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No me permitiré olvidar a muy buenas amigas y excelentes personas que he en-
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Sonia y muchos más que no por no ser incluidos expĺıcitamente son menos queridos o
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Thesis Structure

The Front Matter of this Thesis contains the Declaration of Authorship, Supervisor

Statement, Agradecimientos, Table of Contents, List of Figures, List of Tables and

the Abbreviations. The Agradecimientos section had to be written in Spanish on a

matter of principles, while the main part of the document is written in English.

The Main Text is distributed in a Resumen section and five chapters all of which,

with the exception of the General Introduction and Chapter 5, are structured similarly

to standard research articles, as most of the content in this document has been extracted

from recent papers published by us during the duration of this Thesis. In some cases, the

structure of the original articles has been modified to be adapted to a formal Doctoral

Thesis format, and also to seamlessly connect and combine the information coming

from different papers on the same subject. The contents in each chapter correspond

fairly well to the results that can be found in the corresponding journal articles, though

in some cases new text has been added, some new figures have been included and

some references have been added or updated. The chapters are structured to be self-

contained, each one having its own Bibliography section, and from Chapter 2 to Chapter

4 an Introduction, Results, Discussion, Conclusions and Methodology sections.

The Resumen section is written in Spanish to satisfy the formatting requisites from

the University of Zaragoza for theses written in English. It includes a succinct summary

of the previous knowledge in the fields that will be covered in this Thesis, as well as

a brief description of each objective, the methodological approaches followed to try

to prove our scientific hypotheses, and our contributions as a result of the work done

during this Thesis.

In Chapter 1 we include a General Introduction in which we provide a detailed

outline of the state of the art in the fields of study that served as precedents for this

Thesis. First, we treat the concepts of protein conformational instability and how it is

related to protein evolvability, function and multitasking, as well as the group of mecha-

nisms by means of which cells generate and take advantage of this phenomena and how
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they protect against the noxious effects that might be caused by protein local or partial

unfolding. Then, we review protein aggregation as a general property of polypeptides,

the structural and sequential characteristics of aggregation-prone domains and the ben-

eficial roles played by amyloids in organisms, and also the diseases arising from the

deposition of protein fibrils. Finally, we get into greater detail into the plethora of exper-

imental techniques for the study of protein structural motions, unfolded intermediates

and amyloid formation, and how this wealth of information has been used to devise

computational approaches that can be useful for complementing experiments, and also

for performing wide-scale predictive studies. After Chapter 1 we present the Objec-

tives section, outlining the principal aims of this Thesis which are formulated taking as

inspiration the precedents described earlier in Chapter 1.

In Chapter 2 we cover the work done by us to fulfill the first specific objective of this

Thesis, in which we developed a methodology for predicting prionogenic domains in

proteins based on primary sequence information. We include an Introduction describing

some general characteristics of prions, which are mediators of important functions in

cells, and also main factors of transmissible and inherited diseases. Then, we present

the problem, which is that the number of prions known nowadays is limited to a few

examples in microorganisms and mammals, and there does not exist a complete view of

prion biology from a genomic or cross-species perspective, hence the necessity for the

generation of computational strategies to predict prions. Later, we present our approach,

which is based on the hypothesis that it would be possible to learn the key rules to de-

termining the prionogenicity from the analysis of the composition of a sufficient number

of experimentally tested prions. We also describe the particularities of our model when

compared with others recently developed, and the details of the statistical calibration

done before performing genome wide scanning in order to discover all the putative

prion proteins in the genomes of all organisms. Finally, we present our predictions and

discuss the possible functional implications of these findings to cell biology.

In Chapter 3 we address the second specific objective of this Thesis, that is the devel-

opment of a structured-based methodology for predicting flexible or conformationally

unstable regions in proteins, trying to infer rules from the tridimensional structure of

proteins. In the Introduction we outline the importance of protein conformational insta-

bility, how it is related to protein function and disease, and how it is possible to obtain

atomic detail information of structural fluctuations that could lead us to a model based

on structural properties. Then, we present our methodology, which comes from the

rationalization of atomic-resolution studies of protein folding intermediates, and relies

on the hypothesis that protein cores could contain regions with peculiar physicochemi-

cal properties specifically suited to ease the reorganization of the contacting segments,

therefore allowing functionally relevant intradomain motions. We describe in detail our
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method, which systematically decomposes the structure of a given protein from end-to-

end reckoning some properties of the buried contact interfaces between a short probe-

segment and the rest of the protein. At the end of the chapter we describe the results

obtained for the prediction of locally unstable regions in a significative group of protein

families, and the good agreement resulting when we have contrasted our predictions

with experimental data from protein conformational instability, folding intermediates

and transition states.

In Chapter 4 we undertake the last objective of the Thesis, for the study of the fate of

mutations in protein structure and how it might be related with conformational diseases,

directly assessing this phenomenon at the structure-temporal level using Molecular Dy-

namics. In the Introduction we describe the specific conformational disease that will be

our case of study –i.e. Familial Hypercholesterolemia (FH)– and how mutations in one

of the proteins from the cholesterol metabolism could cause the disease by impeding its

correct folding or function. We supply a description of FH, which is a very important

genetic disease in human populations, and is mainly caused by mutations in the gene

encoding the Low Density Lipoprotein receptor (LDL-r), a modular transmembrane pro-

tein that plays an essential role in the mechanism of cholesterol uptake into cells. Then,

we present the problem, which is that so far, the number of mutations linked to the dis-

ease in specific populations is scarce, and there are important experimental limitations

to study how all the possible mutations affect the stability of the protein given its high

size. Thus, our methodology intends to study the interaction domain (LA5) of the LDL-r

computationally, and generates all the possible mutants arising from Single Nucleotide

Polymorphisms (SNPs), to try to understand how mutations affect the conformational

dynamics of this module, which although operationally complex, is attainable computa-

tionally. We present our results arising from the application of combined Data Mining

methodologies to identify singularities in the conformational behavior of different types

of mutants that could cause the destabilization of the LA5 domain, thus impairing recog-

nition of LDLs, and discuss the possible applications of these kinds of methodologies for

helping experimentalist to study other conformational diseases.

The Chapter 5, which is also written in Spanish to satisfy the formatting requisites

from the University of Zaragoza for theses written in English, is a brief and summarizing

section to include the main general Conclusions that can be drawn from our results, and

the main Perspectives in these research lines for the future.

The Back Matter includes some Appendices with supplemental information to the

results presented in each chapter, each one coded and ordered with consecutive capital

letters. These appendices might also contain some figures and tables that, notwithstand-

ing their relevance for the conducting thread of the Thesis and the results presented, are
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too big to be included in a common page, with the predefined portrait formatting. The

final appendix contains a short Curriculum Vitae of the candidate. The last section is

a Keyword Index with an alphabetical list of words and expressions and links to the

pages of the document on which they can be found.



Resumen

Esta Tesis Doctoral se centra en varios estudios computacionales sobre la flexibilidad

conformacional y problemas de plegamiento en protéınas realizados a diferentes niveles

de complejidad: a nivel de secuencia, a nivel de estructura terciaria y a nivel de dinámi-

ca temporal. La adopción de la estructura nativa de las protéınas es uno de los procesos

más importantes en la célula, siendo fundamental para posibilitar la correcta función

de las mismas. En los últimos años, las evidencias experimentales y computacionales

obtenidas han cambiado radicalmente la visión que se teńıa de las protéınas, conside-

radas como entidades más bien estáticas en las cuales la función estaba mediada por

la correcta adopción de una estructura nativa bien definida. Actualmente está práctica-

mente aceptado, en base a estudios de numerosas familias de protéınas diferentes, que

en muchos casos la función de las protéınas está mediada por conjuntos de estructuras

alternativas parcialmente desplegadas, que se encuentran en equilibrio con la estructu-

ra nativa. También se ha demostrado que la inestabilidad y flexibilidad conformacional

de las protéınas juega un papel fundamental en su versatilidad funcional, permitiendo

que la misma especie proteica esté relacionada con varias funciones en la célula. Esta

inestabilidad estructural caracteŕıstica de las protéınas también está muy relacionada

con su susceptibilidad a agregar formando fibras amiloideas o priones, los cuales están

relacionados con una gran cantidad de enfermedades graves y casi siempre irreversi-

bles. Ésta es una de las razones por las cuales el estudio de la estabilidad estructural,

el plegamiento de protéınas y las enfermedades conformacionales son campos de estu-

dio de gran actualidad y actividad, tanto desde el punto de vista experimental como

computacional. El principal objetivo de estos estudios es intentar comprender a fondo

los determinantes estructurales que provocan esta inestabilidad estructural, y como ésta

se relaciona con la función y la posible agregación de las mismas, aśı como también po-

der desarrollar estrategias y terapias para tratar estas patoloǵıas. Nuestro trabajo incluye

estudios computacionales de predicción y caracterización de motivos secuenciales y es-

tructurales determinantes de agregación y desplegamiento en diferentes protéınas. Una

descripción detallada de cada una de estas ĺıneas de trabajo se incluye a continuación.
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Inicialmente estábamos interesados en generar una metodoloǵıa que nos permitie-

ra hacer una predicción de protéınas prionogénicas basada en representaciones proba-

biĺısticas de dominios ricos en Glutamina/Asparagina. Los priones son generalmente

protéınas propias codificadas en el genoma, con funciones espećıficas cuando se en-

cuentran correctamente plegadas, que también pueden mediar otras funciones impor-

tantes en las células luego de su conversión amiloidea, por ejemplo como elementos

epigenéticos, capacitores evolutivos y en procesos de adaptación a las fluctuaciones me-

dioambientales en microorganismos. Además de estas funciones beneficiosas para los

organismos, también pueden participar como factores principales en múltiples enferme-

dades hereditarias y transmisibles, aśı como en algunas enfermedades neurodegenera-

tivas como Alzheimer y Parkinson, o en encefalopat́ıas causadas por priones infecciosos

en algunos mamı́feros y el hombre. Sin embargo, hasta la fecha, el número de priones

conocidos y caracterizados experimentalmente es muy escaso. De aqúı el intenso tra-

bajo que se está realizando para desarrollar estrategias que permitan predecir priones

desde el punto de vista computacional y validarlos experimentalmente a gran escala.

Nuestro principal objetivo fue intentar generar una metodoloǵıa computacional capaz

de diferenciar dominios sequenciales similares a los priónicos en búsquedas en los pro-

teomas completos de los organismos. Nuestra estrategia se basó en la hipótesis de que

seŕıa posible aprender las reglas que determinan la prionogenicidad de una secuencia

a partir del análisis de un conjunto lo suficientemente representativo de priones vali-

dados experimentalmente. Siguiendo esta idea, generamos un modelo probabiĺıstico de

estas regiones basado en su composición aminoaćıdica y luego lo validamos exhaustiva-

mente para evaluar la capacidad predictiva de nuestro modelo para satisfacer nuestro

objetivo principal: identificar todas las protéınas con dominios prionogénicos en el pro-

teoma completo de un organismo. Esto diferenciaŕıa significativamente nuestro método

de otros disponibles, que son capaces de evaluar la prionogenicidad de una secuencia

determinada pero que no son suficientemente robustos como para hacer búsquedas en

grandes bases de datos genómicas. Al satisfacer estos objetivos, realizamos un estudio

detallado de todos los proteomas completos disponibles en las bases de datos de secuen-

cias, para predecir posibles protéınas priónicas, y estudiamos las posibles implicaciones

de estos resultados para la bioloǵıa celular desde el punto de vista comparativo a diferen-

tes niveles taxonómicos. Como resultado final de este proyecto, desarrollamos una Base

de Datos disponible en Internet en la cual distribuimos libremente nuestras predicciones

en todos los proteomas completos, en un formato de fácil interrogación para facilitar el

estudio de los procesos mediados por priones a nivel genómico y multigenómico.

Luego, al nivel de estructura tridimensional de protéınas, nos marcamos como ob-

jetivo generar un método de predicción de regiones con inestabilidad conformacional

basado en las caracteŕısticas f́ısico-qúımicas y geométricas de interfases enterradas en
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protéınas. La flexibilidad local y global, que median la movilidad cooperativa de las di-

ferentes regiones en las protéınas, son fundamentales en una gran cantidad de procesos

celulares como procesos de reconocimiento entre biomoléculas, catálisis enzimática y

alosterismo, translocación a través de biomembranas, entre otros. En este segundo obje-

tivo, estábamos interesados en generar un modelo estructural que permitiera identificar

regiones conformacionalmente inestables a partir del estudio de la información estruc-

tural que es posible extraer de la estructura tridimensional de las protéınas. Nuestra

hipótesis era que el interior de las protéınas debeŕıa contener regiones con caracteŕısti-

cas f́ısico-qúımicas y geométricas particulares, que facilitaran desde el punto de vista

energético la reorganización y la movilidad entre diferentes dominios estructurales. En

concordancia, nuestro método descompone sistemáticamente la estructura de una pro-

téına calculando en cada caso una serie de propiedades (razón de polaridad, densidad

de empaquetamiento) de la interfaz formada entre un pequeño segmento y el resto

de la protéına. La idea de esta aproximación es que las caracteŕısticas geométricas y

f́ısico-qúımicas de estas interfases de interacción entre diferentes regiones de la pro-

téına, son las que determinan la fortaleza de dicha interacción y en consecuencia que,

en ciertas condiciones, una región determinada adopte conformaciones no nativas con

mucha mayor probabilidad. Una vez desarrollado y calibrado el método, estudiamos

una gran variedad de protéınas, de diferentes familias estructurales y funcionales, con

la intención de identificar este tipo de regiones flexibles. Luego, comparamos nuestros

resultados computacionales con una gran cantidad de información estructural obtenida

con diversos métodos experimentales, y pudimos comprobar que exist́ıa una excelente

correspondencia entre nuestras predicciones y las observaciones experimentales. Tam-

bién hicimos un análisis de las posibles implicaciones evolutivas y funcionales de estas

caracteŕısticas interfases de las protéınas, que podŕıan estar relacionadas con la evolu-

ción de nuevas funciones biológicas manteniendo la misma dinámica conformacional

propia del tipo de plegamiento inicial.

Finalmente, también al nivel estructural pero incluyendo la componente temporal,

intentamos desarrollar una formulación para predecir fenotipos patológicos causados

por Mutaciones de Nucleótido Simple (SNPs) en Enfermedades Conformacionales. Exis-

ten una gran cantidad de enfermedades conformacionales causadas por problemas de

plegamiento de un grupo muy heterogéneo de protéınas que desempeñan importantes

funciones en las células. En este último objetivo estudiamos cómo las mutaciones en

una de las protéınas causantes de una enfermedad conformacional, en concreto la Hi-

percolesterolemia Familiar (FH), pueden estar relacionadas con los diferentes fenotipos

patológicos. FH es una enfermedad genética muy importante, la cual afecta aproxima-

damente al 0.2 % de la población mundial, y que puede en muchos casos provocar la

muerte. Esta patoloǵıa está parcialmente asociada a mutaciones en el gen que codifica el
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Receptor de Lipoprotéınas de Baja Densidad (LDL-r), una protéına modular transmem-

branal que juega un papel esencial en la internalización del colesterol en las células. Es

conocido que el reconocimiento por parte del receptor de las LDLs está mediado prin-

cipalmente por un pequeño dominio rico en cistéınas (LA5). Hasta ahora, el número

de mutaciones relacionadas con la enfermedad en poblaciones espećıficas es muy bajo,

debido sobre todo a las grandes limitaciones experimentales que implica estudiar todas

las posibles mutaciones en el gen codificante de esta protéına, y como afectan su ple-

gamiento, debido su gran tamaño. Por lo tanto, nosotros centramos nuestro estudio en

este dominio de interacción y generamos in silico todos los posibles mutantes generados

por SNPs (227 mutantes diferentes), y hemos analizado en detalle las perturbaciones es-

tructurales provocadas por las mutaciones utilizando Dinámica Molecular. Gracias a esto

hemos podido identificar interesantes tendencias en el comportamiento conformacional

de los mutantes, a partir de lo cual hemos identificado diferentes grupos de mutaciones

más o menos desestabilizantes de la estructura del dominio extracelular del receptor

de LDL, lo cual puede estar muy relacionado con el desarrollo de la patoloǵıa. Espe-

ramos que los resultados obtenidos en este estudio computacional puedan guiar a los

experimentalistas para identificar posibles mutaciones patológicas en diferentes enfer-

medades conformacionales, que puedan ser estudiadas en detalle experimentalmente.

