
2016 156

Roberto Yus Peirote

Semantic Management of
Location-Based Services
in Wireless Environments

Departamento

Director/es

Informática e Ingeniería de Sistemas

Mena Nieto, Eduardo

Director/es

Tesis Doctoral

Autor

UNIVERSIDAD DE ZARAGOZA

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es



Departamento

Director/es

Director/es

Tesis Doctoral

Autor

UNIVERSIDAD DE ZARAGOZA

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es



Departamento

Director/es

Roberto Yus Peirote

SEMANTIC MANAGEMENT OF
LOCATION-BASED SERVICES IN

WIRELESS ENVIRONMENTS

Director/es

Informática e Ingeniería de Sistemas

Mena Nieto, Eduardo

Tesis Doctoral

Autor

2016

UNIVERSIDAD DE ZARAGOZA

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es



Departamento

Director/es

Director/es

Tesis Doctoral

Autor

UNIVERSIDAD DE ZARAGOZA

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es



Semantic Management of Location-Based Services in

Wireless Environments

Roberto Yus Peirote
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Chapter 1

Introduction

The context of the work presented in this thesis is mobile computing and
knowledge management. We focus on the usage of semantic technologies for
representation, sharing, and integration of knowledge about services (specially
Location-Based Services) as well as agents to discover devices which can provide
interesting information for users. Therefore, our main contribution is a general
and flexible agent-based architecture based on the use of semantic technologies
to provide services to mobile users.

Location-Based Services (LBS) provide added value by customizing the
information offered to mobile users based on their locations. Current LBS
are usually designed for specific scenarios and goals with predefined schemas
for the modeling of the elements involved in their scenarios. Apart from
specific LBS, some approaches of architectures to provide users with LBS have
been presented before. However, these approaches assume either a centralized
architecture or its distribution using a fixed infrastructure. In addition, these
approaches usually act as mere repositories of services and do not deal with
their execution to obtain the information that the user needs.

Our proposal is the system SHERLOCK (System for Heterogeneous mobilE
Requests by Leveraging Ontological and Contextual Knowledge) that offers a
general and flexible architecture to provide users with LBS which might be
interesting regarding their context. SHERLOCK is based on semantic and
agent technologies: 1) ontologies are used to model the information about users,
devices, services, and the world around a device whereas a semantic reasoner
is used to manage these ontologies and infer non-explicit knowledge; and 2) an
agent-oriented architecture enables SHERLOCK devices to autonomously
exchange knowledge keeping their local ontologies updated, and to process
user information requests, finding what the user needs wherever it is. The

1
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use of these two technologies helps SHERLOCK to be flexible in terms of
both the services it offers to the user (which are learned from the interaction
between devices), and the mechanisms to find the information that the user
wants (which adapt to the underlying communication infrastructure).

In this chapter, we first describe the context of our work and our motivation.
Then, we provide an overview of our work describing our approach for the
management of knowledge and user information requests. Finally, we present
the structure of the thesis.

1.1 Context of the Thesis

The work presented in this thesis belongs in the fields of mobile computing
and knowledge management. More specifically, it focuses on the semantic
management of Location-Based Services in mobile scenarios.

1.1.1 Mobile Computing

The main implication of mobile computing is the possibility of computers being
transported around by users. Indeed, in the last few years, we have witnessed
a massive spread of mobile computing which has been shaping our daily lives.
This has been undoubtedly helped by the pervasive connectivity that the
current wireless networks provide us with and the affordable prices of current
mobile devices (such as smartphones and tablets). Mobile devices have been
fast replacing other stationary devices as de-facto medium for on-line browsing,
social networking, and other applications. This has attracted a huge community
of developers that are continually releasing new mobile applications (or apps)
which usually utilize the location of the user and therefore, can be viewed as
LBS. In fact, the most popular mobile application (app) stores crossed the
one million apps mark in 2013. For example, the Google Play market1, the
app store of Google, contains more than 1,800,000 available applications in
December 20152.

Mobile devices have some limitations compared to traditional forms of
computing regarding, for example, processing power, battery, and memory.
Therefore, most of current systems and apps rely on the “cloud” for performing
their tasks [FLR13]. However, in this vision of mobile computing, mobile
devices are regarded as mere terminals, devices used to enter data into and
display data from. Also, this model presents problems, apart from the obvious

1http://play.google.com
2http://goo.gl/7oeQD, all the URLs in this thesis have been last accessed in 2016-02-07.

http://play.google.com
http://goo.gl/7oeQD
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privacy issues that arise with information being transmitted to the cloud, such
as the reliability on the connectivity to the cloud. Although, these days Internet
connectivity is mostly assured in major cities and other locations, there are
still areas where the connectivity is not assured and situations where the user
might not be interested in using it (for example, due to monetary costs or
energy consumption). We believe that the increasing capabilities of current
mobile devices, from the point of view of computing power and communication
with other devices around, can be leveraged in these scenarios.

1.1.2 Knowledge Management

Systems and applications need to manage some knowledge about their context
to accomplish their goals. A traditional way of representing this information
is the use of ontologies, defined by Tom Gruber as “an explicit specification
of a conceptualization” [Gru95]. Ontologies allow modeling and capturing
the semantics of different knowledge domains, providing a means to share
definitions, and reach an implicit agreement on the meaning of the published
information. In addition, ontology modeling languages based on Description
Logics (DL) [BCMNPS03], such as OWL, make it possible the use of semantic
DL reasoners to infer non-explicit knowledge from the explicit facts and the
model defined. These features enable the development of smart applications,
such as smart LBS [IlMS11].

By using semantic technologies, applications on mobile devices can benefit
from the advantages of the Semantic Web. For example, apps can use informa-
tion from the Linked Data cloud [BHBL09], as well as publish and subscribe
to various data sources without worrying about app or device specific schemas,
and even reason over information to derive non-explicit facts.

The use of semantic technologies on mobile devices has been subject of
interest from the early stages of the Semantic Web [WRSOS05]. However, cur-
rently the use of semantic technologies on mobile applications is not widespread
in comparison with the overwhelming amount of existing apps. In [YP15] we
presented a systematic review of semantic mobile applications which covers
the breadth of semantic mobile apps and the depth of semantic data man-
agement. To this end, we analyzed more than 400 papers and found that at
least 36 semantic mobile apps have been presented in the literature over the
last 10 years.

Our results show that most of the “semantic mobile apps” presented act
as clients which rely on external servers for the handling of semantic data.
This means that although they consume data which comes from Linked Data
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points and ontologies, in many cases this data is preprocessed on a server which
returns the data in a semistructured format (e.g., JSON) or just as strings.
There are only a few recent apps exploiting the capabilities of current mobile
devices to handle semantic data locally (from which majority were developed
as part of this thesis). Therefore, as with the case of current LBS, mobile
devices do not usually manage knowledge locally. Although, obviously more
limited than their fixed counterparts, the capabilities of current mobile devices
make them suitable for the semantic management of data locally on the device.
However, research should focus on dealing with the problems related to this new
scenario (e.g., devices with limited capabilities which generate large amounts
of highly-dynamic data) to popularize the use of semantic technologies for the
local management of knowledge in apps on these existing and future devices.

1.2 Motivation

In the last years the interest in mobile computing has grown due to the
ever-increasing use of mobile devices and their pervasiveness. The low cost
of these devices, along with the high number of sensors and communication
mechanisms they are equipped with, make it possible to develop useful infor-
mation systems. Using special kinds of sensors, location mechanisms enable
the development of Location-Based Services (LBS) [SV04]. These services
provide added value by considering the locations of the mobile users to offer
customized information. For example, LBS for taxi searching [SCC10], helping
firefighting [JCHWTL04], detecting nearby friends [AEMPW07], or multimedia
retrieval in sport events [IMIYLM12] have been presented, among many others.

However, current LBS are usually designed for specific scenarios and goals.
Moreover, the knowledge they manage is not explicitly represented but em-
bedded in their code; that is the reason why they only work for one specific
goal. Moreover, developing services ad hoc for specific purposes leads to the
fact that there exist thousands of them (even with the same purpose), and
therefore it is difficult to choose the most suitable one.

For example, imagine an attendee of a conference that has just arrived at
the airport of a foreign city, and needs a way to reach the conference hotel;
this information could be obtained by visiting a tourist office, searching a local
transportation website, or even downloading a mobile app. After checking in,
she could be interested in finding other nearby conference attendees to talk
to them or even to go sightseeing (again, he should browse the Web to find
information about interesting places to visit). Thus, it is the user herself who is
in charge of knowing/finding the interesting and updated information sources
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and gathering and correlating all this information; even worse, she will have to
know/find all these updated information about each city she would visit.

Therefore, how to provide the LBS that the user needs at the moment
regardless of their specific goals is still an open problem. Some ad hoc solutions
have been proposed to provide users with LBS (e.g., [GL06; IMI06]) but there
is a lack of a general architecture able to provide different LBS and obtain
the information that the user needs wherever it is. Existing approaches to
the problem present several key disadvantages that motivate our work in this
area. To build such a general system by simply merging preexisting LBS is
not straightforward: it is a challenge to provide a common framework that
allows 1) managing knowledge obtained from data sent by heterogeneous
devices (textual data, multimedia data, sensor data, etc.); and 2) considering
situations where the system must adapt itself to contexts where the knowledge
changes dynamically and in which devices can use different underlying wireless
technologies (fixed, wireless, ad hoc, etc.).

In this thesis, we attempt to overcome the aforementioned points by de-
signing a general and flexible architecture to provide interesting LBS to mobile
users.

1.3 Overview of the System

In this thesis, we present SHERLOCK, a general and flexible system to provide
LBS based on the use of semantic techniques for knowledge management and
mobile agents for finding the information the user needs wherever it is. The
system is based on the collaboration of devices to satisfy information needs of
their owners. In SHERLOCK’s distributed architecture every device acts as an
independent node which communicates with others to exchange information
that might be interesting for their users (see Figure 1.1). SHERLOCK-enabled
devices use their communication mechanisms (e.g., WiFi and 3G) to create Peer-
to-Peer (P2P) networks. The benefits of the communication between devices
are twofold, it allows decices to: 1) Exchange information about services and
their surroundings and thus, every device learns from the different interactions;
and 2) Answer requests posed by others by using the information they store
locally.

As its namesake, the well-known Arthur Conan Doyle’s character, SHER-
LOCK uses deductive reasoning to infer information to answer user requests.
In our opinion, the use of semantic techniques can enable the development of
intelligent LBS [IlMS11]. Thus, each node uses ontology reasoning and align-
ment methods, locally on the device, to represent and manage, in a distributed
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Figure 1.1: Interaction of different SHERLOCK nodes.

way, the knowledge about services and the world around the user. This way,
the system guides the user in the process of selecting the LBS that best fits
her needs; the participating devices can cooperate and exchange data and
knowledge among them to relieve the user from knowing and managing such
knowledge directly. This knowledge can be defined by providers of services
or even extracted from ontologies in the Web using Semantic search engines
(elementary, SHERLOCK can use the services of WATSON [dM11] to find
ontologies in the Web). Furthermore, thanks to the use of mobile agents [LO99],
it is possible to monitor devices (e.g., inside a certain geographic area), which
could provide the information the user needs, wherever they are. Also, the
agents help to distribute the load of the system (both the CPU power and
the communication costs) wherever it is needed in the wireless environment.
This way, the required processing tasks can be carried on the most appropriate
device in the scenario. In summary, the main benefits offered by our system,
from the user’s point of view, are:

1. It offers to the user all the available LBS which might be interesting for
her at each moment given her current context. After choosing one of
them, it helps the user to express her information needs by pro-actively
querying the local knowledge at the user device. Therefore, it relieves
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the user from managing specific knowledge about LBS.

2. It reconciles the different views of the world and the vocabulary used
to describe objects and requests. This is achieved by supporting a
decentralized and dynamic discovery of new kinds of services, providers,
and information about the surroundings of the user. This way, the system
manages up-to-date knowledge about the LBS provided to the user.

3. It manages heterogeneous (fixed or mobile) devices that can be part
of the system, each of them having different capabilities. Moreover,
it adapts itself in run-time to different underlying networks, such as
fixed infrastructures (e.g., such as 4/3G and wired networks) and Mobile
Ad-hoc Networks (MANETs) [CCL03].

4. It finds the information that the user needs wherever it is. A mobile agent
network is deployed to obtain the information from other SHERLOCK-
enabled devices. Also, different sources are considered, such as the local
knowledge in the device and third-party providers.

5. It continuously carries the processing to the most appropriate nodes in
order to balance the processing load and communication tasks, by using
mobile agents. This is important to alleviate the limited CPU power,
storage, and communication capabilities of mobile devices.

The system presented is flexible enough to deal with different types of
services and scenarios. In addition, new services can be added to the system
by providing SHERLOCK with an ontology which models them without ar-
chitectural changes. In the following sections we describe in more detail how
the system manages the knowledge about services and scenarios as well as
information requests by users.

1.3.1 Knowledge Management

SHERLOCK-enabled devices manage knowledge modeled as OWL ontologies
with the help of a Description Logics (DL) semantic reasoner running on
the device. The different categories of knowledge managed by the system
include: user context, device context, services, and scenarios. The knowledge
management task is performed by different agents whose main goal is to keep
the local knowledge on the device updated, as that will mean offering more
interesting information to their users, and provide access to this information.
In the following we briefly summarize the different agents in charge of this task
and their goals:
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• The Knowledge Endpoint agent provides access to the local knowledge on
the device to other (local or external) agents. The access is done through
queries in SHERLOCK’s query language which is based on SPARQL
(with extensions to handle geospatial data and DL ontologies).

• The Ontology Updater agent updates the local ontology on the device by
exchanging it with other devices. To integrate the knowledge received
into the local ontology, it makes use of a technique based on the extraction
of subsumption relationships between concepts defined in the ontologies.

• The Context Updater agent keeps the user context information updated
and collects information about the context of other devices. Through the
integration of the information received, it creates a shared context model
used to improve the context of the user managed.

A special type of knowledge managed by SHERLOCK is related to multi-
media information. Users might be interested in LBS to obtain, for example,
pictures of a certain location or object (e.g., pictures of the Lincoln Monument
in Washington D.C.). So, SHERLOCK manages information provided by cam-
eras attached to SHERLOCK-enabled devices by extracting high-level features
of their views regarding objects in their Field-of-View and specific details such
as the viewpoint of these objects or the amount of them being covered. To
this end, our system relies on a 3D model of the scene generated based on
information about the interesting objects and cameras in the scenario (location,
direction, and approximate 3D extent). Also, the system is able to compute
an objective value to compare the picture that the user wants to obtain with
the shots provided by the different available cameras. Finally, when handling
pictures taken by SHERLOCK-enabled devices, the system tries to preserve
the privacy preferences of users in the pictures in which, for example, they
would not like to appear depending on their context.

1.3.2 Request Management

The knowledge that SHERLOCK-enabled devices learn from their interactions
with others is used to offer interesting services to their users. First, SHERLOCK
captures the user information needs by guiding her to select an appropriate
LBS and then it generates a formal user request with the service selected and
the user preferences. Then, it processes the generated request against different
sources to obtain the actual information the user is interested in.
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Request Generation

A first step in order to fulfill the user information needs is to capture those needs
and formalize them into a formal request in order to avoid ambiguities. To
provide SHERLOCK with enough expressivity and flexibility, we have designed
a SPARQL-like query language that is used by the system making it possible
to express semantic location-based queries (e.g., “Retrieve taxis around me”)
and non-location based queries (e.g., “What is the age of Barack Obama?”) as
part of LBS or other services, respectively. This language requires knowledge
about SPARQL and SHERLOCK’s ontology, so it might be too complicated
to be used by non-advanced users. Therefore, our approach helps users to
define their interests, guiding them, and capturing their requests. To do so,
the system relies on the User Request Manager agent (URM) to guide users
when defining their information needs. The URM performs three main tasks
summarized in the following:

1. The URM is in charge of obtaining the services (based on a location or
not) that are relevant for a user in a particular situation. The result of
this task is a list of services the user can see and select.

2. Given the service selected by the user, the URM retrieves the information
needed to invoke it (its formal parameters) from the ontology, and, if
needed, handles the interaction with the user required to obtain the
actual values for the parameters.

3. Given the service, and a set of parameters with the selected values, the
URM generates the appropriate service request/invocation.

This way, the user does not have to be aware neither of the details of the
query language nor the schema and available services.

Request Processing

The next step is to process the user request to obtain the information that
the user needs. The user request might imply the processing of a location
or non-location based query, the call to an external service provided by a
third-party, or the execution of different actions defined as a plan. The User
Request Processor agent (URP) deals with these three different types of user
requests. The high-level protocol performed by the URP agent to process a
request in the form of a SHERLOCK query can be summarized in the following
steps:
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1. Execute the query against the local ontology on the user device that could
contain the information requested from previous interactions.

2. Evaluate the need of querying external sources: The results obtained in
the previous step are analyzed to evaluate if they are good enough for
the user in terms of their timestamp and the number of results. External
sources include third-party repositories and other SHERLOCK devices.

3. If the query has to be posed to other SHERLOCK devices, the URP
will try to query devices in the geographic area relevant for the query (if
any), to maximize the chances of obtaining information interesting for
the user, as follows:

(a) Split the query for each non-overlapping geographic constraint in
it : Tracker agents will be created to monitor the geographic area
associated with each geographic constraint. Each Tracker agent will
autonomously move toward the centroid of the area. For this purpose,
the Tracker will discover devices around the area (if possible) or
around the device it is currently residing in and will move to them.
Once a Tracker discovers devices that might be able to partially (or
even totally) cover the area (i.e., their communication mechanisms
enable them to communicate with devices inside such an area), it
creates Updater agents on them.

(b) Send agents to devices in the relevant area: Each tracker agent
creates Updater agents that will move to the best device to cover
the relevant area considering their capabilities. These agents also
continuously evaluate if the device they are residing in is the best
under the given circumstances and their goals. They keep themselves
in the device that maximizes the communication with others and
pose the user query to these SHERLOCK devices around.

(c) Each device executes the query against its local ontology and returns
as answer the information fulfilling the query constraints (including
geospatial and DL constraints, the latter evaluated by the DL
reasoner on each device). If the device does not contain the requested
information, an Updater makes use of different mechanisms to
maximize the chances of obtaining results. For example, it can ask
the SHERLOCK on the other device to execute the query (and
therefore, create its own network of agents if needed) and even
extend the query by deducing devices that would be able to produce
the information requested (e.g., it can deduce that cameras could
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obtain the pictures that the user requested and execute a request
to find such cameras).

(d) Correlate the results obtained by each Tracker agent from the differ-
ent Updater agents to detect redundant information. This step can
minimize the information that will be sent back to the URP agent
through the network of agents.

Finally, the URP correlates the results obtained from each tracker and
presents them to the user. In the case of continuous queries (i.e., queries which
have to be reevaluated continuously), the URP maintains the network of agents
adapting it to the current situation (e.g., the current network condition).

1.4 Structure of the Thesis

This thesis has been structured into ten chapters including this one where we
have summarized our motivation and contributions.

In Chapter 2, we review the technological context of this work. In particular,
we describe aspects related to mobile computing and knowledge management.

In Chapter 3 we first present four motivating scenarios where a system like
the one presented in this thesis can be helpful. Each scenario include unique
challenges that have been taken into account in the proposed architecture and
which make the system general enough to help in many other scenarios. Also,
we describe the high-level architecture of the system, highlighting the different
parts and modules that will be explained in detail in the rest of the thesis.

In Chapter 4 we describe the management of knowledge done by the system.
We include the management of information related to the context of the user
and the services and scenarios which the system considers. We explain how
the system models this knowledge and the mechanism developed to access it
through a language we designed based on SPARQL.

In Chapter 5 we explain how the system keeps its local knowledge updated.
We describe the process of sharing information with other devices in order
to help each SHERLOCK-enabled device to learn from the interaction with
others.

In Chapter 6 we present the process of managing user information requests.
First, we explain how the system helps users to define their information needs
in order to translate their needs into a formal request using SHERLOCK’s
query language. Then, we explain how these requests are processed.

In Chapter 7 we present the processing of SHERLOCK queries by using
different sources. We focus on the deployment of a network of mobile agents
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which are in charge of finding SHERLOCK devices which might contain the re-
quested information. The agents execute the queries against such SHERLOCK
devices.

In Chapter 8 we describe the management of multimedia information in
SHERLOCK. In particular we focus on the efficient management of camera
views using information about the context of cameras and objects in the
scenario. We explain the algorithms developed to extract high-level features of
the views of such cameras and compare the result to the camera view the user
needs.

In Chapter 9 we explain how the developed system deals with the motivating
scenarios used through the thesis. We detail the steps involved and highlight
how the system would deal with other similar scenarios.

Finally, in Chapter 10, we present the conclusions and main contributions
of this thesis, as well as some future work and lines that have been opened.

We also include two appendices where we present: 1) Our thorough analysis
of the performance of Semantic Web technologies, such as semantic reasoners,
on mobile devices, which is one of the foundations of the SHERLOCK archi-
tecture (Appendix A); and 2) The different prototypes developed, based in our
approach for the semantic management of Location-Based Services in wireless
environments, and tests (Appendix B).



Chapter 2

Technological Context

In this chapter, we describe concepts and technologies related to our work
in order to help understanding the rest of the thesis. First, we focus on
knowledge management that is one of the pillars of SHERLOCK. We describe
important concepts such as ontologies and languages used to model them,
semantic reasoners to infer non-explicitly defined knowledge in these ontologies,
and query languages to retrieve information from such knowledge. Second, we
focus on mobile computing, which is the other pillar of SHERLOCK, describing
concepts such as Location-Based Services and mobile agents. Finally, we focus
on knowledge management on mobile devices and more precisely we overview
how mobile applications in the literature use semantic data.

2.1 Knowledge Management

In this section we present the main semantic technologies used in the thesis.
First, we use ontologies to model the knowledge managed by our system
and ontology alignment techniques to integrate the knowledge shared by
SHERLOCK devices. We selected Description Logic (DL) [BCMNPS03] as
the formalism to represent these ontologies. Also, we use semantic reasoners
based on DL to infer non-explicit knowledge from the explicit facts defined.
Finally, we use a query language based on SPARQL, and its GeoSPARQL and
SPARQL-DL extensions to formalize user requests in the system.

2.1.1 Ontologies

The term ontology was defined by Tom Gruber as “an explicit specification of
a conceptualization” [Gru93]. Therefore, ontologies allow to model and capture

13
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the semantics of different knowledge domains, providing a means to share
definitions, and reach an implicit agreement on the meaning of the published
information. There exist different formalisms to define ontologies and the basic
elements in them include:

• Instances, which are objects of the world.

• Classes, which are sets of instances usually organized in hierarchies.

• Attributes, which represent relationships between classes of the domain,
or between classes and a datatype value.

Figure 2.1 shows a very simple example of ontology. This ontology models
the class PhDStudent as a subclass or Student, having two properties disser-
tationTitle (which takes a string value) and hasSupervisor (which connects
PhDStudent and Professor classes). According to the ontology, RobertoYus
(an instance of PhDStudent) has supervisor EduardoMena (an instance of Pro-
fessor) and his dissertation title is “Semantic Management of LBS in Wireless
Environments”.

Figure 2.1: Example of ontology.

The Semantic Web [BLHL+01] was proposed to make the information on
the Web readable by machines. One of the main tasks to achieve that goal is to
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annotate the content, and ontologies have been traditionally used for it. Since
then, different efforts have been made to structure the content of the Web and
nowadays, thanks in part to the Linked Data [BHBL09] movement, hundreds
of resources/ontologies are available1. As an example, Figure 2.2 shows two
ontologies, O1 and O2, extracted from the website of two universities.

Person

MsC_Student

PhD_Student

Professor

Social_Group

Forum

Institution

Symposium

College

Product

Documentary
Publication

Reference Article

Thing

(a)

Person

StudentFull_Professor

Assistant_Professor

Group

Research_Group

Meeting
Organization

Conference

Piece_of_Work

Book

Report Conference_Paper

Thing

Movie

Magazine_Paper

Guidebook
Instructionbook

Educational_Institution

SchoolUniversity

(b)

Figure 2.2: Two sample ontologies describing knowledge about universities.

One of the main goals of ontologies is to provide a common model for anno-
tating content and thus help systems to interoperate. However, interoperability
problems still remain as usually terms defined in different ontologies are related
according to their definitions (sometimes with a varying level of detail) but
not directly linked. As an example consider the sample ontologies, O1 and
O2. The knowledge that they model is related, as both represent information
about universities, but their definitions are slightly different. Thus, ontology
alignment [ES+07] systems were designed to try to find semantic relationships
such as, for example, synonymy, hypernymy, and hyponymy, which could relate
elements from different ontologies.

1http://www.linkeddata.org

http://www.linkeddata.org
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Ontology Alignment

There are several definitions of ontology alignment, however the most accepted
one is given by Sowa [Sow99]:

“[...] the process of finding common elements between two different on-
tologies A and B to produce as result a new ontology C that favors the inter-
operability between computer systems based on the domains of both original
ontologies”.

There has been a considerable amount of work in the ontology alignment
area [SE13]. Most of the efforts have been made in the alignment of ontologies
through the extraction of synonymy relationships (i.e., extracting that the
concept A from ontology O1 and the concept B from ontology O2 are equivalent).

Synonymy is a very strict relationship that implies, in fact, that the two
entities have the same meaning. On the contrary, in the real world it is
much more common to find terms that are quite similar but not exactly the
same (e.g., one of the terms could be more general than the other, it could
subsume the other term). There are only a few works focused on discovering
subsumption relationships and they are based on: the use of external sources of
information where the relationships could be defined [BBCCGMMV00; SdM08]
(but sometimes the relationships are not defined anywhere); instances in the
ontologies [KLXWL05] (but not all the ontologies contain enough instances for
that); and in classification and training methods [SVV08] (which depend on
the training data).

To integrate these ontologies the relationships between their terms have to
be discovered. Considering our running example, an ontology alignment system
would have to discover the existing relationships between their concepts (see
Figure 2.3). In this case, there exist two synonyms (e.g. O1#College ≡
O2#University and O1#Person ≡ O2#Person) and many subsumption
relationships such as O2#FullProfessor v O1#Professor and O1#PhD-
Student v O2#Student.

2.1.2 Description Logics

Description Logics languages (DLs) are “formal languages for representing
knowledge and reasoning about it” [BCMNPS03]. In DL-based ontologies, the
basic ontological representation primitives (also called ontology elements) are
individuals (which are the instances explained before), concepts (classes), and
properties (attributes). In addition, there exist also the following primitives:

• Datatypes, which represent concrete data values such as numbers (e.g.,
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Semantic Relationships

OriginalPrelationship
DiscoveredPrelationship

O1FSocial_Group

O1FInstitution

O1FCollege

O2#Group

O2FOrganization

O2FEducational_Institution

O2FSchool

O2FUniversity

O1FPerson

O1FMsC_Student

O1FPhD_Student

O1FProfessor

O2FPerson

O2FStudent

O2FFull_Professor

O2FAssistant_Professor

Figure 2.3: Semantic relationships that exist among the concepts of two
ontologies.

real, rational, integer, nonnegative, etc.), strings, booleans, dates, times,
or XML literals, among many other possibilities.

• Axioms, which are formal conditions to be verified by the elements.
An ontology can be seen as a finite set of axioms, usually divided in
three parts: an assertional box (ABox ), a terminological box (TBox ),
and a role box (RBox ), with axioms about individuals, concepts, and
roles, respectively. For example, an ABox can assert that University of
Zaragoza is a member of the concept University, and a TBox can assert
that the concept College is equivalent to University, usually denoted
College ≡ University, or that the concept PhD Student is a subclass of
Student, usually denoted PhDStudent v Student.

DLs are a well-known formalism providing a good trade-off between expres-
sivity of the representation and efficiency of the reasoning. Each DL is denoted
by using a string of capital letters which identify its expressivity. For instance,
the standard language for ontology representation OWL 2 is equivalent to
the DL SROIQ(D). The expressivity of a DL translates in what kind of
constructors can be used to form new concepts. For example, if letter C is in
the expressivity of a DL, it means that it can use the constructor ¬ to express
the contrary of a concept (Woman v ¬Man, a woman cannot be a man). We
summarize informally in Table 2.1 the most common constructors that lead to
a DL with expressivity ACL, while other logics and their allowed constructors
are presented in Table 2.2. For more formal details, see [BCMNPS03].
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> | any element

⊥ | no element, empty set

A | atomic concept

¬C | elements that are not in C

C uD | elements in C and D

C tD | elements in C or D

∀R.C | elements a such that if a is related with b

by the property R, then b is in C

∃R.C | elements a such that are related by property R

with an element b in C

Table 2.1: Constructors and their meanings for ALC DL.

DL Reasoners

A semantic reasoner is a software able to infer logical consequences from a set
of facts. According to Sirin et al. [SPCGKK07], a practical OWL reasoner
should provide the following set of DL inference services:

• Consistency checking, which checks whether an ontology contains any
contradictions or not.

• Concept satisfiability, which checks if a class can have instances.

• Classification, which computes the complete class hierarchy based on the
subsumption relation between the ontology classes.

• Realization, which finds the most specific concepts a given individual is
an instance of.

The use of semantic reasoners would enable the development of more
intelligent applications capable of discovering new knowledge, inferred from
the available information. Many reasoners have been proposed in the literature
and we review in the following some of them.
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Logic Expressivity
Complexity

class
AL >,⊥,u, ∀,¬A,∃R.> PTime

ALC(= ALUE) >,⊥,u,t, ∀,¬, ∃ ExpTime

SHIF(D)
(OWL Lite)

(S =)ALC + transitive roles, role
hierarchies (H), inverse roles (I),

functional roles (F), concrete
domains (D)

ExpTime

SHOIN (D)
(OWL DL)

SHI, nominals (O), non-qualified
numerical restrictions (N )), concrete

domains (D)

NExpTime

SROIQ(D)
(OWL 2)

SHOIQ(D), complex role
inclusion (R), self-restriction, and

additional role axioms

N2ExpTime

EL++(D)
(OWL 2 EL)

>,⊥,u,∃, role hierarchies, nominals,
concrete domains (use of constructors

with syntactical restrictions)
PTime

DL-Lite
(OWL 2 QL)

>,⊥,u, ∃,¬ (use of constructors with
syntactical restrictions)

LOGSPACE

DLP
(OWL 2 RL)

>,⊥,u,t,∀,¬, ∃, cardinality
restriction (0..1) (use of constructors

with syntactical restrictions)
PTime

Table 2.2: Expressivity and complexity of reasoning in some important DLs.

CB2 [Kaz09] (Consequence-Based) reasoner supports a fragment of OWL 2
(Horn-SHIF). As its name suggests, the reasoner algorithm does not build
models but infers new consequent axioms. CB is implemented in OCaml and,
as far as we know, the only supported reasoning task is classification. It can
be used from command line, as a Protégé plug-in, and through the OWL API.

ELK 3 [KKS14], implemented in Java, is a Consequence-Based reasoner
for a subset of OWL 2 EL. It supports different reasoning tasks, which in-
clude classification, consistency checking, subsumption, and realization. The
classification procedure is different from other algorithms for OWL 2 EL. For
instance, it includes several optimizations such as concurrency of the inference
rules. ELK can be used through several interfaces, including OWL API.

2http://www.cs.ox.ac.uk/isg/tools/CB
3http://elk.semanticweb.org

http://www.cs.ox.ac.uk/isg/tools/CB
http://elk.semanticweb.org
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HermiT 4 [GHMSW14] implements a hypertableau reasoning algorithm
with several optimization techniques. It supports OWL 2 and DL safe rules.
Historically, it was the first DL reasoner that was able to classify some large on-
tologies (such as GALEN-original) thanks to a novel and efficient classification
algorithm. Inference services include concept satisfiability, consistency, classifi-
cation, subsumption, realization, and conjunctive query answering. HermiT is
implemented in Java, and is accessible through several interfaces, including
the OWL API and a Protégé plug-in.

jcel5 [Men12] is a Java implementation of a tractable classification algorithm
for a subset of OWL 2 EL. jcel is based on CEL6 [BLS06] (Classifier for
EL) reasoner, a Common LISP implementation of a rule-based completion
classification algorithm. Both reasoners are open source and accessible through
the OWL API; jcel can also be used using a Protégé plug-in.

JFact7 is a Java port of the reasoner FaCT++, although it does not in-
clude all of its parts and provides an improved datatype support. FaCT++
reasoner8 [TH06] is a successor of Fact reasoner (FAst Classification of Ter-
minologies) [Hor98]) using a different architecture and a more efficient imple-
mentation (FaCT was written in Common Lisp, and FaCT++ in C++). Both
Fact++ and JFact completely support OWL 2 and implement a tableau algo-
rithm [BCMNPS03] with several optimization techniques. Supported reasoning
tasks include concept satisfiability, consistency, classification, and subsumption.
From a historical point of view, FaCT++ was the first reasoner fully supporting
OWL 2. Both reasoners can be used through the OWL API and are available
under a GNU license.

MORe9 [ARCGHJR13] is an OWL 2 metareasoner that exploits module
extraction techniques to divide complex reasoning tasks into simpler ones that
can be solved using different reasoners. The modules of the ontology in the
OWL 2 EL profile are solved by the ELK reasoner, and the more expressive ones
are handled using HermiT and JFact. MORe currently supports classification
and concept satisfiability. It is implemented in Java, open source, and accessible
through the OWL API and using a Protégé plug-in.

Pellet10 [SPCGKK07] supports full OWL 2 and DL safe rules. It imple-
ments a tableau algorithm with several optimization techniques. It was the

4http://www.hermit-reasoner.com
5http://jcel.sourceforge.net
6http://lat.inf.tu-dresden.de/systems/cel
7http://jfact.sourceforge.net
8http://owl.man.ac.uk/factplusplus
9http://code.google.com/p/more-reasoner

10http://clarkparsia.com/pellet

http://www.hermit-reasoner.com
http://jcel.sourceforge.net
http://lat.inf.tu-dresden.de/systems/cel
http://jfact.sourceforge.net
http://owl.man.ac.uk/factplusplus
http://code.google.com/p/more-reasoner
http://clarkparsia.com/pellet
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first reasoner fully supporting OWL 1 DL. Inference services include concept
satisfiability, consistency, classification, subsumption, realization, and conjunc-
tive query answering. Pellet is implemented in Java and has multiple interfaces
to access it, including OWL API.

TrOWL11 [TPR10] is implemented in Java and supports OWL 2, offering
sound and complete reasoning for OWL 2 EL and OWL 2 QL, and approx-
imate reasoning for OWL 2 DL. Inference services include classification and
conjunctive query answering. TrOWL includes an OWL 2 EL reasoner (REL)
to compute the classification and an OWL 2 QL reasoner (Quill) to answer
conjunctive queries. Reasoning with OWL 2 DL ontologies is achieved by means
of a syntactic approximation into OWL 2 EL or a semantic approximation into
OWL 2 QL, depending on the reasoning task. TrOWL can be used through
several interfaces, including OWL API.

TReasoner12 [GI13] supports a subset of OWL 2, namely the Description
Logic SHOIQ(D). TReasoner solves classification, concept satisfiability, and
consistency using a tableau algorithm with several optimization techniques. It
is implemented in C++ and supports the OWL API.

Table 2.3 shows a summary of every reasoner introduced before. There
exist many others that we have not consider in this thesis. We will enumerate
now, in alphabetical order, only those of them that will be mentioned at some
point of this thesis document:

BaseVISor13 [MBK06], Chainsaw14 [TP12], ConDOR15 [SKH11], DB16 [DK09]
ELepHant17 [Ser13], fuzzyDL18 [BS16], KAON2 19 [MS05], Konclude20 [SLG14],
OWLIM 21 [BKOTV11] (a family of repositories including SwiftOWLIM rea-
soner), Racer22 [HHMW12], SHER [DFKSS09], SOR [LMZBWPY07], SnoRocket23 [LB10],
WSClassifier24 [SSD13], and WSReasoner25 [SSD12].

11http://trowl.org
12http://code.google.com/p/treasoner
13http://vistology.com/basevisor/basevisor.html
14http://sourceforge.net/projects/chainsaw
15http://code.google.com/p/condor-reasoner
16https://code.google.com/p/db-reasoner
17https://github.com/sertkaya/elephant-reasoner
18http://webdiis.unizar.es/~fbobillo/fuzzyDL
19http://kaon2.semanticweb.org
20http://www.derivo.de/en/produkte/konclude
21http://www.ontotext.com/owlim
22http://www.ifis.uni-luebeck.de/index.php?id=385
23http://github.com/aehrc/snorocket
24http://code.google.com/p/wsclassifier
25http://isew.cs.unb.ca/wsreasoner

http://trowl.org
http://code.google.com/p/treasoner
http://vistology.com/basevisor/basevisor.html
http://sourceforge.net/projects/chainsaw
http://code.google.com/p/condor-reasoner
https://code.google.com/p/db-reasoner
https://github.com/sertkaya/elephant-reasoner
http://webdiis.unizar.es/~fbobillo/fuzzyDL
http://kaon2.semanticweb.org
http://www.derivo.de/en/produkte/konclude
http://www.ontotext.com/owlim
http://www.ifis.uni-luebeck.de/index.php?id=385
http://github.com/aehrc/snorocket
http://code.google.com/p/wsclassifier
http://isew.cs.unb.ca/wsreasoner
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Reasoner Profile Language License OWL API

CB OWL 2 DL (FRG) OCaml LGPL Yes

ELK OWL 2 EL (FRG) Java Apache 2.0 Yes

HermiT OWL 2 DL Java LGPL Yes

jcel OWL 2 EL (FRG) Java LGPL/Apache 2.0 Yes

JFact OWL 2 DL Java LGPL Yes

MORe OWL 2 DL Java GPL Yes

Pellet OWL 2 DL Java Dual Yes

TReasoner OWL 2 DL (FRG) Java GPL Yes

TrOWL OWL 2 DL (APX) Java Dual Yes

Table 2.3: Semantic Web reasoners and some of their characteristics. FRG:
Fragment; APX: Approximated.

DL Reasoners Designed for Mobile Devices

Apart from the DL reasoners presented in the previous section, several DL
reasoners were specifically designed to run on mobile devices. We dedicate this
section to overview them in a chronological order. Pocket KRHyper26 [SK05]
was the first reasoning engine specifically designed for mobile devices. It
can be seen as a version of the reasoner KRHyper [Wer03] for devices with
limited resources, thus disabling some of its original capabilities (such as default
negation and term indexing). It is implemented in J2ME (Java Micro Edition)
and implements a hypertableau algorithm for the DL SHI. However, the
reasoner suffers from scalability issues, as the authors state in [Kle06].

Later on, Müller et al. [MHLN06] reported the implementation of tableau
algorithm for mobile devices, introducing some optimizations to reduce the
memory usage such as assigning natural numbers to concept expressions to
reduce comparisons to integer operations. Their system is implemented in
J2ME and supports the DL ALCN with unfoldable TBoxes, but it does not
have a known name and is not publicly available.

mTableau [SKG09; SK08] is a modified version of Pellet 1.5 to work on
mobile devices. The main idea is to introduce some novel optimization tech-
niques, namely selective application of consistency rules, skipping disjunctions,
and ranking of individuals and disjunctions leading to potential clashes. This

26http://mobilereasoner.sourceforge.net

http://mobilereasoner.sourceforge.net
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reasoner is not publicly available.

Delta [MHK12] is designed to be used on mobile devices, but no implementa-
tion details are given. The reasoner uses RDF to store the ABox and OWL RL
to represent the TBox axioms. The main reasoning task is conjunctive query
answering, which is solved by translating TBox axioms into rules to expand the
RDF triple store. The reasoner uses incremental reasoning techniques to avoid
recomputing all the inferences every time there is an update of the ABox facts.
A preliminary evaluation is performed, obtaining sub-second query response
times. This reasoner is not publicly available.

Mini-ME 27 [RSSGL12] (Mini Matchmaking Engine) is a mobile reasoner
implemented from scratch. The supported DL is the DL ALN , whereas the
supported reasoning tasks are consistency, classification, concept satisfiability,
subsumption, and other non-standard inference services (abduction, contraction,
and covering). It is implemented in Java and can be run on Android devices
as well as on desktop computers. Mini-ME can be accessed through the OWL
API, as a OWLlink server, or using a Protégé plug-in. The authors have
empirically compared the performance of Mini-ME in a mobile device and in a
desktop computer. It turned out that reasoning times are roughly one order of
magnitude higher in the Android device [RSSGL12]. However, it should be
stressed that these results only hold for the not very expressive logic ALN ,
having polynomial computational complexity. The authors also performed
some experiments proving that the Android version of Mini-ME outperforms
an older version developed in J2ME [RSS11].

2.1.3 Representation Languages

Ontologies represent the vocabulary of some domain from a common perspective
using a formal language. In the following we explain the most important
languages in the Semantic Web: RDF and OWL.

RDF and RDF-S

Resource Description Framework (RDF) [MMM+04] is a family of World Wide
Web Consortium (W3C) specifications designed to represent information about
resources on the Web. The representation followed by RDF is a triple < spo >
where s is the subject, which is the resource, p is the predicate, which is an
aspect or trait of the resource, and o is the object. To denote the resources in
these triples, RDF statements use the uniform resource identifier (URI), or blank

27http://sisinflab.poliba.it/swottools/minime

http://sisinflab.poliba.it/swottools/minime
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nodes. Probably the most important piece of vocabulary introduced by RDF
is rdf:type which can be used to state that a resource is an instance of a class.
For instance we can use the triple < RobertoY us rdf : type PhDStudent > to
define that the resource RobertoYus is an instance of the class PhDStudent.

RDF-S (RDF Schema) [BG04] is a “general-purpose language for repre-
senting simple RDF vocabularies on the Web”. Therefore, RDF-S allows the
description of relations between RDF resources (see Table 2.4 for the main
RDF-S constructs). For instance, RDF-S allows to define that PhDStudent is
a subclass of Student and the different properties associated with it.

Classes Properties Utility properties

rdfs:Resource rdfs:domain rdfs:seeAlso

rdfs:Class rdfs:range rdfs:isDefinedBy

rdfs:Literal rdfs:type

rdfs:Datatype rdfs:subClassOf

rdfs:XMLLiteral rdfs:subPropertyOf

rdfs:Property rdfs:label

rdfs:comment

Table 2.4: Main RDF-S constructs.

Web Ontology Language (OWL)

Web Ontology Language (OWL) [HKPPSR09] is a family of knowledge repre-
sentation languages for describing ontologies. OWL is characterized by formal
semantics and indeed, the current version of the language, OWL 2, is equivalent
to the DL SROIQ(D). OWL extends RDF-S and allows the representation
of ontological knowledge missing in RDF-S such as range restrictions that
apply to some classes only, classes that are disjoint (whose individuals cannot
belong to them at the same time), or union of classes. Therefore, OWL allows
the definition of more expressive ontologies than RDF/RDF-S. For instance,
OWL 2 supports the definition of complex classes using the class expressions
in Figure 2.428.

In OWL 2 there are three sublanguages or profiles which can be more simply
and/or efficiently implemented:

28The complete OWL 2 syntax can be found in https://www.w3.org/TR/owl2-syntax

https://www.w3.org/TR/owl2-syntax
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ClassExpression :=

Class |

ObjectIntersectionOf | ObjectUnionOf | ObjectComplementOf | ObjectOneOf |

ObjectSomeValuesFrom | ObjectAllValuesFrom | ObjectHasValue | ObjectHasSelf |

ObjectMinCardinality | ObjectMaxCardinality | ObjectExactCardinality |

DataSomeValuesFrom | DataAllValuesFrom | DataHasValue |

DataMinCardinality | DataMaxCardinality | DataExactCardinality

Figure 2.4: Definition of OWL 2 class expression.

1. OWL 2 EL, which is a fragment that has polynomial time reasoning
complexity.

2. OWL 2 QL, which is designed to enable easier access and query to data
stored in databases.

3. OWL 2 RL, which is a rule subset of OWL 2.

These profiles are independent of each other and the choice of a profile to
model an ontology depends on its structure and reasoning tasks to consider29.

2.1.4 Query Languages

Query languages are computer languages used to query databases and infor-
mation systems. For example, SQL is the standard language used to query
relational databases. In the following we introduce SPARQL, the standard
query language of the Semantic Web, as well as two extensions of this language,
GeoSPARQL and SPARQL-DL, used in our system to query geospatial data
and OWL ontologies, respectively.

SPARQL

SPARQL [PS+08] (a recursive acronym for SPARQL Protocol and RDF Query
Language) is an RDF query language, that is, a semantic query language for
databases, able to retrieve and manipulate data stored in Resource Description
Framework (RDF) format. It was made a standard by the RDF Data Access
Working Group (DAWG) of the World Wide Web Consortium, and is recognized
as one of the key technologies of the Semantic Web.

There are four different query variations in SPARQL for different purposes:

29More information about the features of each profile can be found in https://www.w3.

org/TR/owl2-profiles

https://www.w3.org/TR/owl2-profiles
https://www.w3.org/TR/owl2-profiles
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• SELECT, which is used to extract raw values.

• CONSTRUCT, which extract results in RDF.

• ASK, which obtains a true/false results for the query.

• DESCRIBE, which extract an RDF graph containing information about
the given resource.

In the rest of this document we will use mainly SELECT queries to ask
directly for facts and data.

GeoSPARQL

GeoSPARQL [BK11] is a standard for representation and querying of geospatial
linked data for the Semantic Web from the Open Geospatial Consortium (OGC).
In particular, GeoSPARQL provides for:

• A small topological ontology in RDF-S/OWL for representation using:

– Geography Markup Language (GML) and well-known text (WKT)
literals.

– Simple Features, RCC8, and DE-9IM (a.k.a. Egenhofer) topological
relationship vocabularies and ontologies for qualitative reasoning.

• A SPARQL query interface using:

– A set of topological SPARQL extension functions for quantitative
reasoning.

– A set of Rule Interchange Format (RIF) Core inference rules for
query transformation and interpretation.

SPARQL-DL

According to [SP07] “it is harder to provide a semantics for [SPARQL] under
OWL-DL semantics because RDF representation mixes the syntax of the
language with its assertions. The triple patterns in a query do not necessarily
map to well-formed OWL-DL constructs.” Therefore, Sirin et al. defined
SPARQL-DL [SP07]: “a substantial subset of SPARQL that can be covered
by the standard reasoning services OWL-DL reasoners provide.” SPARQL-
DL uses the SPARQL syntax and is fully aligned with the OWL 2 standard.
Table 2.5 shows the supported query patterns for the SPARQL-DL language.
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Classes Properties Individuals

Class(a) Property(a) Individual(a)

EquivalentClass(a, b) PropertyValue(a, b, c) Type(a, b)

SubClassOf(a, b) EquivalentProperty(a, b) DirectType(a, b)

StrictSubClassOf(a, b) SubPropertyOf(a, b) SameAs(a, b)

DirectSubClassOf(a, b) StrictSubPropertyOf(a, b) DifferentFrom(a, b)

DisjointWith(a, b) DirectSubPropertyOf(a, b)

ComplementOf(a, b) ObjectProperty(a)

DataProperty(a)

Functional(a)

InverseFunctional(a)

Transitive(a)

Symmetric(a)

Reflexive(a)

Irreflexive(a)

InverseFunctional(a)

InverseOf(a, b)

Table 2.5: SPARQL-DL supported query patterns.

2.1.5 Tools for Developing Semantic Applications

Finally, we want to mention two important Semantic Web APIs we used in
our prototypes to handle ontologies:

Jena30 [McB02] is an ontology API to manage OWL ontologies and RDF
data in Java applications. Jena is appropriate to manage OWL 1 Full ontologies,
but support for OWL 2 is not available yet. However, it is much more used for
the serialization of RDF triples and the manipulation of RDF graphs. Jena
can interact with semantic reasoners to discover implicit knowledge. The latest
versions of Jena are split into two packages, namely jena-fuseki (with the
Jena SPARQL server), and apache-jena (with APIs, SPARQL engine, RDF
database, and other tools).

OWL API 31 [HB11] is an ontology API to manage OWL 2 ontologies in Java

30http://jena.apache.org
31http://owlapi.sourceforge.net

http://jena.apache.org
http://owlapi.sourceforge.net
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applications and provides a common interface to interact with DL reasoners. It
can be considered as de facto standard, as the most recent versions of most of
the semantics tools and reasoners use the OWL API to load and process OWL 2
ontologies. The OWL API is able to process each of the OWL 2 syntaxes defined
in the W3C specification (functional, RDF/XML, OWL/XML, Manchester,
and Turtle) and to identify the OWL 2 profiles (OWL 2 DL, OWL 2 EL, OWL 2
QL, and OWL 2 RL). The OWL API is less appropriate for the management
of OWL 2 Full or RDF ontologies.

2.2 Mobile Computing

Mobile computing implies the possibility of computers being transported around
by users. Indeed, in the last few years, we have witnessed a massive spread of
mobile computing which is shaping our daily lives. This has been undoubtedly
helped by the pervasive connectivity that the current wireless networks provide
us with and the affordable prices of current mobile devices (such as smartphones
and tablets). In this section we present the main technologies related to
mobile computing used in the thesis. First, as the thesis presents a system
to provide Location-Based Services, we present some information about them
and their building block, location-dependent queries. Then, we explain the
context information, which mobile devices can infer from their equipped sensors,
and used in our system to select services which might be interesting for a
user. Finally, we introduce the concept of software agent focusing on mobile
agents, which have been previously used for distributed and mobile computing
applications. In our system, these agents are used to perform different tasks
such as, for example, finding the information that the user needs wherever it is.

2.2.1 Location-Based Services

In the last years the interest in mobile computing has grown due to the
ever-increasing use of mobile devices and their pervasiveness. The low cost
of these devices, along with the high number of sensors and communication
mechanisms they are equipped with, make it possible to develop useful infor-
mation systems. Using special kinds of sensors, location mechanisms enable
the development of Location-Based Services (LBS) [SV04]. These services
provide value added by considering the locations of the mobile users to offer
customized information. For example, LBS for taxi searching [SCC10], helping
firefighting [JCHWTL04], detecting nearby friends [AEMPW07], or multimedia
retrieval in sport events [IMIYLM12] have been presented, among many others.
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Location-Dependent Queries

Location-dependent queries are a special type of query for which, opposed to
traditional queries, their answer depend on locations of objects. Thus, the
location of an object determine whether the object is part of the answer or not.
For example, the query “find taxis within 2 miles” depends on the location of
the user and a taxi will be retrieved if its location is less than 2 miles apart
from the location of the user. Therefore, location-dependent queries are a
fundamental building block of LBS which use them to obtain the information
that the user needs.

There exist multiple types of location-dependent queries considered in the
literature (see [IMI10] for a complete classification) among which we would
like to highlight:

• Range queries [TWHC04], which retrieve objects in a region, which can
be fixed or even move, within a range (e.g., “find museums in Zaragoza”).
Range queries are called within-distance queries [TS03] when the range
is a circle (e.g., “find taxis within 2 miles”).

• Nearest neighbor queries (NN queries) [TPS02], which retrieve the object
which is closest to a location or object (e.g., “find the closest gas station”).
They are called kNN queries if more than one object must be retrieved
(e.g., “find the closest five restaurants to the Lincoln Monument”).

There are other possible classifications of location-dependent queries ac-
cording to temporal or semantic factors, among others. From them, we want
to highlight the concept of instantaneous and continuous queries for which the
answer is computed only once or it is reevaluated, respectively. For example,
queries which depend on the location of the user are usually treated as contin-
uous as the user might move and the result should be updated accordingly.

2.2.2 Context-Aware Computing

Current mobile devices are equipped with sensors that enable them to go beyond
location awareness, the capability of determining their location. Therefore, they
can determine, for example, that the user is standing up, talking, in the middle
of a research meeting with her peers, in the meeting room of the building, and
on a Friday at 2pm. This information is part of the context of the user and so,
context awareness [SAW94] is a property of current mobile devices.

Context awareness enables devices to react based on the environment and
has been leveraged in many ubiquitous systems. For instance some classic
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examples of context-aware applications (extracted from [CK00]) are: 1) a call
forwarding system that detects the location of the user and her activity to
forward her calls; and 2) a shopping assistant system that displays information
of items whenever the user enters a shop and recommends what to buy according
to the user preferences.

The concept context has many interpretations in the literature and so,
there is no unified definition of it. Most of the definitions agree that context
has something to do with the interactions between the users and the computing
systems [CK00]. Arguably one of the most accepted definitions for context was
suggested by Dey and Abowd [ADBDSS99]:

“[...] any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and application, including the user and applications
themselves.”.

Dey and Abowd also decompose context into two categories: primary
context pieces (i.e., identity, location, activity, and time) and secondary context
pieces (context aspects that are attributes of the primary context, e.g., a user’s
phone number can be obtained by using the user’s identity).

Also, there are many approaches on how to infer the context of a user using
context providers and synthesizers. According to Ranganathan et al. [RAMC04],
a context provider is a sensor and/or other data sources of context information.
In the same way, a context synthesizer is a mechanism that gets the information
obtained by context providers and deduces a higher-level notion of context
(e.g., the location or activity of a user).

2.2.3 Agent Technology

Agent technology has been used in the literature to develop distributed and
mobile computing applications [Fer99]. In the following we give a brief explana-
tion of software agents including mobile agents that are used in the architecture
proposed in this thesis.

2.2.4 Software Agents

There is no consensus in the definition of what an agent is [Nwa96]. However,
we can consider that a software agent is a program that acts on behalf of a user.
Among the many different properties that might be associated with agents we
highlight the following (extracted from [Ila06]):

• Autonomy [FG97]: ability to act without direct human intervention.
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• Sociability [SS02]: ability to think about itself or about others (altruistic
and egoistic agents).

• Reactivity [GDFLP02]: ability to respond to changes in the environment.

• Proactivity [RM00] or goal-directed behavior.

• Temporal continuity [FG97]: persistency over long periods.

• Learning/adaptivity [FG99]: ability to learn from the environment and
from other agents to improve performance.

• Reasoning [RNCME96]: decision-making mechanism.

• Mobility [CHK97]: ability to migrate to other components.

• Cooperation [Les99]: interaction with other agents to achieve a goal.

• Negotiation [Smi77] (e.g., to allocate subtasks to different agents).

Autonomy has been usually considered inherent to all the agents but not
all of them have to provide the rest of functionalities [RT98].

Mobile Agents

Agents that have the mobility property mentioned before are called mobile
agents [CHK97]. Mobile agents are programs that execute in context denomi-
nated places and can autonomously travel from place to place resuming their
execution there. Thanks to their mobility, mobile agents offer interesting
benefits [LO99; Ila06]:

1. They encapsulate protocols. As they can move to remote computers to
achieve their goals, they avoid the need for installing specialized server
processes on every machine to provide access to all the required services.

2. They reduce the network load. Thus, a mobile agent can travel where the
data are and access to them locally, filtering out the data that do not
need to be sent over the network.

3. They overcome network latency. Thus, they can move to another com-
puter in order to optimize the response time.
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4. They are asynchronous and autonomous. A mobile agent does not need
to keep contact with its source computer while performing its task. This
is particularly important with mobile devices, which usually communicate
via an expensive and unreliable wireless connection.

5. They adapt dynamically to their environment. They are able to sense the
environment and can be programmed in order to react autonomously to
adapt themselves to changes. For example, they could travel to another
computer when the current computer is overloaded.

6. They contribute to a seamless system integration. Usually, hardware
and software components are highly heterogeneous in a network. Mobile
agents help to overcome heterogeneity issues because they are generally
computer-independent and transport-layer-independent.

