Elite 50 179 
0,4838234 
 

0,8630614 
 

0,379238 
 

Elite 50 121 
0,4835437 
 

0,8628388 
 

0,3792669 
 

Elite 50 156 0,4835245 
0,8627914 
 

0,3792951 
 

Elite 50 127 
0,483519 
 

0,8628079 
 

0,3792889 
 

Mix 75 203 
0,4931969 
 

0,8583844 
 

0,3651875 
 

Elite 95 187 
0,4913842 
 

0,8552771 
 

0,3638929 
 

Elite 95 188 
0,491361 
 

0,8552368 
 

0,3638758 
 

Elite 95 160 
0,4913533 
 

0,8552644 
 

0,3639111 
 

 

Most of them belong to Elite start designs, except for Mix 75 – 203. Any design from Elite 95 

could be chosen as the most suitable because of their results are practically the same. 

Although they have a lower value of “Efficiency deformed” than those produced by Elite 50, 

the difference between efficiencies is slightly lower. This fact benefits the crash box 

response, as it was explained when “Difference” objective was defined. 

In Figure 5.11 promising designs shapes are illustrated and as can be observed they are 

almost identical. However they are different of the pattern found using mutation operator. 
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Elite 50-179 Elite 50-121 Elite 50-156 Elite 50-127 

 

Mix 75-203 Elite 95-187 Elite 95-188 Elite 95-160 

Figure 5.10: Most suitable designs compared by shape obtained by crossover 

 

5.5.5  Optimal optimization solver related to influence parameters 

Due to the lack of concordance between designs patterns presented by mutation and 

crossover operator, it is following analyzed how significant parameters are distributed on 

crossover designs. So that it might be corroborated that important parameters are located 

around the same space region. 

For that, in Figure 5.12 and Figure 5.13 boxplots in regarding to “Blechdicke” and 

“Verkürzung” are illustrated. 

“Blechdicke” values are extremely located in the third quartile for Elite start designs, even 

more than when mutation Elite was applied where the symmetry was more considerable. It 

is a fact that any optimization operator does not vary widely the parameters values when 

they are previously distributed in a specific area. 

By contrast Mix start designs search in randomly way the optimal region, and the result is 

not successful. As can be checked in the plots, ranges are wider and in particular 

“Verkürzung” parameter is distant from the values which produced the highest efficiencies. 

 

The difference between mutation and crossover best designs shapes is not located on the 

relevant parameters, but on “Zwischenblech” and “Zwischenblech vertical”. Following 

investigations might delve into this fact. 
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Figure 5.11: Blechdicke Boxplots for every crossover rate, and initial population 
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Figure 5.12: Verkürzung Boxplots for every crossover rate and initial population 
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5.6 Results of applying mutation on crossover offspring 

 

Previous sections have concluded that application of mutation operators produce a better 

optimization of the crash box. Crossover operator was not as effective, but it is interesting to 

figure what happen if crossover offspring are altered by low mutation rates. That is the goal 

of this section. In order to compare the improvement for a wide range, three crossover rates 

(5%, 50% and 95%) for both initial populations (Elite and Mix) were selected. 

The reason to carry this methodology out is to vary the gene code of the offspring produced 

by crossover. Crossover offspring always keep the genetic information of their parents, 

contrary to mutation due to its random bits recombination what produces a population 

genetic change. So the exploration area is expanded. 

Twelve new groups of results were obtained when mutation 1% and 5% was used on 

crossover offspring. Mutation type employed was Self-adaptive, because of their slightly 

advantages in regarding to Normal distribution, as it was demonstrated along the mutation 

section. 

 

5.6.1 Effect on Elite Start designs 

In Figure 5.14 the mutation impact on crossover offspring for Elite start designs is shown. 

Round dispersion points indicate those good results obtained by the application of only 

crossover operator, square and triangle points show the results reached by applying 1% and 

5% mutation rates on crossover offspring respectively.  

Analyzing the development of “Efficiency” can be observed how for 5% crossover rate, 

adding 5% mutation operator improves notably the calculation times of good results. For 

crossover 50% the improvement is due to the objective value, although the velocity of 

optimization is practically the same. However for 95% crossover rate, there is not any 

amelioration.  

If “Efficiency deformed” objective is analyzed, the assessment is similar. For low crossover 

rates the improvement is bigger than for high crossover rates.  

