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SINOPSIS

La remodelación ósea es el mecanismo que regula la relación entre la
morfologı́a del hueso y sus cargas mecánicas externas. Se basa en el hecho
de que el hueso se adapta a las condiciones mecánicas a las que está expuesto.
Varios factores mecánicos y bioquı́micos pueden regular la respuesta final de
la remodelación ósea. De hecho, la remodelación ósea intenta alcanzar varios
objetivos mecánicos: reparar el daño para reducir el riesgo de fractura y optimizar
la rigidez y resistencia con el mı́nimo peso. Durante las últimas décadas, se han
propuesto un gran número de leyes matemáticas implementadas numéricamente,
pero la mayorı́a de ellas presentan diferentes problemas como la estabilidad, la
convergencia o la dependencia de las condiciones iniciales. Por tanto, el objetivo
principal de esta tesis es estudiar los modelos de remodelación ósea, mostrando
sus retos, su problemática en la actualidad y su aplicación en el ámbito clı́nico.

En primer lugar, se han revisado de dos teorı́as clásicas de la remodelación
ósea (modelo de Stanford y el modelo de Doblaré y Garcı́a). En ambos, se
planteó que el estı́mulo homeostático de referencia no es constante, sino que
depende localmente de la historia de carga que cada punto local está soportando.
Como consecuencia directa de esta hipótesis, se demuestra que las inestabilidades
numéricas que normalmente presentan estos algoritmos pueden ser resueltas,
mejorando claramente los resultados finales. Por esta razón, se aplicó esta
metodologı́a a un modelo de elementos finitos 2D/3D. Esta contribución mejora
la convergencia de la solución, asegurando su estabilidad numérica a largo plazo.

Por otra parte, en un intento de dilucidar las caracterı́sticas de adaptación del
hueso en diferentes escalas, se plantea una relación a nivel órgano y a nivel de
tejido que dependa de un cambio en el estı́mulo homeostático de referencia acorde
con la densidad, mientras la energı́a de tejido permanece invariante. Esta hipotesis
mejora la unicidad de la solución y la hace independientemente de las condiciones
iniciales seleccionados ayudando también a su estabilidad numérica.

Además, el modelado de paciente especı́fico está adquiriendo cada vez más
importancia. Una de las principales dificultades en la creación de modelos de
paciente especı́fico, es la determinación de la carga que el hueso está realmente
soportando. Los datos relativos a pacientes especı́ficos, como la geometrı́a ósea
y la distribución de la densidad ósea, puede ser utilizados para determinar estas
cargas. Por lo tanto, se ha estudiado la estimación de la cargas con tres diferentes
técnicas matemáticas: regresión lineal, redes neuronales artificiales y máquinas de
soporte vector. Estas técnicas han sido aplicadas a un ejemplo teórico para obtener
las cargas a través de la densidad que se predice con los modelos de remodelación
ósea.

Para concluir, la metodologı́a desarrollada que combina modelos de remod-
elación ósea con redes neuronales se ha aplicado a la predicción de las cargas de
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cinco tibias de pacientes. Para ello, se han determinado la geometrı́a y la dis-
tribución de la densidad a partir de un TAC y se han introducido los valores de
densidad en el modelo previamente desarrollado, obteniendo ası́, las cargas es-
pecı́ficas de las tibias de los pacientes. Con el fin de validar la capacidad de esta
novedosa técnica, se han comparado las cargas obtenidas de la técnica propuesta
con las cargas obtenidas en un análisis de marcha de dichos pacientes. Los er-
rores obtenidos en las predicciones han sido menores de un 6%. Por lo tanto, la
metodologı́a propuesta se ha dado por validada.

Palabras clave: Remodelación ósea, Predición de densidad ósea, Estimaciones
de error, Adaptación ósea, Análisis de elementos finitos, Estabilidad, Simu-
lación numérica/ convergencia, Zona muerta, Multiescala, Red neuronal artificial,
Máquina de soporte vector, Regresión lineal, Condiciones de carga, Problema
remodelación ósea inverso, Simulación de paciente especı́fico, Modelos muscu-
loesqueléticos, Análisis de marcha.
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Abstract

Bone remodeling is the mechanism that regulates the relationship between
bone morphology and its external mechanical loads. It is based on the fact that
bone adapts itself to the mechanical conditions to which it is exposed. Several
mechanical and biochemical factors may regulate the final bone remodeling re-
sponse. In fact, bone remodeling is hypothesized to achieve several mechanical
objectives: repair damage to reduce the risk of fracture and optimize stiffness
and strength with minimum weight. During recent decades, a great number of
numerically implemented mathematical laws have been proposed, but most of
them present different problems as stability, convergence or dependence of the
initial conditions. Thus, the main scope of this Thesis is to study bone remodeling
models, showing their challenges, their problematic and their applicability in the
clinical setting.

Firstly, we revisit two classical bone remodeling theories (Stanford model and
Doblaré and Garcı́a model). In both of them, the reference homeostatic stimulus
is hypothesized that is not constant, but it is locally dependent on the loading
history that each local point is effectively supporting. As a direct consequence
of this assumption, we demonstrate that the numerical instabilities that all these
algorithms normally present can be solved, clearly improving the final results. For
this reason, we applied this methodology to 2D/3D finite element models. This
contribution improves the convergence of the solution, leading to its numerical
stability in the long-term.

In an attempt to elucidate the features of bone adaptation at the different scales,
we hypothesize that the relationship between the organ level and tissue level de-
pends on the reference homeostatic stimulus changes according to the density
and the tissue effective energy remains unchanged. This assumption improves the
uniqueness of the solution, independently of the initial conditions selected and
clearly helps in its numerical stability.

In addition, patient-specific modeling is becoming increasingly important. One
of the most challenging difficulties in creating patient-specific models is the deter-
mination of the specific load that the bone is really supporting. Real information
related to specific patients, such as bone geometry and bone density distribution,
can be used to determine patient loads. Therefore, we studied three different math-
ematical techniques: linear regression, artificial neural networks (ANN) and sup-
port vector machines (SVM). These techniques have been applied to a theoretical
femur to obtain the load through the density that came from many bone remodel-
ing simulations.

Finally, the application of this novel methodology has been applied for the
loading prediction of five real tibias. We are able to determine the subject-specific
forces from CT data, from which we obtain bone geometry and density distribu-
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tion of the five tibias. Then, the density values at certain bone regions have been
introduced in the methodology developed that combines bone remodeling mod-
els and artificial neuronal networks (ANN) for obtaining the predicted subject-
specific loads. Finally, in order to validate this novel technique for tibia loading
predictions, we compare predicted loads with the loads obtained from the patient-
specific musculoskeletal model. The errors between both loads were lower than
6%. Therefore, the methodology proposed has been validated

Keywords: Bone remodeling, Bone density prediction, Error estimates, Bone
adaptation, Finite element analysis, Stability, Numerical simulations/convergence,
Dead zone, Multiscale, Artificial neuronal network, Support vector machine, Lin-
ear regression, Loading conditions, Inverse bone remodeling problem, Subject-
specific simulation, Musculoskeletal modeling, Gait analysis.
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Capı́tulo I

Resumen

I.1 Introducción
Los huesos son organismos vivos que están en constante cambio. La regeneración
o sustitución de material óseo es continuo en el hueso y se conoce con el nombre
de remodelación ósea. En general, el hueso adapta su masa y estructura a las
cargas mecánicas a las que está sometido. En situaciones normales, este proceso
adaptativo asegura un buen balance entre masa ósea y resistencia.

La biomecánica es la ciencia que estudia el comportamiento de los organis-
mos ante respuestas mecánicas. Gracias a ella, se pueden crear modelos com-
putacionales capaces de describir la reacción de los mismos en la vida cotidi-
ana, y ası́, saber cómo van a evolucionar. Estos modelos pueden revolucionar la
forma en que los médicos puedan diagnosticar y tratar determinadas patologı́as,
pudiéndose crear modelos para ayudar a desarrollar tratamientos preventivos para
cada persona. Gracias a la tecnologı́a, se es capaz de simular el comportamiento
de nuestros huesos. La imagen médica puede estar contribuyendo también a este
fin. Con una tomografı́a axial computarizada (TAC) se puede obtener una recon-
strucción tridimensional de hueso y al mismo tiempo, obtener una distribución de
la densidad ósea. Esto permite evaluar la calidad del hueso y estudiar compor-
tamiento bajo diferentes acciones fisiológicas.

I.2 Modelos de remodelación ósea
Desde hace tiempo, muchos investigadores han venido estudiando la relación exis-
tente entre la estructura del hueso y las cargas a las que se encuentra sometido.
En el siglo diecinueve, varios autores describieron la relación entre la forma y
la función del hueso con gran detalle, siendo Wolff (Wolff, 1982) quien hizo la
observación de que no sólo existe una clara relación entre la estructura ósea y la
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carga, sino que el hueso como tejido vivo es capaz de adaptarse a las alteraciones
de cargas que sufre de acuerdo con leyes matemáticas (Carter, 1987; Beaupré
et al., 1990). Este proceso se ha venido a llamar remodelación ósea. Estudios
experimentales han verificado las observaciones de la ley de Wolff mostrando
que, como consecuencia de la remodelación ósea, el hueso puede adaptarse a las
variaciones en las cargas, incluso en estado adulto (Huiskes et al., 1987; Beaupré
et al., 1990; Doblaré and Garcı́a, 2001; Prendergast and Taylor, 1994; Monnier
and Trabucho, 1998).

Muchas teorı́as y modelos matemáticos se han desarrollado para analizar la
evolución de la microestructura del hueso y sus propiedades mecánicas en función
de un cierto patrón de carga. Normalmente, estos modelos han sido implemen-
tados en programas de elementos finitos (EF), y estos modelos computacionales
han demostrado ser herramientas muy útiles para predecir la respuesta del hueso
después de la implantación de prótesis (Doblaré and Garcı́a, 2001; Folgado et al.,
2008; Pérez et al., 2010; Caouette et al., 2012; Christen et al., 2012a; Webster
et al., 2012; Fernández et al., 2010). Sin embargo, estos modelos se han desarro-
llado con carácter general, sin considerar que cada hueso o paciente son diferentes.

A pesar de la gran utilidad de estos modelos de remodelación ósea, siguen
siendo unos modelos en evolución. Uno de los mayores problemas que tienen, es
la falta de convergencia y estabilidad a largo plazo, lo que impide poder estudiar
la evolución de estos modelos en el tiempo.

Hoy en dı́a, el desarrollo de modelos especı́ficos para cada paciente es cada vez
más importante (Galibarov et al., 2010). Un ejemplo de esta importancia radica en
la necesidad de determinar las cargas especı́ficas que causan la distribución de la
densidad del hueso del paciente, con el fin de utilizar estas cargas en el diseño de
un tratamiento especı́fico para él. Uno de los tratamientos especı́ficos con mayor
demanda en la actualidad, es la posibilidad de personalizar la colocación de una
protesis para un tipo de lesión ósea determinada. Este análisis es extremadamente
complejo debido a la gran cantidad de factores que en él influyen, entre ellos,
relacionadas con el hueso: densidad, forma y cargas a las que está sometido Gal-
ibarov et al. (2010); y relacionadas con el paciente: edad, sexo, balance hormonal
y actividad. Por ello, es necesario estudiar y mejorar los modelos de remodela-
ción ósea, para que permitan caracterizar el comportamiento del tejido óseo y su
capacidad de adaptación en función del estado mecánico o de solicitaciones al
que se encuentra sometido, y de forma particular para cada paciente. Para ello,
se utilizarán estos modelos validándolos con resultados experimentales, con el
propósito de utilizarlos como herramienta de trabajo a la hora de predecir las al-
teraciones que va a sufrir el hueso cuando se incorpora una prótesis, una fijación,
cargas no habituales, etc; y con ello abordar la mejora del diseño de implantes
(mejor ubicación, forma, rugosidad de la superficie, material, restriciones, etc)
(Pérez et al., 2006, 2010). Por ello, es necesario desarrollar modelos de remode-
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lación ósea que incorporan la variación de las propiedades mecánicas internas del
tejido (remodelación ósea interna).

Tradicionalmente, las cargas a las que está sometido el hueso se han obtenido
mediante plataformas de carga, determinando por ejemplo las cargas que soporta
el fémur durante el proceso de caminar (Vahdati et al., 2014). Este proceso de
obtención de cargas, es muy costoso y laborioso; y además, las cargas que utiliza
cada individuo presentan una gran variabilidad. Un gran avance serı́a a partir las
densidades que tienen nuestros huesos, determinar las cargas que las han generado
(Fischer et al., 1995, 2003; Bona et al., 2003, 2006). Es por ello de vital impor-
tancia, desarrollar herramientas capaces de determinar las cargas a las que está
sometido el hueso de cada paciente.

Existen diferentes estrategias numéricas basadas en modelos inversos que son
capaces de estimar las cargas. Este problema inverso se ha resuelto con anterio-
ridad por diversos autores con diferentes enfoques numéricos. De hecho, Fischer
et al. (1995) desarrollaron un procedimiento de optimización que ajusta la mag-
nitud de cada carga básica para lograr la densidad ósea deseada. Este enfoque
se aplicó a la sección proximal del fémur en 2D para determinar las cargas uti-
lizando datos del TAC (Fischer et al., 1998, 1999). Bona et al. (2006) propusieron
un algoritmo de contacto para la estimación de cargas basado en la densidad y
utilizaron el método para distinguir entre las diferentes maneras de locomoción
de los animales. Más recientemente, Christen et al. (2012a) han desarrollado un
algoritmo de estimación de cargas en el hueso para predecir condiciones de carga
basadas en la historia de carga que produce la energı́a de deformación en el tejido
óseo.

Todos estos enfoques anteriores se basaban en técnicas iterativas de predicción
de carga, lo que implica un coste computacional significativo. A fin de acor-
tar el tiempo de cálculo computacional, se han desarrollado diferentes técnicas
matemáticas. Muchos investigadores han estado tratando de resolver los difer-
entes problemas inversos en biomecánica mediante el desarrollo de controladores
que emplean métodos de computación inteligentes, como las redes neuronales ar-
tificiales (ANN), redes neuronales difusas (NF), máquinas de regresión por medio
de Vectores de Soporte, (SVR), algoritmos genéticos o redes de ondas (Goulermas
et al., 2005; Liu et al., 2009; Favre et al., 2012; Cilla et al., 2012; Behrens et al.,
2009). Hambli et al. (2011) (Hambli, 2011b,a), desarrollaron una metodologı́a
multiescala para la simulación de la remodelación ósea utilizando elementos fini-
tos y combinándolo con ANN. Sin embargo, Campoli et al. (2012) fueron de los
primeros en utilizar las ANN para la predicción de cargas del fémur mediante la
distribución de la densidad ósea. Combinaron una técnica de descomposición de
ondas con una red neuronal artificial (ANN) para la estimación de los parámetros
de carga del fémur.
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I.3 Motivación, objetivos y organización de la Tesis

Motivación

La principal motivación de esta tesis es desarrollar modelos de remodelación ósea
capaz de ayudar en un entorno clı́nico. Existen varios modelos teóricos que des-
criben con precisión el comportamiento del hueso, aunque no todos ellos, satis-
facen las demandas de los pacientes. El reto de los modelos de remodelación
es proporcionar información útil para el investigador y, en consecuencia, para el
paciente. Por ello, estas nuevas y prometedoras técnicas pueden proporcionarnos
información útil, como la calidad del hueso, su comportamiento, predecir el riesgo
de fractura y en caso de tener una prótesis, su vida útil.

Por eso, es necesario avanzar hacia una metodologı́a numérica para el mode-
lado óseo, ayudando a entender el comportamiento de los huesos. Actualmente,
hay varios modelos de remodelación ósea que presentan problemas con el estudio
de la evolución de la distribución ´ósea en pacientes concretos. Ádemas, estos
modelos támbien plantean problemas de estabilidad y convergencia a largo plazo.
Para ello, la creación de modelos remodelación ósea de paciente especı́fico serı́a
muy interesante.

Resumiendo, estas metodologı́as deben ayudar en un ambiente clı́nico. Nos
puede dar información sobre qué prótesis va a ser la más apropiada para un pa-
ciente a lo largo plazo y cuál va a producir la mejor distribución de las cargas a
través de esta prótesis para aumentar la vida de hueso, la vida útil de la prótesis y,
finalmente, una mejor calidad de vida para el paciente. Todas estas caracterı́sticas
pueden proporcionar un ahorro de costes y una mejora de la salud. En consecuen-
cia, estas metodologı́as pueden ser útiles en cirugı́a virtual y proporcionarnos toda
la información sobre el tratamiento y la evolución ósea un paciente.

Esta tesis doctoral ha estado involucrada en el proyecto europeo CAD-BONE:
Patient-specific predictions for bone treatments (Marie Curie Industry-Academia
Partnerships and Pathways / FP7-PEOPLE-2011-IAPP) (http://cadbone.unizar.es/)
cuyo principal objetivo es desarrollar una investigación multidisciplinar que se
traducirá en tecnologı́as que van a mejorar radicalmente el desarrollo de modelos
computacionales de paciente especı́fico para modelar de la adaptación/curación
del hueso después de la implantación de prótesis en las aplicaciones musculoes-
queléticas. El principal propósito the CADBONE es demostrar la viabilidad de
la integración de modelado de paciente especı́fico, cargas musculoesqueléticas y
análisis adaptativo de remodelación ósea para simular el resultado funcional de los
tratamientos de los pacientes. Además, esta investigación estuvo involucrada en el
Proyecto Nacional titulado “Design and development of a computational tool for
the personalised risk fracture prediction in Osteoporotic patient” y subvencionado
por el Ministerio Español de Economı́a y Competitividad (DPI 2011-22413).
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Objetivos

El objetivo principal de esta Tesis es el estudio de los modelos de remodelación
ósea, mostrando sus retos, su problemática, ası́ como, su aplicación en el ámbito
clı́nico.

Con el fin de conseguir este objetivo, un modelo computacional que permita
predecir la distribución de la densidad ósea ha sido desarrollado, mejorando ası́,
los modelos previos. Posteriormente, estos modelos de remodelación se han uti-
lizado en el proceso inverso para obtener diferentes metodologı́as que pueden pre-
decir las cargas que el hueso está realmente soportando. Por ello, el objetivo final
es aplicar esta metodologı́a en casos clı́nicos y la información obtenida puede
ayudar en futuros tratamientos del hueso. Para lograr esto, diversos objetivos se-
cundarios han sido definidos:

• Estudiar las diferentes teorı́as de remodelación ósea, su problemática y sus
limitaciones. Para ello, desarrollamos un modelo de remodelación ósea
capaz de simular la evolución de la distribución de la densidad ósea en
un modelo paciente especı́fico. En particular, modificamos el algoritmo
de Stanford (Jacobs, 1994) y el modelo anisotrópo de remodelación ósea
(Doblaré and Garcı́a, 2002; Mengoni and Ponthot, 2015), basándonos en
que el estı́mulo homeostático de referencia dependerá ahora de la historia
de carga que cada punto está soportando. Se pretende mejorar la estabilidad
de los resultados numéricos correspondientes a la distribución de la densi-
dad y en consecuencia, la convergencia del algoritmo. Además, realizar un
análisis teórico para demostrar la convergencia lineal del algoritmo de re-
modelación ósea, incorporando que el estı́mulo homeostático de referencia
no es constante. Y finalmente, se va a estudiar la fuerte dependencia de las
condiciones iniciales en los modelos de remodelación ósea y se desarrollará
un método capaz de disminuir esta dependencia.

• Desarrollar una metodologı́a para la obtención de las cargas que el hueso de
un paciente concreto soporta. Para ello, desarrollamos, evaluamos y com-
paramos tres enfoques numéricos existentes para estimar las cargas muscu-
loesqueléticas en el fémur, con el fin de resolver adecuadamente el proble-
ma de remodelación ósea inverso. Especı́ficamente, nos centramos en dos
diferentes técnicas de aprendizaje automáticas (MLT): perceptrón multicapa
(MLP) incluido en las redes neuronales artificiales (ANN) y las máquinas de
vector soporte (SVM), comparando estos resultados con una técnica clásica:
la regresión lineal (LR).

• Demostrar la importancia de los modelos de remodelación ósea en un caso
clı́nico. Para ello, aplicamos todas las metodologı́as desarrolladas previa-
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mente en cinco tibias especı́ficas de las que conocemos su geometrı́a ósea y
su distribución de densidad gracias a los datos del TAC. Con todo esto,
se va a predecir la condiciones de cargas especı́ficas de la tibia. Final-
mente, para evaluar cuantitativamente la capacidad predictiva de esta nove-
dosa metodologı́a, se comparan estas cargas con las cargas obtenidas para
cada paciente a partir de un análisis de la marcha individual.

Estructura

Esta tesis está organizada en siete capı́tulos de la siguiente manera:
Las principales caracterı́sticas del modelo de remodelación ósea se presentan

en el Capı́tulo 2. Una revisión de los modelos de remodelación ósea se propor-
ciona, con especial énfasis, en los modelos fenomenológicos como el de Stanford
(Jacobs, 1994) y el modelo anisotropo de Doblaré and Garcı́a (2002), ası́ como en
su formulación.

En el Capı́tulo 3, presentamos un novedoso modelo de remodelación ósea que
considera que el estı́mulo de referencia es dependiente de la historia de carga. Por
ello, realizamos un análisis teórico para demostrar la convergencia lineal del algo-
ritmo de remodelación ósea. Y finalmente, se realiza una evaluación cuantitativa
y cualitativa del modelo comparándolo con el modelo original de Stanford y el
modelo anisótropo (Mengoni and Ponthot, 2015).

Además, en el Capı́tulo 4 continuamos con las limitaciones de los modelos
de remodelación ósea. Por ello, evalúamos la dependencia de las condiciones
iniciales y se presenta otro novedoso modelo de remodelación ósea que supera esta
problemática. Mostramos la importancia de la relación entre las escalas micro-
macro, relacionando los estı́mulos mecánicos macroscópicos con estı́mulo local o
celular.

El Capı́tulo 5 contiene una revisión de las herramientas matemáticas basadas
en MLT, como ANN y SVM. Estas herramientas matemáticas han sido utilizados
para la creación de una metodologı́a que permite la estimación de las cargas que
soporta cada hueso especı́fico. Asimismo, una comparación del rendimiento de
estas técnicas (SVM y ANN) con la regresión lineal clásica se muestra, con el fin
de resolver el problema inverso. Además, explicamos todas las metodologı́as para
la obtención de los datos para realizar la metodologı́a inversa. Esta herramienta
computacional ha sido entrenada con los resultados obtenidos en un modelo 2D y
3D de Elementos Finitos de un fémur.

Posteriormente, en el Capı́tulo 6 aplicamos todas las metodologı́as anterio-
res en diferentes casos clı́nicos. Para ello, seleccionamos cinco tibias de pa-
ciente especı́fico, en colaboración con el Laboratorio de Investigación Ortopédica
(ORL) en Nijmegen y Laboratorio de Ingenierı́a Biomecánica de la Universi-
dad de Twente (Paı́ses Bajos). A partir de datos individuales del TAC, obten-
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emos su geometrı́a y su distribución ósea. Los modelos de elementos finitos
son construidos y se usados para la obtención de la distribución de densidad con
múltiples condiciones de cargas a través de diferentes modelos de remodelación
ósea. A continuación, estos datos se utilizan como entradas para las herramientas
numéricas. Por último, con el fin de validar el rendimiento de las redes neu-
ronales (ANN) para la predicción de las cargas en la tibia, comparamos las cargas
predichas de paciente especı́fico con las cargas obtenidas a partir del modelo mus-
culoesquelético del paciente especı́fico de un análisis de la marcha.

Por último, las principales conclusiones de este trabajo, junto con un breve
resumen con las aportaciones originales presentadas a lo largo de esta tesis y las
futuras lı́neas de trabajo, se recogen en el Capı́tulo 7.

Además, en este Capı́tulo, de acuerdo con las directrices de la Universidad de
Zaragoza, para obtener el graduado de Doctor Europeo (art. 15 RD 99/2011),
se presenta un resumen en español de la Tesis. Este resumen contiene la moti-
vación, estructura, objetivos y metodologı́a de la Thesis, ası́ como las principales
conclusiones, contribuciones originales y futuras lı́neas de este trabajo.

I.4 Resumen del trabajo realizado
El objetivo principal de esta tesis ha sido el estudio del comportamiento del hueso
durante el proceso de remodelación a través de modelos computacionales, te-
niendo en cuenta su problemática, sus retos y sus aplicaciones. Con este pro-
pósito, se ha desarrollado una metodologı́a computacional ha sido desarrollada,
capaz de evaluar la densidad ósea de un paciente especı́fico y predecir las cargas
que este hueso está soportando.

Primero, se ha estudiado dos modelos de remodelación ósea clásicos, uno
isótropo (modelo de Stanford) y otro anisótropo (modelo de Doblaré y Garcı́a).
En ambos casos, se muestra un análisis matemático completo mostrando sus re-
sultados. Después, se ha presentado algunos problemas matemáticos del modelo
anisótropo y se expone una extensión de la ley previa con mejoras en el proceso
de reabsorción (Mengoni and Ponthot, 2015).

Posteriormente, en el Capı́tulo 3 y 4, se ha justificado que los modelos de
remodelación ósea actuales presentan algunas limitaciones numéricas. Muchos
investigadores han tratado de encontrar las leyes matemáticas más adecuadas para
describir el comportamiento del hueso, sin que ninguno realizará un análisis com-
pleto. En esta tesis, se han propuesto dos hipótesis novedosas que mejoran los
modelos de remodelación. Actualmente, en el Capı́tulo 3, se ha modificado el
modelo de Stanford (Jacobs, 1994) y el modelo de Doblaré y Garcı́a (Doblaré and
Garcı́a, 2002), basándonos en que el estı́mulo homeostático de referencia depende
actualmente, de la historia de cargas que cada punto está soportando. Para ello, se
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ha considerado que el estı́mulo de referencia no es constante y va cambiando con
la densidad aparente. Esta modificación mejora la estabilidad de los resultados
numéricos correspondientes a la distribución de la densidad y en consecuencia, la
convergencia del algoritmo. Este algoritmo ha sido probado en modelos 2D y 3D
de Elementos Finitos donde se demuestra que la densidad alcanza un equilibrio
espacio-temporal.

Además, se ha planteado un análisis matemático para demostrar la conver-
gencia lineal del algoritmo isótropo de la remodelación ósea, incorporando el
supuesto anterior donde el estı́mulo homeostático de referencia es no constante.
Por último, en los resultados se ha demostrado claramente que esta modificación
mejora ambos modelos de remodelación ósea. Además, puede ayudar al estudio
de la evolución de la densidad a largo plazo.

Otra modificación ha sido propuesta en el Capı́tulo 4 donde se ha estudiado la
fuerte dependencia de las condiciones iniciales en los modelos de remodelación
ósea y se ha desarrollado un método capaz disminuir esta dependencia. Para ello,
se ha modificado la relación entre el nivel de órgano y el nivel de tejido a través de
una nueva ecuación, donde el estı́mulo homeostáticos de referencia cambia acorde
con la densidad; y la energı́a efectiva de tejido permanece invariable. Esta modi-
ficación mejora la unicidad de la solución, la independencia de las condiciones
iniciales selecionadas y claramente, ayuda a su estabilidad numérica.

Por otro lado, se ha mostrado como estos modelos pueden ser aplicados a pa-
cientes concretos. En primer lugar, se ha desarrollado una metodologı́a general
para la obtención de las cargas que el hueso soporta. Con este propósito, se ha de-
sarrollado tres diferentes técnicas matemáticos para la predicción de las cargas: las
redes neuronales artificiales (ANN), las máquinas de soporte vector (SVM) y la re-
gresión lineal. Estas técnicas permiten obtener los casos de carga que el hueso so-
porta en un breve periodo de tiempo. Para ello, los tres modelos matemáticos han
resuelto el problema inverso a través de una alta cantidad de datos obtenidos de
diferentes modelos de remodelación ósea. Después de un proceso iterativo, las re-
des neuronales (ANN) y la regresión lineal han demostrado una buena predicción
teórica de cargas con un error relativo bajo. Sin embargo, las máquinas de vec-
tor soporte (SVM) ha presentado problemas de precisión con la predicción de
las cargas. Debido a la buena precisión de las redes neuronales (ANN), hemos
desarrollado esta tecnologı́a con múltiples salidas y en una geometrı́a tridimen-
sional de un fémur real, obteniendo resultados similares. Además, se ha realizado
un análisis de sensibilidad con diferentes entradas y diferentes número de casos.
Finalmente, se ha estudiado el coste computacional del proceso de entrenamiento.

Siguiendo la metodologı́a propuesta en el Capı́tulo 5, se ha estudiado a cinco
casos clı́nicos reales en el Capı́tulo6. Para ello, se ha presentado un metodologı́a
capaz de predecir las fuerzas que una tibia de cinco paciente diferentes, está so-
portando. Estos datos han sido obtenidos utilizando la geometrı́a especı́fica y
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la distribución de la densidad ósea generada por un TAC. Posteriormente, se ha
obtenido las cargas mediante la introducción de la densidades y los volumenes
de ciertas regiones de interés (ROI) del TAC en nuestro modelo predictivo. Las
cargas predichas se han comparado con las cargas obtenidas a partir del análisis
de la marcha del paciente. La comparación entre las fuerzas predichas y las de
la marcha ha demostrado la buena predicción, especialmente en la fuerza vertical
(fuerza principal). Sin embargo, las fuerzas resultantes de las direcciones hori-
zontal (Fx y Fz) no se predijeron con mucha exactitud. Los resultados son muy
prometedores y podrı́an ser trasladados a la práctica clı́nica

I.5 Conclusiones
En resumen, las principales conclusiones de esta tesis se agrupan y se pueden
resumir de la siguiente manera:

• Modelos de remodelación ósea

– Los modelos de remodelación ósea presentan importantes limitaciones
numéricas.

– El estı́mulo homeostático de referencia es uno de los principales pará-
metros clave que controlan la distribución ósea y no puede mantenerse
constante.

– Cambiando el estı́mulo homeostático de referencia acorde con la his-
toria de carga, se consigue mejorar la estabilidad de la distribución de
la densidad en los modelos de remodelación ósea.

– Hay una fuerte dependencia de las condiciones iniciales en los mode-
los de remodelación ósea.

– La relación entre el nivel micro (tejido) y el nivel macro (órgano) no
es clara. Existen múltiples relaciones en la literatura y es necesario
desarrollar un método capaz de afrontar todas variables (Colloca et al.,
2014).

– Un cambio de multiescala adecuado permite mejorar la estabilidad en
la distribución de la densidad ósea tanto en términos a nivel micro
como a nivel macro, y en consecuencia, permite obtener las soluciones
independientes de las condiciones iniciales.

– En los modelos modificados de multiescala para la geometrı́a 2D se
ha obtenido poco cortical. Este fenómeno puede ser justificado por la
baja carga aplicada en la simulación numérica. Por el contrario, en el
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caso 3D, el cortical es ligeramente inferior a los modelos originales
pero conseguiendo resultados más similares a las radiografı́as.

• Técnicas matemáticos para estimar las cargas

– La predicción de las cargas en el fémur ha sido lograda mediante la
integración de dos metodologı́as de ingenierı́a complementarias: al-
goritmos de remodelación ósea a través del modelado por elementos
finitos (FE) y el problema de remodelación ósea inversa a través de
diferentes técnicas matemáticas.

– Las técnicas de aprendizaje automático son una técnica precisa para
resolver el problema inverso remodelación ósea.

– Las redes neuronales artificiales (ANN) y la regresión lineal repre-
sentan unas poderosas herramientas para predecir las condiciones de
carga en el fémur.

– La relación entre la distribución de la densidad y de las cargas es casi
lineal.

– Las máquinas de vector soporte (SVM) presenta peores resultados de-
bido a la linealidad de los datos.

– Las redes neuronales artificiales (ANN) presentan múltiples opciones
para obtener el resultado como con salidas individuales o múltiples.

– El número de datos para el entrenamiento influye en el coste computa-
cional, y no implica la optimización del problema.

• Cargas musculoesqueléticas de paciente especı́fico de la tibia

– Hay una clara relación entre los valores de densidad, los valores de
fuerza de paciente especı́fico y la geometrı́a concreta del paciente.

– Los modelos de remodelación ósea predicen adecuadamente la dis-
tribución de la densidad en relación con la escala de grises proveniente
del TAC.

– Es posible obtener la carga en un paciente con técnicas no invasivas.