Además, estos resultados podŕıan también contribuir a entender las perturbaciones es-

tructurales causadas por mutaciones espećıficas, lo que permitiŕıa desarrollar nuevas

estrategias para estabilizar protéınas, y para aumentar el conocimiento existente sobre

las enfermedades conformacionales.
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1.1 Protein Structure, Conformational Instability and Func-

tion

1.1.1 Protein Building Blocks and Structural Elements

Proteins are the master players of cell biology, acting as facilitators of most of the

biological processes that determine cellular homeostasis and responsiveness to environ-

mental stimuli. These biomolecules are built up from a combination of approximately

20 different amino acids which are connected via peptide bonds forming continuous

biopolymers, that constitute the building blocks of all the diversity existing in the pro-

tein universe. The known proteins coded in the genomes of all the organisms (≈ 1013

variants) cover just a minute fraction of the permutational space defined by the amino

acid sequences1, with an upper limit of approximately 10469 possible sequence arrange-

ments. However, the great number of possible tridimensional structures that can be

generated from the limited sequence variants commonly used by the organisms in na-

ture, can exponentially increase the repertoire of active variants needed to exert all the

functions on which life is based upon. This great variability in the structural organi-

zation level is generated by the tridimensional array of different local segments –i.e.

secondary structure– and the relative positioning of secondary structure elements to

form the tertiary structure. There are mainly two kinds of secondary structure elements,

the helical –e.g. 310-, π-, polyproline II- and α-helices– and the β-strands that form the

so-called β-sheets. These structures are generated by distortions in the bond geometry

along the polypeptide chain and are stabilized by short-range hydrogen bonding interac-

tions among residues forming the secondary structure element. There are other regions

that remain in an extended conformation with few or no internal contacts, called loops.

From an organizational point of view, proteins can be decomposed as being formed

by secondary structure elements that position to generate supersecondary motifs –e.g.

β − α − β, Greek key, β-hairpin, etc–, supersecondary structures that array to form do-

mains and domains that form the tertiary structure. This holds for most of the mid-size

and large proteins, while other small proteins only contain some of those structural

elements. On the other hand, structural organization complexity can be significantly

increased because there also exist supramolecular complexes formed by the interactions

of proteins determining what is known as the quaternary structure.

The collapse of an unstructured protein sequence in aqueous solution into an orga-

nized tridimensional structure is a multifactorial process that depends on a wide group

of physicochemical factors. These factors include the hydrophobic, electrostatic and van

der Waals interactions, hydrogen bonds, packing, solvation and chain entropy loss. The

study of protein stability has proven that the energetic difference between the folded and
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unfolded states is in average less than 10 kcal/mol, thus the cumulative effect of all the

factors that contribute to folding must be carefully taken into account. It is well accepted

that burying hydrophobic groups in the protein interior occluded from water, and the

high number of hydrophobic interactions stablished in consequence in the protein cores,

play a major role in protein folding2–5. The contribution of van der Waals interactions

is also significative, primarily arising and closely related to the hydrophobic effect, in

which the tightly packed side chains buried in the protein interior favor the formation of

strong interactions2,3,6. Hydrogen bond formation is also very important, as it has been

demonstrated that side chain-main chain hydrogen bonds among buried polar groups

are responsible for a considerable stabilization of the protein architecture, by connecting

secondary structural motifs distant in the sequence, and also favoring the increase of the

packing density in the protein interior7–9. Electrostatic interactions, on the other hand,

act more as auxiliary factors2,3, and solvation contributes to the enthalpic factor of the

folding reaction3. The packing density at protein cores is also an important factor. In

general, the interior of proteins is highly heterogeneous with tightly-packed regions co-

existing with others containing packing defects and cavities10,11, and it is expected that

the higher the level of packing resulting after the formation of the native structure, the

more stable it will be with respect to the unfolded state. It is also at play an important

opposing entropic effect, related to the loss of chain entropy due to the restrictions that

the structure scaffold imposes, limiting the number of probable conformations adopted

by the main chain and side chains6,12,13. The combined contribution of all these factors

finally determines the folding reaction of a protein, a complex process not yet fully un-

derstood, in which a decreasing number of conformations are explored from among the

huge number of possibilities while the protein transits towards the ‘native state’, as de-

picted in Figure 1.1. Thus, at the end, the information encoded in the primary sequence

determines the specific folding path followed by a protein, as well as the characteristics

of the energy landscape –i.e. the number of intermediates and the energetic barriers

for the transitions between intermediates and/or the native state– which is central on

determining the function or functions of the protein.

1.1.2 The ‘Structure Determines Function’ Dogma

The adoption of protein native structure is one of the most important processes in

cell, being the key to determine protein function. At least, this has been the estab-

lished belief accepted for decades among the scientific community. For a long time, as

proposed in the ‘Central Dogma of Genomics’ –i.e. structure determines function14,15–

proteins were regarded as a kind of static species in which each protein adopts a specific

tridimensional structure linked to a defined function. Nowadays, however, there has
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FIGURE 1.1: Protein Folding Energy Landscape

Proteins have a funnel-shaped energy landscape with many high-energy, unfolded
structures and only a few low-energy, folded structures. Folding occurs via alternative
microscopic trajectories. [Figure taken from: Dill, K.A. and MacCallum, J.L. (2012).
Science, 338(6110): 1042–10466]

been accumulating mounting computational and experimental evidence that somehow

invalidate this dogma. This evidence includes findings corroborating that proteins ex-

hibit considerable conformational instability, ranging from local fluctuations of specific

regions16–18, to large-scale rearrangements involving partial or global unfolding of the

native state19–21, or proteins that do not adopt any defined structure in isolation –i.e.

coined as Intrinsically Disordered Proteins (IDPs)– but rather conform an ensemble of

disordered conformations15,22–25. In this light, the traditional view that the biological

functions of proteins are carried out by single, well-defined conformations is changing

to a new scenario in which function would be mediated by ensembles of alternative

structures in equilibrium with the ‘native state’26, as proposed in Figure 1.2.

This fact has important functional implications because, as can be conjectured from

the traditional view of ‘one sequence→one structure→one function’ (Figure 1.2, panel

a) there would exist a limit for the number of functions depending on the number of

proteins encoded in the genome of an organism. Nonetheless, molecular biology is

fairly more intricate and embodies far more complexity than can be puzzled out using

the limited computational and experimental techniques devised by the human mind.
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FIGURE 1.2: The ‘Simplistic’ vs ‘New View’ of Proteins

structures of a bound and unbound antibody. However,
pre-steady-state kinetics subsequently revealed a PRE-

EQUILIBRIUM between two antibody isomers, only one of
which binds the hapten with high affinity. Kinetics
performed in the crystallization buffer indicate that it
shifts the equilibrium in favour of the high-affinity isomer,
explaining why the same structure was observed in the
presence and absence of the hapten [1].

The magnitude of conformational diversity observed
in proteins ranges from fluctuation of side chains to the
movement of loops and secondary structures, and even
to global tertiary structure rearrangements. NMR, in
particular, has proven particularly effective in reveal-
ing the true conformational diversity of proteins. NMR
analysis has demonstrated that proteins can, in fact,
adopt many alternative conformations in solution in
the absence of ligand. For example, the N-terminal
SH3 domain of the Drosophila protein drk adopts ,60
different stable and distinct conformations, some of

which differ considerably [2]. Most notable are the
discovery of intrinsically disordered proteins, the identi-
fication of proteins and domains that spontaneously
interconvert between different secondary structures, and
the identification of pre-existing active conformations in
allosteric proteins.

The Monod–Wyman–Changeux (MWC) model of allo-
steric regulation is, to our knowledge, the first instance in
which the possibility of an equilibrium between pre-
existing conformations was widely recognized. This
model poses a key element of the ‘new view’, namely, of
having a single protein equilibrating freely (in the absence
of a ligand) between two structural isomers (Box 1). There
has always been considerable debate as to whether the
different states of allosteric proteins really represent pre-
equilibrium diversity, as in the MWC model, or are
actually the result of induced fit, as in the Koshland–
Nemethy–Filmer (KNF) model. A recent crystallographic
study has confirmed the MWC model in aspartate

Box 1. The ‘simplistic’ versus the ‘new view’ of proteins

The ‘simplistic view’ of proteins assumes an energy diagram with a
singlewell (a globalminimum), which corresponds to the existence of a
single structural conformer (Fig. Ia). The ‘new view’ of proteins has an
energy landscape with many local minima corresponding to an
ensemble of pre-existing structures with similar but discrete energy
levels (plasticity; Fig. Ib). The mechanism by which conformational
changes are linked to function also varies according to the two views.
The induced-fit model has become part of the ‘simplistic view’ because
it assumes that, in the absence of a ligand (L), the protein (P) adopts one

conformation only. The active conformer (Pp) is induced by ligand
binding and has no existence in the absence of the ligand. The
Koshland, Nemethy and Filmer (KNF)model of allostery (the sequential
model) is an extension of the induced-fit model. By contrast, the ‘new
view’, assumes that both P and Pp are pre-existing isomers (pre-
equilibrium) and that ligand binding shifts the equilibrium only in
favour of Pp. TheMonod–Wyman–Changeux (MWC)model of allostery
(the symmetry model) is based on an equilibrium between at least two
pre-existing isomers.

Fig. I. Schematic energy landscapes and modes of function that represent the ‘simplistic’ versus the ‘new view’ of proteins. (a) The ‘simplistic’ model of proteins
describes an energy landscape of a single stable conformer (i) and a function mode of either lock and key (ii) or induced fit (iii). (b) The ‘new view’ assumes an ensem-
ble of conformers of similar free energy (i), and a mode of function based on an equilibrium between two (or more) pre-existing isomers, only one of which exerts
function (ii).
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Schematic energy landscapes and modes of function that represent the ‘simplistic’ vs
the ‘new view’ of proteins. a) The ‘simplistic’ model of proteins describes an energy
landscape of a single stable conformer (i) and a function mode of either lock and key
(ii) or induced fit (iii). b) The ‘new view’ assumes an ensemble of conformers of similar
free energy (i), and a mode of function based on an equilibrium between two (or more)
pre-existing isomers, only one of which exerts function (ii). [Figure taken from: James,
L.C. and Tawfik, D.S. (2003). Trends Biochem. Sci., 28(7): 361–826]

The real picture is that proteins have evolved and perfected ways to link the character-

istic conformational instability of polypeptides, an expression of which are the rough,

intermediate-populated energy landscapes of folding (Figures 1.1 and 1.2, panel b), to

increase the complexness of the range of functions and processes that can be mediated

by these biomolecules. As a corollary of this more realistic ‘new view’ of proteins, it

is evident that in this scenario, depending on the necessity, the location and the envi-

ronmental conditions, a given sequence can successfully perform different functions, or

interact with different partners, increasing the flexibility and adaptability of the genome.
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FIGURE 1.3: Native Lymphoactin (Ltn) Exchanges Between two Unrelated Structures

A 

B 

A) Ltn10 ↔ Ltn40 interconversion alters all tertiary contacts. Val15 and Ala49 pack
together in the Ltn10 hydrophobic core (left) but are separated by 18 Å in Ltn40
(Right), whereas the converse is true for Leu14 and Leu45. B) Rearrangement of hydro-
gen bonds defining the Ltn secondary structure. Each bar denotes a pair of backbone
N − H · · ·O = C hydrogen bonds connecting β1 − β2 (cyan), β2 − β3 (orange), and
β0− β3 (green). Ltn10↔ Ltn40 interconversion shifts β2 by one residue relative to β1
and β3, which rotate 180◦ and establish a new hydrogen bond pattern with residues of
β0 and β2. [Figure taken from: Tuinstra, R.L. et al. (2008). Proc. Natl. Acad. Sci. USA,
105(13): 5057–6219]

1.1.3 Conformational Instability of Polypeptides

The ‘one sequence adopts one structure’ precept has been revisited. Conformational

instability covers a wide range of structural variations, from mild distortions associ-

ated with the movement of side chains or loop regions, to more significative coopera-

tive movements of protein subdomains, and constitutes an essential feature of protein

evolvability27,28. There are multiple examples for some enzymes in which the existence

of alternative energetically similar conformers plays a determinant role in catalysis and

in the establishment of specific interactions with different partners16,18,29. More dra-

matic global changes are otherwise observed for prions as a result of the conversion

between soluble and aggregated forms18,30–36. But probably the most eye-catching ex-

amples are those involving reversible fold transitions between two well defined con-

formations with completely different folding architecture, which have been coined as
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‘metamorphic proteins’37. For these proteins, among which the more remarkable exam-

ples are Lymphoactin19 (Figure 1.3) and Mad220 (Figure 1.4), in physiologic conditions

there exist at least two species with a stability high enough so as to allow their detailed

characterization, exhibiting considerable structural differences. Though rather rare and

seemingly against all the preconceived ideas of protein structure and folding, these kind

of proteins might be much more common that thought, as apparently most structural bi-

ology efforts have inadvertently selected against their detection19. Indeed, the existence

of multiple folded conformations is not prohibited by principles of physics and chem-

istry37 and in some cases the selective pressure imposed by function has made it feasible

for proteins to evolve to exist in these stable and dissimilar folds. For a special group

of proteins that have gained the attention of the scientific community in the last years

(IDPs), the case is even more stunning, as they do not adopt any definite structure when

unbound in solution38–40. This subgroup of proteins, as the one shown in Figure 1.5, are

fairly abundant in the genomes of organisms41 providing crucial functional advantages,

and their sequences have been tuned during evolution for circumventing important ther-

modynamical setbacks –e.g. having solvent exposed hydrophobic residues– which im-

poses an extra effort to the cell for maintaining disorder under control23.

FIGURE 1.4: Structure of the O-Mad2–C-Mad2 Dimer

A B 

A) Ribbon models of the Mad2 conformational dimer. B) Topology diagram of O-Mad2
and C-Mad2. In C-Mad2, the two strands β8′−β8′′ are extensions in opposite directions
of the β8 strand of O-Mad2, which justifies the nomenclature β8′−β8′′ for these strands
[Figure taken from: Mapelli, M. et al. (2007). Cell, 131(4): 730–74320]

1.1.4 Function Versatility and Multitasking in Proteins

In addition to structural instability, and in some way closely related to it, there are

substantial grounds from the ‘function’ point of view that somehow challenge the ‘struc-

ture determines function’ dogma. There are many examples of proteins that perform
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FIGURE 1.5: Model of the N-terminal Domain in the p53-DNA Complex

Shown is the N-terminal domain ensemble of one representative full-length p53
molecule included for illustration. p53CTetD (gray) and DNA (magenta) are shown
in space fill mode. The flexible C-terminal domain is not shown for reasons of clarity.
N-terminal domains forming the four different monomers are shown in different colors
for clarity. Twenty copies are shown for each monomer [Figure taken from: Wells, M.
et al. (2008). Proc. Natl. Acad. Sci. USA, 105(15): 5762–742]

‘secondary functions’ for which they have not evolved in the first place –i.e. coined as

moonlighting proteins43–49– as is the case of crystallins that are structural constituents

of the eye-lens but also have dissimilar enzymatic activities50,51. Other cases comprise

enzymes of the tRNA synthetases family that additionally to their main function of syn-

thesizing aminoacyl-tRNAs for protein synthesis, also exhibit a wide group of secondary

functions, including transcriptional regulation52–54, regulation of translation and tumor

suppression55–57, angiogenesis58–60, as secretion proteins mediating proinflammatory

responses61, splicing factors62,63 and an even larger group of other functions in differ-

ent organisms groups and taxonomic classifications64. In the LDL receptor family, whose

members are mainly related to the endocytosis and uptake of lipoproteins, they also par-

ticipate in an ample group of other processes by interacting with an heterogeneous set

of ligands, thanks to structural rearrangements of the recognition domain region65, and

determining their important role in, among others, signal transduction, protein process-

ing and synaptic plasticity65–67. Another interesting example is that of Glyceraldehyde

3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme with a myriad of diverse
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functions in cells. In microorganisms, it has been found as structural constituent of the

cell walls68,69. In mammals, its corresponding orthologs participate as important cellular

sensors70–72, suffering post-translational modifications inducing significant quaternary

structural changes leading the trafficking of the protein towards nucleus, mitochondria

and other cellular compartments, where it undertakes non-glycolytic functions in DNA

repair, RNA binding, phosphorylating activity and interacting with other proteins70,72–76.

Besides, it has been recently discovered that this enzyme plays an important role in a

novel cell death cascade, and is also implicated in some neurodegenerative diseases in

man70,71,73,75,77. Once again, as explained above for conformational instability, these

cases of protein multitasking tough fascinating, are more frequent than commonly ex-

pected, and the continuous discovery of examples of moonlighting in the last years has

prompted the proposition that this is possibly the mainstream in the protein universe48.