So it is claimed that mutation affects positively the optimization process for low-medium 

crossover rates, but the performance for high crossover rates is not worthy. Calculation time 

is wasted and the results improvement is deficient. 
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5.6.2 Effect on Mix start designs 

On the basis that designs calculated by Mix start designs are normally less effective than 

those calculated by Elite. It is interesting to evaluate if despite starting with lower objectives 

values, Mix manages to reach Elite’s yield. In Figure 5.15 dispersion plots for established 

crossover and mutation rates are illustrated. 

The same shape criteria distinguish the results. Definitely mutation improves the 

optimization, especially for 5% crossover rate. It is obvious that the number of good results 

is thoroughly increased. Both objectives are also grown. But they could not reached 

objective values as good as Elite did and the number of good results is also considerably 

lower, especially for “Efficiency”. Anyway, on the same line as the influence elite start 

designs, mutation works better on low crossover rates offspring. 

However, “Efficiency” results cannot still compete with the best designs calculated by only 

mutation operator, none achieved values over 0.5. On the other hand “Efficiency deformed” 

got several values around 0.87. 
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Figure 5.13: 1% and 5% mutation rates influence on Elite crossover 
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Figure 5.14 1% and 5% mutation rate influence on Mix crossover 
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6. COMPARISON OF OPTIMIZATION SOLVERS BY AN ALTERNATIVE SENSITIVITY ANALYSIS 

As the designs were calculated, it was realized that despite the crash box efficiencies were 

being optimized in a good way, the increasing such values were not as high as expected. This 

fact was due to some really good pre-optimized designs had been obtained during the 

sensitivity analysis. So the question might be contemplated is; what is the reason for doing 

an accurate sensitivity analysis?  

Sensitivity analysis accuracy not only depends on the sampling type, but also the number of 

samples. In order to analyze how the optimization processes worked, it was selected 600 

samples to look for the reference designs that were used as initial population for 

optimization. Now four solvers will be reset, using this time new reference designs. New 

Sensitivity analysis was set up with 100 samples under the same criteria it was done before 

for Sensitivity Analysis (600), then elite and mix designs were collected. So that, calculations 

for new Elite and Mix start designs, mutation 30% and 70% were simulated, to be compared 

with results have already been calculated by Sensitivity Analysis (600). 

Table 5.11 provides objectives ranges of both Sensitivity analyses to understand from which 

initial point the optimization starts. 

Table 5.11: Sensitivity analysis results compared by number of samples 

 
Sensitivity Analysis 
(100) 

Sensitivity Analysis 
(600) 

Elite 
Efficiency 0.3-0.37 0.43-0.48 
Efficiency Deformed 0.79-0.85 0.67-0.86 

Mix 
Efficiency 0.12-0.37 0.12-0.48 
Efficiency Deformed 0.71-0.85 0.46-0.86 

 

It can be observed how SA4 (600) reaches “Efficiency” values around 10% higher than SA 

(100) while “Efficiency Deformed” is practically the same, despite the number of samples. 

This fact lets deduced that for small parametrical models optimization, a Sensitivity Analysis 

with a low number of samples ought to be enough as long as only one objective is desired to 

be optimized. Nevertheless, results after optimization must be analyzed to make a clearer 

idea. Table 5.12 shows a summary of the results obtained, indicating the number of good 

results that have exceed a determinate objective value according to the sensitivity analysis 
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used as pre-optimizer, as in the percentage of improvement after optimizing, and the 

number in brackets indicates the highest objective value reached by the pertinent method. 

Table 5.12 Optimization yield according to number of samples of Sensitivity Analysis 

 Sensitivity Analysis (100) Sensitivity Analysis (600) 

Elite Mutation 30% 
1>0.46   9% 
13>0.86   1% 

80>0.46  (0.52)  4% 
38>0.86  (0.88)  2% 

Mix Mutation 30% 
2>0.42   5% 
11>0.86   1% 

42>0.42  (0.51)  3% 
3>0.86  (0.86)  0% 

Elite Mutation 70% 
1>0.46   9% 
7>0.86   1% 

93>0.46  (0.54)  6% 
35>0.86  (0.88)  2% 

Mix Mutation 70% 
2>0.42   3% 
4>0.86   1% 

59>0.42  (0.48)  0% 
7>0.86  (0.87)  1% 

 

It is visible how the number of results that exceed the limits established is much bigger when 

start designs belong to SA (600) and also “Efficiency” objective is better optimized, 

surpassing normally 0.5. However, “Efficiency deformed” remains practically constant, and 

the difference between use SA (100) or SA (600) is unsubstantial.  