7. They are robust and fault-tolerant. Their ability to react dynamically
to unfavorable situations and events makes it easier to build robust and
fault-tolerant distributed systems. If a host is being shut down, all agents
executing on that machine can be warned and given time to move and
continue their tasks on another host in the network.

Mobile agents have been used in many different areas because of these ben-
efits, such as distributed information retrieval, parallel processing, monitoring
and notifying applications, and personal assistance, among others.

2.3 Knowledge Management on Mobile Devices

As we explained before, semantic technologies have been traditionally used for
knowledge representation and management. The use of semantic technologies
on mobile devices has been subject of interest from the early stages of the
Semantic Web [WRSOS05]. However, currently the use of semantic technologies
on mobile applications is not extended in comparison with the overwhelming
amount of existing apps. In the following we present a summary of the results
of a systematic review of semantic mobile applications which we published
in [YP15].

Semantic Mobile Applications

We consider that a semantic mobile application is a application designed
for mobile devices which uses semantic technologies for the management of
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the information it considers. We analyzed more than 400 papers and found
that at least 36 semantic mobile apps have been presented in the literature
over the last 10 years (see Table 2.6). We want to highlight that 3 out of
this 36 semantic mobile apps were developed as part of the work presented
in this thesis (SHERLOCK, FaceBlock, and Rafiki in the previous table).
In the following we provide some information from the study to show the
distribution of these semantic mobile apps according to the year when they
were presented, their domain, the platform where they were deployed, and the
semantic technologies used.

[RSFIBS14] Alive Cemeteries [MK14]

mSWB [MGK14] Donate-N-Request [SSLPMC13]

WeReport [SSLPMC13] Krishi-Mantra [KDNCB13]

Rafiki [PYJF14] Who’s Who [CDH11]

Cinemappy [ONMRS12] SHERLOCK [YMII14]

PediaCloud [TJV13] TouristGuide [DL14]

HDTourist [HMFC14] CURIOUS Mobile [NBWMPW14]

RealFoodTrade [CVNMMNORU14] ParkJam [KD12]

csxPOI [BSS10] Urbanopoly [CCCCDVF12]

FaceBlock [YPDMJF14] RDFContentProvider [DE10]

LinkedQR [ELLL12] RDF On the Go [PPRH10]

[dNM11] Linked Sensor Midleware [LPQPH11]

GetThere [CEBMPN13] [TFAEA11]

[SXJMTL11] mSpace [WRSOS05]

Person Matcher [WCT10] LOD4AR [VDV14]

OntoWiki Mobile [EHTA11] [RSILS12]

DBpedia Mobile [BB09] [AAA13]

Mobile Wine Agent [PM09] [AWH10]

Table 2.6: Semantic mobile applications presented in the literature.

Figure 2.5 shows the number of papers presenting a semantic mobile app
per year (the figure do not include one app published in 201532). Notice that

32This study has been finished in May 2015 so more semantic mobile apps might be
presented in 2015.
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there is a gap between 2005 and 2009, we believe that this might be related to
two milestones: the release of the iPhone in June 29, 2007, and the release of
the first commercial version of Android in September 23, 2008. With the more
powerful and affordable devices, high speed Internet, and better tools available,
the number of mobile semantic web apps doubled in 2010 and 2014 whereas it
remained stable in between.

Figure 2.5: Number of semantic mobile apps per year.

The majority of the apps reviewed, 27 apps out of 36, can be classified
as Location-Based Services (LBS). This was expected as mobile devices are
equipped with sensors which are able to obtain the location of the user in
real-time. Among these LBS apps, the most common functionality is providing
information about Points Of Interest (POI), 14 apps.

In general all the apps are deployed on smartphones, except for [WRSOS05;
WCT10] which were deployed on Personal Digital Assistants (PDAs), as they
were developed when PDAs where the most popular mobile devices. Figure 2.6
shows the distribution across different operating systems with Android being
the most common choice for semantic mobile apps (27 out of 36). 3 of the
apps were developed for iOS whereas 2 are Windows Mobile apps. Also, there
are 4 apps that have been developed as web applications and thus are cross-
platform. The dominance of Android could be attributed to two factors: It
has the most number of users worldwide, and it is based on Java as most of
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the popular semantic tools.

Figure 2.6: Distribution of semantic mobile apps per platform.

Figure 2.7 shows a wordcloud generated with the different semantic tech-
nologies that the apps reported using. For management of semantic data on the
device, the most common libraries used are: Androjena (in 4 apps), OWL API
(in 3 apps), and Sesame API (in 2 apps). Regarding Linked Data endpoints,
apps use mainly DBpedia (in 7 apps) and OpenStreetMap/LinkedGeoData
(in 6 apps). With regards to semantic reasoning, the following reasoners have
been reported: Mini-Me, JFact, and Hermit.

Most of the apps, 23 out of 36, use a client-server approach in which the
mobile app itself acted as an interface to present the results returned by the
server. These type of client apps were also reported to be majority in [EKA14]
(where they were called “thin client apps”). However, 9 of these 23 apps
processed Semantic Web languages on the device. 13 apps do not follow
the client-server approach and manage semantic data on the device (which
can obtain from other devices or directly from Linked Data sources). Also,
just 6 apps use a semantic reasoner/matcher on the device to infer facts.

Our results show that most of the “semantic mobile apps” presented act
as clients which rely on external servers for the handling of semantic data.
This means that although they consume data which comes from Linked Data
points and ontologies, in many cases this data is preprocessed on a server
which returns the data in a semistructured format (JSON) or just as strings.
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Figure 2.7: Wordcloud with the semantic technologies used by the different
apps.

There are only a few recent apps exploiting the capabilities of current mobile
devices to handle semantic data locally (from which majority were developed
as part of this thesis). Therefore, as with the case of current LBS, mobile
devices do not usually manage knowledge locally. Although, obviously more
limited than their fixed counterparts, the capabilities of current mobile devices
make them suitable for the semantic management of data locally on the device.
However, research should focus on dealing with the problems related to this new
scenario (e.g., devices with limited capabilities which generate large amounts
of highly-dynamic data) to popularize the use of semantic technologies for the
local management of knowledge in apps on these existing and future devices.
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Overview of the System

There exist many scenarios where users need information related to their
location which can be obtained from different sources, including other users
and their devices. For instance, tourists looking for transportation after arriving
in a foreign country, the coordinator of a firefighter team that needs to obtain
information from the team, a technical director in charge of the broadcasting
of a rowing race who needs pictures and videos of the event, or people involved
in a traffic accident who need help. In this section, we present these four
examples of such scenarios and explain the challenges that a system to support
them would face. Then, we introduce SHERLOCK (System for Heterogeneous
mobilE Requests by Leveraging Ontological and Contextual Knowledge), the
system which we designed to support the previous scenarios and many others.
We show the high-level architecture of the system and introduce its different
modules, which will be explained in the following chapters.

3.1 Motivating Scenarios

In this section, we present four motivating use cases (as examples of many
others) that show the heterogeneity and complexity, as well as the interest, of
having a flexible and global system as a common framework to provide mobile
users with different LBS.

3.1.1 Looking for Transportation

Imagine a person that has just arrived at the airport of a city in a foreign
country and wants to get to a certain hotel but does not know the best way
to go there. Indeed, in that city there probably exist several transportation

37
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services that could satisfy her demands (Figure 3.1 shows some of the possible
transportation options), but in addition to their typical characteristics (e.g.,
cost), they may also have other specific features (e.g., shareable, door to door,
etc.). So, the user needs to ask first tourist offices or websites, or search for a
mobile app about transportation in that city; she could be easily overwhelmed
with information and many options, and it could be difficult for her to determine
which ones are relevant according to her preferences.

Figure 3.1: Different transportation options in our first motivating scenario1.

So, it would be very interesting for this person to just indicate the name of
the destination hotel and her preferences (for example, she could prefer to pay
more to reach the hotel as soon as possible) and obtain on her smartphone the
real-time location of the best possible transportation means around her. To
enable this, the system would have to deal with challenges such as obtaining in-
formation about the transportation means (considering geographic information
about the city) and keeping it updated, showing the results to the user, etc.
The interest of a system like this is beyond doubt: currently, although many
transportation services and hotels publish their information on the Web and
there exist useful services such as Google Maps, a user traveling to a certain

1Photos source: https://commons.wikimedia.org/wiki/Main_Page

https://commons.wikimedia.org/wiki/Main_Page


39 Chapter 3. Overview of the System

city will probably have to deal with all the previous applications at the same
time to try to arrange her trip.

3.1.2 Helping Firefighting

A wildfire has broken out in a wide area of forest (see Figure 3.2); the designated
coordinator person is in charge of managing all the firefighters and emergency
vehicles in order to suppress the wildfire. The main task of this team coordinator
is to solve the problem as quickly as possible but, at the same time, keeping
the team members safe. Due to the lack of a network infrastructure (the fire
could have damaged it or there could be no network coverage in that area),
firefighter team members usually use walkie-talkies to describe their location
and the wildfire evolution. However, it is difficult to provide an accurate oral
description of the situation while fighting a wildfire (due to smoke, geographic
features of the terrain, and the stressing situation). So, monitoring firefighting
units in a dangerous area (and instructing them to reach a safe one), during
the suppression of the wildfire, turns out to be a very challenging task for a
team coordinator.

Therefore, it could be interesting for a firefighting coordinator to see, on a
map displayed on her tablet, the location of all the firefighting units and the
evolution of the wildfire in real-time; she would also have to keep a continuous
communication with all the team members to get their last smoke and heat
sensor readings. Thus, she could be able to notice changes of the wildfire that
could put the life of firefighters in danger. The main challenge for a system that
deals with this scenario is to monitor moving team members deployed in an
environment where it is not possible to rely on a fixed network infrastructure,
while detecting automatically firefighting units that could be in danger.

3.1.3 Live Broadcasting of Sport Events

In many scenarios, it is important to select among many cameras the one
whose view is the most interesting. For example, in the live broadcasting of
sport events, a Technical Director (TD) has to make quick decisions to select
the camera whose video stream will be broadcasted. Nowadays, broadcasting
organizations are increasing the number of cameras covering sport events
(e.g., Sky TV uses 24 cameras in Premier League matches). Furthermore, the
audience of the sport event could provide TDs with interesting shots too. The
higher the number of cameras available, the richer the content that can be

3Photo source: https://www.flickr.com/photos/usfwshq/8597688091

https://www.flickr.com/photos/usfwshq/8597688091


Chapter 3. Overview of the System 40

Figure 3.2: A team of firefighters suppressing a fire in our second motivating
scenario3.

obtained, but the more complicated is for the TD to select the best one. And
they must take this kind of decisions very frequently. For example, consider
the TD in charge of the live broadcasting of a rowing race in San Sebastian
(Spain). From the TD perspective, the scenario includes multiple cameras
available for the broadcasting (in the rowing boats, in a helicopter, in the
harbor, and in a nearby island). We should not forget either that many people
among the crowded audience of the event are equipped with mobile devices
(e.g., smartphones and tablets), in boats around the race and in the promenade
(Figure 3.3 shows a picture of the scenario with the locations described before).

In this context, it would be very helpful to have a system where the
TD could define her interest on a certain view (e.g., a view of the front of
two rowing boats) and obtain the list of cameras (including broadcaster and
audience cameras) that could provide it, currently or in a matter of seconds.
Thus the system would monitor cameras for the TD, automatically looking for
predefined shots or even detecting certain predefined situations (overtakings or

4Photo source: https://www.flickr.com/photos/sansebastian2016/3903530582

https://www.flickr.com/photos/sansebastian2016/3903530582
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Figure 3.3: The rowing boat race in our third motivating scenario4.

other incidents), whose work could be focused on selecting the best camera to
broadcast from the different preselected lists of cameras selected by the system.
The main challenges in this scenario are: enabling the TD to express the kind
of shot she is interested in, processing the views of the multiple cameras in
the scenario in real-time to find those that can provide the requested shot,
and ranking the results to help the TD to select the most similar shots to her
request easily.

3.1.4 Emergency Management

Many well-known real emergency situations have shown that without a good
coordination and information flow, the task of emergency teams is very difficult
and could even become very dangerous. The bigger the scale of the emergency,
the more valuable any information about the real situation; and multimedia
information can become priceless in almost 100% of emergencies, especially
when such data are obtained in real-time and propagated to emergency teams.
In the last decade, the use of mobile information technologies in emergency
management has attracted a lot of interest because of the potential value it
can provide in this kind of scenarios (e.g., [Cro12; WYZ11]). For example,
the use of P2P communications can help when the network infrastructure is
damaged or it is just not available; thus, users in the area could provide the
very valuable information that emergency teams need to optimize their work.

Let us imagine that an accident has occurred in the highway (see Figure 3.4

5Photo source: http://trainingfirstaid.ca

http://trainingfirstaid.ca
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Figure 3.4: The traffic accident in our fourth motivating scenario5.

for a possible picture of the scenario). First, the people involved in the
accident, or even their vehicles if equipped with sensors to detect it, need to
alert emergency teams. The emergency team that received the alert needs to
know the location of emergency vehicles and staff (e.g., policemen, firemen,
etc.) in the surroundings that could help. In this scenario, to obtain real-time
multimedia information (images/videos) of the accident area would be very
useful for the emergency team to determine the severity of the accident: number
and type of vehicles, condition of injured people and how many, urgency due to
a fire or presence of dangerous substances, etc. Thus, they could send the most
appropriate resources to the accident area. Also, such multimedia information
could help emergency units on their way to the accident in order to know
what they will face once there. Moreover, we could assume that users in this
scenario (for example, drivers in the vicinity of the accident) would be willing
to help because lives could be in danger. Notice that in addition to all the
challenges commented in the previous scenarios, in this case there is a need
to define complex services which require the interaction of devices. Also, the
distribution of information to different devices is a challenge of this scenario
(e.g., pictures of the accident to the emergency vehicles which could be on their
way towards the accident area).
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3.1.5 Common Challenges

In the previous use cases, some common needs appear which a system to support
them would face. We have grouped these challenges into two categories,
challenges related to: 1) the knowledge that such a system must consider;
and 2) mobile computing.

Knowledge Management

The following common challenges related to the management of knowledge of
the specific scenario arise in the above scenarios:

1. The system must be an expert in the different kinds of elements in the
scenario, their features and capabilities, and the geographic information
about the scenario. So, it is the system, and not the user, who is in
charge of knowing all the details about all the LBS available at each
location.

2. The system must handle information about the current context of the
user (e.g., her location and activity) and the context of her device (e.g.,
its current capabilities or the readings of its sensors).

3. A flexible user interface, able to help the user to define the kind of
multimedia information (text, images, videos, etc.) she wants, is needed.
Indeed, a textual description or a form might not be enough to, for
example, define the picture or video to obtain.

4. Integrate results from different sources detecting which results could
be more interesting for the user. For instance, which results are more
updated or fulfill the user requirements, or are closer to the information
that the user requested.

Therefore, the system must know or learn, for example, transportation
options in the foreign city of the first motivating scenario or how to help a
TD in the broadcasting of the rowing race of the third motivating scenario.
The third item is specially challenging for the TV broadcasting in our third
motivating scenario. Of course, the coordinator in charge of the traffic accident
of the fourth scenario could also be interested in specific images (e.g., showing
the front of the cars involved in the accident). However, the level of detail in
the definition of such interesting shots will always be higher in the case of a
TD, who might have a very specific shot in her mind.
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Mobile Computing

The following common challenges related to the managing of the user requests
arise in the above scenarios:

1. Finding devices which could provide the information that the user wants
and establishing communication with them. This might imply analyzing
in real-time the information retrieved and the features of the devices which
could capture it. For example, this helps to discard those users/devices
that could not be able to provide the requested data and to rank the
results obtained according to the matching with the kind of answer
wanted.

2. Tracking the location of objects of interest (the transports in the first
scenario and emergency teams around the accident area in the fourth)
as well as cameras (owned by the broadcaster in the third scenario and
from other users in the last two scenarios). Notice that some of the
cameras might be attached to moving objects (e.g., boats or people) and
be controlled just manually or remotely.

3. Discovering users equipped with cameras and asking them to share recent
pictures/videos already stored on their devices. Also, it could be needed
to ask users to capture certain pictures or videos. In the third scenario
users might need an incentive to do so and in the last scenario they might
do it altruistically or forced by authorities (as lives could be in danger).
Following privacy and trust policies is mandatory in this case.

4. Maintaining a continuous communication among the user of the system
and the rest of the devices involved in the distributed scenario in order
to provide the final user with an updated answer continuously.

5. The system must deal with the distributed nature of the environment
(which is particularly challenging when it is not possible to rely on fixed
infrastructures and ad hoc networks have to be considered) and deal with
continuous request processing, scalability and fault tolerance, deployment
of computations to specific geographic areas, etc.

In the case of the ambulances in the fourth scenario, the last challenge is
especially difficult as the system has to, not only obtain information but also,
send it to the emergency units moving to the accident area. This would mean
tracking those moving units at any time and establishing a communication to
send them multimedia information while on the move.
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Therefore, in the rest of this thesis, we propose SHERLOCK, a system
that is able to address the challenges described above by applying semantic
and distributed processing techniques. The system is able to support the
previous four motivating scenario as well as any similar scenario where a user
is interested in obtaining information about moving objects and performing
actions in highly-dynamic distributed scenarios.

3.2 Architecture

SHERLOCK is based on the collaboration of devices to resolve information
needs of their users. In SHERLOCK’s distributed architecture every device
acts as an independent node which communicates with others to exchange
information that might be interesting for its user. SHERLOCK-enabled devices
use their communication mechanisms (e.g., WiFi and 3G) to create Peer-to-Peer
(P2P) networks. The benefits of the communication between SHERLOCK-
enabled devices are twofold, it allows devices to: 1) exchange information about
services and their surroundings and thus, every devices learns from the different
interactions; and 2) answer requests posed by others by using the information
they store locally.

To offer the previous functionalities each SHERLOCK node is composed of
modules in charge of the following tasks (see Figure 3.5 for the high-level module
architecture): Interaction with the user, knowledge management, and user
request management. These tasks are handled by different static and mobile
agents. In addition to the different agents created to address SHERLOCK
goals, our architecture reuses some of the agents presented in [IMI06], to
process location-dependent queries, and in [MRM04], to adapt user interfaces,
extending them with semantic capabilities and with the ability to take into
account the decentralized scenarios considered in SHERLOCK.

For the management of the agents involved in the architecture, SHERLOCK
uses a mobile agent platform [TIM07], which provides an abstraction level for
the development of distributed agent-based cooperative systems6. In SHER-
LOCK mobile agents communicate to each other directly and the mobile agent
platform is in charge of managing the low-level details of this communication.
For instance, when there is no direct communication (due to the lack of a
fixed network infrastructure, which makes an ad hoc network the only possible
option), the mobile agent platform may use an underlying multi-hop ad hoc

6In our prototype, we used a version of the mobile agent platform SPRINGS [ITM06],
which offers RPC-based synchronous communications to support the cooperation among
agents on the same device or on different devices, ported to Android.
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Figure 3.5: High-level architecture of a SHERLOCK node.

routing protocol [BTAABT11] to allow its agents to communicate with each
other; for more low-level details about the communication protocol see the
referenced paper.

In the following sections, we introduce the main functionalities of the system
with the static and mobile agents in involved in each task.

3.2.1 Interaction with the User

The module to interact with the user takes care of tasks such as the generation
of Graphical User Interfaces (GUIs) to obtain information from her and to
show results to her. However, for this module we reuse the work in adaptive
interfaces presented in [MRM04] with some minor extensions. The following
agents are involved in the interaction with the user:

• ADUS, which generates graphical user interfaces (GUIs), adapted to
the user profile and device capabilities, by rendering a GUI description
provided by incoming agents that want to interact with the user.
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• Alfred, which specializes on interacting with the user and stores as much
information as possible about these interactions.

• SHERLOCK Endpoint (SE), which provides access to SHERLOCK’s
user request processing capabilities to external applications, advanced
users, and other SHERLOCK devices.

3.2.2 Knowledge Management

The knowledge management module of the system handles the knowledge
including information about the user and the device as well as services and
scenarios. This knowledge is used to: 1) offer the user services and mechanisms
to express her information needs, and 2) answer the user information requests.
To provide users with interesting information, each SHERLOCK device keeps
this knowledge continuously updated through the interaction with other devices.
We explain this module in Chapter 4. The following agents are in charge of
the knowledge management task:

• Knowledge Endpoint (KE), which is in charge of providing access to the
knowledge stored on the device to other agents (see Section 4.2).

• Context Updater (CU), which specializes on knowledge about the user
and the context of her device (see Section 5.1).

• Ontology Updater (OU), which shares and integrates new knowledge,
obtained from other objects, into the local ontology on the user device
(see Section 5.2).

• Multimedia Manager (MM), which analyzes multimedia information (i.e.,
camera views) to obtain further information from it (see Chapter 8).

3.2.3 Request Management

The request management module of the system handles the user information
requests. First, it helps the user in the definition of her request by capturing
her information needs. From the information captured, this module deduces
the most appropriate service for her and generates a formal query expressing it.
Then, it processes the request by executing the formal query against different
sources including the local knowledge in the device and third-party external
knowledge bases. Finally, it deploys a network of mobile agents to obtain
the information requested directly from other devices, if needed. We explain
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this module in Chapter 6. The following agents are in charge of the request
management task:

• User Request Manager (URM), which helps the user to generate a request
that defines her information needs using ontology-guided mechanisms
(see Section 6.1).

• User Request Processor (URP), which continuously processes the user
request, with the help of Tracker agents, and returns the results to the
URM (see Section 6.2).

• Tracker, which continuously monitors its assigned relevant area, with the
help of Updater agents (see Section 7.2).

• Updater, which accesses the data from the target objects inside the
relevant area and communicates the information obtained to its Tracker
(see Section 7.3).

• Remote Request Execution (RRE), that executes non location-based
queries against the local ontologies of devices around the user (see Sec-
tion 7.1.1).

3.2.4 Overview of a SHERLOCK-Enabled Device

A SHERLOCK-enabled device hosts a series of static agents taking care of the
interaction with the user and management of the local repository of knowledge
(see Figure 3.6). The latter agents communicate with their corresponding agents
on other devices to exchange knowledge autonomously. The static and mobile
agents involved in the processing of a user request are created the moment the
user interacts with SHERLOCK and needs to express her information needs.
In the following chapters, we will detail the components and agents introduced
before. First, we will explain the local knowledge on a SHERLOCK device and
the static agents in charge of managing this knowledge in Chapter 4. Then,
we will detail the static and mobile agents in charge of the management of
a user request in Chapter 6, and the processing of location-based queries in
Chapter 7. Finally, we will explain the management of multimedia information
in Chapter 8.

3.3 Summary of the Chapter

In this chapter, we presented four motivating scenarios where different users
are interested in obtaining information from other devices and/or users around:
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Figure 3.6: Agents to interact with a user and manage knowledge in SHER-
LOCK devices.

a tourist that needs to find transports to reach her hotel after arriving in a
foreign country, a coordinator of a firefighting team suppressing a wild fire who
needs information about the team and the fire outbreaks, a technical director in
charge of the live broadcasting of a rowing race who needs pictures and videos
of the race taken by cameras under her control and even audience members,
and the authorities handling a traffic accident who need to coordinate the first
response elements and obtain information from the vehicles involved in the
accident. With the help of these four scenarios, which work as examples of
many others, we highlighted the different challenges a system to handle them
will face. Among them we introduced challenges related to: 1) the management
of knowledge that such a system must consider (such as the problem of keeping
the system updated by incorporating information relevant for new scenarios
on the fly), and 2) the processing of user requests (such as finding devices
which can provide the system with the information that the user wants and
monitoring areas). Finally, we presented the SHERLOCK system which we
designed to manage the four motivating scenarios (and any other similar to
them) by taking into account the challenges described before. We introduced
the multi-agent architecture of SHERLOCK giving an overview of each of its
static and mobile agents.



Chapter 3. Overview of the System 50



Chapter 4

Knowledge Management

The knowledge that SHERLOCK manages enables it to provide all of its
functionalities. By using ontologies to model this knowledge, SHERLOCK is
able to integrate new information (and therefore new functionalities) easily and
without architectural changes. We divide the knowledge managed by the system
in two parts. On the one hand, there is information related to the context
of the user and her device. On the other hand, there is information related
to the services that SHERLOCK provides. In addition, the system enables
accessing to this knowledge through a query language which we designed based
on SPARQL. An agent is in charge of processing such queries that can be posed
by users or other SHERLOCK agents from other devices. In this chapter, we
present the modeling of this information and the mechanisms developed to
access it.

4.1 Modeling SHERLOCK Devices and Services

SHERLOCK uses ontologies [Gru95] to model information about the user,
her device, the different services she can use, and the scenario around her.
These ontologies are represented using OWL1, de facto standard language
to implement expressive ontologies in the Web that makes it possible the
definition of complex knowledge. Moreover, as OWL has formal semantics
based on Description Logics [BCMNPS03] (DL), it is possible to perform
several reasoning tasks to deduce implicit knowledge (i.e., logical consequences
of the knowledge in an ontology) using semantic reasoners (i.e., DL reasoners).
Indeed, SHERLOCK-enabled devices use a reasoner on the device to manage

1OWL Web Ontology Language, http://www.w3.org/TR/owl-primer
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their local ontologies. Having a local reasoner on the device prevents problems
associated with relying on external reasoning services such as, for example,
the connectivity with the services might not be possible in some situations
and privacy issues related to some of the information used in the reasoning
which could be sensitive (e.g., the user context). In Appendix A we include
our thorough experimental evaluation on the use of semantic reasoners on
mobile devices which show the feasibility of this approach. Also, we used these
experiments with more than 300 ontologies and 10 popular reasoners, to select
HermiT [GHMSW14] as the specific reasoner used in our prototype.

In addition to the OWL models, part of the factual data which are more
prone to change dynamically is stored separately, for scalability’s sake, using a
database manager. For instance, information such as the current capabilities
of the device (e.g., current battery available) or the GPS location of the user
are highly dynamic whereas information about services is less prone to changes.
Therefore, the former is stored in a database whereas the latter is modeled in
an ontology.

The knowledge handled by SHERLOCK can be classified into four different
categories depending on the subject being modeled (see Figure 4.1): user
context, device context, services, and scenarios. However, notice that these
categories share common knowledge (for instance, services, scenarios, and user
context are interlinked as services might be interesting for certain contexts
and return elements from the scenario). We group the previous four categories
into two modules in SHERLOCK’s knowledge base: 1) Contextual knowledge
and 2) knowledge about service and scenarios.

Figure 4.1: Different knowledge managed by a SHERLOCK device.
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4.1.1 Contextual knowledge

SHERLOCK manages information about the context of users and their devices
to infer different aspects of their status, and use such inferences to: 1) perform
a context-aware service provision, and 2) keep their privacy preferences when
sharing information with other SHERLOCK users.

The device context (see Table 4.1) includes the features of the device
along with a snapshot of its current capabilities. This information is used
by SHERLOCK’s mobile agents when processing a user request in order to
distribute the workload appropriately.

Device model The specific device which will be used to obtain information
about the features such as processor, battery, memory, wireless
interfaces, sensors, etc.

Available battery An estimation of the remaining battery time. It might be infinite
if the device is not running on batteries.

Available processor Percentage of processor that is available at the moment.

Available memory Amount of memory that is reserved to the system.

Available storage Amount of persistent storage that is reserved to the system.

Available bandwidth The bandwidth available for each wireless interface.

Coverage area The coverage area that the device can see. It can be static
(pre-known) or dynamic (updated in every data refreshment).

Sensor readings Raw data extracted from the different sensors on the device.

Table 4.1: Information stored about the context of the device.

The user context (see Table 4.2) includes information about the profile of
the user and her current context according to the broadly adopted definition by
Abowd et al. [ADBDSS99] where context is split into “primary context pieces”
(i.e., identity, time, location, and activity) as well as “secondary context pieces”
(i.e., pieces of context related to the primary context pieces, e.g., a user’s phone
number can be obtained by using the user’s identity). This information is
used with a twofold goal: 1) to help the user selecting appropriate services,
and 2) to evaluate her privacy preferences when sharing information with other
SHERLOCK users.

The hierarchical structure of the information stored about the context of a
user makes SHERLOCK able to use different granularities of context pieces
depending on the situation. For example, the location of a user in our system
can be viewed from her coordinates to the building, the city level, or the region
level where the user is in. Ontologies have been widely used before to define
and extract context [BBHINRR10]. Therefore, we model context by using an
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Object class/es The object is an instance of a class which shares with other
devices (e.g., person, taxi, bus, firefighter, etc.).

Location The physical position of the object which comprises the GPS
coordinates as well as hierarchy of places.

Mobility Whether the object is a moving object or not. From an ontologi-
cal point of view, a mobile object with a maximum velocity of 0
is not the same as an object that cannot move at all.

Maximum speed When dealing with moving objects, the maximum velocity can
be used to estimate positions and make the system more robust
against communication failures for example.

Direction The direction of movement of a moving object which can be used,
for example, to estimate future positions.

Extent The area (2D) or volume (3D) that the object occupies physically.

Activity The activity that the user is performing.

Secondary context Pieces of information related to the activity and location of the
user.

Table 4.2: Information stored about the context of the user.

ontology (see Figure 4.22) although the dynamic data is stored in a database for
efficiency. This way, in the case of location information the GPS coordinates
of the user’s location, which are highly-dynamic, are stored in a database.
Then, this information is combined with the knowledge in the ontology about
buildings or cities to infer a higher-level notion of the user location such as the
building the user is in.

To explain the information modeled of users and other objects considered
by SHERLOCK we will use as examples two elements of our third motivating
scenario in Section 3.1.3: a rowing boat (see Figure 4.3), as an example of
an object of interest, and a camera (see Figure 4.4), which is an important
element of the system as it can capture multimedia information.

Modeling Objects

The location of an object is probably the most important context piece that the
system has to manage as it is essential for LBS. For example, users can request
information related to the location of an object such as whether the object is
inside an area or not. The notion of location in our system includes both the

2The notation employed in this document for images of ontology excerpts follows the
Graffoo specification [FGPSV14] (http://www.essepuntato.it/graffoo): yellow boxes for
classes, green boxes for datatypes, blue arrows for object properties, green arrows for data
properties, and black arrows for predicates.

http://www.essepuntato.it/graffoo
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Figure 4.2: An excerpt of the context ontology.

position of an object (i.e., its coordinates) as well as the place where the object
is (i.e., its geographic area). This information can be provided, for example, by
a GPS and have to to be continuously updated to obtain accurate results, as it
is highly-dynamic data. The imprecision of the localization mechanism could
lead to imprecise answers (e.g., in [SWW06] the authors report an accuracy of
around 1 meter for some GPS receivers), but our approach is independent of
the specific location mechanism used. So, it is possible to combine, if needed,
several positioning mechanisms to increase the accuracy, even for indoor events
(by using overhead cameras, sensors, Wi-Fi signal strength maps, etc.).

An special case supported by SHERLOCK is the capability to support
requests related to cameras such as whether a camera could take a picture of
a certain object or not. The process to achieve this, which we will explain in
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Figure 4.3: An object-of-interest modeled in our system.

Chapter 8, requires of other information of objects such as the direction of
movement and the approximate volume (extent) of space that these objects
occupy. Our system does not need a precise 3D mesh of these object to
accomplish its main goal (as we show in our tests in Section B.4.3, where
we used an approximate extent for the different types of objects-of-interest).
Of course, the more precise the extent of an object-of-interest provided to
the system, the more accurate the information it will obtain regarding the
percentage of the object viewed by a camera. Thus, users could generate a
simple 3D model for these objects or even search for similar already-generated
meshes in 3D model databases (e.g., by using keywords or even real images, as
studied in [ADV07; GWZTDZ11]). As the extent of objects-of-interest could
change dynamically it could be interesting to request this information from
other devices. However, in real life only small parts of these extents change
(e.g., the rows of a rowing boat, the limbs of a person, etc.). Thus, the general
accuracy of our approach to compute what are cameras viewing will not be
affected significantly if non-deformable extents for objects-of-interest are used
(in our tests we used fixed 3D models).

Besides, the front and top vectors, which are used to represent where
the front and top parts of the extent are, must be defined for this extent
(e.g., in the rowing boat of Figure 4.3 the front and top vectors are [1, 0, 0]
and [0, 0, 1] respectively). This way, the system is able to support requests
retrieving cameras that can view specific parts of the object, for example,
cameras recording the front of the rowing boat. The views supported by these
vectors are: top/bottom, front/rear, left/right, or any combination of two or
three elements chosen from the three previous pairs. In our system, 90-degree
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angles are considered between the front and top vectors, the sides and the
front, and the sides and the top. Thus, no more than three viewpoints are
going to be usually selected at the same time in a query for the same object.

Modeling Cameras

Concerning cameras, which are special types of sensors attached to devices
and which play a key role in SHERLOCK as they are providers of multimedia
content (see Chapter 8), we consider that they can rotate (both vertically
and horizontally) and change their location (if they are attached to moving
objects). We model a camera c as shown in Figure 4.4. In the figure, we
identify several elements: βh and βv are the horizontal and vertical angle of
view (that define the Field of View –FOV– of the camera), respectively; α,
αmax, αmin, and αspeed are the current pan (i.e., the current horizontal rotation
of the camera), the maximum pan possible, the minimum pan possible, and
the pan speed (degrees/second) of such a camera, respectively; finally, θ, θmax,
θmin, and θspeed are the current tilt (i.e., the current vertical rotation of the
camera), the maximum tilt possible, the minimum tilt possible, and the tilt
speed (degrees/second), respectively3. Angles that represent a pan to the
right (α) or a tilt upward (θ) from the corresponding vector are considered
positive and those that represent a pan to the left (α) or a tilt downward (θ)
are considered negative. Besides, each camera has the rest of features of a
regular object (such as a unique identifier, location, etc.).

βh

αmax

αmin

α
0

angle bisector
of βhc

(a)

θmax

θmin

0

βv

θ angle bisector
of βv

c

(b)

Figure 4.4: Modeling a camera: pan (horizontal plane) (a), and tilt (vertical
plane) (b).

3In this work we do not deal with the possibility of zooming.
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4.1.2 Service and Scenario Knowledge

To be aware of the available functionalities, SHERLOCK handles a structure
of services which are defined extending a pre-shared ontology (see Figure 4.5).
This module comprises knowledge about both the services themselves (e.g.,
which parameters it receives, how it is invoked, the type of the result -if any-),
and the different entities needed to completely define their semantics (e.g., if
we define a service to look for means of transport, in the ontology, the entity
Transport should appear), which we refer to as “scenario”.

Figure 4.5: Basic ontology for service modeling in SHERLOCK’s services.

In our model, services are instances of the class Service in the ontology.
Specializing this class Service in the ontology, the service definers (users
and/or companies which want to extend SHERLOCK) can arrange services
into families of services which share functionality (e.g., a concept Find Buses
would be a family of services). In fact, our approach requires that service
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definers select an existing family for their newly added services (or define a
new one, extending the vocabulary)4.

Apart from their ontological classification, services defined in SHERLOCK
can further be classified attending to the way they are processed into three
types of services:

1. SHERLOCK querying services: Services which provide functionality to
find objects and are similar to traditional location-dependent queries.
However, SHERLOCK also handles queries which are not related to any
location. The system itself provides contributors with a functionality to
find objects in its local ontology and even deploys a network of agents to
obtain them from other devices. To define these services, contributors
can model the information that the service will obtain as a result (e.g., a
service to find pictures will return pictures), and its parameters (if any).
As an example, Figure 4.6 shows the definition of a service of this type
to obtain transports.

Figure 4.6: Example of the definition of a SHERLOCK querying service to
obtain transports.

4SHERLOCK does not aim at matching directly services as in classical Semantic Web
Services approaches. Our approach relies on integration of the shared schemas to discover
new instances with similar functionality.



Chapter 4. Knowledge Management 60

2. External services: Services provided by a particular provider object.
This kind of services includes both third party external services and
services offered by other SHERLOCK-enabled devices (which might
involve notifying or interacting with another user). The definition of this
kind of services is extended with information about: 1) their provider (via
provider property), 2) the access mechanism to be used (via call property),
and 3) for those which require user’s interaction, an specification of the
interface to be used5.

For example, Figure 4.7 shows a service to take pictures that is provided
by SHERLOCK objects equipped with cameras and the service of the
Metropolitan Transportation Authority of New York which returns the
location of buses through a web service. Another interesting external
service that can be defined is, for example, a service to query an external
knowledge base, such as DBpedia, to obtain the location of POIs in an
area (the call property would include the SPARQL query and the URL
of the DBpedia endpoint).

Figure 4.7: Two examples of the definition of external services: 1) to take
pictures and 2) to obtain transports from a web service.

3. Complex services: Services defined via a composition of services of the

5As we will see, this specification will be used by the ADUS agent to create an user
interface and interact with the user in another SHERLOCK-enabled device.
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two previous types (i.e., these services use them as atomic actions).
This composition is defined by a workflow specified in BPMN [Whi04],
which is included in the service definition in XPDL format6 (taking into
account that the “Activities” considered in BPMN are indeed “Services”
in our architecture) using the execute property. Currently, we restrict
our approach to support a subset of BPMN enough to model services
executing atomic services in parallel, sequence, and combinations of the
previous7.

For example, Figure 4.8 shows a service for the live broadcasting of a row-
ing race which needs to find cameras and rowing boats (two SHERLOCK
query services) and then ask the cameras to take pictures of the boats (an
external service provided by SHERLOCK objects with cameras). Notice
that the specific services have to be defined as explained previously, and
the composed service includes a reference to them in the XPDL code
attached.

Any service of these three kinds will be translated into user requests when
a user selects them and processed later, as we will explain in Chapter 6. In
particular, a SHERLOCK querying service will be translated into a query
in SHERLOCK’s language, an external service into an external call, and a
complex service into a workflow composed of SHERLOCK queries and/or calls.
Moreover, the way that atomic requests will be finally processed is also defined
by the continuous property of their associated service, which defines whether
they have to be continuously evaluated. For example, a service to ask a camera
to take a picture might have to be evaluated once only, whereas a service to
obtain taxis near the user is expected to be continuously reevaluated to obtain
updated results until the user is not interested in it anymore.

Finally, to know which services are relevant to a particular user’s situa-
tion, these services are linked to the user context through a special property
(interestingFor). This property has to be populated by the user or company
who is modeling the service, deciding whether that particular service will be
interesting for a certain context or not. In this case, the context for which
the service is interesting has to be defined using its attached activity and/or
location. For example, the service to find monuments in New York could
be defined as interesting for contexts whose activity is “tourism” and whose
location if “New York”.

6http://www.xpdl.org
7Note that our approach only supports the usage of simple atomic services within the

workflows. We do not aim at supporting any kind of service composition (e.g., workflows
within workflows)

http://www.xpdl.org
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Figure 4.8: Example of the definition of a complex service with a workflow to
find cameras in an area and request them to take a picture.

In the following, we detail present the agent in charge of providing access
to the knowledge. The agents in charge of updating the knowledge and the
local ontology will be presented in Chapter 5.

4.2 Providing Access: Knowledge Endpoint Agent

The Knowledge Endpoint agent (KE from now on) processes queries against the
local ontology on the device posed by other agents. The handled information
includes highly-volatile data (e.g., the specific location of the user and the
surrounding objects, sensor readings of the device, or even instances of current
providers of each service), as well as more static information (e.g., the model of
the device and its features, or definitions of services). To handle the volatile part
of the knowledge, the KE agent adopts the strategy presented in [BBIM14],
where static and volatile knowledge is stored in ontologies and databases,
respectively, and is detected and marked at modeling time, allowing continuous
DL query processing with enough expressiveness.

Local agents on the device and external agents from other users pose queries,
using SHERLOCK’s query language, to the KE agent. The KE agent is able
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to interpret this language and obtains results taking into account the privacy
preferences of the user regarding the information to be shared with others. In
the following, we explain the grammar of SHERLOCK’s query language and
the management of the privacy preferences of the user.

4.2.1 SHERLOCK’s Query Language

The design of our system has been guided by criteria of maximizing both
expressivity and flexibility of the system. Thus, in order not to be constrained
to a predefined set of scenarios, with hardcoded queries and user needs, we
made SHERLOCK capable of processing its own query language.

We designed this query language taking as basis our previous experience
in the field of location-based queries. In particular, we took as baseline the
expressivity of the SQL-like query language proposed in [IBM11], which allows
to write location-based queries using different location granularities. As our
approach manages knowledge modeled using ontologies, we based SHERLOCK’s
language on SPARQL [PS+08], a standard query language able to handle RDF
data. To integrate both aspects (locations and DL semantics) in the same
query language, we adopted (and adapted) the GeoSPARQL [BK11] and
SPARQL-DL [SP07] extensions of SPARQL:

• GeoSPARQL [BK11] is a standard for representation and querying of
geospatial linked data from the Open Geospatial Consortium (OGC).

• SPARQL-DL [SP07] is a subset of SPARQL extended with predicates
that are fully aligned with OWL 2, and which covers the typical functions
associated with OWL.

Also, we included some functions to handle information provided by cameras
as SHERLOCK queries can be used to obtain multimedia information too.
The adoption of this query language in our system has the following benefits:

• It provides part of the expressivity of SQL and complements it taking
into account semantic and geographic technologies.

• As mentioned before, it decouples the system from a specific scenario,
increasing its flexibility.

• As it is based on SPARQL, the system is able to query popular Linked
Open Data SPARQL endpoints8 and integrate the results (in RDF format)

8There is a huge amount of information in these repositories, e.g., DBpedia [BLKABCH09]
contains a great part of Wikipedia’s information semantically annotated.
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easily.

• As we have introduced in Section 3.2, it makes it possible to use each
device in our system as a distributed knowledge endpoint via the exported
query service. Moreover, such a service is also available to external
applications which could use SHERLOCK to exploit its capabilities.

SHERLOCK’s Language Grammar

The simplified grammar of SHERLOCK’s language is shown in Figure 4.99.
We can distinguish two main parts in a SHERLOCK query:

• The projections clause, which declares the free variables that are used to
match the result of the query. Note that as we do not have any attached
schema (as, for example, in SQL), the meanings of these defined variables
are not yet specified.

• The list of where clauses, which defines both the location constraints and
conditions that the required objects have to met (LICons and ObjectCons,
respectively), and the bindings of the previously declared variables to
properties of such objects (ProjectionsCons).

Constraints in Language. The location constraints defined within the
LICons fragment of a where clause impose conditions on the locations of the
returned objects, defining the relevant area of the query. We explicitly separate
the definition of location constraints from object ones to clearly distinguish
from spatial patterns that are to be interpreted continuously (e.g., retrieve
objects that are within Zaragoza) from spatial patterns that refer to static
properties of the objects (e.g., retrieve people that were born within Zaragoza).
Moreover, note that location constraints are not mandatory, allowing for both
location and non-location based queries.

The object constraints within the ObjectCons fragment of a where clause
define semantically the objects that are to be returned. The patterns in
this fragment can appear modified by an OPTIONAL clause which makes
them not mandatory, and/or grouped with the help of a CASE operator.
This latter operator allows for grouping object definitions by expressing the
shared properties and separating the particular patterns into different CASES.
Formally, let be OD the set of patterns within a ObjectCons fragment, SOD

9The complete grammar can be consulted at http://sid.cps.unizar.es/SHERLOCK

http://sid.cps.unizar.es/SHERLOCK
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the subset of patterns in OD which are not within a CASE clause, and SCASE
the set of sets of patterns within CASE clauses in OD, then:

x satisfies(OD)⇔ x satisfies(SOD) ∧ ∃p ∈ SCASE , x satisfies(p)

This is, all the mandatory patterns (i.e., those that are not modified by an
OPTIONAL operator) are so except for those which are inside a CASE function,
which are added to the body of the definition following a logical OR semantics.
For example, with the CASE clause it is possible to define objects of interest
which are available vehicles, and specifically Taxis of a particular operator, or
Buses in general in the same query:

OD{

Type(?thing, sherlock:Vehicle),

PropertyValue(?thing, available, <true>),

CASE(Type(?thing, sherlock:Taxi),

PropertyValue (?thing, operator, <TaxiCab Co.>),

CASE(Type(?thing, sherlock:Bus))

}

Finally, the projection constraints bind the free variables that are to be
returned in the variable with the properties of the objects defined. These
constraints are evaluated against the set of objects that satisfies both location
and object constraints previously defined.

Predicates in the Patterns. Regarding the predicates that can be used to
form the patterns, we can distinguish two main groups:

• Geographical predicates (GeoFilter in the grammar).

• DL-related predicates (DLFunction in the grammar).

Geographical predicates supported by the language are taken from the
extension of SPARQL to handle geospatial information, GeoSPARQL [BK11].
We have adopted three different functions which we needed to express inside
constraints. In particular, we reuse geof:intersects and geof:within tests,
which test intersection and inclusion relationships between spatial elements,
and geof:buffer operation, which performs the dilation of a spatial element
by a given distance. We focused on predicates that allowed us to define inside
constraints as other types of location-dependent constraints (e.g., nearest) can
be expressed by using inside constraints (for more details, see [IMI06]).

DL-related predicates are mainly taken from SPARQL-DL [SP07]. We have
adopted all the SPARQL-DL predicates (as shown in Table 2.5), keeping the



Chapter 4. Knowledge Management 66

same semantics as in their original definitions10. Besides, we have included
two DL functions to obtain the domain and range of given property. These
functions in the DL extension are not part of SPARQL-DL, but are useful and
used by SHERLOCK agents. They have as parameters a property and a class,
allowing at most one free variable, and their exact semantics depend on the
position such free variable (see Table 4.3).

Operator Interpretation

Domain(C, R) true⇔ O |= ∃R.> v C

Domain(?C, R) {x ∈ concepts(O)|Domain(x,R)}
Domain(C, ?R) {y ∈ roles(O)|Domain(C, y)}
Range(C, R) true⇔ O |= > v ∀R.C

Range(?C, R) {x ∈ concepts(O)|Range(x,R)}
Range(C,?R) {y ∈ roles(O)|Range(C, y)}

Table 4.3: Semantics of the introduced DL operators: Domain and Range.

Camera View predicates. SHERLOCK supports queries related to the views
provided by cameras (as we will explain in Chapter 8). In order to enable
access to all the features of our proposal to compute camera views, we define
the following functions (CameraFuntions in the grammar):

• checkKindOfView(target, cam, view) returns a true value if the camera
cam is obtaining the view view of the target object target. Another variant
of this function is checkKindOfView(target, cam, view, t), that performs
the same operation but taking into account the estimated view that the
camera will obtain after t seconds.

• percentageShot(target, view, cam) returns the percentage of the shot of the
camera cam occupied by the target object target; percentageShot(target,
view, cam, t) performs the same operation for the estimated view that
the camera will obtain after t seconds. Notice that if the user selects a
specific viewpoint for the view parameter, which is indeed optional, these
functions will obtain the amount of the shot occupied by the viewpoint
of the target object.

• percentageObject(target, view, cam) returns the percentage of the target
object target that the camera cam is viewing; percentageObject(target,
view, cam, t), performs the same operation for the estimated view that

10The interested reader is referred to [SP07] for their detailed definitions.
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the camera will obtain after t seconds. If the user selects a specific
viewpoint for the view parameter, which is optional, these functions will
obtain the percentage of the viewpoint covered.

• preferenceDegree(target, cam, α) returns a numeric value that allows
the system to rank cameras that fulfill the user requirements according
to how well their views fit his/her preferences. The user sets α, which
represents the importance of the percentage of the shot occupied by the
target with respect to the percentage of the object viewed (which will
have a weight of 1 − α). In our prototype we advocate computing the
preference degree as follows, in order to represent that the higher the
percentage the better, but any other function could be used:

percentage of shot occupied∗α+percentage of target viewed∗ (1−α)

• rotationToView(target, cam) returns a “Rotation” instance composed
of the pan and tilt angles that the camera cam has to turn to view the
target object target. This function makes use of panToView(target, cam)
and tiltToView(target, cam), that obtain the pan and tilt needed to view
the target, respectively.

• timeToView(cam, <pan, tilt>) returns the time needed by a camera to
turn horizontally pan degrees and vertically tilt degrees. This function
makes use of timeToPan(cam, pan) and timeToTilt(cam, tilt), that obtain
the time needed to pan and tilt a certain angle, respectively.

• distance(target, cam) returns the distance between a camera cam and a
target object target.

Examples of SHERLOCK queries

For an example of the use of the language, we show in the following a SHER-
LOCK query to obtain entities which are Statues, or Monuments which have
free admission, in Zaragoza and in the museums inside Madrid:

PREFIX sherlock: <http://sid.cps.unizar.es/ontology/sherlock/>

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX geof: <http://www.opengis.net/def/geosparql/function/>

SELECT ?name, ?lat, ?lon, ?desc

WHERE{

LI{ // First location of interest: Zaragoza

FILTER(geof:sfWithin(?thing, sherlock:Zaragoza)
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},

OD{ // Definition of the object of interest

// All the objects have to be opened

PropertyValue(?thing, sherlock:parameter, ?paramOpen),

PropertyValue(?thing, sherlock:name, ‘‘open’’),

PropertyValue(?thing, sherlock:value, true)),

// Statues

CASE(Type(?thing, sherlock:Statue)),

// Or monuments with free admision

CASE(Type(?thing, sherlock:Monument),

PropertyValue(?thing, sherlock:parameter, ?param),

PropertyValue(?param, sherlock:name, ‘‘price’’),

PropertyValue(?param, sherlock:value, ‘‘free’’)),

},

PropertyValue(?thing, sherlock:name, ?name),

PropertyValue(?thing, sherlock:latitude, ?lat),

PropertyValue(?thing, sherlock:longitude, ?lon),

// Get description if available

OPTIONAL(PropertyValue(?thing, sherlock:description, ?desc))

} OR WHERE{

LI{ // Second location of interest: museums in Madrid

Type(?place, sherlock:Museum),

FILTER(geof:sfIntersects(?place, sherlock:Madrid)),

FILTER(geof:sfWithin(?thing, ?place))

},

OD{

PropertyValue(?thing, sherlock:parameter, ?paramOpen),

PropertyValue(?thing, sherlock:name, ‘‘open’’),

PropertyValue(?thing, sherlock:value, true)),

CASE(Type(?thing, sherlock:Statue)),

CASE(Type(?thing, sherlock:Monument),

PropertyValue(?thing, sherlock:parameter, ?param),

PropertyValue(?param, sherlock:name, ‘‘price’’),

PropertyValue(?param, sherlock:value, ‘‘free’’))

},

PropertyValue(?thing, sherlock:name, ?name),

PropertyValue(?thing, sherlock:latitude, ?lat),

PropertyValue(?thing, sherlock:longitude, ?lon),

OPTIONAL(PropertyValue(?thing, sherlock:description, ?desc))

}

Notice that the query contains two interesting areas (Zaragoza and museums
inside Madrid) and therefore contains two WHERE clauses. Also, notice that the
definition of the second area of interest involves the use of two GeoSPARQL
FILTER functions to select places which are museums inside Madrid. Finally,
as the objects of interest that the system has to find are the same for the two
areas, their definition in the OD clause is the same in both WHERE clauses.
Also, in the OD definition, we show the use of several SPARQL-DL functions
to define the class of the object and the value for different properties it has to
fulfill.
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To show the use of our custom functions about cameras in SHERLOCK’s
query language, we first consider an example where the Technical Director
(TD) of our third motivating scenario asks the system about cameras that view
right now at least 30% of the “Kaiku” boat that fills at least 10% of the shot.
The request can be translated to the following query (we assume that for the
TD the percentage viewed is more important than the percentage of the shot
occupied and considers α = 0.4):

SELECT ?id, ?score

WHERE{

LI{

FILTER(geof:sfWithin(?thing, sherlock:SanSebastianBay)

},

OD{

Type(?thing, sherlock:Camera)),

?rotation=rotationToView(sherlock:Kaiku, ?thing),

PropertyValue(?rotation, sherlock:pan, ?pan),

PropertyValue(?rotation, sherlock:tilt, ?tilt),

FILTER(?pan = 0),

FILTER(?tilt = 0),

FILTER(percentageObject(sherlock:Kaiku, ’any’, ?thing) > 0.3),

FILTER(percentageShot(sherlock:Kaiku, ’any’, ?thing) > 0.1),

?score=preferenceDegree(sherlock:Kaiku, ?thing, 0.4),

},

PropertyValue(?thing, sherlock:id, ?id)

ORDER BY DESC(?score)

As the TD wants to obtain the cameras viewing the target object right now,
the query includes a condition (pan=0 and tilt=0) that ensures that the cameras
in the answer set fulfill this constraint. Besides, the function preferenceDegree
is used to take into account the TD preferences in the ranking.

Now, considering that the TD asks about cameras that can view the front,
top and side of “Kaiku” in less than 20 seconds, sorted by the percentage of the
target viewed and the time needed to view it (the largest the percentage and
the shorter the time, the more appropriate a camera is), the system generates
the following query:

SELECT ?id, ?pct, ?time, ?pan, ?tilt

WHERE{

LI{

FILTER(geof:sfWithin(?thing, sherlock:SanSebastianBay)

},

OD{

Type(?thing, sherlock:Camera)),

?rotation=rotationToView(sherlock:Kaiku, ?thing),

PropertyValue(?rotation, sherlock:pan, ?pan),

PropertyValue(?rotation, sherlock:tilt, ?tilt),

?time=timeToView(?thing, ?pan, ?tilt),

FILTER(?time > 20),
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FILTER(checkKindOfView(sherlock:Kaiku, ?thing, ’front’, ?time) = true),

FILTER(checkKindOfView(sherlock:Kaiku, ?thing, ’top’, ?time) = true),

FILTER(checkKindOfView(sherlock:Kaiku, ?thing, ’side’, ?time) = true),

?pct=percentageObject(sherlock:Kaiku, ’any’, ?thing, ?time),

},

PropertyValue(?thing, sherlock:id, ?id)

ORDER BY DESC(?score) pct

Now lets show the information obtained by these functions applied to the
camera views shown in Figure 4.10. First, the following high-level features are
extracted by the system from a camera view:

• The specific objects viewed (e.g., in Figure 4.10(a), CAM1 views the
rowing boats “Kaiku” –in green– and “Urdaibai” –in red–) and some
information about them:

– The distance to the object (e.g, in Figure 4.10(a), the distance
between CAM1 and the boat “Urdaibai” is 17 meters).

– The percentage of the object covered (e.g., in Figure 4.10(b), CAM2
views 22% of the boat “Kaiku”).

– The percentage of the shot occupied by the object (e.g., in Fig-
ure 4.10(b), “Kaiku” fills 26% of CAM2 view).

– The kind of view obtained of the object (e.g., in Figure 4.10(b),
CAM2 views the front and left side of “Kaiku”).

– The percentage of the viewpoint of the object covered (e.g., in
Figure 4.10(b), CAM2 views 47% of the front and 29% of the left
side of “Kaiku”).

• The percentage of the shot occupied by objects-of-interest (e.g., in Fig-
ure 4.10(a), both rowing boats fill 6% of the view provided by CAM1).

Therefore, CAM1 and CAM2 will be returned by the KE agent for the
first sample query whereas CAM1, CAM2, and CAM3 will be returned for the
second (as CAM1 and CAM2 are already obtaining the required view, and
CAM3 will be able to do it in less than 20 seconds).