The connection between conformational instability and multitasking in proteins is

a complex problem that we are only beginning to understand. More and more exam-

ples are being characterized and apparently there does not appear to be any common

structural features among moonlighting proteins43,45, as it seems that different proteins

have evolved dissimilar mechanisms to link instability and function versatility. The first

studies of these particular proteins, based on the established structural concepts of ‘one

structure-one function’, resulted in the characterization of an ample group of globu-

lar proteins, for which the different functions were attributed to specific, well-defined

structural loci43,45. In other cases, more striking structural changes are observed, and

different subdomains rearrange to provide the exact topology necessary for binding

different chemical compounds or to interact with different partners, as is the case of

Lymphoactin19 (Figure 1.3) and Mad220 (Figure 1.4). The extreme case would be IDPs,

in which significant disorder provides great potential for forming many interactions via

structurally dissimilar complexes –e.g. as for one of the most famous and well charac-

terized proteins belonging to this class: p5342 (Figure 1.5)– since residues that are key

for one interaction can often be decoupled from those important for others78. Thus, in

this type of proteins, the same architecture can adapt and efficiently interact with differ-

ent or alternative partners, forming the so-called fuzzy complexes38,39, see Figure 1.6.

The lack of a defined structure could be seen as the most advanced or even extravagant

strategy for linking conformational instability with function versatility. These proteins

supply the cells with a set of adaptable machines with promiscuous basal activity, en-

hanced specificity, surface burial areas and affinity, the possibility to form complex in-

teractions, with an enhanced disposition for regulation via post-translational modifica-

tions and proteolysis, higher capture radius for complex formation, among others38,39.
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FIGURE 1.6: Examples of Different Structural Categories of Fuzzy Complexes

170 Mol. BioSyst., 2012, 8, 168–177 This journal is c The Royal Society of Chemistry 2012

which is not necessarily a regular motif. In all examples of this
category so far, the regulating ID region flanks the binding
segment.

Methylated CpG binding protein 2 (MeCP2) deciphers
epigenetic information by selectively recognizing DNAmethylation
patterns.26Mutations of the protein lead toRett syndrome, a severe
neurodevelopmental disorder, which originates from changes in
chromatin structure and gene repression. MeCP2 comprises
various DNA binding domains, out of which the methylated
DNA binding domain (MBD) recognizes the methylated CpG
sequences.27 The propensity of regular secondary structures is
35% in the free MeCP2, which increases only by 7% upon
interacting with DNA.28 This indicates that although some
secondary structure elements are distinguished in binding,
MeCP2 remains primarily disordered in the complex. The
secondary structure content of the disordered N-terminal
domain (NTD), for example, exhibits almost no change in
the effect of DNA, yet it impacts affinity of the structured
MBD by 10-fold.28 The NTD itself does not harbor a DNA
binding site; but via inter-domain interactions it selects MBD
conformations favorable for DNA binding. An even more
profound effect is seen in the intervening domain and transcrip-
tional regulatory domain, where the disordered C-terminal region
helps to populate binding-competent conformations in the

ensemble resulting in 30% improvement in DNA binding affinity.
In line with their proposed role in mediating inter-domain
contacts, a large number of short recognition sites were identified
by bioinformatics analysis in these ID regions.28

A conformational transition is also coupled to the activity
of thymine DNA glycosylase (TDG), which repairs GT and
GU mismatches in the base excision repair (BER) pathway.
TDG exist in two forms: the ‘‘closed’’ form, when the catalytic
domain is involved in intra-molecular interactions, and an ‘‘open’’
form, which lacks these contacts.29 The turnover of this enzyme is
regulated by the disordered N- and C-terminal domains (NTD
and CTD), the removal of which increases the turnover of GT
and GU activities by 50% and 100%, respectively.30 A 60-residue
segment of the NTD, also termed as a regulatory domain (RD),
adopts a stable secondary structure upon contacting the
catalytic domain. The first 50 residues of the NTD and the

Fig. 1 Examples of different structural categories of fuzzy complexes.

The IDPs are shown by orange and magenta, fuzzy regions are

represented by dotted lines. The binding partners are displayed as

gray surfaces. (A) Polymorphic complex: the WH2 domain of

Wiskott–Aldrich syndrome protein interacts with actin in alternative

locations: via an 18 residue segment (orange; PDB code 2a3z) or via

only 3 residues (magenta; PDB code 2ff3). (B) Clamp complex: the

nonsense mediated decay factor UPF2 binds to UPF1 via two

structured regions (PDB code 2wjv) and the connecting linker remains

ambiguous in the complex (dotted line). (C) Flanking complex:

DNA-binding by the transcription factor Ultrabithorax is strongly

influenced by various disordered regions that flank the structured home-

odomain. Interactions with another, Extradenticle homeodomain are

mediated by a short motif (shown by bold line) located in a clamp-like

region (PDB code 1b8i). (D) Random complex: the cyclin-dependent

kinase inhibitor Sic1 has nine phosphorylation sites that interchange

upon contacting Cdc4. Contacts with two of them, T45 and S76, are

shown by orange andmagenta respectively. The phosphorylation sites are

represented by spheres (as a courtesy of Dr Tanja Mittag).

Table 1 Examples of fuzzy complexes (excluding those listed in ref. 13).
Structural categories are defined as: polymorphic (P), clamp (C),
flanking (F), random (R)

Model IDP Partner Category Ref.

Conformational selection
Max DNA F 89
MeCP2 DNA F 28
TDG DNA F 30
Neurogenin DNA F 90
ApLLP DNA F 91

Flexibility modulation
Ets-1 DNA F 36
SSB DNA F 92

Competitive binding
RNase 1 RNase inhibitor P 93
Myelin Actin P 49
p27Kip1 Cdk–cyclin F 38
b-Catenin APC F 94
Sic1 Cdc4 R 61
UmuD2 UmuD2 R 95
Ebola virus nucleoprotein VP35 and VP24 F 96
PC4 DNA F 52
FACT DNA F 60
HMGB1 DNA F 97
Ubx DNA F, C 40
DSS1/Brh2 DNA F 98
NKX3.1 DNA F 99
PPAR-g DNA F 100
UvrD DNA F 101
b-Telomere DNA F 102

Tethering
WH2 Actin P 103
L7 L12 C 104
UPF1 UPF2 C 42
RPA DNA C 46
KorB DNA C 105

MeCP2: methylated CpG binding protein 2; TDG: thymine DNA
glycosylase; ApLLP: aplysia LAPS18-like protein; SSB: single
stranded DNA binding protein; myelin: myelin basic protein; p27:
cell cycle kinase inhibitor p27; UmuD2: product of the umuD gene;
PC4: human positive cofactor 4; FACT: facilitates chromatin tran-
scription; HMGB1: high mobility group protein B1; Ubx: homeotic
protein ultrabithorax; DSS1: small acidic Brh2-interacting protein;
Brh2: BRCA2 analogue; NKX3.1: prostate tumor suppressor belonging
to the NK_2 family; PPAR-g: peroxisome proliferators activated
receptor; UvrD: UvRD helicase; WH2: WASP-homology 2 domain
(e.g. in Spire and Cordon-bleu); L7, L12: ribosomal proteins; UPF1:
regulator of nonsense mediated decay; RPA: human replication protein A;
KorB: transcriptional repressor.
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The IDPs are shown in orange and magenta, fuzzy regions are represented by dotted
lines. The binding partners are displayed as gray surfaces. A) Polymorphic complex:
the WH2 domain of Wiskott-Aldrich syndrome protein interacts with actin in alternative
locations: via an 18 residue segment (orange; PDB id: 2A3Z) or via only 3 residues (ma-
genta; PDB id: 2FF3). B) Clamp complex: the nonsense mediated decay factor UPF2
binds to UPF1 via two structured regions (PDB id: 2WJV) and the connecting linker
remains ambiguous in the complex (dotted line). C) Flanking complex: DNA-binding
by the transcription factor Ultrabithorax is strongly influenced by various disordered re-
gions that flank the structured homeodomain. Interactions with another, Extradenticle
homeodomain are mediated by a short motif (shown by bold line) located in a clamp-
like region (PDB id: 1B8I). D) Random complex: the cyclin-dependent kinase inhibitor
Sic1 has nine phosphorylation sites that interchange upon contacting Cdc4. Contacts
with two of them, T45 and S76, are shown by orange and magenta respectively [Figure
taken from: Fuxreiter, M. (2012). Mol. BioSyst., 8(1): 168–7739]

Not surprisingly, IDPs are frequently linked to important regulatory processes, involv-

ing the formation of composite supramolecular complexes, related to the most special-

ized functions in cells, such as gene expression, protein synthesis and cell and tissue

differentiation38–40,43,44,79,80.

1.1.5 Cell Mechanisms for Generating Protein Functional Versatility

Dynamism and conformational variability are intrinsic to polypeptides29,81, and there

exists a complex network of interrelated mechanisms in the cell to take advantage of
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these physicochemical peculiarities not only to generate proteins that can accomplish a

given function with minor structural changes, but also to express proteins with more or

less structural instability, which will be better suited for achieving more complex or mul-

tiple functions. These mechanisms for generating functional multiplicity and promis-

cuity span through almost all the processes controlling genome instability, gene and

protein expression. New protein alternatives can be generated at the genomic level by

mutations –e.g. small and/or large-scale mutations27,82–84. Gene duplications contribute

to the generation of new templates for experimenting new structural scaffolds with al-

ternative affinities and/or functions by means of point mutations. Recent reports argue

on the importance of gene duplication on the generation of new protein alternatives,

as a significative number of genes in the genomes coexist with their nearly identical

duplicates85,86. This mechanism allows the exploration of new functionalities and/or

specificities taking advantage of the relaxed selection pressure arising from the fact that

the other copy can continue fulfilling the original function27,83,87,88. This has been ob-

served for the diversification of functions in some protein families89–91. In this context,

the existence of a conformational ensemble of structures could be determinant in the

generation of functional promiscuity, as proposed in the model in Figure 1.7. Mutations

in the duplicated gene could improve catalytic efficiency towards the new substrate by

optimizing active site chemistry and also by stabilizing the promiscuous conformation,

and it is highly likely that the new enzyme will have completely lost the original activ-

ity and conformation26. In fact, mutation and selection may lead to the new enzyme

acquiring new conformations and consequently new promiscuous activities26.

Although very important for many key biological processes and functions, cells have

to deal with important risks of producing a huge amount of these conformationally

unstable proteins23,92. In accordance, there is a complex and multilevel set of pro-

cesses for the generation and for the regulation of the expression of these proteins

post-transcriptionally by alternative splicing events93–96, at the translation phase by the

processes regulating the initiation, elongation and termination stages97–101 and by the

broad spectrum of post-translational modifications102–112. These mechanisms ultimately

contribute to generate proteins which can exhibit more or less structural instability, that

can simultaneously evolve to perfect their principal functions, while also being able to

be involved in other ‘moonlighting’ functions. These secondary functions are organism

and/or tissue specific27,39 and once established, are subject to selection and can be fixed

in evolution.
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FIGURE 1.7: Proposed Model of Enzyme Evolution Mediated by Conformational Diver-
sity and Functional Promiscuity

evolutionary process [36]. It is likely that proteins exhibit a
similar pattern of behaviour.

The co-evolution of fold and function
The proposed model (Box 3) describes how existing genes
could diverge to evolve new functions, but it can also be
extended to explain how primordial protein precursors
evolved in the first place. The emergence of the first
functional proteins is a complete mystery. It is generally
assumed that proteins exert function onlywhen folded into
a well-defined 3D structure. However, fold alone provides
no selective advantage and, thus, cannot evolve indepen-
dently. We are therefore left with an unlikely scenario in
which random sampling must simultaneously produce a
sequence with a discrete 3D structure and a selectable
function.

The Pauling hypothesis regarding antibodies (Box 2)
and the ‘new view’ of proteins provide a mechanism for the
co-evolution of fold and function – both surmise that a
defined 3D structure is not a prerequisite for function. The
concept of functional non-structured proteins is best
illustrated with intrinsically disordered proteins [8–10].

In such proteins, the binding and folding processes are
linked [37]. During the early stages of evolution, a scenario
of co-evolution of fold and function could be based on a
selection for function from a repertoire of random
polypeptides in perpetual order–disorder transition [38].
These loosely held structures would be based around, for
example, 25–30-amino-acid loops [39] or other ‘seeding’
elements of structure. Such polypetides could dynamically
sample many different structural isomers of similar and
relatively low free energy. The resulting conformational
diversity, when multiplied by sequence diversity, would
give vastly larger repertoires out of which functional
polypeptides could be selected. A polypeptide, one of the
transient conformers of which enables binding and
catalytic conversion of a useful metabolite, would then
be selected. Function would also shift the structural
equilibrium, leading to higher occupancy of the active
conformer. Driven by mutation and selection, these
polypeptides could rapidly evolve via two parallel routes.
First, the population time of the active conformer could be
increased by mutations that progressively create discrete
folding pathways, which would eventually lead to stable,

Box 3. Enzyme evolution mediated by conformational diversity and functional promiscuity: a proposed model

The proposed model suggests that conformational diversity and
functional promiscuity are evolvability traits that enable existing
enzymes to rapidly evolve new activities (Fig. I). The predominant
conformationof an existing enzyme catalyses the conversion of a native
substrate. An alternative conformation, that is scarcely populated, has
the potential to bind and promiscuously catalyze another substrate.
Initially, this secondary activity provides only a limited fitness
advantage because binding of the primary substrate will sequester
most of the protein. This secondary activity can be improved through
mutation, yet only to a limited extent, as such mutations might also
decrease availability and activity for the primary substrate. However,

following a gene duplication event, one gene copy of the enzyme is free
to evolve without compromising the original activity. Mutations in the
duplicated gene could improve catalytic efficiency towards the new
substrate by optimizing active site chemistry and also by stabilizing
the promiscuous conformation. Following iterative rounds of mutation
and selection, it is highly likely that the new enzyme will have
completely lost the original activity and conformation. In fact, mutation
and selection may lead to the new enzyme acquiring new con-
formations and consequently new promiscuous activities. These in
turn could serve as the starting point for the evolution of yet more
new enzymes.

Fig. I. Proposed model of enzyme evolution mediated by conformation diversity and functional promiscuity. (a) The enzyme is in equilibrium between different confor-
mations. The native substrate (yellow) selects the dominant conformer (dark blue) and, thus, enzyme activity confers selective advantage. (b) An alternative confor-
mation potentiates the binding of a second substrate (pink). The secondary activity confers a limited selective advantage under changing environmental conditions. (c)
Gene duplication enables one copy to evolve improved activity with the promiscuous substrate while the original gene maintains its original function.
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a) The enzyme is in equilibrium between different conformations. The native substrate
(yellow) selects the dominant conformer (dark blue) and, thus, enzyme activity confers
selective advantage. b) An alternative conformation potentiates the binding of a second
substrate (pink). The secondary activity confers a limited selective advantage under
changing environmental conditions. c) Gene duplication enables one copy to evolve
improved activity with the promiscuous substrate while the original gene maintains
its original function [Figure taken from: James, L.C. and Tawfik, D.S. (2003). Trends
Biochem Sci., 28(7): 361–826]

1.2 Protein Aggregation and Diseases

1.2.1 Amyloidogenesis is a General Property of Polypeptide Chains

The expression of proteins able to experience important structural changes, adopt-

ing partially unstructured intermediates in the transition among structural states, or

being most of their lifetime partially or totally unfolded in the crowded protein inte-

rior entail important downsides, as these species have a high susceptibility to aggregate.

Accordingly, although very important for function, proteins’ dynamism and structural

instability is also related to their susceptibility to aggregate forming amyloid fibrils. Ini-

tially, it was thought that amyloidogenesis was a property of a special group of partially

unstructured domains, but recent findings suggest that this might be an inherent char-

acteristic of polypeptides, as almost any globular protein can form amyloid fibrils under

certain specific conditions113–119, with independence of its folding architecture, amino

acid sequence and molecular weight32. This is depicted in Figure 1.8, in a graphical

summary of the possible states than can be visited by a protein in the cell114. Moreover,

it has been proposed that fibril formation appears to be a generically stable structural
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state of polypeptide chains, competing thermodynamically and kinetically with globu-

lar and unfolded monomeric states32, though the propensity to form such structures can

vary dramatically with sequence120. Cells have then developed molecular mechanisms to

deal with the problem of intracellular protein aggregation, such as the facilitator effect

carried out by chaperones121,122, compartmentalization of aggregates123 and targeted

protein degradation124.