It is claimed that for an accurate multi-objective optimization more than 100 samples should 

be considered for the sensitivity analysis. But it is also certain that 600 samples might be an 

excessive number of samples, due to sometimes the following optimization processes are 

worthless.  

However, if a DoE of 100 samples is selected due to the particular features of the problem to 

be analyzed, then Elite start design provides again a better exploration path. Results 

obtained by solvers that used SA (100), do not indicate a clear settings configuration. It is 

certain that mutation 30% reached a slightly bigger number of good results than mutation 

70%, but that does not assure anything regarding to the correct configuration. In order to 

make a reliable statement about the settings to optimize a DoE of 100 samples, new model 

calculations applying crossover before mutation operator ought to be done. Additionally 

rates taken into account must be more than two, as it was set up during the SA (600) 

investigation. Expectations are that working line will keep the same setting’s pattern as SA 

(600), where mutation high rates are the most effective configuration to find the best 

objective optimizations. But anything can be claimed without full information about SA 

(100).
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7. SUMMARY 

At the beginning of this thesis was pointed out that the crash box model used during the 

simulations was a parametrically reduced one. However its shape and the optimization 

development keep an accurate resemblance and behavior.  

If thesis goals are looked back, all the information that was desired to know has been 

analyzed. Several common patterns have been identified into the optimizers used. 

Nevertheless, firstly must be mentioned that without any doubt, the crash box thickness 

(“Blechdicke”) and its length (“Verkürzung”) are the crucial parameters which influence the 

most to increase the crash box efficiencies. 

Moreover, it is a fact that Sensitivity Analysis set to 600 samples makes a precise pre-

optimization of the model. Reducing range improvements when the optimization process is 

carried out. Although the Sensitivity Analysis number of samples depends on what sort of 

optimization is desired. If the goal is to search the most efficient crash box, maximizing 

objectives as much as possible, regardless the investigation time it could take, then 500 or 

600 samples are suggested before optimization. In addition, when more than one objective 

is considered, optimizer yield is higher if a precise pre-optimization has been carried out 

before. By contrast, if what is looking for is quick information about the parameter space 

distribution, few solutions that make a real objective improvement and no necessities to get 

the best crash box. Then a faster 100 samples Sensitivity Analysis should be made. It helps to 

be informed about several patterns that can provide an adequate response.  

Paying attention to the optimization processes, results of initial population, which was the 

most used investigation criteria, must be considered. Definitely, Elite start designs provide 

better objective values and achieves a bigger number of good results according to the filters 

applied during the thesis. This fact was reproduced for every mutation and crossover 

optimization methodology. So, in order to reach the best objectives optimization, the 

highest objectives values from the Sensitivity Analysis must be collected and used as 

reference initial population. At the end using Mix start designs is only interesting to notice 

that the worse designs are used as reference, the bigger the optimization of the objectives 

is. But that is due to the fact that the initial values are lower and how it was corroborated 

throughout the parameters boxplots, the space distribution is much wider than using Elite. 

At the end what is desired is to make shorter the parameters ranges and locate where those 
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parameters values that optimize the objectives are. Boxplots also informed about the 

relevant parameters location after and before the optimization. The point is that at the end 

optimization does not find a different parameters distribution than the Sensitivity Analysis. 

So the optimal is located on the same space region. In addition “Blechdicke” distribution 

varies for good results between 2 and 2.3 so far. The election of the crash box thickness will 

depend on manufacturing conditions and machines accuracy. 

On the other hand, it is concluded that the mutation type is not as significant as the start 

designs. Results obtained by Self-adaptive mutation type were slightly better than those 

calculated by Normal Distribution. That is the reason for suggesting that non-linear behavior 

might work better using Self-adaptive mutation type, due to the distribution is not pre-

established for a specific curve. A similar conclusion is reached when hybrid operator was 

used on crossover. Combination of two crossover type did not achieve the effectiveness that 

was expected, Multipoint and Simulated binary combination did not contribute to reach 

better results than applying only one.  