4.2.2 Context-Aware Privacy Policies

The KE agent executes queries posed by other agents against the local knowl-
edge on the device. These agents might act on behalf of other users (e.g.,
Updater agents – which we will explain in Section 7.3 – execute queries of a
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user against other devices). In this scenario, users might have some preferences
regarding which data can be shared with whom. Semantic Web technologies
have been used in the literature to represent and enforce these user privacy
preferences [KFJ03], also called privacy policies. In [KFJ03] the authors pro-
pose a semantic policy language to represent the user privacy policies, and a
policy engine that interprets and reasons over such language. The KE agent
uses this approach to preserve the privacy of its user when processing queries
from others. The policy language is based on the Semantic Web Rule Language
(SWRL) [HPSBTGD04] whereas the policy engine in our approach is the KE
which uses the semantic reasoner to evaluate the rules when information is
requested. In addition, incorporating context to these policies allows a higher
degree of granularity and control in the application of the privacy preferences
of the user. For instance, the following context pieces are considered in the
privacy policies handled by the KE agent:

• Location: In our scenario we treat location context semantically as in
“at the bar”, “at the University campus” or “inside home”. For example,
if a student has specified that she does not want to share her location
when she is in University buildings, it is assumed that she does not want
to share her location at the University library.

• Activity : It can be used to add another dimension to the meaning of
location. For example, a classroom used for private meetings versus
public lectures. An example of policy which would be activity dependent
is a user do not want certain information from her local knowledge base
to be shared when in a work meeting.

• Identity : The identity of certain users of groups can be used to model
simple access control. For example, to specify what information on the
device can be shared with strangers.

• Time: While time is ingrained into other aspects of context, it allows for
an all-embracing notion of privacy without worrying about the location
and activity of users.

Most user situations demand a combination of various types of context
pieces described above. A possible example of such a scenario would be “do
not allow my social network colleagues group (identity context) to obtain
my (identity context) location when I’m in a party (activity context) held
on a weekend (time context) at the beach house (location context)”. As
proposed in [KFJ03], these rules should be encoded in SWRL and based on the
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context ontology (see Figure 4.2)11. For example, the previous policy would be
expressed in SWRL as follows:

Person(?p) ∧ Colleague(?p) ∧ Context(?c) ∧
hasTime(?c,?t) ∧ hasDay(?t,?day) ∧ WeekendDay(?day) ∧
hasLocation(?c,?loc) ∧ BeachHouse(?loc) ∧
hasActivity(?c,?act) ∧ Party(?act) ∧ Location(?loc)

→ DenyAccessTo(?loc,?p)

Thus, whenever an agent representing another user poses a query requesting
the location of the user, the KE agent evaluates the previous rule (with the
help of the reasoner) to determine if the information can be shared.

4.3 Summary of the Chapter

In this chapter, we have presented the management of knowledge by SHER-
LOCK. First, we explained the modeling of the different categories of knowledge
managed by the system: user context, device context, services, and scenarios.
Then, we introduced the Knowledge Endpoint agent in charge of providing
access to the local knowledge on the device to other (local or external) agents.
We explained the SPARQL-like query language that we defined and which can
be interpreted by the KE agent. This language, which decouples the system
from specific scenarios, is based on GeoSPARQL and SPARQL-DL to handle
geospatial and DL semantics, respectively. Also, we introduced the handling of
user privacy policies when external agents, belonging to other devices/users,
request information to the KE agent.

11It is out of the scope of this work to deal with the definition of rules by users.
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General query structure

Query → SELECT Projections Where

Projections → Var (‘,’ Var)*

Where → WHERE ‘{’ Conds ‘}’| Where OR WHERE ‘{’ Conds ‘}’
Conds → LICons? ObjectCons ProjectionsCons?

Location of Interest Constraints

LICons → LI ‘{’ Patterns ‘}’
Object Constraints

ObjectCons → OD ‘{’ ObjectDefs ‘}’
ObjectDefs → TypeDef (‘,’ TypeDef)*

TypeDef → OptionalDef | ObjectDef

OptionalDef → OPTIONAL ‘(’ ObjectDef ‘)’

ObjectDef → Patterns | CASE ‘(’ Patterns ‘)’

Projection Constraints

ProjectionsCons → ProjCons (‘,’ ProjCons)*

ProjCons → PropertyValue( VarOrIRI , VarOrIRI , VarOrIRI )

Patterns Definition

Patterns → Pattern (‘,’ Pattern)*

Pattern → DLFunction | GeoFilter | CameraFunction

/* DL-related functions */

DLFunction → SPARQLDL | DLExtension

SPARQLDL → . . . /* all the SPARQL-DL predicates */

DLExtension → Domain( VarOrIRI ‘,’VarOrIRI) | Range( VarOrIRI ‘,’VarOrIRI )

/* GeoSPARQL functions */

GeoFilter → FILTER ‘(’ GeoFunction ‘)’

GeoFunction → geof:sfIntersects( Geometry , Geometry )

| geof:sfWithin( Geometry , Geometry )

Geometry → VarOrIRI | geof:buffer( Geometry , Real , Units )

/* Camera View Analysis functions */

CameraFunction → . . . /* checkKindOfView, percentageShot, . . . */

Basic grammar productions

VarOrIRI → Var | IRI

IRI → . . .

Var → . . .

. . . . . . . . .

Figure 4.9: Simplified Grammar of SHERLOCK’s query language.
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(a) (b)

(c) (d)

Figure 4.10: Sample views, recreated using Google Earth, of three cameras
(CAM1 (a), CAM2 (b), CAM3 (c), and CAM3 after 4 seconds panning to the
right (d)) covering a rowing race.
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Knowledge Update

To be able to provide its users with interesting information, each SHERLOCK
device has to maintain its local knowledge updated. First, it needs to keep
updated the information about the context of the device and user, as this
information is used to determine whether a certain service might be interesting
for her current situation. Also, as explained in the previous chapter, this
information is leveraged to check her privacy preferences regarding the exchange
of information with other devices. Second, it needs to keep updated the local
ontology which contains information about services and the surroundings. This
information is essential as, for example, a device might not have information
about services in the current location. In this chapter, we present the Context
Updater and Ontology Updater agents in charge of these tasks. These agents
leverage the communication with other SHERLOCK devices to exchange
information and learn from their interactions. In the case of the Context
Updater agent it collect facts about the context of other users and their devices.
The agent uses this information to improve the understanding of the context
of its user (e.g., by including facts related to her current activity). In the
case of the Ontology Updater agent, it exchanges ontologies modeling services
and integrates them into its local knowledge by discovering subsumption
relationships between their concepts.

5.1 Updating Context: Context Updater Agent

As explained before, the goal of the context information managed about the
user and other users around is twofold. On the one hand, SHERLOCK uses
the context of a user to offer services that might be interesting for her. On
the other hand, SHERLOCK uses the context of other users/devices to answer

75
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requests of the user. Also, the context information is used to specialize the
privacy preferences of the user regarding her information being accessed by
other devices.

The Context Updater agent (CU) handles the volatile context information
belonging to the device, its user, and other users/devices around. For that, the
CU agent performs the following tasks (see Figure 5.1):

Figure 5.1: Context Updater agent (CU) tasks.

• Context Extraction. This task involves inferring a high-level notion of
context, exchange this information with other devices, and integrate the
information received to improve the inferences made.

• Context Change Detection. Whenever the CU agent infers a new context
for the user, it is in charge of detecting significant changes (in our
prototype, when the user moves to a different city and/or each month).
These changes of context are used to reevaluate the information (e.g.,
services) that might be interesting for the user by the Ontology Updater
agent as we will explain in Section 5.2.

In the following, we explain our approach for context extraction.

5.1.1 Context Extraction

The CU agent uses context synthesizers [RAMC04] to process the low-level
sensory data produced by the device to extract a higher level notion of the
context of the user. These context synthesizers are external modules that take
as input the raw data (e.g., produced by sensors) and return a semantic notion
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of context using terms from the context ontology (see Figure 4.2). Also, context
synthesizers typically compute and return a value that expresses the confidence
on the information inferred being correct. For instance, the context synthesizer
presented in [PWLZB07] is able to use information from the microphone on a
device and user calendar and deduce that the user is in a meeting with a certain
confidence. As the device might have different sensors enabled at a given time
and they can be inaccurate, the CU agent uses an approach to enrich (i.e.,
correct and improve) the information returned by context synthesizers. This
approach is based on leveraging the information about devices/users around
that the CU agents exchange continuously. The context enrichment task is
based on the following steps:

1. Obtain the context information from the available context synthesizers.
As mentioned before, these context synthesizers return a high-level notion
of context (i.e., location and activity) along with a confidence value.

2. Communicate with devices discovered in the vicinity and request their
context information. In our case devices exchange the information de-
scribed in Table 4.1 and Table 4.2. The KE agent returns the previous
information if the privacy preferences of the user allow it.

3. Integrate the context information collected to generate a shared context
model. The shared context model integrates facts about location and
activity, as well as any secondary context piece related to them.

4. Verify the information integrated in order to detect and resolve inconsis-
tencies. A device could exchange erroneous information inferred by its
context synthesizers (e.g., it could exchange a wrong location if the last
GPS coordinate of the device was generated an hour ago).

In the following we focus on our approach to deal with the last two steps.

Context Integration

When mobile devices using different context providers and synthesizers exchange
context information, some of which is possibly imprecise, sometimes there can
be diverse information. For example, consider a scenario where multiple users
(Annie, Abed, Jeff, and Pierce) are in a study room in the library of a university
with their SHERLOCK-enabled devices (smartphones, tablets, and a laptop).
The information that their respective devices extract about the context of their
users depend on the current sensors enabled and the accuracy of the context
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synthesizing phase. Imagine that the CU agents on their devices exchange
the context information of their users that they inferred. Table 5.1 shows the
information that the context synthesizers in each device inferred, the confidence
they computed for each inference, and the normalized confidence. For example,
let’s focus on Annie’s tablet which receives information about the location
such as Glendale Community College (GCC) and Study room F while her own
device thinks the location is Annie’s Home. In this situation and for each
piece of context, the CU agent has to determine from all the possible values
which ones are most likely. For this task, it uses a simple weighted majority
voting scheme which has been proven to be successful in tasks such as pattern
recognition [LS97].

Identity Location Source Confidence ‖Confidence‖
Annie Annie’s Home Calendar 0.75 0.23

Abed GCC
GPS and

0.8 0.25
GeoNames

Jeff Study room F
Foursquare

0.7 0.22
and GPS

Pierce GCC IP address 0.9 0.29

Table 5.1: Contextual information shared about location.

The CU agent uses the semantic reasoner and ontology to deduce if a given
fact is supporting a different one. For example, Jeff’s smartphone states that
its location is Study room F and so, Jeff’s device is implicitly supporting that
its location is GCC as the study room is in GCC’s library. Therefore, in the
example of Table 5.1 three devices support that the location is GCC (Pierce’s,
Abed’s, and Jeff’s). The same situation can arise with activities, both Abed’s
and Annie’s devices share that the activity performed is a Study Group and so,
they support the Meeting activity shared by Jeff’s device.

To do this, the CU agent first obtains all the equivalent instances for a given
fact by using the owl:sameAs property. For example, for the instance GCC
the instance Greendale Community College will be obtained. Then, the CU
agent obtains the list of supported facts by the selected one and its equivalents.
This process varies depending on the type of fact:

• Location facts : The system uses the isIn property of the context ontology,
that models geographic areas contained in others [BBMI13], to obtain
the list of supported facts. As this property is transitive, it is possible to
obtain the complete list of directly and indirectly (i.e., inferred by the
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reasoner) supported facts. For example, as the following information has
been modeled in the ontology < Study room F, isIn,GCC Library >
and < GCC Library, isIn,GCC >, a device sharing a fact stating that
the location is Study room F is implicitly supporting that the location is
also GCC Library and GCC.

• Activity facts: The system obtains the class(es) of each individual by
using the rdf:type property. Then, for each class, the system uses the
rdfs:subClassOf property to obtain directly and indirectly supported
facts. For example, the fact for activity shared by Annie’s device is a
Spanish Study Group which in turn is a subclass of Study Group and
Meeting. Therefore, Annie’s device is implicitly supporting that the
activity is also Study Group and Meeting.

For each different context piece, cpx (e.g., cploc for location), a CU agent
has to compute a global confidence on each of the different facts shared, fi,
(e.g., GCC, Annie’s Home, and Study room F ) taking into account that some
of them can be supported by more than one device (e.g., GCC is supported by
Pierce, Abed, and Jeff as mentioned before). First, the CU agent computes
the normalized value by defining a normalized local confidence value, nci, as
follows:

nci =
max(lci, 0)∑
jmax(lcj , 0)

(5.1)

where the normalized local confidence value is positive (see column ‖Confidence‖
in Table 5.1). Then, let T be the set of normalized confidence values related
to a piece of context cpi, and let S be the set of normalized confidence values
that support a context value fi (e.g., location facts from Abed’s and Pierce’s
devices support location as GCC ). The CU agent sums up the values in S and
normalize it over T , to compute the global confidence gci, as follows:

gci =

∑
i nci∑
j ncj

∀ci ∈ S, ncj ∈ T (5.2)

After the context integration process, the CU agent will finally obtain a
list of candidate context pieces with their computed confidence, GC(cpx). In
our previous example, the final possible locations computed for the users along
with their confidences are:

GC(cploc) = {Annie′s Home(0.23), GCC(0.77), Study room F (0.22)}
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Notice, that there is an inconsistency in this shared primary context informa-
tion as there are two conflicting locations present, namely Study room F/GCC
and Annie’s Home. In the following we explain how the CU agent detects and
resolve these inconsistencies.

Context Inconsistency Resolution

Among the tasks that a semantic DL reasoner performs, consistency check-
ing is defined as the operation “which ensures that an ontology does not
contain any contradictory facts” [SPCGKK07]. To detect semantic incon-
sistencies, constraints should be modeled in the ontology. In our context
ontology these constraints are mainly defined in two ways: 1) by using the
owl:disjointWith class construct, to model that two classes have no members
in common, and 2) by using cardinality constraints on properties (such as
owl:functionalProperty to model that a property can have only one –unique–
value for each instance) or classes (such as owl:maxCardinality to model that a
class has at most N semantically distinct values). For example, in the context
ontology that we defined for our prototype (see Figure 4.2) we stated that
a user can only have one location (by defining the hasLocation property as
functional), and that the activity class Standing is disjoint with the class
Running.

The CU agent uses the context facts along with their confidence values for
inconsistency detection and resolution. For each piece of context, cpx, and the
list of possible values, GC(cpx), the system performs the following steps:

1. Remove from the local ontology every fact related to cpx. For example,
the system removes the axiom < Annie, hasLocation,Annie′s Home >.

2. Reorder GC(cpx) according to the confidence computed for each element
in descending order. For example, the list of possible locations will be
reordered to GC(cploc) = {GCC(0.77), Annie’s Home(0.23),
Study room F(0.22)}.

3. For each element of GC(cpx) create an axiom, include it in the local
ontology, and use the reasoner to reclassify the ontology to check whether
the ontology is still consistent. In the case of the reasoner inferring that
the ontology is inconsistent, remove the last axiom materialized because
its confidence will be lower than previous one(s).

The restriction on location context piece can be defined on the property
hasLocation. Before creating a new axiom for the location of the user (e.g.,
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< Annie, hasLocation, Study room F >), the CU agent gets any existing lo-
cation facts (e.g., < Annie, hasLocation,GCC >) and checks whether the new
instance of location (Study room F ) is contained in the existing one (GCC ) by
using the isIn property explained before. If so, the previous axiom is replaced
by the new one as it will preserve the existing semantics and make it more spe-
cific (e.g., the axiom < Annie, hasLocation, Study room F > implicitly states
< Annie, hasLocation,GCC >). Otherwise the axiom will not be created
(e.g., the CU agent will not create the axiom < Annie, hasLocation,Home >).

For expressing constraints on the activity context piece we use the OWL
function owl:disjointWith. For the first element of GC(cpact), the CU agent
creates an axiom to state that the user is involved in an activity (e.g., <
Annie, hasActivity, Activity1 >). Then, it creates an axiom that defines the
class of the activity (e.g., < Activity1, rdf : type,Meeting >). For the next
elements of GC(cpact), the CM agent simply creates axioms to make the class
of the activity more specific (e.g., < Activity1, rdf : type, Study Group) and
then uses the reasoner to check whether the ontology is consistent or not. If
not, the last axiom is removed.

In some scenarios it is possible that only a few SHERLOCK-enabled devices
share interesting and precise information and so the confidence computed for
them will be low (e.g., in our previous example only Jeff shares that the location
is Study room F and then the confidence computed is the lowest). However,
it is also possible that this low confidence is caused by wrong information
being shared. A variety of approaches could be followed to tackle this problem,
from conservative solutions (such as only use the context with the highest
confidence) to optimistic approaches (such as use all context that is not
inconsistent). The CU agent uses a semi-optimistic approach: use all context
that is not inconsistent and whose confidence is greater than a threshold value.
In Section B.3.3 we show the effect of each one of these approaches in our
experiments and the threshold that we computed for the results obtained.
Notice that this threshold could also be dynamically computed depending on
the type of context (e.g., location, activity, etc.) by using machine learning
techniques and even involving the user-in-the-loop as done by Kwapisz et
al. [KWM11].

5.2 Updating Ontology: Ontology Updater Agent

The Ontology Updater agent (OU) is in charge of keeping the knowledge on
the local ontology on the device updated. As stated before, OU agents from
different devices learn from their interactions as they exchange part of their
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local ontologies and data, integrating them in their local knowledge. In this
scenario, appropriate knowledge management is crucial in order to keep the
approach scalable (otherwise, a device would end up handling huge amounts of
information, which might even not related to the current context of the user).
For that, each OU agent performs the following tasks (see Figure 5.2):

Figure 5.2: Ontology Updater agent (OU) tasks.

• Knowledge Maintenance: The OU agent divides the knowledge into an
active and secondary knowledge to enable an efficient management of it.

• Knowledge Exchange: This task involves exchanging the active knowledge
with OU agents in other devices.

• Knowledge Integration: The knowledge received is integrated into the
local knowledge on the device by applying ontology alignment techniques.

In the following, we explain these three tasks.

5.2.1 Knowledge Maintenance

Instead of integrating all the knowledge in an ever-growing ontology (which
might lead to scalability problems when reasoning or querying it), the OU
keeps active just a module of the ontology which applies to the current user’s
context, while storing information that might be interesting in other contexts
in secondary modules. Thus, the size of the ontology which will be used during
the capturing of a user information need and its processing is minimized (local
reasoning on current mobile devices has been shown feasible for small and
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Figure 5.3: Steps involved in the management of knowledge.

medium ontologies in our experiments in Appendix A) whereas no knowledge
is forgotten.

As Figure 5.3 shows, whenever the CU agent informs the OU agent about
a significant change on the user context, the OU agent starts the process of
selecting the knowledge that might be of interest to the user. For that, it first
checks the current active ontology to obtain which part is still of interest (e.g.,
definitions of services which do not depend on the specific location of the user
and so mighty be always interesting for her), and which not. To extract such
knowledge, the OU agent uses ontology modularization techniques [SPS09]
exploiting the information about the current context obtained from the CU
agent (e.g., the new city where the user is). In parallel, the OU agent checks
the secondary ontology, where different modules labeled using the context (in
our case, the city) are, to find more interesting information. Afterward, the
interesting knowledge from the active and secondary ontologies are integrated
and becomes the new active module, whereas the rest is also integrated and
stored in the secondary ontology.

5.2.2 Knowledge Exchange

Whenever two SHERLOCK devices meet, their OU agents exchange knowledge
so both devices learn from the interaction, increasing the information that
a particular SHERLOCK device has about its environment. To restrict the
information exchanged, as in wireless environments the connection between
devices might be short, OU agents only exchange their active ontologies (i.e.,
the knowledge relevant to the user’s current context) and associated data.
This process is performed continuously, tracking the list of devices recently



Chapter 5. Knowledge Update 84

contacted to avoid exchanging the same information with the same devices all
over.

Note, as the CU agent does, OU agents also check the privacy preferences
of their users before exchanging knowledge in order to avoid disclosures. Fi-
nally, OU agents rely on a digital signature schema to enforce trust on the
exchanged pieces of knowledge: each OU agent checks the validity of the
signature/certificate of the user/company which defined each particular piece
of knowledge before integrating it (note that the knowledge definer might be
different from the knowledge exchanger).

5.2.3 Knowledge Integration

As we have seen in Chapter 4, SHERLOCK devices have a pre-shared ontology
which is extended by service definers in order to describe ontologically their
services and the terms needed to do so. While this predefined vocabulary is
useful to provide a base common knowledge model, the vocabulary extensions
made by different vendors are likely not to be completely aligned, even when
dealing with similar domains. For example, two different contributors might
define a service to find transports and a service to find taxis without explicitly
linking them, even though that the relation might be obvious. Therefore, when
receiving knowledge from other devices and before integrating them, the OU
agent has to align the exchanged schemas [ES+07].

In SHERLOCK, we advocate to combine different approaches in order to
extract synonym as well as subsumption relationships between terms (which is
strongly helped by the preshared vocabulary). There are many works in the
literature for the extraction of synonymy relationships [SE13] (e.g., to extract
that the concept A from ontology O1 and the concept B from ontology O2
are equivalent) but, in particular, we use the technique explained in [GA13] to
extract synonymy between concepts and roles from the two ontologies. This
technique compares each pair of terms by extracting their ontological context
and combining different elementary ontology matching techniques (e.g., lexical
distances and vector space modeling). As synonymy is a very strict relationship
that implies, in fact, that the two entities have the same meaning, we also
incorporate an alignment algorithm that we developed based on [GA13] for
extracting subsumption relationships between concepts (i.e., extracting that
the concept A from ontology O1 is more general than the term B from ontology
O2). In the following we detail our proposed algorithm.
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Discovering Subsumption Relationships

To integrate knowledge from other device into its local ontology, the OU
agent discovers subsumption relationships between the concepts in the two
ontologies1. For this, the OU agent uses the ontological context [GLdSMM07]
of the concepts. Given a concept C of an ontology O, we consider its ontological
context as 〈l, R, hypo, hype〉. Where the following features are considered:

• Label, which is the name of the concept.

• Roles, which, in our approach, is every role r such that O entails r has
domain C.

• Hyponyms, which are the concept names subsumed by C.

• Hypernyms, which are the concept names subsuming C.

Therefore, the goal of the OU agent is to discover the possible subsumption
relationships among the concepts of the ontologies using their ontological
contexts by considering Cs v CS , ∀ Cs ∈ O1, CS ∈ O2. For this, our approach
computes a subsumption degree d that indicates the confidence of the OU agent
on the existence of such a relationship as:

d = f(sub(ls, lS), sub(Rs, RS), sub(Rs, hypoS))

where the subsumption degree of the labels of the concepts (sub(ls, lS)), their
roles (sub(Rs, RS)), and potential co-hyponyms of Cs (sub(Rs, hypoS)) are
combined, and RO = {r ∈ Or|CO ∈ domain(r)} where Or is the set of
role names of the ontology O. Notice that some of the roles in Rs and RS
are inherited from the hypernyms of their concepts (i.e., if Cs v C ′ ∧ C ′ ∈
domain(r)→ Cs ∈ domain(r)). Also, some of the roles in these sets are not
explicitly asserted but inferred using a DL reasoner. Finally, a role r is “shared”
by the concepts Cs and CS if r ∈ Rs and r ∈ RS .

The set of all super & subconcepts of two concepts (i.e., their Semantic
Cotopy [MS02]) has been compared before to discover synonymy. In our
case, we do not directly compare these two sets as our focus is to extract
subsumptions relationships (e.g., the concept GradStudent from an ontology
can be a subconcept of Student from other ontology independently on how
similar are the subconcepts of both GradStudent and Student). Nevertheless,
we consider the roles that the concepts inherit from their superconcepts.

1In DL subsumption exists also among roles, however we only focus on subsumption
among concepts which is more common.
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We propose the following steps to discover subsumption relationships along
with their subsumption degree (see Figure 5.4):

PhDStudent

Teacher

MsCStudent

Student
Professor
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Co-HyponymsxAnalysis
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Figure 5.4: Main steps in our approach to extract subsumption relationships
from two source ontologies.

1. Shared roles extraction: First, the algorithm extracts RO1 = {r ∈
O1r|CO1 ∈ domain(r)} and RO2 = {r ∈ O2r|CO2 ∈ domain(r)}. For
that, it uses the DL reasoner to check whether the concept CO1 is a
subconcept of the domain of r. Then, the set of roles of the two concepts
are compared to extract the list of shared roles. Roles from different
ontologies can be slightly different even when representing the same entity
(e.g., the roles O1#StudiesAt and O2#StudentFrom). Therefore, we
should consider every possible combination of the roles of the concepts
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being analyzed as shared. To decrease the number of comparisons the
most probable pairs can be obtained by computing a similarity degree. In
our case, as explained before, we use the technique described in [GA13]
to compute a similarity degree between roles.

2. Subsumption relationships extraction: The subsumption degree among
the concepts extracted from each ontology is computed by using their
labels (and external sources of information), the set of similar roles from
the previous step, and potential co-hyponyms (see Section 5.2.3).

3. Subsumption relationships filtering: The less probable relationships ex-
tracted are filtered out using a dynamic threshold to return a mapping
file with the most probable subsumption relationships (see Section 5.2.3).

In the following we detail the previous steps.

Subsumption Relationships Extraction

The subsumption extraction method provides a measure, subsumption degree,
that indicates the confidence on the concept Cs from an ontology, being
subsumed by the concept CS from a different ontology, by considering Cs v
CS , ∀ Cs ∈ O1, CS ∈ O2. This method analyzes the ontological context of every
concept (i.e., label, roles, and hierarchical relationships with other concepts)
and so, it covers the major dimensions used in ontology matching according
to [ES+07]:

subsumptionDegree(Cs, CS) = wl ∗ dLabel(Cs, CS)+

wr ∗ dRoles(Cs, CS)+

wch ∗ dCohyp(Cs, CS)

(5.3)

where dLabel(Cs, CS), dRoles(Cs, CS), dCohyp(Cs, CS) obtain the subsump-
tion degree between the labels (Section 5.2.3), the roles (Section 5.2.3), and
the co-hyponyms (Section 5.2.3) of the concepts, respectively. Also, wl, wr,
and wch are some weights (relative importance) assigned to each factor with
wl + wr + wch = 1. Intuitively, the relative importance of wr has to be greater
than the others as it considers the semantic features associated with each con-
cept, which differentiate them. Although, the information about co-hyponyms
also contain semantic information about the concept, it cannot be used to
distinguish between the given concept and their co-hyponyms.
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Label Analysis

The names of the concepts can be used to obtain information about their
relationships from third-party lexical databases [BBCCGMMV00; SdM08].
However, sometimes concept names could not be found in these lexical databases
(e.g., in our running example the name PhDStudent does not appear in Wordnik,
the resource used in our experimental evaluation) so, we also compare the two
strings. Specifically, as a concept subsumed by another one should specialize
it by definition, these subsumed terms sometimes contain the name of their
subsumers (e.g., PhDStudent and Student, FullProfessor and Professor). In
this case, we compute the similarity string metric between the names of the
concepts [SSK05]. Otherwise, our approach does not compare the two strings
at all, as this could lead to false positives (e.g., Universe and University
look similar but there is not direct relationship between them). Finally, the
information obtained from the external sources and the string comparison
are weighted and added (intuitively, more importance should be given to the
former as, if available, provides more information than the latter).

Role Set Analysis

The roles of the concepts can be used to find “hints” related to the features
that every concept, Cs, subsumed by another concept, CS , presents:

Statement 1 Cs must have all the roles of CS since a concept inherits all
roles of its subsumer2.

Statement 2 Cs should have more roles than CS (i.e., it should be more
specialized).

In the ideal case, both statements should be followed; however, in a real scenario
different situations may happen:

Statement 3 As they belong to different ontologies, it is possible that Cs does
not have all the roles of CS although it is true that Cs v CS.

Statement 4 Some ontology roles are not characteristic enough to discover
the semantics of a concept (i.e., the domain of such roles contains all the
concepts in the ontology). So, we could even find concepts which do not have
any characteristic role (all its roles are inherited from top concepts in the
ontology).

2A concept “has” a role if the concept is in the domain of such a role, according to the
definition of the ontological context of a concept explained before.
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Given two concepts and their set of roles (shared or not) we can define
a formula that takes the previous statements into account to obtain their
subsumption degree. The graphical representation of the desired subsumption
degree with respect to the number of roles that the two concepts share, con-
sidering the number of roles of the subsumer concept, could be similar to the
graph in Figure 5.5.
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Figure 5.5: Subsumption degree (Y-axis) between two concepts, Cs and CS ,
depending on the number of roles of CS (denoted by the different curves) and
their shared roles (X-axis).

The important aspect of the graph in Figure 5.5 is not the specific values
shown (which simply correspond to our prototype) but that it models the
following generic rules that capture the existence of subsumption relationships:

Rule 1 The higher the percentage of roles of CS that Cs has, the greater the
subsumption degree.

According to Statement 1, a subsumed concept should inherit 100% of the
roles of its subsumers, although sometimes this percentage is less (Statement 3).
Consider C1

s and C2
s which share 40% and 80% of CS roles, respectively. The

subsumption degree computed for C2
s v CS should be greater than the degree
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computed for C1
s v CS . In Figure 5.5, notice that the function is increasing

for any number of roles.

Rule 2 The higher the number of shared roles, the greater the subsumption
degree.

For example, if C1
s shares one role with C1

S (suppose that is 50% of C1
S ’s

roles in this case) and C2
s shares six roles with C2

S (which is also 50%) the
probability of a subsumption relationship between C2

s and C2
S should be greater

than between C1
s and C1

S . I.e., according to the Duck Test: “If it looks like a
duck, swims like a duck, and quacks like a duck, then it probably is a duck.”;
however, if it only swims like a duck, the probability of being a duck is lower.
For example, in Figure 5.5, sharing 2/3 (two out of three) roles scores 0.52
while sharing 6/9 roles scores 0.64.

In the following we present three rules that detail Rule 2 in case of Cs
sharing all, none, and n of CS roles:

Rule 2.1 If Cs shares all the roles of CS (the ideal case according to Statement
1), the higher the number of roles CS has, the higher the subsumption degree
between them.

For example, if C1
s shares one role with C1

S (that is 100% as C1
S only has one

role) and C2
s shares six roles with C2

S (which is also 100% as C2
S has six roles),

then the probability of a subsumption relationship between C2
s and C2

S should
be greater than between C1

s and C1
S . Again, the Duck Test applies. In addition,

the difference between these maximum values cannot be linear according to the
number of CS roles as, for any number of roles, the subsumption degree function
should score between 0 and 1 always. Hence, the subsumption degree should
grow slower for a high number of shared roles as beyond a certain amount of
shared roles the subsumption degree should be close to 1. In Figure 5.5, notice
that beyond 7/7 the subsumption degree scores above 0.8 (we configured our
prototype to return high values when sharing at least 7 roles).

Rule 2.2 If Cs shares no role with CS (and this could happen according to
Statement 3), the higher the number of roles CS has, the lower the subsumption
degree between them.

For example, if C1
s shares no role with C1

S (C1
S has one role in this case)

and C2
s shares no role with C2

S (C2
S has six roles in this case) the probability of

a subsumption relationship between C2
s and C2

S should be lower than between
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C1
s and C1

S . According to what we could call the Opposite Duck Test: if it
does not look like a duck, does not swim like a duck, and does not quack like a
duck, then it probably is not a duck. However, if it only does not swim like a
duck, the probability of being a duck is higher. Also, subsumption degrees for
all these minimum values have to be lower than situations where Cs shares one
or more roles with CS , which is always better than not sharing any role at all.
In Figure 5.5, for example, 0/20 scores 0 and 0/1 scores 0.07; also, all these
minimal values are lower than any other value when the number of shared roles
is one or higher (which scores 0.08 and above).

Rule 2.3 If Cs shares n of the m roles of CS (0 < n < m), the higher the
number of shared roles, the greater the subsumption degree.

Intuitively, we could think that the number of non-shared roles, m − n,
could “neutralize” the number of shared roles. However, according to the spirit
of Rule 2, we believe that the greater number of shared roles, the more hints
of Cs being subsumed by CS . We could call it the Weak Duck Test: if it looks
like a duck and quacks like a duck, then it is probably a kind of duck, although
we are not sure that it swims like a duck. In other words, we advocate that
shared roles score more than what non-shared roles penalize the subsumption
degree. So, in Figure 5.5, 1/3 scores 0.3, 4/8 scores 0.5, and 13/20 scores 0.8;
i.e., the subsumption degree increases with increasing number of shared roles,
even when the number of non-shared roles (2, 4, and 7, respectively) increases
as well.

The number of characteristic roles of Cs that are not inherited from CS
(Statement 2) do not affect the graph: To determine whether Cs is subsumed
by CS or not only shared roles are taken into account. For example, if the
concept Person has four roles and the concept PhDStudent has these four
and five extra roles, the latter would be a subconcept of Person regardless
of its extra roles (the extra roles could, at most, indicate that PhDStudent
might be subsumed by another concept). Also, not all the roles should have
the same importance at the time of computing the subsumption degree. In
general, the more concepts share the role the less important it is for extracting
a subsumption relationship (Statement 4).

To model these rules, and so the trend described in Figure 5.5, we used a
logistic function that obtains the subsumption degree between Cs and CS :

dRoles(Cs, CS) = 2 ∗
(

1

1 + e−a∗f(Cs,CS)
− 0.5

)
(5.4)
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where the function f(Cs, CS) computes the subsumption degree between con-
cepts Cs and CS as:

f(Cs, CS) = wsh ∗
sh(Cs, CS)

|CS |
+ wdiff ∗

diff(Cs, CS)−min
max−min (5.5)

diff(Cs, CS) =
1

α
∗ sh(Cs, CS)− |CS | (5.6)

where Cs and CS represent their sets of roles and the two terms in Formula 5.5
are: 1) the percentage of CS ’s roles that Cs has (Rule 1), being sh(Cs, CS)
the number of shared roles and |CS | the number CS ’s roles; 2) the number of
CS ’s roles that Cs has (Rule 2) with respect to the rest of the ontology, being
diff(Cs, CS) the difference between the number of shared and non-shared
roles, α is a constant that models the importance of the number of shared and
non-shared roles, and max and min are the maximum and minimum number
of concepts that share the same role in the source ontology and are used to
normalize the term. Also, wsh and wdiff are used to adjust the importance
of the shared roles and non-shared roles, respectively (wsh should be greater
according to Rule 2.3).

In addition, a modifier is applied to each role when computing sh(Cs, CS)
that reduces the subsumption degree of concepts sharing very common roles in
the ontology:

uniqueness(r) = 1− k ∗
(

#domains

#maxDomains

)
(5.7)

being r a role of the concept C, #domains is the number of concepts in the
ontology that have the role, except C and the concepts subsumed by C, and
#maxDomains is the maximum number of concepts that may have r as part
of their definition. For example, imagine that an ontology has only three roles
r1, r2, and r3 which have 3, 10, and 5 concepts as their domains, respectively,
then #maxDomains = MAX(3, 10, 5).

Co-hyponyms Analysis

In general, two co-hyponyms concepts, Cs and Cs′ such that (Cs v CS) ∧
(Cs′ v CS), will share the roles of CS (remember Statement 1) but they
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could share other roles too, especially in the absence of intermediate con-
cepts in the ontology. For example, consider a “missing concept”3 Cm such
that (Cs′ v Cm) ∧ (Cs v Cm) ∧ (Cm v CS). In this scenario Cs and Cs′ will
share some roles that CS does not have, the roles inherited from Cm. For
example, consider O2#Full Professor and O2#Assistant Professor in Fig-
ure 2.2(b) where the concept Professor is missing; they share roles inherited
from O2#Person but also share roles that are common for professors. Thus,
the subsumption degree of a concept Associate Professor with respect to the
concept O2#Person should be increased as it shares roles with the latter and
with its potential co-hyponyms.

To compute the similarity of the concept Cs and the subsumed concepts of
CS , we compare the sets of roles of each subsumed concept, Ci, with the set of
roles of Cs individually. This measure is calculated by computing the average
between two terms: 1) the amount of roles shared by Cs and the subsumed
concept Ci, with respect to the number of roles of Cs, and 2) the amount of
roles shared with respect to the number of roles of Ci. Once the system has
the similarity degree for each subsumed concept then it calculates the average
similarity of all co-hyponyms.

dCohyp(Cs, CS) =

Ci∑
Cchilds

S

 sh(Cs,Ci)
|Cs| + sh(Cs,Ci)

|Ci|

2


∣∣CchildsS

∣∣ (5.8)

being CchildsS the set of subsumees of CS (i.e., the potential co-hyponyms of
Cs) and

∣∣CchildsS

∣∣ the number of elements in the set, Ci is the set of roles of the
concept Ci and |Ci| and |Cs| are the number of roles of Ci and Cs, respectively.

This measure can be interesting not only to help extracting subsumption
relationships between concepts of the ontologies, but also to detect missing
concepts. As commented before, a large number of shared roles between
two co-hyponyms could be a hint that indicates the existence of a missing
concept. For example, in the explained scenario as O1#MsCStudent and
O2#PhDStudent share some roles that are not inherited from O2#Student
we could detect a potential missing concept (e.g., GraduateStudent) not defined
in these ontologies.

3We consider that a concept that exists in real life but has not been defined in the ontology
is a missing concept.



Chapter 5. Knowledge Update 94

Subsumption Relationships Filtering

Our approach computes the subsumption degree among all the pairs of concepts
from the two ontologies (see Figure 5.6 for some of the results obtained for
our running example). However, there are three major groups of relationships
discovered according to their subsumption degree: 1) very probable as the
degree is high, 2) clearly unrelated concepts as the degree is very low, and
3) questionable relationships with a neither high nor low degree. Our approach
automatically discards those values that are not probable enough by using
three filters to:

Relationship dLabel dHypRoles dSimCohyp
Subsumption

degree

...

...

...

Automatic threshold for these ontologies = 0.503

O18PersonO28Student 0.75 0.750 0.472 0.624
O28PersonO18Professor 0.75 0.741 0.5 0.618

O18MsC_StudentO28Person 0.0 0.609 0.0 0.487

O28StudentO18Professor 0.0 0.635 0.0 0.508
O28StudentO18Person 0.0 0.635 0.0 0.508

O18PhD_StudentO28Person 0.0 0.581 0.0 0.465
O18PhD_StudentO28Full_Professor 0.0 0.581 0.0 0.465

0.0 0.609 0.0 0.487O18MsC_StudentO28Assistant_Professor

O18ArticleO28Magazine_Article 0.91 0.823 0.0 0.797

...

...

...

O28Magazine_ArticleO18Social_Group 0.0 0.087 0.0 0.069

Figure 5.6: Some of the subsumption degrees obtained for our running example.

• Discard subsumptions under a (dynamic) threshold. The trend of the
subsumption degrees computed depends on the ontology and thus, the
threshold to filter out less probable relationships should be dynamic.
For ontologies where most of the roles are shared by many concepts
the overall confidence value can be low although, some of the extracted
subsumptions can be correct. Instead of using a classifier that would
require training on the domain, we propose using a clustering algorithm
that automatically divides relationships into the three groups explained
before. In the example of Figure 5.6, the threshold obtained by the
k-means clustering algorithm in our prototype for the high-confidence
cluster is 0.503 and so, 462 out of 560 possible subsumption relationships
are filtered out (we detail the prototype and experiments performed in
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Section B.2).

• Select between hypernymy and hyponymy. Our approach obtains the
subsumption degree for all the possible combinations of concepts and
so, values for both Cs v CS and CS v Cs are computed. In addition, if
Thing is the domain of some of the roles, all the concepts inherit them
and thus, there will be always a nonzero subsumption degree among
them. Selecting both relationships, even when the degree of one of them
is low, will mean creating a synonymy relationship between the concepts4

and that is out of the scope of the approach as it is not trivial and would
require a further analysis. However, we do select both relationships when
the degree is exactly the same. Therefore, in other situations this filter
discards the relationship with the lower degree (e.g., in Figure 5.6 the
filter discards O1#Person v O2#Student).

• Discard redundant relationships. Some of the relationships extracted
could involve the same concept Cs, for example Cs v C1

S and Cs v C2
S ,

and they could be potentially redundant if C1
S v C2

S or C2
S v C1

S .
This filter selects the subsumption degree with the higher degree for a
given concept from all the potentially redundant relationships discovered.
For example, in Figure 5.6 O1#Professor v O2#Student is discarded
because O1#Professor v O2#Person has a higher subsumption de-
gree and O2#Student is subconcept of O2#Person (O2#Student v
O2#Person).

The final list of subsumption relationships discovered along with the original
axioms from the source ontologies is materialized to create an integrated
ontology. A challenge that should be addressed when integrating two ontologies
from different sources is to create a consistent ontology as a result (i.e., an
ontology which does not contain contradictory facts). Some definitions of
concepts can be contradictory so we advocate inserting the subsumption axioms
discovered one by one, in descending subsumption degree order, and using a
DL reasoner to check the consistency of the ontology after each insertion. If
the ontology is inconsistent the last inserted axiom should be removed before
inserting other axioms. Also, it would be useful to remove concepts which are
classified by the reasoner as unsatisfiable, which means that they are classified
as equivalent to Nothing and thus cannot have instances.

4In DLs, Cs ≡ CS ⇔ (Cs v CS) ∧ (CS v Cs).
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5.3 Related Work

In this section we present works related to the two main contributions of
this chapter: the discovery of subsumption relationships for the integration of
knowledge and the enrichment of the information about the context of the user
using the context of users around.

5.3.1 Works on Discovery of Subsumption Relationships

Ontology alignment systems aim to extract semantic relationships among
entities from different ontologies to obtain an integrated view of the ontolo-
gies [Sow99]. Many research works have focused on ontology alignment [SE13]
due to the growing use of ontologies as a formal specification for modeling
knowledge. However, most of the effort has been made in the alignment of
ontologies through the extraction of synonyms. Systems like CIDER [GA13]
and ASMOV [JMSK10] extract these synonymy relationships between pairs of
entities from two ontologies using their ontological context as in our approach.
There exist only few ontology alignment systems focused on the discovery of
subsumption relationships. From them, we comment in the following systems
that have a similar goal and use similar information to ours: MOMIS [BBC-
CGMMV00], SCARLET [SdM08], and CSR [SVV08]. Therefore, we do not
include here systems that base the extraction of subsumption relationships on
shared instances (such as [KLXWL05; TPRT11]) as our goal is the extraction
of the relationships at the schema level.

Both MOMIS and SCARLET are based on the use of Background knowl-
edge [SM06] about relationships already defined in other resources such as
ontologies or lexical databases. Given two concepts from two ontologies,
MOMIS [BBCCGMMV00] tries to find their semantic relationships looking
up their names in WordNet [RS07], and SCARLET [SdM08] tries to find this
information in other ontologies where the subsumption relationships have been
previously defined. In other words, the relationships that they find must exist
in third-party sources. Our approach also exploits some external sources to
compare the labels of concepts however, in addition we consider the ontological
context of the concepts in the input ontologies.

Classification-based learning of Subsumption Relations (CSR) [SVV08] is
an approach for knowledge integration which, similarly to ours, leverages the
information contained in the source ontologies to discover subsumption relation-
ships. This approach uses concepts’ features (roles and terms extracted from
labels, comments, and instances) that provide evidence for the subsumption re-
lationships among these concepts. CSR is based on the use of machine learning
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techniques, such as classifiers, and therefore, it needs a training phase which
exploits as training examples known subsumption and synonymy relationships
from each source ontology individually. However, not all the ontologies are
adequate for the training phase as noted by the authors. Our approach does
not use machine learning (and thus, do not require training), instead we present
some generic rules that capture the existence of subsumption relationships
between concepts.

5.3.2 Works on Context Enrichment

Context awareness is a very active field and so, there is an extensive literature
available [BDR07]. Context extraction, generating context information for
users by using their sensors or other information, has received great attention
in the field. The techniques proposed can be broadly classified into two: those
that rely on machine learning models to learn about features from sensor data
to predict the user context [LMLPCC10]; and those that define context using
ontologies and rules and use a reasoner to infer associations between sensor
data and user context [GWPZ04].

However, in this work we do not deal with context extraction from low
level data, as we rely on external context synthesizers for this task. Instead, we
focus on context enrichment by using information shared by others, which has
received less attention from the context-awareness community. Indeed, we use
P2P networks of devices sharing high level context information in a context
enrichment process. So, we want to mention first the recent work by Wibisono
et al. [WZL13] that also leverages P2P networks of devices in context-awareness
computing. In their approach, whose goal is different from ours, devices in a
specific location (e.g., a room) are used to detect the “situation” there (the
situation concept they use is similar to the activity concept used in this paper).
For that, they integrate their low-level sensor information and use machine
learning techniques to reason the most probable situation from the previously
defined list of situations for the room. In our approach, we consider high-level
context information shared by the devices and base our integration on semantic
techniques (ontologies and a semantic reasoner). In addition, we do not start
with a set of possible situations for a location and we also consider that more
than one could occur at the same time and the same place.

Cooperative Ambiance Monitoring Platform (CoMon) [LJMKHS12] also
uses participatory sensing of mobile users by allowing querying and sharing
of contexts of interest. The goal of CoMon is different from ours as it focuses
on potential energy savings from sharing of context and do not deal with
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inconsistencies in the context. Collaboration for achieving an application’s
goal was studied in [CTHH13]. However, their focus was only on location
based collaboration. In this paper we have demonstrated that in a small
group of devices one can generate collaborative and shared semantic contextual
information for a variety of contextual information pieces. Our system acts
like a cross-device middle ware capable of generating consistent and enriched
context information for multiple devices.

5.4 Summary of the Chapter

In this chapter, we have presented the agents in charge of keeping the knowledge
in a SHERLOCK device updated. We explained the Context Updater agent
(CU) whose main goal is to keep the user context information updated. We
focused on its ability to improve the user context information inferred locally
from the device’s sensors by leveraging the context of other devices/users around.
This technique is based on the exchange of the high-level context information,
which has been inferred by the context synthesizers on the device. With the
information received, the CUI agent creates an integrated context model by
detecting and resolving possible inconsistencies. Finally, the CU agent uses
the integrated context to enrich the information inferred for its user. Then, we
explained the Ontology Updater agent (OU) whose main goal is to update the
local ontology on the device by exchanging it with other devices. We detailed
the knowledge alignment task of the OU agent which performs the integration
of the knowledge received based on the extraction of subsumption relationships.
The technique presented compares the ontological context of the concepts in
the ontologies to integrate to discover such relationships. The OU agent utilizes
some generic rules to capture the existence of a subsumption relationship and
performs a filtering phase to discard the relationships discovered that are less
probable.
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Request Management

The main goal of SHERLOCK is to provide users with interesting services. By
selecting these services, users express their information needs in what we refer
to a user information request and the system is able to obtain such information
from different sources. Therefore, the most important part of the knowledge
exchanged among SHERLOCK devices, explained in the previous chapter, is
related to services. The system performs two steps to handle a user information
request (or simply user request): generating the formal request and processing
it. First, the system helps the user to select an appropriate service and to fill in
parameters associated with it. Then, the system generates the formal request
with this information, and processes it. Depending on the type of request, the
system deploys a network of mobile agents to find the information wherever it
is, executes a call to a third-party service, or invokes the service provided by
another SHERLOCK device.

6.1 Request Generation

A first step in order to fulfill the user information needs is to capture those needs
and formalize them into a request in order to avoid ambiguities. As explained in
Section 4.2.1, to provide SHERLOCK with enough expressivity and flexibility,
we have designed a SPARQL-like query language that is used by the system
making it possible to express semantic location and non-location based queries.
This language requires knowledge about SPARQL and SHERLOCK’s ontology,
so it might be too complicated to be used by non-advanced users. Therefore, our
approach helps users to define their interests, guiding them, and capturing their
requests (which might require building queries using SHERLOCK’s language).
To do so, the system relies on the User Request Manager agent (URM from

99
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now on) to guide users when defining their information needs. The URM agent
performs three main tasks (see Figure 6.1), summarized in the following:

1. Service Selection: The URM agent is in charge of obtaining the services
(based on a location or not) that are relevant for a user in a particular
situation. As we will see in the following, what relevant is comes defined
by the user’s input/interaction and context. The result of this task is a
list of services to be shown to the user for her to select one.

2. Parameter Provision: Given a service, the URM agent retrieves the
information needed to invoke it (its formal parameters) from the ontology,
and, if needed, handles the interaction with the user required to obtain
the actual values for the parameters. These values can be simple, such as
booleans and numbers, or complex, such as the specification of the type
of image to find, and the user can define which ones are more important
for her.

3. Service Handling : Given a service and a set of parameters with the
selected values, the URM agent generates the appropriate service re-
quest/invocation. This could mean calling the accessing mechanism of
the provider of such service, generating a formal query, or selecting an
execution plan for the service.

Figure 6.1: User Request Manager agent (URM) tasks.

This way, the user has not to be aware neither of the details of the query
language, nor the schema and available services. In the rest of the section, we
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detail these steps which are focused on the generation of the request whose
processing we will explain in Section 6.2.

6.1.1 Service Selection

Alfred captures a user interaction with SHERLOCK started by her selection
of an entity on the map (which can be a particular GPS coordinate that the
user is interested in1, or objects shown as the result of a previous or ongoing
request) or by her request of the list of available services by tapping on the
“Services” tab. Then, Alfred creates a new URM agent and starts its “Service
Selection” task with the information captured from the user (Figure 6.2 shows
the different steps of this task which begins with the information that the user
inputs and ends with a list of possible interesting services from which the user
can select one).

In the following, we detail the process of obtaining the list of relevant services
for the user’s input and context (through the “serviceSelection” method in
Algorithm 1). First, if the user showed interest on an entity, the URM has to
obtain services related to it. For that, the URM obtains services related to such
entity as well as to its class and superclasses. For example, if the user selected
the MoMa museum the URM will obtain services related to it but also to
Museum (because MoMa is-a Museum) and Tourist Building (because Museum
is-a Tourist Bulding). Also, the URM obtains services related to entities which
geographically contain the selected entity (e.g., New York contains the MoMa
museum). This extension is done to expand the list of possible interesting
services (lines 4 to 10 in Algorithm 1). If the user selected a coordinate (by just
tapping on a point of the map) the URM obtains services related to entities
which geographically contain the coordinate (e.g., if the user tapped on a point
of Central Park, the URM will obtain services related to Central Park and
New York. The URM agent uses the following query processed locally by the
KE agent to obtain such information:

SELECT ?entity, ?type, ?superClass

WHERE{

OD{

FILTER(geof:sfWithin(?entity,<selected entity>)),

OPTIONAL(StrictSubClassOf(?entity, ?superClass)),

OPTIONAL(Type(?entity,?type))

}

}

For each entity obtained before (e.g., New York, MoMa, museum) the URM
obtains all the services which are related to it. An additional context constraint

1It might be the current user’s location.
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Figure 6.2: Steps to obtain relevant services for a user.

is added to promote those services which are relevant to the current context of
the user. This is done by the URM agent through the following query:

SELECT ?nameService, ?property, ?context

WHERE{

OD{

Type(?service, sherlock:Service),
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Algorithm 1 serviceSelection(UInput)

Input: UInput is the kind of input provided by the user, if it is an entitySelection,
then it includes the selected entity and information about it to further query the
KE. The CU and ADUS agents are also available to the URM, to use context
information as well as handle user interaction.

Output: Obtains a list of services relevant for the user’s input and context.
1: serviceList ← ∅
2: entityConstraints ← ∅
3: ctxtOptionalConstraints ← CU.getUserCtxtConstraints()
4: if UInput.isEntitySelection() then
5: // the user can select an object or a location, first obtain locations and objects

which contain the selected entity
6: entityConstraints ← KE.getConstraints(UInput.entity)
7: if UInput.entity isA object then
8: entityConstraints ← UInput.entity // the user has selected an object
9: end if

10: end if
11: // the entity constraints are mandatory (if any), while context ones are just

optional
12: serviceList ← KE.queryActOntology(entityConstraints, ctxtOptionalConstraints)
13: // the list is ranked to promoting services related user’s context
14: rankAccordingContext(serviceList)
15: // ADUS shows the list of services and asks whether further services should be

retrieved
16: searchSecondary ← ADUS.showServiceListQuerying(serviceList)
17: if serviceList.empty() or searchSecondary then
18: serviceList.append(KE.querySecondaryModules(entityConstraints, ctxtOption-

alConstraints)
19: ADUS.showServiceList(serviceList) // ADUS shows the list of services
20: end if

CASE(PropertyValue(?service, ?property, <entity_i>),

SubPropertyOf(?property, sherlock:provides)),

CASE(PropertyValue(?service, ?property, <entity_i>),

SubPropertyOf(?property, sherlock:returns)),

CASE(PropertyValue(?service, ?property, <entity_i>),

SubPropertyOf(?property, sherlock:interestingFor)),

OPTIONAL(PropertyValue(?service, sherlock:interestingFor, ?context),

SameAs(?context,<userContext>))

},

PropertyValue(?service, sherlock:name, ?nameService)

}

Notice that this query is used for entities which are instances in the ontology
(e.g., New York and MoMa). For entities which are concepts (e.g., museum)
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the query would be similar but adapted using the “Range” and “Domain”
functions instead of the “PropertyValue” function.

The result of the previous query executed for each entity is a set of tu-
ples containing the entity, the service related to it, and the property that
links them (< entityi, service, property >). For example, if the selected en-
tity was the MoMa museum, < MoMa,BuyT icketMoMa, provides > and
< Museum,F indMuseums, returns > will be returned, among others. This
set is ranked (i.e., services related to the selected entity go first, services related
to its direct classes second, and so on) and passed to ADUS to generate an
interface to show a list of services. The user will select one of the services and
this information will be used in the next step.

6.1.2 Parameter Provision

The result of the previous interaction with the user is the selection of a family
of services (a subclass of the concept Service in the ontology) or a particular
service (an instance). For example, the user could select the family of “Find
Transportation” services or the specific “Find NY Transports” service (which
is the service provided by the local transport office in New York). In fact, a
user that wants to find transports regardless of the provider of this information
would use the former whereas a user that wants the information offered by a
specific provider would select the latter.

In the parameter provision step, firstly the URM obtains the parameters of
such selected services, if any. These parameters, which have been defined when
the service was modeled, are the formal parameters that the service requires
to be invoked or that can be used to restrict the information returned by the
service. Thus, depending on the selected entity, the URM obtains the set of
parameters to be fulfilled as follows:

• Service family : The user has selected a family of services that share a set
of formal parameters needed and a set of returned objects. We will denote
such a family of services as SServ. The URM consults the ontology to
obtain all the constraints of the type SServ v parameter :?x, which
define the minimum set of parameters that such a service has to receive.
The result is a set {fp1, . . . , fpn} of parameters that are applicable to
that service.

• Particular service: The user has selected a particular instance of ser-
vice. In this case, firstly, the URM consults the service family which
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such an instance belongs to. Then, the URM obtains all the parame-
ters that correspond to this family of services (as in the previous item)
as the instance inherits them. Finally, as this service might have ex-
tra or constant value parameters, the URM extends (and overrides)
the previous result set {fp1, . . . , fpn} with the parameters applicable
to such a particular instance obtained by consulting the Service ontol-
ogy via parameter property. This would be retrieved using the clause
PropertyV alue(< serviceSelected >, parameter, ?ip).

In both cases, the result is a set of parameters which have to be assigned
a value to in order to be able to invoke the service or to filter its results out.
The parameters that have a predefined value are not required from the user
and are automatically filled for the final request. For the rest, to obtain the
actual values of the parameters, the URM relies on ADUS and Alfred. Each
parameter comes along with information about their expected value to be
entered (e.g., a location, a boolean, or even an instance of a concept defined in
the ontology).