– La metodologı́a presentada en este trabajo abre una nueva estrategia
para la creación sistemática de modelos de paciente especı́fico, facili-
tando su aplicación clı́nica.

xxxvi



I.6 Contribuciones originales
Hasta donde sabemos, algunos aspectos de esta tesis son completamente nove-
dosos y las aportaciones originales más importantes son las siguientes:

• Una formulación para los modelos de remodelación de hueso que asegura la
estabilidad de los resultados numéricos correspondientes a una distribución
espacial de la densidad aparente y en consecuencia, garantiza la conver-
gencia del modelo. En esta formulación, el algoritmo adapta el estı́mulo
homeostático de referencia de acuerdo a las cargas soportadas.

• Un análisis teórico se ha realizado para demostrar la convergencia lineal
del algoritmo de la remodelación ósea incorporando que el estı́mulo home-
ostático de referencia no es constante.

• Formulación y desarrollo de un novedoso modelo de remodelado óseo basado
en la adaptación de la escala a nivel órgano y a nivel tejido. Esta novedosa
relación considera que el estı́mulo homeostático de referencia depende de la
densidad aparente, y la energı́a de tejido se mantiene constante durante todo
el proceso, mejorando ası́, la independencia de las condiciones iniciales.

• Una metodologı́a para obtener las cargas que soporta el hueso a través de
tres enfoques numéricos: redes neuronales artificiales (ANN), máquinas de
vectores de soporte (SVM) y regresión lineal (LR). Para ello, es necesario
combinar multiples modelos de remodelación ósea que son los datos ini-
ciales para la metodologı́a.

• Una metodologı́a que combina los modelos de remodelación ósea, redes
neuronales artificiales y análisis de imágenes médicas es capaz de predecir
las cargas de paciente especı́fico en la tibia.

I.6.1 Publicaciones en revistas
Las publicaciones en revistas internacionales realizadas durante el perı́odo de la
tesis se enumeran a continuación:

1. N. Garijo, J. Martı́nez, J. M. Garcı́a-Aznar, M.A. Pérez. Computational
evaluation of different numerical tools for the prediction of proximal femur
loads from bone morphology. Comput. Methods Appl. Mech. Engrg. 268,
437-450, 2014. (Capı́tulo 5).

2. N. Garijo, J.R. Fernández, M.A. Pérez, J.M. Garcı́a-Aznar. Numerical sta-
bility and convergence analysis of bone remodeling model. Comput. Meth-
ods Appl. Mech. Engrg. 271 253-268, 2014. (Capı́tulo 3).
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3. N. Garijo, N. Verdonschot, J.M. Garcı́a-Aznar, M.A. Pérez. Subject-Specific
musculoskeletal loading of the tibia: Computational load estimation. Bone.
(Enviado) (Capı́tulo 6).

4. N. Garijo, M.A. Pérez, J.M. Garcı́a-Aznar. A multiscale modeling ap-
proach based on the stability. (En preparación).(Capı́tulo 4).

I.6.2 Contribuciones a congresos y conferencias
Las siguientes comunicaciones en congresos se han presentado durante el desar-
rollo de este Tesis:

1. N. Garijo, M. Remacha, A. Alberich-Bayarri, J.M. Garcı́a-Aznar, M.A.
Pérez. Patient-specific simulations of human bones: CT data and bone re-
modelling models. Presentación oral. Materialise World Conference 2012.
LEUVEN (BÉLGICA). Abril 2012

2. N. Garijo, A. Alberich-Bayarri, M.A. Pérez. Patient-Specific simulation of
the human radius. Presentación oral. 18th Congress of the European Society
of Biomechanics (ESB). LISBON (PORTUGAL). Julio 2012

3. N. Garijo, J. Martı́nez, J.M. Garcı́a-Aznar, M.A. Pérez. Different math-
ematical techniques to estimate femur loads. Presentación oral. Second
meeting of the Spanish National Chapter of the European Society of Biome-
chanics (CapESB-SP). SEVILLA (ESPAÑA). Octubre 2012

4. N.Garijo, M.J. Gómez-Benito, M. Remacha, M.A. Pérez, J.M. Garcı́a-
Aznar. CAD-BONE: analysis and design of our bones. Presentación oral.
Congress: Researchers’ Night 2012. ZARAGOZA (ESPAÑA). Septiembre
2012

5. N. Garijo, J. Martı́nez, J.M. Garcı́a-Aznar, M.A. Pérez. Different numerical
approaches for the prediction of proximal femur loads. Presentación oral.
19th Congress of the European Society of Biomechanics (ESB). PATRAS
(GRECIA). Agosto 2013

6. N. Garijo, J. Martı́nez, J.M. Garcı́a-Aznar, M.A. Pérez. Different numerical
approaches for the prediction of proximal femur loads. Presentación oral. V
International Conference on Computational Bioengineering (ICCB). LEU-
VEN (BÉLGICA). Septiembre 2013

7. N. Garijo, S. Walscharts, M.A. Pérez, L. Vigneron, J.V. Sloten, G.H. van
Lenthe, J.M. Garcı́a-Aznar. Towards the creation of patient-specific bone
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remodeling models. Presentación oral. V International Conference on
Computational Bioengineering (ICCB). LEUVEN (BÉLGICA). Septiem-
bre 2013

8. N. Garijo, M.A. Pérez, J.M. Garcı́a-Aznar. Bone remodeling simulations:
challenges, problems and applications. Poster. 7th World Congress of Biome-
chanics (WCB). BOSTON (USA). Julio 2013

9. N. Garijo, A. Vahdati, G.H. van Lenthe, M.A. Pérez, J.M. Garcı́a-Aznar.
Numerical algorithms for Patient-specific predictions of proximal femoral
loads. Presentación oral. 12th International Symposium on Computer Meth-
ods in Biomechanics and Biomedical Engineering (CMBBE). AMSTER-
DAM (PAÍSES BAJOS). Octubre 2014

10. N. Garijo, M.A. Pérez, J.M. Garcı́a-Aznar. Stability of bone remodeling
models. Presentación oral. 12th International Symposium on Computer
Methods in Biomechanics and Biomedical Engineering (CMBBE). AMS-
TERDAM (PAÍSES BAJOS). Octubre 2014

11. N. Garijo, M.A. Pérez, J.M. Garcı́a-Aznar. An efficient approach for the
stability of bone remodeling models. Presentación oral. 21th Congress
of the European Society of Biomechanics (ESB). PRAGUE (REPÚBLICA
CHECA). Julio 2015

I.7 Lı́neas futuras de trabajo
La variedad de enfoques presentados en esta Tesis es sólo una pequeña con-
tribución a la comprensión de la conducta adaptativa del hueso. Los resultados
y conclusiones obtenidas a lo largo de este trabajo plantean nuevas preguntas y
sugiere nuevas posibles lı́neas de investigación que necesitan ser exploradas. Las
más importantes se describen a continuación:

• Análisis probabilı́stico de los modelos de remodelación ósea.

Mejorar los modelos de remodelación de cambiando las variables “teóricas”
como la zona muerta, para predecir más adecuadamente la densidad ósea, y
comparar estas variables con valores experimentales.

• Remodelación ósea después de la implantación de una prótesis.

Aplicar los modelos de remodelación ósea previamente mejorados, para es-
tudiar y predecir la evolución de la densidad ósea después de la colocación
de una prótesis. Los modelos previos presentan problemas para estudiar
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como afecta la colocación de una prótesis a largo plazo. La metodologı́a
propuesta permite estudiar la densidad en el largo plazo, ası́ como la pérdida
de densidad en diferentes regiones. Esto puede ayudar a mejorar el diseño
y el posicionamiento de las prótesis.

• Mejorar la metodologı́a de las redes neuronales (ANN).

Obtener una base de datos pacientes especı́ficos para incrementar la aplica-
bilidad de la metodologı́a de las redes neuronales basada en casos clı́nicos
y que permitan mejorar la predicción.

Mejorar la metodologı́a que permite la retroalimentación con nuevos datos.

Introducir nuevas variables en las técnicas de redes neuronales (ANN) como
la edad, peso, sexo, ... para la obtención de una mejor predicción de la carga
y aplicar esta metodologı́a a otros huesos largos.

Extrapolar el modelo, con fin de acelerar las simulaciones de remodelación
ósea y obtener la predicción de carga en breve periodo de tiempo.

Estudiar la anisotropı́a en el análisis de imagenes para mejorar la com-
paración con los resultados computacionales, y disminuir el error en la
metodologı́a de predicción.
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CHAPTER 1

Introduction

During the daily activities, the bones of the skeleton, individually and collec-
tively, are subjected to a variety of forces. The response of the bones to these
forces is a function, to a large extent, of the mechanical properties of the bones.
Of course, the type, magnitude, direction and point of application of the forces
as well as, whether or not it is applied slowly, rapidly, repetitively, or for a long
duration must also be considered. Additional variables should also be included,
whether the bone is living or dead, embalmed or fresh, and the age, sex, race and
species of animal from which the bone is obtained. The specific bone and part
of the bone being studied, as well as its microscopic structure, influence its me-
chanical properties. Although other environmental variables such as moisture and
temperature, also determine these bone properties.

1.1 Introduction

Bones are living organisms whose main function is to form the skeleton and there-
fore support and protect various organs of the body. Bones come in a variety of
shapes and sizes, have a complex internal and external structure, are lightweight
yet strong and hard, and perform multiple functions. Among the functions, bones
have to bear the load weight of the body and the muscle forces that control their
movements. In consequence, they are subjected to permanent and transient loads
caused by daily activity or specific events such as impact in accidents. As a liv-
ing material, bone is able to respond differently to these loads. In addition, when
a bone fracture occurs, healing mechanisms are activated in order to recover its
functionality. Conversely, in order to react to these specific events, bone is able
to continuously maintain and adapt bone mass by an enduring process, termed as
remodeling. Several mechanical and biochemical factors may regulate the final
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2 Bone remodeling simulations: challenges, problems and applications.

bone remodeling response. In fact, bone remodeling is hypothesized to achieve
several mechanical objectives: repair damage to reduce the risk of fracture and
optimize stiffness and strength with minimum weight (Doblaré et al., 2004). For
all these reasons, bone is a material not easy to model.

Additionally, patient-specific analysis of bone is considered an important tool
for diagnosis and treatment of skeletal diseases and for clinical research aimed at
understanding the etiology of skeletal diseases and the effects of different types of
treatments on their progress (Zadpoor and Weinans, 2015). In the literature, there
are research works that study how integration of several important components en-
able accurate and cost effective patient-specific bone analyses (Mohaghegh et al.,
2014).

Therefore, in the following sections, a review of bone behavior is presented,
modeling aspects of bone tissue mechanics are briefly introduced and the impor-
tance of patient-specific bone analyses and automation of modeling approaches
are discussed. Finally, the main aim and outline of this thesis is presented.

1.2 Bone tissue mechanics

1.2.1 Bone and its internal structure

The bony skeleton is a remarkable organ that serves both a structural function-
providing mobility, support, and protection for the body, and a reservoir function,
as the storehouse for essential minerals. It is not a static organ, but is constantly
changing to better carry out its functions. The architecture of the skeleton is re-
markably adapted to provide adequate strength and mobility so that bones do not
break when subjected to substantial impact, even the loads placed on bone during
vigorous physical activity. The shape or structure of bone is at least as important
as its mass in providing this strength.

The skeletal body have multiples of shapes and sizes (Figure 1.1). Although
most of the time in this Thesis, we will refer to long bones, we can classify bones
as according to their size in 5 types (Gray, 1918):

• Long bones are some of the longest bones in the body, such as the femur,
humerus and tibia but there are also some of the smallest including the
metacarpals, metatarsals and phalanges. The classification of a long bone
includes having a body which is longer than its width, with growth plates
(epiphysis) at either ends, having a hard outer surface of compact bone and
a spongy inner known as cancellous bone containing bone marrow. Both
ends of the bone are covered in hyaline cartilage to protect the bone and
help shock absorption.
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• Short bones are defined as being approximately as wide as they are long
and have a primary function of providing support and stability with little
movement. Examples of short bones are the carpals and tarsals, the wrist
and foot bones. They consist of only a thin layer of compact, hard bone
with cancellous bone on the inside along with relatively large amounts of
bone marrow.

• Flat bones are as they sound, strong, flat plates of bone with the main func-
tion of providing protection to the bodies vital organs and being a base for
muscular attachment. The classic example of a flat bone is the scapula
(shoulder blade). The sternum (breast bone), cranium (skull), os coxae (hip
bone) pelvis and ribs are also classified as flat bones. Anterior and posterior
surfaces are formed of compact bone to provide strength for protection with
the centre consisting of cancellous (spongy) bone and varying amounts of
bone marrow. In adults, the highest number of red blood cells are formed in
flat bones.

• Irregular bones are those in the body which do not fall into any other cat-
egory, due to their non-uniform shape. Good examples of these are the
vertebrae, sacrum and mandible (lower jaw). They primarily consist of can-
cellous bone, with a thin outer layer of compact bone.

• And finally, sesamoid bones are usually short or irregular bones, imbedded
in a tendon. The most obvious example of this is the patella (knee cap)
which sits within the patella or quadriceps tendon. Other sesamoid bones
are the pisiform (smallest of the carpals) and the two small bones at the base
of the first metatarsal. Sesamoid bones are usually presented in a tendon
where it passes over a joint which serves to protect the tendon.

Bone has a complex hierarchical microstructure (Rho et al., 1998; Hellmich
et al., 2004; Cowin and Cardoso, 2015) that can be considered at many dimen-
sional scales (Figure 1.2). From a macroscopic point of view, bone tissue is
nonhomogeneous, porous and anisotropic and can be classified into two types:
compact and cancellous bone (Cowin and Doty, 2007).

Compact or cortical bone forms the outer layer of all bones (Figure 1.2). This
type of bone is very dense and strong and therefore, it is more resistant to fracture.
Its primary purpose is providing structural support to the body and its organs and
tissues. Compact or cortical bone, is made up many by rod-like units called os-
teons or Haversian systems which run longitudinally within the bone. Haversian
systems have a central Haversian canal which carries blood and lymphatic ves-
sels and nerve branches. Cortical bone is denser with a porosity ranging between
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Figure 1.1: Types of bones based on its size (Molnar and Gair, 2013)

5 − 10% and is found primarily in the shaft of long bones and surrounding the
trabecular bone forming the external shell of flat bones.

Cancellous is also known as spongy or trabecular bone because it resembles
a sponge or honeycomb (Figure 1.2). Cancellous bone makes up about 20% of
the typical adult human skeleton. Trabecular bone has a porosity ranging from
45 − 95% and is found in the end of long bones, in vertebrae and flat bones. The
pores are interconnected and filled with marrow while the bone matrix has the
form of plates and struts called trabeculae.

Bone strength depends upon both macro- and microarchitectural characteris-
tics. The primary macroarchitectural components are bone length, diameter and
cortical thickness. Additionally, the cross-sectional shape and distribution of bone
mass within this cross-section are important (Martin, 1991). At the microarchi-
tectural level, fiber along with trabecular spacing, connectivity, and alignment are
the important components that determine bone strength (Turner et al., 1994).
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Figure 1.2: Illustration of a long bone, depicting gross overview, and cellular
distribution (taken from Bao et al. (2013)).

1.2.2 Biology of bone remodeling

Bones are living tissues that are constantly changing. The regeneration or replace-
ment of bone tissue is continuous in order to maintain stability, and this process
is known as bone remodeling (Sheng et al., 2014). In general, the structure and
bone mass are adapted to mechanical loads that they are supporting. In normal
situations, this adaptive process ensures a good balance between bone mass and
strength. About 10% of bone mass is being renewed every year. This process
involves bone resorption, the removal of minerals and collagen fibers from bone
(destruction of bone extracellular matrix), followed by bone deposition, the for-
mation of bone matrix that subsequently becomes mineralized (Figure 1.4). Then,
bone remodeling serves to adjust bone architecture to meet changing mechanical
needs and it helps to repair microdamages in bone matrix preventing the accumu-
lation of old bone (Garcı́a-Aznar et al., 2005).

At the cellular level, bone remodeling occurs over several weeks and is per-
formed by clusters of bone-resorbing osteoclasts and bone-forming osteoblasts
arranged within temporary anatomical structures known as “basic multicellular
units” (BMUs) (Figure 1.3). Traversing and encasing the BMU is a canopy of
cells that creates a bone remodeling compartment (Hauge et al., 2001).
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Figure 1.3: Schematic diagram of basic multicellular unit (BMU). Histologically
the BMU consists of 1) osteoclastic frontor osteogenic front, 2) reversal phase
mononucleocytes, 3) osteoblastic layer. It is observed in the Haversian system
of the cortical bone which is under the physiological loading such as the masti-
catory function. The osteoblasts are exclusively intraosseous Haversian system
osteoblasts reacting to the load (Lee, 2011).

An osteoclast is a type of bone cell that resorbs bone tissue and this function
is critical in the maintenance and repair of compact bones. This cell is in front of
the active BMU and the process is known as bone resorption.

In the process of bone formation, osteoblasts are cells with single nuclei that
synthesize bone. However, these cells function in groups and all must be con-
nected. Osteoblasts occupy the tail portion of the BMU and secrete and deposit
unmineralized bone matrix known as osteoid and direct their formation and min-
eralization into mature lamellar bone.

Osteoclasts and osteoblasts are instrumental in controlling the amount of bone
tissue (Figure 1.4): osteoblasts form bone, osteoclasts remove bone. And finally,
osteocyte is a cell that lies within the matrix of fully formed bone. It occupies a
small chamber called lacunae, which is contained in the calcified matrix of bone.
Osteocytes derive from osteoblasts, and are essentially osteoblasts surrounded by
the products they secreted. Therefore, osteocytes are the mechanosensory cells of
bone and play a pivotal role in functional adaptation of bone.

This unique spatial and temporal arrangement of cells within the BMU is criti-
cal to bone remodeling, ensuring coordination of the distinct and sequential phases
of this process: activation, resorption, reversal, formation, and termination, which
are discussed below and illustrated schematically in Figure 1.4.
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• Activation Phase

The first stage of bone remodeling involves detection of an initiating remod-
eling signal. This signal can take several forms, e.g. direct mechanical strain
on the bone that results in structural damage or hormone (e.g. estrogen or
parathyroid hormone (PTH)) action on bone cells in response to more sys-
temic changes in homeostasis. As a consequence, lining cells, increase their
own surface expression of RANKL (Receptor Activator of Nuclear κ B Lig-
and), which in turn interacts with its receptor RANK (Receptor Activator
of Nuclear κ B), expressed by pre-osteoclasts. RANKL/ RANK interaction
triggers pre-osteoclasts fusion and differentiation toward multinucleated os-
teoclasts (Zaidi et al., 1989; Matsuo and Irie, 2008).

• Resorption Phase

Once differentiated, osteoclasts polarize, adhere to the bone surface and be-
gin to dissolve bone. This function requires two steps: i) acidification of the
bone matrix to dissolve the inorganic component, and ii) release of lysoso-
mial enzymes, both in charge for the degradation of the organic component
of bone. Once accomplished their function, osteoclasts undergo to apopto-
sis. This is a physiological consequence needed to avoid an excessive bone
resorption (Nielsen et al., 2007).

• Reversal Phase

Following osteoclast-mediated resorption, the Howship lacunae remain cov-
ered with undigested demineralized collagen matrix (Everts et al., 2002). A
mononuclear cell of undetermined lineage removes these collagen remnants
and prepares the bone surface for subsequent osteoblast-mediated bone for-
mation.

• Formation Phase

Bone matrix resorption leads to the release of several growth factors herein
stored, including bone morphogenetic proteins (BMPs), fibroblast growth
factors (FGFs) and transforming growth factor β (TGFβ), which are likely
responsible for the recruitment of the osteoblasts in the reabsorbed area (van
Bezooijen et al., 2004). Once recruited, osteoblasts produce the new bone
matrix, initially not calcified (osteoid) and then they promote its mineral-
ization, thus completing the bone remodeling process. Unbalance between
the resorption and formation phases mirrors an incorrect bone remodeling,
which in turn affects the bone mass, eventually leading to a pathological
condition.
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• Termination Phase or Mineralization
When an equal quantity of resorbed bone has been replaced, the remodel-
ing cycle concludes (Tamma and Zallone, 2012). The termination signals
that inform the remodeling machinery to cease work are largely unknown,
although a role for osteocytes is emerging. The loss of sclerostin expres-
sion, which occurred to initiate osteoblastic bone formation, likely returns
toward the end of the remodeling cycle. Following mineralization, mature
osteoblasts undergo apoptosis, revert back to a bone-lining phenotype or be-
come embedded in the mineralized matrix, and differentiate into osteocytes.
The resting bone surface environment is reestablished and maintained until
the next wave of remodeling is initiated.

Figure 1.4: Representation of the bone remodeling cycle (taken from Williams
(2015)).

The remodeling cycle occurs continuously at discrete sites throughout the
skeleton in response to mechanical and metabolic influences. In order to achieve
a balance in this process, it is important that the cellular components maintain
a well-balanced relationship in spatial and temporal terms. Many studies have
focused on developing models that reproduce this behavior. Next, we present a
review of these models.

1.3 Review of state of the art of bone remodeling
models

Historically, since 1638 it has been known that the mechanical loading has pro-
found influences on bone tissue. The current concept is that the bone architec-
ture is controlled by a local regulatory mechanism. In the 19th century, several
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scientists attempted to relate bone trabecular morphology to its mechanical, load-
bearing function. It was suggested that bone architecture was an answer to re-
quirements of optimal stress transfer, pairing maximal strength to minimal weight,
according to particular mathematical design rules. Using contemporary methods
of analysis, stress transfer in bones was studied and compared with anatomical
specimens, from which it was hypothesized that trabecular architecture is associ-
ated with stress trajectories. Others focused on the biological processes by which
trabecular architectures are formed and on the question of how bone could main-
tain the relationship between external load and architecture in a variable functional
environment.

The idea originates from Roux (1881), who proposed the principle of func-
tional adaptation as a self-organizing process based on the tissues, which provides
the capability of self-repair to bone. The change in form is known as Wolff’s law,
which appeared in the year 1892. The Law of Bone Remodeling (Wolff, 1982) is
based on the observation that trabeculae tend to align with principal stress direc-
tions in many bones (long bones) (Figure 1.5). Wolff described the dependency
of bone on applied loads and proposed that forces are somehow sensed by the
bone which adapts its structure and morphology according to mechanical stimuli,
acquiring the structure more resistant to this loading, with minimal mass. Within
limits, mechanical stress is a particularly potent stimulus for bone cells and, in
response to that, bone tissue has the ability to alter its strength. This way, the
loading history of trabeculae influences the distribution of bone density and tra-
becular orientation (Figure 1.5). Thus, bone is a material with self-optimizing
capabilities and able to control its mass and structure in direct relationship to its
mechanical demands, ensuring that its mechanical integrity is maintained.

These concepts were captured by Frost (1960a,b), who assumes that local
strains regulate bone mass. If strain levels exceed a mechanical ‘set-point’, new
bone is formed (bone deposition), whereas, if strain levels are below this set-point
bone is removed (bone resorption). This qualitative theory has motivated many au-
thors and served as theoretical basis for several mathematical and computational
theories that have been developed to study bone adaptation (Cowin and Hegedus,
1976; Huiskes et al., 1987; Beaupré et al., 1990; Weinans et al., 1992; Jacobs,
1994; Mullender et al., 1994).

With the advances in computing and the development of mathematical con-
cepts associated with optimization of structures, it is possible to understand better
the bone remodeling process, and to develop models that simulate the biomechan-
ical behavior of the bone. These models may be classified into two main cate-
gories depending on the assumptions on which they are based: phenomenological
and mechanistic.
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Figure 1.5: On the left is the Culmann crane with principal stress trajectories
indicated. On the right is the Meyer’s sketch of the trabecular architecture in a
section through the proximal end of the human femur (Wolff, 1982).

Phenomenological models
Phenomenological models are able to predict bone remodeling through di-

rect mathematical relationships between mechanical stimulus and bone response,
following known experimental and clinical evidences, but no actual cell processes
are considered, that is, the biological effects are not really considered in the model
but its overall effect. Inside of the phenomenological models, we can find differ-
ent theories and mathematical models. Some of the phenomenological models are
based on achieving a homeostatic value for a certain mechanical stimulus. These
models admit the existence of a certain mechanical stimulus that produces bone
apposition or resorption such that, by this process, the stimulus tends to a certain
uniform physiological level (homeostasis) in the whole tissue (Cowin and Hege-
dus, 1976; Carter, 1987; Huiskes et al., 1987; Beaupré et al., 1990; Jacobs, 1994;
Fyhrie and Schaffler, 1995; Doblaré and Garcı́a, 2001).

In the eighties, two phenomenological models have been developed which
have the advantage of involving much fewer parameters than the theory of adap-
tive elasticity, one at Stanford University (Beaupré et al., 1990; Carter, 1987;
Carter et al., 1989) and another at the University of Nijmegen (The Netherlands)
(Huiskes et al., 1989, 1987; Weinans et al., 1992). The Nijmegen group chose the
strain energy density (SED) per unit of bone volume for the remodeling stimulus
while the Stanford group proposed a daily tissue-level stress stimulus (referred to
as the Stanford model). Both models originally considered an isotropic structural
material, neglecting the role of the structural orientation in the remodeling pro-
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cess. Essentially, both models are equivalent predicting similar results (Jacobs,
1994).

Other phenomenological models (based either on these two original ones or
on the adaptive elasticity theory) are based on damage repair, assuming that bone
aims to optimize its strength and stiffness regulating the local damage generated
by fatigue or creep (Prendergast and Taylor, 1994; Ramtani and Zidi, 2001; Mc-
Namara and Prendergast, 2007). Other numerical models coupled material density
with orientation or anisotropy (Doblaré and Garcı́a, 2002; Fernandes et al., 1999;
Jacobs et al., 1997; Hambli et al., 2011).

Mechanistic models
Mechanistic models, are more complex since they try to characterize, under-

stand and unravel the role of the mechanical environment into the biological mech-
anisms involved in bone remodeling. These models are interested not only in the
prediction of the long-term behavior of bone under loading, but also in its rate of
adaptation and the specific role of bone cells in each stage of the mechanosensa-
tion and adaptation processes.

While many of the earlier research questions aimed at a deeper understanding
of the macroscopic mechanical properties, the scientific community has started to
focus more and more on how these mechanical properties are determined by the
underlying cellular processes. Some authors have proposed models of the inter-
action between osteoblasts and osteoclasts or osteocytes within the BMU (Smit
and Burger, 2000; Hernandez et al., 2000, 2001; Huiskes et al., 2000; Hazelwood
et al., 2001; Komarova et al., 2003; Garcı́a-Aznar et al., 2005; Cox et al., 2011;
Klika et al., 2014). And there is a recent model considering the interstitial fluid
flow (Tsubota et al., 2009).

Other models focus at the microstructural scale (mm to µm) and describe the
evolution of trabecular bone microarchitecture through resorption and formation
events at the bone surface induced by the local mechanical state (Ruimerman et al.,
2005; van Oers et al., 2008; Hellmich et al., 2004; Christen et al., 2012b,a; Pivonka
and Komarova, 2010; Scheiner et al., 2015).

Patient-specific models

During last years there has been an increasing recognition towards the fact that
biology or medicine problems require an analysis closer to the patient. For this
reason some mathematical or theoretical models have recently emerged using pa-
rameters o geometries coming from real patients. Most of previous models, are
based on generic geometries and arbitrary parameters, however, these models are
not easy to compare with real data from patient (Kent and Hayward, 2007).
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One of the advantages of using real data is creating patient specific models
that describe the reaction of the organism in the daily life and so, we are able to
characterize their behavior. Thanks to this technology, it is feasible to simulate
the behavior of our bones. These patient-specific models may revolutionize the
way clinicians diagnose and treat certain pathologies (Neal and Kerckhoffs, 2010).
Then, specific models may be created for each subject, helping to develop specific
preventive treatments.

For providing an overview of the importance of these techniques, it is worth
noting that each year, the medical consultation related to bone treatments is in-
creasing. For example, more than 300.000 hip fracture and more than 600.000
knee replacements are performed in the United States every year (Dettmer et al.,
2015), and it is expected that this number will double in the coming decades. The
growing trend of minimally invasive surgeries and increasing number of patients
opting for active lifestyle are also fueling the growth of the specific orthopaedic
procedures.

Nowadays, thanks to advances in science and technology with a simple tomog-
raphy (CT), it is possible to obtain a three-dimensional reconstruction of bone and
at the same time, to determine its bone density distribution. This allows to eval-
uate the quality of bone and additionally, to study its behavior under different
physiological actions. This procedure allows developing patient-specific simula-
tions. The main difference between patient-specific and generic models is that the
specific geometry, material properties, and loading conditions of individual pa-
tients are used when creating patient-specific models (Poelert et al., 2012). Inside
patient-specific models on bone, we may find different approaches that focus on
obtaining specific data of the patient. For example, patient-specific musculoskele-
tal models enable the prediction of the influence of orthopedic surgery on muscu-
loskeletal loading during gait (Asseln et al., 2014). Patient-specific, image-based
models are required to accurately model hip contact and muscle forces. However,
these models are not always combined with bone remodeling models for obtaining
a full analysis of the patient. Bone remodeling models are normally used to design
implants, analysing the influence on the bone adaptation response due to different
factors (material stiffness, coating and ingrowth conditions, prosthesis shape de-
sign, loading conditions, different external fixation design concepts, time effects)
(Sun et al., 2001; Caouette et al., 2015). These mechanobiological theories have
been combined in order to simulate the process in idealized bone treatments. Each
model includes different relevant contributions in their simulations. For that, the
combination of both patient specific models, provides a high information for bone
treatments.
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1.4 Motivation, aim and scope of the Thesis

The main motivation of this Thesis is to develop bone remodeling models able
to help in a clinical environment. There are several theoretical models that de-
scribe accurately the bone behavior, although, not all of them meet the demands.
The challenge of remodeling models is to provide useful information for the re-
searcher and, in consequence, for the treatments of the patient. For that, these
new and promising techniques can provide useful information, as the quality of
bone, their evolution, predict the risk of fracture. Therefore, we would like to
advance towards a numerical methodology for bone modeling, helping to under-
stand the bone behavior and creating a patient specific bone remodeling model.
These methodologies may help in a clinical environment. It can give us informa-
tion about which prosthesis will be more appropriate and which one will produce
the best distribution of the loads in order to increase lifespan and reduce the likeli-
hood of revision surgery. Then, all these features may provide a saving cost and a
health improvement. Consequently, these methodologies may be helpful in virtual
surgery and provide with information about the treatment and the evolution of the
bone of a certain patient.

This PhD dissertation has been involved as part of the European project CAD-
BONE: Patient-specific predictions for bone treatments (Marie Curie Industry-
Academia Partnerships and Pathways / FP7-PEOPLE-2011-IAPP) whose main
purpose is to perform a multidisciplinary research that will result in a technology
that will radically improve the development of patient-specific computer mod-
els for the modelling of bone adaptation/healing after prosthesis implantation in
musculoskeletal applications. The main aim of CAD-BONE is to demonstrate
the feasibility of integrating patient specific modelling, musculoskeletal loading,
and analysis of adaptive bone remodeling to simulate functional outcome of pa-
tient treatments (Figure 1.6) (http://cadbone.unizar.es/). Also, this research was
involved in the National Project entitled “Design and development of a compu-
tational tool for the personalised risk fracture prediction in Osteoporotic patient”
and supported by the Spanish Ministry of Economy and Competitiveness (DPI
2011-22413).

Therefore, the main objective of this Thesis is to study bone remodeling mod-
els, showing their challenges, the problematic that currently presents and their
applicability in the clinical setting. In order to achieve this objective, a computa-
tional model that allows to predict the bone density distribution has been devel-
oped, improving previous models. The remodeling model has been used in the
inverse process to obtain different tools that can predict the load that the bone is
really supporting. Then, the final objective is to apply this methodology in clin-
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Figure 1.6: Methodologies used in CADBONE (http://cadbone.unizar.es/).

ical cases and the resulting information may help in future bone treatments. To
achieve this goal, secondary objectives are defined as follows:

• Study different bone remodeling theories, their problematic and their limi-
tations. For that, we develop a computational method able to simulate the
evolution of density distribution in a patient-specific model. In particular,
we modify the Stanford algorithm (Jacobs, 1994) and anisotropic bone re-
modeling model (Doblaré and Garcı́a, 2002; Mengoni and Ponthot, 2015),
based on the reference homeostatic stimulus which will be now dependent
on the loading history that each point is supporting. We improve the sta-
bilization of the numerical results corresponding to the spatial distribution
of the apparent density and in consequence, the convergence of the algo-
rithm. Also, we perform a theoretical analysis to demonstrate the linear
convergence of the bone remodeling algorithm incorporating a non-constant
reference homeostatic stimulus.