It is interesting to underline that mutation works better for high rates; indeed the most 

suitable designs are found when 70% and 90% rate were set. Contrary to crossover, that 

best results were found for low rates. This inquiry has demarcated two possible best crash 

box solutions according to the criteria is followed, in section 5.4.4 those designs were 

mentioned. “Efficiency” was optimized exceeding 0.54 and “Efficiency deformed” reached 

values around 0.88. These designs were expected to be defeated by mutation and crossover 

offspring. Surprisingly designs never reached so high objectives values, but what is 

absolutely certain is that crossover optimization was improved when mutation was applied 

on their offspring, especially for low crossover rates. 

Table 7.1 summarizes the best five designs according to the objectives. Two designs 

obtained by mutation (mut.), two more by crossover (cross.) and the last one by applying 

mutation 1% on crossover offspring (cross+mut.). The interesting point of this comparison is 

to realize if best designs follow a similar parameter pattern.  Such parameter comparison is 

shown in Table 7.2 
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Table 7.1: Best global designs 

Design Efficiency Efficiency Deformed Difference 

Elite 70% - 205(mut.) 0.5441 0.8817 0.3375 
Elite 70% - 183(mut.) 0.5442 0.8590 0.3151 
Elite 90% - 201(mut.) 0.5039 0.8844 0.3805 
Mix 75 – 203 (cross.) 0.4931 0.8583 0.3651 
Elite 50% - 191 (cross+mut.) 0.5241 0.8233 0.2992 

 

Table 7.2: Comparison between best designs parameters  

Design P_B dicke Verkürzung Fase P_H Zwischen 
blech 

Zwischen 
Blech 

Vertical 

Elite 70% - 205(mut.) 28 2.04 90 0.27 28 0.18 0.99 
Elite 70% - 183(mut.) 28 2 90 0.26 28 0.22 0.99 
Elite 90% - 201(mut.) 28 2.2 90 0.24 26 0.2 0.99 
Mix 75 – 203 (cross.) 20 2.1 71 0.49 28 0.56 0.31 
Elite 50% - 191 
(cross+mut.) 

20 2.1 79 0.45 25 0.38 0.39 

 

As it was mentioned in section 5.4.4, those designs obtained when only mutation operator is 

applied, tend to a regular hexagonal shape. Their parameters are exactly the same as can be 

checked in Table 7.2, except for “Blechdicke”that varies between 2 and 2.2, “Fase” between 

0.24 and 0.27, “P_H” between 26 and 28 and “Zwischenblech” between 0.18 and 0.22. 

The other two designs, where crossover operators have taken importance, the shape are 

similar between them, but different from the others explained before. This time the 

hexagonal shape is not regular due to “Zwischenblech” values are higher and 

“Zwischenblech vertical” values are two times smaller. 

In order to conclude this thesis the following recommendation are suggested. 

 Wider mutation rates on crossover offspring should be analyzed to find where the 

optimal space-design is. 

 The model has been analyzed for a specific sort of impact. It would be interesting to 

check the results when the impact angle or the vehicle velocity is changed. Otherwise 

it can happen that the crash box was not useful in real life. 

 As the highest objective values are looked for, Elite start design work definitely more 

effective than Mix. This fact ought to be verified on the full parametric crash box. 
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 It must be checked that model can be manufactured according to the parameters 

given. Manufacturing costs, feasibility of its production regarding to tolerances and 

welding capacity. 

 If it is desired to analyze a model based on a large number of parameters, an 

accurate Sensitivity Analysis should be carried out, because not only the number of 

relevant parameters would be reduced, but also the space-design. Making an 

exploration of a vast space-design would be a tedious and slow process that is 

worthless in terms of time.  

 There are more mutation and crossover types to be set. Check it on OptiSLang 

manual. 

 The optimization process of the model has been aboard just from the Evolutionary 

Algorithms point of view. Downhill simplex Method, explained in section 5.2.2 could 

be an interesting alternative. 

 Deeper investigation of regular hexagonal shape, according to the parameter values 

on this thesis expounded. 

 Deeper investigation of irregular hexagonal shape, according to the parameter values 

on this thesis expounded. 