FIGURE 1.8: A Unified View of some Types of Structures that can be Formed by Polypep-
tide Chains

formation seems to involve the formation of soluble oligomers as a
result of relatively nonspecific interactions, although, in some cases,
specific structural transitions, such as domain swapping, might be
important51. The earliest species visible by electron or atomic-force
microscopy generally resemble small bead-like structures, some-
times linked together, and often described as amorphous aggregates
or as micelles. These early ‘prefibrillar aggregates’ then transform
into species with more distinctive morphologies, often called
‘protofilaments’ or ‘protofibrils’. These structures are commonly
short, thin, sometimes curly, fibrillar species that are thought to
assemble into mature fibrils, perhaps by lateral association accompa-
nied by some degree of structural reorganization. The aggregates that
form first are likely to be relatively disorganized structures that
expose to the outside world a variety of segments of the protein that
are normally buried in the globular state52. In some cases, however,
these early aggregates appear to adopt quite distinctive structures,
including well-defined annular species53 (see Fig. 3).

Molecular evolution and the control of protein misfolding
The state of a protein that is adopted under specific conditions
depends on the relative thermodynamic stabilities of the various
accessible conformations and on the kinetics of their interconversion
(Fig. 4)37,54. Amyloid fibrils are just one of the types of aggregate that
can be formed by proteins, although a significant feature of this par-
ticular species is that its highly organized hydrogen-bonded struc-
ture is likely to give it unique kinetic stability. Thus, once formed,
such aggregates can persist for long periods, allowing a progressive
build-up of deposits in tissue, and indeed enabling seeding of the
subsequent conversion of additional quantities of the same protein
into amyloid fibrils. It is therefore not surprising that biological sys-

tems have almost universally avoided the deliberate formation of
such material. Nevertheless, there is increasing evidence that the
unique properties of amyloid structures have been exploited by some
species, including bacteria, fungi and even mammals, for specific
(and carefully regulated) purposes55–57.

There is evidence that evolutionary selection has tended to avoid
amino-acid sequences, such as alternating polar and hydrophobic
residues, that favour a !-sheet structure of the type seen in amyloid
fibrils58. Moreover, recent studies suggest that the aggregation
process that results in amyloid fibrils is nucleated in a similar manner
to that of folding, but that the residues involved might well be located
in different regions of the sequence from those that nucleate fold-
ing59. Such ‘kinetic partitioning’ means that mutations that occur
during evolution could be selected for their ability to enhance folding
at the expense of aggregation. However, it is apparent that biological
systems have become robust not just by careful manipulation of the
sequences of proteins but also by controlling, by means of molecular
chaperones and degradation mechanisms, the particular state adopt-
ed by a given polypeptide chain at a given time and under given con-
ditions. This process can be thought of as being analogous to the way
in which biology regulates and controls the various chemical trans-
formations that take place in the cell by means of enzymes. And just as
the aberrant behaviour of enzymes can cause metabolic disease, the
aberrant behaviour of the chaperone and other machinery regulating
polypeptide conformations can contribute to misfolding and 
aggregation diseases35,60.

The ideas encapsulated in Fig. 4 therefore serve as a framework for
understanding the fundamental events that underlie misfolding dis-
eases. For example, many of the mutations associated with the famil-
ial forms of deposition diseases increase the population of partially
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Figure 4 A unified view of some of the
types of structure that can be formed by
polypeptide chains. An unstructured
chain, for example newly synthesized on
a ribosome, can fold to a monomeric
native structure, often through one or
more partly folded intermediates. It can,
however, experience other fates such as
degradation or aggregation. An amyloid
fibril is just one form of aggregate, but it
is unique in having a highly organized
‘misfolded’ structure, as shown in Fig. 3.
Other assemblies, including functional
oligomers, macromolecular complexes
and natural protein fibres, contain
natively folded molecules, as do the
protein crystals produced in vitro for X-
ray diffraction studies of their structures.
The populations and interconversions of
the various states are determined by their
relative thermodynamic and kinetic
stabilities under any given conditions. In
living systems, however, transitions
between the different states are highly
regulated by the environment and by the
presence of molecular chaperones,
proteolytic enzymes and other factors.
Failure of such regulatory mechanisms is
likely to be a major factor in the onset and
development of misfolding diseases.
Adapted from ref. 54. 
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An unstructured chain, for example, newly synthesized on a ribosome, can fold to a
monomeric native structure, often through one or more partly folded intermediates.
It can, however, experience other fates such as degradation or aggregation. An amy-
loid fibril is just one form of aggregate, but it is unique in having a highly organized
‘misfolded’ structure. Other assemblies, including functional oligomers, macromolecu-
lar complexes and natural protein fibers, contain natively folded molecules, as do the
protein crystals produced in vitro for X-ray diffraction studies of their structures. The
populations and interconversions of the various states are determined by their relative
thermodynamic and kinetic stabilities under any given condition. In living systems,
however, transitions between the different states are highly regulated by the environ-
ment and by the presence of molecular chaperones, proteolytic enzymes and other
factors. Failure of such regulatory mechanisms is likely to be a major factor in the on-
set and development of misfolding diseases [Figure taken from: Dobson, C.M. (2003).
Nature, 426(6968): 884–90114]

The formation of amyloid fibrils from short protein stretches has been widely studied

for a variety of different models of protein aggregation. From these studies it has been

proposed that the process starts with a ‘nucleated growth’ stage in which the monomers
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assemble to form which will be the nucleus of the future fibril125–127. Then, the sub-

sequent association of monomers and/or oligomers contributes to the growing of the

fibril, the velocity of the reaction depending on a wide number of factors, such as

solution conditions and the sequence of monomers. This initial stage in reality coin-

cides in time with other advanced stages of fibril formation, as is the case of structured

protofibrils, which have a metastable structure and can form on- or off-pathway to the

formation of the fibril128,129. It has been widely argued that these prefibrillar species

mediate the most important part of the cytotoxicity of protein aggregates in cells130,131.

There are some missing links in the understanding of protein aggregation because the

knowledge of these initial stages of amyloid formation has been hampered by the lack

of atomistic studies of these prefibrillar species, as it would require techniques able to

decipher molecular architectures within ensembles of interconverting and commonly

heterogeneous structure132. In general, a great diversity of states coexist in time (Fig-

ure 1.8), and the formation of the mature fibrils proceeds along a path in which different

amyloid species pack together, either by means of considerable structural refolding of

the interacting zones or with limited conformational changes31,133,134. The sequence

of the protein stretches forming the fibrils determines the efficiency of coaggregation,

which decreases markedly with the decreasing of the sequence identity of the contacting

domains135. Besides, the compositional characteristics of the stretches influence the ag-

gregation propensity: a) there is a direct proportionality between the hydrophobicity of

the aggregation nuclei136–138, b) an indirect proportionality between the charge of the

amino acids in the monomer139,140, c) an indirect proportionality between the propen-

sity to form α-helical structures and a direct proportionality between the propensity to

form β-sheet structures136,137,141, and the aggregation potential of the protein stretches.

Protein aggregates can also be formed by well-folded proteins in vitro and in vivo,

a phenomenon different to the one described above for the formation of fibrils from

short unfolded peptides. The experimental evidence suggests that aggregation of at

least some globular proteins may well be initiated by fluctuations giving rise to the

population of amyloidogenic native-like states, without the need to cross the major free

energy barrier for unfolding142. As depicted in Figure 1.9 for the fibril formation of

Transthyretin (TTR), the partial unfolding of the region comprising the peripheral β-

strands C and D suffices to determine the region responsible for initiating the amyloid

aggregation143. The resulting fibril is formed with repeats of TTR molecules positioned

longitudinally with respect to the fibril axis connected by the unfolded patches formed

in the regions of the C and D β-strands134,144. There are plenty of other examples of

this behavior in which local conformational changes lead to amyloid formation145–147.

In the process of fibril formation the constituent molecules of the resulting aggregates
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may maintain their native-like structure only in the initial oligomers and later undergo

a global structural reorganization to form the amyloid structure142.

FIGURE 1.9: Proposed Process of Fibril Formation for Human Transthyretin (TTR)

under native conditions following addition of Cu2+ ions61,62. I2, IT and 
M* will herein be collectively referred to as N* states, to be consistent 
with the nomenclature used in this review.

Evidence exists that such 2m N* states can add, under physiologi-
cal conditions, to preformed fibrils that act to seed59,60 or even initiate 
aggregation de novo when formed upon Cu2+ addition61,62. In the latter 
case it has been found that Cu2+ binds to the native state N, acceler-
ates the conversion to and stabilizes N*, and promotes its oligomeriza-
tion into dimers, tetramers and hexamers61,63–66. Such oligomers have 
a native-like structure, as inferred from NMR and near-UV circular 
dichroism spectroscopy61.

The structure of IT has been investigated using NMR and circular 
dichroism67. These studies have shown a native-like compactness and 
secondary structure content for this state, but also detectable structural 
perturbations throughout the sequence67. The structure of this species 
has also been determined through studies of the P32G mutant using 
NMR spectroscopy59. Because peptide bonds involving nonproline 
residues are very unstable when they adopt a cis configuration, this 
mutant represents a valuable means of stabilizing N* relative to N, 
thus enabling its structural investigation. The NMR analysis of the 
P32G mutant revealed that the N terminus, the two peripheral A and 
D strands and the two loops connecting the B and C and the F and G 
strands have small structural differences from the fully native state59. 
In agreement with the NMR structural analysis of the P32G variant, 
the crystallographic structure of the P32A mutant shows considerable 

Human β2-microglobulin
Amyloid fibril formation by 2-microglobulin ( 2m) is a consequence 
of medical treatment in which hemodialysis is used to combat kidney 
failure and gives rise to a pathological state known as dialysis-related 
amyloidosis55. The pioneering observation that a six-residue truncation 
at the N terminus of 2m causes both an increase in structural flexibil-
ity within the native state, as detected by limited proteolysis and H/D 
exchange monitored by mass spectrometry and NMR spectroscopy, and 
a higher tendency to form amyloid fibrils at physiological pH, suggested 
nearly a decade ago that amyloid fibril formation by 2m can involve a 
native-like conformational state56.

Subsequently, the investigation of the folding process of full-length 
2m has allowed the identification of at least one intermediate that forms 

in the dominant folding pathway after the major energy barrier for fold-
ing57–59. This species has been termed I2 (ref. 57) or IT (refs. 58,59) by 
the various authors that have described them. Although it remains to be 
elucidated whether I2 and IT represent the same conformational species, 
or alternatively are structurally and thermodynamically distinct states, 
they both accumulate after the major energy barrier for folding. The 
rate of conversion of IT into the fully native state N is determined by 
the slow trans (intermediate) to cis (native) conversion of the His31-
Pro32 peptide bond58,59. Interestingly, both I2 and IT have been shown 
to remain populated, albeit to a small extent and in equilibrium with 
the fully native state, after completion of the folding process59,60. A 
conformational state structurally related to IT, termed M*, can be formed 
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Figure 5  Proposed process of fibril formation for human TTR. The protein is initially in its native tetrameric form (left, PDB entry 1F41). Two subunits of the 
tetramer are shown enlarged to illustrate the structural arrangement of the DAGH and CBEF sheets in one subunit and of the D A G H  and C B E F  sheets in 
the other subunit. The region encompassing -strands C and D is shown in red in both subunits. Aggregation involves dissociation of the tetramer to form a 
monomer in which the C and D strands are unfolded47. The transition from the native tetramer to the locally unfolded monomer is enhanced by the mutations 
associated with disease16. The region that is unfolded in the monomer is also unfolded in the fibril52–54 (right). A section of the fibril is shown enlarged to 
illustrate the unfolded state of the C and D strands and the orientation of the remaining -strands. The A and B strands of each subunit form a continuous 
hydrogen bonded network with the A and B strands of the preceding subunit. The F and H strands of each subunit also form a continuous hydrogen 
bonded network with the F and H strands of the next subunit (right). The fibril structure on the right is adapted with permission of the American Society of 
Biochemistry & Molecular Biology from ref. 54. Permission conveyed through Copyright Clearance Center, Inc.
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The protein is initially in its native tetrameric form (left, PDB id: 1F41). Two subunits of
the tetramer are shown enlarged to illustrate the structural arrangement of the DAGH
and CBEF sheets in one subunit and of the D’A’G’H’ and C’B’E’F’ sheets in the other
subunit. The region encompassing β-strands C and D is shown in red in both subunits.
Aggregation involves dissociation of the tetramer to form a monomer in which the C
and D strands are unfolded. The transition from the native tetramer to the locally
unfolded monomer is enhanced by the mutations associated with disease. The region
that is unfolded in the monomer is also unfolded in the fibril (right). A section of the
fibril is shown enlarged to illustrate the unfolded state of the C and D strands and
the orientation of the remaining β-strands. The A and B strands of each subunit form
a continuous hydrogen bonded network with the A and B strands of the preceding
subunit. The F and H strands of each subunit also form a continuous hydrogen bonded
network with the F and H strands of the next subunit (right) [Figure taken from: Chiti,
F. and Dobson, C.M. (2009). Nat. Chem. Biol., 5(1): 15–22142]

1.2.2 Amyloid Fibrils Structural Characteristics and Properties

These amyloid aggregates are highly polymorphic, adopting fairly different struc-

tural arrangements, and apparently there are no universal molecular structural features

in amyloid fibrils except for the cross-β motifs32. In Figure 1.10 there is a summary of

the possible arrays adopted by proteins in fibrils. In Figure 1.10, panel c, it is included

a structural description of the cross-β motif, which is stabilized by hydrophobic inter-

actions at the buried surface between adjacent β-sheets, with the β-strands oriented
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almost perpendicular to the fibril axis. The polar and charged groups are positioned

pointing outwards in the outer surface and perpendicular to the β-sheets, or are estab-

lishing pairing interactions with complementary groups in the other sheet when found

buried between the paired β-sheets34,148. The orientation of the β-sheets can be either

parallel or antiparallel and the hydrogen bond registry might also vary significantly

between different amyloids30–36,149–152, rendering structures with characteristic dyeing

properties –e.g. tincture with Thioflavin T and Congo Red, SDS insolubility and protease

resistance. In the case of fibrils formed from the aggregation of specific loci from well-

folded proteins (Figure 1.10, panels ii and iv, and Figure 1.9), a specific region of the

protein establish the interactions via cross-β motif after unfolding, while the rest of the

protein retains its native conformation31,142. These folded domains could dangle at the

sides of the growing spine or they could swap with complementary domains31. There is

also the possibility of the formation of fibrils mediated by the complementary interac-

tions of folded or partially unfolded regions, as those shown in Figure 1.10, panels i(b)

and iii(d).

Prions, a term initially used to refer to infectious misfolded proteins, are a particu-

lar kind of amyloids in which the nucleation domains –i.e. prionogenic domains in this

case– are enriched in glutamine and asparagine residues141,153. Some recent reports

have underscored the compositional characteristics of these domains, concluding that

prion conversion depends significantly on the amino acid composition and the length of

such regions154–156. There are other factors that also play an important role on deter-

mining the prionogenicity of a sequence stretch, such as the number and distribution of

prolines and charged residues along the sequence154. Interestingly, it has been found by

means of exhaustive mutational studies, that prion formation is mainly determined by

the amino acid composition of the domain independently of the primary sequence155,156,

a fact that differentiates prions from other amyloids, in which the formation of the

cross-β structures during nucleation is highly dependent on hydrophobicity and sequen-

tial factors that determine the orientation and hydrogen bond registry of fibrils32,135. In

general, the tridimensional structure of prions is fairly similar to that of other amyloids,

basically stabilized by a cross-β spine. The X-ray structure of the nucleation domain of

the yeast prion Sup35157 and other studies relying in multiple experimental techniques

on this same protein33,158, and the NMR studies of the HET prion from Podospora anse-

rina159 attest to this fact. Mammalian prions have been more difficult to study from the

structural point of view, but some structures have been reported for the prion PrP160,161,

which have resulted in models for the formation of these prions fibrils162, revealing the

great similitudes with that of other amyloids.
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FIGURE 1.10: Models of Protein Fibrils

have helped to define the structures of the fibrils. There is
general agreement that Ab(1–40) and Ab(1–42) peptides
stack parallel and in register to form a set of b-sheets, with
the N-terminal !10 amino acids being poorly structured.
Less clear are the boundaries of the core b-strand and turn

regions, as the various studies seem to give conflicting
results. The solid-state NMR studies [26,33–36] confer the
most constraints on the structure and suggest that a bend in
the chain (residues 25–29) brings two b-strands (residues
12–24 and 30–40) into proximity.