• Study the strong dependency of the initial condition on bone remodeling
models and develop a methodology able to decrease this dependency. For
that, we develop a computational method able to modified the relationship
between the the micro and macro scale through the reference stimulus.

• Develop a methodology for obtaining the subject-specific loads that one
bone supports. For that, we need to solve the inverse bone remodeling
model. For this purpose, we develop, evaluate and compare three existing
numerical approaches to estimate the musculoskeletal loads in the femur in
order to accurately solve the inverse bone remodeling problem. Specifically,
we focus on two different machine learning techniques (MLT): multilayer
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percepton (MLP) as a representation of the artificial neural networks (ANN)
and support vector machines (SVM), comparing their results with a classi-
cal technique: linear regression (LR).

• Prove the importance of bone remodeling models in a clinical case. For
that, we apply all previously developed methodologies on five specific tibias
from which we know their bone geometry and density distribution from CT
grey data through an image-based analysis. We will predict their specific
tibia loading conditions. Finally, to quantitatively evaluate the predictive
capacity of this novel methodology, we compare these forces with those
obtained for each patient from an individual-based gait analysis.

1.5 Outline of the Thesis
This Thesis is organized into seven Chapters as follows.

The main features of the bone remodeling model are presented in Chapter
2. A review of the bone remodeling models is provided and special emphasis is
placed on phenomenological models as the Stanford model (Jacobs, 1994) and the
anisotropic model (Doblaré and Garcı́a, 2002) as well as in its formulation.

In Chapter 3, we present a novel bone remodeling model which considers that
the reference equilibrium stimulus is dependent on the loading history. We also
perform a theoretical analysis to demonstrate the linear convergence of the bone
remodeling algorithm. And finally, a quantitative and qualitative evaluation of the
model comparing with the original Stanford model (Jacobs, 1994) and Doblaré
and Garcı́a model (Mengoni and Ponthot, 2015) has been performed.

In addition, Chapter 4 follows with the limitations in bone remodeling mod-
els. For that, we evaluate the dependency of the initial condition and we present
another novel modification of previous bone remodeling models that overcomes
this problem.

Chapter 5 comprises a review of mathematical tools based on, MLT, such as
ANN and SVM. These mathematical tools have been used for creating a method-
ology that allows estimating the loads that each specific bone supports. Further-
more, a comparison of the performance of these techniques (SVM and ANN) with
the classical linear regression in order to solve the inverse problem, is provided.
In addition, we explain all the methodologies for obtaining the data to perform the
inverse methodology. This computational tool has been trained with the results
obtained in the 2D and 3D model of a femur.

Then, in Chapter 6 we apply all previous methodologies in different clini-
cal cases. For that, we select five patient-specific tibias in collaboration with the
Orthopaedic Research Laboratory (ORL) in Nijmegen and Laboratory for Biome-
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chanical Engineering of the University of Twente (Netherlands). From individual
CT data, through current standard image analysis, we obtain their bone geometry
and density distribution. FE models are constructed and they are used for obtain-
ing the density distribution with multiple different loads through a bone remodel-
ing model. Then, these data are used as inputs for the numerical tools. Finally, in
order to validate the ANN performance for tibia loading predictions, we compare
predicted subject-specific loads with the loads obtained from the patient-specific
musculoskeletal model.

Finally, the main conclusions of this work, together with a brief summary of
the original contributions presented along this thesis and the future work lines are
collected in Chapter 7.

Additionally, at the beginning of the document, in aggrement with the Uni-
versity of Zaragoza guidelines to obtain the European PhD grade (art. 15 RD
99/2011), a Spanish summary of the Thesis is presented. This summary which
reports the motivation, structure, objectives and methodology as well as the main
conclusion, original contributions and future lines of this work.
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Bone remodeling models

At the end of the nineteenth century, Wolff (1982) proposed that bone morphol-
ogy depends on applied loads and that the adaptation of bone to its mechanical
environment could be described by mathematical rules (Figure 2.1). As a con-
sequence, researchers developed progressively more sophisticated and complete
mathematical and computational models to predict this behavior. This chapter de-
scribes the basic concepts of the computational models for bone remodeling used
in this Thesis. These models are based on structural topology optimization and
simulate bone adaptation process due to mechanical loading, i.e., they describe
bone behavior in response to mechanical environment.

Many different empirical relationships have been described in the literature for
bone material behavior. With the more simple ones, bone is modeled as isotropic.
It is known, however, that bone can be highly anisotropic. Bone anisotropy is the
macroscopic manifestation of the microstuctural orientation of trabeculae along
a “grain direction” in which mechanical stiffness and strength are the greatest.
This direction has been suggested to be correlated with the maximal strain/stress
direction and gives trabecular bone anisotropy in general, or at least orthotropic
symmetry (Zysset et al., 1998; Yang et al., 1998; Turner et al., 1990) and in some
instances displaying transverse isotropy (Odgaard et al., 1997). The directionality
of the trabeculae may be expressed through a geometric fabric tensor (Cowin,
1985). The main feature of this tensor is that its eigenvalues are all distinct for
an orthotropic behavior, two of them are repeated when transversely isotropic
and the three eigenvalues are the same when isotropic. The bone anisotropy is
also a function of the apparent density. Cortical bone is loaded longitudinally
along the diaphyseal axis compared with the radial or circumferential “transverse”
directions. Comparatively smaller differences in modulus and strength have been
reported between the radial and circumferential directions, indicating that human
cortical bone may be treated as transversely isotropic. Then, we can define the
bone as anisotropic.

17
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Figure 2.1: Wolff’s law (Wolff, 1982).

As we have seen in Chapter 1, bone remodeling models can be classified into
two main types: phenomenological and mecanistic models. In this Thesis, we
are focused on phenomenological models due to the lowest computational cost
in comparison with mechanobiological ones and given their good accuracy in the
apparent bone density predictions (McNamara and Prendergast, 2007). In particu-
lar, we present two phenomenological bone remodeling models based on previous
works developed at the Stanford University (Carter et al., 1989; Beaupré et al.,
1990; Jacobs et al., 1995): One isotropic and another one with anisotropic behav-
ior. An extension of these formulations will be presented in the following sections
and some of their mathematical problems will be analysed.

2.1 Isotropic bone remodeling models: Stanford model

The Stanford theory of isotropic bone remodeling (Jacobs, 1994) is mainly based
on the remodeling model proposed by Beaupré et al. (1990), in turn based on
the models previously mentioned (Carter, 1987; Carter et al., 1989). This model
is based on the idea that bone remodeling response is guided by a homeostatic
regulator of the local mechanical microenvironment that the bone is actually sup-
porting. The homeostatic mechanical stimulus (ψ) defines the equilibrium or dead
zone where the bone response is null (Figure 2.2). However, if overload/disuse
occurs and the mechanical stimulus is higher/lower than the equilibrium level,
bone formation/resorption is promoted, respectively. Following, we describe the
mechanical environment of this model.
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Figure 2.2: Bone adaptation law: Bone resorption occurs in an underloading
condition when the bone formation rate is negative. Formation of new bone tissue
occurs in an overloading condition and a positive bone formation rate. Within a
dead zone, a change of the bone remodeling stimulus does neither lead to forma-
tion nor to resorption of bone tissue.

Mechanical problem

The bone is assumed as elastic (Figure 2.3) and the constitutive law is written as
follows (see Weinans et al. (1992)),

σ = σ(u) = 2 µ(ρ)ε(u) + λ(ρ)Div (u)I in Ω × [0,T ] (2.1)

Here, I denotes the identity operator, Div represents the divergence operator
and µ(ρ) and λ(ρ) are Lame’s coefficients of the material, assumed to depend on
the apparent density of the bone denoted by ρ. These coefficients are related to
Young’s modulus E(ρ) and Poisson’s ratio κ(ρ) through the relations:

µ(ρ) =
E(ρ)

2(1 + κ(ρ))
(2.2)

and

λ(ρ) =
κ(ρ)E(ρ)
1 − κ2(ρ)

(2.3)

if the plane stress hypothesis is assumed, or

λ(ρ) =
κ(ρ)E(ρ)

(1 + κ(ρ))(1 − 2κ(ρ))
(2.4)

if the plane strain hypothesis is used or if the three-dimensional case is consi-
dered. Moreover, the Poisson’s ratio is assumed to be independent of ρ, κ(ρ) = κ,
and the following equation is used for Young’s modulus depending on the apparent
density:

E(ρ) = Mργ (2.5)
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Figure 2.3: Bone remodeling benchmark problem.

where M and γ are positive constants which characterize the bone behavior.
According to Carter and Hayes (1977), the mechanical stimulus required to

maintain bone homeostasis (which regulates the bone mass evolution) is identified
with the so-called daily tissue stress level, ψt, a scalar quantity but generalized to
include several load cases:

ψt =

 N∑
i=1

niσ
m
ti

1/m

(2.6)

where N is the number of different load cases, ni the average number of load
cycles per time step for each load case i, m an experimental parameter (Whalen
et al., 1988) and σm

ti the so-called effective stress at the tissue level.
Beaupré et al. (1990) also established a relation between the stress at the con-

tinuum level σ and the one at the tissue level σti following a standard homogenisa-
tion procedure and supported by experimental data. With these two assumptions,
ψt may be rewritten as a function of the stress at the continuum level as

ψt =

 N∑
i=1

ni

(
ρ̄

ρ

)2

σm
i

1/m

(2.7)
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with ψ defined by

ψ =

 N∑
i=1

niσ
m
i

1/m

(2.8)

In this work, we assume, for the sake of simplicity in the analysis, that N = 1
and so

ψ = n1/mσ (2.9)

where the effective stress is then calculated as

σ =
√

2E(ρ)U(σ(u), ε(u)) (2.10)

Keeping in mind that the stimulus U(σ(u), ε(u)) is given by

U(σ(u), ε(u)) =
1
2
σ(u) : ε(u) (2.11)

by using the above constitutive law for the stress tensor we have

ψ = n1/m
√

E(ρ)
(
2µ(ρ)ε(u) : ε(u) + λ(ρ)(Div (u))2) (2.12)

Therefore, it follows that

ψ = n1/m
√

E(ρ)2 (
αε(u) : ε(u) + β(Div (u))2) (2.13)

where α =
1

1 + κ
and β =

κ

1 − κ2 if the plane stress hypothesis is assumed

or β =
κ

(1 + κ)(1 − 2κ)
if the plane strain hypothesis is used or if the three-

dimensional case is considered. We also recall that E(ρ) = Mργ for two given
positive constants M and γ.

Now, we define the function f :R→ [c(−L + ω), c(L − ω)] as follows,

f (z) =


c(−L + ω) if z ≤ −L
c(z + ω) if − L ≤ z ≤ −ω
0 if − ω ≤ z ≤ ω
c(z − ω) if L ≥ z ≥ ω
c(L − ω) if z ≥ L

(2.14)

where L > 0 is a truncation value needed for mathematical reasons and 2ω is
the width of the dead zone (Figure 2.2). We note that, with this definition, this
function f is a Lipschitz and bounded function. Moreover, c is assumed constant
for the sake of simplicity but it does not necessarily have to be equal for the distinct
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cases. It is an interval around the equilibrium stimulus, in which no remodeling
takes place.

Therefore, we define the bone remodeling rate as ṙ= f (ψt−ψ
∗
t ) (function (2.14)),

being the difference between ψt and ψ∗t the stimulus that regulates the bone re-
modeling responses, and ψ∗t is the reference value of the tissue stress level of the
equilibrium zone. This value was assumed constant in Beaupré et al. (1990).

After calculating the stimulus and the bone remodeling rate, the new bone ap-
parent density can be updated (Figure 2.5). The evolution of the apparent density
function is obtained from the following first-order ordinary differential equation
(Jacobs et al., 1995),

ρ̇ = kṙS ν(ρ)ρ in Ω × (0,T ) (2.15)

where the added or removed bone is assumed to be completely mineralized; that
is, at maximum density ρ. In the previous bone remodeling law (2.15), k is the
ratio between the available surface for remodeling and the total internal surface
(k = 1 - porosity null). S ν(ρ) is the specific surface (internal surface per unit
volume) that depends on the apparent density (Figure 2.4) and it can be approxi-
mated accurately enough by a fifth order polynomial of the apparent density given
by Martin (1984):

S ν(ρ) = 0.02876ρ5 − 0.10104ρ4 + 0.13396ρ3 − 0.09304ρ2 + 0.03226ρ (2.16)

Figure 2.4: Specific surface as function of porosity (Martin, 1984).
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In order to obtain a real apparent density we have to assume that this function
is bounded as

ρ ≤ ρ ≤ ρ (2.17)

where we recall that ρ is the maximal density of cortical bone and ρ represents
the minimal density corresponding to the reabsorbed bone (Carter and Hayes,
1977).

Finally, the process is assumed quasistatic and therefore the inertia effects are
neglected. Moreover, let ρ0 and (ψ∗t )0 denote the initial apparent density function
and the initial reference value of the tissue stress level.

2.2 Anisotropic bone remodeling model: Doblaré and
Garcı́a model

As we explained in the introduction, bone clearly behaves anisotropically. For
that, a remodeling model has to be able to reproduce this evolution.

For isotropic remodeling models, it is then assumed that only the density is
affected by remodeling. Mechanical parameters, such as Young’s modulus, are
only affected by the density. Anisotropic remodeling models also require to de-
fine the stiffness variation as a function of the remodeling rate. This anisotropic
stiffness variation function needs to account for the tendency of bone to align its
microstructure with the stress or strain principal directions. Therefore, the stiff-
ness tensor principal directions need to align themselves with these directions as
well.

The Stanford model was initially designed as an isotropic law for remodeling
and later extended to an anisotropic one (Jacobs et al., 1997). The assumed stim-
ulus responsible for remodeling is a stress-equivalent intensity at tissue level. The
anisotropic extension of this model formulates the stiffness variation considering
remodeling as an optimized process.

Doblaré and Garcı́a (2002) proposed a damage-based remodeling model, dam-
age is understood as a measure of bone tissue porosity and directional mass dis-
tribution, as suggested by Cowin (1986) for the fabric tensor. The undamaged
state is the ideal situation of null porosity and perfectly isotropic. This model is
able to predict the non-homogeneous and anisotropic bone mass distribution in a
representative volume. The independent internal variables are those that define
the internal microstructure of the bone, i.e. the apparent density and the “fabric
tensor”, which measure the bone mass distribution and the directionality of the
microstructure, respectively. The “fabric tensor” is demonstrated to be aligned
with the elasticity tensor, while using the principles of the internal variables the-
ory drives to demonstrate that the material tends to align its principal directions of
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anisotropy with the ones of the strain tensor, achieving a directional equilibrium
when the stress is aligned with the “fabric tensor”.

2.2.1 Mechanical problem

In this subsection (Doblaré and Garcı́a, 2002) model for bone remodeling is pre-
sented. It is based on the anisotropic Stanford model (Jacobs et al., 1997) and
it expresses the stiffness variation in a Continuum Damage Mechanics (CDM)
framework.

Then, they define the damage tensor, D, used in a strain energy equivalence
approach of CDM, by the expression:

D = 1 −
(
ρ

ρ̄

)γ/2 √
AĤ = 1 − H2 (2.18)

with ρ the apparent density, ρ̄ the maximum density, γ is the experimental pa-
rameter which relates the elastic modulus and the apparent density and O an ad-
justing parameter that is obtained by particularizing the general anisotropic model
to the isotropic case

O(ρ) =
M (ρ)
M (ρ̄)

ρ̄γ(ρ)−γ(ρ̄) (2.19)

In addition, the expression of the effective stress tensor is defined as:

σ̃ = H−1σH−1 (2.20)

The stimulus is identified with the variable thermodynamically (Y) associated
with the damage tensor or, even better, to the remodeling tensor H.

However, in order to establish this stimulus, we have to define the mechanical
variable (strain or stress) that externally “drives” the process. We have used the
strain as the “external driving force”, although exactly the same results can be
obtained if stress is considered as earlier proposed by Wolff (1982). With this, the
stimulus is defined as:

Resorption:

Y =
∂Ψ(ε,H)
∂H

=
∂Ψ

∂σ

∂σ

∂H

∣∣∣∣∣
ε=ct

(2.21)

being Ψ the free energy function and where the constancy of ε in the evaluation
of the partial derivative has been made explicit.
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And, Y is immediately obtained in terms of the external independent variable
(strain) and the internal variable (remodeling tensor) as

Y = 2
[
2µ(ρ)sym [(HεH)(Hε)] + λ(ρ)tr(H2ε)sym[Hε]

]
(2.22)

with µ(ρ), λ(ρ) the Lame’s parameters of the ideal compact bone with null poros-
ity.

At this stage, the stimulus is defined in the same manner than in equation
(2.21) but now using the stress as the independent variable, we get

Formation:

Yσ =
∂Ψ̂(σ,H)
∂H

=
∂Ψ̂

∂ε

∂ε

∂H

∣∣∣∣∣∣
σ=ct

(2.23)

With this,

Yσ = (−2)H−2
[
1 + κ

E
sym

[
(H−1σH−1)(H−1σ)

] κ
E

tr(H−2σ)sym[H−1σ]
]

(2.24)

For that, we finally obtain
Y = −Yσ (2.25)

leading, therefore, to the same model.

Damage evolution law

Doblaré and Garcı́a proposed this criteria:

gr =

√
2(1 − ω)

n1/m
√

Bρ̄(2−γ/8)O1/8271/4
(J−1 : J−1)1/4 −

1
(Ψ∗t − w)ρ(16−5γ)/8 (2.26)

g f =
n1/m
√

Bρ̄(2−γ/8)O1/831/4

√
2(1 − ω)

(J : J)1/4 − (Ψ∗t + w)ρ(16−5γ)/8 (2.27)

where J is a new tensor and a function of the stimulus that quantifies the rel-
ative influence of the spherical and deviatory parts of the stimulus in the damage
criterion, defined as

J = (1 − ω)tr(Y)
1
3

1 + ωdev(Y) = (1 − 2ω)tr(Y)
1
3

1 + ω(Y) (2.28)
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with ω ∈ [0, 1] being a scalar parameter such that when ω = 0 the model is
solely dependent on the spherical component of the stimulus and, therefore, to a
purely isotropic evolution model. For ω = 1 the highest degree of anisotropy is
achieved, which corresponds to J = dev(Y)4.

In this model, an associated damage evolution law is proposed, so this flow
rule is presented as

Ḣ = µr ∂gr

∂Y
+ µ f ∂g f

∂Y
(2.29)

fulfilling the joined consistency condition µr, µ f ≥ 0; g f , gr ≤ 0 and µrgr =

µ f g f = 0
Deriving the damage criteria (2.26 and 2.27), the evolution law for the remod-

eling tensor H is written as:

Ḣresorption =
3γkṙS v

4tr(H−1Jω̂)
ρ̄

ρ
J−3ω̂ (2.30)

Ḣ f ormation =
3γkṙS v

4tr(H−1Jω̂)
ρ̄

ρ
Jω̂ (2.31)

After that, the evolution of the remodeling law is proposed, being the criteria
of bone remodeling multiplied by the remodeling velocity.

ṙ =


−cr

gr

ρ2−γ/2 if gr ≥ 0 g f < 0

c f
g f

ρ2−γ/2 if gr < 0 g f ≥ 0
0 if gr < 0 g f < 0

(2.32)

where cr and c f are both expressed as a velocity per unit stress.

2.2.2 Correction of model by Mengoni and Ponthot
Doblaré and Garcı́a’s model presented a problem associated with the inconsis-
tency in the dimensional analysis of the model in the equation (2.32). Following
the approach of Mengoni and Ponthot (2015), gr and g f need to have identical
dimensions so that the remodeling rate is expressed with the same units in the
resorption or formation cases. The dimension of the remodeling criteria has the
dimension of stress per day (MPa/day). However, if we observe the equations
(2.27) and (2.26), the dimensions are different. g f is stress−1 x ρ−(16−5γ)/8 and gr is
stress−2 x ρ(32−9γ)/8.

Then, the problem was found in Doblaré and Garcı́a due to the fact that a
dimensionless inconsistency emerged. For that, Mengoni and Ponthot proposed
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a modification of gr to obtain the same dimension than g f . This enhancement of
the resorption criterion also involves a change of the remodeling tensor evolution
in the resorption case. Following the approach of Doblaré and Garcı́a (2002),
the evolution of the remodeling tensor H is inversely related to the strain energy
density. For that, the new remodeling tensor in resorption case is (Mengoni and
Ponthot, 2015):

gr =
n1/m
√

Bρ̄(2−γ/8)O1/831/4

√
2(1 − ω)

(J : J)1/4 − (Ψ∗t − w)ρ(16−5γ)/8 (2.33)

where the formation criterion remains the same:

g f =
n1/m
√

Bρ̄(2−γ/8)O1/831/4

√
2(1 − ω)

(J : J)1/4 − (Ψ∗t + w)ρ(16−5γ)/8 (2.34)

Following previous development and deriving the damage criteria, it finally
gets an evolution law for the remodeling tensor:

Ḣresorption =
3γkṙS v

4tr(H−1Jω̂)
ρ̄

ρ
Jω̂ (2.35)

Ḣ f ormation =
3γkṙS v

4tr(H−1Jω̂)
ρ̄

ρ
Jω̂ (2.36)

Finally, the second correction applied on Doblaré and Garcı́a model is in the
criteria of bone remodeling. Keeping the definition of the formation criterion as it
is, Mengoni and Ponthot (2015) modified the remodeling rate in such a way that
it was dimensionally consistent with respect to Equation 2.32. However, they pro-
posed the criteria of bone remodeling gr and g f to be divided by ρ(16−5γ)/8 instead
of ρ2−γ/2. Additional, gr and g f are the same although with different sign, keeping
the same dimensions. Thanks to this strategy, the second part of resorption crite-
rion is equal to the anisotropic law proposed by Jacobs et al. (1997). Therefore,
the new equation of the evolution of the remodeling law is:

ṙ =


−cr

gr

ρ(16−5γ)/8 if gr ≥ 0 g f < 0

c f
g f

ρ(16−5γ)/8 if gr < 0 g f ≥ 0
0 if gr < 0 g f < 0

(2.37)

where cr and c f are both expressed as a velocity per unit stress.



28 Bone remodeling simulations: challenges, problems and applications.

These modifications were defined by Mengoni and Ponthot (2015) where they
proposed an enhancement of this resorption criterion, ensuring the dimensional
correctness while keeping the physical properties of the original remodeling model.
In their manuscript, we have found all details of these corrections as well as the
analysis of the change of resorption criterion surface in the stress space for a 2D
analysis.

2.3 Numerical implementation scheme

In this section, we briefly show the numerical scheme implemented (Figure 2.5).
In the Stanford model, the isotropic material parameters En and κn and the appar-
ent density ρn are passed in from time step n for every integration point. After
calculating the stimulus and the porosity, the remodeling rate and surface density
can be evaluated, yielding the new density. The new density ρn+1 defines the new
material parameters En+1 and κn+1 which are passed back to the global program.
Figure 2.5 shows the block diagram of the Stanford algorithm with its implicit
structure. Similar block diagram would be for the anisotropic model, although it
is not here shown.

Figure 2.5: A block diagram of Stanford model (Jacobs, 1994).
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The following parameter values have been used in the simulations of this thesis
(see Table 2.1) (Weinans et al., 1992; Jacobs et al., 1995; Fernández et al., 2010,
2012a).

Reference stimulus: (ψ∗t )0 = 50 MPa Initial density: ρ0 = 0.5 g/cm3

Minimal density: ρ = 0.05 g/cm3 Maximal density: ρ = 2.021 g/cm3

Cycles per day: n = 10000 Remodeling velocity: c = 0.02
Time step size: ∆t = 1 day Weighting exponent: m = 4
M = 2014 ( ρ ≤ 1.2 ) γ = 2.5 ( ρ ≤ 1.2 ) M = 1763 ( ρ > 1.2 ) γ = 3.2 ( ρ > 1.2 )
Poisson’s ratio: κ = 0.32 ( ρ > 1.2) κ = 0.2 ( ρ ≤ 1.2 )
Constant of mechanical stimulus: a = 0.01 A = 0.039
Half-width of the lazy zone: w = 12.5%

Table 2.1: Values used for the parameters in the bone remodeling simulations.

2.3.1 2D FE model

A classical benchmark problem corresponding to a two-dimensional FE model
of the proximal femur (see Figure 2.6) is used in this work to test the stability
and convergence of the Stanford model, Doblaré and Garcı́a model and its correc-
tion. The FE model is composed of 1700 bilinear quadrilateral elements and 1822
nodes. For the connection between the two cortical layers of the diaphysis, an
additional plate is used joining both layers as proposed by other authors (Beaupré
et al., 1990; Bergmann et al., 2001). This lateral plate varies in thickness and
resembles the gradual increment in thickness in the cortical layer from the meta-
physis to the diaphysis (see Figure 2.6). Moreover, the lateral plate remodeling
capacities are constrained, and its properties are considered constant in time. Fi-
nally, it is assumed that the only connection to the cortical layers is produced at
the lateral nodes.

The lower part of the femur is restrained along the vertical direction at all
nodes and along the vertical and horizontal directions at only one node, to avoid
rigid body movements. Three simultaneous (consecutive in the model application)
load cases and their corresponding reactions on the greater trochanter are consid-
ered in order to simulate the walking movement (Figure 2.7): time when the foot
touches the floor (case 1) and the other two alternative moments of abduction (case
2) and adduction (case 3) (Jacobs et al., 1997). The loads correspond to the reac-
tion force on the femoral head and the abductor muscle force (Figure 2.6 for the
walking process). The load values are detailed in Table 2.2 (Jacobs et al., 1995).
The simulation for the bone remodeling problem starts from an arbitrary initial
situation (uniform density ρ0 = 0.5 gr/cm3 and isotropic behavior), and apply-
ing the previously described load sequence, changes in the bone apparent density
distribution are computed until 300 days.
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Figure 2.6: 2D FE mesh of the femur.

Mean value and orientation of the forces for the three load cases
considered. Angles refer to the vertical direction

Case Cycles/day Load value at the head Reaction force at the abductor muscle
Magnitude (N) Angle (◦) Magnitude(N) Angle (◦)

1 6000 2317 24 703 28
2 2000 1158 -5 351 -8
3 2000 1548 56 468 35

Table 2.2: Loading conditions considered for the walking movement (Carter,
1987).

Figure 2.7: Load cases during walking (Schafer et al., 1995).

2.4 Numerical results
In this section, we present the bone density predictions obtained by Stanford
model, Doblaré and Garcı́a model and its correction (Mengoni and Ponthot, 2015).
Small diferences were predicted between the Stanford model (Figure 2.8a) and
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Doblaré and Garcı́a model (Figure 2.8b). Doblaré and Garcı́a improves the pre-
diction of the load bearing regions of the femoral head and great trochanter. Be-
sides of the numerical inconsistency of Doblaré and Garcı́a model, the result of
the final density (300 increments) shows small differences with respect to its cor-
rection (Mengoni and Ponthot, 2015). In Figure 2.8 (b-c), we observed the bone
density distribution for both models where there is only a slight difference in the
resorption area.

Figure 2.8: Bone density distribution after 300 days with a) Stanford model, b)
Doblaré and Garcı́a model and b) its correction (Mengoni and Ponthot, 2015).

2.5 Summary of the presented models

As explained before, phenomenological remodeling models are based on the def-
inition of three characteristics: the density rate function (ρ̇ function of ṙ), the
remodeling rate function (ṙ function of ψt and ψ∗t ), and the stimulus definition (ψ
and its homeostatic level ψ∗t ).

These models are coupled to a constitutive law for the bone matrix and both
models reproduce the bone density distribution. However, Doblaré and Garcı́a
anisotropic model presented two inconsistencies in its formulation that leads to
numerical irregularities (Mengoni and Ponthot, 2015). For that, we have explained
the model and its correction. Specifically, the correction presents a remodeling
criterion in resorption (gr) that differs significantly to the one presented in the
original Doblaré and Garcı́a model. Indeed, it can be easily shown that the criteria
in resorption and in formation have opposite dimensions as it clearly appears in
their isotropic formulation. Mengoni and Ponthot (2015) also modified the pa-
rameter that divided the evolution of the remodeling law. Finally, with all of these
changes, a new evolution of the remodeling law has been obtained.
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Standford and Doblaré and Garcı́a models have been used in this Thesis. From
now as when we named Doblaré and Garcı́a model, we refer to the correction pro-
posed by Mengoni and Ponthot (2015). Stanford and Doblaré and Garcı́a model
present some limitations and problems that will be analyzed into following Chap-
ters.



CHAPTER 3

Numerical stability and convergence
analysis of bone remodeling models

3.1 Introduction

Bone remodeling is the mechanism that regulates the relationship between
bone morphology and its external mechanical loads. It is based on the fact that the
“living bone is continuously adapting itself to external stimuli”. The ability of the
models presented in this Thesis to predict bone remodeling is of great importance
because this process has an enormous effect on the overall behavior and health of
the entire body. During the last years, some works with mathematical issues of
these models (Cowin and Doty, 2007) as the existence and uniqueness of their so-
lutions have been studied under some quite strong assumptions (Fernández et al.,
2008, 2012b).

In this Chapter, we show the limitations of the Stanford bone remodeling the-
ory (Jacobs, 1994) and the anisotropic extension of the Stanford model proposed
by Doblaré and Garcı́a (2002). And we propose a novel assumption modifying the
Stanford bone remodeling model (Beaupré et al., 1990), specifically the reference
homeostatic stimulus which will be now dependent on the loading history that
each point is supporting. Other authors (Schriefer et al., 2005; Vahdati and Rouhi,
2009) have also used a non-constant homeostatic stimulus in bone remodeling
simulations known as the cellular accommodation theory. In fact, in this Thesis
we also hypothesize that this modification will directly affect the stabilization of
the numerical results corresponding to the spatial distribution of the apparent den-
sity. In addition, we also perform a theoretical analysis to demonstrate the linear
convergence of the bone remodeling algorithm. Specifically, for the Stanford bone
remodeling theory (Beaupré et al., 1990), we incorporate a non-constant reference
homeostatic stimulus.

33
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3.2 Some problems of bone remodeling models
All these models are robust tools that provide us with important information from
the bone. However, if we are interested in studying patient-specific characteristics
or the behavior of a prosthesis in the long term, we could have difficulties with
these models because they present numerical instabilities and dependence of the
initial conditions.

These models normally use a reference homeostatic mechanical stimulus that
defines the equilibrium or dead zone (Huiskes et al., 1987; Carter, 1987), where
the bone response is null. However, if overload/disuse occurs and the mechanical
stimulus is higher/lower than the equilibrium level, bone formation/resorption is
promoted. Different kinds of mechanical variables are used to define this refer-
ence homeostatic stimulus, such as strain (Frost, 1990; Fernandes et al., 1999),
strain energy density (Huiskes et al., 1987; Weinans et al., 1992; Kaczmarczyk
and Pearce, 2011) or effective stress (Beaupré et al., 1990; Doblaré and Garcı́a,
2002).

All these models assumed that this reference homeostatic stimulus was con-
stant, at least when characterized for specific zones in bones. Thus, for example,
Carter and Beaupré (2001) considered an equilibrium effective stress stimulus of
50 MPa/day for the femur, 62.5 MPa/day for the femoral periosteal, around 42
MPa/day for the rooster ulna bone and 60 MPa/day for the human tibia (Figure
3.1).

Figure 3.1: Hypothetical curves for three bone regions showing the rate of surface
remodeling as a function of the tissue level stress stimulus (Beaupré et al., 1990).

One of the main contributions of this Chapter is to modify this assumption, hy-
pothesizing that this reference homeostatic stimulus is not constant, but is locally
dependent on the loading history that each local point is effectively supporting.
As a direct consequence of this assumption, we will demonstrate that the nu-
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merical instabilities that all these algorithms normally present (Fernández et al.,
2010) are directly solved, clearly improving the final results. Several numerical
techniques have been proposed in order to stabilize these results: extrapolation
from gauss points to nodes (Jacobs et al., 1995), Cosserat’s theory (Madeo et al.,
2012), gradient elasticity (Gitman et al., 2010) and diffusion of the apparent den-
sity (Fernández et al., 2012a). However, even if the results have been improved,
the numerical problems still persist.

Figure 3.2: Radiography of the real density in the femur with permission from
Jacobs et al. (1997).

In fact, independently of the bone remodeling theory implemented, strong
bone density discontinuities and instabilities are normally presented. For instance,
the numerical results of the typical bone remodeling benchmark problem using the
bone remodeling theory (Beaupré et al., 1990; Jacobs et al., 1995), known as the
Stanford remodeling model are represented in Figure 3.3. As we can see, after 300
load increments the bone density distribution (Figure 3.3a) is very similar to the
actual distribution (Figure 3.2). However, after 1000 and 3000 load increments,
the bone density distribution clearly presents spatial instabilities.