 



Appendix 

62 

APPENDIX 

 



 

 

Global Blechdicke 

   

Verkurzung Fase 

  

Figure A.!: Relevant parameters ang global Parallel plots

A
p

p
en

d
ix 

I  



Appendix 

 

 

Table  A.2: Suitable mutation designs according to “Efficiency”, “Efficiency deformed” and Pareto criteria 

Mutatio 
type 

Criteria Design P_B Blechdicke Verkuerzung Fase_ rel P_H 
Zwischenblech  

rel 
Zwischenblech  

rel_vertikal 
Maximalkraft 

added  
mass 

crashbox  
efficiency 

crashbox 
efficiency 
deformed 

EL
IT

E_
1

0%
 

Best efficiency 198 21 2.05 85 0.39 34 0.64 0.54 91185.4 1.1604 0.492841 0.81634 

Best efficiency  
deformed 

171 21 2.1 57 0.45 27 0.23 0.41 62967.1 1.2015 0.473567 0.875491 

Best pareto 198 21 2.05 85 0.39 34 0.64 0.54 91185.4 1.1604 0.492841 0.81634 

M
IX

_S
A

_1
0%

 

Best efficiency 71 26 2.1 78 0.49 33 0.34 0.97 82075 1.2065 0.485303 0.838226 

Best efficiency  
deformed 

7 24 2.1 71 0.49 32 0.56 0.32 77550.6 1.161 0.479796 0.861684 

Best pareto 71 26 2.1 78 0.49 33 0.34 0.97 82075 1.2065 0.485303 0.838226 

M
IX

_N
D

_1
0%

 

Best efficiency 130 26 2.06 78 0.49 33 0.34 0.97 79756 1.1985 0.501872 0.84371 

Best efficiency  
deformed 

190 24 2.1 71 0.48 32 0.55 0.32 74454.8 1.249 0.475295 0.869451 

Best pareto 130 26 2.06 78 0.49 33 0.34 0.97 79756 1.1985 0.501872 0.84371 

EL
IT

E-
3

0%
 

Best efficiency 182 20 2 87 0,4 34 0,63 0,57 85793,5 11.783 0,5257112 0,8018489 

Best efficiency  
deformed 

160 29 2,1 76 0,21 24 0,15 0,95 68351,7 12.319 0,452604 0,8829759 

Best pareto 182 20 2 87 0,4 34 0,63 0,57 85793,5 11.783 0,5257112 0,8018489 

M
IX

_S
A

-3
0%

 

Best efficiency 189 26 2 80 0,5 33 0,34 0,96 82168,5 11.416 0,5143492 0,8115014 

Best efficiency  
deformed 

203 24 2,2 71 0,49 32 0,52 0,34 82203,5 12.813 0,4365897 0,8653688 

Best pareto 189 26 2 80 0,5 33 0,34 0,96 82168,5 11.416 0,5143492 0,8115014 

M
IX

_N
D

-3
0%

 

Best efficiency 10 26 2,1 78 0,49 33 0,34 0,97 82155,9 12.065 0,48487 0,837466 

IIfgII 
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Best efficiency  
deformed 

7 24 2,1 71 0,49 32 0,56 0,32 77550,5 11.607 0,4795416 0,8615313 

Best pareto 6 23 2 51 0,44 23 0,14 0,22 61160,4 11.374 0,4826875 0,8155114 

EL
IT

E-
5

0%
 

Best efficiency 136 28 2 68 0,44 25 0,76 0,73 64092,9 11.711 0,5065654 0,8330983 

Best efficiency  
deformed 

87 21 2 49 0,45 28 0,18 0,85 58609,2 12.007 0,4807383 0,8800904 

Best pareto 136 28 2 68 0,44 25 0,76 0,73 64092,9 11.711 0,5065654 0,8330983 

M
IX

_S
A

-5
0%

 

Best efficiency 192 24 2 75 0,48 32 0,55 0,42 76718,4 12.171 0,5026647 0,8296251 

Best efficiency  
deformed 

197 25 2,2 72 0,47 23 0,58 0,95 74850,4 12.258 0,493125 0,8762637 

Best pareto 192 24 2 75 0,48 32 0,55 0,42 76718,4 12.171 0,5026647 0,8296251 

M
IX

_N
D

-5
0%

 