262 Macromolecular assemblages

Figure 2

Gain-of-interaction models. (a) Cartoon depicting the four subtypes of gain-of-interaction models. In direct stacking models (panel i), the gained
interaction is achieved via simple stacking of subunits. Alternatively, in the cross-b spine models (panel ii), a segment of the protein separates
from the core domain to stack into a cross-b spine, with the core domain decorating the edges of the spine. In the somewhat more elaborate
model shown in panel iv, the molecules at the edges of the spine domain swap with identical molecules. This permits a wider range of stable
geometries around the cross-b spine. In the remaining subtype (panel iii), proteins first domain swap and then stack into the fibril. (b) Ribbon
diagram showing a crystalline filament of human superoxide dismutase mutant S134N (PDB code 1OZU [39]). Three dimers stack in an example
of a direct stacking model. The b-strands highlighted in black are arranged roughly perpendicular to the fibril axis. (c) Ribbon diagram showing
the pair of sheets of the GNNQQNY cross-b spine, with backbones represented by arrows and sidechains by ball-and-stick structures (PDB
code 1YJP [21""]). The asparagine and glutamine sidechains facing into the space between the two sheets (N2, Q4, N6) pack to form a steric
zipper. (d) Ribbon diagram showing the crystal structure of a 3D domain-swapped dimer of human cystatin C (PDB code 1G96 [46]). The
monomers are colored blue and light gray, to highlight the swapped domains. N and C termini are indicated. (e) Ribbon diagram showing one
sheet of the 3D domain-swapped cross-b spine model of fibrillar polyglutamine mutants of RNase A [45""]. The view shows one face of the
proposed steric zipper, with aligned stacks of glutamine sidechains (shown as sticks) forming hydrogen bonds along the length of the fibril.

Current Opinion in Structural Biology 2006, 16:260–265 www.sciencedirect.com

a) Cartoon depicting the four subtypes of gain-of-interaction models. In direct stacking
models (panel i), the gained interaction is achieved via simple stacking of subunits.
Alternatively, in the cross-β spine models (panel ii), a segment of the protein separates
from the core domain to stack into a cross-β spine, with the core domain decorating
the edges of the spine. In the somewhat more elaborate model shown in panel iv,
the molecules at the edges of the spine domain swap with identical molecules. In the
remaining subtype (panel iii), proteins first domain swap and then stack into the fib-
ril. b) Ribbon diagram showing a crystalline filament of human superoxide dismutase
mutant S134N (PDB id: 1OZU). c) Ribbon diagram showing the pair of sheets of the
GNNQQNY cross-β spine, with backbones represented by arrows and sidechains by
ball-and-stick structures (PDB id: 1YJP). d) Ribbon diagram showing the crystal struc-
ture of a 3D domain-swapped dimer of human cystatin C (PDB id: 1G96). e) Ribbon
diagram showing one sheet of the 3D domain-swapped cross-β spine model of fibrillar
polyglutamine mutants of RNase A [Figure taken from: Nelson, R. and Eisenberg, D.
(2006). Curr. Opin. Struct. Biol., 16(2): 260–531]

1.2.3 Protein Aggregation Plays Important Roles in Many Cell Processes

The aggregation propensity of proteins has been used by living beings, from microor-

ganisms to human, to carry out important physiological functions, giving them great

adaptive advantages in some environmental conditions163. Some of the characteristics

of amyloid fibrils, such as their resistance to change their properties by the exposure to

chemicals and their resistance to protease digestion, as well as their astonishing strength

and mechanical stiffness164, make them a perfect choice to be used in a wide variety of

cell functions. In pathogen bacteria, some amyloid proteins –e.g. Curlins and Tafi–
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are implicated in adhesion to surfaces, cell aggregation and biofilm formation, but also

mediate host invasion and pathogenesis through their activation of host extracellular

matrix remodeling enzymes165–167. In fact, extracellular biofilm formation appears to be

a general characteristic among bacteria168–171, and commonly these complex scaffolds

are built up by a diverse group of proteins assembled into amyloid structures172–174 that

are known to be important virulence factors for bacteria, favoring the attachment to

eukaryotic cells168,169,175–178. These amyloid proteins are indispensable components in

biofilms, allowing the formation of the structural framework and interacting with the

bacterial cell wall172–174. In other free-living bacteria, amyloid forming Chaplins are es-

sential for attachment to hydrophobic surfaces allowing hyphae to escape the aqueous

environment and grow into the air, generating an amphipathic film that is an important

step in spore formation166,179,180. A similar mechanism is used in some fungi, in which

special amyloid-forming proteins called Hydrophobins, contribute to the formation of

aerial structures for sporulation and adherence to hydrophobic surfaces, in a fairly sim-

ilar way as Chaplins do166,179,181.

In multicellular organisms there also exist multiple examples of the beneficial use of

amyloid-like structures, as it is the case of one of the most renowned biomaterial: silk. It

is now known that silk is formed by amyloidogenic proteins that associate at the spider’s

spinning duct to generate the nanofibrils that are the constituents of silk fibers182–185.

As in microorganisms, amyloid structures also take part in protective functions in mul-

ticellular organisms186. Amyloid structures have been found forming the eggshells of

insects, helping the protection of the oocyte and the embryo against the environmen-

tal hazards183,185,186. In some species of fishes, a similar mechanism is used to protect

the eggs from dehydration and other perils of the water medium187–189. In some insects

and fishes, these kinds of proteins are also responsible for protection against freezing,

in a mechanism in which the so called ‘antifreeze’ or ‘thermal hysteresis’ proteins, can

effectively lower the freezing point of bodily fluids, thereby preventing the formation of

microscopic ice crystals190–192. In mammals and human, there are also examples of the

usefulness of amyloid-like structures, an example of which is the coagulation cascade,

in which Fibrin is a key player. Following a group of dissimilar signals the activation

of Factor XII triggers a proteolytic cascade that resulted in the formation of Fibrin from

the inactive Fibrinogen that polymerize to form a coagulum. It has been shown that

Fibrin forms amyloid structures upon polymerization193, which helps to prevent blood

loss and the entrance of infections. The process of melanin biosynthesis in mammals is

also mediated by the amyloid protein Pmel17194,195 that templates and accelerates the

covalent polymerization of reactive small molecules into melanin, and also mitigates

the toxicity associated with melanin formation by sequestering and minimizing the dif-

fusion of highly reactive and toxic melanin precursors out of the melanosome194. It has
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also been recently proved that in mammals, peptide and protein hormones in secretory

granules of the endocrine system are stored in an amyloid-like cross-β sheet-rich con-

formation, which may explain the processes of granule formation, including hormone

selection, membrane surrounding and inert hormone storage, and subsequently the re-

lease of hormones from the granules196.

A special type of amyloids are prions, which have the distinctive properties of acting

as heritable elements when in their aggregated forms, constituting self replicating enti-

ties that can perpetuate and transmit over generations. Prions are generally ubiquitous

proteins with specific functions when folded, that also perform important functions in

cells following their amyloid conversion, as is the case of the yeast prion Sup35, a pro-

tein that participates in mRNA translation termination. The prion conversion provokes

the inactivation of the protein which acts as an epigenetic element, with the subsequent

decreasing of the fidelity of translation termination, allowing yeast cells to exploit pre-

existing genetic variation to thrive in fluctuating environments197,198. Other case is the

yeast Ure2, a nitrogen catabolite repressor. When in its soluble form in cells with a

good nitrogen source, Ure2 binds to the transcription factor Gln3p, keeping it in the

cytoplasm and thereby preventing expression of a set of genes for utilizing poor nitro-

gen sources199, that become constitutively expressed if the cell inherited the [URE3]

prion. Yeast is the organism in which prion biology has been more studied, and there

are more examples of prions performing cell functions, like Mot3200, a transcription

factor involved in controlling the cell wall composition and pheromone signaling, the

chromatin remodeling factor Swi1201 and the transcriptional co-repressor Cyc8202. In

all these cases the prions acting as bet-hedging devices give the organism great repro-

ductive fitness for living in fluctuating environments by creating variant subpopulations

with distinct phenotypic states203–205. There are also some few examples in multicel-

lular organisms, such as the prion-based generation of durable molecular memory for

maintaining long-term physiological states, as it has been proven for prion CPEB in

invertebrates206–209.

1.2.4 Conformational Diseases and Aggregation Pathologies

Despite its beneficial roles in cell physiology, as described above, protein aggregation

is more commonly associated with disease, thanks to the growing number of serious and

in some cases incurable pathologies that are being discovered to be caused by the deposi-

tion of amyloid fibrils. The formation of intracellular aggregates can be harmful for cells

as it promotes the deregulation of the cytosolic stress response because the aggregates,

by establishing aberrant protein interactions, sequester a great variety of endogenous

multifunctional proteins that occupy essential hub positions in cellular protein networks,
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with key roles in chromatin organization, transcription, translation, maintenance of cell

architecture and protein quality control210,211. Besides, the extracellular accumulation

of diffusible amyloid oligomers could lead to their non-specific binding to receptors and

channel proteins on the synaptic plasma membrane, thus interfering with numerous

signal-transduction cascades212 and seriously affecting the morphology of the neural

presynaptic terminals213. These diseases can be classified as sporadic (≈ 80%), heredi-

tary (≈ 15%) and transmissible (≈ 5%)120. In the group of amyloidoses are included a

diverse number of neurodegenerative disorders such as Alzheimer and Parkinson’s dis-

eases and various ataxias and dementias, nonneuropathic amyloidoses, either systemic

such as Lysozyme and Fibrinogen amyloidoses, or localized suchs as Type II diabetes

and Pulmonary alveolar proteinosis120,212. In this group of diseases are also included

disorders caused by infectious prions in human and mammals like the Creutzfeldt-Jakob

disease and bovine spongiform encephalopathy214,215.

In the last years, the concept of Conformational Diseases is gaining great interest from

the realization that the perturbation of the equilibrium among a folded protein and its

partially unstructured conformers can cause considerable disturbances in cell physiol-

ogy, and tissue dysfunction in higher organisms, thus leading to diseases. Initially, this

concept was proposed to describe a diverse group of disorders in which the abnormal

phenotype arises when a constituent protein suffers a transition to a conformation prone

to aggregate, resulting in the intra and/or extra-cellular accumulation of amyloid depo-

sitions216–218. Nevertheless, the concept has evolved to also include pathological states

in which an impairment in the folding efficiency results in a reduction in the quantity

of the protein that is available to play its normal role120, or in a reduction of the quality

of the protein, when the defective protein even if expressed in sufficient quantities, is

unable to correctly carry out its function219. These diseases can be inherited, when mis-

sense genetic mutations cause alterations in the 3D structure of the proteins120,219,220,

directly affecting their functional sites or indirectly affecting their thermodynamic sta-

bility, or acquired when caused by deregulations in the protein expression machinery

and protein quality control systems120,220. It is known that most mutations compromise

protein function, mainly indirectly due to their destabilizing effects27,84,221, which some-

how explains the ever-growing list of conformational diseases, and the importance of

studying protein conformational flexibility, how it is related to function and misfolding,

and how mutations, chemical compounds and environmental changes could promote or

abolish such disorders.
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1.3 Experimental Methods for Studying Protein Flexibility and

Conformational Instability

1.3.1 Different Timescales of Protein Conformational Motions

In the preceding sections, we have supplied a representative outlook of the intricate

problem of protein conformational instability, and its links with protein multitasking

and evolvability. As discussed above, there are indisputable and detailed structural ev-

idences of these phenomena, and to no surprise, the inclusion of a fourth dimension

into this problem –i.e. the time– results in an additional increasing of the complex-

ity. Understanding and modeling these processes to devise experimental and computa-

tional methodologies to study them is fairly difficult from an operational point of view.

A major obstacle is that it is not possible to watch experimentally individual atoms

moving within a protein, but instead, sophisticated biophysical methods are needed to

measure the physical properties from which the dynamics can be inferred222. As can

be seen in Figure 1.11, panel B, conformational motions in proteins occur at different

timescales222,223, depending on the extent of the structural changes, either involving lo-

cal flexibility or collective motions, which is related to the thermodynamics of the tran-

sitions –i.e. the free energy (∆G) of the interconversion, as described in Figure 1.11,

panel A. The transitions involving local flexibility (Tier 1 and 2 in Figure 1.11, panel A)

correspond to interconversions between structures with marginal energetic differences

close to the native basin, and are common in vivo and in vitro at physiological temper-

atures. These transitions have been found important for protein function in the case of

small solute diffusion in myoglobin224, in processes of binding and molecular recogni-

tion225–227 and in the ion selectivity of some membrane channels228,229. On the other

hand, slow motions, such as those corresponding to Tier 0 in Figure 1.11, panel A, in-

volve large collective movements that mediate the conversion between energetically and

structurally different species. These more dramatic structural changes are essential in

other biological processes such as enzymatic catalysis230–232 and in fold transitions nec-

essary to set up different structural frameworks for interacting with different partners

or substrates19,20, for details see Figures 1.3 and 1.4. All this wide temporal range can

not be covered or addressed by using any single experimental or computational tech-

nique (Figure 1.11, pabel B), thus a diverse group of experimental and computational

methodologies, based on different physical and chemical principles are used alone or in

conjunction to unravel protein conformational motions.
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FIGURE 1.11: Timescales of Protein Motions
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A) One-dimensional cross-section through the high-dimensional energy landscape of
a protein showing the hierarchy of protein dynamics and the energy barriers. Each
Tier is classified following the description introduced in233. Lower Tiers describe faster
fluctuations between a large number of closely related substates while higher Tiers are
related to slower transition between states with significant structural differences. A
change in the system will alter the energy landscape (from dark blue to light blue, or
vice versa). For example, ligand binding, protein mutation and changes in external
conditions shift the equilibrium between states. B) Timescale of dynamic processes
in proteins (red arows) and the experimental methods (blue arrows) that can detect
fluctuations on each timescale. [Figure adapted from: Henzler-Wildman, K. and Kern,
D. (2007). Nature, 450(7172): 964–72222 and Fenwick, R.B. et al. (2011). Eur.
Biophys. J., 40(12): 1339–55223]

1.3.2 Studying Protein Motions at Low-resolution

Protein motions can be assessed using a group of techniques initially developed in

the field of chemistry and latter adapted to the study of the biophysics of biomolecules,

including spectroscopic and absorbance methods, fluorescence and vibrational spec-

troscopy and Electron Paramagnetic Resonance (EPR), among others. With these meth-

ods, no detail of all the atoms of the system can be obtained, but instead average in-

formation of the entire system or for some specific protein regions. However, these

techniques allow the generation of very accurate kinetic information of the transitions

and can perform in a wide range of timescales (Figure 1.11, panel B). Some tech-

niques like neutron scattering234–237 and dielectric spectroscopy236,238–241, Mössbauer

spectroscopy242, vibrational spectroscopy243,244 –i.e. Raman, resonance Raman, and

infrared– and also classical spectroscopy245, have been widely used to study protein

function and its relationship with conformational fluctuations. Also, great insights have

been obtained with the use of EPR246,247. The partially unfolded intermediates that ap-

pear during transitions between states can also be successfully detected by calorimetric
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and/or spectroscopic techniques245,248 and the combination of spectroscopic techniques

with protein engineering can give some important structural clues at low-resolution of

these transient species249–254, a method that has been coined as Φ-value analysis. This

method is based in systematically perturbing the structure of a protein by making single

point mutations and assessing the stability of the mutants by spectroscopic techniques.

Then the nativeness of the structure in the intermediate around a given residue is associ-

ated to a numeric value –i.e. the Φ-value. Although laborious, this method is remarkable

as it is one of the few techniques available for obtaining structural information of high

energy and highly transient species such as transition states. Very recently, with the

advent of the possibility of studying single protein molecules, the combination of fluo-

rescence with these kinds of approaches, has opened a new door for the study of protein

folding and conformational dynamics255–257.

1.3.3 Atomic-detail Methodologies for High-resolution Study of Structural

Fluctuations

The intense research in the interrelated fields of protein structural fluctuations, pri-

ons and amyloidoses, folding intermediates and conformational diseases has generated

a wealth of experimental information regarding the structural and compositional deter-

minants of protein motions, and the driving forces of amyloid and prion formation. With

these methods it is possible to obtain a snapshot of the different substates visited by the

protein during its conformational exploration with atomic or near atomic resolution. A

multitude of different NMR techniques222,258–263 have been used to study protein dy-

namical properties at different timescales and in different model wild-type or mutant

proteins, being perfectly suited for studying the complete conformational ensemble of

a protein or a reaction in solution. Small and wide angle X-ray scattering264–271 can

also be used to study all the possible conformations at the same time, but in this case

at lower resolutions. Crystallographic methods are also used, although in this case, as it

is imperative to obtain a crystal that of course is a homogeneous structure in which the

molecules have no significative conformational differences, some biochemical artifices

are required to successfully study the different states232,272. Time resolved X-ray diffrac-

tion crystallography237,273–279 has constituted an advanced tool for following complex

biological processes in real-time, but also to study complex problems inaccessible to most

techniques in the femtosecond range, such as the formation and rupture of bonds, the

transfer of atoms, ions and electrons among chemical groups during biological processes.