Therefore, in this thesis, we have modified the Stanford bone remodeling
model (Beaupré et al., 1990), specifically the reference homeostatic stimulus which
will now be dependent on the loading history that each point is supporting. In ad-
dition, we perform a theoretical analysis to demonstrate the linear convergence
of the bone remodeling algorithm. Specifically, for the Stanford bone remodeling
theory (Beaupré et al., 1990), we incorporate a non-constant reference homeo-
static stimulus. After the theoretical analysis did in the isotropic model, this novel
modification has been applied in a FE analysis in the following models: isotropic
Stanford model (Section 2.1) and anisotropic Doblaré and Garcı́a model (Section
2.2).

Therefore, we define the bone remodeling rate as ṙ = f (ψt − ψ
∗
t ) (function

(2.14)), being the difference between ψt and ψ∗t the stimulus that regulates the
bone remodeling responses, and ψ∗t is the reference value of the tissue stress level
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Figure 3.3: Results of a simulation with the Stanford isotropic model in 2D
(Beaupré et al., 1990) for the distribution of the bone density after a) 300, b)
1000 and c) 3000 days.

of the equilibrium zone. This value was assumed constant in Beaupré et al. (1990),
but we propose here that this reference value is adapted to the loading history in
relation with the bone remodeling rate. Schriefer et al. (2005) and Vahdati and
Rouhi (2009) used a similar mathematical law to consider the effect of cellular
accommodation in trabecular bone. In this thesis, this reference value is directly
related to the surface remodeling rate (ṙ), using the following ordinary differential
equation:

ψ̇∗t = ψ∗t Aṙea|ṙ| (3.1)

where a and A are constants that regulate the adaptivity of the reference stimulus.
We note that the adaptation of the reference value allows higher accuracy in the
bone remodeling area and greater stability in the process to be obtained.

Introducing this equation in the previously model explained (Stanford model
- Section 2.1) allows to solve the mechanical problem. This part has been done in
collaboration with Dr. J.R. Fernández (University of Vigo) (Garijo et al., 2014a).
We have not developed the demonstration for the Doblaré and Garcı́a model, be-
cause it is very similar and Doblaré and Garcı́a model is based on the Stanford
model. Then, we can say if one fulfills the stability, the other also.

3.3 Numerical analysis of the convergence

3.3.1 Variational problems

First of all, we describe the variational problem in the mechanical environment
for the mathematical analysis.
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Let Sd be the space of second order symmetric tensors on Rd, or equivalently,
the space of symmetric matrices of order d, and let : be its inner product and | · |
its norm.

Let Ω ⊂ Rd, d = 1, 2, 3, be an open bounded domain and Γ = ∂Ω its boundary,
assumed to be Lipschitz continuous and divided into two disjoint parts ΓD and
ΓN . We denote by x = (xi)d

i=1 a generic point of Ω = Ω ∪ Γ, and for x ∈ Γ, let
ν(x) = (νi(x))d

i=1 be the outward unit normal vector to Γ at point x (see Figure 3.4).
The body occupies a set Ω which is being acted upon by a volume force of

density f , it is clamped on ΓD and surface tractions with density g act on ΓN .
Finally, we denote by [0,T ], T > 0, the time interval of interest.

Figure 3.4: Bone remodeling benchmark problem

Let u = (ui)d
i=1, σ = (σi j)d

i, j=1 and ε(u) denote the displacement field, the
stress field and the linearized strain tensor, respectively. As usual, we recall that
ε(u) = (εi j(u))d

i, j=1 is given by

εi j(u) =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, i, j = 1, . . . , d (3.2)

The bone is assumed elastic and the constitutive law is written as follows (see
Weinans et al. (1992)),

σ = σ(u) = 2 µ(ρ)ε(u) + λ(ρ)Div (u)I in Ω × [0,T ] (3.3)

Here, I denotes the identity operator in Sd, Div represents the divergence
operator and µ(ρ) and λ(ρ) are Lame’s coefficients of the material, assumed to
depend on the density of the bone denoted by ρ.

Problem P. Find the displacement field u : Ω × [0,T ] → Rd, the reference
value of the tissue stress level ψ∗t : Ω × [0,T ] → R and the density function
ρ : Ω × [0,T ]→ [ρ, ρ] such that ρ(0) = ρ0, ψ∗t = (ψ∗t )0 and,
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ρ̇ = k f (ψt − ψ
∗
t )S ν(ρ)ρ in Ω × (0,T ) (3.4)

−Divσ(u) = f in Ω × (0,T ) (3.5)
ψ̇∗t = ψ∗t A f (ψt − ψ

∗
t )ea f (ψt−ψ

∗
t ) in Ω × (0,T ) (3.6)

u = 0 on ΓD × (0,T ) (3.7)
σν = g on ΓN × (0,T ) (3.8)

where Lame’s coefficients λ(ρ) and µ(ρ) were defined above and the stress field
σ(u) : Ω × [0,T ]→ Sd is given by

σ(u) = 2 µ(ρ)ε(u) + λ(ρ)Div (u)I in Ω × [0,T ]. (3.9)

Moreover, the mechanical stimulus ψt is defined as

ψt = n1/m
√

E(ρ)2 (
αε(u) : ε(u) + β(Div (u))2) (3.10)

We obtain now a variational formulation of the mechanical Problem P. Denot-
ing by Y = L2(Ω) and H = [L2(Ω)]d, we define the following variational spaces
equipped with the product norms derived from usual norms in Sobolev spaces:

V = {v = (vi)d
i=1 ∈ [H1(Ω)]d ; v = 0 on ΓD}

Q = {τ = (τi j)d
i, j=1 ∈ [L2(Ω)]d×d ; τi j = τ ji, 1 ≤ i, j ≤ d}

(3.11)

We make the following assumptions on the problem data:

(i) The density forces have regularity:

f ∈ C([0,T ]; [C(Ω)]d), g ∈ C([0,T ]; [C(ΓN)]d) (3.12)

(ii) The initial density ρ0 satisfies the following conditions:

ρ0 ∈ C(Ω), ρ ≤ ρ0(x) ≤ ρ for all x ∈ Ω (3.13)

(iii) The initial reference value of the tissue stress level (ψ∗t )0 satisfies the fol-
lowing condition:

(ψ∗t )0 ∈ Y (3.14)
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In order to simplify the writing, for every ρ ∈ νL∞(Ω), we define the bilinear
form c(ρ; ·, ·) : V × V → R given by

c(ρ; u, v) =

∫
Ω

[2µ(ρ)ε(u) : ε(v) + λ(ρ)Tr(ε(u))Tr(ε(v))] dx, ∀u, v ∈ V (3.15)

where Tr denotes the trace operator given as Tr(τ) =

d∑
i=1

τii for all τ = (τi j)d
i, j=1,

and we introduce the linear form L : V → R and the function Φ : Y × Y → Y as
follows,

L(v) =

∫
Ω

f · v dx +

∫
ΓN

g · v dΓ, ∀v ∈ V,

Φ(ρ, ψt − ψ
∗
t ) = k f (ψt − ψ

∗
t )S ν(ρ)ρ. (3.16)

Now, proceeding as in Fernández et al. (2010), we give an equivalent expres-
sion for equation (3.4), incorporating the restriction ρ ≤ ρ ≤ ρ. Thus, we write it
in the following form:

ρ̇ − k f (ψt − ψ
∗
t )S ν(ρ)ρ + ∂I[ρ,ρ](ρ) 3 0 (3.17)

where ∂I[ρ,ρ] denotes the subdifferential of the indicator function I[ρ,ρ] of the inter-
val [ρ, ρ].

Finally, let us define the convex set of admissible density functions,

K = {ξ ∈ Y ; ρ ≤ ξ ≤ ρ, a.e. in Ω} (3.18)

Applying Green’s formula, we derive the following variational formulation of
the mechanical Problem P.

Problem VP. Find a displacement field u : [0,T ] → V, a reference value of
the tissue stress level ψ∗t : [0,T ] → Y and a density function ρ : [0,T ] → K such
that ρ(0) = ρ0, ψ∗t = (ψ∗t )0 and for a.e. t ∈ (0,T ),

c(ρ(t); u(t), v) = L(v), ∀v ∈ V (3.19)
(ρ̇(t), ξ − ρ(t))Y ≥ (Φ(ρ(t), ψt − ψ

∗
t ), ξ − ρ(t))Y , ∀ξ ∈ K (3.20)

ψ̇∗t = ψ∗t A f (ψt − ψ
∗
t )ea f (ψt−ψ

∗
t ) (3.21)

where the function Φ is given in (3.16), the mechanical stimulus ψt is defined by
(3.10) and the stress field σ(u(t)) is obtained from (3.9).

The existence of a unique weak solution to Problem VP still remains an open
problem. Even if we have observed some similarities between this problem and
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the damage problems considered, for instance, in Campo et al. (2007) or Campo
et al. (2006), the techniques developed there can no be used here because there is
not diffusion of the bone remodeling.

3.3.2 Numerical analysis of a fully discrete scheme

In this section, we introduce fully discrete approximations of the variational prob-
lem VP. The discretization is done in two steps. First, the spatial variable is ap-
proximated using three finite element spaces Vh ⊂ V , Qh ⊂ Q and Bh ⊂ Y , which
are defined as

Vh = {wh ∈ [C(Ω)]d ; wh
|T
∈ [P1(T )]d, T ∈ T h, wh = 0 on ΓD}

Qh = {τh ∈ [L2(Ω)]d×d ; τh
|T
∈ [P0(T )]d×d, T ∈ T h}

Bh = {ξh ∈ Y ; ξh
|T
∈ P0(T ), T ∈ T h}

Here, we assume that Ω is a polyhedral domain, we denote by T h a triangula-
tion of Ω compatible with the partition of the boundary Γ = ∂Ω into ΓD and ΓN ,
and we represent by Pq(T ), q = 0 − 1, the space of polynomials of global degree
less or equal to q in T . Moreover, as usual h > 0 denotes the spatial discretiza-
tion parameter. Finally, we define the discrete convex set of admissible density
functions as Kh = K ∩ Bh; that is,

Kh = {ξh ∈ Bh ; ρ ≤ ξh ≤ ρ in Ω} (3.22)

Secondly, the time derivatives are discretized by using a uniform partition of
the time interval [0,T ], denoted by 0 = t0 < t1 < . . . < tN = T , and let k be
the time step size, k = T/N. Moreover, for a continuous function g(t) we denote
gn = g(tn).

Using the explicit Euler scheme, the fully discrete approximation of Problem
VP is the following.

Problem VPhk. Find a discrete displacement field uhk = {uhk
n }

N
n=0 ⊂ Vh, a

discrete reference value of the tissue stress level (ψ∗t )hk = {(ψ∗t )hk
n }

N
n=0 ⊂ Bh and a
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discrete density function ρhk = {ρhk
n }

N
n=0 ⊂ Kh such that for all vh ∈ Vh and ξh ∈ Kh,

c(ρhk
n ; uhk

n , v
h) = L(vh), n = 0, 1, . . . ,N (3.23)(

ρhk
n − ρ

hk
n−1

k
, ξh − ρhk

n

)
Y

≥
(
Φ(ρhk

n−1, (ψt)hk
n−1 − (ψ∗t )hk

n−1), ξh − ρhk
n

)
Y
, n = 1, 2, . . . ,N (3.24)

(ψ∗t )hk
n − (ψ∗t )hk

n−1

k
= (ψ∗t )hk

n−1A f ((ψt)hk
n−1 − (ψ∗t )hk

n−1)ea f ((ψt)hk
n−1−(ψ∗t )hk

n−1), n = 1, 2, . . . ,N (3.25)

where ρhk
0 and (ψ∗t )hk

0 denote appropriate approximations of the initial conditions
ρ0 and (ψ∗t )0, respectively, and the discrete mechanical stimulus field (ψt)hk =

{(ψt)hk
n }

N
n=0 ⊂ Bh and the discrete stress field σhk

n = (σhk
n )N

n=0 ⊂ Qh are given by, for
all n = 0, 1, . . . ,N,

(ψt)hk
n = n1/m

√
E(ρhk

n )2 (
αε(uhk

n ) : ε(uhk
n ) + β(Div (uhk

n ))2) (3.26)

σhk
n = 2 µ(ρhk

n )ε(uhk
n ) + λ(ρhk

n )Div (uhk
n )I (3.27)

A unique solution existence to this discrete problem is easily obtained apply-
ing classical results on elliptic linear variational inequalities (Glowinski, 1984).

In this section, our aim is to obtain an error estimate of the numerical errors
‖un − uhk

n ‖V , ‖(ψt)n − (ψt)hk
n ‖Y , ‖(ψ∗t )n − (ψ∗t )hk

n ‖Y and ‖ρn − ρ
hk
n ‖Y . Therefore, we

assume that Problem VP has a unique solution with the following regularity:

u ∈ C1([0,T ]; V) ∩C([0,T ]; [W1,∞(Ω)]d), ρ ∈ C1([0,T ]; Y)
ψ∗t ∈ C1([0,T ]; Y), ψt ∈ C([0,T ]; Y)

(3.28)

We have the following result which provides a priori error estimates.

Theorem 3.3.1 Assume that Problem VP has a unique solution (u, ψt, ψ
∗
t , ρ) with

regularity (3.28) and denote by (uhk, (ψt)hk, (ψ∗t )hk, ρhk) the solution to Problem
VPhk. Then, there exists a positive constant C > 0, independent of the discretiza-
tion parameters h and k but depending on the continuous solution (u, ψt, ψ

∗
t , ρ)

and the data of the problem, such that, for all {vh
n}

N
n=0 ⊂ Vh, {zh

n}
N
n=0 ⊂ Bh and
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{ξh
n}

N
n=0 ⊂ Kh,

max
0≤n≤N

‖un − uhk
n ‖

2
V + max

0≤n≤N
‖ρn − ρ

hk
n ‖

2
Y + max

0≤n≤N
‖(ψt)n − (ψt)hk

n ‖
2
Y

+ max
0≤n≤N

‖(ψ∗t )n − (ψ∗t )hk
n ‖

2
Y

≤ C max
0≤n≤N

‖un − vh
n‖

2
V + Ck

N∑
j=1

‖ρ j − ξ
h
j‖

2
Y + C max

1≤n≤N
‖ρn − ξ

h
n‖

2
Y

+
C
k

N−1∑
j=1

‖ρ j − ξ
h
j − (ρ j+1 − ξ

h
j+1)‖2Y + C‖ρ0 − ρ

h
0‖

2
Y + C‖u0 − uh

0‖
2
V

+Ck
N∑

j=1

{
‖ρ j − ξ

h
j‖

2
Y + ‖Φ j −

ρ j − ρ j−1

k
‖Y‖ρ j − ξ

h
j‖Y

+‖
ρ j − ρ j−1

k
− ρ̇ j‖

2
Y

}
+ Ck2 + C

(
max
0≤n≤N

‖(ψ∗t )n − zh
n‖

2
Y

+‖(ψ∗t )0 − (ψ∗t )hk
0 ‖

2
Y + ‖(ψ∗t )1 − zh

1‖
2
Y

+
1
k

N−1∑
j=1

‖(ψ∗t ) j − zh
j − ((ψ∗t ) j+1 − zh

j+1)‖2Y
)

+Ck
N∑

j=1

{
‖(ψ̇∗t ) j −

(ψ∗t ) j − (ψ∗t ) j−1

k
‖2Y + ‖(ψ∗t ) j − zh

j‖
2
Y

}
(3.29)

Proof. The first step is to obtain some error estimates of the displacement
fields proceeding as in Fernández et al. (2010). Then, we subtract variational
equation (3.19) at time t = tn for v = vh ∈ Vh and variational equation (3.23), and
we find that

c(ρn; un, vh) − c(ρhk
n ; uhk

n , v
h) = 0, ∀vh ∈ Vh (3.30)

Therefore,

c(ρn; un,un − uhk
n ) − c(ρhk

n ; uhk
n ,un − uhk

n )
= c(ρn; un,un − vh) − c(ρhk

n ; uhk
n ,un − vh), ∀vh ∈ Vh (3.31)

Since ρhk
n ∈ Kh, we have ρhk

n ≥ ρ > 0 and we get

c(ρn; un,un − uhk
n ) − c(ρhk

n ; uhk
n ,un − uhk

n )
= c(ρhk

n ; un − uhk
n ,un − uhk

n )
+c(ρn; un,un − uhk

n ) − c(ρhk
n ; un,un − uhk

n ),
c(ρn; un,un − vh) − c(ρhk

n ; uhk
n ,un − vh)

= c(ρhk
n ; un − uhk

n ,un − vh)
+c(ρn; un,un − vh) − c(ρhk

n ; un,un − vh),
c(ρhk

n ; un − uhk
n ,un − uhk

n ) ≥ α‖un − uhk
n ‖

2
V

(3.32)
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Keeping in mind the regularity u ∈ C([0,T ]; [W1,∞(Ω)]d×d) and that ρn, ρ
hk
n ∈

[ρ, ρ], it follows that

c(ρn; un,un − uhk
n ) − c(ρhk

n ; un,un − uhk
n ) ≤ C‖ρn − ρ

hk
n ‖Y‖un − uhk

n ‖V ,
c(ρn; un,un − vh) − c(ρhk

n ; uhk
n ,un − vh)

≤ C‖un − uhk
n ‖V‖un − vh‖V + C‖ρn − ρ

hk
n ‖Y‖un − vh‖V

(3.33)

Hence, using Cauchy’s inequality

pq ≤ εp2 +
1
4ε

q2, p, q, ε ∈ R, ε > 0 (3.34)

we obtain the following estimate for the displacement fields,

‖un − uhk
n ‖

2
V ≤ C(‖un − vh‖2V + ‖ρn − ρ

hk
n ‖

2
Y), ∀vh ∈ Vh (3.35)

Now, we get an error estimate on the reference value of the tissue stress level.
Subtracting equation (3.21) at time t = tn and equation (3.25) and multiplying by
a test function zh ∈ Bh, we have

(
ψ̇∗t −

(ψ∗t )hk
n − (ψ∗t )hk

n−1

k
, zh

)
Y
−

(
ψ∗t A f (ψt − ψ

∗
t )ea f (ψt−ψ

∗
t )

−(ψ∗t )hk
n−1A f ((ψt)hk

n−1 − (ψ∗t )hk
n−1)ea f ((ψt)hk

n−1−(ψ∗t )hk
n−1), zh

)
Y

= 0
(3.36)

Therefore, for all zh ∈ Bh it follows that

(
ψ̇∗t −

(ψ∗t )hk
n − (ψ∗t )hk

n−1

k
, (ψ∗t )n − (ψ∗t )hk

n

)
Y
−

(
ψ∗t A f (ψt − ψ

∗
t )ea f (ψt−ψ

∗
t )

−(ψ∗t )hk
n−1A f ((ψt)hk

n−1 − (ψ∗t )hk
n−1)ea f ((ψt)hk

n−1−(ψ∗t )hk
n−1), (ψ∗t )n − (ψ∗t )hk

n

)
Y

=

(
ψ̇∗t −

(ψ∗t )hk
n − (ψ∗t )hk

n−1

k
, (ψ∗t )n − zh

)
Y
−

(
ψ∗t A f (ψt − ψ

∗
t )ea f (ψt−ψ

∗
t )

−(ψ∗t )hk
n−1A f ((ψt)hk

n−1 − (ψ∗t )hk
n−1)ea f ((ψt)hk

n−1−(ψ∗t )hk
n−1), (ψ∗t )n − zh

)
Y

(3.37)
Taking into account that

|
(
ψ∗t A f (ψt − ψ

∗
t )ea f (ψt−ψ

∗
t ) − (ψ∗t )hk

n−1A f ((ψt)hk
n−1 − (ψ∗t )hk

n−1)
ea f ((ψt)hk

n−1−(ψ∗t )hk
n−1), z

)
Y
|

≤ C‖(ψ∗t )n − (ψ∗t )hk
n−1‖Y‖z‖Y + C‖(ψt)n − (ψt)hk

n−1‖Y‖z‖Y

(3.38)
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using several times inequality (3.34) we have

(
(ψ∗t )n − (ψ∗t )n−1

k
−

(ψ∗t )hk
n − (ψ∗t )hk

n−1

k
, (ψ∗t )n − (ψ∗t )hk

n

)
Y

≤

(
(ψ∗t )n − (ψ∗t )n−1

k
−

(ψ∗t )hk
n − (ψ∗t )hk

n−1

k
, (ψ∗t )n − zh

)
Y

+C
(
‖(ψ∗t )n − (ψ∗t )hk

n−1‖
2
Y + ‖ψ̇∗t −

(ψ∗t )n − (ψ∗t )n−1

k
‖2Y

+‖(ψt)n − (ψt)hk
n−1‖

2
Y + ‖(ψ∗t )n − zh‖2Y

)
, ∀zh ∈ Bh

(3.39)

Keeping in mind that

(
(ψ∗t )n − (ψ∗t )n−1

k
−

(ψ∗t )hk
n − (ψ∗t )hk

n−1

k
, (ψ∗t )n − (ψ∗t )hk

n

)
Y

≥
1
2k

(
‖(ψ∗t )n − (ψ∗t )hk

n ‖
2
Y − ‖(ψ

∗
t )n−1 − (ψ∗t )hk

n−1‖
2
Y

) (3.40)

by induction we find that

‖(ψ∗t )n − (ψ∗t )hk
n ‖

2
Y ≤ C

n∑
j=1

(
(ψ∗t ) j − (ψ∗t ) j−1 − ((ψ∗t )hk

j − (ψ∗t )hk
j−1), (ψ∗t ) j − zh

j

)
Y

+Ck
N∑

j=1

(
‖(ψ∗t ) j − (ψ∗t )hk

j−1‖
2
Y + ‖ψ̇∗t j −

(ψ∗t ) j − (ψ∗t ) j−1

k
‖2Y

+‖(ψt) j − (ψt)hk
j−1‖

2
Y + ‖(ψ∗t ) j − zh

j‖
2
Y

)
, ∀{zh

j}
n
j=1 ⊂ Bh

(3.41)

Next, let us obtain an error estimate for the density functions using some ideas
introduced in Fernández et al. (2010). Employing the notations Φ j = Φ(ρ j, (ψt) j −

(ψ∗t ) j) and Φhk
j = Φ(ρhk

j , (ψt)hk
j −(ψ∗t )hk

j ), rewriting the discrete variational inequality
(3.24) in the form:

(
ρhk

n − ρ
hk
n−1

k
, ρn − ρ

hk
n

)
Y

≥ (Φhk
n−1, ξ

h − ρhk
n )Y +

(
ρhk

n − ρ
hk
n−1

k
, ρn − ξ

h

)
Y
, ∀ξh ∈ Kh

(3.42)
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and taking variational inequality (3.20) at time t = tn and for ξ = ρhk
n ∈ Bh ⊂

Y , by subtracting the two inequalities with ξh = ξh
n ∈ Kh and doing some easy

algebraic manipulations we conclude that

(
ρn − ρn−1

k
−
ρhk

n − ρ
hk
n−1

k
, ρn − ρ

hk
n

)
Y

≤
(
Φn − Φhk

n−1, ξ
h
n − ρ

hk
n

)
Y

+ (Φn, ρn − ξ
h
n)Y

+

(
ρn − ρn−1

k
− ρ̇n, ρn − ρ

hk
n

)
Y
−

(
ρn − ρn−1

k
, ρn − ξ

h
n

)
Y

+

(
ρn − ρn−1

k
−
ρhk

n − ρ
hk
n−1

k
, ρn − ξ

h
n

)
Y

(3.43)

Taking into account that

(
ρn − ρn−1

k
−
ρhk

n − ρ
hk
n−1

k
, ρn − ρ

hk
n

)
Y
≥

1
2k

(
‖ρn − ρ

hk
n ‖

2
Y − ‖ρn−1 − ρ

hk
n−1‖

2
Y

)
(3.44)

applying several times inequality (3.34), we get, for n = 1, 2, . . . ,N,

‖ρn − ρ
hk
n ‖

2
Y ≤ Ck

{
‖Φn − Φhk

n−1‖
2
Y + ‖ρn − ξ

h
n‖

2
Y +

∥∥∥∥∥Φn −
ρn − ρn−1

k

∥∥∥∥∥
Y
‖ρn − ξ

h
n‖Y

+‖ρn − ρ
hk
n ‖

2
Y +

∥∥∥∥∥ρn − ρn−1

k
− ρ̇n

∥∥∥∥∥2

Y

}
+ ‖ρn−1 − ρ

hk
n−1‖

2
Y

+C
(
ρn − ρn−1 − (ρhk

n − ρ
hk
n−1), ρn − ξ

h
n

)
Y
∀ξh

n ∈ Kh

(3.45)
and, by induction in n, we then obtain
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From the definition of Φ j and Φhk

j (see also (3.16)), taking into account that
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After some algebra and using several times inequality (3.34) we obtain the
following relations:

n∑
j=1

(
ρ j − ρ j−1 − (ρhk

j − ρ
hk
j−1), ρ j − ξ

h
j

)
Y

= (ρn − ρ
hk
n , ρn − ξ

h
n)Y + (ρ0 − ρ

hk
0 , ρ1 − ξ

h
1)Y

+

n−1∑
j=1

(ρ j − ρ
hk
j , ρ j − ξ

h
j − (ρ j+1 − ξ

h
j+1))Y

≤ ε‖ρn − ρ
hk
n ‖

2
Y + C

(
‖ρn − ξ

h
n‖

2
Y + ‖ρ0 − ρ

hk
0 ‖

2
Y + ‖ρ1 − ξ

h
1‖

2
Y

+k
n∑

j=1

‖ρ j − ρ
hk
j ‖

2
Y +

1
k

n−1∑
j=1

‖ρ j − ξ
h
j − (ρ j+1 − ξ

h
j+1)‖2Y

)
(3.48)

n∑
j=1

(
(ψ∗t ) j − (ψ∗t ) j−1 − ((ψ∗t )hk

j − (ψ∗t )hk
j−1), (ψ∗t ) j − zh

j

)
Y

= ((ψ∗t )n − (ψ∗t )hk
n , (ψ

∗
t )n − zh

n)Y + ((ψ∗t )0 − (ψ∗t )hk
0 , (ψ

∗
t )1 − zh

1)Y

+

n−1∑
j=1

((ψ∗t ) j − (ψ∗t )hk
j , (ψ

∗
t ) j − zh

j − ((ψ∗t ) j+1 − zh
j+1))Y

≤ ε‖(ψ∗t )n − (ψ∗t )hk
n ‖

2
Y + C

(
‖(ψ∗t )n − zh

n‖
2
Y + ‖(ψ∗t )0 − (ψ∗t )hk

0 ‖
2
Y

+‖(ψ∗t )1 − zh
1‖

2
Y + k

n∑
j=1

‖(ψ∗t ) j − (ψ∗t )hk
j ‖

2
Y

+
1
k

n−1∑
j=1

‖(ψ∗t ) j − zh
j − ((ψ∗t ) j+1 − zh

j+1)‖2Y
)

(3.49)

Thus, we have proved the following estimate for the density function,
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and the following estimate for the reference value of the tissue stress level,
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Finally, we obtain some estimates of the mechanical stimulus field. Therefore,
subtracting equation (3.10) at time t = tn and equation (3.26), we find that
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where we used the fact that ρhk

n ≤ ρ.
Then, after easy algebraic manipulations, it follows that
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From estimates (3.35), (3.50), (3.51) and (3.53), we obtain the following esti-
mates for the numerical errors:
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Keeping in mind the regularities u ∈ C1([0,T ]; V), ψ∗t ∈ C1([0,T ]; Y) and ρ ∈
C1([0,T ]; Y) it is easy to prove that
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Finally, using a discrete version of Gronwall’s lemma (Campo et al., 2007),
combining the previous estimates Theorem 3.1 holds.

We notice that estimates (3.29) are the basis for the analysis of the conver-
gence rate of the algorithm. For instance, if we assume the following additional
regularity for the continuous solution:

u ∈ L∞(0,T ; [H2(Ω)]d),
ρ ∈ H2(0,T ; Y) ∩ H1(0,T ; H1(Ω)) ∩C([0,T ]; H2(Ω)),
ψ∗t ∈ H2(0,T ; Y) ∩ H1(0,T ; H1(Ω))

(3.56)

we obtain the linear convergence of the algorithm that we state in the following
corollary.

Corollary 3.3.2 Let the assumptions of Theorem 3.3.1 hold. Define the discrete
initial condition for the density function as follows,

ρhk
0 = Phρ0 (3.57)

where Ph is the L2(Ω)-projection operator onto Bh. Under the additional regu-
larity conditions (3.56) the algorithm is linearly convergent; that is, there exists
a positive constant C > 0, independent of the discretization parameters h and k,
such that
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The proof of the above corollary is obtained by using well-known results
on the approximations by finite elements and the projection operator Ph (see,
e.g., Clement (1975)), and some arguments already introduced in Barboteu et al.
(2005).
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3.4 Numerical implementation scheme

This novel modification model has been implemented in a FE model, through a
subroutine UMAT in Abaqus. Figure 3.5 shows the block diagram of this algo-
rithm with its implicit structure. Then, we describe different examples used to
show the behavior of the solution. In particular, we used a 2D and 3D femur
model. Although, the methodology has been explained for the isotropic model of
Jacobs (1994), the new assumption has been also implemented for the anisotropic
model of Doblaré and Garcı́a (2002). As the process is the same, we omit this
explanation, although, we show results for both models.

Figure 3.5: A block diagram of the algorithm for the modified model.

3.4.1 2D Benchmark FE model and its numerical results

We started with the demonstration of the algorithm on a simple benchmark prob-
lem. We propose a simple benchmark with four elements and we restricted the
node displacements perpendicular to the plane for the left and bottom limits (Fig-
ure 3.6). We began with the uniform initial density (ρ0 = 0.5g/cm3) and we
applied compression forces. In all the analyses we kept the same parameters that
we had used in the bone remodeling algorithm (see Table 2.1). Then, we study
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the temporal density evolution in the Stanford model and in our modified bone re-
modeling model. We apply three different loads (low, medium and high) to obtain
a different density distribution.

Figure 3.6: A simple benchmark problem

In Figures 3.7, 3.8 and 3.9, we can see that in classical Stanford model, the
density changes as time goes on, until it reaches the minimum and maximum
possible values of density (the density tends to go to extremes) (Figures 3.7, 3.8
and 3.9 - a, b, and c). However in our model, the density changes during the first
days and, as the number of days is increased, the density remains constant and
with a value consistent with the force applied (Figures 3.7, 3.8, 3.9 - d, e, and f).

Finally, we applied the modification of the model on a single quadrilateral
element. We began with the same initial density (ρ0 = 0.5g/cm3 ) and we applied
compression forces. In all the analyses, we kept the same parameters.

In Figure 3.10, we show the evolution of the density and the mechanical stim-
ulus (Figure 3.11) for different loads, and we can conclude that for higher loads
the model increases the density (formation) and for a lower load, the density de-
creases (resorption). In this modified model, we observe the stability of the bone
density evolution as a direct response to mechanical changes.
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Figure 3.7: Evolution of the density distribution resulting from the Stanford re-
modeling model for (a) 300, (b) 1000 and (c) 3000 days; and the modified model
for (d) 300,(e) 1000 and (f ) 3000 days with high load.

Figure 3.8: Evolution of the density distribution resulting from the Stanford re-
modeling model for (a) 300, (b) 1000 and (c) 3000 days; and the modified model
for (d) 300,(e) 1000 and (f ) 3000 days with medium load.
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Figure 3.9: Evolution of the density distribution resulting from the Stanford re-
modeling model for (a) 300, (b) 1000 and (c) 3000 days; and the modified model
for (d) 300, (e) 1000 and (f ) 3000 days with low load.

Figure 3.10: Temporal evolution of the bone density with different loads (N) on a
single element with the modified Stanford model.
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Figure 3.11: Temporal evolution of the mechanical stimulus with different loads
(N) on one single element with the modified Stanford model.

3.4.2 2D numerical results
Our modification of the Stanford remodeling model is applied to the previously
explained 2D FE model of the femur in Section 2.3.1 (Figure 2.6). Figure 3.12a
shows the bone density distribution obtained. We can observe how the model is
able to predict different regional areas such as the great trochanter, load line, the
cortical bone and the medular canal. It has been compared with the real bone den-
sity from the radiograph (Figure 3.2). As can be observed the general trend of the
bone density prediction agrees with the radiograph morphology. The radiograph
shows an increasingly thicker cortical structure as you move down the shaft. The
model does not show this, because it is a 2D model. This result is clearly improved
with the 3D simulation of the problem (Section 3.4.3).