Best efficiency 10 26 2,1 78 0,49 33 0,34 0,97 82132,3 12.065 0,484894 0,8374811 

Best efficiency  
deformed 

6 24 2,1 71 0,49 32 0,56 0,32 77550,6 11.607 0,4795565 0,8615449 

Best pareto 10 26 2,1 78 0,49 33 0,34 0,97 82132,3 12.065 0,484894 0,8374811 

EL
IT

E-
7

0%
 

Best efficiency 205 28 2,04 90 0,27 28 0,18 0,99 76128,7 11.747 0,5441415 0,8817399 

Best efficiency  
deformed 

169 29 2,09 78 0,21 28 0,12 0,99 74557 12.592 0,4504534 0,8842508 

Best pareto 183 28 2 90 0,26 28 0,22 0,99 77212,9 11.778 0,5439215 0,859054 

M
IX

_S
A

-7
0%

 

Best efficiency 181 23 2 48 0,44 23 0,14 0,22 58020,7 11.617 0,4881759 0,8375465 

Best efficiency  
deformed 

145 20 2,5 84 0,15 38 0,33 0,2 102704 13.346 0,3529604 0,8771298 

Best pareto 181 23 2 48 0,44 23 0,14 0,22 58020,7 11.617 0,4881759 0,8375465 

M
IX

_N
D

-7
0%

 

Best efficiency 130 22 2 46 0,42 23 0,14 0,27 55909,2 11.948 0,4952739 0,8638109 
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Best efficiency  
deformed 

149 21 2 41 0,42 22 0,18 0,24 56880,7 11.852 0,4859851 0,875327 

Best pareto 193 21 2 75 0,44 30 0,22 0,42 84556,1 11.873 0,4911423 0,7763303 

EL
IT

E-
9

0%
 

Best efficiency 123 26 2,13 90 0,24 25 0,16 0,99 82160,3 11.639 0,5207974 0,8731634 

Best efficiency  
deformed 

185 30 2,19 82 0,24 26 0,2 0,97 78662,3 12.489 0,4428215 0,8895536 

Best pareto 123 26 2,13 90 0,24 25 0,16 0,99 82160,3 11.639 0,5207974 0,8731634 

M
IX

_S
A

-9
0%

 

Best efficiency 207 23 2 72 0,49 32 0,56 0,39 67751,8 11.622 0,5058799 0,8560476 

Best efficiency  
deformed 

87 25 2,31 69 0,5 31 0,61 0,52 81660 12.511 0,4140674 0,8622027 

Best pareto 207 23 2 72 0,49 32 0,56 0,39 67751,8 11.622 0,5058799 0,8560476 

M
IX

_N
D

-9
0%

 

Best efficiency 207 21 2,22 87 0,5 27 0,75 0,36 97122,3 11.673 0,4966007 0,7934425 

Best efficiency  
deformed 

144 21 2,18 59 0,47 25 0,3 0,37 67910,4 12.195 0,4726265 0,8727286 

Best pareto 207 21 2,22 87 0,5 27 0,75 0,36 97122,3 11.673 0,4966007 0,7934425 

IIfgIII 

IIfgIV 
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Figure A.3: Mutation 2-D Pareto fronts 
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Figure A.3: Mutation 2-D Pareto fronts 
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Figure A.3: Mutation 2-D Pareto fronts 
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Figure  A.4: 3-D Pareto fronts according mutation rate and initial population 
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Table A.6: Suitable crossover designs according to “Efficiency”, “Efficiency deformed” and Pareto criteria 

Crossover 
type 

Criteria Design P_B Blechdicke Verkuerzung Fase real P_H 
Zwischenblech  

real 
Zwischenblech  

rel_vertikal 
Maximalkraft 

added  
mass 

crashbox 
efficiency 
deformed 

crashbox 
efficiency 

deformed6 

EL
IT

E_
5

%
 

Best efficiency 198 29 2 72 0,44 32 0,14 0,94 77216,6 12.376 0,4872203 0,8300297 

Best efficiency  
deformed 

196 29 01,02,2018 76 0,25 25 0,15 0,95 73481,5 12.314 0,4189494 0,8704311 

Best pareto 198 29 2 72 0,44 32 0,14 0,94 77216,6 12.376 0,4872203 0,8300297 

             

M
IX

_5
%

 

Best efficiency 184 26 02,01,2015 79 0,49 33 0,34 0,97 81799,2 12.235 0,4954218 0,8481918 