Greater insights can be generated with the combined use of different techniques, such

as NMR, Hydrogen-Deuterium exchange NMR, Mass Spectrometry Hydrogen-Deuterium
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exchange, Native State Hydrogen exchange, real-time NMR, pulse-labeling Hydrogen-

Deuterium exchange, small angle X-ray scattering147,280–291, among others in current

development.

Amyloid and prion fibrils have been structurally studied using a combination of

techniques such as X-ray diffraction120,149,152,292, Atomic Force Microscopy293, Transmis-

sion Electron Microscopy35,152,292,294, cryo-Electron Microscopy35,151, site-directed spin-

labeling EPR spectroscopy30 and solid-state NMR32,36,120,159,295,296. From these tech-

niques one ultimately obtains a detailed description of the system at different stages

during the conformational transition or aggregate formation, with a delineation of the

regions that are important for aggregation, or that fold late or contribute the most to

conformation instability, or that fluctuate during the function of a protein, or that are

unfolded in the transition intermediates. Consequently, these methodologies are in-

valuable not only for describing these complex processes, but also to contribute to the

generation of computational and theoretical models that can be used synergistically in

conjunction with experiments, to get a deeper insight into the study of protein confor-

mational instability.

1.3.4 Structural Characterization of Partially Unfolded Intermediates

Protein conformational instability and local or major structural rearrangements, that

as has been explained in the paragraphs above, are key to protein function and versa-

tility, is accomplished through a set of partially unfolded intermediate species that have

special structural characteristics. During the last years the study of protein folding inter-

mediates has shed some light into the structural characteristics of these transient species

from the protein energy landscape, comprising equilibrium intermediates and molten

globules147,280–285,297,298, kinetics intermediates286–289, and the transition state ensem-

ble299–304. These intermediates have been found to be involved in a number of central

cellular processes such as membrane translocation15,305–307 or ligand recognition308,

among others covered in detail in the preceding sections. An important role of par-

tially unfolded intermediates in diseased-related protein aggregation21,309,310 has also

been established. The research of the structural features of folding intermediates would

provide important clues regarding the physical forces determining many natural and

disease-related phenotypes, and the transitions between different conformations during

the function of a protein, which would be of great importance in the development of

therapeutic strategies to modify those phenotypes.
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1.4 Computational Methods for Complementing Experimen-

tal Procedures

1.4.1 Using Primary Sequence and Compositional Characteristics of Amy-

loid, Intrinsically Disordered and Prion Proteins

In a research field mainly dominated by experimental techniques for many years,

computational modeling and bioinformatics are areas in continuous development, since

these theoretical strategies have proven to be of great help to describe complex systems

with great detail and in a wide range of timescales. Indeed, the predictions and mod-

els generated with these methods have been found in many cases fairly consistent and

have been subsequently validated experimentally. Thus, theoretical models and bioin-

formatics are important tools for conducting research in the field of protein biophysics,

either in isolation or in combination with experimental procedures. In the specific case

of the prediction of amyloid aggregation, the knowledge obtained during years of study

of the biogenesis of fibrils in vitro and in vivo –e.g. mutational studies, assessment of the

fibril formation rate and structural studies of fibrils– has set the grounds for the devel-

opment of theoretical models for predicting the amyloid formation propensities of new

species311,312. The first methodologies developed were based on the essential character-

istics of amyloids described in the preceding sections of this chapter, such as hydropho-

bicity, secondary structure formation propensities and charge313. As these characteristics

of a given protein stretch or peptide can be modeled at the sequence level, this above

mentioned methodology and the group of alternatives and variations that followed, were

used to, for example, predicting the effect of a given mutation on the aggregation rate,

as a function of the changes in these factors upon mutation136,313–321, and then vali-

dating these predictions experimentally. Structural information has also been used to

try to predict amyloidogenesis, with approaches that rely on potential energy calcula-

tions for assessing secondary structure patterns322, on energetic calculations based on

structural motifs obtained from fibril crystals323, inter sheet hydrogen-bonding register

patterns324–326, estimation of packing density after amyloid formation327, or position-

specific weight matrices representations of aggregation nuclei obtained from datasets of

amyloidogenic peptides tested in vitro328.

Intrinsic Disorder of proteins has also been studied from a theoretical perspective.

Initial propositions for theoretically rationalizing the discrimination of disordered and

ordered proteins based on primary sequence information329, were followed by a group

of more refined methods that assessed disorder propensities of consecutive protein

stretches330 using information of compositional bias, sequence complexity and physic-

ochemical factors such as hydropathy and charge, combined into a unitary evaluation
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function using computer learning approaches. Other approximations were based in a re-

formulation of the initial propositions for the assessment of charge and hydrophobicity

as main predictors of disorder329, including some variations using the mean net charge

and hydropathy combined into a two dimensional CH-plot binary predictor331,332, which

considerably increased the classification accuracy. Notwithstanding these initial steps

and the insights obtained from their findings, characterizing IDPs was a great challenge,

which was evident as more and more examples were discovered that could not be ra-

tionalized using the methods available at that time. Thus, new more refined methods

were developed based on artificial intelligence algorithms, aiming to learn the general

rules in protein sequences that define local disorder propensities333–335 from datasets

of disordered proteins. Other approaches used contact information and packing density

to anticipate disorder336,337, following the rationale that they would be indicators of

the balance between conformational entropy –i.e. favoring disorder– and native state

contacts –i.e. favoring folding. And there is a myriad of other methods, using a combi-

nation of a varied set of primary sequence information and amino acid physicochemical

properties, processed with more or less elaborated learning methodologies338, that have

played a vital role in widening our understanding of protein intrinsic disorder at the

genomic scale41,339,340, and the regulation and possible functional implications of this

kind of proteins in cells79,341,342.

As explained in the preceding sections, prions are a different type of amyloids that,

though sharing similitudes with amyloid aggregates such as the structural characteris-

tics of fibrils, have different compositional features, such as an enrichment in glutamine

and asparagine141,153,343 and the specific length of the prionogenic domains154–156. In

fact, the initial attempts to predict prions using the well-established methods for amy-

loid prediction described in the paragraphs above in this section315,319,324,325, yielded

rather discrete results, because they were unable to correctly identify putative aggrega-

tion domains in these compositionally diverse prion sequences. The primary sequence

particularities of prions have been used for developing predictive methodologies that

identify prion domains in protein sequences based on the compositional bias towards Q

and N344,345. In the early XXIst century with the uprising of the first worldwide epidemics

of prion-related diseases in mammals, these pioneering predictive works significantly

contributed to present a picture of prion biology at a genomic scale, as their proposi-

tions suggested that the genomes of organisms encoded a high proportion of proteins

that could behave as prions344,345. However, until recently, the number of prions exper-

imentally tested were just a few, and prion biology was a challenging and unexplored

area of research. Very recently, the compositional characteristics of known prions were

used in a groundbreaking study to perform genome wide prediction of prions in the

complete proteome of yeast, combined with high-throughput experimental validation of
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the predictions346. From this work, an ample set of new prions were discovered, along-

side with another set of highly scoring putative predictions that were false positives and

that did not behave as prions neither in vitro nor in vivo. Another recent study follow-

ing this line developed a method to determine the prion propensities of different amino

acids from the expression of prion Sup35p mutants libraries, whose prion behavior was

tested in vivo154. Ultimately the model was also used to design de novo synthetic prions

–i.e. sequences not found in nature but artificial combinations of amino acids for gener-

ating a protein stretch with a maximized score, as calculated with the amino acid prion

propensities described before154. In this work they demonstrated that methodologies

relying on compositional information performed better than other based on modeling

the formation of parallel β-sheets –e.g. those used to predict amyloids– and interestingly

also proved that all the synthetic prions designed formed curable prions when expressed

in vivo, and stably propagated over many generations347.

1.4.2 Methodologies Relying on Simplified Structural Models of Polypep-

tides

Among these computational approaches, there exists a group of methods based on

simplified structural models of proteins, that can be studied in detail from a dynam-

ical point of view using physical and mathematical formulations during the temporal

evolution of the system. This group includes Elastic Networks Models (ENM), Normal

Mode Analysis (NMA), Gaussian Network Models (GNM), Anisotropic Network Mod-

els (ANM), among others348–354. These coarse-grained models represent proteins as a

network of connected nodes and rely on harmonic representations for modeling the in-

teractions between nodes –e.g. physicochemical interaction between residues. Although

the formulation of the model is fairly similar for this varied group of methodologies,

there are theoretical differences in the mathematical and physical formulations used

in each case for treating the network of contacts29,352, which results in more or less

different outcomes depending on the methodology used. Notwithstanding their simplic-

ity, these methodologies can cover an ample range of motion timescales for the study of

fairly different biological phenomena, see Figure 1.11, panel B. In accordance, they have

been very successful on describing the dynamics of different protein systems for model-

ing conformational changes348,350,355, processes of protein-substrate interactions356,357,

the structural transitions mediating the mechanisms of molecular motors358, functional

mechanisms of membrane proteins349 or even complex systems such as the allosteric

transitions in chaperones359.
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1.4.3 Estimation of the Free Energy of Conformational Transitions

There are other methods based on the estimation of the free energy of conforma-

tional transitions, that are also useful for addressing protein flexibility and estimate

local instability. There is one well known method in this category, known as the COREX

algorithm360–363. This method is intended to explore the conformational space of a pro-

tein starting from its native state, and from that structure an ensemble of locally un-

folded regions is built using a window of a given length362. This procedure results in a

high number of microstates, in which a given protein region is in an open (unfolded) or

a closed (folded) conformation. From this ensemble of conformations, each microstate

is analyzed to calculate the free energy of unfolding based on estimations of the Solvent

Accessible Surface Area (SASA), which are then transformed into a probability map of

the susceptibility of each region to be in an unfolded or folded conformation by us-

ing Boltzmann potentials361,363. Then, by partitioning the ensemble in unfolded/folded

microstates, it is possible to estimate the free energy of folding at the residue level, ren-

dering sequence profiles that represent the probability of each residue in the protein

to adopt an open conformation. This method, though computationally expensive and

relying on a set of assumptions that are difficult to model computationally –e.g. gener-

ating all the possible unfolded conformations of a given protein stretch– has been very

used and with fairly good success to study allosterism308,364,365 and to predict amide

hydrogen exchange rates in proteins366.

1.4.4 Computational Simulation Methods

One of the most active fields is that of Computational Simulation of biomolecules. A

field with more than 50 years of existence and initially developed for modeling small

chemical compounds and liquids∗, that however has been gaining great importance in

biomolecules modeling. These strategies have proven very useful for studying biolog-

ical systems, answering some important questions that can not be otherwise clarified

with experimental approaches, such as why different parts of a molecule move and

how fast, as well as finding the correlations between motions222 at atomic resolution.

Besides of being able to work consistently with the detailed positions of all the atoms

in a protein, it is also possible to study these molecules in simplified but biologically

relevant conditions, by including solvent, osmolytes, other proteins, substrates, mem-

brane systems, etc367. Indeed, instead of being used as a complementary approach to

experiments, these methods have been crucial in many occasions to predict and propose

molecule motion behaviors that have been successfully used to design new experiments.
∗The development of this formulation earned the Nobel Prize in Chemistry 2013: Prize Announcement

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/
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Molecular Dynamics Simulations are based on atomistic, coarse-grained or hybrid mod-

els of biomolecules, which are combined with a formalism that allows following the

evolution of motion over time by using the laws of classical physics, which has been

coined as ‘Molecular Mechanics’. With the exception of systems involving quantum me-

chanics modeling –i.e. QM/MM– on which a part of the system is modeled using quan-

tum physics formulations368–370, and in coarse-grained models371,372 in which groups of

atoms are represented as abstract ‘pseudo-atoms’, in most cases the majority if not all

atoms in the system are described using force fields embodying the Newtonian Physics

Laws, as shown in the following expression:
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in which, ϑ(rN ) is the potential energy as a function of the position of the atoms in

the system, as taken from373. In this formula, all the contributions of the different types

of atomic motions and interactions that determine the evolution of the system over

time are contained, including bonded –e.g. bond stretching, angle bending and bond

rotations– (first three addends in Equation (1.1)) and non-bonded interactions –e.g.

electrostatic and van der Waals– (last addend in Equation (1.1)). This expression is the

main ingredient of force fields, which are parameterized from experimental data, ab

initio calculations or a combination, and exist different types each determining different

dynamics behaviors and suited to model different kinds of molecules374,375.

The use of molecular dynamics in the study of biomolecules was for a long time

limited by the size of the system being studied –i.e. the number of atoms– and usually the

higher limit of simulation time was below the microseconds as of 2007222. Nevertheless,

in the last years, the emergence of new hardware and software improvements –e.g.

increasing of parallelization efficiency of simulation packages376–378 and improvements

of force fields379–382, continuous growing of size and efficiency of computer clusters†

and generation of special-purpose architectures383,384 (and groundbreaking innovative

world-wide projects such as Folding@Home‡), the advent of Graphical Processing Unit

(GPU) simulation strategies385–387– are significantly contributing to widen the range

of processes that can be studied with these methods. Thanks to these hardware and

software advances, at present it is fairly feasible to work in the millisecond and tens of

†Rankings of Supercomputers: http://www.top500.org/lists/
‡Available at: http://folding.stanford.edu/home/

http://www.top500.org/lists/
http://folding.stanford.edu/home/
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milliseconds range388–391 (Figure 1.11, panel B), and it is very likely that in the near

future we will be able to surpass this limit392.

MD approaches have been used to study protein motions and structural instability in

multiple contexts. The relationship between conformational transitions and function has

been studied for different proteins such as G-proteins393–395 and kinases396–399, and in

processes of ligand binding400,401 and the determination of ion selectivity in membrane

channels402–404, among others. The great technical advances in this field, as described

in the preceding paragraph, have permitted the study of fairly more complex processes

and systems, such as folding and unfolding of some small proteins388–391,405–409, the

exploration of a protein’s energy landscape and folding intermediates410–412, protein

synthesis at the ribosome413,414, the study of crowded cytosol-like systems415,416 and

the function of molecular chaperones417–419. One of the most important features of these

methods is that they can be efficiently and synergistically combined with experimental

data –e.g. NMR parameters, Φ-values– to obtain a better description of the systems

under study, contributing to explore new points of view and proposing more accurate

strategies to be explored experimentally223,302,367,420–424.

1.4.5 Estimating the Fate of Mutations in Conformational Diseases

Since the arrival of the ‘Genomic Era’, with tangible technical possibilities of sequenc-

ing large quantities of DNA variants and genomes in relatively short periods of time,

great effort has been devoted to rationalize the huge amount of data generated from

those projects, and try to relate, for example, genetic mutations to impairments in pro-

tein function and disease. Even before that the Human Genome Sequencing Project

was completed, initial analysis of the data generated led to the surprising discovery

that slightest genetic variations –e.g. variations in a single DNA position in which dif-

ferent bases are found in a population, coined as Single Nucleotide Polymorphisms

(SNPs)– were very frequent in human genes. These polymorphisms account for most

of human genetic variations and are the main source of phenotypic differences among

individuals425,426, and also comprise most of the mutations known to be involved in hu-

man inherited diseases427. This trend is maintained today, as can be inferred from the

statistics in the most extensive databases of human variations, OMIM and HGMD428,429.

Despite the emergence of the Next Generation Sequencing techniques and the possibil-

ity to analyze gene variants at the population scale430,431, these kinds of studies are still

inaccessible from an operational point of view. Thus, a group of computational method-

ologies have been developed to try to predict if a given non-synonymous SNPs (nsSNPs)

could affect the function of the protein and be related with a disease phenotype. Even
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when these theoretical approaches could fail to accurately predict a significative num-

ber of cases, they could be of great help by significantly reducing the number of possible

variants to be tested experimentally.

Computational methodologies for predicting the effects of nsSNPs on protein function

use sequence, structural or evolutionary information alone or in combination. Sequence-

based approaches432–437 work under the assumption that, by studying the sequences of

closely related proteins, it is possible to infer deleterious mutations by analyzing the

frequency of the substitute amino acid in a given position in the sequence. Thus, if a

given amino acid is to be replaced in a position in the sequence, and in the multiple

alignment it is rather common at this position, or there is a high frequency of amino

acids with similar physicochemical properties, then it is highly likely that this would be

a neutral mutation. If this precept does not hold, then it is expected that the substitution

will be deleterious under the principle that during evolution the introduction of this

amino acid at this position has been negatively selected. In general, these methods start

from the sequence of the protein to be studied and build a multiple sequence alignment

with homologous proteins extracted from sequence databases, and analyze the relative

relevance of each position in the alignment by calculating scores that represent the

amino acid variability.