In Figure 3.12b, we observe the final distribution of the mechanical stimulus.
We can also notice that the areas with more bone density correspond to areas with
a higher stimulus. Moreover, a higher mechanical stimulus appears to shift the
equilibrium towards bone formation whilst a lower one promotes bone resorption.

The parameters of the mechanical stimulus (equation (3.1)) were adjusted
through a sensitivity study. It was observed that increasing the parameter val-
ues (a and A)(Figures 3.13b and 3.13d), the bone density distribution does not
accurately reproduce the bone density distribution of a healthy bone (less corti-
cal). However, if the parameter A decreases, the model does not converge (Figure
3.13c). If a is reduced, almost no differences are observed (Figure 3.13e).
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Figure 3.12: a) The density distribution (gr/cm3) of our bone remodeling simu-
lation after 3000 days, b) Mechanical stimulus distribution of our modified bone
remodeling simulation after 3000 days.

Figure 3.13: Sensitivity study on the mechanical stimulus parameters (a and A
- Eq.3.1) after 3000 days: a) a=0.01, A=0.039 (reference values); b) a=0.01,
A=0.05; c) a=0.01, A=0.025; d) a=0.1, A=0.039; e) a=0.001, A=0.039.

In this work, a qualitative comparison has also been performed with our mod-
ification of the Stanford’s model. As outlined by Jacobs et al. (1995), the number
of load cases applied significantly affects the computational results. The Stanford
model obtains the best results in a certain number of days (T=300 days) (Figure
3.14a). At this point of increments of analyses the result contains the basic struc-
tural elements such as the cortex, medullary canal, and a qualitative distribution
of the trabecular density. Unfortunately, the results become less accurate as time
goes on, and the predicted structure generated after 1000 and 3000 days is almost
unrealistic (Figures 3.14b and 3.14c, respectively). There is no numerical sta-
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bility of the model. The modification proposed in this Thesis shows a stabilized
bone density distribution as time goes on (Figures 3.14d to 3.14f) although with
a loss of thickness of the cortical. The model needs more computational time to
stabilize, but once stabilization is achieved, it remains almost unchanged. Simi-
lar results where obtained applying this modification to the anisotropic model of
Doblaré and Garcı́a (Figure 3.15).

Figure 3.14: The density distribution resulting from a bone remodeling simulation
carried out using the Stanford’s remodeling model (Beaupré et al., 1990) for (a)
300, (b) 1000 and (c) 3000 days; and the modified model with adaptive reference
stimulus for (d) 300,(e) 1000 and (f) 3000 days.

On the other hand, a quantitative comparison has also been performed. The
surface remodeling rate (ṙ) has been analysed at all the model integration points.
Their position in the dead zone, resorption or formation area has been quantified
and represented in Figure 3.16 as time increases. The integration points located in
the dead zone are considered in equilibrium. For this reason, it is important that
all the integration points remain in this dead zone at the end of the simulation. In
fact, a non-equilibrium situation is achieved with the Stanford remodeling model
(Figure 3.16a). The integration points at the dead zone and resorption area con-
tinue increasing and reducing, respectively, as the simulation evolves, whereas
with our modification of the Stanford remodeling model (Figure 3.16b) conver-
gence and equilibrium are achieved. Nevertheless, we have to remark that there
are integration points where bone formation or resorption occur. This effect is due



56 Bone remodeling simulations: challenges, problems and applications.

Figure 3.15: The density distribution resulting from a bone remodeling simulation
carried out using the anisotropic remodeling model (Doblaré and Garcı́a, 2002)
for (a) 300, (b) 1000 and (c) 3000 days; and the anisotropic model with adaptive
reference stimulus for (d) 300,(e) 1000 and (f) 3000 days.

to the fact that we are considering three different loadings on the bone, implying
that mechanical demands change in certain regions due to these changes in the
load. If only one loading case is used, all the integration points are inside the dead
zone.

Figure 3.16: Temporal evolution of the number of points in the dead zone, in the
resorption and in the formation regions: a) the Stanford remodeling model and b)
the modified Stanford bone remodeling model.
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3.4.3 3D FE model and its numerical results
3D FE model.

The bone remodeling models have also been applied to a 3D FE model of the
femur. In this case, we used a whole femur with 32536 elements and 13590 nodes
(Figure 3.17). The loading conditions are detailed in Table 3.1 (Carter, 1987). The
angle projection is with respect to the frontal plane and sagittal plane. The femur
has also been constrained distally. The same methodology as in the 2D case has
been applied.

Figure 3.17: 3D FE mesh of the femur.

3D numerical results.

The original Stanford model and the modified bone remodeling model have been
tested and their results are shown in Figure 3.18. In this 3D model, we observe
similar results to those obtained with the 2D model. The Stanford model pro-
vides the best results in 300 days (Figure 3.18a) but after this number of days
the computed solution becomes less accurate (Figure 3.18b and c). However, the
modification shows a stabilized bone density distribution as time goes on. There-
fore, our modified model (where equilibrium is adapted) achieves convergence
(Figure 3.18 d, e and f). Similar result were obtained using modified Doblaré and
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Mean value and orientation of the forces for the three load cases.
Hip-Joint force Abductor force

Load Case Module (N) FP (◦) SP (◦) Module (N) FP (◦) SP (◦) Cycles/day
1 2316 24 6 703 28 15 6000
2 1158 -15 -35 351 -8 9 2000
3 1548 56 -20 468 35 16 2000

Table 3.1: Loading conditions considered for the 3D problem for the walking
movement (Carter, 1987): FP (◦) (frontal plane) and SP (◦) (sagittal plane). Cy-
cles/day are the number of cycle considered for each load case when the bone
remodelling simulation is considered.

Garcı́a model (Figure 3.19). The stability was achieved, moreover, the cortical
thickness was lower than the one obtained with the original Doblaré and Garcı́a
model (Doblaré and Garcı́a, 2002).

Figure 3.18: The density distribution resulting from a 3D bone remodeling simu-
lation carried out using the Stanford bone remodeling model for (a) 300, (b) 1000
and (c) 3000 days; and the modified model with adaptive reference stimulus for
(d) 300,(e) 1000 and (f) 3000 days
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Figure 3.19: The density distribution resulting from a 3D bone remodeling simu-
lation carried out using the modified Doblaré and Garcı́a bone remodeling model
for (a) 300, (b) 1000 and (c) 3000 days.

3.5 Conclusions
In this Chapter, we have studied different bone remodeling models and how we
can improve then. Firstly, we have studied the convergence/stability of the pre-
viously developed bone remodeling theory known as the Stanford model (Jacobs
et al., 1995). To improve the stability of this algorithm, a modification of the
Stanford model has been proposed which consists of the reference homeostatic
stimulus being locally dependent on the loading history that each local point is
supporting (Figure 3.12b).

Firstly, we have introduced fully discrete approximations by using the finite
element method and the explicit Euler scheme to approximate the spatial variable
and to discretize the time derivatives, respectively. Then, we have proved some a
priori error estimates (Theorem 3.3.1) from which the linear convergence of the
algorithm is deduced under some additional regularity conditions. Secondly, nu-
merical analysis of 2D and 3D FE-based bone remodeling simulations has been
presented. These results clearly show a great improvement in the stability of the
solution with the modification proposed for the Stanford model. Finally, we in-
troduced the equation (3.1) in the anisotropic model and a full analysis in 2D and
3D FE-based bone remodeling has been performed.

In addition, we have to keep in mind that this novel adaptation of the reference
(mechanostat) equilibrium mechanical stimulus improves not only the algorithm
stability, but also the biophysical adaptation of the result. In fact, we propose
that the reference equilibrium mechanical stimulus is not a constant, but a value
dependent on the loading history that this point has supported. Although other
authors have also proposed an accommodation of the reference equilibrium me-
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chanical stimulus (Schriefer et al., 2005; Vahdati and Rouhi, 2009), none of them
have carried out a numerical analysis of its convergence and stability. Different
equations have been tested for the temporal accommodation law of the reference
equilibrium stimulus, but the exponential function (equation (3.1)) has been con-
sidered the most suitable because it controls the velocity of remodeling as well
as the reference mechanical stimulus. A sensitivity analysis on the parameters of
equation (3.1) has also been carried out. Although other authors have performed
a sensitivity analysis on the rest of the model parameters (Beaupré et al., 1990;
Jacobs et al., 1995; Doblaré and Garcı́a, 2002), it would be very interesting in the
future to perform a probabilistic FE analysis of the role of all these parameters
(Pal et al., 2007, 2008).

The previous works of Jacobs et al. (1995, 1997) show encouraging results for
the prediction of the bone density. However, their model does not predict invariant
density patterns along the time. It undergoes an important change of density af-
ter obtaining the ideal distribution, which yields to a non-real distribution (Figure
3.3). Therefore, these bone remodeling models are difficult to used for the obser-
vation of bone adaptation to changes in applied loads and, furthermore, aligning
its internal structure along the time. Figure 3.14 shows a stabilized bone density
distribution as time goes on. The same result can be approximated in Figure 3.16b
which shows the quantitative stability of the resorption or formation values. The
Stanford model and its derivatives (anisotropic model) predicted an adequate pat-
tern density at 300 days but after this time period a deterioration of density began,
leading to a non-realistic distribution.

Finally, it is important to keep in mind that in the literature there are many
algorithms for modeling bone remodeling (Huiskes et al., 1987; Carter, 1987;
Frost, 1990; Weinans et al., 1992). Most of them are based on the mechanostat
theory, defining a reference equilibrium stimulus and a dead zone. Therefore, the
updated law here proposed for the reference equilibrium stimulus could be applied
to all of them.
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Some additional problems of bone
remodeling models

4.1 Introduction

Several mathematical models have been proposed in an attempt to elucidate the
features of bone adaptation at the different scales. Though at the organ, tissue
and cell level, these models mainly exist in isolation (Webster and Müller, 2011).
By integrating numerical equations into finite element models, it was shown that
the load-driven bone remodeling algorithm based on mechanosensory theory can
explain many features of bone adaptation at the tissue and cell-level (Ruimerman
et al., 2005), e.g. the formation of load-adapted microstructures, as well as the
loss of bone mass and microstructural integrity after disuse or increased osteo-
clast activity (Scheiner et al., 2013). The precise mechano-biological pathways of
load induced bone metabolism are not really known. Hence, the bone remodeling
theories are partly based on assumptions.

For that we need a multi-scale framework that can translate structural changes
at the tissue-level to changes in bone density at the organ level. By using an ana-
lytical formulation of the bone remodeling equation integrated with multiscale mi-
cromechanical models that use generalized structural models at each level of orga-
nization (Fritsch and Hellmich, 2007), such multi-step homogenization schemes
can provide a very flexible framework to derive mechanical properties at any level.
By integrating such models with bone remodeling equations, it will be possible to
predict bone remodeling at these different levels in an efficient manner. Following
this idea, Colloca et al. (2014), presented a multiscale analytical model developed
for the simulation of bone remodeling where they related the effects of structural
changes at the nanometer level to changes in bone density at higher levels. Such an
analytical formulation includes the feedback from the osteoclast-osteoblast activ-
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ity and includes the influences from mechanical stimuli and surface area available
for remodeling. Recently, a complete study of the mechano-chemical coupling
has been carried out within the generic framework that sheds a light on the dis-
tinction in the effects of static and dynamic stimuli (Klika and Grmela, 2013).
Klika et al. (2014) developed a bone adaptation model based on mechanical for-
mulation of bone tissue response but incorporating biochemical control mecha-
nisms. This chemo-mechanical coupling achieves the equilibrium in bone when
it is in a dynamic equilibrium where resorption balances deposition. All these
mechanobiological models present a better adaptation of the different scales.

In phenomenological models the link between scales is not clear. Although
there are different assumptions, we believe that there is a relationship with the
input data. Most of previous mathematical models (Chapter 2) have been focused
on describing the mechanical properties of bone using numerical approaches with
“arbitrary” initial conditions without a wide analysis of the behavior of density
distribution by changing these initial conditions.

In this chapter, we continue to study some problems of bone remodeling
models because, as we demonstrate before, most of the bone remodeling mod-
els present several restrictions and limitations. For that, we study their strong
dependence on the initial conditions. We consider that a model should achieve
the same solution with independence of the initial conditions. As it was shown
in the previous chapter, the reference stimulus depends on the load history, and
therefore, it is related to the density. This assumption shows the dependence of
the reference stimulus and the density. Therefore, their initial values should be
related. In this chapter, we show that the relationship between the stimulus and
the density occurs when there is a scale change. Therefore, in this Chapter, we
revisit the remodeling models, present the dependency of the initial condition and
we describe a new strategy for overcoming the limitation of the initial conditions
by relating the micro and macro scale through the reference stimulus.

4.2 Some additional problems of bone remodeling
models

Most bone remodeling models start the simulation with an arbitrary initial condi-
tion that have not been obtained from experimental cases and it has been selected
because it is the most suitable for their models. For example, the Stanford model
(Jacobs et al., 1995) initial density was 0.5 gr/cm3, however Weinans et al. (1992)
began the algorithm for the simulation with 0.6 gr/cm3. But if we study these
initial conditions, there is a strong dependence on these initial values. Figure 4.1
shows different density distributions in the Stanford model starting with different
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initial densities. After 300 days, we observe that the density distribution is clearly
different in all cases and we do not achieve the same result.

Figure 4.1: Density distribution in 2D Stanford model after 300 days starting with
different initial densities (0.2, 0.5, 0.8 and 1.0 gr/cm3), respectively.

In Figure 4.2, we quantitatively show the value of the final density in all the in-
tegration points at the end of the analysis starting with different initial conditions.
We can see that increasing or decreasing the initial densities, the initial densities
result also in changes of the final density distribution. In addition, a strong depen-
dence on the initial density is observed and the majority of the values remain in the
dead zone with the same initial density and do not move towards the convergence.

Figure 4.2: Density after 300 days in all nodes of the 2D Stanford model starting
with different initial densities (0.2, 0.5, 0.8 and 1.0 gr/cm3).

These variations may not be presented if we aim to study a specific case or to
analyse the effect of a prosthesis implantation in the long term. We should find a
model able to achieve the final density distribution without dependency on the ini-
tial densities selected. For that, we follow the idea that the reference homeostatic
stimulus depends on the density (Chapter 3). For this reason, we hypothesize that
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this relationship will directly affect to the initial conditions. Then, we propose a
new equation to avoid this dependency.

4.2.1 Methodology
Following the methodology developed by isotropic Stanford remodeling model
(Beaupré et al., 1990; Jacobs et al., 1995), the mechanical stimulus can be identi-
fied as,

ψ = n1/mσ (4.1)

where the effective stress is then calculated as

σ =
√

2E(ρ)U(σ(u), ε(u)) (4.2)

Therefore, it follows that

ψ = n1/m
√

2E(ρ)U(σ(u), ε(u)) (4.3)

In order to use this stimulus into a finite element code, distinction between
tissue level and apparent or continuum level has to be made following a similar
approach to the one shown in the Stanford model. To distinguish between values
between tissue and macroscopic scale, the subscript t denotes tissue level. Obvi-
ously, stress averaged over a continuum cannot be the same as it really appears in
the microstructure. The relation between the tissue-level stress stimulus and the
continuum-level one is given, from theoretical considerations as

ψt =

(
ρ̄

ρ

)2

ψ (4.4)

Therefore,

ψt = n1/m
√

2E(ρ)Ut (4.5)

In bone remodeling models, the remodeling error used in the bone remodeling
law is obtained as the difference between ψt and ψ∗t , where ψt is the stimulus that
regulates the bone remodeling responses, and ψ∗t is the reference value of the tissue
stress level of the equilibrium zone.

e = ψt − ψ
∗
t (4.6)

However, this reference stimulus is not constant as we conclude in Chapter 3,
changing with bone conditions. For that, we consider that the reference stimulus
behaves the same as the stress stimulus. Then, the equation that describes their
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behavior is the same that the tissue-level stimulus (equation 4.7) where we assume
that the effective tissue-level energy (Ut) is constant and its value is 0.035 MPa.

The value of the effective tissue-level energy has been obtained from previous
equation (equation 4.7) and the initial values for the simulation in the Stanford
model (Jacobs, 1994) (Table 2.1). We consider ρ0 = 0.5 gr/cm3 and ψ0 = 50 Mpa.
Then, the effective energy Ut is constant and its value is Ut= 0.035 Mpa.

Figure 4.3: Representation of the transition between macroscopic model of the
femur and its microstructure.

Finally, the reference homeostatic mechanical stimulus can be defined as:

ψ∗t = n1/m
√

2E(ρ)Ut (4.7)

Therefore, the relationship between the tissue-level and the continuum level is
(Figure 4.3):

ψt = F(ρ)ψ (4.8)

where F(ρ) is the relationship between the equilibrium tissue level and the remod-
eling process when we have cortical bone, we assume that if ρ = ρ̄, then F(ρ̄ = 1.
Then, equilibrium stimulus at tissue level is defined as

ψt = F(ρ)n1/mσ (4.9)

ψt = F(ρ)n1/m
√

2E(ρ)U (4.10)

We conclude that

ṙ = f
[
n1/m
√

2E
(
F(ρ)

√
U −

√
Ut

)]
(4.11)

where f is a function following the equation 2.14.
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Therefore, we define the bone remodeling rate as ṙ = f (ψt−ψ
∗
t ), as function of

the difference between ψt and ψ∗t . Adding this expression in the above equations,
we write:

ṙ = f
[
n1/m
√

2E
(
(F(ρ)

√
U −

√
Ut

)]
(4.12)

This equation has been included in previous models (Section 2.1). In Figure
4.4, we briefly show the numerical scheme implemented.

Figure 4.4: A block diagram of the algorithm for the modified model.

4.2.2 Numerical results for finite element simulations
This novel methodology has been incorporated in the classical benchmark prob-
lem corresponding to a two-dimensional FE model of the proximal femur, as ex-
plained in the Section 2.3.1. The simulation of the bone remodeling problem starts
from an arbitrary initial situation (uniform density and their corresponding initial
reference stimulus). We simulate different cases until convergence changing the
initial conditions (ρ0) for studying the independence on the initial values.

A qualitative comparison has also been performed with our modification of
the Stanford’s model. The classical Stanford model, presents different density
distribution changing the initial bone density (Figure 4.5 a, b, c and d). However,
in Figure 4.5 (e, f, g and h), the modification shows a similar bone density distri-
bution for different initial bone densities. It is noticeable that the case with low
initial bone density predicts low density distribution in the long term and vicev-
ersa, the case with high initial bone density, generates a high final bone density
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distribution. Therefore, our modified model can be considered independent of the
initial parameters. In addition, the modified model achieves convergence and the
equilibrium in the long term.

Figure 4.5: The density distribution resulting from a bone remodeling simulation
carried out using the Stanford model (Beaupré et al., 1990) for initial density
after 300 days of analysis: a) 0.2, b) 0.5, c) 0.8 and d) 1.5 gr/cm3; and using the
modified model with adaptive reference stimulus for initial density: e) 0.2, f) 0.5,
g) 0.8 and h) 1.5 gr/cm3.

Also, a quantitative comparison has been also performed. Figure 4.6 shows
the final density values in all the points of the 2D FE model. We observe that the
final density in all the points is the same independently of the initial bone density
value. Similar quantitative results are obtained in the 3D model (Figure 4.7).

Finally, applying the same methodology as in the Stanford’s model to the 3D
FE model and the Doblaré and Garcı́a remodeling model, we obtain same conclu-
sion. These results are shown in Figures 4.8, 4.9 and 4.10.
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Figure 4.6: Density after the stability in all nodes of the 2D FE model with the
modified Stanford remodeling model starting with different initial density values
(0.2, 0.5 and 1.5 gr/cm3).

Figure 4.7: Density after the stability in all nodes of the 3D FE model with the
modified Stanford remodeling model starting with different initial density values
(0.2, 0.5 and 1.5 gr/cm3).
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Figure 4.8: 3D density distribution resulting from a bone remodeling simulation
carried out using the Stanford model (Jacobs, 1994) for initial density: a) 0.2, b)
0.5, c) 0.8 and d) 1.5 gr/cm3; and using the modified Stanford model with adaptive
reference stimulus for initial density: e) 0.2, f) 0.5, g) 0.8 and h) 1.5 gr/cm3.

Figure 4.9: The density distribution resulting from a bone remodeling simulation
carried out using the Doblaré and Garcı́a model (Doblaré and Garcı́a, 2002)
for initial density after 300 days of analysis: a) 0.2, b) 0.5, c) 0.8 and d) 1.5
gr/cm3; and using the modified Doblaré and Garcı́a model with adaptive reference
stimulus for initial density: e) 0.2, f) 0.5, g) 0.8 and h) 1.5 gr/cm3.
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Figure 4.10: 3D density distribution resulting from a bone remodeling simulation
carried out using the Doblaré and Garcı́a model (Doblaré and Garcı́a, 2002)
for initial density after 300 days of analysis: a) 0.2, b) 0.5, c) 0.8, and d) 1.5
gr/cm3; and using the modified Doblaré and Garcı́a model with adaptive reference
stimulus for initial density: e) 0.2, f) 0.5, g) 0.8 and h) 1.5 gr/cm3.

4.3 Conclusions
Previous works on bone remodeling (Jacobs et al., 1995; Doblaré and Garcı́a,
2002) showed encouraging results for the prediction of the bone density. However,
these models used a remodeling law that predicts the density with only an arbitrary
value as an initial condition and a constant reference stimulus. However, if we
apply several modifications to these values, the final result may change (Figure
4.1).

In this Chapter, we present a novel assumption for the bone remodeling law
where the reference homeostatic stimulus changes according to the density (ρ).
And accordingly, the effective energy remains constant. This assumption is similar
to the one proposed by Weinans et al. (1992) who considered the energy between
the density remaining unchanged during the process, however this model was not
able to achieve the convergence. Our proposed methodology shows the qualitative
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stability of the resorption or formation values with independence of the initial
parameters of the simulation and providing accurate bone density distribution.

Our methodology shows accurate results in all cases (isotropic and anisotropic
models - 2D and 3D geometry) where the density distribution is independent of the
initial conditions. However, the simulation predicts a decrease of density in one
region, more specifically, in the cortical part (Figures 4.5 and 4.9 - e, f, g and h). If
we compare our simulation with radiography, cortical thickness is rather lower and
also, lower than Stanford results (Figure 4.1b). In the 3D cases (Figures 4.8 and
4.10), the loss of bone density is lower. However, we also observed, a significant
difference with previous cases.

Nevertheless, we consider that the improvement achieved in the modified model
is relevant. We believe that these problems could be overcome by adjusting the
reference parameters in order to improve the final result. For example, the value
of the dead zone is a theoretical value that it was admitted to justify a certain sta-
bility in the previous models (Jacobs et al., 1995). In our model, the stability is
included in the configuration with other equations, so we can consider reducing or
even eliminating the dead zone. Figure 4.11 shows the density distribution where
we can see the results when the dead zone is reduced in different widths (a 25%
-original, a 20% a 10% and 6%). Introducing this modification a wider cortical
area is predicted (Figure 4.11d).

Figure 4.11: The density distribution resulting from a bone remodeling simulation
(Stanford model) carried out using the different width of the dead zone: half-widht
a) 12.5 b) 10 c) 5 and d) 3%.

Other parameters that can improve our methodology is the modification of
the reference effective energy, because this value has been obtained from the the-
oretical parameters used in other models, but that not correspond to one actual
experimental value. Therefore, we can conclude that the model here proposed is
a step forward to continue improving bone remodeling models.
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CHAPTER 5

Different numerical approaches to
solve the inverse bone remodeling
model

One of the most challenging difficulties in creating patient-specific models is the
determination of the specific loads that each bone is really supporting. Real infor-
mation related to specific patients, such as bone geometry and bone density dis-
tribution, can be used to determine patient loads as was pointed by Vahdati et al.
(2014). In this Chapter, a theoretical methodology to estimate patient-specific
loads from bone geometry and grey-scale is here presented. We compare different
numerical approaches, such as, linear regression, artificial neural networks with
individual or multiple outputs and support vector machines. This methodology
has been theoretically applied to a 2D and 3D finite element model of the prox-
imal femur. Then, it is shown that the proposed method is capable of predicting
the loading that induces a specific bone density distribution.

5.1 Introduction

Computer science has been widely adopted by modern medicine and advances in
technologies and computers have enabled to become a vital tool in conventional
clinical practice. Nowadays, the medical information in hospitals become larger
and larger, which causes great difficulties in extracting useful information for de-
cision support, specially when traditional manual data analysis has become inef-
ficient and methods for computer based analysis are indispensable (Baxt, 1995).
Therefore, there is a need to introduce more efficient and effective computational
methods in medical analysis for decision support to help clinicians. The idea is to
build decision support tools based on numerical methods that store and use knowl-
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edge from sources such as experienced clinicians, statistical analysis or computer
simulations, and after that, these tools gather knowledge automatically, and use
optimization methods to return appropriate answers to queries or accurate predic-
tions on future data (Mitchell et al., 1997; Lavrac et al., 2000). There are many
different methods, however, Machine Learning Techniques (MLT) have shown to
be quite useful for this automation process (Langley and Simon, 1995). These
techniques are based on the ability to learn from examples, which is an important
facet of intelligence that has been an especially fertile area of study in the last
decade (Carbonell, 1983).

Some of the techniques applied in the Machine Learning Techniques (MLT),
are the Artificial Neuronal Network (ANN) and the Support Vector Machine (SVM).
Artificial neural networks are mathematical models inspired by biological neural
networks which consists of an interconnected group of artificial neurons, where it
processes information using a connectionist approach to computation (McCulloch
and Pitts, 1990; Gurney, 1997). Additionally, the multilayer perceptron (MLP),
as a representation of the ANN, is a feed-forward network characterized by its
layered structure where each layer consists of a set of perceptron neurons and
its training algorithm (Bishop, 1995). The SVM (Vapnik, 1982) constructs a hy-
perplane or set of hyperplanes in a high or infinite dimensional space. A good
separation is achieved by the hyperplane that has the largest distance to the near-
est training data point of any class (so called functional margin), since in general
the larger the margin the lower the generalization error of the classifier or regres-
sor. Whereas the original problem may be stated in a finite dimensional space, it
often happens that the sets to discriminate are not linearly separable in that space.
For this reason, it was proposed that the original finite dimensional space can
be mapped into a much higher dimensional space, presumably making the separa-
tion easier in that space. To keep the computational load reasonable, the mappings
used by SVM schemes are designed to ensure that dot products may be computed
easily in terms of the variables in the original space, by defining them in terms
of a kernel function selected to suit the problem. More details about the MLT are
described in the Appendix A.

Initially in this Chapter, an introduction about the theory of Machine Learn-
ing Techniques (MLT) and, in particular, about the Artificial Neuronal Network
(ANN) and the Support Vector Machine (SVM) algorithms as well as the classi-
cal linear regression is exposed. MLT have been previously used by researchers
to solve different classification and regression engineering problems. Although,
these techniques are being increasingly used in the field of medicine.

In this Thesis, we will introduce this methodology in the bone, particularly in
the determination of the forces acting on the bone. As mentioned in Chapter 2,
bone tissue undergoes permanent changes in response to different signals such as
external loads, hormonal influence, nutrition, etc. In particular, this process of mi-
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crostructural change is due to the relationship between bone structure and applied
loads. Many theories and mathematical models have been developed to analyze
the evolution of bone microstructure and its mechanical properties depending on
a certain loading pattern: (Huiskes et al., 1987; Beaupré et al., 1990; Doblaré
and Garcı́a, 2001; Prendergast and Taylor, 1994; Monnier and Trabucho, 1998).
Previous bone remodeling models (Chapter 2) have normally been implemented
in finite element (FE) models, and these have proved to be very useful tools for
predicting the response of bone after prosthesis implantation (Doblaré and Garcı́a,
2001; Folgado et al., 2008; Pérez et al., 2010; Caouette et al., 2012; Christen et al.,
2012a; Webster et al., 2012; Fernández et al., 2010). However, these models have
been developed for general purposes. Nowadays, the development of patient-
specific models is becoming increasingly important (Galibarov et al., 2010). This
importance lies in determining the specific loads that have caused the patient’s
bone density distribution in order to use these loads in a patient-specific study.

Knowledge of the internal loads acting on the human body during daily life
movements has a wide range of applications, from clinical assessment of motor
control patterns to prosthesis design and preclinical testing and as an input for
finite element models predicting bone adaptation. External forces are generally
measurable directly through force plates or load cells, while muscle forces and
joint reaction forces remain unknown. In the last decade, in vivo joint contact
forces acting at the hip have been recorded by instrumented prostheses, but the
results are available only for a relatively small set of patients. On the other hand,
direct muscle force measurement is not possible in humans as it is considered too
invasive.

The problem of determining the specific loads, formulated in such a way, rep-
resents an inverse approach to the common bone remodeling analysis as is usually
described in the literature, in which the apparent density distribution is estimated
by fixing the loads.

This inverse problem has been previously solved by various authors using
different numerical approaches for different applications. In fact, Fischer et al.
(1995) developed an optimization procedure that adjusted the magnitude of each
basic load to achieve the desired bone density. This approach was applied to
the proximal femur in 2D for determining the loads using quantitative computed
tomography (QCT) data (Fischer et al., 1998, 1999). Later, the approach was ap-
plied to the forearm (Fischer et al., 2003) and to the femur for different animals
(Bona et al., 2003). Bona et al. (2006) proposed a contact algorithm for density-
based load estimation and used the method to distinguish between different modes
of locomotion of animals. More recently, Christen et al. (2012a) also developed a
bone loading estimation algorithm to predict loading conditions by means of cal-
culating the loading history that produces the most uniform strain energy density
on the bone tissue. These previous approaches were based on iterative load pre-
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diction techniques which involved significant computational cost. However, there
are other numerical strategies that require less computational time. Indeed, many
researchers have been trying to solve different inverse problems in biomechanics
by developing controllers which employ intelligent computing methods such as
artificial neural networks (ANN), neural-fuzzy (NF) networks, support vector re-
gression (SVR), genetic algorithms or wavelet networks (Goulermas et al., 2005;
Liu et al., 2009; Favre et al., 2012; Cilla et al., 2012; Behrens et al., 2009). Ham-
bli’s studies (Hambli, 2011b,a; Hambli et al., 2011) used a multiscale methodol-
ogy for bone remodeling simulation using coupled finite element and ANN anal-
ysis. Nevertheless, Campoli et al. (2012) were the first to use the ANN approach
for femur load prediction from the bone density distribution. They combined a
wavelet decomposition technique with an artificial neuronal network for estimat-
ing the loading parameters of the femur. Although their results are very promising,
they can be improved by analyzing the effect of each variable on the ANN perfor-
mance. Zadpoor et al. (2013) also used ANN for prediction of tissue adaptation
loads from a given density distribution of trabecular bone in a 2D example.

5.2 Methodology

We propose a hybrid methodology based on solving two problems and comparing
their solutions: the bone remodeling problem (Section 5.2.1) and the inverse bone
remodeling problem (Section 5.2.2) (Figure 5.1).

On the one hand, the bone remodeling problem is solved using the bone re-
modeling model previously developed by Jacobs (1994) (Chapter 2). Different
loading conditions taking into account inter- and intra-individual variations are
simulated in order to obtain their corresponding bone density distributions (Sec-
tion 5.2.1).

On the other hand, the inverse bone remodeling problem is solved using three
mathematical techniques (LR, ANN and SVM) (Section 5.2.2). The input data
for these techniques are the solution of bone density distributions obtained from
solving multiple direct bone remodeling problems. The way the input data have
been selected is presented in Section 5.2.2. As a result of solving the inverse
methodology, the proximal femur loading is estimated (magnitude of the force,
its angle and its position) (Figure 5.1). These three loading values are the output
data of the proposed methodology. All the FE simulations have been performed
in Abaqus v6.11.
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Figure 5.1: Flow diagram of the computational approach.

5.2.1 Definition of the bone remodeling problem
Bone remodeling model

In this Chapter, we use one of the most reknowned internal bone remodeling mod-
els: the Stanford bone remodeling theory (Section 2.1)(Beaupré et al., 1990). In
fact, the bone density is used as an internal variable to quantify the adaptative
evolution of the microstructure that defines the mechanical behavior of the bone.
So, this model assumes that a certain level of mechanical stimulus is required to
maintain bone homeostasis and regulate bone mass evolution (Chapter 2). A theo-
retical 2D FE model of the proximal femur (see Figure 5.2) is initially used in this
chapter (Beaupré et al., 1990). This 2D FE model has been explained in 2.3.1.

The lower part of the femur is restrained along the vertical direction at all
nodes and along the vertical and horizontal directions at only one node, to avoid
rigid body movements (Figure 5.2).