Best efficiency  
deformed 

178 24 02,02,2015 71 0,49 32 0,56 0,32 82243,7 1.182 0,44729 0,863067 

Best pareto 184 26 02,01,2015 79 0,49 33 0,34 0,97 81799,2 12.235 0,4954218 0,8481918 

EL
IT

E-
25

%
 

Best efficiency 204 26 01,02,2019 75 0,48 25 0,51 0,94 78662,8 12.073 0,490831 0,8523859 

Best efficiency  
deformed 

136 26 02,01,2015 76 0,25 25 0,6 0,95 72818,5 12.631 0,449778 0,8823502 

Best pareto 204 26 01,02,2019 75 0,48 25 0,51 0,94 78662,8 12.073 0,490831 0,8523859 

M
IX

_2
5%

 

Best efficiency 207 26 02,01,2015 78 0,49 33 0,33 0,97 81757,8 12.091 0,4873603 0,8406321 

Best efficiency  
deformed 

6 24 02,01,2015 71 0,49 32 0,56 0,32 77550,6 11.607 0,4795745 0,8615904 

Best pareto 207 26 02,01,2015 78 0,49 33 0,33 0,97 81757,8 12.091 0,4873603 0,8406321 

EL
IT

E-
50

%
 

Best efficiency 40 29 2 72 0,49 32 0,14 0,24 76809 11.763 0,4893825 0,7905026 

Best efficiency  
deformed 

196 28 02,01,2015 76 0,25 25 0,15 0,95 69476,9 1.198 0,4446425 0,8668853 

Best pareto 40 29 2 72 0,49 32 0,14 0,24 76809 11.763 0,4893825 0,7905026 

M
IX

_5
0%

 

Best efficiency 11 26 02,01,2015 78 0,49 33 0,34 0,97 82143,1 12.066 0,4849858 0,8376398 

Best efficiency  
deformed 

190 21 02,01,2015 65 0,42 28 0,71 0,36 69002,2 12.174 0,4721639 0,8712949 

Best pareto 11 26 02,01,2015 78 0,49 33 0,34 0,97 82143,1 12.066 0,4849858 0,8376398 

EL
IT

E-
75

%
 

Best efficiency 132 26 02,01,2015 82 0,49 32 0,27 0,99 88642,6 11.795 0,4958405 0,8087756 

Best efficiency  
deformed 

159 21 02,01,2015 57 0,46 27 0,41 0,82 64371,6 1.204 0,4668644 0,8741654 

Best pareto 123 21 02,09,2015 82 0,45 27 0,37 0,23 90817,5 11.727 0,4914553 0,7856406 

M
IX

_7
5%

 Best efficiency 203 20 02,01,2015 71 0,49 28 0,56 0,31 70082,7 12.114 0,4931969 0,8583844 

Best efficiency  
deformed 

46 31 02,03,2015 20 0,4 33 0,79 0,58 78481 1.514 0,2907704 0,8676784 

X 
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Best pareto 180 21 02,02,2015 87 0,5 27 0,74 0,34 99289,6 11.653 0,4893192 0,771821 

EL
IT

E-
95

%
 

Best efficiency 111 21 02,05,2015 79 0,49 27 0,38 0,33 87904,8 11.781 0,5150454 0,802779 

Best efficiency  
deformed 

151 26 02,09,2015 64 0,4 25 0,36 0,95 66460,1 11.804 0,4656703 0,8769951 

Best pareto 111 21 02,05,2015 79 0,49 27 0,38 0,33 87904,8 11.781 0,5150454 0,802779 

M
IX

_9
5%

 

Best efficiency 11 26 02,01,2015 78 0,49 33 0,34 0,97 82143,3 12.065 0,4848941 0,8375076 

Best efficiency  
deformed 

125 22 02,08,2015 55 0,44 27 0,17 0,34 59774 11.701 0,465522 0,8645093 

Best pareto 11 26 02,01,2015 78 0,49 33 0,34 0,97 82143,3 12.065 0,4848941 0,8375076 
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Elite: 5% Elite: 25%  Elite: 50%  Elite: 75%  Elite: 95%  

 

Mix: 5% Mix: 25%  Mix: 50%  Mix: 75%  Mix: 95%  

Figure  A.7: Pareto according to  crossover rate and initial population 
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Mix ND 5% Mix ND 25% Mix ND 50% Mix ND 75% Mix ND 95% 

Figure A.8 Crossover 3-D Pareto fronts 
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