Notice that there are three types of “parameters” shown to the user: 1) pa-
rameters defined in the ontology through the parameter property; 2) location
for LBS; and 3) provider in the case of services provided by several providers.
A service might not have any parameter at all, although typically services will
have parameters of the first type used to filter out the information returned.
LBS will need, by definition, a location which might have to be requested to
the user. Finally, external services (e.g., provided by SHERLOCK objects as
explained in Section 4.1.2) might need the user to select the specific provider.
For example, if the user selected the external service provided by SHERLOCK
taxis to “pick her up”, she will have to select the specific taxi (or any or even
all as explained before).

6.1.3 Service Handling

With the service which the user selected (remember that the user could select a
particular service or a family of services) and the values that the user introduced
for the parameters associated with such service, the goal of this task is to
decide how to execute it. Depending on the type of service a different process
has to be followed (see Algorithm 2):

Lines 3-5 If the service contains an execution plan (modeled through the execute
property in the ontology as we explained in Section 4.1.2), the URM
creates an User Request Processor agent (URP) to execute the plan,
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Algorithm 2 serviceHandling({service}, {< parameter, value >})
Input: {service} is a set of services selected by the user, {< parameter, value >} is

a set of tuples containing a parameter and the value selected by the user.
1: for each service in {service} do
2: // the user could have selected more than one service
3: if service.execute!=null then
4: // create a new URP to execute the service plan
5: URP.execute(service.execute,{< parameter, value >})
6: else
7: if service.call!=null then
8: // create a new URP agent to handle the call
9: URPi.call(service.call,{< parameter, value >})

10: else
11: // the service is considered to be a search service
12: formalQuery ← GenerateFormalQuery(service, {< parameter, value >})
13: URP.execute(formalQuery)
14: end if
15: end if
16: end for

which will in turn create a URM agent to handle each of the different
services involved in such a plan.

Lines 7-8 If the service is provided by a SHERLOCK controlled object (e.g., a
specific taxi or camera or even an external web service) or a third party
provider, there is an access mechanism defined (modeled through the call
property in the ontology), then URM creates a URP to call the service.

Lines 10-14 Finally, if there is neither an execution plan attached to the service nor
a call mechanism defined, then the URM translates the request into a
query expressed in SHERLOCK’s language and then creates a URP to
execute it.

The generation of a formal query for a search service with its associated
parameters and values is shown in Algorithm 3:

Lines 1-18 First, the URM translates the definition of target object(s), the entities
that the service returns, by including: (Lines 2-9) 1) the specific target(s)
of such service modeled in the local ontology, and the ontological definition
of the target of such service (remember that different SHERLOCK devices
could have different information in their local ontologies and thus, the
ontological definition might be needed to understand the request); and
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Algorithm 3 GenerateFormalQuery(service, {< parameter, value >})
Input: service is a SHERLOCK service and {< parameter, value >} is a set of

tuples containing a parameter and the value selected by the user each.
Output: Generates a formal query expressing the user request in SHERLOCK’s

language
1: query ← “SELECT ?resultObj”
2: // Generate the Target Object Definition part of the query
3: ODpart ← “OD {”
4: // Add the object(s) returned by the service, as defined in the ontology
5: for each target in service.{target} do
6: ODpart ← “CASE( Type(?resultObj,target)),”
7: end for
8: // Add the definition of object returned by the service
9: ODpart ← “CASE( PropertyValue(sherlock:service,sherlock:returns,?resultObj)),”

10: // Add the constraints defined by the user
11: for each < parameter, value > in {< parameter, value >} do
12: //The property that links the object to the parameter could be unknown
13: ODpart ← “OPTIONAL( PropertyValue(?resultObj,?propertyi,?parami),
14: PropertyValue(?parami, propNamei, parameter.name),
15: PropertyValue(?parami, propV aluei, value))”
16: end for
17: ODpart ← ‘}”
18: //Generate the Location of Interest Definition
19: LIpart ← ∅
20: for each loc in {< parameter, value >} do
21: LIpart ← “WHERE{ LI{FILTER(geof:sfWithin(?resultObj,”
22: if loc.distance!=null then
23: // the user defined and area with a buffer
24: LIpart ← “geof:buffer(loc,loc.distance.value,loc.distance.unit)))}”
25: else
26: LIpart ← “loc))”
27: end if
28: // Include the Target Object Definition in the WHERE
29: LIpart ← “ODpart }”
30: if more locations remaining then
31: LIpart ← “, OR ”
32: end if
33: end for
34: //Include the rest of the content in the query
35: query ← LIpart
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(Lines 10-17) 2) constraints to fulfill the parameters and values that the
user selected (which are included as optional to maximize the chances of
obtaining results for the user even if they do not fulfill completely her
demands).

Lines 19-34 Then, the URM translates the definition of the location of interest using
the special location parameters included by the user, in the case of a
LBS. As explained in Section 4.2.1, a WHERE clause is generated for each
different location selected by the user or modeled in the service definition
and the previous definition of the target objects are included in them.

The next step is to process the user request which might be: 1) a SHER-
LOCK query, 2) a call to an external service provided by an external source,
or 3) an execution plan of a composed service. We detail the processing of a
user request by the User Request Processor agent in the next section.

6.2 Request Processing

In this section, we detail the tasks carried out by the User Request Processor
agent (URP from now on) introduced in the previous section. In particular, we
explain how a URP agent deals with the three different types of user requests.

As we have seen in the previous section, a URM agent creates a URP agent
to delegate the management of three different types of requests (see Figure 6.3),
namely:

1. Processing of a SHERLOCK query against the local knowledge on the
device and external sources.

2. Invocation of external services including services provided by third party
providers external to the system and SHERLOCK objects.

3. Execution of service plans composed of a workflow of atomic services.

The rest of the section is dedicated to explain the processing of each of
these three types of user requests. First, we will introduce the processing
of SHERLOCK queries which involves the creation of a network of mobile
agents which find the information wherever it is (we will detail this process
in Chapter 7). Second, we will explain how SHERLOCK processes simpler
requests involving the invocation of external services or execution plans.
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Figure 6.3: User Request Processor tasks.

6.2.1 Processing of SHERLOCK Queries

When it comes to processing a SHERLOCK query, the URP is able to consider
three different sources (i.e., the device’s local knowledge, the known third-party
services, and the network of SHERLOCK devices) to maximize the chances of
retrieving a valid answer. To do so, the URP follows the flow diagram shown
in Figure 6.4:

• Querying the Local Ontology : First, the URP executes the query against
the local ontology on the device (through the Knowledge Endpoint agent)
to try to answer it with the already gathered knowledge. Apart from
retrieving the data that comprise the possible answer, the URP also
needs to check their temporal validity as they might not be up to date.
This checking is done using the timestamps associated to the data, and
what is valid differs depending on the properties of queried properties
and the result2. For example, if the result has been defined as static
in the ontology (e.g., the location of the MoMa museum in New York),
the gathered information is probably still valid; while if the result is
more dynamic, (e.g., the position of available taxis around the user),
the gathered information has to be quickly considered out of date, and
therefore, not valid.

2In our ongoing prototype, the temporal threshold is a fixed number, but more sophisticated
approaches might be applied.
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Figure 6.4: Flow diagram of the execution of a SHERLOCK query.

• Querying Third-Party Sources : If the local ontology does not contain any
result or the results are outdated, the URP tries to get this information
from external sources. SHERLOCK’s next option is to use external third-
party services which are capable of obtaining the requested information.
Thus, the URP searches services in the local ontology which belong to
the same service family and thus, return similar information (i.e., the
information returned has the same type than the information returned
by the family). This is done using the following query with the service
selected by the user:

SELECT ?service, ?provider
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WHERE{

OD{

Type(?service, <selected service>),

PropertyValue(?service, provider, ?provider),

Type(?provider, ThirdParty)

}

}

Note that this step is performed only if the user selected an atomic
service which involves a SHERLOCK query in the first place. If the user
posed a query directly to the system, trying to find external services
to fulfill the user requirements might not be trivial3. Therefore, in our
current approach, this step is not supported for queries posed directly to
SHERLOCK.

If the service search is successful (i.e., SHERLOCK knows about services
in the same family as the user’s selected one), the URP executes the
service(s) obtained one by one until it gets results back. For that, a
URM is created to handle each service. As in the previous case, the URP
checks the validity of the results returned by the third party service.

• Querying SHERLOCK devices: Finally, if the information could not be
obtained from the local ontology nor external sources, the URP has a last
mechanism to obtain results: deploying a network of mobile agents which
will try to find the information from other SHERLOCK-enabled devices.
For that, the URP creates helping agents which autonomously move
toward the sources of information defined in the query. These agents are
able to monitor an area associated with a request, if any, and find devices
in it to communicate with them. Through this communication, agents
execute the query against the devices’ knowledge, and can even deduce
extensions of the request and ask them to execute the extended service.

Querying other SHERLOCK devices is a complex task which we detail,
including the creation and maintenance of the network of mobile agents, as
well as the tasks performed by each agent in it, in the following chapter (see
Chapter 7). In the following section, we explain how SHERLOCK queries
external sources and deals with requests defined as a plan of services.

3We do not aim at addressing the problem of service equivalence and matching, which
has been thoroughly studied in the literature.
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6.2.2 Invocation of External Services

How SHERLOCK processes a service invocation comes determined by its
provider. Innerly, the system distinguishes two different types of service
invocations: 1) invocation of services provided by entities which are outside
SHERLOCK itself (we call such services third party services as they are not
executed within SHERLOCK devices), and 2) invocation of services provided
by devices that have SHERLOCK installed on them (see Section 4.1.2 for
examples of such services). They are defined by the accessing mechanism
included using the call property of each service, and the differences in the
nature of the providers make the system handle them differently.

• Third Party Services: The access information is codified within the
value of the call property, and it is dependent on the different APIs
that external services might expose. In the current prototype, REST
Web Services can be accessed by adding a parameterized URL to the
ontology where SHERLOCK includes the actual parameter values. Also,
SPARQL queries are admitted in our current implementation against
third party knowledge bases where SHERLOCK fills in the values that
the user selected. Notice that these services can be continuously invoked
if they have been defined as continuous in the ontology.

In the presence of connectivity issues, the URP agent follows a best-effort
policy to be able to invoke the defined service. Thus, it is able to create
and send Remote Request Execution agents (RREs) to SHERLOCK
devices in its range looking for someone with connectivity and willing
to provide access to such a service. These RRE agents will move to
appropriate devices autonomously (as we will explain in Chapter 7) and
go on communicating the retrieved results to its associated URP until
the request lifetime is expired (or canceled).

• SHERLOCK Device Services: They are to be invoked at the target
devices, which are the actual ones that expose the services on behalf of
the objects. To define such services, the call property adopts special
URIs:

sherlock : // < instance name > / < service name >
[′?′[ParamName : ParamV alue]+]?

where < instance name > is the identifier of the object which is being
invoked, < service name > is the name of the service being invoked,
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and [ParamName : ParamV alue] are the parameters to be passed
to such a service. In this case, if the SHERLOCK device has direct
connectivity with the target device, the invocation is similar to the
previous case. However, if it does not, as the URP is trying to contact a
known SHERLOCK device the agent platform will take care of delivering
the message as this is one of the main tasks of an agent platform.

Invoking services provided by SHERLOCK objects/devices might require
of an interaction with the owner of the device. For example, a service to
take a picture provided by devices equipped with cameras might require
the user to point the camera in a certain direction and then click the
photo. This interaction is modeled in the ontology and to fulfill it the
URP creates a Human Interaction Manager agent (HIM). HIM agents
are mobile agents that move to a device carrying the specification of the
different interfaces that the ADUS agent on the user device will show
to the user. After getting the information from the user, a HIM agent
communicates it to its corresponding URP agent.

6.2.3 Execution of Service Plans

The URP is also able to orchestrate a service plan involving one or more atomic
services (which can be SHERLOCK queries or invocations of external services).
To handle this kind of requests, the URP checks the execution plan of the
service modeled in the ontology. This plan is an XPDL specification which is
processed with the help of a BPMN workflow module. During its execution,
the URP creates URM agents to handle each atomic service, as each atomic
service might require further information from the user.

In Figure 6.5, we can see an example of an execution plan S where URMs

created URPs to process it. Let’s imagine that this plan represents a service
to alert the firefighters and volunteers suppressing a wild fire about a possible
danger. The execution plan would involve to find all the firefighters and
volunteers, and then invoking the service to alert each of them:

• The execution plan demands the execution of atomic services S1 and S2
in parallel, as defined in the BPMN workflow attached. Therefore, URPs
creates URM1 and URM2 to execute these services, respectively.

• After generating the request (which might involve user interaction), each
URM creates a new URP to handle the service (i.e., URP1 and URP2

are created).
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Figure 6.5: Sequence diagram of the execution of a service plan.

• The newly created URP agents process their requests and communicate
the results up in the hierarchy to reach URPS which is in charge of the
execution plan.

• Finally, after getting the results from URM1 and URM2, URPs creates
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a new URM to execute the last sequential service in the plan, S3.

6.3 Related Work

SHERLOCK’s main goal is to provide users with multiple services, based on
their context, helping them to express their information needs and keeping the
knowledge about available services updated. Up to the authors’ knowledge,
no other work has proposed a general and flexible system based on semantics
to capture user information needs and process them against different sources.
Therefore, we will provide an overview of contributions to some specific research
areas related to our proposal. First, we present works focused on providing LBS,
which SHERLOCK offers too. Then, we present Service-Oriented Architectures,
which are focused on providing services, which are similar to the concept of
external services in SHERLOCK.

6.3.1 Location-Based Services

Location-Based Services (LBS) have been defined before as “services that inte-
grate a mobile device’s location or position with other information so as to pro-
vide added value to a user” [SV04]. There are plenty of applications in the litera-
ture to provide users with specific location-based services [RGKR07]. For exam-
ple, taxi searching [SCC10], helping firefighting [JCHWTL04], detecting nearby
friends [AEMPW07], or multimedia retrieval in sport events [IMIYLM12],
among many others. Also, there are some proposals of architectures to provide
LBS. For example, in [BMJ07] an architecture to support LBS applications is
presented. The Base Stations (BS) serving cells in a cellular network contain a
geolocation server and database that gathers information about mobile devices
in the area and their requests. This way, when a mobile device connects with
a BS and executes a service registered in the local registry, the server can
execute the service using the information in the database and return the result
to the mobile device. In [DA11] a LBS system is presented with a similar
decentralized architecture. In this system, a local registry is placed in each
cell of the cellular network system which enables providers to register their
services. The system running on each Base Transceiver Station (BTS) which
serves a specific cell broadcast the information from its local registry to devices
connected to the BTS. Then, mobile devices can execute a call to specific
services. The main difference between these approaches and SHERLOCK is
that their decentralized architecture is based on a set of BS which maintain
information about objects and services in their cell whereas SHERLOCK do
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not assume the existence of a fixed infrastructure. Also, in this approaches
the mobile devices relies on the BS for the execution of the service whereas in
our approach the device itself handles it. Finally, SHERLOCK also helps the
user to express her information needs and integrates new information about
services using semantic techniques for interoperability.

6.3.2 Service-Oriented Architectures

Context-aware frameworks simplify the development of context-aware appli-
cations/services (see [BDR07] for a survey on context-aware systems). For
example, the Service-Oriented Context-Aware Middleware (SOCAM) architec-
ture [GPZ04] supports the building of context-aware mobile services. SOCAM
is based on a centralized server which gathers context data from context
providers and offers it to clients. Context-aware services can be built by defin-
ing rules which specify under which circumstances an action has be performed.
SOCAM uses a set of OWL ontologies for modeling the context information
that context-aware services can use.

6.4 Summary of the Chapter

In this chapter, we presented the handling of user information requests by
SHERLOCK. First, we focused on the translation of the user information
needs into a formal request. In this step, we explained how the system obtains
services that might be interesting for the user regarding her input (e.g., the
selection of a location or an object) and her context. Then, we showed how the
system helps the user to fill in parameters associated to the selected service
that will be used as constraints over the information to obtain. Finally, we
explained how the system generates the appropriate service request/invocation
which might involve the generation of a formal query in the case of, for example,
location-based queries. After the generation of the request, we explained the
steps involved in its processing. We showed how the User Request Processor
agent handles the different types of requests supported by SHERLOCK. Thus,
for the processing of SHERLOCK queries, we introduced our approach to
try to obtain results from different sources including the local knowledge on
the device, third-party sources, and finally other SHERLOCK devices. We
also explained how the system processes requests which involve the invocation
of external services provided by third-parties (e.g., web services) or even by
SHERLOCK devices (e.g., a service to take a picture), and the execution of a
service plan composed of one or more atomic services.



Chapter 7

Processing of SHERLOCK
Queries

When processing a user request in the form of a SHERLOCK query (see
Section 4.1.2) the URP agent executes it against the local knowledge on the
device and external third-party sources as explained in the previous section.
In the event of not obtaining information from such sources the URP tries to
obtain the information from other SHERLOCK-enabled devices. This implies
finding devices around the user or in a location of interest (depending on
whether the query is based on a location or not) and executing the query
against their local ontologies. For this task the URP delegates in a network of
mobile agents, which are programs that execute in contexts called places and
can autonomously travel among devices in the scenario resuming their execution
on the destination. Considering any device in the scenario as a potential place
where an agent can execute their code has many benefits as explained in [LO99].
This adaptive behavior of the hierarchical mobile agent network deployed by
a URP, where each mobile agent executes on the device that minimizes the
computing and communication delays while trying to accomplish its goals, is
specially important in highly-dynamic environments where new devices can
appear/disappear or change their capabilities (e.g., a laptop can use Wi-Fi and
then change to a wired connection).

The URP agent, which is in charge of processing the query, obtaining results,
and sending them back to its URM agent, creates two types of mobile agent
networks to help it regarding the type of query to process (see Figure 7.1):

• Non-location-based queries: RRE agents are created by a URP agent on
devices in communication range to execute the query against the local

117
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Figure 7.1: Mobile agents to process a user query and obtain results.

ontology of such devices, recursively if needed (RRE agents move from
there to other near devices).

• Location-based queries: Tracker agents are created by a URP agent
to monitor locations of interest for the query. These Trackers move
toward the location of interest, jumping from device to device, and once
there, they create Updater agents on devices in range with devices in
the location of interest. Updater agents continuously execute the query
against devices in their communication range, if needed, and obtain
results that communicate to their Trackers.
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In the following sections we detail the tasks1 assigned to each agent to fulfill
their goals.

7.1 User Request Processor Agent: Coordinating
the Network of Agents

In addition to the tasks presented in the previous section, the URP agent
performs the following tasks when processing a SHERLOCK query against
other devices (see Figure 7.2):

Figure 7.2: User Request Processor tasks.

1. Creation and Maintenance of a Helping Agent Network : As mentioned
before the URP creates RRE agents for queries which are not related to
a location and a more complex network of Tracker agents for location-
dependent queries.

2. Results Correlation: The information returned by the helping agents has
to be correlated in order to detect redundant information.

3. Movement Evaluation: The URP evaluates whether other devices in
range provide better features to execute its tasks.

In the following sections we details the previous tasks.

1The tasks are ordered according to their importance.
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7.1.1 Creation of a Network of Helping Agents

There are two types of queries processed by the URP agent: location-based
queries and queries without an explicit location. In the following we explain
how the network of helping agents is deployed to process each type of query.

Executing queries without a location of interest In queries where there
is not a explicit location of interest defined (e.g., “What is the age of Barack
Obama?”) there is no evidence of which device could contain the information
that the user needs. Therefore, we advocate to ask devices in range. So, the
URP creates RRE agents in devices in range with the user’s device to execute
the query against their ontologies:

1. The URP accesses the local knowledge about devices around maintained
by the CU agent. In a greedy fashion, the URP agent creates an RRE
agent on each of these devices and assigns them a deadline to obtain the
results. Notice that, the URP limits the number of active agents it can
handle to avoid creating a very extended network of RRE agents.

2. Once the RRE agents are created on the devices around the URP, they
execute the query against their local ontologies by communicating with
their local KE agents. Then, each RRE agent returns the results obtained
to its URP by the given deadline (we will explain how the deadlines are
assigned in the following section).

3. Finally, if the results obtained by the network of RRE agents are not
enough, the URP can ask RRE agents to move to other devices. For this,
the URP obtains the list of devices in range with the devices considered
previously. Then, the URP asks each RRE to move to a discovered device
and creates new RRE agents if there are more new devices discovered than
existing RRE agents (taking into account the limit mentioned before).

Executing location-dependent queries As location-dependent queries
are related to a target location, it would be more probable that devices nearby
such a target location have the requested information. Therefore, the URP
executes the query against devices near such location with the help of Tracker
agents which will monitor the location(s) of interest defined in the LI (Location
of Interest definition) part(s) of the query. Therefore, the first step is to obtain
information about the coordinates of such a location of interest so Trackers
could be sent there (see Algorithm 4), if possible.
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A location-dependent query might contain more than one location of interest
as explained in Section 4.2.1. Therefore, for each WHERE and for each LI clause
the URP obtains its coordinates so a Tracker agent can be sent there for its
monitoring. The URP obtains this information as follows:

• Executing a query against the local ontology which could contain the
information (Lines 4–6 in Algorithm 4).

• If the local ontology does not contain the information, creating a URM
agent to obtain the information from other sources (Lines 7–11 in Algo-
rithm 4).

• If neither the local ontology nor other sources contain the information,
processing the query as non location-dependent (Lines 12–15 in Algo-
rithm 4).

Algorithm 4 Algorithm followed by a URP agent to create Trackers to monitor
the location(s) of interest of a query.

Input: QueryArea is the query to process.
1: // A query can have more than one location of interest
2: for each WHERE in QueryArea do
3: for each LI in WHERE do
4: // Execute a query against the local ontology to find its coordinates
5: QueryLIi=extractQueryLI(QueryArea, LIi)
6: coordinates = KE.obtainCoordinates(QueryLIi)
7: if coordinates==null then
8: // The coordinates are not in the local ontology
9: // Create a URM to find the coordinates in other sources

10: coordinates=URMi.executeQuery(QueryLIi)
11: end if
12: if coordinates==null then
13: // The URM could not find the coordinates
14: // Process the query as a non location-based query
15: createRREs(QueryLIi)
16: else
17: // The coordinates could be found
18: // Create Tracker to monitor the area
19: createTracker(coordinates,QueryLIi)
20: end if
21: end for
22: end for
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First, to obtain the coordinates of a location of interest from the local
ontology the URP executes a query against the local knowledge through the
KE agent. If no coordinates are obtained for the location of interest from the
local ontology, the URP tries to obtain them from other sources. For this
task, SHERLOCK uses itself so the URP creates a new URM agent in charge
of processing the previous request against other devices. After this step it
could happen that the coordinates are not yet found after trying other external
sources, then the last option of the URP is to execute the query as if it was
a non location-dependent query using RRE agents as explained before. This
could mean that no results for the query might be found as it less probable that
devices around the URP would have the requested information. Nevertheless,
queries are reevaluated continuously, until the user cancels them, which means
that in a next iteration the URP might obtain the coordinates from one of
the sources. In this case, a Tracker will be sent to the location and the RRE
agents will be destroyed.

If the coordinates of the location of interest are found, then the URP
creates a Tracker to monitor such location and provides it with the coordinates,
as well as the query to execute against devices in such location. It might
happen that the coordinates of the location of interest are outdated (e.g., if
the area changes if it is associated to a moving object). Again, as queries are
reevaluated continuously, if a new location is found by the URP in a iteration of
the execution, it communicates the new location to the Tracker so it can change
its destination. In addition, a Tracker might find the interesting information
near to the last known coordinates of the location of interest.

7.1.2 Maintenance of the Network of Helping Agents

The URP agent uses the autosynchronization technique explained in [IMI08] for
establishing deadlines for its helping agents (RREs or Trackers). This technique
enables agents to assign deadlines to their helping agents which, in the case of
continuous queries that have to be reevaluated, are dynamically adapted to
the current situation by taking into account the delays experienced by their
cooperative agents and the environmental delays (e.g., network delays). The
autosynchronization technique ensures that the agents will return information
at the frequency requested and in situations where this is not possible due to
challenging environmental conditions, the technique offers several approaches
to deal with it regarding the status of the agents. The details of this process
can be found at [IMI08]. Also, when creating a helping agent, a time to live is
assigned to ensure that in the case of losing the connection with it for a long
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time the agent will destroy itself.

When managing a network of agents to process a location-based query,
it might happen that a Tracker could be overwhelmed trying to fulfill its
task. This can happen in scenarios where the location of interest to cover is
too large or heavily populated with SHERLOCK devices. Therefore, such a
Tracker agent might not be enough to correlate the information obtained by
its helping agents and start missing deadlines assigned by the URP agent. In
these situations, if the URP detects that a Tracker is overwhelmed (e.g., if the
Tracker is not achieving its assigned deadlines), it will create a new Tracker to
help it and divide the area into two parts. The URP will modify the target
destination of the existing Tracker (a centroid of one of the new subareas).
Also, the URP can destroy Trackers if they are not needed anymore (e.g., if
they are obtaining only redundant information).

7.1.3 Results Correlation

The URP correlates the results obtained by its helping agents as they might
obtain the same information from different devices. In the correlation process,
the URP detects this redundant information obtained by more than one
helping agent and discards the information that might be outdated using the
timestamp associated with it. We consider that devices share real information
about objects and therefore, in the case of receiving the information about
the same object, all the information obtained is valid although some (or even
all) could be outdated due to the dynamically changing scenario. Also, in the
correlation process an agent can discard information retrieved by its helping
agents according to its similarity with the expected result. For example, if the
user wants to get a limited set of results (e.g., five pictures which fulfill certain
parameters) the URP can filter out these results that are more similar to the
expected result before sending them back to its URM agent.

7.1.4 Movement Evaluation

As all the mobile agents in SHERLOCK, a URP agent locates itself in the
best device possible to perform its goals, among the different possibilities in
range. For that, it considers other devices as possible execution places following
Algorithm 5:

1. The URP obtains the list of devices that can be communicated by the
device it is residing in. This is done by executing a query against the
local ontology of the devices (lines 2–3 in Algorithm 5).
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Algorithm 5 Algorithm to evaluate if moving to other device is needed
Input: TargetLocation is the target location and currentDevice is the device where

the agent is executing currently.
1: while alive do
2: // obtain the list of devices in communication with the host
3: devicesComm ← KEcurrentdevice.obtainDevicesAround(TargetArea)
4: candidateMovement=currentDevice
5: candidateDestDegree=computeDestDegree(currentDevice)
6: for each device in {devicesComm} do
7: // check if moving to the device is interesting
8: destDegree ← computeDestDegree(device)
9: if destDegree > candidateDestDegree then

10: candidateDestDegree=destDegree
11: candidateMovement=device
12: end if
13: end for
14: // move if needed
15: if candidateMovement!=currentDevice then
16: move(candidateMovement)
17: end if
18: end while

2. For each device the URP computes a “destination degree” which mod-
els the appropriateness of the device for the URP goals (lines 4–13 in
Algorithm 5).

3. If any device is more appropriate than the device where the URP is
currently residing in, it moves there (lines 14–17 in Algorithm 5). If
the communication with that device is not possible then the next most
interesting device will be considered (in the worst scenario the URP will
not move to any device in this iteration but this process is performed
continuously).

Regarding the method to compute the destination degree, the URP considers
the following parameters of the device:

1. Current available resources of the device: Powerful devices are preferred
for most of the tasks (such as correlation of results) but the current load
(e.g., in terms of available CPU, memory, and battery) is an important
factor to take into account. As the capabilities of a device (e.g., pro-
cessor load, remaining battery time, communication range, etc.) will
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be considered when choosing a destination, fixed devices with wired
communication will be preferred if available.

2. Agent-specific goals: In the case of the URP it has to maintain itself as
close to the device that posed the query as possible to communicate it
the results obtained.

The movement formula in our prototype obtains a value that models the
appropriateness “destination degree” of a device by taking into account these
two parameters and assigning them a weight (relative importance attached):

Dest(d) = wc ∗Destfeatures(d) + wg ∗Destgoals(d) (7.1)

where Destfeatures(d) represents the first parameter and takes into account
the current features of the device as follows:

Destfeatures(d) = wperf ∗dperf +wCPU ∗dCPU +wmem∗dmem+wbattery ∗dbattery

where dperf represents the performance of the device according to a benchmark
(such as, for example, Antutu or Passmark), dCPU represent the load of the
processor(s), dmem the available memory in MB, and dbattery the remaining
battery as a measure of time left. Also, each factor has a weight, wperf , wCPU ,
wmem, and wbattery (with wperf + wCPU + wmem + wbattery = 1), which can be
modified depending on the situation (e.g., if the agent needs more CPU for
a complex operation). Notice that in the case of missing information about
a parameter (e.g., available CPU) the device could obtain a score lower than
other devices.

Regarding Destgoals(d), which represents the second parameter of For-
mula 7.1, the URP agent computes this factor using the distance (in our
prototype the euclidean distance) to the location of the user device: wdist(1−
distance(userDev, locd))

2. Notice that other parameters could be also con-
sidered such as the speed and direction of the device. They would have to
be included in the formula which can also be replaced by more sophisticated
approaches to evaluate the best destination. The important aspect is that the
system is independent of the movement formula.

To obtain the information about devices which can be considered by the
previous formula the URP executes a query against the local ontology of the

2The distance function returns a value between 0 an 1, being 1 the exact target location
and 0 a location farther than a threshold.
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device in which it resides at the moment (see Figure 7.3). Remember that
the Context Updater (CU) agent on the device is in charge of updating this
information in the local ontology by querying devices around continuously (see
Section 5.1). The URP agent considers as possible execution places devices
around the device it is residing in and around the device that posed the query.
Also, a range is used to limit the number of results of the query and this value
is increased automatically if no results are obtained.

SELECT ?name, ?IP, ?lat, ?lon, ?CPU, ?memory, ?battery

WHERE{

LI{

FILTER(geof:sfWithin(?thing, geof:buffer(<UserDeviceCoordinates>, 300, ‘‘m’’)

},

OD{

Type(?device, sherlock:SHERLOCKdevice)

},

PropertyValue(?device, geo:lat, ?lat),

PropertyValue(?device, geo:lon, ?lon),

PropertyValue(?device, sherlock:name, ?name),

PropertyValue(?device, sherlock:IP, ?IP),

PropertyValue(?device, sherlock:Available_CPU, ?CPU),

PropertyValue(?device, sherlock:Available_Memory, ?memory),

PropertyValue(?device, sherlock:Available_Battery, ?battery)

}

Figure 7.3: Query to obtain the features of devices around a coordinate.

7.2 Tracker Agent: Monitoring a Location of Inter-
est

A Tracker agent is in charge of monitoring a location of interest. This means
trying to find as many devices as possible inside it (ideally all the devices
inside) and executing the user query against their local ontologies. To achieve
this goal, and similarly to the URP agent, a Tracker performs the following
tasks:

1. Movement Evaluation: The Tracker agent has to move itself near to the
location of interest assigned by the URP.

2. Helping Agent Network Creation and Maintenance: In the case of the
Tracker it creates a network of Updater agents which will communicate
with devices inside the location of interest and execute the query.
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3. Results Correlation: The information returned by the Updater agents is
correlated by the Tracker in order to reduce the information sent to its
URP.

7.2.1 Movement Evaluation

First, the Tracker moves toward the location assigned using the same approach
presented for the URP agent (see Algorithm 5). However, the Tracker agent
considers as possible execution places devices around the location of interest
instead of around the device that posed the query. Therefore, it specializes
the movement formula presented before (Formula 7.1) by taking into account
two elements: 1) the distance to the centroid of the area to cover, and 2) the
communication with its helping agents, as follows:

Destgoal(d) = wdist∗(1−distance(target, locd))+wcomm∗(1−
∑

delay(Updateri))

where target are the coordinates of the centroid of the location to monitor,
delay models the communication delay with a helping agent, and wdist and
wcomm are the weights assigned for each factor (wdist + wcomm = 1). When
the Tracker is created the location to monitor is the location of interest and
thus target is the location of its centroid. However, whenever the Tracker
agent creates Updater agents and they start communicating with devices in the
location of interest, target becomes the centroid of the “uncovered area” which
is the part of the location of interest that the current Updater agents cannot
cover because of the communication range of the devices they are residing
in. Thus, the Tracker will try to remain as close as possible to its helping
agents while trying to be close to the uncovered area. Notice that, the devices
considered as possible execution places could be connected through ad hoc
MANETs (e.g., devices around its location) or even wider area networks (e.g.,
imagine an Tracker interested in moving to another city, the local ontology
might contain information about SHERLOCK-enabled devices available there).

7.2.2 Creation of the Network of Updater Agents

The Tracker agent has to find and communicate with as many devices in
the location of interest as possible to increase the changes of returning a
complete answer to the URP (and thus to the user). For this, the Tracker finds
devices inside the location whose communication mechanisms enable them to
communicate with as many devices as possible. A network of Updater agents
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is created on these devices to maximize the area of the location of interest
monitored or covered. Figure 7.4 shows an example of a situation where the
Tracker in charge of monitoring a location of interest created three Updater
agents. Notice that because of the communication range of the devices where
the Updater agents have been created, the Tracker covers most of the location
and thus, receives information from all the devices inside it.

Figure 7.4: Example of the monitoring of a location of interest.

At the same time that the Tracker agent is communicating with the Knowl-
edge Endpoint in SHERLOCK devices in range to evaluate if moving to them
is needed, the Tracker evaluates if a helping agent, from now on Updater agent,
is needed on that device. The task to start the creation of the network of
helping agents is evaluated continuously until the area is completely covered,
eventually, or no new devices able to cover new parts of the area are discovered.
Algorithm 6 explains the behavior of the Tracker which can be summarized in
the following steps:

1. Obtain the list of devices that can be communicated from the device the
Tracker agent resides in (lines 2–4 in Algorithm 6). This includes devices
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Algorithm 6 Algorithm followed by a Tracker to fulfill its goal of covering a
certain target area
Input: TargetArea is the target area to cover, QueryArea is the query to process in

such an area, currentDevice is the device where the Tracker is executing currently.
1: while alive do
2: // the Tracker is executing in a device and obtains the list
3: // of devices in communication with the host
4: devicesComm ← KEcurrentdevice.obtainDevicesAround(TargetArea)
5: // if the Tracker has Updaters created gets devices in
6: // communication through them
7: for each updater in {updaters} do
8: devicesComm ← updater.obtainDevicesComm()
9: end for

10: // compute the current coverage of the target area by the Tracker
11: coveredArea ← computeAreaCoverage({updaters})
12: for each device in {devicesComm} do
13: // check if creating an Updater in the device is needed
14: // estimate the amount of uncovered area that the device could cover
15: coverageDevice = estimateCoverage(device, coveredArea)
16: if device has no updaters AND coverageDevice > threshold then
17: createUpdater(device,QueryArea)
18: end if
19: end for
20: end while

which can be reached from the devices where Updater agents are residing
it, if any (lines 5–9 in Algorithm 6).

2. Estimate the part of the location of interest which is currently covered
by its network of Updater agents taking into account the features of the
devices they reside in (lines 10–11 in Algorithm 6).

3. Estimate if any device from the previous list could cover part of the
location of interest which is not currently covered by the network of
Updaters. This part should be greater than a threshold used to avoid
the effort of trying to cover very small parts of the location of interest.
In that case, create new Updater agents in such devices (lines 12–19 in
Algorithm 6).

To illustrate this process consider the example in Figure 7.5 where a URP
agent created a Tracker to monitor a location of interest for a query. In
Figure 7.5(b) the Tracker agent has detected several SHERLOCK devices and
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the estimated coverage area of one of them covers part of the still uncovered
location of interest. So, the Tracker creates an Updater agent on the device.
In the next iteration (Figure 7.5(c)) the previously created Updater sends
information to the Tracker about new SHERLOCK devices discovered. So, the
Tracker evaluates if they are covering part of the uncovered area, this is true
for two of them, and the Tracker creates more Updater agents on them.
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Figure 7.5: Creation of Updater agents by a Tracker agent to cover a location of interest.
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Notice that the previous protocol is independent of the communication
technology used (Bluetooth, WiFi, cellular, etc.). However these technologies
have some differences regarding the communication with devices and their
estimated coverage area (see Table 7.1 for a summary). For example, how to es-
timate the coverage area of a technology differs from cellular to WiFi/Bluetooth
(where the manufacturer provides us with a possible estimation). Protocols to
improve the estimation of the coverage area are outside of the scope of this
work but they could be easily incorporated to the system. While SHERLOCK
devices can have all these technologies enabled, it could happen that some of
them only have one of them enabled at the same time (e.g., a device might
have only WiFi and so only other devices with this mechanism enabled could
communicate with them in an ad hoc manner). Therefore, Trackers try to
cover the location of interest with all these technologies in mind. For that,
Trackers keep information of the amount of the location of interest covered
with each technology. For example, in Figure 7.5(b) notice that the estimated
covered area is covered using WiFi only because the devices in it only have
this mechanism enabled.

Technology
How to
discover
devices?

How to
communicate
with devices?

How to
estimate
coverage area?

Bluetooth
Find devices
nearby in
discoverable mode

Direct
communication

Communication
range provided by
manufacturer

WiFi

Find networks
created by other
devices/access
points

Direct
communication
and
communication
through
intermediary
access point

Communication
range provided by
manufacturer

3G/4G
Obtain
information from
base station

Communication
through
intermediary
access point

Information from
the base station,
information from
cell

Table 7.1: Information of the different communication technologies considered
by a Tracker to cover an interesting area.



133 Chapter 7. Processing of SHERLOCK Queries

In Figure 7.5(d) a new device has been detected by the Tracker which
is a cellular Base Station (BS). A BS is able to communicate with mobile
devices under their coverage area (e.g., by using 3G) and therefore the Tracker
estimates its cellular coverage area. In the example, the Tracker creates an
Updater in the BS device and therefore parts of the location of interest area
are now covered by WiFi and 3G which means that devices inside them with
these technologies would be detected.

Finally, notice that it might happen that a SHERLOCK-enabled device
is not discovered by Updater agents and therefore it is not considered by the
Tracker. This happens if the device is not currently visible by any device (e.g.,
if its communication mechanisms are disabled). However, as this process of
monitoring the location of interest is performed continuously, the device would
be detected if at a given moment it becomes visible to others.

7.2.3 Updater Agents Network Maintenance

Apart from creating new Updaters to cover the area assigned, the Tracker
maintains its network of Updaters regarding their load (similarly to how the
URP maintains its network of Tracker agents). If an Updater is currently
overwhelmed because it has to communicate with many devices it will start
missing deadlines and therefore the delay in the communication with the Tracker
will be increased. In this situation the Tracker creates another Updater near the
previous Updater to help it. Moreover, the Tracker commands an Updater to
stop communicating with a certain object, and add it to its “black list”, when
other Updaters have been providing better communication with such an object
in the past (using a configurable window over the past communications). For
example, in Figure 7.5(d) the first Updater that was created in Figure 7.5(b)
is covering the same devices that other Updaters but its communication with
them is slower. Therefore the Tracker will ask that Updater to include such
devices in its black list. Notice that an Updater finishes its execution when it
has no objects to monitor (all the objects that can be communicated from the
device are in the black list). This way, each Tracker maintains its network of
Updater agents in a dynamic way.

7.3 Updater Agent: Obtaining Results

Updater agents, which are in charge of discovering SHERLOCK-devices in the
location of interest and executing the query against them, perform four tasks:
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1. Query Execution: The Updater poses the query against the local knowl-
edge of a device through its KE agent.

2. Results Correlation: Similarly to the previous agents, the Updater corre-
lates the results obtained from the different devices.

3. Query Extension: The Updater is able to autonomously decide to extend
the user request if it is not returning enough results.

4. Movement Evaluation: Updater agents try to execute as close as possible
to the assigned coordinate/device.

7.3.1 Query Execution and Results Correlation

Once an Updater agent reaches a device it starts their protocol to fulfill their
main goal: to obtain results for the given query (see Algorithm 7). An Updater
starts executing the query against the local ontology of the device it resides in
since the moment it is created (as it is created in a device that might cover the
target area). Also, the Updater obtains the list of devices in communication
range with the device it is residing in from its local ontology and executes the
query against their ontologies (through the KE agent on each device). Finally,
when the results from the different devices are obtained the Updater correlates
them (to eliminate duplicates or outdated information) and sends it back to
its Tracker agent along with the new discovered devices.

7.3.2 Query Extension

Independently of the type of request, Updater agents are able to consider
alternative ways of retrieving the required information. After receiving results
from a query executed against devices in range and correlating them, the
Updater agent autonomously can decide to extend a current request which
is not providing enough results. When so, the service extension process (see
Algorithm 8) is performed.

Basically, Updater agents exploit three different semantic relationships (i.e.,
services in the same family, services which return same results, and services
which return objects that provide related services) to select new services which
could obtain the results needed by the user (see Figure 7.6):

Lines 3-6 If the service that the user selected, which was translated into the location-
based query, belongs to a family of services, the Updater selects other
services which belong to the same family, retrieving all the instances of
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Algorithm 7 Algorithm followed by an Updater to fulfill its goal of obtaining
results for the given query
Input: TargetArea is the target area to cover, QueryArea is the query to process

in such an area, currentDevice is the device where the Updater is executing
currently, and Tracker is the Tracker agent which created it.

1: while alive do
2: // the Updater executes the query against the local ontology
3: // of the device where it resides
4: results ← KEcurrentdevice.execute(QueryArea)
5: // obtain the list of devices in communication with the host
6: devicesComm ← KEcurrentdevice.obtainDevicesAround(TargetArea)
7: for each device in {devicesComm} do
8: // execute the query against each device if they are not in the black list
9: if device is not in blacklist then

10: results ← KEdevice.execute(QueryArea)
11: end if
12: end for
13: // correlate results obtained and communicate them to the Tracker
14: results ← correlateResults(results)
15: sendResults(Tracker, results)
16: end while

such family (see 1 in Figure 7.6). Thus, if the user selected a particular
service which is not returning results, the Updater executes more instances
from the same family of services in the device it is residing on. For
example, if the user selected the service to find buses and it is not
returning any result after some time, the Updater launches other services
from the “Find Bus” family (e.g., an external service from the transport
organization of the city).

Lines 10-21 Then, the Updater executes services belonging to service families which
return the same results than the selected service family. To do so, it
consults the ontology to obtain information about the returned class
of the selected service, and uses it to obtain service concepts that are
constrained to return objects of such a class (see 2 inFigure 7.6). For
example, if the user selected the family of services to find pictures and
no information is returned, the URM will find other families returning
pictures such as, for example, the service to take a picture.

Lines 22-29 Finally, Updater agents also exploit the provides/returns chain of proper-



Chapter 7. Processing of SHERLOCK Queries 136

Algorithm 8 ExtendService(service)

Input: service is a SHERLOCK service
Output: Extends the current service to obtain further results.
1: suggestedServices ← ∅
2: // Check whether the service selected by the user is an instance or a family
3: if service isA instance then
4: // Search other services from the same family
5: serviceFamily ← KE.DirectType(service)
6: suggestedServices ← KE.RetrieveInstances(serviceFamily)
7: else
8: serviceFamily ← service
9: end if

10: // Search other family of services which could obtain the similar results
11: retObjectClass ← KE.RetrieveReturnedClass(serviceFamily)
12: {otherServiceFamilies} ← KE.Range(return, serviceFamily.return.range)
13: for each serviceFamilyi in {otherServiceFamilies} do
14: suggestedServices ← suggestedServices ∪ KE.Retrieve(serviceFamilyi)
15: end for
16: // Finally, exploit the provider/return chain
17: // we get first the concept of the objects that provide the family of this services
18: tgtObjectClass ← KE.Range(provides, serviceFamily)
19: // we obtain the service families that return this kind of objects
20: serviceFamilies ← KE.Range(return, tgtObjectClass)
21: // the user selects a particular service interacting with a HIM agent
22: for each serviceFamilyi in {serviceFamilies} do
23: suggestedServices ← suggestedServices ∪ KE.RetrieveInstances(serviceFamily)
24: end for
25: return suggestedServices

ties to obtain services that returns objects which provide related services3

(see 3 in Figure 7.6). In this case, if the service to find pictures is not
retrieving any information, the Updater executes a service to find users
with mobile cameras, as they are providers of the service take a picture
(which could involve user’s interaction through a HIM agent as explained
in Section 6.2.2).

With this process the Updater selects an extension service that could obtain
the same information that the user is requesting. This way, Updater agents
autonomously react when they are not able to achieve their goal (obtain the
information the user needs) and execute the extension services through the

3Note that, despite we only explore this up to one level, a controlled composition mechanism
could be devised to follow this path thoroughly.
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Figure 7.6: Semantic relationships exploited when extending a service.

Knowledge Endpoint agent on the device. Therefore, Updater agents can
execute SHERLOCK services as a user of the system would do.

7.3.3 Movement Evaluation

At the same time, the Updater agent evaluates if moving to one of the devices
around would be required. The Updater also specializes the movement formula
of the URP agent (Formula 7.1) and similarly to the Tracker takes into account
two elements: 1) the distance to the destination that the Tracker assigned to it,
and 2) the communication with the different devices around. Thus, an Updater
which is communicating with different devices will try to find a location which
makes the communication with them as fast as possible.

7.4 Related Work

Location-dependent queries (i.e., queries whose answer depends on the loca-
tions of certain moving objects), such as range queries (e.g., see [RSLDF12;
CBLZW11]) and nearest-neighbor queries (e.g., see [KZ08; BJKS06]), can be
considered a basic building block of LBS. Therefore, considerable research
efforts have been invested on studying efficient ways to process them as contin-
uous queries (see [IMI10] for an extensive survey on location-dependent query
processing).

Some of the solutions proposed assume a centralized query processing envi-
ronment (e.g., [HXL05]), whereas others perform a distributed query processing
using a fixed support infrastructure [IMI06; JT05] or exploiting the processing
capabilities of the mobile devices attached to the moving objects [GL06]. How-
ever, existing proposals do not solve all the challenges identified in this paper.
For example, managing the knowledge about the different kinds of moving
objects and their features is usually ignored and a predefined database schema
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(that the user must know) is assumed instead. Even though there are interest-
ing proposals that have considered some semantic aspects (e.g., [YCPSA11]
proposes the management of semantic trajectories and [ZL01] presents the
concept of semantic caching of location-dependent data), they do not aim at
developing a general semantics-based query processing architecture.

The LOQOMOTION system [IMI06] presents a general architecture to
process location-based queries. Their approach is also based on the use of a
layered hierarchy of mobile agents that move autonomously over the network
to track moving objects, correlate partial results, and finally, present and
keep updated the answer to the user’s query. LOQOMOTION relies in an
underlying infrastructure composed of proxies that manage location data about
moving objects within their coverage areas. Therefore, in order to monitor
a location of interest, their agents traveled to the (already known) proxy
that covered it through the fixed network and obtained the results from the
database in the proxy (that contained the information about all the objects
inside its communication range). The scenario that SHERLOCK considers is
more dynamic as proxies might not exist and discovering SHERLOCK-enabled
devices and creating ad hoc P2P networks might be needed to process the query.
Therefore, we based SHERLOCK’s hierarchy of agents to process location-
based queries in LOQOMOTION agents (URP –Monitor Tracker in [IMI06],
Tracker, and Updater) and adapted it to our requirements. So, we extended
these agents with semantic capabilities, such as the ability to understand the
location to monitor or results that could be inferred as interesting for the query,
and with the capability of adapting themselves to a dynamic ad hoc scenario.

7.5 Summary of the Chapter

In this chapter we explained how SHERLOCK deploys a network of mobile
agents to process user queries. We started by introducing the different tasks
performed by the User Request Processor (URP) agent which coordinates the
complete network. This agent decides which helping agents would be needed
to process the query depending on whether it is related to a location or not.
Once the network of appropriate helping agents have been created the URP
maintains it by increasing/decreasing their number to adapt the network to
the current status of the scenario. For location-dependent queries, which are
a fundamental building block of Location-Based Services, the URP creates
Tracker agents. For these agents, which are in charge of monitoring a location
of interest, we explained how they autonomously move toward the assigned
location and start collecting data. For the collection task, Trackers create
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Updater agents trying to maximize the coverage of their assigned location.
Finally, we explained how Updater agents communicate with devices around
and inside the location of interest to pose the user query against their local
knowledge. We showed how, Updaters autonomously react to situations when
these devices do not return results by extending the user query.



Chapter 7. Processing of SHERLOCK Queries 140



Chapter 8

Multimedia Information
Management

A relevant feature of a system to obtain information for users would be to
support the possibility of managing multimedia information (i.e., text, still
images, video footage, audio, etc.). In fact, multimedia information has become
omnipresent in our society and, for example, every minute users upload 48 hours
of new video to Youtube1, 3,125 new photos to Flickr2, and share 3,600 photos
on Instagram3, among others (information extracted from [Dat]).

Two main challenges have to be addressed to attend user requests involving
multimedia information. First, the system should be able to process the
multimedia information to extract high-level features in real-time. Second, the
high-level features extracted have to be matched against the user request to
filter out information which is not interesting, and to rank the results according
to their similarity to what the user requested. Also, as multimedia information
(especially pictures and videos) might contain sensitive information of people
(e.g., their faces can appear in the photo), it would be desirable to take their
privacy preferences into account when using multimedia information which
users captured to answer requests from others.

As an example of a device able to capture multimedia information we focus
on cameras. In this chapter we show how SHERLOCK processes what a camera
is viewing to determine whether the camera could capture the image that a
user requested. First, we introduce our approach to efficiently process camera
views in real-time and extract high-level features from them without analyzing

1https://www.youtube.com
2https://www.flickr.com
3https://instagram.com
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real images. Then, we explain the mechanism developed to compare camera
views in order to measure their similarity. This way, the user can provide a
virtual reconstruction of the image he is interested in and the system is able
to compute the similarity of the camera views retrieved to it. Therefore, we
present our approaches to address the two main challenges for a system based
on querying-by-example on images [SU11]: the development of an appropriate
similarity measure and an efficient method to compute it in real-time. Finally,
as SHERLOCK retrieves content obtained from users, we present our approach
to preserve their privacy preferences when being part of pictures taken by
others.

8.1 Motivation

Processing what cameras can capture is essential for the last two of our
motivating scenarios. In the third scenario the Technical Director (TD) wants
to obtain cameras that can provide specific shots of the rowing race, and in
the fifth authorities are interested in obtaining images of the traffic accident.
For this task, a popular approach is to process the real images provided by
cameras. However, using real image processing techniques to extract high-level
features related to the semantics of the scene, such as the kind of objects or the
specific identity of the object, is a challenge (and even more in real-time). This
is related to the problem of the well known “semantic gap” that exists between
low-level features and high-level semantics, which has attracted considerable
research attention (e.g., see [CSLC12] and [YYY13]). For example, consider
the camera shot in Figure 8.1(a), which a camera in our third motivating
scenario could obtain, where all the rowing boats participating in the race are
shown from a large distance to allow the viewer to have a general overview of
the race. Real image processing techniques would face two main problems:

1. Along with the rowing boats there exist multiple moving objects (jud-
ges, support team, etc.) very close to them (in Figure 8.1(b) we have
highlighted the rowing boats and the other moving objects with red
dotted and yellow circles, respectively). So, it would be difficult to
distinguish the objects-of-interest (rowing boats) from the other objects
in the scenario based on their visual features and moving patterns.

2. Even if the objects that are rowing boats could be identified, the Techni-
cal Director (TD) could be interested in a specific boat (e.g., “Kaiku” in
Figure 8.1(b), highlighted with an arrow). Identifying this boat automat-
ically among the others would be very difficult.
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(a)

(b)

Figure 8.1: Real camera footage (a) and interesting and other objects in the
scene (b).

To overcome these difficulties, we present a different approach: Instead
of on line analyzing the real images provided by cameras, such real camera
views are recreated by using the information contained in a 3D model of the
scenario. SHERLOCK manages and keeps this 3D model up-to-date in real-
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time according to the information of objects-of-interest (identification, location,
direction, approximate extent, etc.) and cameras (location, direction, Field
of View –FOV–, etc.) in the scenario through the exchange of information
between devices, as explained in Chapter 4, or the processing of SHERLOCK
queries, as explained in Chapter 7. This way, our approach uses geometric
computations (implemented by a 3D engine) over the 3D reconstruction of the
camera view to extract high-level semantic features of the real camera view. So,
SHERLOCK is able to automatically detect the specific objects that are viewed
by a camera (e.g., “the Kaiku rowing boat” vs. simply “a boat”). Moreover,
our approach obtains other high-level features of each object detected in a
camera view, such as: the percentage of the object visible (taking occlusions
into account), the viewpoint of the camera concerning each object (e.g., it
could view the front and top of the object), the amount of the shot occupied by
them (that determines the space available for uninteresting objects), etc. We
present in this chapter the efficient methods that we have developed to obtain
this information continuously and in real-time (in our tests in Section B.4.3 we
show that extracting the high-level features of a camera view can be done in
tenths of a second with our algorithms).

So, as long as the locations of the objects-of-interest and cameras (and an
approximation of the extent of the objects) can be obtained in real-time, our
approach can be applied to any context, as no assumption is made regarding
the number of cameras in the scenario (each SHERLOCK-enabled device can
analyze the view of its attached camera), the kind of scenario (the system
can be used in scenarios involving moving objects, cameras, and queries about
them), and the positioning mechanism used to obtain the locations of the
objects and cameras. In some situations it could be challenging to obtain this
information for certain objects (e.g., it could be difficult to obtain the real-time
precise location of a ball or the extent of soccer players that move their limbs
while running). However, our approach does not rely on a specific technology to
obtain this information nor requires 100% precision of these data to effectively
distinguish between cameras that are interesting or not for a given query.

8.2 Processing of Camera Views

In this section, we explain how SHERLOCK analyzes a camera view to obtain
high-level features. First, we show how the viewpoint of the target that the
camera is capturing is obtained. Then, we describe how the percentage of the
target object viewed by a camera is computed taking occlusions into account.
Finally, we explain a combination of the two previous processes that allows
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obtaining the percentage of a specific viewpoint of an object that a camera is
providing.

8.2.1 Kind of View Obtained

Being able to classify the views provided by cameras according to the kind
of view obtained enables SHERLOCK to answer specific requests of users
(e.g., cameras viewing the front, top and right side of a certain object). As
explained in Section 4.1, SHERLOCK uses the top and front vectors of the
extent of an object to process requests involving the following views of the
object: top/bottom, front/rear, and left/right side. As the extent of the
objects in the scene could be complex and we need to perform the calculations
automatically and quickly (e.g., the TD in the fourth scenario needs results as
fast as possible), we propose the use of light sources and the illumination they
produce to calculate the kind of view that a camera is providing of an object
(see Algorithm 9).

The first step is to recreate the view of the camera in the 3D engine (we
used in our prototype JMonkeyEngine4) by setting the virtual camera with the
same location, direction, and Field of View (FOV) than the real one. Then,
different colors are assigned to the target and other objects in the scenario so
when the scene is illuminated only the parts of the target object that are not
occluded by other objects will be visible. Directional light sources (which have
no position –only a direction–, are considered “infinitely” far away, and send
out parallel beams of light) are used to illuminate the parts of the object that
belong to each requested view using different colors for each light source. This
way, the system checks several kinds of views with a single pass and efficiently
decreases the number of renderings needed (obtaining a rendering is one of the
most time-consuming tasks). However, the algorithm is limited to checking
three views per render as each view uses a different rgb color channel. For
example, to check if the camera of Figure 8.2(a) is viewing the top and rear of
the boat, the system “selects” these parts of the object by using a red and a
blue light source, respectively (see Figure 8.2(b)). Finally, the algorithm checks
the color of each pixel of the 2D projection of the 3D scene and if its equal
to one of the colors used for the light sources that means that the camera is
viewing, at least, some part of the target object belonging to the kind of view
considered5.