Loading conditions

Following the same scheme as Jacobs (1994), we considered the remodeling be-
havior under the action of three simultaneous load cases (consecutive in the appli-
cation to the model) that characterise the global load time history for walking ac-
tivity. Walking is the most frequent activity that a patient performs (Morlock et al.,
2001). Each load case was composed of a set of loads acting on the femoral head
plus the reaction forces induced by these loads in the abductor muscle (see Table
5.1)(Figure 5.2). The first load represents the moment when the foot touches the
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Figure 5.2: 2D FE model of the proximal femur with the boundary and loading
conditions applied (Beaupré et al., 1990). Three cyclically applied load cases
were selected to characterize a typical loading history for walking activity and
the possible variation of the area of application. Each load case represents: 1-
the foot touching the floor, 2- moment of abduction, 3 - moment of adduction.

floor when walking, while the other two represent the two alternative moments of
abduction and adduction (Huiskes et al., 1987; Jacobs, 1994; Carter, 1987). Load
application is assumed to be sequential, acting in blocks of 10000 direct cycles
but with different frequencies for each one.

The simulation for the bone remodeling problem starts from an arbitrary initial
situation (uniform density ρ=0.5 gr/cm3 and isotropic behavior) and, applying a
previous load sequence, changes in the bone density distribution are computed
until convergence. During the simulation, the internal bone structure (density
and mechanical properties) adapts itself to the mechanical stimulus (see Chapter
2). After 300 increments, the bone exhibits a heterogeneous distribution of the
density and Young modulus (Beaupré et al., 1990; Doblaré and Garcı́a, 2001;
Jacobs, 1994).

In fact, real loads present inter- and intra-individual variations during the most
common activities (Bergmann et al., 2001; Heller et al., 2001). These variations
are estimated by a mean of 15% for the force magnitude and 5% for the an-
gle/orientation (Bergmann et al., 2001; Heller et al., 2001; Bitsakos et al., 2005).
The position of the load application is also varied (see Table 5.1 and Figure 5.2)
(Bergmann et al., 2001). For this reason, different load cases are considered tak-
ing into account previous physiological ranges of variation. The variation for each
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parameter is indicated in Table 5.1 and each variation represents one bone remod-
eling problem. The force corresponding to the time when the foot touches the floor
(case 1) is assumed to be predominant (higher force magnitude than the other load
cases) and the other load cases (case 2 and 3 - Figure 5.2) are assumed to be cor-
relative to case 1. Therefore, the variation of each parameter is considered with
respect to its value for load case 1, and the other load values are varied within the
same ratio. Summarizing, 1000 combinations of loading parameters have been
simulated (Table 5.1). Therefore, a total of 1000 bone remodeling problems have
been initially solved.

Mean value and orientation of the forces for the three load cases
considered. Angles refer to the vertical direction

Case Cycles/day Load value at the head Reaction force at the abductor muscle
Magnitude (N) Angle (◦) Magnitude(N) Angle (◦)

1 6000 2317 24 703 28
2 2000 1158 -5 351 -8
3 2000 1548 56 468 35

Range of variation of the loading parameters.
Parameter Variability Variations for each parameter
Force Magnitude ±15 % 20
Angle ±5 % 10
Position Indicated in figure 5.2 5

Table 5.1: Assumed load condition and its range of variation.

5.2.2 Definition of the inverse bone remodeling problem
The inverse remodeling problem aims to predict the musculoskeletal loads (output
data - loading parameters: the force magnitude, its angle and its position) on the
femur that have resulted for a specific measured bone density distribution (input
data). In the following subsections, we define the input and output data of the
inverse bone remodeling problem and then, we briefly present the mathematical
methods that are used in our comparative study.

Input and output data of the inverse bone remodeling problem

The input data for the mathematical techniques is the bone density distribution
at the proximal femur obtained from the previous 1000 direct bone remodeling
problems (Section 5.2.1) where load parameters are changed: the load magnitude,
its angle and its position. Initially, the inputs may be the density values of all the
elements of the FE model (1700 inputs). This is inappropriate for the development
of this methodology. Therefore, the number of inputs has to be reduced. Campoli
et al. (2012) used the wavelet decomposition technique in order to reduce the
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input data. In the present work, we present a different approach computing mean
and standard deviation of the bone density distribution predicted in the previous
1000 bone remodeling problems (Section 5.2.1)(Figure 5.3). From the standard
deviation contour (Figures 5.3b and 5.3c), the points with high standard deviation
throughout the geometry are selected to be the input data. From the points with
high standard deviation, 24 were seleted as the most representative ones from the
cortical layer along the diaphysis, great trochanter, the load line at the femoral
neck and the femoral head (Figure 5.3b).

As previously indicated, the output data of the proposed methodology are the
load parameters: force magnitude, angle and position.

Figure 5.3: Bone density distribution computed from the variation assumed for the
loading conditions: a) mean bone density; b) standard deviation with 24 points
assumed as inputs for the machine learning techniques; c) standard deviation with
15 points assumed as inputs for the machine learning techniques.

Mathematical techniques

Linear Regression

Linear regression is an approach to model the relationship among variables. The
linear relationship among variables comes to be determined through several con-
stant parameters. These coefficients are obtained by the classical method, mini-
mizing the mean square error obtained in the data fitting (Wilkinson and Reinsch,
1971).

Artificial Neural Network (ANN)

In our work, the back-propagation algorithm is used for training the ANN and
only one hidden layer (Figure 5.4). The sigmoid-type and the linear function have
been selected for the hidden layer and the output layer, respectively, among all the
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Figure 5.4: Schematic diagram of the architecture of a typical artificial neuronal
network: a) One neuron in the output layer b) Multiple neurons in the output layer.

possible transfer functions (Bishop, 1995) (A.1.1). The network receives inputs
from neurons in the input layer, and the output of the network is given by the
neurons in an output layer (Figure 5.4). In this work, two different architectures
of the ANN have been tested: one neuron in the output layer, therefore one ANN
has been run for each output variable (Figure 5.4a); and multiple neurons in the
output layer, i.e., a single ANN with three output variables (Figure 5.4b). The
effect of the number of neurons in the hidden layer has been also analysed to
optimize the technique.

Linear regression and the different ANN performance tested have been imple-
mented in Matlab 7.10.0.

Support Vector Machines (SVM)

In this work, we focus on the regression problem (Figure 5.5) (A.1.3). A kernel
function is used. Therefore, a gaussian kernel function has been selected. The
solution, which can be obtained from the dual problem, is a linear combination of
a subset of sample points denominated support vectors.

The SVM model has been implemented using Matlab and SVM libraries (Chang
and Lin, 2011). The learning algorithm that we used is a linear kernel function for
regression analysis.

5.2.3 Training and testing process: criteria of comparison fol-
lowing 10-fold cross validation technique.

For evaluating and comparing learning algorithms, we used 10-Fold Cross val-
idation. Cross-validation is a model validation technique for assessing how the
results of a statistical analysis are generalized to an independent data set. In this
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Figure 5.5: Schematic diagram of the architecture of a typical Support Vector
Machine (SVM) (Sayad, 2010).

thesis, we used 10-Fold Cross validation by dividing randomly the data into two
segments: one to learn or train the model (90% of the data) and another one (10%
of the data) to validate or test the model. This process has been done 10 times
(10-Fold Cross), changing the segments for validation or testing in each process
(Figure 5.6) . The advantage of using a 10-Fold Cross validation is that all the
data are eventually used for training, and testing and the final error is independent
of the selected data in each model (Stone, 1974; Fushiki, 2011). Training data
set is used to adjust the weights on the neural network and the testing data set is
used only for validating the final solution in order to confirm the actual predictive
power of the network (Twomey and Smith, 1997). This process has been used for
the three mathematical approaches.

So as to predict the accuracy of these mathematical approaches, the absolute
of relative error (RE) and the correlation coefficient (RSQ) have been used. The
RE has been multiplied by 100 to get percents.

RE = abs(
θ̂ − θ

θ
) (5.1)

RS Q =
σθ̂θ

σθ̂σθ

(5.2)

where θ̂ is the predicted data, θ is the real data, σθ̂θ is the covariance and σθ̂

and σθ are the standard deviations.
The results of relative error are calculated based on the training and the testing

sets of the mean 10 Fold-cross. The training data are used to generate the model,
so the corresponding error value set indicates if the model has been well trained,
while the test data are used to validate it. The corresponding error indicates if the
model is appropriate to solve the problem.
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Figure 5.6: Illustration of a k-fold cross validation with k = 10. The green boxes
correspond to the training data and the purple ones to the data that will be used
for testing.

5.3 Results

5.3.1 Performance of the three mathematical approaches

In order to compare the results obtained by the three predictive mathematical ap-
proaches, each method has been initially applied to predict each output parameter
(force magnitude, angle and position) independently. In other words, each method
has been applied three times to obtain each of the three outputs, because some
methods do not allow multiple outputs. Table 5.2 shows the mean relative error
results obtained by the three methods applied independently for each output and
the total error which has been computed summing up previous independent cases.
The RE during training is lower than during testing (ANN and SVM). For all the
methods, the RE computed for the force magnitude is lower than that correspond-
ing to the angle and force position. When estimating the total RE, the ANN gives
the lowest RE value (lower than 1%). Using linear regression and SVM, the total
training RE is 1.26% and 15.2%, respectively.

The correlation coefficient between the vector containing the actual loading
parameters and the vector containing predicted loading parameters is greater than
0.999 for all the test data set, indicating the excellent ability of the linear regres-
sion and ANN in the prediction of the load outputs (see Table 5.2).
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The absolute of relative error (RE)% and the correlation coefficient (RSQ).
Linear Regression ANN (15 neurons) SVM

Force Magnitude
RE Training 0.09727 % 0.00107 % 9.199 %
RE Testing 0.10533 % 0.00273 % 0.932 %
RSQ Testing 0.99977 0.99999 0.976

Force Angle
RE Training 0.25842 % 0.00257 % 6.001 %
RE Testing 0.55726 % 0.00522 % 1.441 %
RSQ Testing 0.99718 0.99999 0.947

Force Position
RE Training 0.61120 % 0.00255 % 0.007 %
RE Testing 0.60468 % 0.00508 % 0.002 %
RSQ Testing 0.99988 0.99999 0.998

Total
RE Training 0.96689 % 0.0062 % 15.207 %
RE Testing 1.26727 % 0.0130 % 2.375 %
RSQ Testing 0.998943 0.99999 0.974

Table 5.2: The absolute of relative error (RE) and the correlation coefficient (RSQ)
of the learning techniques analysed.

In Figure 5.7, the horizontal axis shows the different neurons used in the hid-
den layer during training while the vertical axis shows the error produced by the
ANN performance with individual outputs (one neuron in the output layer -Figure
5.4a). It can be observed that the RE estimated for both the training and testing are
quite low and that the RE of the training decreases as the number of neurons in-
creases. However, from 15 neurons the testing error increases when more neurons
are used in the hidden layer. This result means that there is an ANN over-training
when increasing the number of neurons in the hidden layer.

The computational costs of the methods studied are very different. With lin-
ear regression, the calculation time is a few minutes for all cases. For the ANN,
the computation training time is 53 minutes for 5 neurons in the hidden layer, 1
hour and 50 minutes for 10 neurons in the hidden layer, and the rest of the cases
tend to grow exponentially (once the optimal parameters have been chosen by 10-
fold cross validation and depending on the stopping criterion used). Therefore,the
relationship between computational cost and relative error result, is very well in
linear regression. The validation process time is negligible and provides an imme-
diate estimated response. Each FE analysis takes 10 minutes. The 1000 FE cases
and the mathematical techniques have been run in a computational cluster of 1535
cores and 3.5 Tb of the RAM.
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Figure 5.7: Evolution of the absolute relative error (RE) depending on the number
of neurons in the hidden layers during ANN training and testing with individual
outputs.

5.3.2 Performance of the ANN with multiple outputs

The ANN technique can be constructed to obtain multiple outputs following the
architecture shown in Figure 5.4b (in our case three neurons in the output layer
corresponding to the three output variables) (Section 5.2.2). Therefore, we have
compared the performance of the ANN with individual outputs (one neuron in the
output layer- Section 5.3.1 and Figure 5.4a) and multiple outputs (three neurons
in the output layer - Figure 5.4b) (see Table 5.3).

The absolute of relative error (RE)%.
ANN individual output ANN multiple outputs

15 neurons
RE Training 0.00621 % 1.1048 %
RE Testing 0.01304 % 1.1804 %
RSQ Testing 0.99999 0.99999

40 neurons
RE Training 0.00422 % 0.1197 %
RE Testing 0.02271 % 0.1553 %
RSQ Testing 0.99999 0.99999

Table 5.3: Comparison of the absolute of relative error (RE) and the correlation
coefficient (RSQ) between the ANN with individual outputs and multiple outputs
(3) with 15 neurons and 40 neurons in the hidden layer.
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Figure 5.8: Evolution of the absolute relative error (RE) depending on the number
of neurons in the hidden layers during ANN training and testing with multiple
outputs using (a) 1000 cases with 24 inputs; (b) 500 cases with 24 inputs; (c)
1000 cases with 15 inputs; (d) 500 cases with 15 inputs.

The absolute of relative error (RE)% and the Standard deviation (σ)
RE σ

Training 0.1197 % 0.022 %
Testing 0.1553 % 0.041 %

Table 5.4: The absolute of relative error (RE) and the Standard deviation (σ) for
the ANN with multiple outputs and 40 neurons in the hidden layer.

The REs estimated for both training and testing considering the ANN with
multiple outputs are relatively higher than considering the ANN with individual
outputs (Table 5.3). Although, the ANN with individual outputs generates over-
training (Figure 5.7). When multiple outputs are considered (Figure 5.8a) the REs
is reduced as the number of neurons of the hidden layer is increased. Both training
and testing RE are of the same order. No over-training is predicted when multi-
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ple outputs are considered (Figure 5.8a). Table 5.4 shows the standard deviation
computed for the ANN with multiple outputs with 40 neurons in the hidden layer.
This deviation presents lower values, this fact indicates that the data points tend
to be very close to the mean.

5.3.3 Validation of the ANN with multiple outputs

Figure 5.9: Scheme of the ANN validation comparing the densities.

In order to validate the ANN performance for femur loading prediction, one
loading case not previously used for the training nor the testing has been chosen,
i.e., none of the 1000 bone remodeling problems initially solved (Section 5.2.1).
This new load case (force magnitude value, angle and position) is applied to the
2D FE model of the femur, so a new bone remodeling problem is solved until
convergence is achieved. The bone density values of the 24 representative points
(Section 5.2.2) are incorporated into the ANN as its input data and the three out-
puts are predicted using 40 neurons in the hidden layer. For the validation, these
outputs are again incorporated into the 2D FE model of the femur and the bone
density distribution is predicted (Figure 5.9). The error between both bone density
distributions have been computed and represented (maximum error ‰) in Figure
5.10a. It is observed that the error is less than 1% at all points and there are small
differences in the head of the femur and in the greater trochanter. The same pro-
cess has been carried out choosing a load case out of the range of the variations
studied (Table 5.1). It is observed that the error is higher than in the other case but
it remains sufficiently low (less than 10% at all points) (Figure 5.10b).
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a) b)

Figure 5.10: Error ‰ at bone density distribution computed between: a) the load
from ANN and the predictions of the bone remodeling model; b) the load outside
limits from ANN and the predictions of the bone remodeling model.

5.3.4 Optimization of the ANN with multiple outputs

In order to optimize or simplify the problem and therefore reduce the time of
training and testing, we consider that it is necessary to reduce the number of cases
employed and the number of input data (at present 1000 cases and 24 inputs,
respectively).

The effect of using 500 cases instead of 1000 has been analysed (each case
corresponds to one variation of the loading parameters). The same range of varia-
tion for the loading parameters has been used. We have only increased the relative
distance between cases. We also use a 10-Fold cross validation dividing randomly
the 500 cases into two segments (90% of the data for training and 10% for test-
ing). Reducing the number of cases reduced the training and testing errors mainly
when few neurons in the hidden layer of the ANN were used (Figures 5.8a vs
5.8b). When the number of neurons increased (i.e. 40), the differences related
with the number of cases used were smaller, although the training error was still
smaller with 500 cases (0.05055%) than with 1000 cases (0.11978%).

We have also analysed the effect of reducing the number of inputs. It is known
that in the ANN, the weight of each neuron of the input layer corresponds to the
weight of each variable or attributable input. Hence, the weight of each input has
been studied in the original ANN (1000 cases and 24 inputs) in order to identify
which neurons had less influence and may be removed (Figure 5.3c). Reducing
the number of inputs (15 inputs) increased the training and testing errors when few
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neurons were used in the hidden layer (Figure 5.8c and 5.8d). When the number
of neurons increased, there were almost no differences using 24 or 15 inputs.

Figure 5.11: Computational time using different number of cases and inputs as
the number of neurons in the hidden layer increased.

Finally, the main advantage of decreasing the number of cases and inputs is
to reduce the computational cost. In Figure 5.11, the difference in computational
cost depending on the number of cases and inputs is shown. A high number of
cases/inputs implies a higher computational cost. We can observe that with 1000
cases and 24 inputs (40 neurons) in the hidden layer, we obtained a computational
cost of 28.5 hours and the test RE is around 0.16%. However, if we reduce the
number of cases (500), the error is equal but the computational cost is reduced
to more than half (from 28.5h to 11.2 h). We obtained similar results when de-
creasing the number of inputs. The computational time with 15 inputs and 500
cases has been decreased at 5.8h, although the error undergoes a slight increase
(0.19%). It is also noticeable that the reduction in the number of inputs is much
more important than the reduction in the number of cases in terms of consuming
time.
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Figure 5.12: (a) 3D FE model of the proximal femur with the boundary and load-
ing conditions; (b) Standard deviation of the bone density distribution computed
from the variation assumed for the loading conditions with 24 points and (c) 15
points assumed as inputs for the ANN.

5.3.5 Application of the ANN with multiple outputs to a 3D
case.

This methodology based on the ANN with multiple outputs has been extrapolated
to a 3D real case in order to demostrate the potentiality of this tecnique in a situ-
ation closer to reality. For this purpose, we have used a specific CT-scanned 3D
proximal femur, which give us the neccesary inputs for our algorithms in order to
numerically estimate the femur loads. A real proximal femur has been scanned
and the images have been automatically segmented using Mimics v15.0 (Materi-
alise, Leuven, Belgium). At the end of this process the 3D FE model has been
constructed and it is composed of 74460 tetrahedral elements (Figure 5.12). In
this 3D example, in order to simplify the problem complexity the output data of
the ANN (loading parameters) has been focused on the force magnitude and its
angle. Therefore, the loading conditions (Table 5.1) are exactly the same than
in the 2D case, but extrapolating the load values to the 3D problem. The femur
has been also constrained distally. The number of the inputs has been selected as
shown in Sections 5.2.2 and 24 and 15 (through the weight of each input) bone
density values have been chosen as inputs of the ANN with multiple outputs (Fig-
ure 5.12). The algorithm has been trained with the same structure as in the 2D
case (see Section 5.2.2) and in Figure 5.13 we can see the predicted results from
the computational analysis.
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The results derived from 3D models are very similar to the ones obtained with
a 2D model. Using few neurons at the hidden layer, the RE is higher than in the
2D case, but as the number of neurons at the hidden layer increased (i.e. 40), the
differences related with the number of cases used were smaller. For example, with
500 cases, 15 inputs and 40 neurons in the hidden layer, the RE is 0.16% while
for the 2D case is 0.19% of the testing relative error.

Figure 5.13: Evolution of the absolute relative error (RE) depending on the num-
ber of neurons in the hidden layers in 3D model during ANN training and testing
with multiple outputs using (a) 1000 cases with 24 inputs; (b) 500 cases with 24
inputs; (c) 1000 cases with 15 inputs; (d) 500 cases with 15 inputs.

5.4 Conclusions
There is an increasing need to create a methodology to predict musculoskeletal
loads for patient-specific models (Fluit et al., 2014). This information will be
of considerable value in patient-specific musculoskeletal treatments, especially
if it can be obtained easily and in a short time. Currently, there is no estab-
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lished methodology for the prediction of musculoskeletal loads, although initial
attempts have been described in previous works (Christen et al., 2012a). One
way to overcome this limitation is the implementation of the inverse problem,
which can provide the necessary information from known data (the bone den-
sity distribution through computational tomography data-CT or Dual-energy X-
ray absorptiometry-DEXA). The main disadvantage of techniques for solving the
inverse problem is that the computational time is very high (Fischer et al., 2003;
Bona et al., 2006).

In this Chapter, we have applied three different mathematical techniques for
predicting the load history. These techniques provide an extensive database which
allows us to obtain a specific load case in short time. The three methods achieved
this goal, but not with the same results. In all cases, it has been observed that
the correlation coefficient (RSQ) is very close to 1. The high accuracy in this set
indicates that the model has been well trained (see Tables 5.2, 5.3 and 5.4). On
the one hand, the mean REs for training and testing in the three methods are small
(Table 5.2). ANN and linear regression demonstrate a good load prediction with
a RE lower than 1% for both training and testing methods. On the other hand,
the RE shows that the SVM presents accuracy problems with the prediction of the
load (Table 5.2). SVM computes REs at around 15.2% and we consider this as
a poor approach. The reason is that the bone remodeling problem is quite linear,
as the linear regression demonstrates. The SVM technique was implemented to
compare its accuracy with that of the linear regression technique. It was concluded
that a lower degree of accuracy was achieved with the SVM. Therefore, it is not an
adequate tool for the bone remodeling algorithm here presented. However, one of
the main features of the SVM is its high capacity to be updated during the training
process (Cos et al., 2010; Butt et al., 2013) and it may present a great potential
with other non-linear bone remodeling theories and for other applications (Kunkle
et al., 2013).

If we compare the error estimated for each output, the force magnitude pro-
duces a lower error than the angle and position. This occurs because more related
data have been used for the training.

ANN has been also applied following the scheme represented in Figure 5.4b.
The results obtained with multiple outputs are similar to those computed for indi-
vidual outputs (Tables 5.2 and 5.3). The difference between both ANN approaches
is that when using multiple outputs we need to train with more neurons to obtain
the same error, and this increases the training time. This is not a problem because
the execution time is almost the same. It can be even lower because the ANN with
multiple outputs only uses a single ANN for the same result instead of three in-
dependent ANNs. In both cases, the error is lower than 0.1% for the best training
result. Another advantage of using multiple outputs is that there is no overtraining
(Figure 5.8a vs. Figure 5.7-individual outputs). Finally, the results obtained with
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different inputs and cases are very similar. It has been observed that the error is
high when fewer cases and inputs are used, but increasing the cases and inputs
exponentially increases the computation time. Therefore, for a high number of
neurons in hidden layer, the optimized ANN procedure uses less cases and less
inputs (500-15) because it computes similar results in test error than using a high
number of cases and inputs, but the computational time decreases significantly.
The ANN methodology with multiple outputs has been applied to a real 3D prob-
lem, where we have obtained errors around 0.16% for the best training result (40
neurons in the hidden layer, 500 cases and 15 inputs), as shown in Figure 5.13,
which justifies the potential use of the proposed methodology.

We have to keep in mind that in this Chapter it is not possible to quantify the
degree of accuracy achieved by this approach to solve a real inverse bone remod-
eling problem, due to the lack of patient-specific real data, measured for one spe-
cific bone geometry. However, we have proposed here a quantitative comparison
of different ANN-based approaches from a theoretical point of view, presenting
an optimization procedure to improve the accuracy of our approach. In fact, we
study a theoretical bone remodeling example, showing that the optimization of
the ANN is adequate. And, then it has been extrapolated to a 3D real geometry
obtaining similar conclusions. In spite of considering simplified single 2D and 3D
geometries for modeling the bone, this simplification does not reduce the impor-
tance and generality of the obtained results. The 3D model used corresponds to
a real proximal femur. We have not been able to check the validity of the theo-
retical methodology proposed, because its corresponding loading conditions were
unknown. But the results computed for the testing procedure indicate that the
methodology proposed will work with real data. One of the advantages of these
mathematical techniques (ANN, for example) is its feedback capacity (Franco and
Cannas, 2000; Ferrante et al., 2004). Although, we have not been able to analyze
this capacity, this technique would allow to work with real data subjects with dif-
ferent bone shape, weight, height, age, gender, etc. Actually, it is going to be
presented in Chapter 6.

Another limitation of our study is that the density values considered as input
data come from a theoretical remodeling analysis and not from a real CT. Nev-
ertheless, we have also assumed that the algorithm used for bone remodeling has
sufficient potential to obtain a representative distribution of the apparent density
in function of different loads (Pérez et al., 2010). However, other bone remodeling
algorithms could also be used, such as those described by Huiskes et al. (1987),
Prendergast and Taylor (1994), Caouette et al. (2012) and Webster et al. (2012).

Mean and standard deviations of the bone density distribution were computed
for the range of variation of loading. The points with a high standard deviation on
the bone density in all representative areas (24 points) were initially considered
as input data. If the subject changes (weight, height, age) the real loads will be
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updated, but the most determinants points will be approximately the same ones.
If this study is extrapolated to a real femur with CT-data available, this will al-
low us to obtain the density of the inputs from the Hounsfield Units (HU) (grey
level from the images). But there will be also a lack of accuracy on the load,
because the CT data used to come from clinical sources (with or without calibra-
tion phantom). Then, a relationship between the bone density and HU needs to
be considered (Morgan et al., 2003; Peng et al., 2006; Taddei et al., 2004). These
relationships are also a potential source of error in modulus data (Taddei et al.,
2004). Directly related with this issue is that adding noise to the bone density
images will provide results a little closer to a real application. In fact, when image
acquisition is performed, a certain degree of background noise is present. There-
fore, it becomes necessary to pre-filter the images (Gavgani and Dogrusoz, 2012;
Wang et al., 2013) before the grey scale level is computed and methodology here
proposed can be applied.

A further limitation of the present model is related to the load values consid-
ered. Only abductor muscle and hip joint contact forces were taken into account
(Bergmann et al., 2001; Heller et al., 2001). It was assumed that the force corre-
sponding to the moment when the foot touches the floor (case 1 - see Figure 5.2)
was predominant and the other load values were estimated as correlative to case
1. Despite this limitation, a wide range of variation for the loading conditions was
considered (Bergmann et al., 2001; Heller et al., 2001; Bitsakos et al., 2005).

In order to conclude, femur loading prediction has been achieved by the inte-
gration of two complementary engineering methodologies: bone remodeling al-
gorithms through finite element (FE) modeling and the inverse bone remodeling
problem through different mathematical techniques. A quantitative comparison of
the bone density distribution for different cases with the ANN method and pre-
dicted by the bone remodeling model was also performed. In conclusion, ANN
and linear regression represent powerful tools to predict femur loading conditions.
ANN appears to be the most accurate technique when using multiple outputs. This
technique needs a higher computation training time than using individual outputs
but, despite this, it provides a more immediate response.



CHAPTER 6

Application of bone remodeling
models for bone load estimation

The systematic development of patient-specific computer models for the anal-
ysis of personalized treatments is currently a reality. In fact, many advances have
been recently developed to create virtual Finite Element-based models which
recreate with accuracy patient-specific geometry and material properties from
techniques based on quantitative image analysis. However, to determine the patient-
specific forces, we need a full gait analysis in combination with a musculoskeletal
model. In this Chapter, we originally determine the patient-specific forces from
the tomographies used to evaluate bone material properties in five patient tibias.
Actually, we combine those images with bone remodeling simulations (Chapter
2) and artificial neuronal networks (Chapter 5). The methodology here proposed
is able to predict the tibia loading conditions.

6.1 Introduction

There is currently a general trend in healthcare for personalized medicine that
includes use of imaging techniques, genetic analyses, and extensive biomarker
evaluation to determine dedicated diagnosis or treatment protocols that differ for
each specific-patient. Such protocols appreciate the differences with respect to
e.g. shape morphology, genetics, and overall physiology of each individual in
a much more extensive manner. The biomechanics are interested in mechanical
functioning of bodies, e.g. the shape and morphology of bone on the one hand
and the structural performance related to its mechanical function on the other
hand. The relationship between form and function is of primary importance since
such types of biomechanical analysis could help us to understand the evolutionary

95
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biomechanics of species as well as to study biological tissues with the structural
and mechanical aspects as their major function.

Development of better techniques for diagnosis and treatment of skeletal dis-
eases requires application of bone analysis techniques to specific patients. To do
patient-specific bone analysis, one needs additional information pertaining to in-
dividual patients so as to personalize the biomechanical models of bone behavior,
improve the sensitivity and specificity of the obtained analytical results, and pro-
vide the patients with personalized health care (Cowin and Doty, 2007). That is
why patient-specific bone analysis often starts from a set of images that are meant
to provide the additional information needed for personalization of biomechanical
models.

Images alone are, however, not enough for providing all the information that is
required for patient-specific analysis of bones. At least two other types of informa-
tion are needed, namely functional data and material properties. Functional data
including the kinematics of patient’s movements and the external forces exerted
to the patient body during those movements (kinetic data) is needed to determine
the internal musculoskeletal loads experienced by bones including joint reaction
forces and muscle forces (Carbone et al., 2015). As for the material properties
of bones, empirical relationships between bone density values measured using
imaging modalities and elastic properties of bones are often used for obtaining
patient-specific material properties (Campoli et al., 2014). However, the empir-
ical relationships are not available for all bones and maybe drastically different
from one patient to another.

6.1.1 Patient specific modeling
Patient-specific modeling is the development of computational models of human
pathophysiology that are individualized to patient-specific data (Poelert et al.,
2012). Patient-specific modeling is gaining more attention from research groups
around the world because of its potential to improve diagnosis, optimize clini-
cal treatment by predicting outcomes of therapies and surgical interventions, and
inform the design of surgical training platforms. Most current medical diagnos-
tic practices lead to rough estimates of outcomes for a particular treatment plan
(Kent and Hayward, 2007), and treatments and their outcomes usually find their
basis in the results of clinical trials. However, these results might not apply di-
rectly to individual patients because they are based on averages. If patient-specific
bone analysis is going to be used in clinical settings, it needs to satisfy two crite-
ria. First, it should provide clear added value for clinical diagnosis and treatment
above that of currently available clinical tools. Second, it should be time and cost-
effective. The first criterion relates to the accuracy of the analyses whereas these
to their cost-effectiveness.
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Patient-specific models are becoming increasingly important by the clinical
demand of specifics treatments (Neal and Kerckhoffs, 2010). Thanks to advances
in different technologies (computed tomography (CT), magnetic resonance imag-
ing (MRI), gait analysis) have enabled the creation of more patient-specific mod-
els (Lekadir et al., 2015). However, direct subject-specific estimation of bone
loads by means of in vivo imaging remains challenging (Zadpoor and Weinans,
2015).

The combination of patient-specific joint and muscle force-based models with
consistent bone geometry into finite element-based models are a very important
advance for creating specific working models that allow to perform predictive
analysis of personalized treatments. Vahdati et al. (2014) combined gait analysis
and a subject-specific musculoskeletal model with subject-specific bone geometry
in a computational bone remodeling methodology to predict bone density distri-
bution. The results confirmed that the predicted bone density distribution in the
proximal femur is drastically influenced by the inclusion of subject-specific load-
ings. González-Carbonell et al. (2015) used the patient-specific geometry and
material properties to study the tibial torsion using CT. Also, Carey et al. (2014)
created subject-specific FE models of the tibiofemoral joint using dynamic stereo-
radiography data and kinematic analysis. Although these aforementioned models
provide full information on bone properties, several difficulties arise for their ap-
plication in clinics due to the amount of data.

6.1.2 Musculoskeletal models
Musculoskeletal models have been useful tools for virtual orthopedic surgery.
Inverse dynamics techniques are used in gait analysis to calculate the net joint
torques that the musculoskeletal system (Ambrósio and Kecskeméthy, 2007) pro-
duces during human locomotion. Musculoskeletal models are mathematical meth-
ods providing an approach to muscle and joint loading for analyses in vivo. In a
musculoskeletal model the morphology of muscles, joints and bones is numeri-
cally represented with a set of anatomical parameters in order to investigate and
quantify musculoskeletal interaction. In its simplest form with the inverse dy-
namic approach, the motion of segments and external forces are inputs for the
model. Generally in gait analysis, these inputs are collected using a motion analy-
sis system (e.g. Vicon, Optotrak) which measures 3D position of markers on bony
landmarks on body segments. Force plates mounted in the floor of the lab collect
ground reaction force during foot contact. With a linked segment model defining
position and axes of the joints and inertial properties of the segments (Hinrichs,
1985; Koopman et al., 1995), torques with respect to the joints can be calculated.
Subsequently, when muscles are defined in the model, muscle force can be de-
termined given the moment arm of the muscle lines. If the number of muscles is
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more than mechanically necessary, an optimization is required to share the deter-
mined joint torque over the defined muscle elements. In most cases, muscle force
is optimized by minimizing a force related objective function, such as the sum of
muscle forces or (squared) muscle stresses (Erdemir et al., 2007; Tsirakos et al.,
1997). To determine the most optimal combination of muscle forces, a muscle
force is imposed between physiological boundaries (typically zero and maximal
force per muscle). Inverse muscle models, defining contraction and excitation
dynamics, are used to estimate the required neural input for a given muscle force.