Structural-based methods84,438–443 work by taking as input a sequence or a structure

of a protein and start by modeling/matching the sequence/structure against a database

of protein structures. Then, they account for a group of structural factors that might

determine the potential effects of the mutation in the structure, such as solvent acces-

sibility, Cβ density, crystallographic B-factors, estimations of the energetic differences

upon mutation, turn or helix breaking, among others. Complementary information

is also included to increase the classification efficiency, if for example exists previous

knowledge of the important residues of the active site or related to substrate or ligand

recognition, disulfide bridge forming cysteines, or residues in protein-protein interaction

patches435,437,440,443,444. Other methods use a combination of sequence and structural

information, combined in some cases with machine learning methodologies for select-

ing the best arrange of structural and sequence factors for maximizing the predictive

accuracy445–447.

Though these methods have significantly contributed to make extensive studies of the

effects of mutations in protein function and disease, they have some important draw-

backs. Sequence-based methods are completely reliant on the quality of the multiple

alignment generated and the homology criteria followed, which are case dependent

and arbitrary. Besides, the information in multiple sequence alignments is biased by

the homology criteria and the number of sequences known in a given protein family.
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This also applies for structured-based methods because the databases for finding ho-

mologs based on structure are less informative, and have lower coverages than protein

sequence databases. And even when a structure is available, prediction based solely on

protein structure can be misleading because the protein’s structure is often determined

in the isolated context of a crystal, and cannot take into consideration supramolecular

interactions448. Recently, with the developments in atomistic molecular dynamics, it has

begun to be possible to study the effect of mutations directly at the structural level,

without previous assumptions or prior evolutionary knowledge, just by exploring the ef-

fects of mutations on the structure of a protein running molecular dynamic simulations,

as has been recently reported for the Aβ Alzheimer peptide449,450 and the Low Density

Lipoprotein receptor LA5 domain451.
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[240] HELÉN JANSSON, RIKARD BERGMAN, and

JAN SWENSON. Relation between solvent

and protein dynamics as studied by di-

electric spectroscopy. J Phys Chem B,

109: 24134–41, 2005. (see p. 54)

[241] ADALBERTO BONINCONTRO and GIAN-

FRANCO RISULEO. Dielectric spectroscopy

as a probe for the investigation of con-

formational properties of proteins. Spec-
trochim Acta A Mol Biomol Spectrosc, 59:

2677–84, 2003. (see p. 54)

[242] S H CHONG et al. Dynamical transition of

myoglobin in a crystal: comparative stud-

ies of X-ray crystallography and Möss-
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Objectives

As exposed in the previous chapter, computational approaches are very useful and

can be considered as a synergistic and necessary complement to experimental methods.

Thus the need to generate new and more accurate computational algorithms. Following

this idea, and taking into consideration all the previous experimental and computational

background for the study of protein conformational instability, protein aggregation and

misfolding, we have defined the following objectives for this Thesis:

General Objective

The study of protein conformational flexibility and misfolding from a bioinformat-

ics point of view at the sequence, structural and dynamical levels in three different

case studies

Specific Objectives

1. Discovering putative prion sequences in complete proteomes using probabilistic

representations of Q/N-rich domains

2. Prediction of local unstable regions of proteins based on physicochemical and ge-

ometric characteristics of buried protein interfaces

3. Predicting abnormal phenotypes caused by Single Nucleotide Polymorphisms (SNPs)

in a Conformational Disease : Familial Hypercholesterolemia
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2.1 Introduction

The formation of intracellular amyloid fibrils is a widespread phenomenon in eu-

karyotes1–4 and it has been found related to a number of beneficial adaptive cellular

functions5–11, to protein-encoded heritable information transmission in yeast12–15, and

to a variety of important diseases in mammals16–20. Amyloidogenesis is mediated by a

diverse group of evolutionarily unrelated proteins from different organisms, all shar-

ing the propensity to form β-sheet aggregates in their complete or fragmented forms16.

A subset of these aggregation-prone proteins is characterized by the presence of re-

gions that comprise homopolymeric tracts, also named ‘single sequence repeats’21. It has

been reported that the presence of these low complexity stretches, and more specifically

that of Q/N-rich regions, strongly influences the aggregation potential of eukaryotic

proteins22–24. In several neurodegenerative disorders, such as spinocerebellar ataxias

and Huntington’s disease, long pure glutamine repeats are generated by the instability

of CAG codons25–27, and cause the abnormal proteins to form intracellular inclusions

in specific neuron types. However, prionogenic Q/N-rich regions usually contain ad-

ditional amino acids and form sequentially heterogeneous domains responsible for the

main properties of prions, including self-propagating amyloid aggregation.

Much research has been devoted to determine the structural and sequential basis of

prion formation, and the compositional determinants of prionogenic domains. Stud-

ies from different groups have concluded that both amino acid composition and the

length of such regions play important roles in prion induction28–30. Additional sequen-

tial requirements such as the number and distribution of prolines and charged residues

have been recently found to be relevant in the formation of prionic aggregates28. Muta-

tional studies, in which the sequence of yeast prions Ure2p and Sup35p were randomly

shuffled, proved that the [PSI+] phenotype is mainly determined by the amino acid

composition of the domain independently of the primary sequence, as most of the shuf-

fled species generated were able to form prions in vivo29,30. This knowledge has been
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used to try to predict putative prions in biological sequence databases, though the avail-

able methodologies to carry out the task are just a few. A first group of algorithms

intend to estimate the propensity of peptides of a given length to form amyloid aggre-

gates based on their primary sequence31–34. This kind of methods, based on more or

less complex models of parallel β-sheets, have proven quite ineffective for coping with

Q/N-rich stretches since these domains do not share the common characteristics of β-

sheet-amyloid forming peptides35 –e.g. high hydrophobicity.

A second group of methodologies try to predict Q/N-rich domains from the pri-

mary sequence based on the strong amino acid compositional bias of these segments.

Proteome-wide identification of Q/N-rich regions was successfully achieved in 30 pro-

teomes from eukarya, archaea and eubacteria using a quite straightforward algorithm,

based on the estimation of the significance of occurrence of regions with a high propor-

tion of Q and N36. A similar methodology for assessing compositional bias in biological

sequences was also tested to find proteins enriched in Q and N37. However, these two al-

gorithms only take into consideration the frequency of a specific group of biased amino

acids in a given sequence segment –i.e. Q/N, hydrophobic or charged amino acids– in-

stead of considering the relative contribution of all the residues present in the segment

to the prionogenicity of the domain29. Furthermore, they failed to generate a statisti-

cal model and a scoring function that would allow the systematic evaluation of protein

segments and sorting the predicted domains according to their prionogenicity. A recent

report has proposed an interesting alternative procedure to generate a bioinformatics

model to predict prions at genomic scale. Starting from the sequences of four known

yeast prions, a hidden Markov model (HMM) was generated to assess the compositional

similarity of proteins from the yeast proteome to the model. This yielded up to 200 pro-

teins with candidate prionogenic domains (PrD), from which the top scoring 100 were

tested experimentally in vitro and in vivo38. Finally, a total of 19 new proteins that proved

switching behavior and amyloid formation were identified, in addition to the four pri-

ons previously described in this organism. Notwithstanding the remarkable outcomes

from this work, the inherent bias of the predictive model built, generated from just a

few sequences38, apparently hampers its ability to correctly score proteins sequences, as

roughly half of the high scoring predictions were false positives exhibiting no prion-like

behavior.

A complementary strategy went farther in an attempt to define the compositional fea-

tures that influence prion formation. Libraries of Sup35p mutants expressed in vivo were

used to comprehensively analyze the sequence compositional determinants of prions28.

This study ultimately produced an experimental technique to measure the prion propen-

sities of individual amino acids, showing that there is a strong bias against prolines and

charged residues, a strong bias favoring the presence of hydrophobic residues and no
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significant bias for or against Q/N residues28. With this methodology, the scoring of

the putative prions made by Alberti et al. could be improved. A recent follow up by

the same group has used this methodology to design de novo synthetic prionogenic se-

quences capable, not only of forming amyloids, but also to stably propagate over many

generations39. However, this and the other approaches available to date for identifying

and predicting Q/N-rich segments with prionogenic activity, lack a detailed statistical

benchmarking of their performances at a genomic scale. Thus, a methodology able not

only to identify putative prion domains in large databases of protein sequences, but also

to correctly classify the predictions in terms of precision and accuracy would be of high

interest.

Here we present a bioinformatics approach to create a statistical representation of

prion domains that allows scoring protein sequences according to their likelihood of

being prions. Starting from a list of 29 proteins reported experimentally to exhibit con-

formational conversion and amyloid formation in yeast38, we have developed a proba-

bilistic model of PrDs to discover Q/N-rich prionogenic proteins in complete proteomes.

The independent probability of occurrence of all amino acids in prion domains were es-

timated and a log-likelihood model was built to assign uncalibrated scores to sequence

fragments of variable length. We first benchmarked our model against a list of 18 pro-

teins that were tested in the same experimental conditions and showed no SUP35C

activity in vivo38. From this assay we obtained the predictive cutoff that should be used

and the confidence intervals of the predictions. Our classifier performed fairly well fil-

tering prions from proteins with no prionogenicity with an accuracy higher than 0.83

and a precision of 80% at the predictive cutoff set. In these conditions the fraction of

false positives was rather low, corresponding to less than 16% of the total predictions.

We also tested the ability of our model to scan large sequence datasets from Uniprot40,

the PDB41 and intrinsically disordered proteins (IDPs) annotated in Disprot42. Our re-

sults proved that the model is well suited to handle datasets with a high proportion of

negative instances without recovering an excessive amount of false positives, which is

important to perform predictive assays in complete proteomes. Our scoring model was

effective to almost completely separate the distributions of real prion domains from the

Uniprot and PDB datasets, while the sequence of some IDPs proved more alike Q/N-rich

prion forming domains.

We have used this methodology to scan all the known proteomes annotated in public

databases, which yielded 27925 predictions in 3236 different organisms from all taxa∗.

In order to provide a functional and public framework for analyzing the large amount
∗These figures correspond to the predictions generated analyzing Uniprot release of June 2013
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of data generated in our study, we have developed PrionScan†, as an open source of up-

to-date prion predictions for all the proteins annotated in public databases. The site is

designed as a simple and flexible querying system suitable for data mining by combining

different sorts of information included in our database to recover, for instance, prion pre-

dictions in the complete genome of an organism or for proteins belonging to a specific

functional family or related to a specific biological process. This is to our knowledge

the most extensive effort to predict PrD sequences performed so far, reporting puta-

tive prions in the proteomes of a diverse group of organisms, most of which have been

poorly studied. We mined the information stored in PrionScan to make global analyses

of the distribution of prion proteins in different functional categories, and localization in

different cellular compartments. We have observed some interesting trends in the distri-

bution of PrDs in different protein functional families. From our results it appears that

prions are associated with different cellular components and to function in different bi-

ological processes depending on the taxon and organisms group. The present predictive

approach uncovers a large set of putative prionogenic proteins whose further experi-

mental characterization might contribute significantly to understanding prion biology

from a genome-wide perspective.

2.2 Results

2.2.1 Amino Acid Composition of Prion-forming Domains

Based on the sequence of a group of experimentally tested protein domains that

showed prion-like behavior in vivo and in vitro in yeast38, we trained an unsupervised

classifier relying on the amino acid propensities in PrD domains, see the Methodology

section for more details. The estimated relative abundance of each amino acid type in

a group of well-characterized prion domains with respect to the expected frequency of

occurrence in proteins is shown in Table 2.1. Some residues, such as G, H, M and P,

are equally frequent in PrD and proteins. Other residues, including C, E, D, K and W,

appear to be underrepresented in prion forming domains, while Q and N and also Y and

S, have a significant positive bias. Unlike previous approaches36,37, this model allows us

to obtain a representation of prionogenic domains accounting for the relative statistical

significance of each residue in the scoring function. The high odds ratios observed for

Q (4.1) and N (5.7), which represent the previously reported favorable bias for these

residues in PrDs, can be combined with the statistical potentials obtained for amino

acids such as C and W, which are 14 and 10 times less frequent in these regions than in

proteins.
†Available at: http://webapps.bifi.es/prionscan

http://webapps.bifi.es/prionscan
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TABLE 2.1: Amino Acid Propensities in Prion Domains

Residue
Prion domains Prion domains (Library 1)

Odds ratio LOr Odds ratio LOr
A 0.675 −0.568 0.670 −0.578
C 0.071 −3.807 1.520 0.604
D 0.352 −1.507 0.280 −1.837
E 0.147 −2.766 0.550 −0.862
F 0.718 −0.478 2.310 1.208
G 1.028 0.040 0.960 −0.059
H 0.913 −0.131 0.760 −0.396
I 0.350 −1.515 2.260 1.176
K 0.271 −1.883 0.210 −2.252
L 0.340 −1.556 0.960 −0.059
M 1.125 0.170 1.960 0.971
N 5.700 2.511 1.080 0.111
P 1.170 0.227 0.300 −1.737
Q 4.125 2.044 1.070 0.098
R 0.436 −1.196 0.670 −0.578
S 1.662 0.733 1.140 0.189
T 0.830 −0.268 0.890 −0.168
V 0.304 −1.716 2.260 1.176
W 0.091 −3.459 1.950 0.963
Y 1.724 0.786 2.180 1.124

The observed frequencies of occurrence of the different amino acid residues were trans-
formed into the corresponding statistical potentials using the Equation 2.1. Columns
2 and 3 show the calculated odds-ratio for the complete prion and the statistical po-
tentials corresponding to the odds-ratios of PrD respectively (LOr). Columns 4 and 5
contain the ratio and log-odds obtained experimentally by means of a random mutage-
nesis assay, as described in Toombs et al.28

The analysis of the ratios reported in a previous work28, resulting from a random

mutagenesis assay of two specific segments of Sup35p protein, reveals significant differ-

ences with our results. They include, as can be inferred from the comparison included in

Table 2.1, differences in the relative log-odds for some important residues such as E, 3.8

times less frequent in PrDs according to our results and P, which is 3.9 times more likely

to be found in these domains according to our model. The more remarkable differences

are obtained for some key residues such as Q and N, for which we found a marked favor-

able bias. For other residues such as K, Y, S and D no significant differences were found

between our model and the results from Toombs et al28. The contribution of P to the

prionogenicity of a given sequence stretch, unlike those of other amino acids, appears

to be related not just to its abundance in PrDs. As it has been previously noted, prolines

in prions tend to appear in clusters while, in non-prionogenic Q/N-rich proteins, they

are usually scattered along the complete sequence of the stretch28. However, there were

no experimental or theoretical models to relate the existence of specific proline patterns
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FIGURE 2.1: Observed Frequency of P − (X)n − P Patterns in Proteins
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A representative non-redundant dataset of 4606913 proteins from Uniref 50 were ana-
lyzed in the search for the significance of proline patterns in the protein universe. In
the chart we plot the trend of the observed frequency of each pattern of two prolines
separated a given distance between 1 and 60 residues

in a given PrD with the prionogenicity of the sequence. In our model we use an ap-

proach to correct the score calculated for a given stretch from the relative propensities

of the amino acids (see Equations (2.1) and (2.2)), taking into account the number of

non-contiguous prolines found in the segment, as described in Equation (2.3). In this

approach, we first estimated the relative frequency of pairs of prolines separated a given

distance in a non-redundant dataset of protein sequences and convert those frequencies

into log-likelihoods, see Figure 2.1. We then use those log-likelihoods to assess the sig-

nificance of finding a pattern of prolines, separated a given distance in the window of

sixty residues used for the scanning, and the resulting support value is used to correct

the compositional score, see Equation (2.3). In this way, using solely sequence infor-

mation, we generate for a given sequence, a corrected score which takes into account

both the relative propensities of the amino acids and the unfavorable contribution of

non-contiguous prolines to prion formation.
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FIGURE 2.2: ROC Plots of the PrD Recovery and Bootstrapping Assays
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The scoring histogram distributions of the negative and positive datasets were pro-
cessed and the true positive rate (TPR, defined in Equation (2.4)) was plotted against
the false positive rate (FPR, defined in Equation (2.5)) in a tryout in which the known
PrDs –i.e. positives in all four experimental tests– are picked up from a test dataset
of non prions –i.e. negatives in all four experimental tests38. In red we show the plot
obtained using our model which has an area under the curve AUC = 0.90. We also
include the result of a bootstrap assay in which the 18 prions used as the training set
were resampled 1 × 106 times forming partial training sets of 9 prions and generating
positive test sets for the ROC plot analysis with the remaining 9 prions. One million
ROC plots were generated always using the same negative set and the average ROC
curve was calculated (shown in blue), the area under the curve AUC = 0.87

2.2.2 Using Compositional Bias to Assess the Prionogenicity of Protein Se-

quences

We used the model obtained for the PrD domains to scan protein sequences. In order

to ease the analysis at the benchmarking stage, we selected the highest scoring stretch in

a given sequence as the putative PrD, assuming only one prionogenic region per protein.