4http://jmonkeyengine.org
5Notice that, due to the illumination used, the value in the color channel of a pixel might

vary but as long as it is somehow illuminated we should take it into account. This is done by
checking whether the color channel is equal to zero or not in the algorithm.
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Algorithm 9 Calculate the kind of view obtained of a target object

Input: target, cam, <views>
Output: <visible views>

1: scene=recreate cam’s view in the 3D engine
2: remove all the illumination sources of scene
3: for each object in the scene do
4: if object == target then
5: paint object with reflective texture
6: else
7: paint object in black (background color)
8: end if
9: end for

10: for each view in <views> do
11: create light source in view’s direction
12: set light source’s color to an unused one from <red, blue, green>
13: end for
14: projection=obtain 2D projection of the scene
15: for each pixel in projection do
16: if pixel’s red, blue, or green channels 6= 0 then
17: set true in <visible views> for each view in <views> whose light

source’s color is 6= 0 in pixel
18: end if
19: end for
20: return <visible views>

8.2.2 Percentage Viewed of an Object

SHERLOCK supports queries that ask for cameras that view a certain minimum
percentage of an object. There exist two situations where a camera could
have an incomplete view of an object: 1) when the target is partially or fully
occluded by another object, and 2) when the target does not fit the FOV of
the camera or it is outside the FOV. Algorithm 10 calculates the percentage of
a target object that a camera is viewing taking occlusions into account.

As in Algorithm 9, our approach assigns different colors to the objects (red
for the target object and green along with a transparent material for the other
objects in the scenario), in order to show in the same rendering the hidden
and visible parts of the target (see Figure 8.3(b)). Then, the current FOV is
painted in transparent blue (which means creating an object that represents
the FOV with a transparent material and blue color) to select what the camera
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(a)

(b)

Figure 8.2: A real camera shot of a rowing boat (a) and the recreation of the
view in our system with the top (red) and rear (blue) of the boat highlighted
(b).
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Algorithm 10 Calculate the percentage viewed of a target object

Input: target, cam
Output: percentage viewed

1: scene=recreate cam’s view in the 3D engine
2: for each object in the scene do
3: if object == target then
4: paint object in red
5: else
6: assign object a transparent material and paint it green
7: end if
8: end for
9: assign current FOV a transparent material and paint it blue

10: while target does not fit completely the FOV do
11: move virtual camera backwards
12: end while
13: projection=obtain 2D projection of the scene
14: for each pixel in projection do
15: if pixel’s red channel 6= 0 then
16: increase #pixels of the target object
17: end if
18: if pixel’s red and blue channels 6= 0 and green channel == 0 then
19: increase #pixels not occluded
20: end if
21: end for

22: return
#pixels not occluded

#pixels of the target object

is currently viewing (see Figure 8.3(c)). If the target does not fit completely
the FOV, the virtual camera is moved backwards in the focal axis of the
camera until it views the target object completely. This movement allows our
algorithm to obtain a rendering covering the full object while it does not affect
the perspective of the scene (see Figure 8.3(d)). Finally, the algorithm obtains
the total number of pixels of the target (#pixels of the target object) and
the pixels of the target visible and not occluded (#pixels not occluded) and

computes the percentage visible (
#pixels not occluded

#pixels of the target object
). For example,

using the image of Figure 8.3(d), the algorithm obtains that the camera views
41% of the target object (the second boat).
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(a) (b)

(c) (d)

Figure 8.3: Computing the percentage of a target object in a shot: scene in
Google Earth (a), selecting the target (b), painting the FOV (c), and covering
the target completely (d).

8.2.3 Percentage of a Part of an Object

For a user, it could be interesting also to retrieve cameras viewing a percent-
age of a certain part (i.e., top/bottom, front/rear, left/right) of an object
(e.g., cameras viewing at least 50% of the front of the object). The method
explained before needs an additional step to support this kind of queries (see
Algorithm 11), to obtain first which shot would cover 100% of that target
viewpoint in order to calculate the actual percentage viewed. This way, the
algorithm sets the virtual camera of the 3D engine in the direction of the
target viewpoint and at the same distance of the object as the real camera,
and counts the number of illuminated pixels (#pixels belonging to viewpoint).
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This information will be used along with the number of pixels of the viewpoint
that the camera is viewing (#pixels viewed of viewpoint) to calculate the

percentage of the viewpoint viewed (
#pixels viewed of viewpoint

#pixels belonging to viewpoint
). Notice

that, if the target object did not fit the FOV in Algorithm 11, the approach
moves the virtual camera backwards a distance d to compute the total amount
of pixels visible for a shot that covers 100% of the target view. This way,
the algorithm will move the camera backwards the same distance d before
calculating the amount of pixels of the view that the camera covers. The
example of Figure 8.2(b) shows a 2D image rendered by the algorithm for the
current view of a camera, where the algorithm obtains that the camera views
95% of the top and 92% of the rear of the target object. Notice that there
are different intensities of red and blue in the image used by the algorithm,
as depending on the normal of the corresponding polygon the illumination
method (Phong is used in JMonkeyEngine) makes it look darker or brighter.
This is not a problem for our approach because it only counts pixels that have
a nonzero value for that specific channel.

Algorithm 11 Calculate the number of visible pixels of the object in a shot
that covers 100% of the target viewpoint of the object

Input: target, view, cam
Output: pixels belonging to viewpoint, d

1: recreate cam’s view in the 3D engine
2: paint target with reflective texture
3: set virtual camera’s direction to view’s direction
4: create light source in view’s direction
5: if target does not fit completely the FOV then
6: d=move virtual camera backwards
7: end if
8: projection=obtain 2D projection of the scene
9: #pixels belonging to viewpoint=count pixels in projection

10: return #pixels belonging to viewpoint, d

8.2.4 Estimating Future Views

It could be interesting for a user to show information about cameras that are
not currently viewing a target object but they could in a near future. For
example, it could be useful to estimate if a camera is going to be able to view
the target if rotated (and the rotation and time needed, if so). Therefore, if a
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certain camera is not currently viewing a target object, our system can obtain
the rotation (pan, tilt, or both) and the time needed for the camera to view it.
For this purpose, the system needs to take into account the current location,
speed, and direction of the target object and other objects in the scenario
(because they could partially or fully hide the target), and the features of the
camera being considered (maximum pan and tilt allowed, and rotation speeds).
Once the system estimates the time needed for a certain camera to view a
target object, it will recreate the state of the scenario and obtain high-level
features of the view that the camera would provide at that moment.

One can think that answering whether a camera could view an object or
not is easy; for example, if a camera has the object to its right then it should
be able to view it if rotated to the right). However, calculating this estimation
is not so easy when considering that objects in the scenario, and so also the
cameras that are attached to them, can move. In the previous example, if the
object keeps moving around the camera with a speed higher than the rotation
speed of the camera, the camera will never view the target if rotated to the
right. Thus, in the following we present in detail our approach to estimate the
time and rotation needed by a camera to focus a target object considering that
both objects and cameras can move.

α0

FOV

(vx , vy)

(x0, y0)

(xc, yc)

(vcx , vcy)

Figure 8.4: Initial state of a target object in (x0, y0) and a camera in (xc, yc)

On the one hand, we have to model the movement of the objects (that for
simplicity can be represented here as points in the plane –their center of mass–)



Chapter 8. Multimedia Information Management 152

with a motion function depending on time S(t) = (x(t), y(t)) (see Figure 8.4).
For our scenarios, we consider that the movement of the objects is linear, but
the method presented in this section would work with any analytic functions
x(t), y(t) (such as interpolation polynomials) or with other approaches to model
the movement of objects (e.g., [TFPL04; HM12]). So, the motion function is:

S(t) = (x0 + vxt, y0 + vyt)

where (x0, y0) and (vx, vy) are the initial position and the speed vector of the
object, respectively.

On the other hand, a camera is modeled as a semiline (defined by the
bisector of its FOV) that can move and rotate (see Figure 8.4). The motion
function for a camera is the semiline formed by the values of X and Y of
the line C(t) ≡ (X − xc(t)) sin(α(t)) − (Y − yc(t)) cos(α(t)) = 0, such that
sign(X − xc(t)) = sign(sin(α(t)), sign(Y − yc(t)) = sign(cos(α(t)), where
(xc(t), yc(t)) is the translation motion function of the camera and α(t) is the
rotation function.

We consider that a camera has a linear translation motion with a uniform
angular speed. Therefore, the motion equations of the semiline representing a
camera depending on time are:

(X − (xc + vxct)) sin(ωct+ α0)− (Y − (yc + vyt)) cos(ωct+ α0) = 0

sign(X − (xc + vxct)) = sign(sin(ωct+ α0)

sign(Y − (yc + vyct)) = sign(cos(ωct+ α0),

where (xc, yc) and (vxc, vyc) are the initial position and the speed vector of the
camera, respectively, ωc is the pan speed of the camera, and α0 is the initial
pan of the camera.

We want to obtain the minimum time instant when the camera focuses the
object, considering that the camera can rotate to the left side (a positive pan
speed) or to the right side (a negative pan speed). Thus, we have to obtain:

• which pan speed (positive or negative) leads to a faster movement to
focus the object,

• for that pan speed, the time instant when the camera and the object
intersect.
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In order to compute these values, first we have to find the solution tf+ for
the equation

E(t) = (x0 + vxt− (xc + vxct)) sin(ωct+ α0)

− (y0 + vyt− (yc + vyct)) cos(ωct+ α0) = 0

that holds

tf+ = min{tr|tr ≥ 0, E(tr) = 0,

sign(x0 + vxtr − (xc + vxctr)) = sign(sin(ωctr + α0)),

sign(y0 + vytr − (yc + vyctr)) = sign(cos(ωctr + α0))}

Second, we have to find the solution tf− changing ωc by −ωc in the above
equation. The minimum value of {tf+, tf−} gives us the sign of the pan speed
and the time instant that we are looking for (see Figure 8.5).

(vx , vy)

(vcx , vcy)

FOV

tf +

(a)

t f −

(vcx , vcy)

(vx , vy)

FOV

(b)

Figure 8.5: tf+ (tf−) time to focus the target object rotating the camera to
the left (right) side.

The trajectories of the objects are estimated by using linear extrapolation
based on their speed vectors. The speed vector of an object is computed by
considering three previous reference locations of the object (in our prototype,
the locations of the objects during the last three seconds). To solve the above
equation we reduce the problem to finding the zeros of a polynomial. We use an
approximation of sin and cos using Taylor polynomials and solve numerically
the equation using Laguerre’s method, a root-finding algorithm tailored to
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polynomials. As an example, Figure 8.6 shows the estimation of the time
needed to focus horizontally a target object by considering the movements of
the objects, the current pan, and the pan speed of the camera.

id='Orio'
t=n+1

id='Kaiku'
t=n+1

id='Kaiku'
t=n

id='Orio'
t=n

id='Orio'
t=0

id='Kaiku'
t=0

Figure 8.6: Estimation of trajectories and time needed to focus a rowing boat,
“Kaiku”, from another boat, “Orio”.

As we are dealing with scenarios where the objects can move in 3D, we
need to obtain the time needed to focus the target both horizontally (pan)
and vertically (tilt). As pan and tilt movements can be done in parallel, we
obtain the maximum of the time needed to pan and the time needed to tilt and
use that value as the time needed to focus the object. So, the equation above
is used for both movements using the horizontal plane for the pan (equation
above) and the plane defined by the trajectory of the object and the z-axis for
the tilt.

Once the estimation has been completed, the algorithm generates the scene
to calculate if the requirements of the query (e.g., type of view, percentage
of the target object or part shown, etc.) would be satisfied. Notice that, as
the objects are moving, when the camera is able to focus the target it could
happen to be occluded by another object. Therefore, the trajectories of all
the objects have to be taken into account too, not only the trajectory of the
camera and the target object.
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8.3 Measuring the Similarity of Camera Views

SHERLOCK enables users to define the kind of camera view they want to
obtain by providing an example created by using a 3D query-by-example
(3DQBE) interface, as we explained in Section 6.1. The 3DQBE interface
enables the user to select the objects that should be in the FOV of the camera
and move/rotate them to select their specific location in it. Also, SHERLOCK
ranks the camera views obtained as an answer to a user request regarding their
similarity to the one defined by the user. To measure the similarity between
the query image Iq defined by the user and a candidate image I, we propose
the following formula, that makes use of the high-level features extracted from
both images to take into account the similarity of each specific object appearing
in the two pictures:

S(Iq, I) =
n∑
i=1

γoiSobject(oi, Iq, I) (8.1)

γo =
pctimg(o, Iq)
n∑
i=1

pctimg(oi, Iq)

(8.2)

where n is the number of objects in Iq, Sobject(o, Iq, I) is the similarity between
the two images if only the object o is considered, and γo is the weight (relative
importance) assigned to this object in the query image Iq defined by the user.

To avoid overwhelming the user by requesting him/her to enter the weight
for each object, we advocate using an objective value extracted from the scene.
So, we consider that the user defines indirectly the importance of each object
in the scene by adjusting the percentage of the image occupied by each of them.
So, as shown in Formula 8.2, γo represents the percentage of the image filled by
object o in the query image Iq (pctimg(o, Iq)) relative to the part of the image
filled with objects (

∑n
i=1 pctimg(oi, Iq)); this percentage is computed regarding

only the part of the image filled with objects (as we are interested here in
identifying the relative importance of the objects, rather than the amount of
space they occupy in the image). For example, if we consider that the user
defined the image of Figure 8.3 as the query image, the objects close to the
camera are clearly expected to be more important for the user than the other
object because they fill a greater amount of the shot.

In the rest of this section, we explain the different factors that define the
computation of Sobject(o, Iq, I) for a given object o, a query image Iq, and an
image I.
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8.3.1 Percentage Difference

The first aspect that we consider to obtain the similarity of an object in two
images is the percentage of it that is being covered and the percentage of the
image that it fills. In this way, we compare the percentage of the object o
visible in the query image Iq defined by the user with the percentage visible
in the candidate image I, as well as the percentage of each image (Iq and I)
occupied by o:

SpctObj(o, Iq, I) = 1− (ωoi
∆pctobj(o, Iq, I)

pctobj(o, Iq)
+ ωoii

∆pctimg(o, Iq, I)

pctimg(o, Iq)
) (8.3)

∆pctx(o, Iq, I) = min(pctx(o, Iq), |pctx(o, I)−pctx(o, Iq)|), with x = {obj, img}
(8.4)

where in relation to the first addend pctobj(o, I) and pctobj(o, Iq) obtain the
percentage of the object visible, taking occlusions into account, in image
I and Iq, respectively; in relation to the second addend, pctimg(o, I) and
pctimg(o, Iq) obtain the percentage of the corresponding images filled by the
object. In addition, we normalize the difference between these percentages
(∆pctimg(o, Iq, I) and ∆pctobj(o, Iq, I)) to obtain a value between 0 and 1 that
measures their similarity. Notice that, as we want to obtain an objective
measurement, we consider that, for example, given the percentage visible of
an object in the query image x%, an image that shows (x+ y)% is as similar
as an image that shows (x− y)%. In this way, an image that does not show
the object (i.e., it shows (x− x)% of it) is considered as similar as one that
shows (x+ x′)% with x ≤ x′ ≤ 1.0 (percentages are expressed here as values
between 0 and 1); this is the motivation for the use of the min operator in
Formula 8.4. Moreover, we assign each factor a weight ωoi and ωoii, and to
preserve the objectivity we consider that ωoi = ωoii = 1/2.

8.3.2 Viewpoint Difference

The second aspect that we consider is the kind of view obtained of the object
in the two images. As part of the high-level features of a scene we consider
that the following views of an object can be obtained: top/bottom, front/rear,
and left/right side. So, the following formula defines the similarity of an object
in two images according to the kind of view obtained:
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Sviews(o, Iq, I) =

n∑
i=1

γvi(1− (ωvi
∆pctview(vi, Iq, I)

pctview(vi, Iq)
+ ωvii

∆pctimg(vi, Iq, I)

pctimg(vi, Iq)
))

(8.5)

γv =
pctimg(v, Iq)
n∑
i=1

pctimg(vi, Iq)

(8.6)

∆pctx(v, Iq, I) = min(pctx(v, Iq), |pctx(v, I)−pctx(v, Iq)|), with x = {view, img}
(8.7)

where v is the vector that contains the views to check, whose components
belong to the set {front, rear, top, bottom, left, right}, vi represents the view
in position i of v, and n is the number of elements in v. For each view of
an object (front, rear, top, bottom, right side, and left side) we compute the
similarity according to the percentage of the view obtained (pctview(vi, I))
and the percentage of the image filled with this view (pctimg(vi, I)). We
normalize the difference between these percentages (∆pctview(vi, Iq, I) and
∆pctimg(vi, Iq, I)) to obtain a value between 0 and 1. We consider that the
percentage of the view obtained and the percentage of the image filled with
this view have the same importance to compute the similarity of an object (so,
in our prototype the weights used for them are ωwi = ωvii = 1/2). Moreover,
we assign each view a weight γv according to their importance in the image.
For example, in Figure 8.3, regarding the boats, the user seems to be interested
in a lateral view of such boats.

8.3.3 Location Difference

The location of each object within the image is an important parameter to take
into account when computing the similarity. We consider the location of the
camera and the object in the 3D scene to measure this factor. In particular,
we use the angle defined by the bisector of the FOV of the camera and the
vector defined by the location of the camera and the centroid (of the volume)
of the object. For the sake of clarity, we further decompose the vector in terms
of its horizontal and vertical components. To illustrate this, Figure 8.7 shows
the different angles involved in the horizontal plane of two scenes (it would be
similar for the vertical plane).
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Figure 8.7: Horizontal angles involved in the computation of the similarity
between two images (a) and (b).

So, we define the similarity of an object in two images according to its
location as:

Slocation(o, Iq, I) = 1− (ωli
∆αh
maxh

+ ωlii
∆αv
maxv

) (8.8)

maxh = max(
βh
2

+ |α1|,
βh
2

+ |α2|)− ε (8.9)

maxv = max(
βv
2

+ |α3|,
βv
2

+ |α4|)− ε (8.10)

∆αx = min(maxx, |α′x − αx|), with x = {h, v} (8.11)

where αh and αv are the angles that define the location of the object in
the horizontal and vertical plane of the query image Iq defined by the user,
respectively. Similarly, α′h and α′v measure the location for the scene we are
comparing Iq with (i.e., image I). Besides, ∆αh and ∆αv stand for the difference
in the location of the object in both scenes in the horizontal and vertical plane,
respectively. As before, we consider the absolute value of these differences
and we normalize them by using maxh and maxv (the maximum value of
αh and αv for an object to be inside the FOV of a camera). In Formula 8.9
and 8.10, ε is a small value greater than 0, which must be subtracted from
max(βh2 + |α1|, βh2 + |α2|) and max(βv2 + |α3|, βv2 + |α4|) (used in the computation
of maxh and maxv) in order to have the target object within the view of the
camera. We consider that the similarity of an object’s location in the horizontal
and vertical planes have the same importance (so, in our prototype the weights
used for them are ωli = ωlii = 1/2).
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8.3.4 Summing Up: Differences in Each Object

To compute the similarity between two images according to object o we take
into account the percentage of the object visible, the viewpoint of the camera,
and the location of the object in the image, which are computed as explained
in the previous subsections. First, we check if object o (that appears in the
image Iq) is visible in the image I; if this is not the case, then the similarity
is 0. Otherwise, if the object is visible in the image I (partially or completely),
the similarity between the two images regarding that object is:

Sobject(o, Iq, I) = ωoSpctObj(o, Iq, I) + ωvSviews(o, Iq, I) + ωlSlocation(o, Iq, I)
(8.12)

where SpctObj(o, Iq, I) stands for the similarity according to the percentage of
the object covered in the image and the percentage of the image filled by the
object (see Section 8.3.1); Sviews(o, Iq, I) represents the similarity according to
the different views of the object (see Section 8.3.2); and finally, Slocation(o, Iq, I)
is the similarity according to the location of the object in both images (see
Section 8.3.3). In the formula, ωo, ωv, and ωl are the weights assigned to
each factor and by default ωo = ωv = ωl = 1/3. So, in our proposal the three
weights are equal, as there is no objective criterion to assign different weights
to them. Indeed, this is completely subjective. For example, for a user two
images could be more similar if they show the same percentage of the object
(regardless of the percentage of the object or the kind of view obtained), and
for another user two images could be more similar if they show the object in
the same locations.

8.4 Preserving User Privacy in Photos

Whenever a SHERLOCK user takes a picture, which might be shared with
other devices as an answer to requests of their users, it first turns it into
a privacy-aware picture. We understand for privacy-aware picture a photo
that preserves the privacy preferences of the entities (i.e., people, buildings,
etc.) captured. SHERLOCK allows users to state their policy about being
photographed (i.e., “I don’t want my picture to be taken”) by other people the
same way they define their policies about the information that can be shared
(see Chapter 4). To start with, SHERLOCK generates an eigenface [SK87], a
mathematical representation which we call a face identifier (see Figure 8.8(b))
using a picture of the user’s face (see Figure 8.8(a)). Whenever a device is
in the vicinity of the user, his SHERLOCK sends it the face identifier along
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with the policy (i.e., obscure my face in your pictures). In order to enforce
the policy, SHERLOCK running on the stranger device uses the face identifier
to detect if the user who shared the policy is part of the pictures taken by
the device (see Figure 8.8(c)). It then selectively obscures the face of all the
people who have sent such a policy to the device (see Figure 8.8(d)). Using
eigenfaces helps to preserve the privacy of the sender even if the transmission
is intercepted and at the same time the enforcement of the policy rule ensures
the privacy in any pictures taken.

8.4.1 Creating Privacy-Aware Pictures

As explained in Chapter 4, the user’s context is represented using an OWL
ontology, privacy policies are described using SWRL rules, and a DL reasoner is
used to infer if the current context of the user matches with any of the privacy
policies defined. Also, the user device holds the ontology and reasoner and the
Knowledge Endpoint agent is in charge of checking the policies that should
be applied. Figure 8.9 shows an example of privacy policy for a user: “do not
allow my social network colleagues group to take pictures of me at parties held
on weekends at the beach house”. Where FaceBlockPictures(?p,True) indicates
the system that a picture taken under such circumstances should be converted
into a privacy-aware picture.

We describe the cross device process for generating privacy-aware pictures
as shown in Figure 8.10. We use an example with two users, Primal and
Roberto, to explain how our method to generate privacy-aware pictures works.
Primal is the user who wishes to protect his privacy and Roberto is the user
with the device for taking pictures, in this case a Google Glass. Initially, Primal
takes a picture of himself to complete his profile in the system and SHERLOCK
generates a face identifier (step 1 in Figure 8.10). He also specifies the context
constraints for his pictures. At the Beach House, Primal’s SHERLOCK detects
and shares the face identifier with Roberto’s Google Glass (step 2) along with
a unique identification. Roberto’s device receives this information, stores it
and sends back his UID and an acknowledgment of the previous message
(steps 3 and 4).

Afterwards, SHERLOCK on Primal’s device continuously collects informa-
tion about his context and checks if any rule should be triggered by using the
reasoner (step 5). In this case, the context has changed (the party started) and
the rule presented in Figure 8.9 gets triggered requesting Roberto to preserve
his privacy in pictures where Primal appears (step 6). The corresponding
privacy policy (disallow pictures) for Primal is shared with Roberto’s device
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Figure 8.8: Images involved in the process of obtaining a privacy-aware picture:
(a) picture of a user; (b) face identifier of the user generated by the system; (c)
picture taken by a SHERLOCK user; and (d) privacy-aware picture generated
by SHERLOCK.

(step 7). Each privacy policy has a Time To Live (TTL) associated with it
during which the policy should be applied to the pictures of the user. Currently,
we are using a uniform TTL for every policy. Roberto’s device accepts the
privacy policy from Primal’s device (step 8) and whenever he takes a photo
SHERLOCK converts it into a privacy-aware picture (step 9). For that, if
faces are detected in the recently taken picture, the system checks if Primal
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Person(?p) ∧ Colleague(?p) ∧ Context(?c) ∧
hasTime(?c,?t) ∧ hasDay(?t,?day) ∧ WeekendDay(?day) ∧
hasLocation(?c,?loc) ∧ BeachHouse(?loc) ∧
hasActivity(?c,?act) ∧ Party(?act)

→ FaceBlockPictures(?p,True)

Figure 8.9: Example of a context-aware privacy policy to create privacy-aware
pictures.

Figure 8.10: Handshake diagram for the creation of privacy-aware pictures.

is present in the picture by comparing the detected face with Primal’s face
identifier and obscures it (step 10). Thus, SHERLOCK creates a privacy-aware
picture for Roberto and protects the privacy of Primal.

8.5 Related Work

In this section, we present related works on the two main topics explained in
this chapter. On the one hand, we present works dealing with the selection of
cameras views in real-time. On the other hand, we presents works focusing on
preserving user privacy preferences in pictures taken by cameras.
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8.5.1 Works on Selection of Camera Views

Up to the authors’ knowledge, no other work has focused on the real-time
selection of camera views based on the extraction of high-level features of
images provided by multiple moving cameras using a 3D model of the scenario.
However, there is extensive research on the analysis of real images to obtain
what a camera is viewing. These studies can be classified according to the kind
of processing performed on the video streams (on-line or offline). Proposals to
process the videos on-line, such as [LIS01; XCDS02], usually take into account
the cinematic features of the views provided by the cameras, such as the shot
types (e.g., a long shot, a close-up shot, etc.). Considering high-level features
related to the semantics of the scene, such as the specific object, the visible
amount of the object, or object-based features, such as the color and shape
of the objects, their interactions, etc., may be computationally too costly for
on-line processing, even though it would provide richer semantic details.

Real-Time Camera Selection for Sport Events

We can mention [WXCLT08; CLY09], that share the goal of our proposal of
selecting camera views in real-time for TV broadcasting, even though their
approaches are based on analyzing the real images provided by the cameras.

The context of the system presented in [WXCLT08] is soccer games. It
relies on the well-defined structure of a soccer broadcast to alternate the
selection between cameras that provide a far view and cameras that provide a
medium/close-up view. The view switching method proposed in that paper
does not analyze high-level features of the camera views and the authors assume
that all the cameras are following the game action (and hence they have a
similar content). So, their problem is to select those cameras providing a clear
view (they discard blurry images). The main differences between our work
and [WXCLT08] is that we allow the TD to define the criteria to be considered
to select a camera view, and moreover our proposal is able to obtain a good
number of high-level features of a camera view in live. Besides, we make no
assumptions about the current views of the cameras.

In [CLY09] a system is also presented to automatically select in live the
camera to broadcast in a soccer game. As we do, the authors also consider
low-cost cameras as a way to reduce the costs of a sport broadcasting. They
assume that there exist four cameras located along the field and they process
their views to obtain the size of the ball in each one. With this information,
they propose to select the camera whose view shows the largest area of the
projected ball. Therefore, their approach is focused on ball sports and under
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the assumption that the best views are those that provide a better view of the
ball, while ours can be applied to other contexts where selecting among many
camera views is needed.

The goal of these two works is to select automatically the best camera to
broadcast in soccer events based on parameters as image quality. However, our
approach, that is not focused in any specific sport, enables the TD to define
the kind of camera he/she wants to broadcast based on the objects that this
camera views.

Assistants for Sport Videos Summarization

A number of works have focused their efforts on the specific problem of helping
producers of sport videos. For example, as part of the APIDIS project,
in [CDV10] a system that helps the video production and video summarization
in the context of basketball games is presented. The work presented in [ETM03]
tackles the problem of summarizing videos of soccer games by applying different
image processing algorithms to analyze the input videos extracting cinematic
and object-based features. In [NTB09] the problem of video summarization,
based on metadata describing the semantic content of MPEG-7 videos, is
considered in the context of baseball games. Cricket videos, as well as soccer
videos, are used to validate the work in [Kol11], which exploits audio features
(such as an increase in the audio level of the voice of the commentators or the
cheers of the audience) to extract excitement clips from sport videos. Along
the same line, the work in [CH06] benefits from audio and motion cues to
extract highlights from baseball videos. Textual overlays appearing in images
are exploited in [BKOK04] to create personalized summaries of American
football videos (i.e., video abstracts that take into account the user preferences);
similarly, works such as [XZZRLH08; XWLZ08] use webcast text associated
to the video for event detection. In [ZHXXGY07] the authors focus on the
problem of ranking, structuring, and summarizing highlights to match a user’s
personalized query, within the context of racket games (tennis and badminton).
Like [ZHXXGY07], most works in this area emphasize the importance of taking
into account the user preferences and/or expectations [CDV11]. A detailed
survey of soccer video analysis systems can be found at [DL10].

All these works are concerned about facilitating the production of sport
events, like the proposal in this paper, but they have a different purpose. Thus,
the purpose of these works is usually to perform an automatic video production
in an offline setting (so, for example, achieving a good performance for real-time
processing is not an issue) by using real image processing techniques to extract
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low-level features (e.g., color, texture, shapes, etc.) that will be processed to
obtain cinematic features (i.e., shot classification).

Camera Management for Broadcasting

Several works in the literature have considered the problem of automatic camera
management for recording and broadcasting lectures and talks. For example,
in AutoAuditorium [Bia98] two cameras and microphones are used to obtain
information about what is happening on the stage and perform an automatic
audio mixing, tracking of the people on stage, and camera selection. Another
interesting work is [RHGL01], which implements several production rules,
inspired by the way professional video producers work, in order to take the
appropriate recording decisions. The system FlySPEC [LKFWB02] combines
a PTZ (Pan-Tilt-Zoom) camera and a panoramic camera and benefits from
the involvement of the audience, participating through explicit requests, to
reduce the probability of unsatisfactory recordings. The Microsoft Research
LecCasting System (MSRLCS) [ZRCH08] supports a scripting language to
facilitate the customization of production rules for different room configurations
and production styles. As a final example, the Virtual Videography [HWG07]
advocates an offline processing to have more time and information to perform
the video production.

Although the context and purpose of these works is different from the ones
considered in this paper, they highlight the interest of the development of
automatic video production techniques to save production costs and enable fast
access to multimedia information. Several other works focus on multi-camera
management (e.g., [AKK06; PLMC09]). However, they usually consider only
cameras that are static (i.e., at fixed locations), whereas the cameras considered
in our proposal can move.

8.5.2 Works on Privacy on Pictures

The technique we developed to preserve user privacy in photos is general and
can be applied to any device equipped with a camera. However, we designed
this technique with wearable cameras in mind. Wearable computing devices
like Google Glass are at the forefront of technological evolution in smart devices.
One of the best capabilities of such devices is that they allow spontaneous
and effortless photo taking. Instead of pulling out your camera, turning it on,
aiming, taking a picture and putting it away, Google Glass makes it as easy
as saying Okay Glass, take a picture. The ubiquitous and oblivious nature
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of photography using these devices has made people concerned about their
privacy in private and public settings.

Although eyewear devices have been introduced to the public very recently
there are other approaches in the literature to privacy enhancing for wearable
computing (see [KDSW15] for a study on the topic). For example, in the
Respectful Cameras approach presented in [SMMSG07], people wear colored
hats and scarfs to let cameras know that their face should be made unrecog-
nizable in pictures taken. The P3F approach presented in [DWE13] follows a
similar approach where users wear a piece of wardrobe to let cameras know
their preferences. In this case, the piece of wardrobe can encode more complex
privacy preferences such as do not search (to specify that the user do not want
the photo to be retrieved in queries using her identification) or do not publish
(to specify that the user do not want the picture to be published). However, in
these two approaches the user is required to wear something whereas in our
approach is the face identifier what is used to detect the user and her devices
shares her privacy preferences. Other approaches, such as SnapMe [HSS13],
use location information to prevent pictures taken from being shared. In that
approach, users register into the SnapMe platform and upload the pictures
they take to it. Whenever a picture is uploaded, using the metadata infor-
mation about the location, users in the same location are notified. In our
approach, users can define their context-aware privacy policies (which include
other aspects in addition to the location, for example, the activity) that are
applied regarding the situation. Also, by sharing the face identifier we can
detect if a user is in a picture or not and thus, apply her privacy preferences
automatically.

8.6 Summary of the Chapter

In this chapter we have explained the mechanisms developed to enable SHER-
LOCK to manage cameras which are providers of multimedia information.
We have focused on the processing of camera views to be able to determine
whether a camera could provide the image that the user requested. We pre-
sented our algorithms to efficiently determine what a camera is viewing in
real-time without the need to analyze real images (which can be too costly for
mobile devices). Our algorithms are based on the recreation of the scene that a
camera is viewing in a 3D engine. To this end, our system relies on a 3D model
of the scene generated based on information about the interesting objects and
cameras in the scenario (location, direction, and approximate 3D extent) which
is shared with each SHERLOCK device. The approach presented obtains
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high-level features of cameras views, such as: the specific objects viewed, the
percentage of them covered, the percentage of the shot filled by a specific
object, the kind of view of the object obtained (e.g., front, top, side), etc.

Also, a similarity measurement is presented to obtain an objective value
to compare the high-level features extracted by SHERLOCK for two camera
views. This value is used by the system to provide a ranking list of similar
images for a user request query. High-level features (such as the specific objects
in a shot, their visible percentage, their viewpoint, etc.) are extracted from
the example shot and the current camera views efficiently and used in the
similarity formula presented. Moreover, the approach can be fine-tuned to the
preferences of specific users.

Finally, we have presented our approach to preserve the privacy of users
that are part of pictures taken by other SHERLOCK users. Our approach
allows a user’s mobile device to share privacy policies with nearby devices
using the dissemination mechanisms that SHERLOCK implements. Along
with the policy, users share information that helps identify them in a picture
and obscure their faces as necessary.
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Chapter 9

Dealing with the Motivating
Scenarios

In Section 3.1 we presented four motivating scenarios that we designed to
highlight the most important challenges that a system to provide LBS would
have to address. So far we have explained our proposal to address these
challenges and to provide users with LBS in wireless environments. In this
chapter we revisit the four motivating scenarios explaining how SHERLOCK
deals with them. For each of these scenarios, we will show the knowledge that
the system needs to manage it, and the most important steps involved in its
processing focusing on the most important challenge in such a scenario. In
addition, to further explain the flexibility of SHERLOCK, we show other uses
cases that were not directly considered when we designed the architecture, but
that are processed by SHERLOCK by just providing knowledge about them.
These scenarios include a tourist in a foreign city who wants recommendations
for sightseeing, a PhD student attending a conference who wants to find other
researchers in his field, and finally a community health-care worker in rural
India who needs assistance treating patients.

9.1 First Scenario: SHERLOCK for Looking for
Transportation

In our first scenario, a person arrived in a foreign city and needs to find
transportation (see Section 3.1.1). Let’s imagine that John is visiting Zaragoza
(Spain) for the main festivities (Fiestas del Pilar). He just arrived at the
railway station of Zaragoza and wants to find transportation that could carry
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him to his hotel (“Hotel Palafox”). It is the first time that John visits Spain
and he does not know anything about transportation there but he would prefer
a private transport that can carry him directly to the destination.

9.1.1 Knowledge for the Scenario

To be able to handle this scenario SHERLOCK needs knowledge about trans-
portation services in the area as well as the surroundings (e.g., about the
previously mentioned hotel). Figure 9.1 shows an excerpt of the ontology which
models a definition of the different services to find transports. On the one hand,
the general Find Transportation service returns any type of transportation
and could be part of the local knowledge of the device prior to arriving in
Zaragoza. This service will be processed as a SHERLOCK query as explained
in Section 6.2. On the other hand, the Find Bus Tuzsa service is a particular
service that operates in the city and returns the location of buses belonging
to the local bus corporation of Zaragoza through a web service (which was
unknown for John). Notice also that we define other services to obtain the
location of bus stops and information about buses from them.

Let’s imagine that the knowledge about Zaragoza and the different trans-
portation means which operate in it has been shared by a device in the tourist
information center at the railway station. This knowledge has been integrated
into the local ontology on John’s device. Therefore, the moment John runs
SHERLOCK on his smartphone at the railway station, his device learns this
knowledge by autonomously communicating with the information center.

9.1.2 Steps Followed

We show the most important steps that explain how SHERLOCK deals with
this scenario focusing on the request generation part (i.e., translating the user
information needs into a SHERLOCK request). For some of them we will use
screenshots of the SHERLOCK prototype we developed and which we explain
in Section B.1.2.

1. John types in Hotel Palafox in SHERLOCK’s search bar (see Fig-
ure 9.2(a)). A User Request Manager (URM) agent is created which finds
an instance of the hotel class whose name corresponds to that string, and
therefore understands that the user is interested in a hotel.

2. The URM deduces, after querying the local ontology on the user device,
that there are two LBS related to hotels in its local ontology: Find
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Figure 9.1: Excerpt of the ontology for the “Looking for Transportation”
scenario.

Transportation and Room Reservation. Remember that SHERLOCK
looks for services that are somehow related to the concept Hotel whatever
the name of the property that references such a concept is (we do not
assume any predefined schema in the definition of services). In this case,
the properties are parameter (because Hotel is a subclass of Destination,
which is a parameter of the Find Transportation service) and provides
(because Hotel provides the Room Reservation service), respectively.

3. The user selects the Find Transportation service and the URM obtains
from the local ontology the parameters of such a service, (Price, Shareable,
Door2Door, and Luggage), to allow the user to specify his preferences.
Then ADUS generates a GUI to fill in these parameters as shown in
Figure 9.2(b).

4. The user shows his interest in a transport Door2Door (indicating that this
is mandatory) that admits Luggage, if possible. Then, the system infers
that objects belonging to the Taxi, Bus, and Shuttle classes fulfill the user
preferences and provide transport services. In addition, SHERLOCK
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(a) (b)

Figure 9.2: Screenshots of the SHERLOCK prototype executing the first
scenario.

devices surrounding the user share that Find Bus Tuzsa is an instance
of the Find Transportation service available for that specific geographic
area (Zaragoza) and time, which returns information about buses in the
city obtained from a web service. The URM creates two user requests to
handle the two services. In particular, for the former service it translates
the user information needs into the following SHERLOCK query:

PREFIX sherlock: <http://sid.cps.unizar.es/ontology/sherlock/>

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX geof: <http://www.opengis.net/def/geosparql/function/>

SELECT ?name, ?lat, ?lon

WHERE{

LI{
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FILTER(geof:sfWithin(?thing, geof:buffer(<userloc>, 1, km))

},

OD{

CASE(Type(?thing, sherlock:Transport),

PropertyValue(?thing, sherlock:parameter, ?door2door),

PropertyValue(?door2door, sherlock:name, ‘‘door2door’’),

PropertyValue(?door2door, sherlock:value, true)),

PropertyValue(?thing, sherlock:parameter, ?luggage),

PropertyValue(?luggage, sherlock:name, ‘‘luggage’’),

PropertyValue(?luggage, sherlock:value, true)),

CASE(Type(?thing, sherlock:Taxi))),

CASE(Type(?thing, sherlock:Shuttle)),

CASE(Type(?thing, sherlock:Bus)),

},

PropertyValue(?thing, sherlock:name, ?name),

PropertyValue(?thing, sherlock:latitude, ?lat),

PropertyValue(?thing, sherlock:longitude, ?lon),

}

Notice that the query includes the inferred interesting transports (Taxi,
Shuttle, and Bus) as well as the general definition of interesting transport
that the user selected (a Transport that is door2door and admits luggage).
As explained in Section 6.1, the URM includes transports that do not
fulfill completely the requirements of the user (i.e., Bus) to maximize
the chances of obtaining results. Nevertheless, it will display them on
the map with a different color to highlight that they are not completely
aligned to the user needs.

5. The URM agent creates two URP agents to manage both requests. On
the one hand, a URP agent processes the Find Bus Tuzsa service by
calling the web service. On the other hand, a second URP processes the
SHERLOCK query to obtain taxis, shuttles, and buses located nearby
with a relevant area of 1 km around the user (the area was selected by the
user in the previous step) by deploying a network of mobile agents. In the
meanwhile, the Ontology Updater (OU) agent discovers that there exist
moving objects classified as Bikecab (an unknown subclass of Taxi for
the ontology of the user). This new knowledge enriches the user device
knowledge and enables the URM to infer that bikecabs also fulfill the
user preferences and the query being processed is edited to reflect it in
the next reevaluation of the query.

6. One of the Updater agents executing the query against other devices is
not obtaining results that fulfill the user requirements at the moment.
Then, this Updater decides to extend the user request. According to the
knowledge modeled in Figure 9.1, buses are also returned by a service
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Get Info Buses which is provided by bus stops which in turn are returned
by the Find Bus Stop service. Exploiting this information the Updater
deduces it can execute the service to obtain bus stops to show information
which might be interesting for the user. In this case, the execution of
this service triggers the call to a web service of the bus organization in
Zaragoza (the Find BS Tuzsa service in Figure 9.1).

7. SHERLOCK presents on the GUI the interesting objects in different
colors (see Figure 9.2(a)): in green, those fulfilling all the mandatory and
optional user preferences (i.e., taxis and shuttles); in red, those fulfilling
some optional preferences but not all the mandatory ones (i.e., buses and
bus stops); the rest of moving objects displayed fulfill all the mandatory
preferences but not all the optional ones (i.e., bikecabs).

8. The user could click on a bus stop icon to trigger a request to obtain the
remaining time for the next bus arrival. As the user does not want to
wait too much, he finally decides to click on a taxi (through its displayed
icon) and selects its Call Taxi service to get to “Hotel Palafox”.

Notice that the information provided by the user (a click on a map, selecting
the Transportation Service, and filling a user-friendly form) is enough for
SHERLOCK to retrieve interesting transportation for that geographic area
and time. John did not know anything about specific transportation means in
the city (e.g., buses in Zaragoza and bikecabs). SHERLOCK managed all this
knowledge for him and even deduced that bus stops could also be interesting
when it did not find results. We have shown also how the system integrates
data obtained directly from querying the moving objects in the scenario with
third-party data sources (e.g., web services) specified in ontology descriptions
of the services providers. This way, if the query processed against SHERLOCK-
enabled devices do not return results, his SHERLOCK app might find them
by using a web service as long as Internet connectivity is available.

9.2 Second Scenario: SHERLOCK for Helping Fire-
fighting

In our second scenario the coordinator of a firefighting team in charge of the
suppression of a wildfire needs information about his team and the scenario
(see Section 3.1.2). Let’s imagine that John is the coordinator of a wildfire
suppression team in Yellowstone National Park and is interested in obtaining
information about fire outbreaks and the firefighter team under his command
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(which consists of five firefighters, two firefighting trucks, and a helicopter). In
particular, John needs information about the location of each of the members
of the team as well as their sensors readings. Also, he needs the approximate
location of the fire outbreaks to have information about the affected area.

9.2.1 Knowledge for the Scenario

To manage this scenario we define the knowledge in Figure 9.3. First, we model
a definition of a service to monitor wild fires which returns the location of fire
outbreaks as well as the location of any personnel or vehicle involved in the
fire suppression (the Fire Monitoring service). Notice that we have modeled
that the service returns also the location of people inside a Dangerous Area,
defined as High Temperature Area (hasTemperature > 50) and High Level of
CO2 Area (hasCO2 > 400)1. Second, we define information about John and
his team, including the members and equipment.

As in the previous scenario, this knowledge could have been defined by
a knowledge engineer working for the firefighting unit and shared with the
SHERLOCK on John’s device.

9.2.2 Steps Followed

In the previous scenario we focused on how SHERLOCK assists users in selecting
services and filling in their parameters. Also, we showed how SHERLOCK
obtains information from a discovered web service. In this scenario, where
3G connectivity is not guaranteed because of the location and the fire, we
will focus on the processing of a user request which involves the creation of a
network of mobile agents. In this case, we will illustrate this scenario by using
the PC prototype of SHERLOCK (which we explain in Section B.1.1). The
prototype includes a simulator that enables us to randomly create and move
fire outbreaks and change the location of the firefighters (see Figure 9.4(b)).

1. The user taps on the service tab where a URM agent displays a list of
service which can be interesting for him. In this case, the Fire Monitoring
service appears in this list because the user selected firefighter as his profile
and it matches the profile linked to the service through the interestingFor
property. The URM obtains from the local ontology the parameters of
this service, which in this case is the location to monitor. The URM
offers John a map through ADUS to select such location of interest. With

1Temperatures are measured in Celsius degrees and CO2 in ppm (parts per million).
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Figure 9.3: Excerpt of the ontology for the “Helping Firefighting” scenario.

the information defined by the user the URM generates a SHERLOCK
query and creates a URP agent to process it.

2. The URP processes the query and creates a single Tracker agent to handle
the defined location of interest. The Tracker starts executing its protocol
and decides to move to a truck that provides firefighters with water (see
Figure 9.5(a)) because its device has a powerful CPU and a high capacity
battery and is closer to its target destination.

3. From the truck, the Tracker discovers two devices (belonging to firefight-
ers FF2 and FF4) which the Tracker estimates can cover part of the
location of interest with their WiFi communication mechanism. Then,
the Tracker creates two Updater agents, Updater1 and Updater2, one
on each discovered device (see Figure 9.5(b)). Then, Updater1 executes
the query against the local knowledge on the device (through its KE
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(a) (b)

Figure 9.4: GUI of the PC prototype for the fire monitoring scenario.

agent) and obtains information about four firefighters (FF1, FF2, FF3,
and FF4). At the same time, Updater2 obtains information about two
firefighters (FF3 and FF4). The Updater agents send this information
to the Tracker which evaluates it and determines that their estimated
coverage area is included in the currently covered area and therefore, no
more Updaters are created (see Figure 9.5(c)).

4. The Updater agents keep querying the local knowledge on the device they
are residing in and they also query the knowledge on the other devices
discovered (which belong to the rest of firefighters). They retrieve all the
information modeled in the ontology as properties of the firefighter (which
in this case includes the readings of their CO2 and temperature sensors)
and send it continuously upwards through the network; the location of
the firefighter units is presented to John along with the dangerous areas
computed with the firefighter sensor measures (see Figure 9.6 in orange).

5. The Updater agents also send to the Tracker the communication delay
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(a) (b)

(c)

Figure 9.5: Deployment of the agent network in the fire monitoring scenario.

with the objects (see Table 9.1 for a simulation of the possible values they
would send). The Tracker agent uses this information to evaluate if the
updater agents are overwhelmed. The Tracker commands Updater2 to
continue monitoring FF3 and FF4 because it has a better communication
with them, whereas it commands Updater1 to stop monitoring these
two devices as it seems to be overwhelmed. This way, as Updater1 is
continuously reevaluating which is the best device to execute its task,
in the next reevaluation it will try to stay close to FF1 and FF2 by
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Figure 9.6: Results shown to the user in the fire monitoring scenario with the
location of the mobile agents deployed.

moving to FF2’s device which has more battery at the moment.

Reference Object Updater Comm. Delay (s) Time Stamp

FF1
Updater1 0.64, 0.62, 0.68, 0.67 19:17:12

Updater2 1.05, 1.12 19:17:10

FF2
Updater1 0.56, 0.0, 0.0, 0.0 19:17:12

Updater2 0.85, 0.81 19:17:10

FF3
Updater1 0.71, 0.94 19:17:11

Updater2 0.0, 0.0, 0.0 19:17:15

FF4
Updater1 1.32, 1.11 19:17:11

Updater2 0.43, 0.38, 0.39 19:17:15

Table 9.1: Table used by a Tracker agent to dynamically maintain its network
of Updaters.

6. Then, the firefighter FF2 moves towards the fire and an increment on
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the communication delay between Updater1 and the firefighter’s device
occurs. The Tracker, which is analyzing the communication delays,
detects that the firefighter might move out from the area covered by the
current Updater agents. Thus, the Tracker creates a new Updater and
sends it towards the location of FF2.

7. Finally, John taps on FF2, who has been classified as inside a dangerous
area with the information the URM received, and a new URM show him
the information modeled in the ontology as properties of a firefighter (i.e.,
name and sensor readings). Along with the information, the URM shows
services related to him, for instance, a service related to a person in a
dangerous area to command her to move to a location (Move To service).
John taps on such service to require FF2 to get closer to the rest of the
team and avoid the danger.

Thus, in scenarios where the system cannot rely on a fixed infrastructure
(e.g., because of the fire damaging communication infrastructures) SHERLOCK
is able to leverage P2P communications to process a user request. In this
scenario, we have seen how SHERLOCK agents move towards the location of
interest and discover devices in it. Also, we have shown how SHERLOCK is
able to manage its network of agents to dynamically adapt itself to changes
such as new devices being discovered or delays in the communication with the
devices.

9.3 Third Scenario: SHERLOCK for Handling Sport
Events Broadcasting

In the third scenario, a Technical Director (TD) needs assistance in the live
broadcasting of a sport event (see Section 3.1.3). In this case, let’s imagine that
John is the TD in charge of the live broadcasting of La Bandera de la Concha
2015, a famous rowing race celebrated annually in San Sebastian (Spain).
Among the many tasks that John has to perform, the most important task
is to select the camera to broadcast at each moment. John is an experienced
TD and has some specific shots in his mind to broadcast. So, he would like
to define them and then obtain the list of cameras (from the broadcasting
company and even from the audience) that could provide them.
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9.3.1 Knowledge for the Scenario

This scenario, as well as many others, needs a service to obtain cameras that
could provide a specific view of different objects. We defined the general service
Get Camera as an implementation of such services (see Figure 9.7 for an excerpt
of the ontology). This service returns entities of type Camera, which could be
even attached to a mobile devices such as an smartphone, and has parameters
such as the distance from the camera to objects inside and the visibility of
such objects in the field-of-view of the camera. Notice that, for the latter we
have modeled that such parameter can be obtained through a specific GUI (a
3D Query-by-example interface). Also, we have defined two services provided
by these cameras to ask them to take pictures and videos and share them with
the requester, the Take Picture and Take Video services, respectively.

We have defined also a service to manage the broadcasting of a sport event
(see Figure 9.8 for an excerpt of the ontology) and a specific instance of this
service for the rowing race in the example (BroadcastingBanderaConcha2015 ).
Notice that, this service obtains information about the rowing boats partici-
pating in the race and the cameras of the broadcaster. Also, we have defined
the knowledge related to the rowing race which is used in combination with
the previous definition of the service. The knowledge about the race includes
the participants of the rowing race and cameras managed by the broadcasting
company, as well as possible interesting locations for the broadcast (such as
the ciaboga area which is the turning point for the boats). All this knowledge
would be defined by the broadcasting company and its information system
would share it with the SHERLOCK on the TD device.

9.3.2 Steps Followed

For this scenario, we will focus on the steps related with the multimedia infor-
mation component, that is, specifying the kind of views the user is interested
in obtaining, and processing the views provided by cameras in the scenario to
retrieve the cameras that can provide interesting shots.

1. First, the TD selects the Manage Broadcasting service to obtain the
real-time location of the rowing boats and the cameras under his control.
The URM in charge of handling this request creates a URP agent that
processes the SHERLOCK query generated. After deploying a Tracker
agent to cover the location of interest (in this case the bay), similarly to
the previous scenario, results are displayed on the map of the SHERLOCK-
enabled device of the TD.
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Figure 9.7: Service to find cameras that could obtain a certain shot.

2. Then, the TD is interested in broadcasting a shot of the local team rowing
boat (Donostiarra). For that he first wants to obtain a list of cameras
that could provide such a shot to select one of them and broadcast its feed.
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Figure 9.8: Excerpt of the ontology for the “Handling Sport Events Broadcast-
ing” scenario.

Therefore, the TD selects the Get Cameras service and a URM agent
obtains the parameters associated to such a service in the ontology. As
one of the parameters is the definition of a sample shot, ADUS displays
the 3DQBE (3D Query-By-Example) interface (linked to the parameter
through the interface property) to define the specific shot of the rowing
boat to retrieve (see Figure 9.9). On that interface, the user defines the
kind of shot to obtain by rotating the camera view and even including
other objects in the scene. The interface translates this sample shot into:
“An image showing 50% of the front view and 70% of the right side view
of Donostiarra, and 40% of the front view and 15% of the right side view
of any other rowing boat”2.

3. The URM translates the information obtained from the 3DQBE interface
to a formal query expressed in SHERLOCK’s language. Then, it creates
a URP agent to process it which first executes the query against the local
knowledge on the device. Notice that the other user request (associated
to the Manage Broadcasting service previously selected by him) is still
active and the agents processing it are continuously retrieving results.

2Notice that the features regarding to the location of the boats in the image and the
percentage of the shot filled with them have been omited for readability.
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Figure 9.9: Definition of the shot that the technical director wants to broadcast.

Therefore, the local knowledge is being updated with information about
the rowing boats (such as their location, direction, extent, and top/front
vectors) and the broadcaster cameras (such as their location, direction,
FOV, current pan and tilt). So, when the URP created to handle the
Get Cameras service executes the query against the local knowledge on
the device, it retrieves such information.

4. With this information about the rowing boats and cameras in the scenario,
the URP module in charge of obtaining high-level features of the view of
a camera recreates the scene in the 3D engine. Then, for each camera
retrieved from the local knowledge, it computes what the camera is
viewing (as explained in Section 8.2) and obtains the similarity degree
when compared with the requested shot (as explained in Section 8.3).
For example, for one of the cameras in the scenario the system recreates
its view in the 3D engine, as Figure 9.10 shows.

5. The URP obtains high-level features for the rest of cameras and compare
them to the view defined by the TD. Then, the URP agent sends the
ranked list of camera views to the URM which requires ADUS an appro-
priate interface to display the results (which in this case are renders of
camera views, and therefore, pictures). ADUS displays the images that
the cameras could take as shown in Figure 9.11.

6. From these results the TD selects the first one, which he thinks looks
similar to the shot he want to broadcast. Then, the TD orders the
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Figure 9.10: Camera view recreated in a 3D engine by the system.

Figure 9.11: Some of the camera views returned to the TD.

corresponding camera feed (see Figure 9.12) to be broadcasted (the
selection and streaming of the camera feed is outside of SHERLOCK).

As we have seen, SHERLOCK is able to manage complex information
requests involved the specification of the multimedia information to retrieve.
This way, the system enables users to use a 3DQBE interface to visually define
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Figure 9.12: Camera feed broadcasted.

the kind of camera shot they want to obtain. Then, the system is able to
retrieve information about cameras and objects in the scenario and use this
information to compute high-level features of the views of such cameras. Finally,
it can use these features to compute a similarity degree between the view of
each of the cameras and the shot that the user defined in order to present the
cameras which could provide him with the best content.

9.4 Fourth Scenario: SHERLOCK for Emergency
Management

In the fourth scenario, the user is the coordinator of an emergency response
team who has to manage the a request for assistance to help the people affected
by an emergency (see Section 3.1.4). Let’s suppose that John is the coordinator
of the emergency teams assigned to a traffic accident. The accident occurred
in the US160 highway mile 32 and there are two vehicles involved.