Figure 6.1: Musculoskeletal models (TLEM 2.0) implemented in the Any Body
Modeling System. The obtained model consisted of 12 body segments (head-arms-
trunk, pelvis, and right and left femur, patella, tibia, talus and foot), 11 joints
(L5S1 and left and right hip, knee, patello femoral, talocrural and subtalar) and
21 DOFs (Fluit et al., 2014).

Several musculoskeletal models have been developed to study for example
gait, jumping or cycling (Zajac, 1989; Pandy, 2001). Most models reviewed by
Zajac (1989) and Pandy (2001) are simple 2D models that can be used to gain
insight in the principles of control of movement and the role of its components.
Several anatomical studies have been published containing information on the
modeling parameters for the lower extremity, containing for example muscle at-
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tachments sites (Brand et al., 1982) or muscle parameters (Wickiewicz et al., 1983;
Spoor et al., 1991; Friederich and Brand, 1990). Unfortunately, none of these sets
are complete which implies that when constructing a complete musculoskeletal
model different data sets have to be combined or missing parameters have to be es-
timated. In recent decades, multiple methods have been developed to improve the
performance of musculoskeletal patient-specific models (Fluit et al., 2012, 2014)
(Figure 6.1). Carbone et al. (2012) showed errors in the estimated position of mus-
cle attachment sites that affected muscle force predictions. Subsequently, Carbone
et al. (2015) combined morphing of bone surface, with muscle volumes and func-
tional optimization of muscle-tendon architecture for creating a musculoskeletal
geometry dataset. This part, is linked with muscle-tendon attachment sites and
lines-of-action (Pellikaan et al., 2014), or muscle volumes (Carbone et al., 2012),
showing that subject-specific models resulted in more reliable outcome, while
conventional anthropometric scaling laws were inadequate and caused unrealistic
muscle activity predictions.

Musculoskeletal models that have been developed and are currently on the
market are not easily accessible for surgeons because they are not user-friendly
and do not present the data in a “clinically relevant” way. Most of these method-
ologies are not easy to prove the clinical benefits due to the complex process
involved and their large computational cost. In addition, the estimation of the
musculoskeletal loads requires information about the movements of an individ-
ual patient. So, these complex models not are applicable to patients. It is worth
remarking that it is very difficult to measure loads in vivo, using non-invasive pro-
cedures. Hence, these models have the status of a research tool, but are not used
by surgeons in their daily practice. To facilitate the use of these models, a more
clinic oriented approach is therefore required.

6.1.3 Load estimation
Several studies have tried to estimate loads solving the inverse problem with-
out using musculoskeletal models and using different numerical approaches. In
fact, Fischer et al. (1995) developed an optimization procedure that adjusted the
magnitude of each basic load in 2D to achieve the desired bone density. Bona
et al. (2006) proposed a contact algorithm for density-based load estimation and
used the method to distinguish between different modes of locomotion of animals.
More recently, Christen et al. (2012a) also developed a bone loading estimation al-
gorithm to predict loading conditions by means of calculating the loading history
that produces the most uniform strain energy density on the bone tissue. Cam-
poli et al. (2012) were the first to use the Artificial Neuronal Network (ANN)
approach for femur load prediction from the bone density distribution. They com-
bined a wavelet decomposition technique with an ANN for estimating the loading
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parameters of the femur. Zadpoor et al. (2013) also used ANN for prediction
of tissue adaptation loads from a given density distribution of trabecular bone in
a 2D example of the femur. Garijo et al. (2014b), as was shown in Chapter 5,
presented a methodology where the specific load that the bone is really support-
ing was predicted through different mathematical techniques by utilizing the bone
density distribution of the patient. They used a single femur where they predicted
the loading conditions that induces a specific bone density distribution with a good
accuracy in ANN.

6.2 Methodology
Therefore in, this chapter we present a general methodology in order to determine
the forces that a subject-specific tibia is supporting from CT grey data through
an image-based analysis. In order to determine the loads that a subject-specific
tibia is supporting, a computational-based approach is defined, which combines
different numerical tools widely used in bone image analysis and bone mechanics.
For that, we relate the methodology previously developed in Chapter 2. We used
the bone remodeling model (Section 2.2- Anisotropic model) for the prediction
of the density and then, we used this data for training our Artificial Neuronal
Network (ANN) (Chapter 5).

For that, the proposed methodology is presented as follows. First, we de-
scribe this computer approach to determine the patient-specific forces. Next, we
present the method of how we are going to validate this novel methodology. So,
we present the final patient-specific cases that are studied. Finally, to quantita-
tively evaluate the predictive capacity of this novel methodology, we compare
these forces with those obtained for each patient from an individual-based gait
analysis and subsequent musculoskeletal subject specific force prediction.
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Figure 6.2: Schematic flow chart of steps involved in subject-specific predictions
of tibia loading.
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6.3 Computational-based methodology for estimat-
ing patient-specific loads

To apply this methodology (see Figure 6.2), we require the patient-specific bone
geometry and its bone apparent density, which can be obtained from individual CT
data (Hounsfield Units - HU) through current standard image analysis (Bitsakos
et al., 2005). Therefore, from this analysis, we are able to construct a patient-
specific FE model that replicates the main characteristics of the bone: its geometry
and heterogeneous material properties (Figure 6.2-left).

This FE model is going to be used for intensive bone remodeling simulations
(Doblaré and Garcı́a, 2001) (see Chapter 2) with multiple different load cases that
come from inter- and intra-subject variability (Motion data - Figure 6.2-right).
From the multiple simulations, we obtained different bone density patterns for
each load conditions. Then, we selected the apparent density and volume at dif-
ferent regions of interest (ROIs) defined for the tibia in all the analyses. Actually,
these data (ROIs from remodeling) and their corresponding loads (from the mo-
tion database) have been used for training the Artificial Neural Network (ANN)
(see Chapter 5 and Appendix A.1.1). Through multiple iterations, the ANN is
trained obtaining a correlation between ROIs and forces (Figure 6.2).

After training the ANN (Figure 6.2- bottom left), we introduce the density
and volumes values at the ROI regions from the subject-specific CT data (HU)
as input data in the ANN. And, the ANN will predict the subject-specific forces
(output value)(Figure 6.2).

6.4 Validation of the model by means of gait analy-
sis.

In order to validate the ANN performance for tibia loading prediction, we com-
pare previous ANN-based predicted loads (section 6.3) with the loads obtained
from the patient-specific musculoskeletal model (see Figure 6.3) and the 3D gait
measurements. 3D gait analysis, regarding kinematics and ground reaction forces
of subjects were obtained from the Twente Lower Extremity Model (TLEM 2.0)
data set (Figure 6.1). TLEM 2.0 is a new comprehensive data set of the muscu-
loskeletal geometry of the lower extremity which is based in medical imaging data
(Carbone et al., 2015).
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Figure 6.3: Schematic flow in subject-specific predictions of tibia loading.

6.5 Subject-specific data.
Previous computational-based model has been tested with five healthy subjects.
They had no history of major injury, and had not undergone orthopedic surgery
on the lower limb. We specifically chose them in order to include a wide variety
of subjects in terms of age (23-61 years), gender (two men, three women) and
weight (58 kg to 90.4 kg) (Table 6.1). The procedures developed in this study were
approved by the ethical committee of the region Arnhem-Nijmegen (Netherlands).
A written informed consent was obtained for each subject.

6.5.1 Subject-specific geometry.
In order to model the subject-specific geometry, full computational tomography
(CT) scans of every subject left leg region were obtained (Kolk et al., 2014) (Fig-
ure 6.4). The CT images were imported to Mimics® 17.0 (Materialise, Leuven,
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Subject Age Sex Weight HU max HU min Elements
(N◦ FE)

Subject 1 23 Male 83.1 1603.14 -72.03 41510
Subject 2 26 Male 90.4 1568.1 -87.55 77270
Subject 3 27 Female 58.0 1858.8 -92.21 77777
Subject 4 23 Female 77.6 1579.52 -65.30 71739
Subject 5 61 Female 70.7 1836.93 -77.60 30504

Table 6.1: Subject-specific data used in the study.

Figure 6.4: Cutting view of the tibia and fibula with the grey scale (CT images):
a) Subject 1, b) Subject 2, c) Subject 3, d) Subject 4 and e) Subject 5.

Belgium). We performed a semiautomatic segmentation of left tibia and fibula
and their corresponding 3D geometrical reconstruction of each bone. Afterwards,
a union area was created between tibia and fibula that simulates the cartilage be-
tween both bones. The FE meshes were generated by 3-matic® (Materialise, Leu-
ven, Belgium) through a semi-automatic meshing procedure.

Every tibia mesh was built by means of tetrahedral elements of size 3 mm ap-
proximately (see Table 6.1 and Figure 6.5a). The used element size is inside the
asympotic region of convergence and represents a good trade-off between numer-
ical accuracy and computational cost.

Subsequently, we defined the anatomical landmarks and joint centers for every
patient. Then, the origin of local reference frame coincides with the midpoint
between the medial (MM) and lateral malleoli (LM) (Figure 6.5b). The axis Y is
the line connecting the midpoint between the tips of the medial (MM) and lateral
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Figure 6.5: a) FE model and zoom in proximal condyles where the load is applied.
b) Local coordinate frames of tibia and talus segments (MC: most medial point
of the medial condyle of the tibia, LC: most lateral point of the lateral condyle of
the tibia, MM: medial malleolus, LM: lateral malleolus) and rotation center joint
(RJ).

malleoli (LM), and the midpoint between the most medial point on the border of
the medial tibial condyle (MC) and the most lateral point on the border of the
lateral tibia condyle (LC). The axis Z is the line lying in the plane defined by
the tips of the medial (MM) and lateral femoral malleoli (LM) and the midpoint
between the most medial point on the border of the medial tibial condyle (MC) and
the most lateral point on the border of the lateral tibia condyle (LC), perpendicular
to the Y- axis, pointing to the right (see Figure 6.5b). And finally, axis-X is the
line perpendicular to both Y and Z-axis. In order to localize the knee rotation
center, the positions of the skin markers were identified. The rotation center of
the tibia-fibula joint (RJ) was approximated based on a cylindrical fit through the
femoral condyles and the trajectory of the tibia-fibula with respect to the femur
given by the musculoskeletal model (Carbone et al., 2012; Pellikaan et al., 2014)
(see Figure 6.5b).

The load characteristics (Section 6.5.3) will be expressed relative to this local
reference frame and will be applied through rigid beams that connect the rotation
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of joint (RJ) with a surface over the proximal tibial condyles. Bilinear quadri-
lateral elements were created in the surface of the proximal condyles in order
to apply loading conditions uniformly distributed in the knee joint (Figure 6.5a).
This process was repeated for every subject.

Therefore, the beams and the layer of elements over the proximal tibia condyles
were assumed as rigid. For the cartilage elements (joint between tibia and fibula),
Young’s modulus was assumed as 10.0 MPa and Poisson’s ratio as 0.45 (Jin and
Lewis, 2004).

For the bone remodeling simulation (Section 6.3- Chapter 2), each tibia was
initially assigned a uniform bone density of 0.5 g/cm3 and was fixed distally dur-
ing the whole analysis. Changes in the bone density distribution are computed
until 400 days (see Chapter 2 - Doblaré and Garcı́a (2001)).

Figure 6.6: Definition of the inputs for the ANN based on the following ROI’s:
a-d) Diaphysis (4 proportionality parts where separated the cortical and trabecu-
lar bone), e) Metaphysis (upper), f) Metaphysis (lower) and c) Central diaphysis
(cortical and trabecular bone volume).

In the tibia FE model, we have selected seven regions-of-interest (ROIs) to
study the average apparent density in these areas (Figure 6.6 a-g). The diaphysis
has been divided in four proportional parts (Figure 6.6 a-d). In each part, we have
separated the cortical (ρ ≥ 1.2 gr/cm3) and the trabecular bone (ρ < 1.2 gr/cm3)
using the image grey level or Hounsfield Unit (HU) density values; so here, we
have eight (Figure 6.6 1-8) average density values in these four ROI’s. We have
also divided the proximal metaphysis in two volumes, upper and lower, two ad-
ditional inputs (9-10), where we compute their average density (Figure 6.6e-f).
Therefore, we have ten inputs data that are the average bone density distribution
within the ROI’s. Additionally, we selected the central area of the diaphysis (Fig-
ure 6.6g) and we computed the volume of cortical (11) and trabecular bone (12) as
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two additional inputs. So finally, we have twelve inputs for the ANN (see Chapter
5).

6.5.2 Subject-specific density
For computing the density from the HU values, the FE meshes were imported into
Mimics® 17.0 again and different material properties were assigned to relate the
bone mineral density with the HU. In the literature, different relationships between
bone apparent density and HU can be found for the different bone types, mainly
of the lower extremities (Peng et al., 2006). In the present study, we have used a
linear relationship as proposed by Bitsakos et al. (2005).

From every subject CT data (see Table 6.1 and Figure 6.4), the HU maximum
(HUmax) and minimum (HUmin) values were obtained and were correlated with
1.92 gr/cm3 and 0.5 gr/cm3 bone density values, respectively. These values were
introduced in eq. 6.1, so the bone density value at every point is computed as:

ρi = 0.5 +
1.92 − 0.5

HUmax − HUmin
(HUi − HUmin) (6.1)

6.5.3 Subject-specific musculoskeletal loads
Every subject experiments different gait trials using the TLEM 2.0 (Carbone et al.,
2015). Musculoskeletal loads were used to define the load patterns that are applied
to the tibia. We assumed that the knee joint force is the one that predominantly
defines the bone density distribution of the tibia and all forces are expressed in
the local reference frame of tibia and fibula (Section 6.5.1). From subject-specific
musculoskeletal load data, we evaluate the knee joint forces in X, Y and Z axis
for all the subjects involved, computing maximum forces values (see Figure 6.7).
Table 6.2 shows the maximum force in each direction for each subject.

Simulation loads

For the bone remodeling simulations, we also assumed that the maximum force
X, Y and Z are consecutively applied to simulate tibia loading. These three con-
secutive loading cases were applied (Fy, Fx and Fz) acting in blocks of 10000
direct cycles but with different frequency for each one (6000, 2000 and 2000, re-
spectively) (Doblaré and Garcı́a, 2001). The first load (Fy) represents the moment
when the foot touches the floor during walking, while the other two represent the
two alternative movement of the tibia. The first load is assumed to be the predom-
inant (high frequency) (see Chapter 2). These loads have been applied through the
position of the rotation of knee joint (RJ) (Section 6.5.1).
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Figure 6.7: Forces Fx, Fy and Fz of the Knee joint during the gait cycles. Maxi-
mum forces values at X, Y, and Z direction are applied as loading conditions for
the tibia bone remodeling simulations.

To represent the majority of real cases, different loading conditions taking
into account inter-individual variations were simulated in order to obtain their
corresponding bone density distributions for the ANN training. Given that we do
not have a motion database with full information of many subjects, we used as
motion data the information provided by the subjects studied in the work (Kolk
et al., 2014; Fluit et al., 2014). For that, we consider the two subjects with higher
difference on the in maximum loads (Table 6.2) of our musculoskeletal model
and we calculate the mean of all forces. For the range of variation, we estimated
a range of variation of 35% of this mean force calculated for representing the
majority of population.

Finally, nine variations of each force value (Fx, Fy and Fz) are considered
within the 35% range of variation. When one force value is varied, the rest remain
constant. Summarizing, 729 (9x9x9) combinations of loading parameters have
been simulated for every subject. Therefore, a total of 729 bone remodeling prob-
lems have been initially solved for each subject (see Figure 6.2) in order to train
every subject-specific ANN. Summarizing, the ANN training has been performed
with the 12 ROIs value of each of the 729 bone remodeling problems and their
corresponding arbitrary loads.
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Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Fx 156.68 153.61 117.98 126.06 156.79
Fy -2171.38 -2859.93 -2013.05 -1983.66 -3245.17
Fz -391.04 -318.85 -369.78 -314.42 -263.59

Table 6.2: Maximum force of load cases from the gait cycle of the five subjects.

All the FE simulations have been performed in Abaqus v6.14. and they have
been run in a computational cluster of 224 cores and 576 Gb of the RAM.

6.5.4 Performance of the ANN - based simulations

In order to predict the accuracy of this technique, the absolute of relative error
(RE) and the correlation coefficient (RSQ) have been computed as well as in Chap-
ter 5, through the following expressions:

RE = abs(
θ̂ − θ

θ
) (6.2)

RS Q =
σθ̂θ

σθ̂σθ

(6.3)

where θ̂ is the predicted data, θ is the real data, σθ̂θ is the covariance and σθ̂

and σθ are the standard deviations.
The results of the relative error are calculated based on the training and the

testing sets of the mean 10 fold-cross (see Chapter 5). The training data allows to
generate the model, so the corresponding error value set indicates if the model has
been well trained, while the test data are used to validate it. The corresponding
error indicates if the model is appropriate to solve the problem.

6.6 Results

6.6.1 Quantitative performance of the ANN - based simula-
tions

The performance of the ANN needs to be checked in order to determine its suit-
ability for the present problem. Table 6.3 shows the mean error results obtained
for each case. The RE computed during training and testing are lower than 1%.
And the RSQ error is very close to 1. This means that the ANN is well trained
and the force estimation is accurate.
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The absolute of relative error (RE) % and the correlation coefficient (RSQ).
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Force X
RE Train 0.082 % 0.127 % 0.053 % 0.04 % 0.158 %
RE Test 0.061 % 0.043 % 0.019 % 0.018 % 0.035 %
RSQ 0.999 0.999 0.999 0.999 0.998

Force Y
RE Train 0.006 % 0.011 % 0.004 % 0.002 % 0.004 %
RE Test 0.040 % 0.002 % 0.001 % 0.001 % 0.001 %
RSQ 0.999 0.999 0.999 0.999 0.999

Force Z
RE Train 0.060 % 0.035 % 0.031 % 0.020 % 0.065 %
RE Test 0.040 % 0.015 % 0.010 % 0.008 % 0.015 %
RSQ 0.999 0.999 0.999 0.999 0.999

Table 6.3: Comparison of the relative error (RE) and the correlation coefficient
(RSQ) in all subjects.

6.6.2 Quantitative comparison of personalized forces between
gait measurements and ANN-based analysis

In order to validate our methodology, we compare the forces predicted by the
ANN (Section 6.3) with the forces obtained from the corresponding subject gait
analysis (Table 6.2 and Section 6.4). We have computed the relative error between
the predicted forces (predicted data) from the ANN and the gait analysis forces
(real data).

We observe in Table 6.4 that force Y (force in the vertical direction of the
tibia) is accurately predicted in all the cases. Values of this force are considerably
higher than the others (Fx and Fz) (see Figure 6.3). Therefore, as forces in Y are
higher, it is more difficult to estimate forces in X and Z direction, causing larger
error in those directions. Additionally, Fx and Fz are very small values. Therefore,
relative error could be very high, due to a very small Fx or Fz value. However,
if we compute the force error through its total force, the error is lower than 6%,
which clearly indicates a good prediction.

In order to evaluate the predictive capacity of this methodology for each indi-
vidual patient, we compute the relative error when patient-specific inputs were in-
terchanged between patients and introduced in another ANN based-patient model.
We compared the predicted force module with the corresponding patient gait anal-
ysis data.

In all the cases, except for case 1, the error is minimum when we compare
the predictive forces with each patient-specific forces, clearly showing that each
patient presents a realistic pattern of the forces. However, in the case 1, the error
is very similar for all the force conditions (except case 2 and 5), clearly indicating
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The absolute of relative error (RE)%.
Force X Force Y Force Z Total Force

Subject 1
Gait 156.68 -2171.38 -391.04 2211.87
ANN 188.80 -2014.78 -493.84 2083.00

Error% 20.50 7.21 26.29 5.83

Subject 2
Gait 153.61 -2859.93 -318.85 2881.75
ANN 201.82 -2780.65 -443.23 2822.97

Error% 31.38 2.77 39.01 2.04

Subject 3
Gait 117.98 -2013.05 -369.78 2050.13
ANN 78.24 -1934.15 -652.23 2042.66

Error% 33.69 3.92 76.38 0.36

Subject 4
Gait 126.06 -1983.66 -314.42 2012.38
ANN 321.71 -1905.91 -125.16 1936.92

Error% 155.20 3.92 60.19 3.75

Subject 5
Gait 156.79 -3245.17 -263.59 3259.63
ANN 252.34 -3198.52 -283.63 3220.97

Error% 60.94 1.44 7.61 1.19

Table 6.4: Relative error (RE) between forces from Gait and ANN predictive for
all subject.

that in this patient is more difficult to estimate the personalized forces in compar-
ison with other subjects.
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The absolute of relative error (RE)%.

Gait Analysis Subject 1 - ANN Subject 2 - ANN Subject 3 - ANN Subject 4 - ANN Subject 5 - ANN

Subject Force Force Error% Force Error% Force Error% Force Error% Force Error%

Subject1 2211.87 2083.00 5.83 2752.39 24.44 2046.59 7.47 1949.07 11.88 2628.76 18.85

Subject2 2881.75 2216.73 23.08 2822.97 2.04 2124.59 26.27 1979.41 31.35 2549.75 11.52

Subject3 2050.13 2219.48 8.26 2752.00 34.24 2042.66 0.36 2251.94 9.84 2586.34 26.15

Subject4 2012.38 2083.50 3.53 2605.03 29.45 2024.60 0.61 1936.92 3.75 2689.32 33.64

Subject5 3259.63 2640.34 19.00 3344.09 2.59 3228.00 0.97 2865.94 12.08 3220.97 1.19

Table 6.5: Relative error (RE) between forces from Gait and ANN predictive for all subjects.
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Figure 6.8: Differences between predicted bone density from the force of ANN
(predicted data) and density from force of the Gait analysis (real data) for 12
ROIs.

6.6.3 Quantitative comparison of the density distribution in
the tibia.

Finally, the predictive forces estimated from the ANN - based analysis are again
incorporated into the personalized FE model of the tibia in order to compute the
bone density distribution by means of direct bone remodeling simulations (See
Chapter 2). In parallel, we introduced the force from the corresponding gait anal-
ysis in the FE model to obtain the bone density distribution.

The relative errors between the 12 inputs values (Figure 6.5) have been com-
puted and represented (maximum error %) in Figure 6.8. It is observed that the
error is low in all ROI’s areas.

In most cases, the relative error is higher in the trabecular ROI regions than in
the cortical ones (Figure 6.8). This fact occurs because we compute the relative
error dividing by the current density, that in the case of trabecular bone is very
low.

6.7 Conclusions

There is an increasing need to create a systematic methodology to predict person-
alised musculoskeletal loads for patient-specific models. This information will be
of considerable value in patient-specific musculoskeletal treatments (as orthopedic
surgery), especially if it can be obtained easily and in a short time. Currently, the
patient-specific forces are obtained through the development of the corresponding
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dynamical musculoskeletal model. Therefore, we need to perform an extensive
subject gait analysis. These models are very accurate and very complete, provid-
ing information of all muscles (position, load values, etc) during the walking cycle
(Fluit et al., 2012, 2014), however it is not easy to apply in the clinic. In addition,
sometimes, the subject cannot move, so he/she is not able to perform the actions
needed for the gait analysis.

In this Chapter, we present a methodology able to predict the forces that a
subject-specific tibia is supporting from CT data. It is possible to obtain the spe-
cific geometry and the density for our methodology with a simple CT data, and
it is not necessary to add any special requirement for the patient. Therefore, this
methodology can be easily applied in the clinics. Our methodology has been
tested in five patients obtaining good results. The comparison with gait analysis
proves the good accuracy of our model (errors relative to the total force are less
6 %). However, the force results in the horizontal directions (Fx and Fz) are not
very accurate. If absolute error would be computed, the error would be much
lower. The reason is that we use a simplified model for the bone remodeling and
we only considered the knee contact force acting on the tibia. This is one limi-
tation of our methodology although its influence is reduced on the global result,
where the density distribution is accurately predicted. On the other hand, we need
to suppress the muscle, assuming that they are less influential for the later patient
clinical treatments.

Additionally, from the musculoskeletel model, we have observed that Fx and
Fy forces values are not very high and their variability during the walking cycle
is really small (Fx=137.3 ±15% and Fz=327.3 ±19.5%), respectively. However,
the Fx and Fz values predicted with our methodology presented a higher variabil-
ity (Fx =200 ±61% and Fz=388.7 ±67.8%). This fact indicated that Fx and Fz
forces values are highly influenced by the presence of the other muscles forces
because their value is relative smaller than Fy force value. The vertical force (Fy)
is considerably higher, so its consequences on bone remodeling is less affected
by the presence of other muscle forces and the accuracy on its prediction is so
high. According to Vahdati et al. (2014) the prediction of the density distribution
in patients depends on the subject-specific loading condition, although they used
all the forces. However, we can clearly demonstrate the relationships between the
density values and the subject-specific force values. If we compare every subject-
specific CT image (Figure 6.4), we clearly observe that case 2 and case 5 present
more cortical area than the other cases. This fact is in agreement with the value of
every subject force, cases 2 and 5 present a high value of gait forces (Table 6.2).

Another limitation is the high number of relationships between CT numbers
(HU) and bone properties (Pérez et al., 2010). Some of these relationships, may
not be very precise and introduce errors in the predictions. This limitation could
be solved if the CT scan is performed using a validated phantom. An accurate
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estimation of bone density would improve the accuracy of the subject-specific fi-
nite element model (Schileo et al., 2008), and consequently the prediction of the
patient-specific loads. Additionally, bone properties extracted from the CT scans
cannot include bone anisotropy, although the bone remodeling simulations take
into account this actual anisotropy. For future works, the consideration of more
complex image analysis algorithms (Bitsakos et al., 2005) that allow to deter-
mine bone anisotropic properties will provide additional information that would
improve the accuracy of the force prediction.

Finally, the last limitation of this methodology is its high computational cost,
because we need to run multiple bone remodeling simulations and we need to train
the ANN to obtain a very accurate result. However, it is possible to use the ANN
trained model of a similar patient, to obtain a faster prediction. Additionally,
we could use extrapolation methods in order to accelerate the bone remodeling
simulations (Mohaghegh et al., 2014). In our opinion, the methodology presented
in this work opens a new strategy for the systematic creation of patient-specific
models, facilitating the methodology for its clinical application.
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CHAPTER 7

Conclusions and Future work

This chapter summarizes the work accomplished throughout the previous chap-
ters, recapitulating the main conclusions and highlighting the original contribu-
tions of this Thesis. Finally, several open future lines are proposed.

7.1 Summary

The main objective of this Thesis has been the study of the bone behavior dur-
ing the remodeling process through computational models, taken into account
their problematic, more relevant challenges and applications. With this purpose, a
computational methodology has been developed that is able to evaluate the bone
density of an specific patient and predict the loads that this bone is supporting.

Firstly, we have studied two classical bone remodeling models, one isotropic
(Stanford model) and another anisotropic (Doblaré and Garcı́a model). In both
cases, we have presented a full mathematical analysis showing their predictions.
Afterward, we have showed some mathematical problems of the anisotropic model
and we have presented an extension of the previous law with improvements in the
reabsorption process (Mengoni and Ponthot, 2015).

Subsequently, in Chapter 3 and 4, we have justified that the current bone re-
modeling models present some numerical limitations. Many researchers have
tried to find the most appropriate mathematical laws to describe bone behavior,
without either getting a complete analysis. In this Thesis, we have proposed two
novel assumptions that improve the remodeling models. Actually, in Chapter 3,
we have modified the Stanford (Jacobs, 1994)and anisotropic bone remodeling
model (Doblaré and Garcı́a, 2002), based on the reference homeostatic stimu-
lus, which now depends on the loading history that each point is supporting. For
that, we have considered that the reference stimulus is not constant and changed
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with the apparent density. This modification improves the stabilization of the nu-
merical results corresponding to the spatial distribution of the apparent density
and, in consequence, the convergence of the algorithm. This algorithm has been
tested in 2D and 3D models, where we demonstrate that the density achieves a
spatio-temporal equilibrium. Also, we have performed a mathematical analysis to
demonstrate the linear convergence of the isotropic bone remodeling algorithm,
incorporating previous assumption, where the reference homeostatic stimulus is
non-constant. Finally, in the results, we have clearly showed that this modification
improves both bone remodeling models.

Another modification has been proposed in Chapter 4, in which we have stud-
ied the strong dependency of the initial condition on bone remodeling models and
we have developed a method capable of decreasing this dependency. For that, we
have changed the relationship between the organ level and tissue level through
the new equation where the reference homeostatic stimulus changes according to
the density and the tissue effective energy remains unchanging. This modification
improves the uniqueness of the solution, independently of the initial conditions
selected and clearly helps in its numerical stability.

Furthermore, we have showed some applications of these models and how
these models can be applied to a specific subject. First, we have developed a gen-
eral methodology for obtaining the loads that bone supports. For this purpose, we
have applied three different mathematical techniques for loads prediction: Arti-
ficial Neuronal Network (ANN), Support Vector Machine (SVM) and linear re-
gression. These techniques allow us to obtain a specific load case in short time
after the training. For that, the three mathematical models have solved the inverse
process through a high amount of data obtained with different bone remodeling
models. After an iterative process, ANN and linear regression have demonstrated
a good theoretical load prediction with a low relative error. However, the SVM
has presented accuracy problems with the prediction of the load. Due to the good
accuracy of ANN, we have developed this technology with multiple outputs and
a real 3D femur geometry obtaining similar results. Also, it has been performed
a sensitive analysis with different inputs and number of cases and finally, we have
studied the computational cost of the training process.

Following the methodology proposed in Chapter 5, we have applied it in five
real clinical cases in Chapter 6. For that, we have presented a process able to
predict the forces that a subject-specific tibia is supporting. These data have been
obtained using the specific geometry and the bone density distribution generated
by simple CT data. Subsequently, we have obtained the load by entering the
density and volume at certain ROIs from the CT in our predictive model. The pre-
dicted load has been compared with the loads from the subject gait analysis. The
comparison between the predicted and gait forces has proved the good accuracy,
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especially in predicting the vertical force (main force). However, the force that re-
sults in the horizontal directions (Fx and Fz) were not such accurately predicted.

7.2 Conclusions
Summarizing, the main conclusions of this Thesis are grouped and they can be
summarized as follows:

• Bone remodeling models

– Bone remodeling models present some numerical limitations that can
affect to the interpretation of the results.

– Reference homeostatic stimulus is one of the main key parameters that
controls the bone density distribution and we concluded that it cannot
be remained constant.

– Changing reference homeostatic stimulus according to the loading his-
tory, it achieves to improve the stability of the density distribution in
bone remodeling simulations.

– Bone remodeling simulations present a strong dependency of the ini-
tial conditions.

– The relationship between the micro (tissue) and the macro (organ)
level, is fundamental for the development of phenomenological bone
remodeling models. There are multiple relationships in the literature
and it is necessary to validate a method able to deal with all these
variables (Colloca et al., 2014)

– Adequate multiscale link between micro an macro scale allows to im-
prove stability on bone density distribution and in consequence, allows
to obtain the solutions with independence of the initial conditions

• Mathematical approaches to estimate the loads

– The creation of numerical techniques that allows obtaining the load
that each subject-specific bone supports without development of the
gait experiment analysis of the patient is a very relevant application
of bone remodeling simulations. The inverse bone remodeling model
achieves this challenge obtaining the loads through the apparent den-
sity measured through CT image analysis.

– Machine learning techniques are accurate techniques for solving the
inverse bone remodeling problem.
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– ANN and linear regression represent powerful tools to predict femur
loading conditions.

– The relation between the density distribution and the loads is almost
linear.

– SVM presents worse results due to the linearity of the data.

– ANN presents multiple options for obtaining the result as single or
multiple outputs.

– The amount of data used for the training influences on the computa-
tional cost, and is not involved in the optimization problem.

• Subject-Specific musculoskeletal loading of the tibia

– There are clearly relationships between the density values, subject-
specific force values and the corresponding geometry.

– The bone remodeling model predicts accurate density distribution in
relation with the HU.

– It is possible to obtain the load in a patient with non-invasive tech-
niques.

– The methodology presented in this work opens a new strategy for the
systematic creation of patient-specific models, facilitating the method-
ology for its clinical application.

7.3 Original contributions

To our knowledge, some aspects of this thesis are completely new and the fore-
most original contributions are the following:

• A formulation for bone remodeling models that ensures the stabilization of
the numerical results corresponding to the spatial distribution of the appar-
ent density and in consequence, ensuring the convergence of the model. In
this formulation, the algorithm adapts the reference homeostatic stimulus
according to the supported loads.

• A theoretical analysis has been performed to demonstrate the linear con-
vergence of the bone remodeling algorithm incorporating a non-constant
reference homeostatic stimulus.
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• Formulation and development of a new bone remodeling model based on
adaptation of organ and tissue levels. This novel relationship considers the
reference homeostatic stimulus dependent on the apparent density and tis-
sue energy remains constant during the whole process, improving the non-
dependency on the initial conditions.

• A methodology for obtaining the loads that the bone supports through three
numerical approaches: artificial neural networks (ANN), support vector ma-
chines (SVM) and linear regression (LR). For that, it is necessary to com-
bine multiple bone remodeling analyses that is the input data-based for the
methodology.

• A methodology that combines inverse bone remodeling models, artificial
neuronal networks and medical image analysis is able to predict patient-
specific loads in tibia.

7.3.1 Publications in peer-reviewed journals

The publications on international journals achieved during the Thesis period are
listed below:

1. N. Garijo, J. Martı́nez, J. M. Garcı́a-Aznar, M.A. Pérez. Computational
evaluation of different numerical tools for the prediction of proximal femur
loads from bone morphology. Comput. Methods Appl. Mech. Engrg. 268,
437-450, 2014. (Chapter 5).

2. N. Garijo, J.R. Fernández, M.A. Pérez, J.M. Garcı́a-Aznar. Numerical sta-
bility and convergence analysis of bone remodeling model. Comput. Meth-
ods Appl. Mech. Engrg. 271 253-268, 2014. (Chapter 3).

3. N. Garijo, N. Verdonschot, J.M. Garcı́a-Aznar, M.A. Pérez. Subject-Specific
musculoskeletal loading of the tibia: Computational load estimation. Bone.
(Under review) (Chapter 6).

4. N. Garijo, M.A. Pérez, J.M. Garcı́a-Aznar. A multiscale modeling ap-
proach based on the stability. (In preparation).(Chapter 4).

7.3.2 Congress and conference contributions

The following communications have been presented during the development of
this Thesis:
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1. N. Garijo, M. Remacha, A. Alberich-Bayarri, J.M. Garcı́a-Aznar, M.A.
Pérez. Patient-specific simulations of human bones: CT data and bone re-
modelling models. Oral presentation. Materialise World Conference 2012.
LEUVEN (BELGIUM). April 2012

2. N. Garijo, A. Alberich-Bayarri, M.A. Pérez. Patient-Specific simulation of
the human radius. Oral presentation. 18th Congress of the European Society
of Biomechanics (ESB). LISBON (PORTUGAL). July 2012

3. N. Garijo, J. Martı́nez, J.M. Garcı́a-Aznar, M.A. Pérez. Different math-
ematical techniques to estimate femur loads. Oral presentation. Second
meeting of the Spanish National Chapter of the European Society of Biome-
chanics (CapESB-SP). SEVILLA (SPAIN). October 2012

4. N.Garijo, M.J. Gómez-Benito, M. Remacha, M.A. Pérez, J.M. Garcı́a-
Aznar. CAD-BONE: analysis and design of our bones. Oral presentation.
Congress: Researchers’ Night 2012. ZARAGOZA (SPAIN). September
2012

5. N. Garijo, J. Martı́nez, J.M. Garcı́a-Aznar, M.A. Pérez. Different numerical
approaches for the prediction of proximal femur loads. Oral presentation.
19th Congress of the European Society of Biomechanics (ESB). PATRAS
(GREECE). August 2013

6. N. Garijo, J. Martı́nez, J.M. Garcı́a-Aznar, M.A. Pérez. Different numerical
approaches for the prediction of proximal femur loads. Oral presentation. V
International Conference on Computational Bioengineering (ICCB). LEU-
VEN (BELGIUM). September 2013

7. N. Garijo, S. Walscharts, M.A. Pérez, L. Vigneron, J.V. Sloten, G.H. van
Lenthe, J.M. Garcı́a-Aznar. Towards the creation of patient-specific bone
remodeling models. Oral presentation. V International Conference on
Computational Bioengineering (ICCB). LEUVEN (BELGIUM). Septem-
ber 2013

8. N. Garijo, M.A. Pérez, J.M. Garcı́a-Aznar. Bone remodeling simulations:
challenges, problems and applications. Poster. 7th World Congress of Biome-
chanics (WCB). BOSTON (USA). July 2013

9. N. Garijo, A. Vahdati, G.H. van Lenthe, M.A. Pérez, J.M. Garcı́a-Aznar.
Numerical algorithms for Patient-specific predictions of proximal femoral
loads. Oral presentation. 12th International Symposium on Computer Meth-
ods in Biomechanics and Biomedical Engineering (CMBBE). AMSTER-
DAM (NETHERLANDS). October 2014
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10. N. Garijo, M.A. Pérez, J.M. Garcı́a-Aznar. Stability of bone remodeling
models. Oral presentation. 12th International Symposium on Computer
Methods in Biomechanics and Biomedical Engineering (CMBBE). AMS-
TERDAM (NETHERLANDS). October 2014

11. N. Garijo, M.A. Pérez, J.M. Garcı́a-Aznar. An efficient approach for the
stability of bone remodeling models. Oral presentation. 21th Congress of
the European Society of Biomechanics (ESB). PRAGUE (CZECH REPUB-
LIC). July 2015

7.4 Future lines of work
The variety of approaches presented in this Thesis is only a small contribution to
the understanding of bone adaptive behavior. Results and conclusions obtained
throughout this work raise new questions and suggest possible lines of research
that need to be explored. The most important can be listed as follows:

• Probabilistic analysis of the bone remodeling model.

Improve bone remodeling models changing the “theoretical” variables as
dead zone, to reproduce more accurately the bone density. And compare
these variables with experiments. Additionally, apply previously developed
(Enns-Bray et al., 2014) probabilistic techniques that could help in the cre-
ation of more realistic bone remodeling models

• Bone remodeling after prosthesis implantation.

Apply previous improved bone remodeling models to study and predict the
bone density evolution after a prosthesis implantation. Previous models
present some problems for studying the effect of a prosthesis implantation
in the long term. The methodology proposed allow to study the density in
the long-term, as well as the density loss in different regions. This can help
to improve the design and positioning of the prosthesis.

• Improve the ANN methodology.

Obtain a patient-specific database for increasing the ANN methodology
based on clinical cases, that allow to improve the prediction.

Improve the methodology allowing feedback with new data.

Introduce new variables in the ANN techniques as age, weight, sex, ... for
obtaining a best prediction of the load and apply this methodology in other
long bones.
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Extrapolate methods in order to accelerate the bone remodeling simulations
and obtain the load prediction in short time.

Study the anisotropy from image analysis for improve the comparison with
computational results and decrease the error value in the predictive method-
ology.
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The learning paradigm

A.1 Machine Learning Techniques (MLT)
Machine learning is a type of artificial intelligence that provides computers

with the ability to learn without being explicitly programmed. Machine learn-
ing focuses on the development of computer programs that can teach themselves
to grow and change when exposed to new data (Michie et al., 1994). The main
idea of the machine learning is that it is possible to gain knowledge starting from
experience or data (i.e. a collection of objects) without understanding the inter-
nal mechanism that has generated such data. Knowledge gained through learning
partly consists of descriptions of what we have already observed, and is partly ob-
tained by making inferences from (past) data in order to predict (future) outcomes.

Machine learning tasks are typically classified into these broad categories, de-
pending on the nature of the learning “signal” or “feedback” available to a learning
system (Vapnik, 1998; Martı́nez et al., 2011):

• Supervised Learning: Input data is called training data and has a known
label or result. A model is prepared through a training process where it is
required to make predictions and is corrected when those predictions are
wrong. The training process continues until the model achieves a desired
level of accuracy on the training data. Example problems are classification
and regression. Example algorithms include Logistic Regression and the
Back Propagation Neural Network.

• Unsupervised Learning Algorithms: Input data is not labelled and does not
have a known result. A model is prepared by deducing structures present
in the input data. This may be used to extract general rules. It may be
used through a mathematical process to systematically reduce redundancy,
or it may be used to organize data by similarity. Example problems are
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clustering, dimensionality reduction and association rule learning. Example
algorithms include: the Apriori algorithm and k-Means.

• Semi-Supervised Learning: Input data is a mixture of labeled and unlabeled
examples. There is a desired prediction problem but the model must learn
the structures to organize the data as well as make predictions. Example
problems are classification and regression. Example algorithms are exten-
sions to other flexible methods that make assumptions about how to model
the unlabeled data.

• Reinforcement: It attempts to learn from interaction, receiving feedback
for its actions. Every action has some impact in the environment, and the
environment provides feedback in the form of rewards or punishments that
guides the learning algorithm.

Accordingly to the learning processes classification presented above, all the
machine learning models presented in this Thesis are based on supervised learning
algorithms. Because of this reason, the theory of two supervised learning algo-
rithms, Artificial Neuronal Network (ANN) and Support Vector Machines (SVM)
are presented here in detail.

A.1.1 Artificial Neural Network (ANN)

Artificial Neural Networks (ANNs) are mathematical models inspired by the
structure and functional aspects of biological neural networks (McCulloch and
Pitts, 1990). The human brain consists of around 1011 nerve cells called neurons
(see Figure A.1). The neurons are interconnected at points called synapses. The
complexity of the brain is due to the massive number of highly interconnected
simple units working in parallel, with an individual neuron receiving input from
up to 10000 others. Structurally the neuron can be divided in three major parts:
the cell body (soma) where is the nucleus; the dentrites and the axon. The nucleus,
where the main processes take place, can be treated as the computational center
of a neuron. Axons are fibers acting as transmission lines that send activation to
other neurons (output duct). And dentrites are the tree-like structure that receives
the signal from surrounding neurons, where each line is connected to one neuron.
One neuron can have many dendrites but only one axon. Connections between
neurons are called synapses and their quantity in a human brain is greater than
1014. A neuron receives electrical impulses through its dendrites and sends them
to the next neurons using axon. An axon is split into many branches ending with
synapses. Synapses change power of received signal before the next neuron will
receive it (Figure A.1).



Appendix A 127

Figure A.1: Model of a biological neuron. A signal is sent along the axon and
through the synapse is transferred to dendrites of the other neuron (Carreon,
2012).

Changing the strengths of synapse effects is assumed to be a crucial part of
learning process and that property is exploited in models of a human brain in
its artificial equivalent (Minsky and Papert, 1969; Bishop, 1995). However, the
structure of an artificial neuron consists of two modules: summation module

∑
and activation module F. Roughly the summation module corresponds to biologi-
cal nucleus. The algebra summation of weighted input signals is realized and the
output signal is generated. Furthermore, output signal can be calculated using the
following formula:

ϕ =

n∑
i=1

wixi = wtx (A.1)

where w is the vector of weights (synapses equivalent), x the vector of input
signals (dendrites equivalent), n the number of inputs. Signal ϕ is processed by
the activation module F, which can be specified by different functions according
to needs (Rumelhart et al., 1994).

Additionally, information capacity and processing ability of a single neuron
is relatively small. However, it can be raised by the appropriate connection of
many neurons. In 1958 the first ANN prototype, called perceptron, was developed
by Rosenblatt (1958). It was used for alphanumerical character recognition. Al-
though the perceptron initially seemed promising, the results were not satisfactory
due to problems when characters were more complex or the scale was changed,



128 Bone remodeling simulations: challenges, problems and applications.

Figure A.2: Model of an artificial neuron. In this neuron, the weighted sum of the
inputs is transformed by the activation function to give the final output.

however it can be considered successfully as the first system built, which simu-
lated a neural network (Rosenblatt, 1958). An artificial network consists of simple
processing units which communicate by sending signals to each other over a large
number of weighted connections (Anthony and Bartlett, 1999).

Summarizing, an ANN model basically consists of two basic elements:

• A structure consisting in a set of basic units, called neurons, organized in
different layers.

• A training algorithm for calibrating the network weights and other parame-
ters as a function of deviations of the outputs provided by the network and
the actual values.

Concerning this layered structure, its should be remarked that neurons in the
multilayer ANN are grouped into three different types of layers: input, output,
and hidden layer (see Figure A.3). There can be one or more hidden layers in the
network but only one output and one input layer. The number of neurons in the
input layer is specified by the number of data attributes. The number of output
neurons corresponds to the type of answer of the network. The amount of hidden
layers and their neurons is more difficult to determine (Minsky and Papert, 1969;
Bishop, 1995). A network with one hidden layer suffices to solve most tasks. Each
unit consists of the following neuronal components,

• A set of input connections, along with a set of weights that regulate the input
signals intensity.

• The activation threshold, which is subtracted from the aggregation of the
input signals transmitted.

• An activation function which focuses on the input signals.
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• The output of the neuron as a function of the input signals, called transfer
function.

This mentioned structure is often called the network architecture, being able
to make a classification of the networks as a function of the number of networks
layers, the interconnection degree of the structure or according to the character of
the connections.

With regards to the architecture, two types of a multilayer ANNs can be dis-
tinguished: feed-forward and feed-back networks. In the feed-forward networks
signal can move in one direction only and can not move between neurons in the
same layer (see Figure A.3.a). Such networks can be used in the pattern recogni-
tion. Feed-back networks are more complicated, because a signal can be sent back
to the input of the same layer with a changed value. Signals can move in these
loops until the proper state is achieved. These networks are also called interactive
or recurrent networks (see Figure A.3.b).

a) b)

Figure A.3: Multi-layer neural networks architecture: a) Feed-forward network:
From the neurons in the input layer signals are propagated to the hidden layer and
then finally to the output layer. b) Feed-back network: A signal can be returned to
the same layer to adjust the proper state (Fröhlich, 1997).

A.1.2 The Back-Propagation Algorithm
This basic supervised learning algorithm for multilayered feed-forward networks
gives a recipe for changing the weights of the elements in neighbouring layers.

In order to train a neural network to perform some task, we must adjust the
weights of each unit in such a way that the error between the desired output and the
actual output is reduced. This process requires that the neural network compute
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the error derivative of the weights (EW). In other words, it must calculate how
the error changes as each weight is increased or decreased slightly. The back
propagation algorithm is the most widely used method for determining the EW.

The back-propagation algorithm is easiest to understand if all the units in the
network are linear. The algorithm computes each EW by first computing the EA,
the rate at which the error changes as the activity level of a unit is changed. For
output units, the EA is simply the difference between the actual and the desired
output. To compute the EA for a hidden unit in the layer just before the output
layer, we first identify all the weights between that hidden unit and the output
units to which it is connected. We then multiply those weights by the EAs of those
output units and add the products. This sum equals the EA for the chosen hidden
unit. After calculating all the EAs in the hidden layer just before the output layer,
we can compute in like fashion the EAs for other layers, moving from layer to
layer in a direction opposite to the way activities propagate through the network.
This is what gives back propagation its name. Once the EA has been computed for
a unit, it is straight forward to compute the EW for each incoming connection of
the unit. The EW is the product of the EA and the activity through the incoming
connection.

However, as regards the training algorithm, it should be noted that one of
the best-known learning algorithms is the back-propagation algorithm (Bishop,
1995). Backpropagation, an abbreviation for “backward propagation of error”, is a
common method of training artificial neural networks used in conjunction with an
optimization method such as gradient descent. It was developed by Werbos (1974)
and rediscovered independently by Parker (1985) and Rumelhart et al. (1986). The
method calculates the gradient of a loss function with respect to all the weights in
the network. The gradient is fed to the optimization method which in turn uses it
to update the weights, in an attempt to minimize the loss function.

In outline, the algorithm is as follows:

• Initialization: the weights of the network are initialized to small random
values.

• Forward pass: The inputs of each training pattern are presented to the net-
work. The outputs are computed using the inputs and the current weights of
the network. Certain statistics are kept from this computation, and used in
the next phase. The target outputs from each training pattern are compared
with the actual activation levels of the output units - the difference between
the two is termed the error. Training may be pattern-by-pattern or epoch-
by-epoch. With pattern-by-pattern training, the pattern error is provided
directly to the backward pass. With epoch-by-epoch training, the pattern er-
rors are summed across all training patterns, and the total error is provided
to the backward pass.
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• Backward pass: In this phase, the weights of the net are updated.

• Go back to step 2. Continue doing forward and backward passes until the
stopping criterion is satisfied.

• Error backpropagation learning is often familiarly referred to just as back-
prop.

The back propagation algorithm is an involved mathematical tool; however,
execution of the training equations is based on iterative processes, and thus is eas-
ily implementable on a computer. Despite of the fact that back-propagation algo-
rithm is an ill-conditioned optimization problem (Erikssont et al., 1998), thanks to
specific way of the errors propagation, this algorithm has become one of the most
effective learning algorithms (Minsky and Papert, 1969; Bishop, 1995).

Moreover, the activation and transfer functions can have many forms (Figure
A.4). In the original work on perceptrons (McCulloch and Pitts, 1990; Rosenblatt,
1958) which generally had no hidden layers, the activation functions were a simple
linear function and a threshold function. The functions can be classified into three:

• Linear (straight-line) functions are limited because the output is simply pro-
portional to the input. Linear functions are not very useful. That was the
problem in the earliest network models as noted in (Minsky and Papert,
1969). The transfer function could be something as simple as depending
upon whether the result of the summation function is positive or negative.
The network could output zero and one, one and minus one, or other nu-
meric combinations.

• Another type of transfer function, the threshold or ramping function (Satu-
rating linear transfer function), could mirror the input within a given range
and still act as a hard limiter outside that range. It is a linear function that
has been clipped to minimum and maximum values, making it non-linear
(Figure A.4-Satlin and Satlins Transfer Function).

• Another option would be a sigmoid or S-shaped curve. That curve ap-
proaches a minimum and maximum value at the asymptotes. It is common
for this curve to be called a sigmoid when it ranges between 0 and 1 (Fig-
ure A.4 - Log-Sigmoid Transfer Function), and a hyperbolic tangent when
it ranges between -1 and 1 (Figure A.4 - Tan-Sigmoid Transfer Function).
Mathematically, the exciting feature of these curves is that both the function
and its derivatives are continuous. This option works fairly well and is often
the transfer function of choice.
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Figure A.4: Activation and transfer type functions (Pérez-Suárez et al., 2013).

This Thesis is focused on feed-forward network structures with specific acti-
vation functions and weights. The ANN mathematical model defined in Chapter
c3 is based on this structure. Moreover, the back-propagation algorithm has been
chosen to be implemented in this methodology proposed.

Within the feed-forward network structure, the network implements a function
f :X ⊂ Rn → Y ⊂ Rk where n is the input space dimension and k is the output
space dimension. The functions implemented by a network feed-forward can be
formulated by the following general model

f (x) = ϕ(ψ(x)) = (ϕ ◦ ψ)(x) (A.2)
ψ: X ⊂ Rn →U ⊂ Rm

ϕ: U ⊂ Rm → Y ⊂ Rk

where U is the hidden variables space with dimension m (number of neurons of
this layer), and it is called feature space. And, based on the architecture defined
above for the case of MLP (Bishop, 1995):

1. ψ j(x) = ψ(wt
jx + w j0) being ψ the hidden layer activation function, w j ∈ Rn

the parameter vector of the hidden layer and w j0 ∈ R its threshold value.
The function ψ can be a sigmoid, a logistic or a hyperbolic tangent.
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2. ϕ j(u) = ϕ(ct
ju + c j0) being ϕ the output layer activation function, c j ∈ Rm

the weights and c j0 ∈ R its threshold value. The activation function ϕ can
be the identity function, threshold function or any bilateral function.

The process of training the ANN consists in changing the weights assigned to
connections of neurons until the achieved result is satisfactory. ANN is considered
to have learned when computed errors are minimized. For completeness, the steps
which should be carried out in order to teach an ANN using feed-forward structure
for each pattern in the learning set are described below (Mangan and Alon, 2003).
The complex mathematical background of these techniques has been already de-
scribed for many authors, however it has been here introduced for completeness
Mitchell et al. (1997), Vidyasagar (1997), Anthony and Bartlett (1999).

1. Insert the learning vector uµP as an input to the network, being µP the index
of actual learning patterns, µP = 1, ..., P, and P the number of learning
patterns.

2. Evaluate the output values umµP
j of each element for all layers using the

formula

umµP
j = f (ϕmµP

j ) = f (
nm−1∑
i=0

wm
jiu

(m−1)µP
i ), (A.3)

where m is the index of actual layer, m = 1, ...,M and M the number of
layers without including the input layer. j is the index of actual element,
j = 1, ..., nm and nm the number of elements or neurons in layer m. ϕµP

j is
the weighted sum of input values for element j in layer µP, f the activation
function, wm

ji the weight between element j in layer m and element i in layer
m − 1 and u(m−1)µP

i is the output of element i in layer m − 1 for pattern µP.

3. Evaluate error values πMµP
j for the output layer using the formula

π
MµP
j = f ′(ϕMµP

j )πµP
j = f ′(ϕMµP

j )(̂yµP
j − yµP

j ), (A.4)

where πMµP
j is learning error for element j for pattern µP, ŷµP

j the expected
network output value for element j for pattern µP and yµP

j the actual network
output value for element j for pattern µP,

4. Evaluate sum of squares errors εµP from

εµP =
1
2

n∑
j=1

(πµP
j )2. (A.5)
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5. Carry out the back propagation of output layer error πMµP
j to all elements of

hidden layers calculating their errors πmµP
j from

π
mµP
j = f ′(ϕmµP

j )
nm+1∑
l=1

π
(m+1)µP
l w(m+1)

l j . (A.6)

6. Update the weights of all elements between output and hidden layers and
then between all hidden layers moving towards the input layer. Changes of
the weights can be obtained from

∆µPwm
ji = ηπ

mµ
l u(m−1)µP

i , (A.7)

where ∆µPwm
ji is the change of given weight for pattern µP and η the propor-

tion coefficient.

Above steps have to be repeated until satisfactory minimum of complete error
function is achieved:

ε =

P∑
µP=1

εµP =
1
2

P∑
µP=1

n∑
j=1

(̂yµP
j − ϕ

µP
j )2 (A.8)

Every iteration of these instructions is called epoch. After the learning process
is finished another set of patterns can be used to verify the knowledge of the ANN.
For complicated networks and large sets of patterns the learning procedure can
take a lot of time. Usually it is necessary to repeat the learning process many
times with different coefficients selected by trial and error. Furthermore, there is
a variety of optimization methods which can be used to accelerate the learning
process such as the momentum technique (Moreira and Fiesler, 1995).

The advantages of neural networks are quite relevant, in particular a list of
advantages might be made for feed-forward ANN (Tu, 1996):

• Feed forward neural networks have a fixed computation time.

• Computation speed is very high, as a result of the parallel structure.

• Fault tolerant, because of distributed nature of network knowledge.

• Learns general solutions of presented training data.

• Ability to generalize to situations not taught to network previously.

• Neural networks eliminate the need to develop an explicit model of a pro-
cess.
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• It does not use preprogrammed knowledge base.

• It suits to analyze complex patterns.

• It has no restrictive assumptions.

• It allows for qualitative data.

• It can handle noisy data and incomplete data, the solution will just be less
precise. Besides, neural networks can model parts of a process that cannot
be modeled or are unidentified.

• It can overcome autocorrelation.

• It is user-friendly, clear output, robust and flexible.

However, like any technique, ANNs have certain drawbacks as:

• It requires high quality data.

• The variables must be carefully selected a priori.

• There is a risk of overfitting.

• It requires a definition of architecture.

• It takes high computational cost.

• Neural networks errors vary, depending upon the architecture.

• It require lengthy training times.

A.1.3 Support Vector Machine (SVM)
Vapnik (1982) is considered the pioneer in introducing the concept of optimum

separating hyperplane of a sample of data in a classification or regression problem,
which is the core of the SVM. The SVM original algorithm was invented by Vap-
nik (1982), however the current standard approach (soft margin) was proposed by
Vapnik (1995). The essence of SVM method is the construction of optimal hyper-
plane, which can separate data from opposite classes using the maximum margin.
Margin is a distance between optimal hyperplane and a vector which lies closest
to it (Boser et al., 1992; Vapnik, 1982, 1995, 1998).

Different historical facts could be highlighted in the development of SVM
techniques:
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Figure A.5: Schematic diagram of the architecture of a typical Support Vector
Machine (SVM) (Sayad, 2010).

1. The feature space generation from input space by the transformation f :
X ⊂ Rn → Z ⊂ Rg with g ≥ n (can be ∞). By the reverse transfor-
mation, the linear boundaries of the separating hyperplanes in the feature
space result in non-linear boundaries in the input space. This transforma-
tion is called “Kernel Trick” (Boser et al., 1992).

2. The appearance of soft-margin algorithm for problems where perfect sepa-
rability is not reachable (problems with noise in the sample data).

3. The SVM generalization to regression problems by way of Vapnik’s ε-
insensitive loss function (Drucker et al., 1997).

An example of such hyperplane is illustrated in Figure A.5, where for a lin-
early separable set of 2D points which belong to one of two classes, a separating
straight line is needed. In Figure A.5, there exists multiple lines that offer a solu-
tion for the problem. However, a line can be bad if it passes too close to the points
because it will be noise sensitive and it will not generalize correctly. Therefore,
the SVM should be able to find the line passing as far as possible from all points.
Then, the operation of the SVM algorithm is based on finding the hyperplane
that gives the largest minimum distance to the training examples. This distance
receives the name of margin within theory of SVM. Therefore, the optimal sepa-
rating hyperplane maximizes the margin of the training data.

Further, optimal hyperplane should satisfy

yn f (xn)
‖w‖

≤ τm (A.9)



Appendix A 137

where w is the normal vector to the hyperplane, τm is a margin and f (x) is defined
as:

f (x) = wtx + β0 (A.10)

where the parameter β0 determines the offset of the hyperplane from the origin
along the normal vector w. And this function is not suitable for solving more
complicated linearly non-separable problems.

Possibility of occurrence of the linearly non-separability in the input space is
the main cause why the idea of SVM is not optimal for hyperplane construction
in the input space but rather in high dimensional so called feature space (Z). The
feature space is usually defined as a non-linear product of base functions φ(x),
defined in the input space. The solution can be expressed as a linear combination
of the training vectors βi. And, given a new point xi to classify or regress, the
solution is obtained by means of the inner product with the sample points x. Thus,
the function of the optimal hyperplane is now:

f (x) =

n∑
i=1

βiK(xi, x) + β0 (A.11)

where K(xi, x) is the inner product kernel of the base functions φ(x). Inner product
may be defined as:

K(x, x′) = 〈φ(x), φ(x′)〉 (A.12)

We are now looking for solution in other space, but the problem is linearly
separable, so it is more effective, even if the problem was linearly non-separable
in the input space (see Figure A.6). It is known as Kernel trick (Boser et al., 1992).

Figure A.6: Transformation of input space into feature space.
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The kernel function can have many different forms. Some of the commonly
used functions are: linear, polynomial or sigmoidal (see Figure A.4). Choosing
the most appropriate kernel highly depends on the problem at hand, and fine tun-
ing its parameters can easily become a tedious and cumbersome task. Automatic
kernel selection is possible and is discussed in the works by Howley and Madden
(2006). The choice of a Kernel depends on the specific problem which is going
to be solved because it depends on what we are trying to model. The motiva-
tion behind the choice of a particular kernel can be very intuitive and straightfor-
ward depending on what kind of information we are expecting to extract about the
data. Consequently, different elections of this kernel function will provide better
or worse performance of the SVM. But generally, the linear and the polynomial
kernel functions are used in problems without high nonlinearity, the radial basis
functions allows picking out circles (or hyperspheres), and finally the sigmoid
kernel functions are indicated for problems with high nonlinearity.

Therefore, the optimum hyperplane problem is obtained by means of the fol-
lowing constrained problem:

max
w,β0

{
min
i∈{1:n}

|〈w, x〉 + β0|

}
Subject to: ‖w‖ = 1

(A.13)

Or equivalently it can be also expressed as:

min
w,β0

1
2
‖w‖2

Subject to: yi(〈w, x〉 + β0) ≥ 1, i = 1, 2...n
(A.14)

Then, this problem can now be solved by standard quadratic programming
techniques and programs, and the Karush-Kuhn-Tucker condition are necessaries
and sufficient (Vapnik, 1998).

And the solution, which can be obtained from the dual problem, is a linear
combination of a subset of sample points denominated support vectors (SV) and
it can be written as follows:

w =
∑
i∈sv

βiφ(xi)⇒ (A.15)

fw,β0(x) =
∑
i∈sv

βi 〈φ(xi), φ(x)〉 + β0 =
∑
i∈sv

βiK (xi, x) + β0

Although SVM method is naturally adapted for separating or regretting data
from two classes, it can be easily transformed into very useful tool for the classi-
fication of more than two classes.
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Consequently, given a sample of data {(xi, yi)}ni=1, the SVM regression problem
(Drucker et al., 1997) can be formulated as follows:

min
w,β0,ξ

1
2

{∥∥∥w2
∥∥∥ + C

n∑
i=1

(ξi + ξ
′

i )
}


〈w, φ (xi)〉 + β0 − yi ≥ ε + ξi

yi − (〈w, φ (xi)〉 + β0) ≥ ε + ξ
′

i
ξi, ξ

′

i ≥ 0

∣∣∣∣∣∣∣∣ i = 1, ..., n
(A.16)

where ξi, ξ
′

i , are slack variables that ensure that the solution does not contain,
within the band of radius ε, all the points (xi, yi) of the sample (thus avoiding
possible outliers and overfitting), where C is the cost parameter and expresses
the importance of the slack variables in each point, and where φ : X → Z is a
transformation of the input space into a new space Z usually of larger dimen-
sion, where we define an inner product by means of a positive definite function K
(kernel).

Furthermore, it is possible to introduce the parameter νS V M in the SVM re-
gression model (Nu-SVR) in order to control the number of support vectors de-
termined (Schölkopf et al., 2000). Then, the SVM problem can be formulated as
follows:

min
w,β0,ξ

1
2

{∥∥∥w2
∥∥∥ + C

(
νS V Mε + 1

n

n∑
i=1

(ξi + ξ
′

i )
)}


〈w, φ (xi)〉 + β0 − yi ≥ ε + ξi

yi − (〈w, φ (xi)〉 + β0) ≥ ε + ξ
′

i
ξi, ξ

′

i ≥ 0

∣∣∣∣∣∣∣∣ i = 1, ..., n
(A.17)

where νS V M (0 ≤ νS V M ≤ 1) represents the upper bound on the function of margin
errors in the training set and establishes the lower bound on the fraction of support
vectors.

Obviously, all learning techniques have advantages and disadvantages, which
are more or less important according to the data which are being analysed, and
thus have a relative relevance. The advantages of the SVM technique could be
summarized as follows:

• By introducing the kernel, SVM gain flexibility in the choice of the form
of the threshold separating plane, which needs not be linear and even needs
not have the same functional form for all data, since its function is non-
parametric and operates locally.

• Because of the fact that the kernel implicitly contains a nonlinear transfor-
mation, no assumptions about the functional form of the transformation,
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which makes data linearly separable, are necessary. Thus, the transfor-
mation occurs implicitly on a robust theoretical basis and human expertise
judgement beforehand is not needed.

• SVM provide a good out of sample generalization.

• SVM deliver a unique solution, since the optimality problem is convex. This
is an advantage compared to ANN, which have multiple solutions associated
with local minimum, and for this reason may not be robust over different
samples.

• SVM classifier or regressor depends only on the support vectors, and the
classifier or regressor function is not influenced by the whole data set, as it
is the case for many ANN systems.

• With the choice of an appropriate kernel and parameters, SVM are faster
than ANN in training. SVM uses a subset of training points in the decision
function called support vectors, so it is also memory efficient.

• Effective in high dimensional spaces.

• High computational efficiency.

In contrast, the main disadvantages of this technique are:

• A common disadvantage of non parametric techniques such as SVM is the
lack of transparency of results. The parameters can not inform us of the im-
portance of each independent variable since its dimension may be very high.
In addition, high dimensionality of data can represent another limitation for
SVM techniques.

• We need to select an appropriate kernel and its parameters. This is the same
situation as that of ANN where we need to set the number of hidden units,
initial values of weights, and so on.

• If the number of features is much greater than the number of samples, the
method is likely to give poor performance.
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coupling microdamage growth and repair by 3D BMU-activity. Biomech Model
Mechanobiol 4 (2-3), 147–167.
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