9.4.1 Knowledge for the Scenario

For this use case, we have defined two main services (see Figure 9.13 for an
excerpt of the ontology). On the one hand, the Emergency Call service, which
is meant to be used for people in distress (like the drivers involved in the
accident of the use case), is composed of two subservices Search Assistance and
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Request Assistance. The Emergency Call service includes a workflow (linked
through the execute property) which describes how these subservices should
be executed. On the other hand, we defined the Manage Emergency service
which is interesting for emergency coordinators. They can use this service to
automatically find emergency units (Find Emergency Team service), ask them
to move to the location of the accident (Move To), and obtain and send them
appropriate pictures of the area (Obtain and Send Picture). Notice that we
have define emergency units as police, medical, and firefighting units. Also,
the Obtain and Send Picture service uses the Get Cameras and Take Picture
services of the previous scenario to find them cameras that can take pictures
of the accident and ask them to take pictures. Then, the service uses the Send
Picture service provided by the device to send the photos obtained to a set of
emergency units.

9.4.2 Steps Followed

In this case we will focus on the processing of complex services, which involve
the execution of other services transparently to the user. As we will mention
services and the subservices which compose them, we will use Figure 9.14 to
show the general picture of the scenario with the flow of events.

1. An emergency call is issued by the driver of a car involved in the accident
(step 1 in Figure 9.14). For that, the user selected the Emergency Call
service3, which is defined in the ontology as a composed service. This
service triggers the Search Assistance service to find help and for each
emergency unit detected it calls its Request Assistance service.

2. First, the URM handling the selected Emergency Call service, from now
on URM1, determines that the service is composed of others (because
the execute property is included) and creates a URP, URP1, to handle it.
Then, URP1, using the module to process BPMN workflows, takes the
XPDL code and starts executing it by creating another URM, URM2,
to handle the Search Assistance service.

3. The new URM2 agent, attending to the definition of the service in the
ontology, generates a SHERLOCK query and creates a URP agent, URP2,
to process it. As explained in previous scenarios, URP2 processes the
query creating the network of mobile agents to find emergency units

3Notice that in the future this service could be even automatically selected by the car
itself.
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Figure 9.13: Excerpt of the ontology for the “Emergency Management” sce-
nario.

around. Once the results are returned by its Tracker agent, URM2 send
the results back to URP1, the agent processing the service selected by
the user. According to the workflow, for each emergency unit found, its
Request Assistance service has to be called with the location of the user
as parameter. In this case, URM2 found John and thus, a URM agent
is created to handle the petition for assistance, which in turn creates a
URP to execute the service on his device.

4. Once John receives the petition through his SHERLOCK device, he selects
the Manage Emergency service (step 2 in Figure 9.14). The URM that



189 Chapter 9. Dealing with the Motivating Scenarios

Figure 9.14: Emergency management scenario.

gets created to handle this service requires John to input the parameters
(in this case, the location of the accident that he received with the petition
of assistance). Then, the URM agent creates a URP agent to process
the request. Again, this request is composed of three other services (the
execute property links it to the workflow): 1) The Find Emergency Team
service to find emergency teams near the area; 2) The Move To service
to require them to move to the location of the accident; and 3) The
Obtain and Send Picture service to find and send them pictures of the
accident. The service is processed similarly to the Emergency Call service
explained before and in this case it first finds ambulances, fire trucks and
a helicopter in a nearby hospital and fire station and ask them to move
towards the accident (step 3 in Figure 9.14).

5. The URM agent created to handle the service to find and send pictures
determines that it is a composed service which first finds cameras that
could obtain pictures of the accident, then asks them to take pictures,
and finally, sends the pictures to the units. The service to find cameras
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is the Get Cameras service explained before in the broadcasting scenario
and it is executed in the same way. However, in this situation John
does not define any specific shot to obtain as any image of the accident
would be helpful. Once cameras have been found, the Updater agents
created ask users in the area to take photos of the accident (step 4 in
Figure 9.14) if they are not getting results by applying their request
extension capability.

6. Finally, the pictures are sent to the emergency units which are on their
way to the accident. At the same time, the URP agent processing the
Manage Emergency service is obtaining the real-time location of the
emergency units and communicating this information to the URM which
show them on a map.

We have shown how SHERLOCK is able to handle complex services like
the Emergency Call and Manage Emergency in this scenario. For the former
service, the user simply selected a service after the accident and the system
triggered a search for help that eventually reached a police officer. For the
latter service, the officer, which had to act quickly, selected a service and used
as parameter the information which he received about the accident. Then,
the system triggered a search for emergency units nearby and require them
to move towards the accident. Also, notice how the modeling of the service
included sending real-time pictures of the accident to emergency units to let
them be ready to help, and SHERLOCK found a way to obtain such images
by asking users equipped with cameras to take them.

9.5 Other Extra Scenarios

The main goal of this thesis was to design a general and flexible system to
provide many different LBS. The previous four scenarios have shown that the
designed system is able to address the heterogeneous challenges that arise in
the context of the provision of LBS in wireless environments. We have seen
how SHERLOCK helps users to define their information needs (which might
involve obtaining multimedia information such as images provided by cameras),
then it processes the user request against different sources (local knowledge on
the device, external services, and other SHERLOCK devices in the scenario),
and finally it shows the results to the user. These functionalities are possible
thanks to the knowledge that the system integrates and which defines services
and scenarios as well as the mobile agents that find the information wherever
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it is. Thus, the system: 1) is decoupled from the contextual knowledge of
the scenario; and 2) is capable of adapting itself automatically to different
situations.

To further highlight that SHERLOCK is flexible enough to provide different
services, we present in the following another three scenarios where we have used
SHERLOCK. These scenarios do not present new challenges, as the previous
four already covered a great variety of challenges for a system like SHERLOCK,
but help to show the generality of our approach. Indeed, we will further show
in the following that just by defining the knowledge related to the LBS and
scenario as an ontology, and providing a SHERLOCK device with that, it is
able to offer the functionality to the user. First, we explain two simple scenarios
where the user is interested in obtaining tourist information and finding fellow
researchers in a conference. Then, we explain a more complex scenario where
the system can help community health-care workers in underserved areas. Bear
in mind that SHERLOCK was not specifically designed for any scenario, nor
the previous four nor the following extra scenarios, but nevertheless, the system
is able to support them.

9.5.1 SHERLOCK for Obtaining Tourist Information

John is a tourist that just arrived in Rio de Janeiro. After using SHERLOCK
to find a taxi to his hotel, he is in his room planning what to see the next day.
John is interested in visiting different monuments and museums and therefore
wants to locate them on the map and obtain information such as their price
and schedule.

Knowledge for the Scenario

Along with the knowledge of the area that SHERLOCK found at the airport
about transportation in the city, a tourist information stand shared a Find
Tourist POIs service with information about some of the points of interest
of the city (see Figure 9.15). The ontological definition of such a service
relates it with different “static” objects, such as monuments, cathedrals, parks,
etc. Moreover, the service has been also related (in the ontology) with some
“moving” objects, such as tourist buses, tourist guides, etc. It also shows that
there exists a related Web service that provides the location of some of these
objects (Google Places).



Chapter 9. Dealing with the Motivating Scenarios 192

Figure 9.15: Excerpt of the ontology for the “Obtaining Tourist Information”
scenario.

Steps Followed

John first taps on the services tab on his SHERLOCK app and a URM agent
offers him the Find Tourist POIs service, defined as interesting for tourists.
After selecting the service, the URM creates a URP to handle the call to the
external web service and another URP to handle a SHERLOCK query to
find the objects related to the service (linked through the returns property).
After getting results from the URP agents (for instance, the former URP
finds the statue of Christ Redeemer and the latter a tourist guide), the URM
agent shows them on the map (see Figure 9.16(a)). Finally, John taps on the
icon representing the statue of Christ Redeemer on the map to retrieve more
information. SHERLOCK generates a URM that shows the local knowledge
collected about this point of interest: properties of the object (e.g., price and
schedule) and related services such as the Find Transportation service explained
for the first motivating scenario.
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(a) (b)

Figure 9.16: SHERLOCK obtaining: (a) interesting touristic points and (b)
information about a researcher.

9.5.2 SHERLOCK for Meeting Fellow Researchers

After sightseeing in Rio, John attends the WWW’13 conference (which is
happening in a hotel in the city) to present his work. John is a PhD student
attending his first research conference and a common problem in this situation
is to find other researchers with similar interests to talk with them. John could
start talking to people to find their research fields, but he is shy, or check the
names on their badges on DBLP, but that takes effort and time.

Knowledge for the Scenario

Let’s imagine that the conference organizers made some knowledge available
in the hotel for customers registered in the conference (see Figure 9.17). In
this case, they created an ontology describing the attendees and defining a
Find Researchers service. John is interested in locating fellow researchers from
his same research field to talk to them, so the recently found service could
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be very handy. The ontological definition of the service establishes that it
is interestingFor WWW’13 attendees and the knowledge that the organizers
shared described the user as such.

Figure 9.17: Excerpt of the ontology for the “Meeting Fellow Researchers”
scenario.

Steps Followed

John taps on Find Researchers and a URM agent ask him for parameters
associated (in this case, the research field). When John taps on the interface to
fill in such parameter, the URM shows a list of instances of research fields in its
local knowledge (shared along with the service by the organizers). With this
information the URM generates a SHERLOCK query and creates a URP agent
to process it. Then, the URP executes the query against the local knowledge
and retrieves the researchers shared by the organization. As the timestamp of
the information shared by the organizers is outdated for dynamic information
such as the location of the results, the URP also creates a network of RRE
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agents to find this information around. Recall that SHERLOCK queries that
do not depend on a location are processed by these agents (see Section 7.1.1)
and the service is not location-dependent as the location property is not defined
in the ontology for it. These RRE agents move to devices of other attendees
and return their location (whenever their privacy preferences allow it) to the
URM agent that shows them on the map. Finally, John taps on a researcher
(Roberto Yus) and the URM handling this request shows the information it
has about him, as well as other services related to a researcher, such as the
Send Mail service (see Figure 9.16(b)).

9.5.3 SHERLOCK for Helping Health-Care Workers

The lack of access to adequate care in medically underserved areas is one
of the biggest challenges in health-care in both developing and developed
countries [AEJJIM13]. Community Health Workers (CHW), who act as liaisons
between patients and health-care providers in these areas, have been able to
address this problem to certain extent. CHWs are typically high school educated
and use simple forms and manuals for collecting information about the patient
by filling in information about symptoms and patient demographics as well as
diagnosing the patient.

Let us look at a possible scenario developed on the basis of the ASHA4

manual [Ind], which points out inefficacies of CHW program mentioned in [SS12]
and how SHERLOCK could help to deal with such issues. Imagine a CHW
who arrives at a house in Sirpur, a small village in the Chattisgarh state of
India, after being informed of a child presenting some problems. Kumar, a
six-year old boy, has been experiencing vomiting according to his parents. The
CHW, following the manual, starts collecting details about Kumar and his
problem using specific forms. Finally, the child is identified as having diarrhea
and the CHW provides the parents with oral rehydration solution (ORS) and
advises them on food intake. Even though the CHW indicated that Kumar
suffers from severe dehydration, a dangerous and potentially life-threatening
condition, she did not feel the need to refer the child. SHERLOCK could help
in this situation by managing the knowledge about diseases and questions to
ask, alerting the CHW about possible emergency situations, and keeping her
updated with the latest information related to diagnosis.

4Accredited Social Health Activist (ASHA) is a CHW organization in India.
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Knowledge for the Scenario

The knowledge needed to support the Community Health-care scenario can be
split into three main modules:

• Diagnosis module, which models the basic knowledge related to diagnosis
such as diseases, symptoms, and questions (see Figure 9.18).

Figure 9.18: Excerpt of SHERLOCK’s ontology for the CHW scenario: diag-
nosis module.

• Patient module, which includes all the information related to the patient
which might be of relevance for diagnosis of the disease (see Figure 9.19).
The primary patient information considered by SHERLOCK are location
and patient demographic.

• Stats module, which models the aggregated health-care information re-
lated to patients and diseases in various regions (see Figure 9.20).

Also, we defined some SWRL rules which are used along the previous
knowledge to define, for instance, possible diseases for a patient (we will show
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Figure 9.19: Excerpt of SHERLOCK’s ontology for the CHW scenario: patient
context module.

Figure 9.20: Excerpt of SHERLOCK’s ontology for the CHW scenario: stats
module.

these rules in the following section when they are applied). In addition, the
definition of a service for the diagnosis of patients is needed. In this case,
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Rafiki is an external diagnosis service which has been installed in the device.
Rafiki’s definition in the ontology links it to the code to execute, as in the
example of the TakePicturesCamera service in Figure 4.7. Let’s consider that
the CHW device receives the previous knowledge about diseases and statistical
information about diseases in her current region (Sirpur), as well as the Rafiki
service.

Steps Followed

In the following we explain the most important steps for the managing of this
scenario by SHERLOCK:

1. The CHW runs the Rafiki service on SHERLOCK to diagnose the pa-
tient. This service, which has been shared with her device, is offered by
SHERLOCK but provided by the device itself (the call property links
it to the execution method) and uses the local knowledge on the device
about diseases and symptoms. First, the URM handling the service asks
the CHW for parameters such as the patient context information, that is
location and demography.

2. SHERLOCK on the CHW device obtains the location of the patient
(Sirpur) automatically using the GPS of the device and Kumar’s parents
will be asked about the age and gender of the kid. Therefore, the following
information will be entered into the system: Patient: name=Kumar,
age=6, gender=male, location=Sirpur.

3. The information gathered about the patient context, along with the stats
module of the ontology, is used by Rafiki to infer the list of possible
diseases based on others with similar context (e.g., neighbors from the
same age group). For that, Rafiki queries the local knowledge, through
the KE agent, to retrieve diseases linked to the patient through the
hasPossibleDisease property. As, explained before, The knowledge shared
with SHERLOCK includes some rules, and one of them classifies diseases
as possible for a patient given his context (in this example, age group):

Person(?p) ∧ hasLocation(?p,?l) ∧ age(?p,?ageP) ∧
InfectedLocation(?l) ∧ hasStats(?l,?s) ∧ disease(?s, ?d) ∧
Disease(?d) ∧ hasDemographics(?s,?dem) ∧ hasAgeGroup(?dem,?ageG) ∧
from(?ageG,?minAge) ∧ to(?ageG,?maxAge) ∧
swrlb:lessThanOrEqual(?ageP,?maxAge) ∧
swrlb:greatherThanOrEqual(?ageP,?maxAge)

→ hasPossibleDisease(?p,?d)
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Several cases of diarrhea were detected in Sirpur and this knowledge
was shared in the stats module. So, the reasoner classified the region as
InfectedLocation. In addition, stomach flu was diagnosed to other kids in
Sirpur so, it could be a diarrhea outbreak and the disease is added as a
possible one for Kumar (i.e., hasPossibleDisease(Kumar,StomachFlu)).

4. The URM asked the CHW for another parameters, for instance, for other
reported symptoms that can be used to add more diseases to the list.
Reported symptoms can be common symptoms like fever, vomiting, or
aches for which the patient might have got in touch with a CHW. The
following rule is applied with the information shared about Kumar and
adds more diseases to the results retrieved by the query executed by
Rafiki :

Person(?p) ∧ hasSymptom(?p,?s) ∧ Disease(?d) ∧ hasSymptom(?d,?s)

→ hasPossibleDisease(?p,?d)

Kumar was suffering from vomiting and therefore, viral diarrhea (gas-
troenteritis) is added to the list of possible diseases.

5. The query that Rafiki executed ranks the list of possible diseases according
to the information gathered about reported symptoms and patient context:
1) diseases are ranked according to the number of their reported symptoms;
2) for diseases with the same number of reported symptoms, the number
of infectees for each disease with similar patient context (e.g., location
and age group) is used. Therefore, the final result of the query for Kumar
includes viral diarrhea as the first disease to check, as he suffers from a
known symptom of this disease and it is common among other children
in the area.

6. Now Rafiki requires the CHW to ask questions related to the symptoms
of the possible diseases in order to detect the most likely disease. These
questions are obtained by querying the KE agent about the diagnosis
module of the ontology based on the disease and symptoms. The CHW
inputs the patient response (“severe dehydration”) by selecting the answer
from the available options.

7. Severe dehydration is a sign of worry in patients, especially in children,
with diarrhea as a possible disease and should be immediately referred
to the health-care provider. The authorities have shared a rule capturing
this guideline with the device of the CHW:
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Person(?p) ∧ hasPossibleDisease(?p,Diarrhea) ∧ hasDiagnosis(?p,?dp) ∧
hasDiagnSymp(?dp,?s1) ∧ symptom(?s1,DryMouth) ∧ severity(?s1,"Severe") ∧
hasDiagnSymp(?dp,?s2) ∧ symptom(?s2,Fever)

→ hasEmergencySymptom(?p,SevereDehydration)

At each step of diagnosis, Rafiki verifies if the patient has been classified
under the UrgentCareNeededPatient (Patient and hasEmergencySymptom
some DiagnSymptom) class in the local knowledge managed by SHER-
LOCK by querying the KE agent. In this case, the previous rule generates
a fact stating that Kumar is-a UrgentCareNeededPatient.

8. Finally, Rafiki suggest the CHW the service to report the kid to the
nearest health center which starts a call with a health-care provider.

As shown, the Rafiki service benefits from the management of knowledge
performed by SHERLOCK. Thus, the system removes a burden from the CHW
by: 1) keeping the knowledge about diseases updated and 2) using the reasoner
to evaluate the rules that the CHW would have to do manually.

9.6 Summary of the Chapter

In this chapter, we have revisited the motivating scenarios described in Sec-
tion 3.1. We have explained how SHERLOCK deals with them to show that
the system designed is able to tackle the challenges we identified in these
representative scenarios. For each use case, we have shown a possible modeling
example of the services involved and the scenario itself, which is shared and
integrated by the system to handle it. Also, we have described the steps
involved in its processing focusing on different parts of the process depending
on the scenario. This way, for the first scenario, where the system retrieves
transportation means for the user, we focused on how SHERLOCK captures
the user information needs and translates them into a formal request. In the
second scenario, where the system helps the coordinator of a firefighting unit
suppressing a wildfire, we focused on how SHERLOCK deploys the network
of mobile agents to obtain information form other devices using their wireless
communication mechanisms. In the third scenario, where the system assists a
technical director broadcasting a rowing race, we focused on how SHERLOCK
enables the definition of complex information needs (in this case a camera shot
of the rowing boats) and how it processes camera views to obtain high-level
features of them. Finally, in the fourth scenario, where the system assists the
coordinator of an emergency unit, we focused on the processing of complex
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services which involves the execution of different services in a certain order
and by combining the information they retrieve. Also, we have shown how
SHERLOCK deals with other extra scenarios, which do not add new challenges
but show how new services and scenarios can be modeled and shared with
the system. The scenarios presented in this chapter show the flexibility of the
system, which is able to handle them by receiving an ontology which models
such scenarios.
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Chapter 10

Conclusions

In this chapter, we show some conclusions about the work presented in this
dissertation. First, we present the main contributions of SHERLOCK as a
system and then, we present contributions to different fields such as ontology
alignment, context-awareness, high-level feature extraction in multimedia infor-
mation, and the use of semantic technologies on mobile devices. After this, we
present the publications related to our work, analyzing their quality according
to different quality index rankings. Finally, we indicate some future lines of
work opened.

10.1 SHERLOCK: Main Contributions

In this thesis, we have presented SHERLOCK, a general system that provides
support for Location-Based Services (LBS) that depend on highly-dynamic
information and infrastructures. SHERLOCK-enabled devices collaborate
by exchanging their local knowledge and can also become processing nodes
when managing information requests from their users. Besides, we have
introduced four different sample motivating scenarios that can be tackled
by our system; any other use case where a user is interested in obtaining
information about moving objects or in asking them to perform actions in
highly-dynamic distributed scenarios can also be processed by SHERLOCK.

As a summary, the original contributions of SHERLOCK are the following:

• It enables devices to exchange knowledge related to services which might
be interesting for their users. This knowledge is modeled as ontologies to
avoid imposing the users with a global schema. Through their interactions,
SHERLOCK devices exchange ontologies modeling services and scenarios

203
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which the system integrates into their local knowledge using ontology
alignment techniques. Therefore, SHERLOCK devices can learn about
their surroundings from the interaction over time. Also, it maintains the
local knowledge on the device updated while taking into account its size
to enable efficient reasoning. This is achieved by detecting the modules
of the local knowledge that might be useful in the current context of the
user.

• It offers interesting LBS to the user at each moment and helps in express-
ing her information needs. This way, it relieves the user from managing
specific knowledge about LBS. It translates the user requirements, which
might involve multimedia information provided by cameras, into formal
requests in SHERLOCK’s query language, based on SPARQL with ex-
tensions to consider geospatial data and DL ontologies. This language
decouples SHERLOCK from the specific scenario and service increasing
its flexibility.

• It is able to deploy a network of mobile agents to process a user request
and find the information needed wherever it is. These agents can au-
tonomously decide to move to specific areas where the information might
be available and contact directly devices that are producing such infor-
mation and even with their users. Therefore, they can monitor specific
areas and communicate with the devices inside to obtain information
from their local knowledge. This way, the system is flexible regarding
the underlying network infrastructure, enabling the use of static and
mobile networks. Also, the use of the agent network ensures that the
processing is carried to the most appropriate nodes in order to balance
the processing load and communication tasks.

SHERLOCK is a complex system that deals with many different challenges
from different research fields. We have delved into some of them and this
has allowed us to make contributions to different fields as we present in the
following section.

10.2 Other Contributions

During the development of the SHERLOCK system we made contributions
to different research aspects. They are mainly related to the use of semantic
technologies on mobile devices, ontology alignment, context-awareness, and
multimedia management:
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• We have empirically shown that using semantic technologies on current
mobile devices is feasible. Focusing on Android-based devices, we have
been able to use most of the available semantic reasoners. We have
detailed the changes needed to make some reasoners work, hoping that
this will make porting future versions easier. Also, we have evaluated the
performance of these reasoners on current smartphones and tablets using
a standard dataset with more than 300 ontologies and different reasoning
tasks.

• We have presented an approach for the extraction of subsumption rela-
tionships among concepts from different ontologies. Our approach uses
the ontological context of concepts (i.e., names, roles, and hierarchi-
cal relationships), external information (if available), and some novel
generic rules that we designed to capture the existence of a subsumption
relationship.

• We have presented an approach to improve the information about the
context of the user that the mobile device manages. Mobile devices
exchange the context of their users and integrate this information to
create a shared context model. The shared context model is leveraged
by each device to extend or even correct the local information about the
context of its user they had.

• We have presented a proposal to help users to visually define an interesting
example shot (with a certain view of one or more objects) and to obtain
cameras which could provide it. To our knowledge, this is the first
contribution in the literature to extract high-level features of the defined
shot and the cameras views without analyzing real images. Therefore,
our technique is efficient and scalable enough to be performed in real-time
with multiple cameras.

• We have proposed a technique to preserve the privacy preferences of users
in pictures taken by others. The approach is based on the exchange of
policies as well as a mathematical representation of the user’s face to
devices around so they can obscure the user accordingly if her face is
detected in the picture.

Working on different topics related to the main architecture of SHERLOCK
helped me to have a broad view on knowledge management. We dealt with
relevant topics such as the integration of information modeled in ontologies and
as contextual information of users, the management of multimedia information
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which has interesting challenges in comparison with texts (specially when it
has to be performed in real-time), and even privacy issues associated with the
exchange of information. Finally, I want to highlight that our work on the use
of semantic technologies on mobile devices contributed in reinvigorating this
line of research. In fact, we co organized a workshop on the topic at the 14th
International Semantic Web Conference (ISWC 2015).

10.3 Research Results

The results of the thesis presented in this document have been published in
relevant international journals, conferences, and workshops. In the following,
we briefly describe these publications in chronological order, grouped by issue,
and providing several quality measures for each of them.

Publications related strictly to the SHERLOCK architecture

• In [YMII13] we presented an early prototype of SHERLOCK focused on
the interaction with the user (without any agent). The prototype showed
how different smartphones equipped with SHERLOCK autonomously
exchanged ontologies and integrated them (with a simple string matching
techniques). Also, the user could select a service to find other devices
in the same WiFi network. The paper was published at the 22nd Inter-
national World Wide Web Conference (WWW 2013) which is ranked
as CORE A* (CORE 2014) and its Google h5 index and position are
75 and #1/20 (Databases & Information Systems category), respectively
(Google Metrics 2015).

• In [YMII14] we introduced the basic architecture of SHERLOCK. We
presented a preliminary set of agents involved in the different tasks
and a brief explanation of their goals. Also, we introduced the first
two motivating use cases in Section 3.1. The paper was published in
the Pervasive and Mobile Computing journal whose Impact Factor is
2.079 (JCR 2014) - Q1 Computer Science, Information Systems, Q1
Telecommunications, also its Google h5 index is 31.

• In [YM15c] we introduced the use of SHERLOCK to manage emergencies
(the fourth of our motivating scenarios). The paper was published in the
13th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys 2015) which is ranked as CORE B (CORE 2014)
and its Google h5 index is 49.



207 Chapter 10. Conclusions

• In [YM15d] we presented SHERLOCK’s query language which is based
on SPARQL and its two extensions GeoSPARQL and SPARQL-DL. The
paper also introduces the processing of queries against other SHERLOCK
devices. The paper was published in the 14th International Semantic
Web Conference (ISWC 2015) which is ranked as CORE A (CORE 2014)
and its Google h5 index and position are 40 and#12/20 (Databases &
Information Systems).

• In [YMSB15] we presented our approach to the discovery of subsumption
relationships between concepts of different ontologies for the integration
of knowledge. We explained the complete architecture of our approach
focusing on the rules we designed to capture the existence of a subsump-
tion relationship between two concepts regarding their roles. The paper
was published in the 2015 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2015) which is ranked as B (CORE 2014) and
its Google h5 index is 18.

• In [YM15b] we introduced the network of mobile agents in charge of the
processing of SHERLOCK queries. We explained how the network is
created to process location-based queries. The paper was also published
in the WI 2015 conference.

• In [YM15a] we introduced the multimedia information processing features
of SHERLOCK focusing on the last two motivating use cases. We
explained the complete process starting with the user selecting one of
the services and finishing with her obtaining results. We focused on the
management of multimedia information by integrating the ideas we had
previously developed to manage camera views into the architecture. The
paper was published in the 13th International Conference on Advances
in Mobile Computing and Multimedia (MoMM 2015) which is ranked as
B (CORE 2014) and its Google h5 index is 11.

• In [BYBIBMTLG15] we presented the SHERLOCK architecture as an
example of semantic-based application as part of a chapter of a book on
“Semantic Web: Implications for Technologies and Business Practices”.

Currently, we are working on two journal papers which will be the most
complete works about the SHERLOCK system. The first paper will focus on
describing the modeling of knowledge in the SHERLOCK system, the query
language, and the interaction with the user to generate a user request (therefore,
it will cover Chapters 4 and 6). The second paper will focus on the processing
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of SHERLOCK queries by detailing the network of agents involved and the
tasks of each agent (as shown in Chapter 7).

Apart from the previous publications, that are strictly related to the
SHERLOCK architecture, we show in the following the publications related to
different aspects of the thesis.

Other publications related to different modules of SHERLOCK

In [YBEBM13; BBYEM14; YBBM15] we presented our early work on the
use of semantic technologies on mobile devices. We showed the steps to port
some semantic reasoners to Android and preliminary tests with a dozen of
well-known ontologies. We published these papers at the OWL Reasoner Eval-
uation Workshop. In [BYBM15] we presented our detailed experiments on the
performance of semantic reasoners on current mobile devices. The experiments
were performed with more than 300 ontologies from the ORE 2013 dataset
and 10 semantic reasoners. This last paper was published in the Journal of
Web Semantics whose Impact Factor is 2.550 (JCR 2014) - Q1 Computer
Science, Artificial Intelligence, Q1 Computer Science, Information Systems, Q1
Computer Science, Software Engineering, also its Google h5 index and position
are 36 and #14/20 (Databases & Information Systems category), respectively
(Google Metrics 2015).

In [IMIYLM12] we presented our preliminary ideas on a system to assist
technical directors in the broadcasting of a sport event. We focused on ex-
plaining how the system would process location-based queries with constraints
about the views provided by different cameras. The paper was published in the
Mobile Information Systems journal whose Impact Factor is 1.789 (JCR 2013)
- Q1 Computer Science, Information Systems, Q1 Telecommunications, also
its Google h5 index is 14 (Google Metrics 2015). In [YMBII11] we explained
our approach to extract high-level features of camera views in real-time by
using a 3D model of the scenario. We presented our algorithms to efficiently
and in real-time compute what a camera is viewing by using 3D operations.
The paper was published in the 19th ACM International Conference on Multi-
media (ACMMM 2011) which is ranked as CORE A* (CORE 2014) and its
Google h5 index and position are 45 and #2/20 (Multimedia category), re-
spectively (Google Metrics 2015). In [YAMII11] we presented a first prototype
of the system to assist technical directors implementing the ideas presented
in [IMIYLM12; YMBII11]. The prototype enabled users to define queries
through a web interface and showed the camera feed of cameras fulfilling their
requirements. The paper was published in the 8th International Conference
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on Mobile and Ubiquitous Systems: Computing, Networking and Services
(MobiQuitous 2011) which is ranked as CORE A (CORE 2014) and its Google
h5 index is 12 (Google Metrics 2015). In [YIM15] we presented our approach to
compute the similarity between camera shots regarding the high-level features
extracted. The paper included the 3DQBE interface to enable users to define
an interesting shot easily and the formula designed to obtain cameras which
could provide a similar shot. Finally, in [YMIIB15] we presented the most
complete work that we have published about our system to help technical
directors in the live broadcasting of sport events in live. The paper presents
the complete architecture and details the process from the technical director
defining the required shot and the system showing the cameras that can, or
could in the near future, provide it. These two papers ([YIM15; YMIIB15])
were published in the Multimedia Tools and Applications journal whose Impact
Factor is 1.346 (JCR 2014) - Q2 Computer Science, Information Systems, Q2
Computer Science, Software Engineering, Q2 Computer Science, Theory &
Methods, Q2 Engineering, Electrical & Electronic, also its Google h5 index
and position are 33 and #5/20 (Multimedia category), respectively (Google
Metrics 2015).

In [YPDMJF14] we presented our approach to preserve user privacy on
pictures taken by others. The paper introduces the architecture of the approach
and the early prototype of the system presented. The paper was published in
the 12th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys 2014) which is ranked as CORE B (CORE 2014) and
its Google h5 index is 49. In [PYDFMJ14] we showed the semantic definition
of privacy rules to express the context under which the user wants her privacy
to be preserved on pictures. The paper was published in the PrivOn workshop
co-located with the 13th International Semantic Web Conference (ISWC 2014).
The work presented in these papers was referenced in a recent article in Nature
(“What could derail the wearables revolution?”1).

In [PYJF14] we introduced the use of SHERLOCK’s knowledge management
capabilities in wireless environments to help community health-care workers
in underserved areas. We explained how the devices carried by community
health-care workers exchange ontologies with information about diseases in the
area and help them to detect symptoms by showing questions to ask to the
patients. The paper was published in the 10th IEEE International Conference
on Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom 2014) which is ranked as CORE C (CORE 2014) and its

1http://www.nature.com/news/what-could-derail-the-wearables-revolution-1.

18263

http://www.nature.com/news/what-could-derail-the-wearables-revolution-1.18263
http://www.nature.com/news/what-could-derail-the-wearables-revolution-1.18263
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Google h5 index is 15.

10.4 Future Work

The design of a complex system like SHERLOCK opens up many research
questions. We have focused on the design of the general architecture and
tackled the major challenges for it. Also, we have delved into some of the
challenges related to specific functionalities of the system but others could
be further studied. In the following, we explain possible lines of future work
related to the work performed in this thesis focusing in the three main parts of
the architecture.

Regarding Knowledge Management on Mobile Devices

• We should study mechanisms to efficiently perform the exchange and
integration of knowledge on mobile devices. For example, our current
approach in which devices exchange part of their knowledge and then
perform local integration of the information received could be extended.
In the scenario where the devices have limited capabilities, the integration
task could be distributed among the different devices. Also, it would
be possible to define a protocol to take into account factors like: the
capabilities of each device (e.g., in terms of available resources), their
local knowledge, their context (e.g., related to their movement), and
even the privacy policies of their users to determine an optimal way
to minimize the total number of resources consumed in the process of
updating the knowledge of all the devices while maximizing the amount
of new knowledge each device will obtain.

• We plan to continue our work on porting and evaluating semantic rea-
soners on mobile devices. In particular, we want to explore the use
of reasoners for OWL 2 QL and OWL 2 RL profiles, as sacrificing ex-
pressivity and possible inferences to obtain a better performance could
be interesting according to the results we obtained for other profiles.
Moreover, we are interested on evaluating other reasoning tasks such as
query answering or realization, as they involve ABox reasoning and are
interesting in many mobile scenarios.

Regarding the Management of User Requests
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• We should further study the interaction with users to capture their
information needs. Previous interactions of the user with respect to her
context, as well as previous interactions of other users with a similar
context, could be leveraged to improve our suggestion of interesting
services. Also, this information could be used to enable the system to
autonomously and preemptively select services which could be interesting
for the user and even execute them.

• We plan to study the design of strategies to optimize the network of
mobile agents deployed to answer a user request. Users have similar needs
and therefore, a network deployed for one of them could be used for more
users with minor modifications. Of course, in this scenario security and
privacy issues arise as agents created by a user would act on behalf of
others. Also, in our current approach the goal of the agents is to satisfy
the needs of the owner of the device where they were created. In the new
scenario envisioned agents could have to deal with slightly different needs
(and maybe even contradictory) of the different users and the owner of
the device where they were created.

Regarding the Management of Multimedia Information

• We should consider other forms of multimedia information (e.g., sound
captured by microphones). The techniques we presented are focused on
images provided by cameras and they are specific to them. However,
the fundamentals about using information about the context of the
microphone and objects around to avoid analyzing the real data could
be interesting in this scenario too.

• We plan to further explore our approach to preserve privacy in pho-
tography. For instance, the mechanism could be generalized to other
multimedia sources (e.g., video and audio).

In general the goal of our future lines of research will be to continue
exploring the challenges related to the semantic management of data in mobile
computing scenarios.
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Appendix A

Semantic Technologies on
Mobile Devices

In the current ubiquitous and mobile scenario, there are lots of interesting
applications that take advantage of the context of the users (for instance, their
geographical locations). Despite of their usefulness, it seems promising to
incorporate semantic technologies to enhance such applications by combining
ontological information with extensional data obtained from the mobile sensors.
This way it would be possible to take advantage of the benefits of using ontolo-
gies, such as the improvement of knowledge sharing, reusing and maintenance,
the decoupling of the knowledge from the application, or the possibility of
discovering implicit knowledge by using semantic reasoners.

Therefore, semantic mobile applications need to access to a semantic rea-
soner. In many cases, mobile devices could use the services of a semantic
reasoning service located in the cloud. However, users or developers could
prefer using a semantic reasoner locally installed on the mobile device for
several reasons, such as privacy preserving (performing the reasoning locally
can minimize the exposure of user information), or connectivity problems (local
reasoners can be helpful for applications where Internet connectivity could not
be available or where the number of network connections have to be minimized).
We are specially interested in these cases where a local reasoner on the mobile
device is required.

However, the use of semantic technologies on mobile apps has not (yet)
spread due, in part, to the fact that there are currently no remarkable efforts to
enable mobile devices with semantic reasoning capabilities. A first possibility
is developing new reasoners specifically designed for mobile devices. Examples
of this alternative include mTableau [MHLN06], Pocket KR Hyper [SK05],
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Delta [MHK12], and Mini-ME [RSSGL12] reasoners. In order to reuse as much
as possible the work to the optimize current Description Logics (DL) reasoners,
we are more interested in another choice: reusing existing semantic reasoners
on mobile devices. In particular, we have focused on porting and using existing
DL reasoners on Android, and our experience tells us that porting them to
Android is less costly than developing new reasoners from scratch.

We have focused our research on devices using Android operating sys-
tem [Bur10] due to several reasons: its diffusion (85% of devices use this
operative system according to a recent estimation by Strategy Analytics1), its
openness, and the existence of a Java-like native virtual machine (Dalvik) that
makes it easier to reuse existing Java applications, something very important
since most of the semantic APIs and reasoners have been developed in this
language.

A.1 Porting Semantic Technologies to Android

Most of current popular semantic reasoners are implemented using Java (e.g.,
Pellet and HermiT) and are usually used along with semantic APIs (e.g., OWL
API and Jena). Android is a Linux-based operating system whose middleware,
libraries, and APIs are written in C. Since its version 2.2, Android uses a
Java-like virtual machine called Dalvik [OKCM12] that makes it possible to
support Java code. In fact, Dalvik runs “dex-code” (Dalvik Executable), and
Java bytecodes can be converted to Dalvik-compatible .dex files to be executed
on Android. However, Dalvik does not completely align to Java SE and so it
does not support J2ME classes, AWT or Swing. Thus, running semantic APIs
and reasoners on Android could require some rewriting efforts.

Table A.1 summarizes the current Android support for the main semantic
APIs and DL reasoners. We tested all of them, and found out that OWL
API 3.4.10, and the jcel 0.19.1, JFact 0.9.1, TReasoner revision 22, and
TrOWL 1.4 reasoners can be imported directly in Android projects. However,
as the table shows, most of them (16 out of 21) are not directly compatible
with Android. In the next section, we explain our experience trying to port
these latter reasoners to Android.

As we have shown in Table A.1, there are APIs and reasoners that do not
work directly on Android. Thus, we tried to port them (or use alternative
ones) to make them work in our Android projects. In the following, we detail
how we have ported these different technologies, and we highlight some of the

1http://goo.gl/8KCJXs, last accessed 2014-12-12.

http://goo.gl/8KCJXs
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possible problems for those we did not successfully port.

As a summary, the main causes that we found for reasoners not to be
directly imported in Android projects can be broadly classified as:

• Direct use of Java classes not supported in Android.

• Use of external libraries that use unsupported Java classes.

Most of these problems can only be detected in run time. So, the process we
followed consisted on importing each reasoner (downloaded from their websites)
in an Android application that we developed to automate the testing, and
running it. Then, for those reasoners that failed to run, we tried to detect the
problematic classes/libraries by studying its code (whenever it was possible,
as not all the developers made available the code of their reasoners). Finally,
we tried to replace problematic classes/libraries by their equivalent ones for
the Android platform. In the following we explain the experience trying to
port the technologies that failed to run on Android. Further and detailed
information about the specific methods and classes changed for each reasoner
can be found at the webpage of the project [And] together with, if the licenses
make it possible, a download link.

We will firstly present the case of Jena API, then the successfully ported
reasoners and then the unsuccessfully ones. In both cases, reasoners will be
presented in alphabetical order.

Jena cannot be directly imported into an Android project but there exists
a project called Androjena2 to port it to the Android platform. The latest
version of Androjena 0.5, which was used in our tests, contains all the original
code of Jena 2.6.2 and can be used in Android projects.

CB is implemented in OCaml and Android does not support it natively.
There are some projects to develop OCaml interpreters for the platform, such
as the OCaml Toplevel3; however, we chose a different approach: compiling
the reasoner to native Android code. For that, we used the Android Native
Development Kit (NDK)4 to cross-compile the code for the ARM processor.
The resulting native code can be executed on Android using the command line
tool Android Debug Bridge (adb). To import this native code into an Android
project, we could use the Java Native Interface (JNI) and Android NDK.
However, for the purpose of this paper we tested the native code directly.

2https://code.google.com/p/androjena
3https://bitbucket.org/keigoi/ocaml-toplevel-android
4http://developer.android.com/tools/sdk/ndk

https://code.google.com/p/androjena
https://bitbucket.org/keigoi/ocaml-toplevel-android
http://developer.android.com/tools/sdk/ndk
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ELK presents a problem with the only external library that the reasoner
imports. Log4j is an open source (Apache License 2.0) logging utility that uses
classes of the Java package java.beans but the full package is not completely
supported in Android. There exists a port for this library5 but in its current
version presents some problems. Therefore, the recommended process is to
replace the Log4j library by the SLF4J6 that is supported in Android. In this
case, we use the log4j-over-slf4j library that allows log4j applications
to be migrated to SLF4J without changing the code. With this replacement,
ELK 0.4.0 can be used in Android projects.

HermiT references unsupported Java classes (both in its source code and
in the imported external library JAutomata). On the one hand, we detected
problems with the debug, Protégé, and command line packages. Specifically, the
references to java.awt.point and other Java AWT classes must be replaced
as Android has its own graphical libraries. Due to their nature, we thought
that these packages would not be required by a developer who uses the reasoner
in an Android application, and therefore, we removed all of them from our
port. On the other hand, JAutomata7, a library for creating, manipulating,
and displaying finite-state automata, presents two problems: 1) it references
the aforementioned java.awt.point class in some hashing functions, and 2) it
references two unsupported libraries, JUnit and dk.brics.automaton. To
address the first problem, we just modified the hashing functions. For the
second problem, on the one hand, we removed the JUnit8 library and its
references (as it is a library used for development); and, on the other hand, we
reimplemented part of dk.brics.automaton9. This library is required as it
contains a DFA/NFA (finite-state automata) implementation that is used to
process datatypes of the ontology. It uses some files that contain automata
that cannot be unmarhsalled in Android (as they were marhsalled using Java).
Thus, to solve this problem, we reimplemented the marshalling/unmarshalling
methods to create a new set of automata files compatible with Android. With
this changes HermiT 1.3.8 can be used in Android projects.

MORe uses the HermiT, JFact, and ELK reasoners and, as explained
previously, the original version of HermiT and ELK are not compatible with
Android. Replacing the two reasoner by the ported versions fixes this problem.
Therefore, MORe 0.1.5 can be used in Android projects.

5https://code.google.com/p/android-logging-log4j
6http://www.slf4j.org
7http://jautomata.sourceforge.net
8http://junit.org
9http://www.brics.dk/automaton

https://code.google.com/p/android-logging-log4j
http://www.slf4j.org
http://jautomata.sourceforge.net
http://junit.org
http://www.brics.dk/automaton
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Pellet presented problems with unsupported Java classes being referenced
from its tests packages (that can be removed) and three external libraries: Jena
(which can be replaced by Androjena as explained before), OWL API 2.2.0
(which can be removed from the final compiled version), and JAXB10, a library
to map Java classes to XML. JAXB uses the javax.xml.bind package and the
Xerces11 parser libraries which are not supported in Android. This latter
problem can be solved by removing the JAXB .jar file and adding the source
code of both javax.xml.bind and Xerces to our Android project. However,
Dalvik has a limit of 65536 methods references per .dex file and it gets exceeded
when applying this solution. To solve this, we removed the JAXB library and
copied only the nine classes that Pellet needs from both the java.xml.bind

package and the Xerces library to our Android project. With this changes
Pellet 2.3.1 can be used in Android projects.

Apart from the above mentioned ones, we also tried other reasoners that
we could not port to Android. Some reasoners were not available at the time
when this work was performed, such as SHER, SOR, or WSClassifier.

KAON2 presented problems when imported in an Android project. The
source code of this reasoner is not available, so we have been able to detect
possible problems only by analyzing the libraries it imports. Among them,
the reasoner imports Java Remote Method Invocation (RMI) which is not
supported in Android. There are two projects to port this library to Android,
LipeRMI12 and RipeRMI13, which we have used in other projects and are a
possible replacement for RMI. However, they do not align completely with the
API of RMI, so, modifying the code would be necessary. The reasoner might
also need further code rewritings that could only be detected by accessing the
source code. Therefore, the last version of KAON2 cannot be used in Android
projects.

The fuzzy ontology reasoner fuzzyDL uses the Gurobi14 library, an opti-
mization programming solver. This library is not supported in Android and,
up to the authors’ knowledge, has not a supported replacement. In addition,
the library has a proprietary license and so, we could not explore the steps
needed to port it to Android. Therefore, fuzzyDL build 60 cannot be used in
Android projects.

Finally, other reasoners are developed in languages different from Java that

10https://jaxb.java.net
11http://xerces.apache.org
12http://lipermi.sourceforge.net
13https://code.google.com/p/ripermi
14http://www.gurobi.com

https://jaxb.java.net
http://xerces.apache.org
http://lipermi.sourceforge.net
https://code.google.com/p/ripermi
http://www.gurobi.com
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Android does not support natively. In these cases, one could try the same
approach presented for CB : compiling the code for ARM with the help of the
Android NDK and using JNI to import the code from an Android project. For
example, there are a lot of reasoners implemented in C++, such as Chainsaw,
ConDOR, FaCT++, ELepHant, Konclude, and WSClassifier. Porting these
C++ reasoners would also make it easier to support some metareasoners written
in Java but using reasoners implemented in C++. For example, Chainsaw
uses FaCT++ and WSClassifier uses Condor. There are also some reasoners
implemented in Lisp, such as Racer and CEL. Note that there is also a Racer
server version that could be used on an external device and used from clients.
However, that would require a connection between the mobile device (client)
and the server which defeats the purpose of this study.

A.2 Evaluating the Use of Semantic Web Technolo-
gies on Mobile Devices

In this section we describe the evaluation of the behavior of the current semantic
reasoners on mobile devices studied, and some of them ported to Android by
us, in Section A.1.

A.2.1 Experimental Setup

We had to make different choices to perform the experiments including the
selection of: the ontology dataset, devices, reasoning tasks, and reasoners.

Selecting the Ontology Dataset

To evaluate the performance of the studied reasoners, we selected the ORE 2013
ontology set [GBJRMPGK13] which contains 200 ontologies per profile (i.e.,
OWL 2 EL, OWL 2 RL, and OWL 2 DL) from the NCBO BioPortal15, the
Oxford Ontology Library16, and the Manchester Ontology Repository17. Every
ontology has at least 100 logical axioms and 10 named concepts, and they are
classified according to their number of logical axioms as small (≤ 500), medium
(between 500 and 4999), and large ontologies (≥ 5000). The ORE 2014 ontology
set, with 16555 ontologies, is too large for our purposes [BGJRMPS13].

15http://bioportal.bioontology.org
16http://www.cs.ox.ac.uk/isg/ontologies
17http://rpc295.cs.man.ac.uk:8080/repository

http://bioportal.bioontology.org
http://www.cs.ox.ac.uk/isg/ontologies
http://rpc295.cs.man.ac.uk:8080/repository
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In our case, we focused on the OWL 2 DL and OWL 2 EL ontology sets.
We did not select the OWL 2 RL and OWL 2 QL profiles as we were not able
to port any reasoner specifically for these profiles. Besides, we had to take
into account the restrictions that mobile devices suffer from, especially the
limited CPU, memory, and battery. For this reason, we selected a subset of
the ORE 2013 ontology set carrying out the following steps:

1. We ordered the ontologies according to the size of the file as, when
evaluating mobile devices, we should not only take into account the
number of logical axioms, but also the file size (which is directly related
to the memory needed to load such ontology). We could not ignore
annotation axioms as they were problematic in our scenario: they also
need to be processed by the ontology parser and, thus, they might
consume extra memory temporally (e.g., by the OWL API parsers).

Please note that the file size is just a heuristic, because it depends on
the OWL 2 syntax, the length of URIs, and other non-logical aspects. In
our experiments, we have considered OWL/XML syntax18.

2. The maximum heap size per application provided by the Android version
in the test devices is 256 MB (after setting the variable to get the
maximum heap size for a mobile application19). This could be the
theoretical maximum size of an ontology loaded on Android, but we
must build instances of the OWL API class OWL-Reasoner in the device’s
memory. So, we filtered the ontology sets to take out the ontologies
whose files occupied more than 128 MB.

This resulted in 186 OWL 2 DL and 194 OWL 2 EL ontologies. However,
four of the OWL 2 DL ontologies and one OWL 2 EL ontology were not
admitted by our testing application because of their URIs. Therefore, our final
DL ontology set used in our experiments contains 182 OWL 2 DL ontologies,
distributed as follows: 43 small, 103 medium, and 36 large ones; whereas our
EL ontology set has 193 ontologies: 72 small, 82 medium, and 39 large ones.
Our full ontology set and some ontology stats (such as their size, number of
axioms, and expressivity) can be found at [And].

Selecting the Devices

We considered two mobile devices for the tests: a smartphone and a tablet. The
smartphone selected was a Galaxy Nexus (Android 4.2.1, 1.2 GHz dual-core,

18http://www.w3.org/TR/owl-xmlsyntax
19android:largeHeap=‘‘true’’.

http://www.w3.org/TR/owl-xmlsyntax
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1 GB RAM, released in 2011, in the following denoted as A1), and the tablet
was a Galaxy Tab 2 7.0 (Android 4.1.2, 1 GHz dual-core, 1 GB RAM, released
in 2012, denoted A2). In order to avoid battery shortage, both devices were
plugged in during all the tests.

We also performed some tests with a Galaxy Tab tablet (Android 2.3.3,
1.0 GHz single-core, 512MB RAM, released in 2010, denoted as A3) using
five popular ontologies: Pizza20 and Wine21, which are two expressive on-
tologies; DBpedia 3.822 (TBox), which can be useful for mobile application
developers to access the structured content of DBpedia (a semantic entry point
to Wikipedia) [BLKABCH09]; and the Gene Ontology (GO)23 and the US
National Cancer Institute (NCI)24 ontologies, which contain a high number of
concepts. Table A.2 shows a summary of the results obtained when comparing
the performance of the devices A1 and A3. A1 outperformed A3 up to a 30%
of increment on the performance in some situations, and thus, we left it aside
for the rest of our experiments.

According to the official Android report25, and as of July 2015, the use
of the Jelly Bean version of Android (from 4.1.x to 4.3) represents around
37.4% of current Android devices (76.6% considering also 4.4 devices as the
core of the OS is almost the same). Also, as of 2015, most of the devices on
the market have similar or even better capabilities than the Galaxy Nexus and
the Galaxy Tab 2. Thus, with the Galaxy Nexus and the Galaxy Tab 2 we are
representing the average current Android device in terms of capabilities and
Android version.

Also, we considered a desktop computer to determine how slow is reasoning
on Android compared to this baseline (taking into account that the desktop
computer hardware outperforms Android devices, and that their virtual ma-
chines are optimized for different purposes). In this case the desktop computer
selected (denoted PC) was a Windows 64-bits, i5-2320 3.00 GHz, 16 GB RAM
(12 GB were allocated for the JVM in the tests).

Selecting the Tasks

We analyzed the behavior of the reasoners for two standard Description Logic
inference services that were part of the ORE 2013 competition:

20http://www.co-ode.org/ontologies/pizza/pizza.owl
21http://www.w3.org/TR/owl-guide/wine.rdf
22http://dbpedia.org/Ontology
23http://www.geneontology.org
24http://ncit.nci.nih.gov
25http://developer.android.com/about/dashboards/index.html

http://www.co-ode.org/ontologies/pizza/pizza.owl
http://www.w3.org/TR/owl-guide/wine.rdf
http://dbpedia.org/Ontology
http://www.geneontology.org
http://ncit.nci.nih.gov
http://developer.android.com/about/dashboards/index.html
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• Ontology classification: computing the complete class hierarchy based on
the subsumption relation between the ontology classes.

• Ontology consistency : checking whether an ontology contains any contra-
dictions or not.

For the moment, we did not consider other tasks such as concept satisfi-
ability26, query answering, or realization27 because the results obtained are
strongly dependent on the particular choice of the selected concept, query, or
individual, respectively. To obtain significant results, each test would have to
be repeated for a considerable amount of different elements on each ontology.
Moreover, the selected tasks are being currently used in our prototypes. For
example, SHERLOCK [YMII14], FaceBlock [YPDMJF14], and Rafiki [PYJF14]
use classification, whereas Triveni [YPDFJM14] also checks consistency.

We measured the performance of the different reasoners and devices for
these tasks in terms of finished tasks and computation time. Due to the high
variance of processing time on Android devices observed in our preliminary
experiments [YBEBM13; BBYEM14], we repeated every test three times and
computed the average and variance of the processing time. We considered a
task as finished if it was processed without throwing any error and within a
defined timeout, which was set to 25 minutes for Android devices and 5 minutes
for the desktop computer.

Regarding the consumed memory, on Android it is difficult to obtain a
precise measure of the memory consumed (the most accurate value would be
the so called Proportional Set Size, which includes the private memory and
divides the shared pages between all the processes that share them, but it is
just an estimation); thus, in our experiments, we made the biggest amount
of memory available (setting the heap value), and focused on the amount of
tasks finished with that heap size as limit for all the reasoners. Moreover,
we considered measuring battery consumption as well, but we found several
difficulties to do that accurately on Android 4.x devices. As shown in [PM14],
where the power consumption for some reasoners on Android 4.x is analyzed,
measuring this factor requires external hardware connected to the battery of
the device.

Finally, note that we are not checking if the result returned by the reasoner
is correct, we only guarantee that the results are the same on Android devices

26Concept satisfiability is subsumed by classification, so one should test concept satisfiability
on non-classified ontologies.

27As defined in [BCMNPS03], here, we consider realization as finding the most specific
concepts a given individual is an instance of.
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and on the desktop computer. The ORE 2013 competition estimates the
correctness of the DL reasoners by a majority vote and publishes their results,
so the interested reader is referred to [GBJRMPGK13].

Selecting the Reasoners

In our preliminary experiments, we detected that reasoning on Android devices
was up to 100 times slower than on a desktop computer for certain ontologies
and reasoners [BBYEM14]. Therefore, testing all the reasoners would require
hundreds of computation hours, and so, we selected a representative subset of
popular reasoners for our tests: ELK, HermiT, jcel, JFact, Pellet, and TROWL.
MORe was not included in our tests because it uses ELK, HermiT, and JFact
that are already being analyzed.

We have not included CB reasoner in the experiments with the complete
ontology set, despite having tested it in our preliminary work [YBEBM13].
Although CB has the advantage of running outside the virtual machine using
native code, and thus not being subject to the restrictions imposed by the
runtime environment, its expressivity and ease of use are problematic. CB
requires to work with Horn-SHIF ontologies, but only 12% of our DL ontology
set are Horn-SHIF ontologies. Furthermore, using CB in a mobile application
might be quite complex due to different steps needed to make the port work.
This might be a barrier to its use in mobile applications, especially when there
are other reasoners than can be imported and used almost directly on Android.
Indeed, we have not been able yet to access CB on Android using the OWL
API, which has become a de facto standard. Thus, we decided to restrict the
tests to the reasoners accessible using the OWL API, as they are more prone
to be used in practice.

Since CB executes native code outside the virtual machine of Android, it is
not subject to the restrictions imposed by the virtual machine, while the other
reasoners run within the virtual machine in a more constrained framework. It
is worth to include some results showing the effect of this. Table A.3 compares
the classification times (in seconds) of three popular Horn ontologies (DBpedia,
GO, and NCI) on the desktop computer and the smartphone using CB and
ELK. In this case, since CB is not accessed using the OWL API, ELK is
accessed using its own API to avoid a possible overhead caused by the OWL
API. DBpedia includes datatypes and thus is not fully supported by CB, so we
do not consider the results of the classification28. Notice how, on PC, CB is 2.3

28Note that [YBEBM13] considers the results because the results of the classification
happen to be correct.



227 Appendix A. Semantic Technologies on Mobile Devices

times faster than ELK for the GO ontology, but on the Android device CB is
3.5 faster than ELK. Furthermore, on PC, ELK is slightly faster than CB for
the NCI ontology, but on A1 CB is 8 times faster. Therefore, running native
code directly without using the virtual machine on Android devices seems to
make a difference. A more detailed study of this fact is left as future work.

Regarding the reasoners designed for mobile devices (see Section 2.1.2),
we were forced to discard Mini-ME, the only reasoner that is available and
compatible with Android. Before starting the experiments, we compared the
expressivity of the ontologies in both ontology sets with the expressivity that
Mini-ME supported, and, at first, 160 ontologies from the DL ontology set
and 42 from the EL ontology set lay out from the expressivity supported
(ALCN ). Anyway, we computed the classification of the EL ontology set, but
96 ontologies did not finish due to several problems (such as class exceptions),
and 97 ontologies reached the established timeout for the tests. Thus, the
results of 9 ontologies (5 %) are not significant enough to compare Mini-ME
with the other reasoners.

Verifying the Android Versions

Before leaping into the main experiments, we performed a set of tests on the
selected reasoners to test whether they produced exactly the same results on
Android devices as on desktop computers. The aim of these tests was twofold:
on the one hand, we wanted to check the behavior of the Android-compatible
libraries we used to replace the unsupported ones; and on the other hand, we
wanted to check the behavior of the reasoners that can be directly imported in
Android projects.

We focused on the classification task because the consistency checking is
just a yes-no question. First, as baseline, we obtained the sets of subsumption
axioms computed by the original version of the reasoners running on the desktop
computer. Then, we checked that the results obtained by the reasoners running
on Android devices contained exactly the same axioms (of course, this was
done separately per ontology). The only mismatches we found on our selected
reasoners were due to two different reasons: sometimes the reasoning task on
Android did not end before the timeout (and therefore, no comparison could
be made), or there were problems with some ontologies due to the encoding of
the ontology files, which led to malformed URIs (these problems disappeared
once we aligned the file encodings, as detailed in Section A.2.7).

Note that verifying the Android versions is indeed necessary: we found
some examples where different versions of the ported reasoners gave different
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results on Android devices and in the desktop computer. In JFact 1.2.1, the
results of the classification and the consistency checking are different on PC
and Android:

• aee636cb-4238-41af-a3d6-541d30f2e7ed spills.owl is correctly iden-
tified as consistent by the PC version, but is inconsistent according to
the Android version.

• 52cf3ab5-1662-4296-835e-b22ac92339e7 .2 DUL.owl misses two misses
two subclasses of the class Role, namely Entity and E1.CRM Entity in
Android.

This problem does not happen in JFact 0.9.1. Thus, once we tested that
we had not introduced any problem when porting the reasoners to Android,
we moved on to the performance experiments.

In the following sections, we present our analysis of the performance of
reasoners on mobile devices grouped by ontology profile. First, we present
the results obtained for the OWL 2 DL profile and then for the OWL 2 EL
profile (the same order used in the ORE 2013 report [GBJRMPGK13]) in
Sections A.2.2 and A.2.3, respectively. For each profile, we present the results
obtained when comparing the reasoners in terms of finished tasks and average
computation time needed per task. Then, we compare the time consumption
of the reasoners with the minimum set of ontologies that every reasoner and
device was able to process. Next, in Section A.2.4 we study the role of the
limitation of memory and the virtual machine on the reasoning on Android
devices.

A.2.2 Comparing the Reasoners for the OWL 2 DL Profile

In this section, we detail the results of our performance experiments for the
OWL 2 DL profile. For our DL ontology set (with 182 ontologies), we tested the
following reasoners: JFact 0.9.1, HermiT 1.3.8, Pellet 2.3.1, and TrOWL 1.4.
As already mentioned, we first detail the number of finished tasks per reasoner
and device, to then move on to their performance.

Comparing the Number of Finished Tasks

The results for the classification task for the desktop computer (PC), the
Galaxy Nexus (A1), and the Galaxy Tab 2 (A2) are shown in Figure A.1(a),
Figure A.1(c), and Figure A.1(e), respectively; for the consistency checking
results for PC, A1, and A2 see Figure A.1(b), Figure A.1(d), and Figure A.1(f).
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: Results (finished tasks/average time) for the complete OWL 2 DL
ontology set.
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First of all, analyzing the results in terms of finished tasks, we can observe
that, as expected, the reasoners on PC finished more tasks than on Android
due to the more powerful hardware. Only HermiT and Pellet finished a
similar number of tasks on the desktop computer and on Android devices
when checking the consistency (181 vs 180 and 177 vs 175-176). Moreover, the
reasoners on A1 finished more tasks than the same reasoners running on A2 for
most of the tests. There are only two situations where both devices finished
the same number of tasks: computing the classification with JFact (117 out
of 182 tasks on both devices), and checking the consistency with HermiT (180
out of 182 tasks on both devices).

Although the number of finished tasks on the desktop computer and on
the mobile devices are different, both Android devices follow the PC trend for
the classification task: TrOWL is the reasoner that finished a higher number
of tasks, followed by Hermit, Pellet, and JFact. For the consistency checking,
the PC trend is not followed by the Android devices: on the Android devices
both HermiT and Pellet finished more tasks than TrOWL while TrOWL was
the reasoner that finished more tasks on PC.

Analyzing the results of TrOWL for the consistency checking on A1, we
noticed that the timeout period elapsed for 13 tasks, while it never elapsed
for any task on PC. Also, 7 large ontologies that were processed by TrOWL
on PC threw out of memory errors on the smartphone. Table A.4 shows the
number of tasks that could not been finished by the reasoners on each device
and by each reasoner. We classify the reasons for not finishing as elapsed time
out (“T/O” column in the table), and others (“Other” column). Notice that,
as PC had enough memory to perform the reasoning, the errors on the “Other”
column for PC are mostly due to unsupported data types. On the Android
devices, the same errors always occur and some additional problems appear:
usually, out of memory issues when processing large ontologies. Notice also
that, in some situations, timeout problems on PC are translated into out of
memory problems on Android devices. This happens because the timeout of
PC was set to 5 minutes while on Android it was set to 25 minutes. Therefore,
for some complicated tasks the reasoner run out of memory before the timeout
elapsed (for example, HermiT in the consistency checking).

We would like to highlight that, although the results obtained for this test
(Figure A.1) enable us to compare the reasoners in terms of number of finished
tasks, one should be cautious when comparing their processing times. The
most difficult ontologies (i.e., the most expressive or large ones) require more
time to be classified and so, completing more tasks could imply increasing the
average time per finished problem. For example, notice that HermiT running
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on A1 completes 151 classification tasks with an average time per task of 113.7s
while the same reasoner running on A2 completes 141 tasks with an average
time of 58.8s (the average time increases about 50 seconds because of these
10 more challenging tasks). Therefore, we performed the following test to be
able to compare the processing time of the reasoners.

Comparing the Processing Time

To fairly compare the reasoners regarding the average processing time needed
per ontology, we selected the minimum set of DL ontologies that all the devices
and all the reasoners were able to process. We also split the ontologies with
respect to their number of axioms into three subsets (small, medium, and
large) obtaining a minimum DL set of 93 ontologies for the classification
task (29 small, 62 medium, and 2 large ontologies), and 124 ontologies for
the ontology consistency checking task (37 small, 81 medium, and 6 large
ontologies).

Comparing Trends Figure A.2(a) and Figure A.2(b) show the results ob-
tained for the reasoners computing the classification and consistency, respec-
tively, on the three devices with the minimum set of DL ontologies. First of
all, as in our previous test, the mobile devices follow the PC general trend.
There are two exceptions: on the one hand, TrOWL was slightly faster on PC
for the classification of the medium set of ontologies than for the large one
(about 0.2s), but on the mobile devices it was slightly slower (around 3s on the
A1 device); on the other hand, HermiT was slightly faster on PC for checking
the consistency of the small set than for the medium one (around 0.02s), but,
on the mobile devices, it was slightly slower (around 0.7s on the A1 device).
However, in the case of the classification in HermiT, the difference between the
small and medium sets is also small but the trend on the desktop computer
and the mobile devices is similar.

Comparing Performance Table A.5 shows the difference on the perfor-
mance of the desktop computer, the smartphone, and the tablet in terms of
the number of times of PC being faster than the Android devices. In general,
PC outperformed A1 and A2 for all the reasoners. The greatest differences
happen in the large ontology set, where, for example, the desktop computer is
almost 110 times faster than A1 when checking consistency using TrOWL, and
almost 200 times faster than A2 when computing classification with HermiT.
However, the consistency checking of the small set of ontologies in the PC
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(a)

(b)

Figure A.2: Average computing time for each ontology group in the minimum
set of OWL 2 DL ontologies processed by all the devices and reasoners.

was “only” 2 times faster than A1 for JFact (from 0.16s to 0.31s) and Pellet
(from 0.24s to 0.37s).

TrOWL was the fastest reasoner in both devices for the classification of all
the ontology sets, but it uses approximate reasoning in OWL 2 DL. Note also
that the difference between the different reasoners is smaller on PC than on
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mobile devices, for both reasoning tasks. In the mobile devices, the order of
the reasoners according to their reasoning times is usually the same as in the
desktop computer, although this is not always the case due to the variance of
the results obtained for each test repetition.

A.2.3 Comparing the Reasoners for the OWL 2 EL Profile

In this section, we detail the results of our performance experiments for the
OWL 2 EL profile. For the OWL 2 EL ontology set (with 193 ontologies),
we tested the following reasoners: ELK 0.4.0, HermiT 1.3.8, jcel 0.19.1,
JFact 0.9.1, Pellet 2.3.1, and TrOWL 1.4.

Comparing the Number of Finished Tasks

The results for the classification task for the desktop computer (PC), the
Galaxy Nexus (A1), and the Galaxy Tab 2 (A2) are shown in Figure A.3(a),
Figure A.3(c), and Figure A.3(e), respectively; for the consistency checking
results for PC, A1, and A2 see Figure A.3(b), Figure A.3(d), and Figure A.3(f).

As above mentioned for the DL ontology set, we can observe that the
reasoners on PC finished more tasks than on Android. However, the difference
on the number of finished tasks is smaller than for the DL ontology set. On
the one hand, in the DL ontology set, the difference of finished tasks on
PC and A1 is: 16 (for classification) and 25 (for consistency checking) for
JFact ; 19 and 20 for TrOWL; 13 and 1 for HermiT ; and 12 and 1 for Pellet. On
the other hand, in the EL ontology set the difference of finished tasks on PC
and A1 is: 12 and 10 for JFact ; 2 and 2 for TrOWL; 4 and 4 for jcel ; 4 and 1 for
HermiT ; 4 and 1 for Pellet ; and 1 and 0 for ELK. This can be explained
because of the difference of expressivity of the two ontology sets. As the EL
profile is less expressive, performing reasoning tasks within this profile is less
costly. Therefore, more tasks can be finished on the mobile devices.

Also, in general, A1 finished more tasks than A2. There are only two
situations where both devices finished the same number of tasks: first, ELK
finished 190 out of 193 classifications on both devices; and second, HermiT
finished 192 out of 193 consistency checkings on both devices.

Table A.6 shows the results for the analysis of the tasks that were not
finished. As for the DL ontology set, the errors of the “Other” column for
the PC are mostly due to unsupported datatypes or ontologies that could not
be processed by the reasoner. On the Android devices, the increment on the
number of “Other” errors is due to out of memory errors. Notice also that
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(e) (f)

Figure A.3: Results (finished tasks/average time) for the complete OWL 2 EL
ontology set.
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the number of “Other” errors for the consistency checking is zero in HermiT,
Pellet, and ELK, for the three tested devices.

Comparing the Processing Time

As we did for the DL ontology set, we selected the minimum set of EL ontologies
that all the devices and all the reasoners were able to process to be able to fairly
compare the performance of the reasoners regarding the average processing time
per ontology. We also split the ontologies with respect to their number of axioms
(small, medium, and large) obtaining a minimum EL set of 152 ontologies for
classification (62 small, 67 medium, and 23 large ontologies) and 166 ontologies
for consistency checking (65 small, 72 medium, and 29 large ontologies).

Comparing Trends Figure A.4(a) and Figure A.4(b) show the results ob-
tained for classification and consistency, respectively. Notice that both mobile
devices follow the general trend obtained for the PC. For all the reasoners and
devices, the average time for the small set is smaller than the time for the
medium one, which in turn is smaller than for the large set. There are two
situations that should require further explanation: first, HermiT was faster on
A2 than on A1 for the classification of the small and medium sets of ontologies;
and second, Pellet was as fast on A2 for the classification of the small set as
for the medium one (while it was faster on the PC and A1). Analyzing the
results per ontology of these ontology sets, we observed that there were some
ontologies where the variance of the measured times for the three repetitions
of each test was high, which led to these situations.

Comparing Performance Table A.7 shows the difference of performance
between the PC and the two mobile devices in terms of number of times of the
PC executions being faster than the Android ones. As in the DL ontology set,
in general, the desktop computer outperformed the mobile devices for all the
reasoners. The greatest differences are again achieved on the large and medium
ontology sets. For example, for the classification of these sets using HermiT,
PC is almost 70 times faster than A1, and almost 150 times faster than A2.
In general, the differences between PC and the mobile devices are smaller
for consistency checking. Notice that there is a situation where the Android
devices were faster than the desktop computer: in the consistency checking
with ELK, PC was 0.8 (from 0.26s to 0.21s) and 0.6 (from 0.26s to 0.15s) times
“faster” than A1 and A2 devices, respectively (these values are coherent with
the observed variance).
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As it happens in the DL ontology set, the difference between the different
reasoners on PC is smaller than on the mobile devices. Furthermore, the order
of the reasoners according to their reasoning times is usually the same as in
the desktop computer.

(a)

(b)

Figure A.4: Average computing time for each ontology group in the minimum
set of OWL 2 EL ontologies processed by all the devices and reasoners.
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A.2.4 Other Experiments

In this section we summarize some additional experiments measuring other
interesting features of the mobile devices, namely the impact of the memory
and the virtual machine.

A.2.5 Analyzing the Impact of Memory

After comparing the results obtained for PC and Android, we wanted to check
how the limitation of memory that Android imposes on applications and its
management by the OS affects the results. Our goal was to check whether the
processing time would be affected if the maximum memory for the application
was limited.

Firstly, we restricted the maximum memory for the desktop computer to
256 MB RAM (the maximum size that Android assigns to the applications
in our test devices) and computed the classification of the DL and the EL
ontology sets. We observed that there are significant differences on the number
of finished tasks but not on the reasoning time. Figures A.5 and A.6 compare
the number of finished classifications in PC, PC with the memory limitation
(denoted PCmem), and A1 for the small (S), medium (M), and large (L)
OWL 2 DL ontology set. In particular, we represent the differences between
the number of finished tasks in the devices: PC vs. PCmem, PC vs. A1, and
PCmem vs. A1.

We can see that the number of finished tasks over small ontologies is the
same in all the cases. For medium ontologies, PC and PCmem only differ in
one OWL 2 DL ontology, although A1 does not finish 14 OWL 2 DL and 5
OWL 2 EL ontologies. The only OWL 2 DL reasoner that does not finish
a smaller number of tasks on A1 is TrOWL, which computes approximated
reasoning in this profile. In large ontologies, the number of unfinished tasks
on PCmem and A1 is significant: more than 10% in the EL ontology set and
more than 50% in the DL ontology set. Overall, the number of finished tasks
in PCmem and A1 is comparable: 586 vs 572 OWL 2 DL ontologies, and 1099
vs 1095 OWL 2 EL ontologies. Note that some tasks finished on A1 but not
on PCmem.

After investigating the role of memory on the desktop computer, we also
limited the memory on the Android devices. To do that, we restricted the
maximum memory heap for the application to the “standard memory heap”
by setting the variable android:largeHeap=‘‘false’’. In particular, we
restricted the memory to 96 MB. Since the experiments on Android devices
are more costly, we restricted to the classification (the most challenging task)
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of the DL ontology set using Pellet and the Galaxy Nexus smartphone (A1, as
it was the fastest device). For this experiment, we did not want to consider
TrOWL (it only offers approximate reasoning in the DL ontology set) and
JFact (because of the smaller number of finished classifications on A1); between
HermiT and Pellet we chose the latter one to decrease the total computation
time because, as shown in Figure A.2 (a), it was usually faster.

Figure A.5: Comparison of the number of finished classifications of OWL 2 DL
ontologies.

The first aspect to highlight from the results is that, as it happened when
limiting the memory on Android, limiting the memory decreased the number of
finished tasks. The reasoner finished 143 tasks before and 135 after the memory
limitation. These 8 tasks that could not be finished by the “limited version”
include 2 medium and 6 large ontologies. Figure A.7 shows the comparison
of the time needed for every ontology that the reasoner was able to classify
in the two tests. In the graph, we plot the processing times difference as a
percentage of the time required by the non-limited version (y-axis) and the time
needed by the non-limited version in seconds (x-axis). The first thing we can
highlight is that there are some negative values which mean that the limited
version was faster than the non-limited version. This can be explained because
measuring time consumption of the same application on the same device can
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Figure A.6: Comparison of the number of finished classifications of OWL 2 EL
ontologies.

have a small variance due to the management of the running applications done
by the OS. Moreover, for ontologies that can be classified quickly (under 5s),
the difference is around 40%, and reaches even 60% in some cases. In these
cases, the ontologies require around 1s to be classified, so the actual difference
in seconds is around 0.5s. Regarding the values obtained, notice that the
difference between the two versions for those ontologies that need 15s or more
to be classified is less than 2%. This includes ontologies that needed 80s-250s,
where the difference is less than 1s. Therefore, the main conclusion of this test
is that limiting the memory on the devices do not significantly modifies the
time consumption, but it does affect the number of accomplished tasks.

A.2.6 Analyzing the Impact of the Virtual Machine

Very recently, as of November 2014, Google released the new Android 5.0
version that includes a new runtime environment called Android Runtime
(ART) to replace the Dalvik virtual machine. While the previous virtual
machine Dalvik uses just-in-time compilation every time an application is
launched, ART uses a more sophisticated ahead-of-time compilation that can
be performed just once during the installation of the application. This way,
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Figure A.7: Comparison of the Pellet reasoner on Android with limited and
“unlimited” memory.

processor and battery usage are optimized.
Therefore, the performance of mobile applications running on the new

virtual machine is expected to increase. However, attending to historic in-
formation, it is expected that previous versions of the OS would continue
maintaining their popularity. In fact, Android 4.X required a bit more than
a year to reach 50% of the Android devices and, as of July 2015, previous
versions were present on almost a 6% of the global devices29.

We performed a final test with this new runtime environment to show
the expected tendency in the future. We used a Google Nexus 5 smartphone
(equipped with a 2.26 GHz quad-core processor and 2 GB of RAM) for this
test. We computed the classification of 10 ontologies extracted from the DL
ontology set which we used in our tests in [BBYEM14] using Pellet. We ran
this test twice, one with the current Android version (4.4) using the Dalvik
virtual machine, and another one with the new Android version (5.0) using
ART.

Figure A.8 shows the comparison of the classification time on both virtual
machines and for each of the 7 ontologies that finished the test (2 of them
failed because of unsupported datatypes, and another one elapsed a time out).
Notice that the new Android version and its virtual machine outperformed the
previous one for all the ontologies using the same hardware. In fact, Pellet

29http://developer.android.com/about/dashboards/index.html, last accessed 2015-07-
04.

http://developer.android.com/about/dashboards/index.html
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on the ART virtual machine was 2.5 times faster on average. As the tests
were only performed once for each device we should take this number with
a pinch of salt due to the variance of the times measured in our previous
experiments. However, the improvement is similar with large, medium, and
small ontologies so we can highlight that reasoners on the new ART virtual
machine could be around 2 times faster than in Dalvik. Therefore, although
reasoning on a desktop computer clearly continues outperforming reasoning on
mobile devices, the processing times on mobile devices will go on decreasing as
more powerful hardware and OS and software optimizations will be available,
making reasoning on mobile devices even more feasible.

Figure A.8: Comparison of the Pellet reasoner on the Dalvik and ART virtual
machines.

A.2.7 Discussion

In this section, we present some key ideas extracted from our experience within
these tests. We believe that developers of existing and future semantic APIs
and reasoners can benefit from taking into account these pieces of advice to
enable mobile application (and specifically Android) developers to use their
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technologies. We also hope that developers of mobile applications that are
considering using semantic technologies find these advices interesting when
creating their applications.

Regarding the coding of semantic APIs and reasoners, we highlight the
following points:

• Some of the reasoners we have studied and/or ported include many func-
tionalities that might not be required for mobile application developers
(e.g., graphical packages or remote access). We advocate for modular
designs with a micro-kernel supporting only the core reasoning tasks,
and with the rest of functionalities (e.g. parsers, query processing, etc.)
included in separated modules. This would greatly help porting and
using them, as the deployed version could be tailored and thus, some of
the limitations of mobile devices could be avoided.

• Using native code to develop a reasoner can help the developer to avoid
many of the limitations that the virtual machine imposes, achieving
better performance. However, the difficulty of use of a reasoner within a
mobile application/an Android project might be an unbearable barrier
that could reduce the popularity of the reasoner. For this reason, there
should be a simple, and if possible standard, mechanism to support its
use from mobile applications. For that, we advocate providing always
interfaces (such as OWL API or Jena) for mobile application developers.

• Beware of using some common standard Java libraries. Current An-
droid/Dalvik versions do not perfectly align to a standard Java environ-
ment (e.g., all the graphical packages are not supported), and, even worse,
there are libraries which are not completely included on current versions
of Android and do not throw compilation or execution errors (e.g., JAXB
and Xerces). Therefore, it is possible to import some reasoners on an
Android project but the results of the reasoning are not the same as on
desktop computers (as it happens in JFact 1.2.1).

• Keep in mind resource limitations. Regarding memory, in Android, we
can reduce the memory imprint by using shared libraries. However, one
might end up exceeding the maximal number of methods that can be
invoked from a single dex file30. Thus, we advocate trying to use only

30Although multidex mobile applications can be build since Android 4.0 (SDK 14), there
are many documented problems with it, and we discourage its use, see https://developer.

android.com/tools/building/multidex.html for details.

https://developer.android.com/tools/building/multidex.html
https://developer.android.com/tools/building/multidex.html
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those packages/classes needed and building a customized version of the
library.

• As a final suggestion, using open-source licenses and distributing the
code (as, for example, HermiT and Pellet) can help developers to find
programmers willing to help in porting existing reasoners (as we have
done) to other mobile OS, such as iOS.

Regarding the use and performance of semantic technologies on current
Android devices:

• The performance of all the semantic reasoners we tested on Android is
lower than on a PC. Indeed, the PC is from 1.5 to 150 times faster in our
tests depending on the task and the ontology. Therefore, complicated
tasks such as classification of large ontologies should be reduced to the
minimum.

• The reasoners tested on Android behave similarly to the same version on
a desktop computer: reasoners that are faster on desktop computer are
generally faster on Android too.

• The variance of the reasoning time is higher on Android devices than on
desktop computers. In the case of Android devices, the time variance is
almost negligible for small ontologies, moderate for medium ontologies,
and significant for larger ontologies. Ontologies in the OWL 2 DL ontology
set usually produce higher variances than OWL 2 EL ontologies. Note
that the main priority in Android is the responsiveness of the device, and,
thus, its scheduling policies seem to penalize applications which require
intensive use of resources (e.g., CPU time and memory). In general, DL
ontologies require more computation time than EL ontologies, and thus,
they are more prone to be affected by the variance introduced by the
possible context changes.

• When developing a mobile semantic application, it is a good idea to
separate the reasoning thread in an isolated process whenever possible,
and not relying on Android to relaunch it if it gets killed (e.g., due to
memory issues). If a task is killed for being too resource greedy, Android
seems to penalize it and does not resume it immediately.

• To use the full potential of mobile devices, reasoners could compile the
core of their code as Android native code and avoid this way the overhead
of the Android virtual machine.
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• Android uses UTF-8 as encoding by default. Problems with the characters
in the URIs can appear when working with ontologies that have been
developed in an editor that stores them in any other encoding.

We also want to share some experiences with mobile application developers
(researchers or not). First, with respect to the use of DL reasoners specifically
designed for mobile devices, some authors of these reasoners argued that
“current Semantic Web reasoners cannot be ported without a significant re-write
effort” [RSSGL12]. After our work, this is no longer true, as we have made it
possible to reuse existing semantic APIs and DL reasoners on Android and, in
some cases, no rewriting was even needed. However, it is interesting to study
if these reasoners outperform reused reasoners in mobile devices. In fact, most
of the optimization techniques implemented by classical DL reasoners cannot
easily be adopted in mobile systems, since they decrease running time but
definitely increase the use of memory, which is limited in mobile devices. Thus,
a study of the trade-off between expressivity and resource consumption for
mobile devices could be useful.

In our experience, the use of semantic technologies on mobile devices allowed
us to create smart mobile applications that do not require Internet connection
and preserve the privacy of users by avoiding the use of cloud-based services.
For example, our prototypes of SHERLOCK (see Section B.1), FaceBlock,
Rafiki, and Triveni (see Section B.3 use HermiT. We only experienced problems
when dealing with large ontologies (with hundreds of individuals) and complex
SWRL rules. In those scenarios (large ontologies), the classification time
exceeded the amount of time a user would be willing to wait for an answer.

As a summary, in this work we have tested semantic technologies on Android
by designing some experiments with standard ontology sets used in the OWL
Reasoner Evaluation 2013 workshop. First, we have tested that the ported
versions on Android obtain the same results than the original versions on PCs.
Then, we have tested the performance of the reasoners in terms of number of
tasks finished and time consumed per task in two mobile devices, a smartphone
and a tablet. Finally, we have tested the role of the amount of available
memory and the virtual machine used on Android. The complete results of
our experiments can be found on the webpage [And], together with a detailed
description of all the changes needed to port the semantic reasoners and, if the
licenses make it possible, download links.

From a practical point of view, the main limitation that reasoners will
face on current smartphones/tablets concerns memory usage and processing
time (and hence, battery consumption). Our experiments show that reasoners
running on a PC are 1.5 to 150 times faster than on Android devices. Also,
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the number of out of memory errors increase on Android devices compared
with PCs, usually in the OWL 2 DL profile and in larger ontologies. We
also noticed important differences in the performance of the three analyzed
Android devices, showing that, although mobile devices are far from being
desktop computers, they are increasing their capabilities quickly as needed by
challenging tasks, such as semantic reasoning. We have recently done some
tests with more modern devices that confirm this trend. In addition, we have
shown some results with the future Android runtime, ART, that show that the
same tasks on the same devices can be executed around 2 times faster.

We would like to finish this summary of the conclusions of the work with a
statistical curiosity. We estimate that the complete empirical experimentation
reported in this section required a total computing time of more than 1000
hours (which is more than 41 days only for the computation of the different
tests).

A.3 Related Work

This section will be divided in two parts. Firstly, we will overview the previous
work on supporting DL reasoners on mobile devices. Then, we will point to
some relevant literature on empirical evaluations of DL reasoners on desktop
computers.

A.3.1 Reusing and Evaluating DL Reasoners on Mobile De-
vices

To the best of our knowledge, our work is the first effort to offer a systematic
support and evaluation of the performance of existing DL reasoners on mobile
devices. However, there are some previous works in the field that are worth
mentioning.

Using ELK on Android devices has been recently investigated [KK13].
In particular, the authors implemented some minor changes to make the
reasoner work on an Android smartphone and performed some experiments
on a Google Nexus 4 Android 4.2 phone. In particular, the authors measured
the classification time of 5 EL ontologies both in the Android device and in
a desktop computer. The results show that reasoning times in the Android
device are acceptable even if much slower (two orders of magnitude) than in the
desktop version. We have also considered ELK in our experiments, measuring
and comparing its reasoning times over more ontologies.

As previously mentioned, using Pellet on mobile (J2ME) devices has been
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investigated [SK08; SKG09]. The modification of Pellet reasoner included some
new optimization techniques and was called mTableau. The authors did some
experiments on a desktop computer, proving that the optimization is useful to
reduce the response time in situations of limited memory. They also performed
some experiments (4 consistency tests over 2 ontologies) in a PDA showing
that the reasoning times are acceptable. However, their approach is more
oriented to proving the usefulness of the optimizations rather than performing
a comparison between the performance of the reasoner in mobile and desktop
devices.

Finally, there are three recent works that consider the use of reasoners
on mobile devices complementing our work. Regarding battery consump-
tion, [PM14] analyzes the performance per watt of Jena, Pellet, and HermiT
over two ontologies. The authors found a nearly linear relationship between
energy consumption and processing time, and studied the effects of some
smartphone features (WiFi, 3G, and 4G radios) on battery consumption. More
recently, [VNP15] studies the battery consumption on Android 5.x (API 21) of
Pellet, Hermit, and Androjena, performing four different reasoning tasks over
some datasets generated using the LUBM benchmark generator [GPH05]. Their
software-based approach could be used to extend our study on the performance
of DL reasoners on current and future versions of Android. Finally, [WHAA14]
presents a benchmark framework for mobile semantic reasoners allowing them
to be deployed on different platforms such as Android or iOS. So far, the
authors have only considered 4 reasoners (AndroJena, Nools, RDFQuery, and
RDFStore-JS), since their work is more focused on generability and extensibility,
making it easier to add new mobile platforms and reasoners.

A.3.2 Evaluating DL Reasoners on Desktop Computers

The developers of some reasoners have performed evaluations of their sys-
tems with the main objective of showing that their new tools outperformed
existing ones. There are also several (more or less) independent experimental
comparisons in the literature that we will overview here.

In [Pan05], FaCT++, Pellet 1.1.0, and Racer 1.8.0 reasoners were compared
for the classification of 135 OWL ontologies, with FaCT++ being slightly prefer-
able (faster and more robust). Then, in [GTH06], FaCT++ 1.1.3, Pellet 1.3,
and RacerPro 1.8.1, were compared along with KAON2 for the classification
of 172 ontologies, without a clear winner due to the considerable difference of
performance across ontologies. HermiT, KAON2, Pellet, RacerPro, Sesame,
and SwiftOWLIM reasoners were compared for classification and conjunctive
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query answering over 3303 ontologies in [BHJV08]. The authors concluded that
SwiftOWLIM may be preferable in low expressive languages, RacerPro can be
recommended in expressive ontologies with small ABoxes, and KAON2 is the
best alternative in the other cases. The reasoners CB, CEL, DB, FaCT++,
and HermiT were evaluated for the classification of 4 ELH ontologies [DK09].
CB is the best option, although the results are focused on evaluating the
new technique of computing classification using an SQL system. Dentler et
al. [DCTK11] evaluated 8 reasoners (CB build 6, CEL 0.4.0, FaCT++ 1.5.0,
HermiT 1.3.0, Pellet 2.2.2, RacerPro 2.0 preview, Snorocket 1.3.2, and TrOWL
0.5.1) over 3 OWL 2 EL ontologies for 4 reasoning tasks (classification, concept
satisfiability, TBox consistency, and subsumption). As usual, there is not a
clear winner. Besides, the authors also performed a very detailed comparison of
other features of the reasoners. Another experiment measures the classification
time of 358 real-world ontologies for 4 reasoners (FaCT++, HermiT, Pellet,
and TrOWL) [KLK12]. The best reasoner depends on the criteria: Fact++
has the lowest median, HermiT has the lowest mean, TrOWL has the low-
est number of errors, and Pellet has the lowest number of errors among the
complete reasoners. Since DLs usually have a good performance in practice
but high worst-case complexities, [GMPS13] investigates how often reasoning
with existing ontologies requires an unreasonable time. The authors consider
4 reasoners (FaCT++ 1.6.1, HermiT 1.3.6, JFact 1.0, and Pellet 2.3.0) and
1071 ontologies, showing that most of the times there is some reasoner giving
a quick response time, with Pellet being the most robust one. Hence, most of
the existing ontologies on the Web are not inherently intractable but just hard
for some particular DL reasoners.

Finally, it is worth to mention that the OWL Reasoner Evaluation Work-
shop (ORE) series organize DL reasoner competitions. The 2012 competition31

considered 143 ontologies and 5 reasoning tasks (classification, consistency, con-
cept satisfiability, entailment, and instance retrieval) for 4 reasoners (FaCT++,
HermiT, jcel, and WSReasoner). The 2013 competition [GBJRMPGK13]
considered 204 ontologies classified in 3 profiles (OWL 2 DL, OWL 2 EL, and
OWL 2 RL) and 3 reasoning tasks (classification, consistency, and concept sat-
isfiability) for 14 reasoners (BaseVISor, Chainsaw, ELepHant, ELK, FaCT++,
HermiT, jcel, JFact, Konclude, MORe, SnoRocket, Treasoner, TrOWL, and
WSClassifier). The competition organizers gave priority to robustness of the
systems rather than the reasoning times alone. The latest editions held at
2014 [BGJRMPS13] and 2015 [DGGHJMPSS15] considered more than 16500
unique ontologies divided in 2 profiles (OWL 2 DL, and OWL 2 EL), and 3 rea-

31http://www.cs.ox.ac.uk/isg/conferences/ORE2012/evaluation/index.html

http://www.cs.ox.ac.uk/isg/conferences/ORE2012/evaluation/index.html
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soning tasks (classification, consistency checking, and realisation). The number
of ontologies used out from the ontology set depended on the profile and the
reasoning task, ranging from 200 ontologies used for realization in DL profile
to 300 ontologies used for classification in EL profile. The participants in the
2014 edition were Chainsaw, ELepHant, ELK, FaCT++, HermiT, jcel, JFact,
Konclude, MORe, Treasoner, and TrOWL (11 reasoners), and the participants
in the 2015 edition were Chainsaw, ELepHant, ELK, FaCT++, HermiT, jcel,
JFact, Konclude, MORe, PAGOdA, Pellet, Racer, and TrOWL (13 reasoners).
In all the competitions, the best reasoner depends on the reasoning task and
the expressivity of the ontology.
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Software Version
Originally
compati-

ble

Currently
compati-

ble

Jena 2.12.0 × X

OWL API 3.4.10 X X

CB build 6 × X∗

CEL 1.0 × ×
Chainsaw 1.0 × ×
ConDOR revision 13 × ×
ELepHant 0.4.0 × ×
ELK 0.4.0 × X∗

FaCT++ 1.6.3 × ×
fuzzyDL build 60 × ×
HermiT 1.3.8 × X∗

jcel 0.19.1 X X

JFact 0.9.1 X X

KAON2 unknown × ×
Konclude 0.6.0 × ×
MORe 0.1.5 × X∗

Pellet 2.3.1 × X∗

Racer 2.0 × ×
TReasoner revision 22 X X

TrOWL 1.4 X X

WSClassifier revision 1 × ×
∗: It has been ported by us.

Table A.1: Android support for some semantic APIs and DL reasoners.
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HermiT JFact Pellet

DBpedia
A1 5.13 UDT 63.15

A3 8.87 UDT 115.30

GO
A1 487.98 435.60 83.97

A3 OOM OOM OOM

NCI
A1 2020.48 OOM OOM

A3 OOM OOM OOM

Pizza
A1 10.43 3.42 20.77

A3 14.88 4.90 33.22

Wine
A1 361.38 1609.32 131.80

A3 511.97 2196.05 194.12

Table A.2: Comparison of classification time (in seconds) for two Android
devices. OOM: Out Of Memory; UDT: Unsupported Data Type.

CB ELK

DBpedia
PC UDT 0.5

A1 UDT 19.7

GO
PC 0.6 1.4

A1 8.6 30.6

NCI
PC 2.6 2.5

A1 35.4 200.7

Table A.3: Comparison of classification time (in seconds) for PC and Android.
UDT : Unsupported Data Type.
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Reasoner
Classification Consistency

T/O Other T/O Other

HermiT(PC) 13 (7.1%) 5 (2.7%) 1 (0.6%) 0 (0%)

HermiT(A1) 20 (11%) 11 (6%) 0 (0%) 2 (1.1%)

HermiT(A2) 28 (15.4%) 13 (7.1%) 0 (0%) 2 (1.1%)

JFact(PC) 18 (9.9%) 31 (17%) 8 (4.4%) 18 (9.9%)

JFact(A1) 26 (14.3%) 39 (21.4%) 18 (9.9%) 33 (18.1%)

JFact(A2) 23 (12.6%) 42 (23.1%) 24 (13.2%) 31 (17%)

Pellet(PC) 20 (11%) 7 (3.9%) 5 (2.7%) 0 (0%)

Pellet(A1) 26 (14.3%) 13 (7.1%) 6 (3.3%) 0 (0%)

Pellet(A2) 33 (18.1%) 12 (6.6%) 7 (4%) 0 (0%)

TrOWL(PC) 1 (0.6%) 1 (0.6%) 0 (0%) 0 (0%)

TrOWL(A1) 9 (5%) 12 (6.6%) 13 (7.1%) 7 (3.9%)

TrOWL(A2) 18 (9.9%) 6 (3.3%) 18 (9.9%) 6 (3.3%)

Table A.4: Errors for uncompleted tasks in the DL ontology set.

Classification Consistency

S M L S M L

HermiT
A1 44 28 52 7 5 22

A2 44 36 193 8 5 54

JFact
A1 25 51 41 2 5 24

A2 40 57 71 3 7 59

Pellet
A1 14 15 34 2 6 76

A2 21 46 38 2 14 123

TrOWL
A1 9 33 16 15 29 109

A2 9 96 35 18 90 142

Table A.5: Number of times (rounded to the closest integer) of the PC version
being faster than the Android ones for the small (S), medium (M), and large
(L) OWL 2 DL ontology set.



Appendix A. Semantic Technologies on Mobile Devices 252

Reasoner
Classification (193) Consistency (193)

T/O Other T/O Other

ELK(PC) 2 (1%) 0 0 0

ELK(A1) 1 (0.5%) 2 (1%) 0 0

ELK(A2) 2 (1%) 1 (0.5%) 1 (0.5%) 0

HermiT(PC) 3 (1.6%) 0 0 0

HermiT(A1) 7 (3.6%) 0 1 (0.5%) 0

HermiT(A2) 10 (5.2%) 0 1 (0.5%) 0

jcel(PC) 1 (0.54%) 13 (6.7%) 0 13 (6.7%)

jcel(A1) 0 18 (9.3%) 5 (2.6%) 12 (6.2%)

jcel(A2) 7 (3.6%) 12 (6.2%) 7 (3.6%) 13 (6.7%)

JFact(PC) 6 (3.1%) 2 (1%) 3 (1.6%) 1 (0.5%)

JFact(A1) 12 (6.2%) 8 (4.1%) 8 (4.1%) 6 (3.1%)

JFact(A2) 10 (5.2%) 12 (6.2%) 9 (4.7%) 7 (3.6%)

Pellet(PC) 3 (1.6%) 4 (2.1%) 0 0

Pellet(A1) 6 (3.1%) 5 (2.6%) 1 (0.5%) 0

Pellet(A2) 10 (5.2%) 5 (2.6%) 3 (1.6%) 0

TrOWL(PC) 2 (1%) 0 1 (0.5%) 0

TrOWL(A1) 2 (1%) 2 (1%) 2 (1%) 1 (0.5%)

TrOWL(A2) 5 (2.6%) 1 (0.5%) 4 (2.1%) 1 (0.5%)

Table A.6: Errors for uncompleted tasks in the EL ontology set.
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Classification Consistency

S M L S M L

ELK
A1 2 6 15 1 4 13

A2 1 7 23 1 4 21

HermiT
A1 51 69 60 3 9 20

A2 14 47 148 3 9 33

jcel
A1 3 12 33 7 20 54

A2 7 17 49 6 18 71

JFact
A1 11 60 62 1 4 9

A2 12 64 92 1 5 20

Pellet
A1 3 9 27 1 5 21

A2 31 16 36 1 5 37

TrOWL
A1 8 27 20 8 28 24

A2 7 58 29 8 59 62

Table A.7: Number of times (rounded to the closest integer) of the PC version
being faster than the Android ones for the small (S), medium (M), and large
(L) OWL 2 EL ontology set.
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Appendix B

Prototypes for the Semantic
Management of LBS

In this chapter we present the prototype of the SHERLOCK system for the
semantic management of Location-Based Services in wireless environments.
We show a SHERLOCK prototype which obtains knowledge from other devices
and guides the user in the selection of an interesting LBS (as explained in
Chapter 4) and then processes it (as explained in Chapter 6). Then we present
the modules developed to address different challenges such as knowledge update
and camera views processing (see Figure B.1). Firstly, we present the DUCK
module to exchange ontologies and integrate them by discovering subsumption
relationships between their concepts (as explained in Section 5.2). Secondly,
we present the Triveni module which exchanges context information about the
user and the device with other SHERLOCK devices and generates a shared
context model to improve the locally inferred user context (as explained in
Section 5.1). Finally, we present the MultiCAMBA module which obtains
high-level features of the views of cameras, using the local knowledge on the
device, and computes the similarity of such views with the shot in a user
request.

B.1 SHERLOCK Prototype

We have developed a SHERLOCK prototype to test the underlying ideas of
the system. Firstly, we developed a preliminary prototype of the system for
PCs. This was motivated because both the mobile agent platform and the
semantic reasoner we were planning to use in our system were not available

255
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Figure B.1: Different modules of the SHERLOCK prototype.

for Android. Secondly, we developed an Android prototype of the system for
smartphones and tablets. For that the technologies needed had to be ported
to the Android system. In the following we explain both prototypes.

B.1.1 PC Prototype

The SHERLOCK prototype for PC1 is a Java Applet that simulates how
SHERLOCK would look like when running on a smartphone; this prototype
uses the OWL API [HB11], the Pellet [SPCGKK07] reasoner, and the SPRINGS
mobile agent platform [ITM06]. Figure B.2 shows four screenshots of the PC

1Available at http://sid.cps.unizar.es/SHERLOCK/PC

http://sid.cps.unizar.es/SHERLOCK/PC
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(a) (b)

Figure B.2: Screenshots of the SHERLOCK prototype for PC.

prototype dealing with the first and second motivating scenarios. Notice that
the prototype is running on a web browser and the smartphone part is simply
an image.

To simulate other devices interacting with the system we developed a simple
simulator that was incorporated into the Applet and generates moving objects
(e.g., taxis, buses, firefighters, etc.) around the user and randomly moves them.
The PC prototype also contains a mechanism that enables controlling the
simulated objects (see Figure B.3(a)). Also, the simulator part of the prototype
includes an ontology visualization tool that shows the real-time status of the
ontology on the device. With this tool it is possible to see how new knowledge is
added when the agents interact with other devices (see Figure B.3(b)). Notice
that in this prototype we implemented a very simple approach for sharing
and integrating knowledge. Therefore, devices only share their ontological
definition (e.g., “the device is a taxi which is a type of transport”) and the
information is integrated by directly adding the received OWL axioms into the
local ontology.
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(a)

(b)

Figure B.3: Screenshots of the simulator for the PC prototype.
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B.1.2 Android Prototype

The SHERLOCK prototype for Android2 was developed to enable us to test the
system under real circumstances with real smartphones and tablets using their
Bluetooth and WiFi communication mechanisms. The first step to develop
the prototype was porting the technologies we used in the PC prototype
to the Android system. As we explained in Appendix A we tried to use
different Semantic Web technologies on Android devices and discover that,
for example, the OWL API can be used directly on Android projects but the
Pellet reasoner has to be ported. According to the results of our experiments
with semantic reasoners on Android we decided to replace the Pellet reasoner
by HermiT [GHMSW14] (the version we ported to Android). The HermiT
reasoner obtained better results, in general, and could be directly incorporated
to the app3.

Another technology that we needed and had to be ported to Android
was the mobile agent platform. As in our PC prototype, we decided to use
SPRINGS but, unfortunately, the platform is based on the use of the Java
Remote Method Invocation (RMI) library for communications between agents.
As explained in Appendix A, RMI is not supported in Android but there are
two projects to port this library to the platform. After some tests we finally
replaced the RMI library with the LipeRMI library and made some minor
modifications regarding the management of sockets in Android, which differs
slightly from the management by the virtual machine on a PC. After that,
the SPRINGS mobile agent platform was successfully ported to Android and
we performed some initial tests with a dozen of agents moving among three
smartphones. SPRINGS was designed for a different environment with fixed
computers and communications through wired connection. In this scenario, the
platform has been tested with hundreds of agents from several devices moving
every second and it overperformed other platforms [ITM06]. In our preliminary
tests, we noticed that the performance when increasing the number of agents on
the directly ported version for Android decreased rapidly. Therefore, we believe
that the architecture of SPRINGS should be modified taking into consideration
this new scenario with mobile devices and P2P wireless communications to
enable the use of mobile agents on current mobile devices.

2Available at http://sid.cps.unizar.es/SHERLOCK/Android
3As we explained in Appendix A, the Pellet reasoner incorporates many classes and

methods which makes it easy to exceeded the limit imposed by Dalvik, Android’s virtual
machine, when used inside other projects.

http://sid.cps.unizar.es/SHERLOCK/Android
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B.1.3 Testing the Android Prototype

With the finished Android prototype of SHERLOCK we performed a test
simulating the behaviour of a user that just installed the app. In the following
we explain this test and show the different features of the prototype.

Selecting Settings and Profile

First, we tap SHERLOCK’s launcher icon in our smartphone and this lead us
to SHERLOCK’s initial screen (see Figure B.4(a)) where we have access to
the map, settings, and a quick access to our profile name and picture. The
first time using SHERLOCK a dialog is prompted so we can enter our name
and our picture (see Figure B.4(b)). Tapping on the image we can access the
gallery of the device and select a picture for our profile. In the current version,
our name and picture may be visible to other SHERLOCK users around us as
part of the results to their requests. We can see our current picture and name
at the bottom of the screen and change it anytime by tapping on the image or
entering settings (where we can also edit other parameters that we will explain
later).

In the settings screen we can define some information that SHERLOCK
will take into account when processing our information requests. Accessing the
settings can be done by tapping the settings button at the initial screen or the

button at the map screen. In addition to editing our name, email, and
profile (which we will explain later), there are other options (see Figure B.5(a))
such as:

• Activate/deactivate the simulator (used to generate simulated moving
objects around our location that will be part of the results obtained for
user requests).

• Activate/deactivate the visibility of our local ontology (if active the
ontology on the device will be shared with other SHERLOCK-enabled
devices).

The prototype enables the user to define her profile (see Figure B.5(b)),
which is her identification as a certain type of user (e.g., researcher or taxi).
This information is useful for SHERLOCK to personalize the services that
could be interesting for the user and also to connect her with other users. For
example, the user can set her profile to taxi if she is driving a taxi and looking
for customers, and SHERLOCK will use this information to show her location
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(a) (b)

Figure B.4: SHERLOCK app: Home interface.

to users looking for transports. Also, a user may be at a conference and set her
profile to researcher, so SHERLOCK will show her the location of other nearby
researchers. Tapping on “profile” enables selecting the user profile by showing
a list of all the profile kinds SHERLOCK knows at the moment. Meeting other
SHERLOCK-enabled devices increases the local knowledge of our SHERLOCK
and thus, new profile types can be found later.

Interacting with the System

Whenever the user enters the map screen, SHERLOCK shows her location
on a Google map (see Figure B.6(a)). This map is the main mechanism to
interact with the different Location-Based Services offered by the SHERLOCK
app (remember that new services can be shared with the device by other
SHERLOCK-enabled devices). There are three ways to start the interac-
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(a) (b)

Figure B.5: SHERLOCK app: Settings.

tion to generate an information request: 1) Tapping on a location on the
map, 2) tapping on an object, and 3) using SHERLOCK’s search bar.

For example, to initiate a request for information we can tap on a location
of the map for at least one second (see Figure B.6(b)). Then SHERLOCK
reasons what services could be interesting for us using its knowledge, our
context information, and the selected location.

After tapping on the map, SHERLOCK finds several interesting services re-
lated to that location and our context and shows them to us (see Figure B.7(a)).
In this case, it shows two services: A service with tourist information and a
service to find transports. If we tap on the “Transport service” SHERLOCK
starts the LBS to find transports in the area. Some LBS could have been
defined in the ontology as parameterizable. This means that they need some
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(a) (b)

Figure B.6: SHERLOCK app: Map interface.

information about the user to impose constraints on the results to obtain
(notice that some of this information is directly inferred by SHERLOCK). With
this information SHERLOCK is able to reason what are the most appropriate
providers for the service selected according to our needs. In our example,
SHERLOCK asks the user about some information for the Transport service
(see Figure B.7(b)). The user can select also which of these parameters are
mandatory. A mandatory parameter means that it is important for the user
that this condition is satisfied by the result. For example, the user could select
that it is mandatory that the transport is “door to door” and then SHERLOCK
will provide her with a more accurate response. After filling in the values we
continue by tapping the “GO” button that launches the user request to obtain
transports that match our preferences.
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(a) (b)

Figure B.7: SHERLOCK app: Selecting a service and its parameters.

Every user request may return results which will be showed on the map as
objects whose location will be updated in real-time (in the case of continuous
requests like the one selected). In our current case, we can see several objects
moving around our map (see Figure B.1.3) that represent the different trans-
ports nearby (taxis, shuttles, and buses). These objects have been generated
by the simulator included in the SHERLOCK Android app. The simulator
creates different objects and move them around so they can be part of results
for user requests in our prototype. The current prototype gets information
from other devices within our same network (in this version the same WiFi
network) but also can connect to third-party external services if the source
and communication method has been defined in its local ontology. This is is
the case now, so we can also see objects representing bus stops whose info
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have been retrieved from a local transport info web service that SHERLOCK
knows (as someone has shared with it this knowledge). Last, notice that each
result has a green circle attached, this means that this is a provider which best
matches our search criteria. For other providers that could be interesting but
do not match all our preferences SHERLOCK uses red circles.

Figure B.8: SHERLOCK app: Displaying results.

At SHERLOCK you can interact with every object you watch on the screen
by tapping on it getting information related to that object. When the user
taps on an object, SHERLOCK reasons what kind of services are related
to this specific object and could be interesting for the user. It is a similar
process to tapping on a point on the map. For example, we tap on a bus stop
(see Figure B.9(a)) and SHERLOCK obtains that the service that provides
information about the buses that arrive to the stop is interesting (“Bus Stop
Info Service”). Also, we change our profile to researcher and tap on the object
representing us on the map. Then, SHERLOCK offers us a new service to
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“Search Researchers”. We select this service and stop the simulator so only
other real devices that belong to researchers will be part of the answer.

(a) (b)

Figure B.9: SHERLOCK app: Interacting with objects.

At the moment, this is the only SHERLOCK device in the network so
we do not obtain results for the executed service. Then, we connect another
SHERLOCK device to the same network and set its profile to researcher.
After that, we return to the device where we executed the service to find
researchers and we can see the location of the second device on the map (see
Figure B.10(a)). A researcher is also an object so we can tap on it to see a
list of available services related to him (see Figure B.10(b)). In this case the
“Send email service” has been defined in the local ontology on the device and it
is retrieved by SHERLOCK.

SHERLOCK is able to process several request at the same time even if they
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(a) (b)

Figure B.10: SHERLOCK app: Interacting with other users.

are continuous requests. Notice that every new request is represented by a
transparent black circle at the right top corner of the screen (see Figure B.11(a)
where three requests are being processes at the same time). Requests are
represented by: a color and an icon according to the kind of request, and a
number that shows the amount of results currently returned (for requests which
are performed continuously the number of results may change over time). We
can access the request dialog, which enables to manage each of the requests,
by tapping on any of the request circles or the right icon on the application
bar. The request dialog (see Figure B.11(b)) enables us to interact with our
current request. The available options (from left to right) are:

• Highlight the results: All the objects returned as a result of this request
will be highlighted on the map.
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(a) (b)

Figure B.11: SHERLOCK app: Handling multiple requests.

• Pause/resume: The results will stop being updated.

• Delete: Stops processing the request.

• Edit: Enables us to edit the parameters of the request.

With this test we have shown how the system would behave when used by
a user on her smartphone. We have focused on the interaction with the system,
the selection of services, and provision of parameters. Also, we showed how
other real devices (in this case a tablet with the same prototype installed) can
be part of the results returned to the user. In the next sections we will explain
other standalone systems and prototypes developed to test our contributions
to the problems tackled in the SHERLOCK architecture.
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B.2 DUCK: Exchange and Integration of Knowl-
edge in Wireless Environments

In this section we present the prototype of the SHERLOCK module in charge of
the integration of shared ontologies in mobile scenarios. The prototype, which
we have called DUCK (Deduction of Undefined Correlations in Knowledge)
implements the mechanisms presented in this thesis to enable mobile devices to
exchange knowledge and discover subsumption relationships between concepts
from their local ontologies and the ontologies received.

B.2.1 Architecture of DUCK

The DUCK prototype enables two smartphones to exchange their local ontolo-
gies, discover subsumption relationships between their concepts, and generate
an integrated ontology with the information discovered. In the prototype we
implemented a simple exchange and integration procedure that assigns the
extraction of subsumption relationships and alignment of the ontologies to the
most powerful device (see Figure B.12). As commented in Chapter 10, we are
planning to implement and test other more sophisticated procedures in the
future. Thus, the current prototype performs the following steps:

1. Device discovery: A mobile device uses its communication mechanism
(e.g., WiFi, Bluetooth, etc.) in order to discover other devices willing to
exchange knowledge.

2. Communication establishment: The discovered devices establish a com-
munication channel between them and each one sends information about
their features (i.e., processor and its current load, memory and battery
available) to the other one.

3. Device information comparison: The features from each device are com-
pared in order to decide which one should perform the integration.

4. Knowledge exchange: Each device sends its active ontology to the other.

5. Integration process: One of the devices performs the integration and
shares the result with the other.

Notice that we implemented a recovery mechanism in case the connection
between the devices stops before the integrated result can be shared. So, the
less powerful device, which is waiting to receive the integrated ontology, sets
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Device 1 Device 2

save integrated ontology

send results 
{ontology,axioms}

save integrated ontology

select best device

wait for results
or timeout

{results}

COMMUNICATION

integrate ontolgies

select best device

ideal scenario

error scenario

save integrated ontology

save integrated ontology

wait for results
TimeOut

{results}

integrate ontologies

send results
{ontology,axioms}

integrate ontologies

Figure B.12: Sequence diagram of the exchange and integration process in the
DUCK prototype.

a timeout. In case that the connection is disconnected or the device which is
performing the integration process takes too long to transfer the results, the
device which is waiting will begin to integrate the ontologies after the timeout.
Also, the steps for the integration process of the prototype are the ones shown
in Figure 5.4.

B.2.2 Prototype of DUCK

We developed two applications to implement the DUCK prototype:

1. An Android app to implement the sharing of ontologies among devices and
the integration of the information through the discovery of subsumption
relationships.
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2. A PC Java implementation of our subsumption relationships discovering
technique. We developed the PC application as we planned to perform
experiments with ontologies from standard datasets used in ontology
alignment which would require too much processing time on mobile
devices due to their limited capabilities.

In both prototypes we used the semantic DL reasoner Pellet [SPCGKK07]
for the extraction of the implicit roles of each concept and the technique
presented by Gracia et al. [GA13] to obtain a similarity measure among the
roles. Also, we used Wordnik4, an on-line dictionary and language resource
based on several sources (among them, WordNet [Mil95]), for the label analysis.
Regarding the weights used in the different formulas of our approach (see
Section 5.2.3), we assigned a higher value to: the role set analysis (wl =
0.15, wr = 0.8, and wch = 0.05, Formula 5.3); the information extracted
from Wordnik (0.75); and to the roles shared with respect to the non-shared
(wsh = 0.9 and wdiff = 0.1, Formula 5.5). Also, we assigned a = 1.5 to
model the slope of the logistic function of Formula 5.4. For the filtering of the
subsumption relationships discovered we used the simple unsupervised k-means
algorithm [Mac67] and a conservative approach to promote precision over recall
(medium and low subsumption degree clusters are discarded). Nevertheless,
these specific values, that were obtained after performing some initial tests,
have been used to implement our generic rules to capture the existence of
a subsumption relationship. Therefore, these weights and even the formulas
could be modified, respecting the essence of the rules, for other ontology sets
or scenarios.

On the one hand, the PC application gets the two source ontologies as a
command line parameter and writes a file with the subsumption relationships
discovered and their subsumption degree. This applications is not meant to
be used by users and it has been developed to enable us to perform scripted
tests with different ontologies in an easy way. On the other hand, the Android
app enables a user to select some options through a user-friendly Graphical
User Interface “GUI” that is also used to show the results to the user (see
Figure B.13). The GUI is composed of three views:

1. Main menu: Shows some parameters which can be adjusted by the user
such as:

• A drop-down list that contains the ontologies on the device among

4https://www.wordnik.com

https://www.wordnik.com
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(a) Main menu (b) Log of events

(c) Alignment Results

Figure B.13: DUCK app: Screenshots of the prototype.
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which the user can select one to be shared with other devices ((1) in
Figure B.13(a)).

• A switch to control the visibility of the device for other devices in
the same network. When the device is made visible to others the
process to search other devices and exchange knowledge with them
starts ((3) in Figure B.13(a)).

2. Log of events: A dynamic log which registers each of the events occurring
during the execution of the exchange and integration process.

3. Alignment results: Shows the statistical results of the integration (includ-
ing the number of concepts, roles, and individuals of the final integrated
ontology, and the number of synonymy and subsumption relationships
discovered) and a detailed list of each discovered relationship.

In the following we explain the experiments performed to evaluate our
approach for the discovery of subsumption relationships with the previous
prototype and different ontologies. We focused in testing the discovery of
subsumption relationships and compared our approach with others in the
literature whenever possible. As commented before, as future work we are
working on developing an approach to efficiently perform the exchange and
integration on mobile devices and therefore, the following experiments are
performed with the PC prototype.

B.2.3 Evaluating the Extraction of Subsumption Relations

To evaluate our approach to discover subsumption relationships between con-
cepts from different ontologies we carried out several preliminary tests5 using
the PC prototype explained before.

Experimental Setup

We first tested our prototype with two well-defined ontologies as an example
of an “ideal” scenario. Then, we tested some ontologies from the OAEI 2009
dataset. Finally, some experiments were performed with challenging real-world
ontologies extracted from the Web. The results of these tests, in terms of
precision and recall of the extracted subsumption relationships, can be found
in Table B.1. Notice that, the comparison with other related works such as

5More information about the experiments and the ontologies used can be found at
http://sid.cps.unizar.es/SubsumptionExtraction

http://sid.cps.unizar.es/SubsumptionExtraction
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MOMIS [SdM08] and SCARLET [BBCCGMMV00] is not possible as they did
not publish enough information about their experimental evaluation. However,
we do compare our results with CSR [SVV08], whenever possible.

Test #relations Precision Recall F-measure

O1-O2 26 0.96 0.89 0.93

101-222 32 0.96 0.73 0.83

101-223 82 0.65 0.41 0.50

101-223’ 84 0.72 0.63 0.67

101-304 78 0.38 0.47 0.42

101-304’ 48 0.83 0.44 0.58

univCs-univBench 74 0.77 0.63 0.69

confOf-sigkdd 24 0.58 0.67 0.62

confOf-sigkdd’ 21 0.67 0.67 0.67

confOf-conference 41 0.61 0.58 0.60

confOf-conference’ 27 0.74 0.47 0.57

Table B.1: Precision and recall of our prototype for different ontologies.

Testing the Running Scenario

First we tested the two well-defined ontologies presented in Section 2.1.1
which include from two to thirteen roles for each concept. The approach
shows a good performance in terms of precision and recall for this test (see
O1-O2 in Table B.1). Regarding precision, only one wrong subsumption is
obtained (Report v Publication) with a degree of 0.52, which is slightly above
the dynamic threshold calculated (0.5). In fact, Report and Publication are
co-hyponyms but they share most of their roles. Regarding recall, three rela-
tionships are not discovered by the system. For example, despite the calculated
confidence for Publication v Piece of Work being above the threshold, it
is discarded because Article, a descendant of Publication, is subsumed by
Piece of Work with a slightly higher confidence.
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Testing OAEI Ontologies

The Ontology Alignment Evaluation Initiative (OAEI)6 publishes datasets
designed to test ontology alignment systems. However, these datasets are
mainly designed to test the discovery of synonymy relationships. An “oriented
alignment” track was presented in the 2009 edition of the OAEI competition7 to
test systems to discover subsumption relationships8. Four systems participated
in the competition but, except for CSR [SVV08], they based their subsumption
extraction on the extraction of synonyms [EFHIJMMNPS+09]. For the second
test, we used this dataset and compared our results with CSR.

The results for test 101-222 (see Table B.1) are promising with a precision
of 0.96 and a recall of 0.73. In terms of precision this result is similar to
the average of the tests performed by CSR (0.97) but in terms of recall CSR
obtains better results (0.97). For the test 101-223 the performance of the
system decreases as the domain of many roles have been incorrectly defined
at the top of the hierarchy and this makes the concepts closely resemble each
other. Trying to improve the results we selected a manual threshold increasing
the precision up to 0.72 and the recall up to 0.63 (see 101-223’ in Table B.1).
CSR also obtained a lower precision and recall for this second test (0.84 and
0.78). For the third test, 101-304, our system obtains the lowest precision
compared with the rest (0.38) whereas CSR obtained a precision of 0.66 and a
recall of 0.72. This is due to an incorrect definition of the roles in one of the
ontologies as object properties (e.g., date and ISBN ) while their equivalents
in the other ontology are data properties. In DL, object properties cannot be
equivalent to a data properties and so, the approach used in our prototype to
compute the similarity of roles does not consider this situation. After correcting
the source ontology we obtained an improved precision of 0.83 and a recall of
0.44 (see 101-304’ in Table B.1).

Testing Ontologies from the Web

For the last test, we selected the most challenging scenario for our approach,
real-world ontologies with a very poor definition of their concepts (e.g., with
very few roles): a subset of ontologies from the OAEI benchmark, confOf,
Conference, and sigkdd, and two ontologies from universities obtained using

6http://oaei.ontologymatching.org
7http://oaei.ontologymatching.org/2009/oriented
8Notice that the 2009 competition has been the only edition with an oriented alignment

track, as of 2014.

http://oaei.ontologymatching.org
http://oaei.ontologymatching.org/2009/oriented
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the Semantic Web search engine Swoogle [DFJPCPRDS04], univ-cs9 and univ-
bench10. In these ontologies, the subsumption extraction is heavily based on the
label of the concepts. In general, the subsumption degree obtained for all the
relationships is similar and the clustering technique for the dynamic threshold
is slightly inaccurate in this scenario. We manually selected a threshold which
improved the precision of confOf-sigkdd and confOf-conference up to 0.67 and
0.74, respectively. The tests confOf-sigkdd and confOf-conference were also
very challenging for CSR which achieved a precision of 0.08 and 0.47, and a
recall of 0.31 and 0.29, respectively. As mentioned in [SVK10], the decrease of
performance of CSR is explained because these ontologies are not suitable to
do the data training phase. Notice that a direct comparison of our results and
CSR results for these two tests is not possible as the Gold Standard they used
is not available and so, it could be slightly different to ours. Nevertheless, the
performance of our system for these ontologies can be explained due to the
combination of external sources of information with the ontological context of
concepts (without the need of training data).

Discussion on Results

As a summary, these experiments have shown that our approach would be able
to achieve good results with well-defined ontologies (with an average F-measure
of 0.88 for the tested ontologies), and promising results with ontologies that
caused problems to other systems (average F-measure of 0.64). Compared with
CSR, a state-of-the-art system, our prototype obtained similar results in most
of the tests (sometimes slightly better or worse) and better results in ontologies
that are not suitable for their training phase. We have also detected two main
problems with our prototype:

1. Some roles do not have a domain defined, so Thing becomes their domain
and all the concepts of the ontology inherit them. Therefore, these roles
are not characteristic enough and do not help much to discover possible
subsumptions.

2. The clustering algorithm used in our prototype to obtain the dynamic
filtering threshold, k-means, is good enough in most situations but some-
times is slightly inaccurate. This happens, especially, in the situation
mentioned above where the subsumption degree obtained for each pair
of concepts is similar.

9http://www.cs.toronto.edu/semanticweb/maponto/MapontoExamples/univ-cs.owl
10http://swat.cse.lehigh.edu/onto/univ-bench.owl

http://www.cs.toronto.edu/semanticweb/maponto/MapontoExamples/univ-cs.owl
http://swat.cse.lehigh.edu/onto/univ-bench.owl
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Even in extreme scenarios for our approach where the first problem occurs
or not many roles are defined, our prototype obtained fairly good results in
our tests with an average F-measure of 0.65. Take into account that in these
situations even experts would have problems to discover relationships manually.
While trying to fix the input ontologies is out of the scope of our approach
(e.g., if someone defines the property hasWheels without a domain, according
to that ontology a car, a person, a tree, and even a wheel can have wheels), it
could be interesting to study the application of a preprocessing phase to refine
the domain and range of roles [TKS12]. Regarding the second issue, the use of
a more sophisticated clustering algorithm would help to improve the filtering
phase.

Nevertheless, we want to highlight that the specific values achieved, although
good, are not the most important part as they depend on the ontologies
considered and the specific values and weights used in our prototype. The most
important conclusion of these experiments is that we believe that our approach
looks promising for being the first one to discover subsumption relationships
using generic rules that capture the existence of such relationships.

B.3 Triveni: Shared, Semantic Context Models for
Mobile Devices

In this section we present the prototype developed to test our approach to the
enrichment of the information about the context of the user. The prototype,
which we called Triveni, implements the mechanisms presented in this thesis to
enable mobile devices to exchange their context information, create a shared
semantic context model, and use this information to enrich (i.e., correct or
increase) the information about the context of each user that their devices
have.

B.3.1 Architecture of Triveni

The primary goal of Triveni is to enrich the information about a user’s context,
obtained by context synthesizers, by leveraging the context of other users
nearby. This way, applications would be able to make use of the enriched
context provided by the system. Triveni has a decentralized architecture where
mobile devices communicate among themselves using wireless ad hoc networks
and exchange their context (see Figure B.14 for the high-level architecture of
each Triveni node). Therefore, Triveni:
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1. Obtains the context information from the available Context Synthesizer(s)
using the Context Manager module.

2. Communicates with devices discovered in the vicinity using the Commu-
nication module and shares context information with them.

3. Integrates the context information collected to generate the shared context
model using the Integration module.

4. Verifies the information integrated in order to detect and resolve incon-
sistencies by the Inconsistency Resolving module.

ContextGManager

MobileGDevice

SecondaryGContext

Reasoner

Communication

Integration

InconsistencyGResolving

ContextGReconciliation

GGPrimaryGContext

ContextGProvider(s)

Context Enrichment Layer

Application Layer

Context Generation Layer

ContextGAcquisition

Ontology

ContexualGGroupGManager

ContextGSynthesizer(s)

Application(s)

Figure B.14: High-level architecture of Triveni.
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Triveni uses Semantic Web technologies (specifically ontologies and a se-
mantic DL reasoner) for context modeling. This way, Triveni is able to detect
inconsistent information and infer not explicitly defined facts by using the
reasoner, a program that infers logical consequences from a set of asserted facts
or axioms [DCTK11].

B.3.2 Prototype of Triveni

To test our approach we developed a prototype of the system11 as an Android
app where users can enrich their context information with the information of
other users nearby by using Bluetooth communications. For managing the
ontology, used in the enrichment process, on the device, we used the OWL
API and the HermiT semantic DL reasoner. To simulate context scenarios
we have used a Graphical User Interface (GUI) that enables us to select the
current context of the device which mimics context synthesizers used to obtain
high-level context of each mobile device (see some screenshots of the GUI in
Figure B.15). This enables us to easily recreate different situations some of
which involve conflicting information being shared. This GUI also enables us
to modify the confidence in the correctness of the context information shared.
Additionally, to test the scalability of our approach, we also developed a web
service REST API to simulate multiple mobile devices sharing their context.

B.3.3 Evaluating the Extraction of a Shared Context

We tested our approach to extract a shared context model by using the Triveni
prototype presented before.

Experimental Setup

For our experiments we recreated a scenario involving a study group in a room
where there are four people, but only three of them are being part of the
meeting (see Figure B.16). Notice that these mobile devices are equipped with
different number of sensors and the information that users provide about their
schedule is also different and in varying detail. In our specific scenario, Annie’s
and Abed’s calendar entries give information about meeting scheduled for that
day (e.g., duration, topic, participants, etc.) and Jeff’s smartphone just used
Foursquare to check in Study room F. With the information available on their
devices, traditional context generation systems will create different high-level

11See http://sid.cps.unizar.es/ContextEnrichment for more information about the
prototype and tests.

http://sid.cps.unizar.es/ContextEnrichment
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(a) (b)

(c) (d)

Figure B.15: Triveni app: Screenshots of the prototype.
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context information for each device (see Figure B.16 where the current context
of each user is shown in blue boxes). Notice that some of the contexts obtained
by the devices are wrong. For example, Annie disabled the location gathering
mechanism of her tablet, while at home, to save battery and so, her device
thinks that the location is still “home”. Summarizing, the devices have some
information about the context but most of them are not as rich in detail as it
would be desired.

Figure B.16: Motivating use case for Triveni: Users being part of a study
group.

As in the use case, we use four real smart phones to replicate the study room
scenario: two Google Nexus 5 (Quad core, 2260 MHz, 2048MB RAM, Android
4.4), one Google Nexus 4 (Quad core, 1500 MHz, 2048MB RAM, Android 4.4),
and one Samsung Galaxy SIII (Quad core, 1500 MHz, 2048MB RAM, Android
4.3). We considered the following primary and secondary context pieces for
this scenario:

• location = {Greendale, GCC, Study room F, Home}

• temperature of location = {25◦C,28◦C}
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• light of location = {lights on}

• activity = {Study group, Meeting, Reading}

• topic of activity = {Spanish}

• duration of activity = {1h,2h}

For the purpose of this experiment, we have focused on Annie’s device (in
our tests, a Nexus 5) and generated every possible scenario for it by selecting
either one or none of the values from each of primary and secondary context
information (giving us a total of 720 scenarios). In 528 such scenarios generated,
the context of the device included at least one incorrect piece of context (e.g.,
the location is set to “Home”); while in 191 other scenarios, which are correct,
had at least one missing context piece (e.g., the location is “Greendale” and
it should be “Study room F”); the remaining scenario has the most enriched
context with no incorrect or missing pieces (i.e., study group of Spanish with
a duration of one hour at the Study Room F at 25◦C and with the lights on).
For other three devices we randomly selected the context pieces that will be
shared so as to minimize the redundancy in context scenarios. In addition, we
also assigned a random confidence to each one of the context pieces shared.

Measuring Precision and Recall

For our experiment we have modeled the output of Triveni as a binary classifica-
tion problem with correct and incorrect context pieces considered positive and
negative. On the one hand, true positives are positive pieces which are included
as part of the output of Triveni and false positives refer to negative pieces being
included in final context. On the other hand, true negatives correspond to
negative pieces correctly ignored by Triveni and false negatives refer to positive
pieces incorrectly ignored by our system. Based on these definitions and the
context scenarios mentioned before we computed the precision and recall of
the context obtained by Triveni for the user by taking into account the three
different approaches for integration explained in Section 5.1.1: conservative,
optimistic, and semi-optimistic.

Figure B.17 shows the results obtained for the experiments which also
includes the precision and recall based on the context synthesizer and before
Triveni generated the enriched context. As expected the percentage of context
scenarios with high precision is greater in a conservative approach than in an
optimistic one (e.g., the precision was higher than 0.9 in 60% of the scenarios
for the conservative approach and in 21% for the optimistic). This is because
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the conservative approach only selects the most correct piece of context during
integration. On the other hand, the recall is higher for optimistic approach
as it considers all non-conflicting context pieces while enriching the context
(e.g., the recall was higher than 0.9 in 0% of the scenarios for the conservative
approach and in 25% for the optimistic). In the semi-optimistic method, we
experimented with several different thresholds and finally we selected 0.15
which improves the precision of the optimistic approach in exchange of a slight
decrease on the recall. While in 16% of the scenarios the semi-optimistic
approach introduced some incorrect information (e.g., incorrectly added that
the duration of the study group was two hours), overall it enriched the context
of the user in 97% of the scenarios and corrected the context in 77%.

As an example of the experiments performed we show here three scenarios
of context creation, enrichment, and correction. In the context creation step,
we selected one of the scenarios where Annie’s device was devoid of any context
information and after receiving same primary context pieces with different
confidence values from other devices it learns about the context (see Test1 in
Table B.2). For an example of context enrichment scenario, all the devices had
some information about the location and activity but with different confidence
scores (see Test2 in Table B.2). In this case, Annie’s location and activity were
enriched. For the context correction step, conflicting information was shared
(see Test3 in Table B.2). The test device started with an incorrect location
“Home” and an incorrect activity “reading”. After integrating the context from
other devices, an inconsistency was detected and “Home” was removed. Notice
that the activity “reading” is not inconsistent with “meeting” or “studyGroup”
but the confidence obtained was lower than the threshold of the semi-optimistic
integration and thus removed.

Measuring the Performance

Finally we ran some experiments that would allow us to test the scalability
of our approach for context enrichment with respect to the execution time
and memory consumption (two important parameters for mobile devices). For
this experiment we used the four real mobile devices and the web service to
simulate the presence of other devices sharing their context. We increased the
number of simulated devices up to 512 and for each one of them we randomly
generated four context pieces that they will share. Measuring computation time
on Android presents some problems due to the variance of the time obtained
due to the management of apps performed by the operative system. So, we
ran every test five times and computed the average time and memory.
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(a)

(b)

Figure B.17: Precision and recall of the context obtained for a user in different
scenarios before and after using the three approaches of Triveni (conservative,
optimistic, and semi-optimistic).



285 Appendix B. Prototypes for the Semantic Management of LBS

Device
Test1

Location Activity

Nexus 5 GCC(0.5) studyGroup(0.6)

Nexus 4 GCC(0.3) studyGroup(0.7)

Galaxy S3 GCC(0.6) studyGroup(0.7)

Nexus 5(start) - -

Nexus 5(end) GCC(1) studyGroup(1)

Device
Test2

Location Activity

Nexus 5 GCC(0.8) studyGroup(0.8)

Nexus 4 Greendale(0.7) studyGroup(0.7)

Galaxy S3 StudyRoomF(0.7) meeting(0.4)

Nexus 5(start) GCC(0.5) meeting(0.6)

Nexus 5(end)
Greendale(1), GCC(0.74), meeting(1)

StudyRoomF(0.26) studyGroup(0.6)

Device
Test3

Location Activity

Nexus 5 GCC(0.8) meeting(0.9)

Nexus 4 Greendale(0.7) studyGroup(0.7)

Galaxy S3 StudyRoomF(0.7) meeting(0.7)

Nexus 5(start) Home(0.9) reading(0.4)

Nexus 5(end) Greendale(1), GCC(0.48) meeting(0.85), studyGroup(0.26)

Table B.2: Results for the tests performed: context creation with consistent
information (Test1), context enrichment with consistent information (Test2),
context correction with inconsistent information (Test3).

We show in Figure B.18 the results obtained for the computation time
when increasing the number of devices (notice that the time axis follows a
logarithmic scale). The graph shows the average of the computation time of the
four smartphones. The standard deviation was situated under 10% up to 16
devices (less than 0.1 seconds), and under 20% for the rest (with the increase of
the simulated devices the Nexus 5 over performed the other smartphones). We
send small strings of information from one device to another using Bluetooth
and did not observe any relevant communication delays. Therefore we have not
included communication time in the graph as we believe that the delays in short
range Bluetooth communication (around 10 meters) would be insignificant. In
addition, while our system continuously enriches the context of a device, the
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set up of the Bluetooth network will be usually performed just once for most
of the scenarios. We wish to highlight that the computation time remained
around 1.5 seconds when 32 devices where used. Given the restrictions of
Bluetooth communications (a device can communicate up to seven active
devices), 32 devices is probably enough for most scenarios. These results also
show that the system could enrich the context of users continuously every second
in highly dynamic situations. Regarding the memory usage (see Figure B.18),
it is maintained in the range of 10MB to 20MB. This includes the memory
allocated for the ontology and the semantic reasoner. Taking into account that
current mobile devices have at least 1GB of RAM (current Android versions
usually provide apps with a maximum heap size of 256MB), our approach does
not overload the device even in extreme situations. To summarize, Triveni
maintains computation time and memory usage on a mobile device within a
practically acceptable rate even when the ontology and the reasoner runs on
the device.

B.4 MultiCAMBA: Multi-CAMera Broadcasting As-
sistant

In this section we present the prototype developed to evaluate the SHERLOCK
module in charge of managing camera views. The prototype, called Multi-
CAMBA (Multi-CAMera Broadcasting Assistant), enables the user to define
the camera view she is interested in and it checks the views of the different
cameras available to obtain those that can fulfill her requirements.

B.4.1 Architecture of MultiCAMBA

Figure B.19 shows the high-level architecture of the MultiCAMBA prototype.
The prototype is based on the following steps:

1. 3D model management. The 3D model of the scenario is an essential part
of our system as it stores the information about the different objects and
cameras in the scenario. The system maintains this 3D model updated
in parallel to the processing of user queries.

2. Obtaining the user requirements. The requirements of the user are
captured through an easy-to-use interface. The prototype provides three
mechanisms for that: a) the TD uses the 3D interface to define the scene
she is interested in, b) the TD selects from lists the target object/s that
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(a)

(b)

Figure B.18: Computation time and memory usage on a Triveni node with
increasing number of devices.
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3D Engine

Obtaining the user requirements

Presentation of the results to the user

Cancel?
NO

YES

END

3D Model

Generation of the formal query

Processing of the camera views

Filtering and ranking of the results

Execution of the query 3D Model Management

Update of the 3D Model

Obtaining of information about
cameras and objects

Figure B.19: Main steps followed by the MultiCAMBA prototype.

must be part of the view and the constraints that the camera view must
fulfill, or c) the TD clicks on predefined queries.

3. Generation of the formal query. By analyzing the information provided by
the user, the system generates a formal query capturing her requirements.

4. Execution of the query. The system obtains high-level features of the
camera views (objects viewed, amount of them covered, kind of view,
etc.) and the cameras are filtered to obtain those whose view fulfills the
user requirements. Then, the answer set is ranked according to the user
preferences.

5. Presentation of the results to the user. The results obtained by the
system are presented to the user in the GUI, both in a tabular form and
in a 3D reconstruction of the scenario.

B.4.2 Prototype of MultiCAMBA

Regarding the details of the implementation (see Figure B.20), the Multi-
CAMBA prototype has been developed as a Web application using HTML5
because the latest Google Earth API (which we use to recreate the scenario) is
based on JavaScript and meant to be used in web pages. Then, the core of our
prototype has been developed as a Java Applet that has been integrated into
the Web application. We selected the Java programming language because for
the processing of the camera views we are using a free and powerful Java 3D
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engine: JMonkeyEngine (as we explained in Section 8.2). Both JMonkeyEngine
and the Google Earth plugins extract the 3D meshes of objects-of-interest from
OBJ (a geometry definition format) files. Also, we are using a MySQL database
to store the 3D model of the scenario and other interesting information for the
tests.

DB

Applet

Web Interface

Google Earth
 plugins

JavaScript

JMonkeyEngine

Scenario

3D model of 

the scenario

3D meshes

of objects

Figure B.20: Technical architecture diagram of the MultiCAMBA prototype.

We need to enable the communication between the different technologies and
the transfer of information among them. For example, for the communication
among the applet and the Google Earth plugins our prototype uses the Keyhole
Markup Language (KML)12. For this task, the applet creates and maintains
updated a KML file with the current location, direction, and other information
of cameras and objects in the scenario, that all the Google Earth plugins use
to update the scene they show.

12https://developers.google.com/kml

https://developers.google.com/kml
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Inspired by mobile production units in our third motivating use case (see
Section 3.1.3), we have developed a friendly GUI that models a Technical Di-
rector (TD) work environment (see Figure B.21 and http://sid.cps.unizar.

es/MultiCAMBA) where the TD can express her requirements and the results
are displayed. The GUI is mainly composed of three modules:

1. The query interface, where the TD defines (using HTML forms or the
3D interface) the requirements that the cameras have to fulfill and stores
/ loads / submits her queries.

2. The overview map, which is a 3D representation of the scenario, with the
moving objects and cameras involved, where the results of the queries
are shown.

3. The camera inputs, which are several windows where the TD can preview
the camera video streams before broadcasting them.

Query Interface Overview Map Camera Inputs

Figure B.21: MultiCAMBA app: Graphical User Interface (GUI) for the
Technical Director.

Query Interface

The query interface of the system allows the TD to define the constraints that
an interesting shot has to fulfill. This can be done using HTML forms, which

http://sid.cps.unizar.es/MultiCAMBA
http://sid.cps.unizar.es/MultiCAMBA
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enable a quick definition of a query out the expense of less precision in the
definition, or using a 3D interface, which enables the TD to define very precise
camera views but requires more time.

In the example of Figure B.22 we show the usage of the HTML forms by
a TD that has shown interest in obtaining “Any” camera that could provide
a shot covering a certain rowing boat (“Kaiku”). At least “50%” of the boat
has to appear in the shot, and the camera has to cover at least “75%” of the
front view of the boat (a shot covering 100% of the front view is obtained by a
camera located in front of the object pointing to it).

Figure B.22: MultiCAMBA app: Example of low-level input form.

We also provide the TD with a Query-by-Example 3D interface for the
definition of 3D scenes (see Figure B.23) that supports a precise definition of
the query shot required. So, instead of defining the constraints that the shot
has to fulfill, the TD shows exactly the kind of shot she wants [ABP02] and the
prototype extracts the required constraints. The interface has been developed
using the Java 3D engine, JMonkey Engine, that we have used also for the
analysis of the camera views.

Overview Map

Delivering the information easily and effectively is essential to quickly select
the camera to broadcast in live. To achieve this goal we use a powerful and
free software tool, the Google Earth API, to display the results in a friendly
interface. Google Earth is a geographic information system that offers a vast



Appendix B. Prototypes for the Semantic Management of LBS 292

Figure B.23: MultiCAMBA app: Snapshot of the Query-by-Example 3D
interface.

amount of geospatial data (satellite images, 3D buildings, 3D terrains, etc.),
that helps to develop virtual scenes similar to those in the real world. This
way, the overview map recreates and keeps up-to-date the scene in a Google
Earth plugin allowing the TD to navigate through the scenario. In the center
of Figure B.21 the overview map shows an example of the moving objects
and cameras (a brown triangle indicates its current FOV) in a sport scenario.
Besides, it shows the results to a query submitted by the TD to retrieve the
cameras that can view a certain object (a yellow star is used to represent the
target object, a green hexagon for the cameras fulfilling the requirements, a
blue hexagon for the cameras that will fulfill them if rotated, and a red hexagon
for the cameras unable to fulfill them).
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Camera Inputs

The system also uses Google Earth to recreate the view of a camera. This is
very useful mainly in two situations: when the real camera video stream is
not available (as in the camera inputs of Figure B.21) and when a camera is
not currently viewing the target and the system estimates the scene it will
capture if it is rotated. The possibility to estimate future camera views with
the combined use of Google Earth technology allows the system to show a
realistic recreation of what a camera will view if rotated. This is interesting
because sometimes the best shot is not the one that can be obtained the fastest.
For example, a camera that is not currently viewing a target, but will be in a
matter of seconds, could then provide a better background scene than a camera
that is viewing the target currently.

B.4.3 Evaluating the Processing of Multimedia Information

In this section, we show the experimental evaluation performed to validate our
approach to obtain images that fulfill the requirements of a user, focusing on
the multimedia aspect13.

Experimental Setup

Testing a live broadcasting of a rowing race in a real-life environment is difficult
because there are many real objects, devices, and wide-area scenarios involved.
Besides, testing the system several times in similar situations in a real-life
environment is challenging. Therefore, we have developed a simulator that
enables us to manage the different cameras and objects in the scenario. To
simulate the rowing race we have used a file containing the real GPS location
data of each rowing boat captured every second during the race celebrated
in San Sebastian in September 2010; this rowing race covers a total distance
of 3 miles logically divided in two parts by a turning point. Therefore, real
trajectories are used to move objects in the simulations. Moreover, the simulator
allows us to dynamically change other parameters, such as the current pan and
tilt of each camera, in order to rotate them as the TD would request in the
real scenario.

The parameters used in the tests are the following ones:

1. There are four rowing boats equipped with a camera; as commented

13Some videos and interesting moments of the tests are available at http://sid.cps.

unizar.es/MultiCAMBA/Experiments.

http://sid.cps.unizar.es/MultiCAMBA/Experiments
http://sid.cps.unizar.es/MultiCAMBA/Experiments


Appendix B. Prototypes for the Semantic Management of LBS 294

before, these boats move according to the real GPS location data captured
during the race celebrated in San Sebastian in September 2010.

2. There are three other cameras: one on top of the island, one on the
promenade, and one on a sailing boat near the rowing boats. The cameras
are set with horizontal focus βh = 70◦, vertical focus βv = 45◦, pan range
±130◦, tilt range ±90◦, and pan and tilt speed 5.5 degrees/second.

3. The tests were performed in an Intel Core i5-480M with graphics card
NVIDIA Geforce GT 540M.

For the experimental evaluation we will consider this simulated scenario
and one of the most interesting queries for the TD. In our sample scenario, the
TD may want to know, during the whole event, which cameras are viewing
each of the rowing boats, as she could need a shot of a certain boat at anytime.
In fact, during the broadcasting of any event, the TD would be interested on
the cameras that are viewing the main agents (e.g., for a soccer match it is
interesting to know the cameras that are viewing each of the star players). So,
as a representative query in the context of our experiment we will continuously
process the following one:

“Cameras that can view at least 70% of the Kaiku boat”

Evaluating the Quality of the Result Set

In this first experiment, we want to evaluate whether the cameras provided
by the system as an answer are good candidates to provide the views required
by the TD (see Figure B.24). We represent the number of cameras in the
answer (vertical axis) along the event duration (horizontal axis). The blue line
shows the number of cameras provided by the system (some of them currently
fulfilling the requirements of the user and the others estimated by the system
to be able to do it in the near future) and the red dashed line shows the number
of wrongly chosen cameras. We consider a camera as wrongly chosen when the
system makes an estimation error greater than 25 seconds in the estimated
time to wait until the camera could provided the view required. For example,
at the beginning the system estimates that the camera on board the farthest
boat (that has two boats between it and the target and does not currently view
the target) will cover 77% of “Kaiku” in 10 seconds, but when those 10 seconds
have passed the camera is only able to view 21% because then the occlusion
of “Kaiku” is greater than estimated. This occlusion remains for 30 seconds,
and so the system makes a mistake considering this camera as part of the
answer. These kinds of errors only happen when the target is occluded due to
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variations in the speed and direction of the objects that make the system fail in
the estimation of the future scene. Again, around time 17:30, where the boats
are in the final sprint, the system estimates the time needed to view the target
and shows the cameras in the answer, but some of them overtake “Kaiku” and
thus they are not able to view it for the rest of the race (due to their rotation
limits). However, thanks to the continuous query processing, estimation errors
due to unexpected changes in the trajectories are quickly corrected.

For the test, the cameras are rotated automatically in order to track “Kaiku”
according to the results provided by the system. The maximum number of
cameras that can be part of the answer is six (because the camera of “Kaiku”
cannot view itself due to the physical rotation limits), and the system shows in
the answer at least three cameras during the most critical time intervals, that
is, when the boats are at the turning point (which is a key moment during
the race) around time instant 10:30 and when the other boats are overtaking
“Kaiku” around time instant 17:00-20:00.

Even though the system must perform its calculations every second, the
results are quite satisfactory for the total period of twenty minutes, and the
errors are corrected quickly enough to avoid a negative impact on the decisions
of the TD. Notice that, in our scenario, for the most part of the race a good
number of cameras fulfill the TD requirements, as they are rotated automatically
following the system commands. In this case, the system succeeds in discarding
the irrelevant cameras at each moment and in ranking the most interesting
cameras first.



A
p

p
en

d
ix

B
.

P
ro

toty
p

es
for

th
e

S
em

an
tic

M
an

agem
en

t
of

L
B

S
296

Figure B.24: Quality of the result set (i.e., cameras fulfilling the user requirements): number of cameras in the
answer set (blue line) and number of wrongly chosen cameras (red dashed line).
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Testing the Precision of the Estimated Time to View

The goal of this test is to evaluate the error in the time estimation, measured
in seconds between the estimated time and the actual time when the camera
views the target.

In Figure B.25, we show the sum of the time errors for all the cameras at
every time instant. Notice that there are positive and negative values, that
represent when the time estimated by the system is greater than the actual
value (positive) or when it is smaller (negative). We have decided to make this
distinction because a negative error could make the TD to keep an eye on a
camera that actually will need more time than expected to view the target,
which may be an important problem. On the other hand, a positive error (if it
is not too big) means that a camera viewed the target earlier than expected,
and so the negative impact of selecting that camera is minimized. Anyway,
notice that the sum of all the errors ranges only between −5 and +3 seconds,
which is very small for the sum of the errors of all the cameras.

Figure B.25: Error in the estimated time needed for the cameras to view the
target object: the error is localized at two specific time intervals (the start and
the end of the race).

The errors are localized within two specific time intervals. The first errors
occur at the start of the race, when all the cameras are pointing at the same
direction as the front vector of their rowing boats. In this scenario there are
not big changes on the objects’ altitude (only slight changes caused by waves),
so in order to test the pan and tilt estimation we have set initially all the
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cameras pointing upwards at the start (maximum tilt). Thus, as the test
starts, the cameras have to pan and tilt to view “Kaiku” and the system has
to estimate the time needed to do it. As at the starting point the system has
not enough information to precisely estimate the speeds of the boats, it makes
some little mistakes that, overall, do not exceed 3 seconds. Thus, this error
is small enough to provide the TD with accurate information. Around time
17:30 the end of the race is near and there are big variations in the speed and
distance between the boats (as the rowers are making their last efforts) and
some boat is even overtaken. The system estimates here that the time needed
to view “Kaiku” is smaller than the actual time needed, as the boats increase
their speed in a final attempt to win the race.

This test shows that the errors concerning the estimated time to view
the target are small. Besides, those errors are localized in two narrow time
intervals and they are quickly fixed (in the test, in ten seconds at most), since
the corresponding location-dependent query is continuously processed.

Testing the Precision of the Estimated Percentage Viewed

We also tested the precision of the estimated percentage of the target viewed
by the cameras. Due to the specific features of the scenario, a camera views
a percentage below 100% when the target is partially occluded by another
boat (the target usually remains inside the FOV of the cameras). As explained
before, the system is able to compute the percentage of “Kaiku” that a camera
will cover when it is able to view it. For the camera closest to “Kaiku” (that
has no other boat between them), the errors in the estimation of the percentage
only occur when there is an error in the estimation of the time needed to view
it. We have considered these errors in Figure B.25. We show in Figure B.26 an
example for a camera that has two boats between it and the target (and thus
occlusions are possible) and focusing on a short time interval (the first 8 seconds)
where some errors occur. The system starts estimating that the camera will
view a smaller percentage than what it will really view, and as the time goes
by the error in this estimation decreases.

Testing the System Against Real Camera Footage

We have also tested the system against real camera footage. Specifically, we
have used the video produced by the Spanish broadcaster EiTB for the rowing
race celebrated in September 2010. The goal of this test was to compare
the results offered by our system with the real event to check the behavior
of our proposal. Figure B.27 shows an extract of two seconds of a camera
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Figure B.26: Error in the estimated percentage of the target that a camera
will view in the first eight seconds.

covering the end of the race (the real images are shown on the bottom of each
frame) compared with the information generated and exploited by the query
processing in our system (shown at the top of each frame). Notice that the
extents of the rowing boats are represented in green by the system, for an easy
comparison with the real footage. At the beginning of this live footage, the
“Urdaibai” boat has just crossed the finish line (it is the only boat we see in
the first frame in Figure B.27(a)); it is followed by “Kaiku”, that enters the
FOV of the camera 1 second later, being completely captured by the camera
exactly at time instant 2.08 seconds (Figure B.27(b)).

At the time instant when the live footage begins, our system estimates that
the camera will obtain a full view of the “Kaiku” boat in 1.85 seconds. Notice
that the error committed is not very significant: the TD will be alerted just
0.23 seconds before the desired situation is captured by the real camera. This
small error is caused by the slight inaccuracy of the GPS data transmitted
by the boats and the fact that the location of the real camera was estimated
(the TV broadcaster did not provide us with this information). However, the
results obtained by the system would have been good enough to help the TD
to select this camera to view the “Kaiku” boat.

Evaluation of the Ranking Presented to the User

The purpose of this experiment is to evaluate the ranked answer provided by
the system for a given query image instead of the description of a scene like in
the previous tests. The ranking criteria are very important because, due to
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(a)

(b)

Figure B.27: Testing the system against real camera footage (the information
generated by our system is on the top): in two consecutive seconds.

the need of selecting the next camera to broadcast as quickly as possible, the
TD will consider only the first positions in the ranking.

In [SB05] the authors emphasized that “image retrieval is only meaningful
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in its service to people, performance characterization must be grounded in
human evaluation”. However, evaluating an image retrieval system is a difficult
task [Tho10] and testing it with real users is time-consuming (so, in many
approaches tests are performed with a limited number of participants [ABP02;
BP97]). Moreover, in our case finding real TDs with experience in the live
broadcasting of sport events able to take part in our experiments was not
possible, although it would have been very interesting. So, for our test, 10
users familiarized with the use of 3D interfaces were recruited and we used four
query images that could be interesting for a TD (see Figure B.28). The users
were presented with 45 images given in arbitrary order (see Figure B.29) and
the four queries, and their goal was to select the images that they considered
similar to each query and then to rank the selected images according to their
similarity. To accomplish this task, the users were allowed to choose the order
in which they wanted to answer the queries and modify their previous answers
whenever necessary. We have selected these 45 images as they show different
numbers of objects in different configurations. The number is high enough to
obtain at least five similar images per query image and at the same time is low
enough for the users to be able to check all the images correctly (the higher the
number of images available, the higher the difficulty to keep the concentration
of the user to verify them all carefully, as the amount of information that can
be kept in the working memory of humans is considered to be limited [Mil56]).
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(a) (b)

(c) (d)

Figure B.28: Query images used in the tests.
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Figure B.29: Set of 45 images used in the tests.
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Considering an image as similar to another one is a very subjective matter.
For some users an image is similar to a query image if it shows the same
objects, for others if it shows the same percentage of the object, and for others
if the viewpoint of the most prominent object is the same. So, as explained in
Section 8.3, we used weights equally distributed when computing the similarity
in our tests. According to the results obtained from the users concerning the
number of similar images for each query (see Figure B.30), we can observe
three kinds of users: some users have a “demanding profile”, as they select
only a few pictures as similar (e.g., the ninth user); other users have a “lax
profile”, as they select more images than the average (e.g., second and eighth
users); finally, the rest of users have an “average profile”. Thus, we think
that the system has to rank all the images without discarding any image: if
we considered instead a top-k ranking, the appropriate k would depend on
the subjectivity of the specific user and the specific query and set of images
available. However, ranking all the images also emphasizes the importance of
providing a good ordering, such that images that are very different from the
query image have to be placed at the end of the result list.

Figure B.30: Number of images selected by the users as similar to each query
image.

The next step is to compare the users’ rankings with the ranking provided
by our system. As the users’ rankings for a query could include different images
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and a different number of results, we have to compare partial lists of varying
length. It is interesting to consider that it is quite common for a user to make a
precise definition of the firsts positions of a ranking and the precision decreases
as the element is located in the last positions. This has been confirmed by
some users, that have explained that the images they placed at the end of the
list had all approximately the same similarity to the query image (according to
their opinion). So, we will focus on the first five images of each user’s ranking
(five is the maximum number of images selected for all the users for all the
queries) to compare it with the system’s ranking. Kendall’s tau [Ken38] is a
measure widely used to compare rankings. However, it has the limitation that
the rankings to compare have to contain the same elements (i.e., they have to
be full rankings). In [FKS03] a generalized Kendall’s tau that overcomes this
limitation is presented, that can be applied to compare top-k lists:

K(p)(τ1, τ2) =
∑

i,j∈P (τ1,τ2)

K̄
(p)
i,j (τ1, τ2) (B.1)

where τ1 and τ2 are the lists to compare and P (τ1, τ2) is the union set of the

elements in both lists. In addition, K̄
(p)
i,j (τ1, τ2) = 1 if any of the following

conditions hold: (a) i and j appear in both lists but in reverse order (i.e., i
is ranked higher than j in one list but lower in the other); (b) i and j both
appear in one list (and j is ahead i) and exactly one of i or j appears in
the other list; (c) i, but not j, appears in one list, and j, but not i, appears

in the other top-k list. Otherwise, K̄
(p)
i,j (τ1, τ2) = 0, as we are considering

the “optimistic approach” of Kendall’s tau with p = 0 (i.e., K(0)), which is a
frequent instantiation of Kendall’s tau in the literature. In order to normalize
K(0) in such a way that two identical lists have a value of 1 and two lists that
share no element have a value of 0, we use the normalized K [MN07]:

K = 1− K(0)(τ1, τ2)

k2
(B.2)

We have computed the normalized distance, K, between our system’s
ranking and the users’ ranking (the results are shown in Figure B.31, where
K(ui, s) represents the K value between the ranking provided by the user useri
and the ranking of the system s). Values below 0.5 usually indicate that the
system does not select some images that appear in the user’s ranking, and
values above 0.5 indicate that the system selects all the images selected by
the user but the order is exactly the same only if the value of K is 1. So, for
Query 3 and Query 4 the similarity between the rankings provided by the users
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and the one provided by the system is particularly high, as with the dataset
used in the experiments the users found it quite easy to select and rank images
similar to those query images. However, for Query 1 the users found more
difficulties to rank the images, as there is a higher number of images that could
be considered similar to the query image; in the ranking provided, for example,
some users considered as more similar the images where a similar percentage
of the green rowing boat was shown, whereas others considered more similar
the images that showed a similar perspective.

Figure B.31: Comparing the ranking of images obtained by our system (s)
and the users’ rankings (ui) for each query (normalized Kendall tau distance
K(ui,s)).

However, it has to be noticed that different users usually propose different
rankings for the same set of images (i.e., there is some disagreement between the
users about the best ranking, due to the subjectivity of the process). Therefore,
comparing only the system’s ranking with each of the users’ rankings would
be unfair. To take the subjectivity into account, we apply a similar approach
to the one used in [TPIBM11] to obtain the level of disagreement between
the system and the users. First, we define for each query a global level of
disagreement between all the users and the system, called System Disagreement
(SD):
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SD = 1−

M∑
i=1

Ki,s

M
(B.3)

where Ki,s is the normalized distance K for each of the users’ rankings compared
with the ranking provided by our system, and M is the number of users (10 in
our case). The value of SD can be interpreted intuitively as follows. Considering
the extreme cases, SD = 0 would mean that the system obtains exactly the
same results (the same images in the same order) than all the users (this would
be possible only if all the users provided exactly the same answer), and SD = 1
would mean that the system results are completely different from the results
provided by any of the users. For the intermediate cases, the rankings provided
by the users and the system are more similar when the value of SD is low.

Then, we define for each query a global level of disagreement among all the
users called Tester’s Disagreement (TD), as the users play the role of testers
for our system:

TD = 1−

M∑
i=1

M−1∑
j=1,j 6=i

Ki,j

M − 1

M
(B.4)

where Ki,j is the normalized distance K for two users’ rankings. The value of
TD can be interpreted similarly to what was explained before for the value of
SD, but in this case TD measures the difference among the rankings provided
by the users.

In Figure B.32 we show the resulting SD and TD for each of the four queries.
As K = 1 indicates that the two selected rankings are exactly the same, we
consider that the ranking of similar pictures for a query image is correct as long
as SD ≤ TD (i.e., when the disagreement between the users and the system is
not higher than the disagreement between the users themselves). According
to this, the system always behaves well except for the last query (Query 4),
where SD = 0.31 and TD = 0.27. So, we analyze this query in the following
to explain this behavior.

Figure B.33(a) shows the ranking of images that the system obtains for
Query 4. We noticed that the system locates in the fourth position an image
that was not present in any of the users’ top-5 rankings. This was the cause
that led to obtaining a SD slightly greater than TD for this query. The
reason for this behavior is related to the weights assigned to each term of
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Figure B.32: Tester Disagreement and System Disagreement.

the similarity function used by our system (Formula 8.12 in Section 8.3.4).
Specifically, we consider by default wl = wo = wv = 1/3, as there is no objective
criterion to assign different weights. However, analyzing the users’ rankings
for the last query, we have noticed that for most of them the percentage of
the objects viewed and the percentage of the shot occupied by the objects
were more important than other factors. Taking this into account, we have
also set the weights wo = 0.7, wv = 0.25, and wl = 0.05, and reevaluated the
query, obtaining a new ranking (see Figure B.33(b)) and a new SD = 0.27,
which makes the disagreement between the system and the users equal to
the disagreement between the users. So, by adapting the weights used in the
similarity function (which can be performed easily by using the sliders available
in the GUI, as shown in Figure B.23), we can customize the system according
to the preferences of a specific user. Another example of the potential interest
of adjusting the weights is presented in the following section.

Evaluation of the User Satisfaction when Entering an Arbitrary
Query

We have performed other tests where “expert” users (persons who are not only
familiar with the use of 3D interfaces but also fond of photography) have used
the prototype to formulate their own queries. In this section, for illustration
purposes, we explain some results obtained with one of these expert users.
Similar conclusions can be drawn from the tests performed with other expert
users.
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Position 1 Position 2 Position 3 Position 4 Position 5

(a)

Position 1 Position 2 Position 3 Position 4 Position 5

(b)

Figure B.33: Ranking obtained by the system for Query 4: before (a) and after
(b) modifying the weights of the similarity formula.

First, we asked the user to define a query scene; the user found no difficulties
in performing this task to compose the wanted query image. Afterwards, to
expand the dataset used in the previous tests, we generated some images by
moving the rowing boats in the scene and by moving/rotating the camera
randomly. Then, based on the new dataset of images that we generated, the
system presented to the user a ranked list of images similar to his query image
(see Figure B.34(a)) and we asked him to make some comments about the
results. He pointed out that, for him, the second image was more similar to
the query than the first one, due to the viewpoint of the camera. He also
noted that the rest of the images were somewhat similar to the query but he
would rule out them compared to the first and second ones (the user showed a
“demanding profile”).

We analyzed the user answer and decided to modify the weights of the
similarity function (Formula 8.12) to match his preferences. By increasing the
weight of the views and decreasing the weight of the location (we used wo = 0.3,
wv = 0.6, and wl = 0.1) we obtained a new ranking (see Figure B.34(b))
where the positions of the first two images are inverted, as the user would have
expected. Moreover, by adapting the weights to the preferences of that specific
user, the differences between the computed similarity of the image in the second
position and the third, fourth, and fifth increased from 0.04, 0.04, and 0.06
(in Figure B.34(a)), to 0.14, 0.15, and 0.21 (in Figure B.34(b)), respectively;
this means that with the new weights the last three images were considered
by the system much less similar to the query image than before. So, it is
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Position 1
S=0.72

Position 2
S=0.67

Position 3
S=0.63

Position 4
S=0.63

Position 5
S=0.61

Query Image

(a)

Position 1
S=0.75

Position 2
S=0.73

Position 3
S=0.59

Position 4
S=0.58

Position 5
S=0.52

Query Image

(b)

Figure B.34: Ranking of images obtained for a user query: before (a) and after
(b) modifying the weights of the similarity formula.

possible to fine-tune the weights according to the preferences of the user. Some
complementary works have proposed to automatically infer suitable preference
weights based on past user’s interactions with the system [RHOM98].





We shall overcome.
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Turgut. “Routing protocols in ad hoc networks: A sur-
vey”. In: Computer Networks 55.13 (2011), pp. 3032–
3080.

[Bur10] Ed Burnette. Hello, Android: Introducing Google’s Mo-
bile Development Platform. The Pragmatic Program-
mers, LLC., 2010.

[BYBIBMTLG15] Carlos Bobed, Roberto Yus, Fernando Bobillo, Sergio
Ilarri, Jorge Bernad, Eduardo Mena, Raquel Trillo-
Lado, and Angel Luis Garrido. “Chapter 4: Emerging
Semantic-Based Applications”. In: Semantic Web: Im-
plications for Technologies and Business Practices. Ed.
by Michael Workman. Springer International Publish-
ing, 2015, pp. 39–83.

[BYBM15] Carlos Bobed, Roberto Yus, Fernando Bobillo, and Ed-
uardo Mena. “Semantic Reasoning on Mobile Devices:
Do Androids Dream of Efficient Reasoners?” In: Journal
of Web Semantics 35 (2015), pp. 167–183.



Bibliography 320

[CBLZW11] Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin
Lin, Wenjie Zhang, and Wei Wang. “Continuous Mon-
itoring of Distance-Based Range Queries”. In: IEEE
Transactions on Knowledge and Data Engineering 23.8
(2011), pp. 1182–1199.

[CCCCDVF12] Irene Celino, Dario Cerizza, Simone Contessa, Marta
Corubolo, Daniele Dell’Aglio, Emanuele Della Valle, and
Stefano Fumeo. “Urbanopoly - A Social and Location-
Based Game with a Purpose to Crowdsource Your Ur-
ban Data”. In: 2012 International Conference on Social
Computing (SocialCom 2012). 2012, pp. 910–913.

[CCL03] Imrich Chlamtac, Marco Conti, and Jeffifer J. N. Liu.
“Mobile Ad Hoc Networking: Imperatives and Chal-
lenges”. In: Ad Hoc Networks 1.1 (2003), pp. 13–64.

[CDH11] Amparo Elizabeth Cano, Aba-Sah Dadzie, and Melanie
Hartmann. “Who’s Who - A Linked Data Visualisation
Tool for Mobile Environments”. In: 8th Extended Se-
mantic Web Conference (ESWC 2011). 2011, pp. 451–
455.

[CDV10] Fan Chen and Christophe De Vleeschouwer. “Person-
alized Production of Basketball Videos from Multi-
sensored Data Under Limited Display Resolution”. In:
Computer Vision and Image Understanding 114.6 (2010),
pp. 667–680.

[CDV11] Fan Chen, Damien Delannay, and Christophe De Vleeschouwer.
“An autonomous framework to produce and distribute
personalized team-sport video summaries: a basket-ball
case study”. In: IEEE Transactions on Multimedia 13.6
(2011), pp. 1381–1394.

[CEBMPN13] David Corsar, Peter Edwards, Chris Colin Baillie, Mi-
lan Markovic, Konstantinos Papangelis, and John D.
Nelson. “GetThere: A Rural Passenger Information Sys-
tem Utilising Linked Data & Citizen Sensing”. In: 12th
International Semantic Web Conference (ISWC 2013).
2013, pp. 85–88.



321 Bibliography

[CH06] Chih-Chieh Cheng and Chiou-Ting Hsu. “Fusion of
audio and motion information on HMM-based highlight
extraction for baseball games”. In: IEEE Transactions
on Multimedia 8.3 (2006), pp. 585–599.

[CHK97] David M. Chess, Colin G. Harrison, and Aaron Ker-
shenbaum. “Mobile Agents: Are They a Good Idea?”
In: 2nd International Workshop on Mobile Object Sys-
tems - Towards the Programmable Internet (MOS 1996).
London, UK, UK: Springer-Verlag, 1997, pp. 25–45.

[CK00] Guanling Chen and David Kotz. A Survey of Context-
Aware Mobile Computing Research. Tech. rep. Hanover,
NH, USA, 2000.

[CLY09] K. Choi, S.W. Lee, and Seo Y. “Automatic Broadcast
Video Generation for Ball Sports From Multiple Views”.
In: International Workshop on Advanced Image Tech-
nology (IWAIT 2009). 2009.

[Cro12] Adam Crowe. Disasters 2.0: The application of so-
cial media systems for modern emergency management.
CRC press, 2012.

[CSLC12] Yuxin Chen, Hariprasad Sampathkumar, Bo Luo, and
Xue-wen Chen. “iLike: Bridging the Semantic Gap in
Vertical Image Search by Integrating Text and Visual
Features”. In: IEEE Transactions on Knowledge and
Data Engineering PP.99 (2012), p. 1.

[CTHH13] MarioHenrique Cruz Torres, Robrecht Haesevoets, and
Tom Holvoet. “CooS: Coordination Support for Mobile
Collaborative Applications”. In: Mobile and Ubiquitous
Systems: Computing, Networking, and Services (Mobiq-
uitous 2013). 2013, pp. 152–163.

[CVNMMNORU14] Andrea Cal̀ı, Roberto De Virgilio, Tommaso Di Noia,
Luca Menichetti, Roberto Mirizzi, Luca Nardini, Vito
Claudio Ostuni, Fabrizio Rebecca, and Marco Ungania.
“Semantic Search in RealFoodTrade”. In: 8th Alberto
Mendelzon Workshop on Foundations of Data Manage-
ment. 2014.



Bibliography 322

[DA11] Melwyn D’Souza and V.S. Ananthanarayana. “Decen-
tralized registry based architecture for location-based
services”. In: 6th IEEE International Conference on
Industrial and Information Systems (ICIIS 2011). 2011,
pp. 136–139.

[DCTK11] Kathrin Dentler, Ronald Cornet, Annette ten Teije, and
Nicolette de Keizer. “Comparison of reasoners for large
ontologies in the OWL 2 EL profile”. In: Semantic Web
Journal 2.2 (2011), pp. 71–87.
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[GBJRMPGK13] Rafael S. Gonçalves, Samantha Bail, Ernesto Jiménez-
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Wessel. “The RacerPro Knowledge Representation and
Reasoning System”. In: Semantic Web Journal 3 (3
2012), 267–277.



327 Bibliography

[HKPPSR09] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F
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Timofey Ermilov, and Sören Auer. “Weaving a Dis-
tributed, Semantic Social Network for Mobile Users”.
In: 8th Extended Semantic Web Conference (ESWC
2011). Vol. 6643. Lecture Notes in Computer Science.
Springer, 2011, pp. 200–214.

[TFPL04] Yufei Tao, Christos Faloutsos, Dimitris Papadias, and
Bin Liu. “Prediction and Indexing of Moving Objects
with Unknown Motion Patterns”. In: ACM SIGMOD
International Conference on Management of Data (SIG-
MOD 2004). ACM Press, 2004, pp. 611–622.

[TH06] Dmitry Tsarkov and Ian Horrocks. “FaCT++ descrip-
tion logic reasoner: system description”. In: 3rd In-
ternational Joint Conference on Automated Reasoning
(IJCAR 2006). 2006.



Bibliography 342

[Tho10] Bart Thomee. “A picture is worth a thousand words –
Content-based image retrieval techniques”. PhD thesis.
Leiden University (Germany), 2010.

[TIM07] Raquel Trillo, Sergio Ilarri, and Eduardo Mena. “Com-
parison and Performance Evaluation of Mobile Agent
Platforms”. In: 3rd International Conference on Auto-
nomic and Autonomous Systems (ICAS 2007). IEEE
Computer Society, 2007.

[TJV13] Bjørnar Tessem, Bjarte Johansen, and Csaba Veres.
“Mobile Location-Driven Associative Search in DBpedia
with Tag Clouds”. In: 9th International Conference on
Semantic Systems (I-SEMANTICS 2013). 2013, pp. 6–
10.
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