Though there are evidences of proteins that bear more than one prion-forming domain

and in some cases the PrD is a diffuse region of more than 60 residues38, this approxi-

mation significantly reduces the number of sequence fragments to be analyzed, without

affecting the number of true positive predictions. A detailed assessment of the predictive
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potential of our model is shown in Figure 2.2. The ROC plot obtained from the analy-

sis of known PrDs and the negative dataset used in benchmarking illustrates the good

performance of the algorithm, with an area under the ROC curve AUC = 0.90. The

AUC is a global estimator of the statistical significance of a classification test, represent-

ing the probability that, each time a pair of positive and negative instances is randomly

retrieved from the pool, the scoring function will assign a higher score to the positive

example. The non-parametric Mann-Withney-Wilcoxon rank-sum test for distributions

comparison43, is rather low (℘−value = 6.7×10−6) with a significance ℘−value < 0.05.

We did not have access to the absolute scores in the HMM-based prediction of the yeast

prions38, which were subsequently used to implement our method. This previous work

described in detail an extensive experimental assessment of the predictions, but few

details were available on the scoring and benchmarking procedures, thus impeding a

quantitative evaluation of the performances of the two methods. We addressed this

comparison indirectly investigating how our predictor scored the bona fide prions iden-

tified in the above mentioned work with respect to the complete yeast proteome. The

analysis is described in Figure 2.3, where we include the density distribution of the

scoring of all the proteins annotated in the genome of Saccharomyces cerevisiae and the

corresponding ℘ − values of each of the 29 known prions in this organism. This chart

indicates that our methodology is able to discriminate PrDs from the rest of the proteins

in the proteome. Except for RBS1 PrD, whose ℘ − value of 1.49 × 10−3 locates it in a

more or less confusion zone in the scoring distribution, the ℘−values for the rest of real

PrDs are well below 1 × 10−6. This means that PrDs can be retrieved as a completely

different distribution from the proteome score distribution, with a significance level of

0.1%. In addition, at a score of 50 bits, 63% of the real PrD have a ℘− value lower than

3.4× 10−8 (Figure 2.3, panel B).

We also decided to test the wealth of the amino acid propensities calculated in our

model and check whether there is a high rate of redundancy within the training set,

which could hamper the predictive potential of the model. Thus, we performed a thor-

ough bootstraping assay in which we randomly resampled 1 × 106 training sets from

the 18 sequences that are positives in all the experimental assays, leaving out 9 PrDs

each time, see the Methodology section for details. In each case we recalculated the

propensities and used the excluded PrDs as positive test set in the ROC plot tryouts,

maintaining the same negative set. The results of this experiment are also shown in

Figure 2.2, where the average ROC curve calculated from the million plots generated is

depicted. As expected, the AUC decreases, but only to 0.87, which still corresponds to a

fairly good classifier performance, reflecting that the deviation from the most common

classification behavior is marginal. This finding means that the estimated propensities
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FIGURE 2.3: Scoring of PrDs in Yeast with Respect to the Complete Proteome

of positive and negative instances is randomly retrieved
from the pool, the scoring function will assign a higher
score to the positive example. The non-parametric
Mann-Withney-Wilcoxon rank-sum test for distributions
comparison [43], is rather low (℘-value = 6.7 10-6) with a
significance ℘-value < 0.05. We did not have access to the
absolute scores in the HMM-based prediction of the yeast
prions [38], which were subsequently used to implement
our method. This previous work described in detail an ex-
tensive experimental assessment of the predictions, but
few details were available on the scoring and bench-
marking procedures thus impeding a quantitative eva-
luation of the performances of the two methods. We
addressed this comparison indirectly investigating how
our predictor scored the bona fide prions identified in the
abovementioned work with respect to the complete yeast
proteome. The analysis is described in Figure 3, where we
include the density distribution of the scoring of all the
proteins annotated in the genome of Saccharomyces
cerevisiae and the corresponding ℘-values of each of the
29 known prions in this organism. This chart indicates
that our methodology is able to discriminate PrDs from
the rest of the proteins in the proteome. Except for RBS1
PrD, whose ℘-value of 1.49 10-3 locates it in a more or less
confusion zone in the scoring distribution, the ℘-values
for the rest of real PrDs are well below 10-6. This means
that PrDs can be retrieved as a completely different dis-
tribution from the proteome score distribution, with a
significance level of 0.1%. In addition, at a score of 50
bits, 63% of the real PrD have ℘-value lower than 3.4
10-8 (Figure 3, panel B).
We also decided to test the wealth of the amino acid

propensities calculated in our model and check whether

there is a high rate of redundancy within the training
set, which could hamper the predictive potential of the
model. Thus we performed a thorough bootstrap assay
in which we randomly resampled 106 training sets from
the 18 sequences that are positives in all the experimen-
tal assays, leaving out 9 PrDs each time, see Methods for
details. In each case we recalculated the propensities and
used the excluded PrDs as positive test set in the ROC
plot tryouts, maintaining the same negative set. The
results of this experiment are also shown in Figure 2,
where the average ROC curve calculated from the mil-
lion plots generated is depicted. As expected, the AUC
decreases, but only to 0.87, which still corresponds to a
fairly good classifier performance, reflecting that the de-
viation from the most common classification behavior is
marginal. This finding means that the estimated propen-
sities calculated from the training set are unbiased and
are significant enough to correctly separate the popula-
tion of positive and negative instances.

Testing the suitability of our algorithm to process large
sequence databases
The ROC plot analysis is an excellent technique to evaluate
the predictive potential of a classification methodology,
since it is insensitive to changes in the class distributions –
i.e. the TPR vs FPR dependence remains the same if
the proportion of positive to negative instances changes.
Nevertheless, this property becomes a limitation when the
number of negative instances is considerably higher than
the population of positives, which is quite common in the
analysis of large biological sequence databases. In this
scenario, a classifier corresponding to a reasonably good
shaped ROC plot with a high AUC might return an

Figure 3 Scoring of PrDs in yeast with respect to the complete proteome. The density histogram of the score of all the proteins in the
yeast genome is shown in panel A. In panel B, left ordinate axis we include the observed p-values for the 29 known prions in this organism (blue
line connecting open triangles) and the cumulative ratio representing the percent of known prions with a p-value equal or less than a given
value is shown in the right ordinate axis (red line connecting open squares).
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The density histogram of the score of all the proteins in the yeast genome is shown
in panel A. In panel B, in the left ordinate axis we include the observed ℘ − value for
the 29 known prions in this organism (blue line connecting open triangles) and the
cumulative ratio representing the percent of known prions with a ℘ − value equal or
less than a given value is shown in the right ordinate axis (red line connecting open
squares)

calculated from the training set are unbiased and are significant enough to correctly

separate the population of positive and negative instances.

2.2.3 Testing the Suitability of our Algorithm to Process Large Sequence

Databases

The ROC plot analysis is an excellent technique to evaluate the predictive potential of

a classification methodology, since it is insensitive to changes in the class distributions

–i.e. the TPR vs FPR dependence remains the same if the proportion of positive to

negative instances changes. Nevertheless, this property becomes a limitation when the

number of negative instances is considerably higher than the population of positives,

which is quite common in the analysis of large biological sequence databases. In this

scenario, a classifier corresponding to a reasonably well-shaped ROC plot with a high

AUC might return an elevated number of false positives along with the putative predic-

tions at a specific cutoff score. Therefore, it is very important to complement ROC trials

with other performance metrics that combine different classes of the confusion matrix

and are consequently sensitive to class skew. In Figures 2.4 and 2.5 we inspected the

dependence of the Precision of our classifier and the recovery rate of known PrD for the

three test datasets. Firstly, Figure 2.4 confirms that our classifier is able to differentiate

the prions from the sequences included in each of the test sets, without significant tail
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FIGURE 2.4: Histogram Density Plots of the Scoring of Protein Sequences Using our
Probabilistic Model
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Protein sequences from Uniprot/Swissprot, PDB, Disprot and experimentally tested
yeast prions (PrD) were scanned using a window size of 60 amino acids. The corre-
sponding histograms were transformed into the normalized density distributions (ordi-
nate), plotted against the score in the abscissa

superposition at lower scores. However, even if the superposition of the scoring distri-

bution around zero bits might seem insignificant, the number of false positives could be

significant enough just because the sizes of the distributions of negative sequences are

various orders of magnitude higher than that of prions. However, as depicted in Fig-

ure 2.5, our results confirm that our algorithm also performed very well for processing

large sequence datasets. It is clear in this Precision-Recall chart that despite the propor-

tions of the distribution of prion-forming domains and the corresponding distributions

of the three test sets –e.g. Disprot is 21 times larger than PrD dataset while the PDB

dataset is 530 times larger– we were able to pick up almost 90% of the true positives

yielding Precision values above 80%.

2.2.4 Selection of a Cutoff Value for Predicting in Complete Proteomes

The classification accuracy of the method can be taken into account to select the pre-

dictive cutoff, see Figure 2.6. The evaluation of the rate of correctly mapped instances
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FIGURE 2.5: Precision-Recall Plots for the Comparison of PrD and Non-prionogenic
Sequence Distributions
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For each one of the three negative additional datasets including proteins from Uniprot,
Disprot and the PDB we follow the evolution of the classifier’s Precision, defined in
Equation (2.6), to correctly make a positive mapping of known PrD segments from
a pool of non-prionogenic sequences. These values are plotted against the TPR –
i.e. recall– of the corresponding classification step. The ratio between the number of
instances in each positive and negative distribution is also shown

from both positive and negative distributions prove that our method is able to both cor-

rectly scoring and separating sequences that experimentally showed prion-like activity

from other sequences with no such an activity in the same assays, but also handling at

the same time disproportionate positive and negative datasets, see Figure 2.5. As can be

inferred from Figure 2.6, in our model the cutoff value of 50 bits marks the maximum

predictive accuracy. This was the cutoff score set for performing prediction assays in

complete proteomes as will be described below. With this cutoff we guarantee both an

Accuracy of 83% and a Precision of classification as high as 80%. These values of clas-

sification efficiency are comparable with those obtained with a methodology reported

recently used for de novo design of synthetic prion domains39. We also obtained estima-

tions of the proportion of false positives that our algorithm will necessarily recover along

with the putative predictions. The false discovery rate (FDR, defined in Equation (2.8))



Chapter 2. Proteome-wide Prion Domain Prediction 91

FIGURE 2.6: Accuracy-Cutoff Plot of the Classifier Against the Negative Test Set
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The Accuracy, defined in Equation (2.7), obtained for the correct classification of TP
and TN is graphed against decreasing cutoffs spanning the score range of the corre-
sponding negative and positive distributions. We highlighted the highest accuracy of
the assay, used to set the predictive cutoff of 50 bits

is quite an interesting metric in classification problems, corresponding to the proportion

of events in which the null hypothesis is incorrectly rejected, or in other words, the

likelihood of incurring in type I error in a test44,45. In our benchmarking tryouts, the

FDR obtained for the selected cutoff of 50 bits is 16%. This value indicates that our

methodology produces fairly clean recovery sets with a rather low proportion of false

positives.

2.2.5 Proteome-wide Predictions of Proteins Bearing Putative PrDs

After a comprehensive benchmarking of our model we used it to predict proteins con-

taining PrD in the complete proteomes of organisms. As described in the Methodology

section, we performed a scanning of all the proteins annotated in complete proteomes,

and the predictions obtained in this search are available in the PrionScan database. Our

methodology yielded 27925 predictions of putative prions in 3236 different organisms
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TABLE 2.2: Summary of Prion Predictions in Different Taxa

Taxon # Organisms # Proteins # Predictions
Archaea 18 708135 26
Bacteria 2531 31097600 5460
Viruses 69 1773811 226
Fungi 196 1976771 4821
Invertebrates 228 2293203 15549
Vertebrates 27 857235 255
Plants 96 2027308 934
Rodents 13 222750 206
Mammals 57 797045 339
Human 1 133798 109

The predictions obtained for all the organisms analyzed is organized by taxon and
the following information is included in the table: in the first column the taxon; in
column 2, the number of organisms for which we obtained predictions; in column 3,
the number of proteins scanned in the search for PrDs; and column 4 shows the number
of predicted proteins bearing prion-forming domains

from all taxa, from viruses and archaea to plants and higher eukaryotes. A summary of

the predictions obtained in all taxa is shown in Figure 2.7 and in Table 2.2 we include a

detailed description of the predictions obtained in each taxon.

FIGURE 2.7: Distribution of the Predictions in PrionScan in all Taxa

The pie chart depicts the distribution of prion predictions in all different taxa, from
archaea to humans. In each case, besides the color code, we also include the number
of predictions in each taxon in parenthesis
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The inspection of some selected organisms shown in Table 2.3 illustrates some in-

teresting trends of prion content in proteomes. In most cases the percent of proteins

bearing prion-forming domains is less than 1% of the size of the proteome. In Archaea

and Viruses the number of putative prion proteins is less than 10 per proteome (with

the sole exceptions of Acanthamoeba polyphaga mimivirus and Porcine epidemic diarrhea

virus), while in Bacteria, Fungi, Plants and animals it might range from a few tens to

a few hundreds in some specific organisms. Among Bacteria there exist important ex-

ceptions such as Staphylococcus aureus, for which the number of prionogenic proteins

correspond to almost 20% of the genome. In Protozoa we observe important differences

in the ratio of PrDs in the proteome of different organisms of this class. While for Cryp-

tosporidium parvum, Theileria parva, Trypanosoma brucei the percent of PrD proteins

in the genome is relatively low, for Dictyostelium discoideum, Dictyostelium purpureum

and Plasmodium falciparum the proportions of putative prions are as high as 20%, 8%

and 10% respectively. This is in agreement with previous reports proving the abun-

dance of hydrophilic low-complexity regions in the proteome of these organisms46,47.

This tendency is also present in other species from the genus Plasmodium, such as Plas-

modium yoelii, which has 137 PrD proteins in its proteome. Another noticeable examples

correspond to Fungi, which have a relatively high number of prions in their genomes.

Previous reports have found this trend in the genomes of yeasts in which these repetitive

stretches are generated by DNA tandem duplication48, rendering protein domains that

were thought to have no function49, but that according to our results might indeed be

prion proteins involved in homeostatic processes. In Dipterans, there are also a signif-

icant number of predictions, amounting to 1–4% of the genome for Anopheles gambiae,

Drosophila mojavensis and melanogaster.

2.2.6 Building an online Database of Predicted Prion Domains in Complete

Proteomes

There are a few examples of repositories with information on prion proteins, pri-

onogenic sequences, prion-related diseases, prion protein interactions and orthologs

and paralogs of prion proteins in multiple organisms. For example, the Prion Disease

Database50 contains a sort of experimental data on prion sequences and multi-level data

on diseases caused by prions, combined with a set of tools for data analysis and sys-

tems biology studies in mouse. PrionHome51 is a non-redundant database containing

approximately 2000 prion-related sequences obtained from different public and private

sources, in some cases with experimental support or inferred using different predictive

algorithms38,52,53. There is yet another similar resource, set up as a web application

for predicting prion forming propensity39. Though not a database in the strict sense of
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TABLE 2.3: Ratio of Prion Domains in the Proteomes of some Model Organisms

Species Predictions % of the proteome
Listeria monocytogenes1 146 4.86
Bacillus cereus1 218 4.01
Staphylococcus aureus1 515 19.70
Cryptosporidium parvum2 60 1.57
Dictyostelium discoideum2 2692 20.10
Dictyostelium purpureum2 992 8.01
Plasmodium falciparum2 853 10.20
Theileria parva2 11 0.50
Trypanosoma brucei2 15 0.16
Candida albicans3 169 2.62
Saccharomyces cerevisiae3 746 12.63
Lodderomyces elongisporus3 150 2.58
Arabidopsis thaliana4 56 0.20
Oryza sativa4 50 0.08
Drosophila melanogaster5 765 3.72
Drosophila mojavensis5 486 3.33
Anopheles gambiae5 160 1.16
Caenorhabditis elegans6 98 0.42
Homo sapiens7 111 0.29

The percent of the proteome corresponding to proteins bearing putative prion-domain
(column 3) is shown for a representative group of model organisms (column 1), from
different evolutionary classifications, some of which have been extensively studied and
whose complete genomes have been well characterized. The organisms included cor-
respond to different species of (1) bacteria, (2) protozoans, (3) yeasts, (4) plants, (5)

dipterans, (6) nematodes and (7) human. The number of predictions obtained for each
organism is shown in column 2. *For some cases, the number of predictions annotated
in PrionScan can be higher because we also included the predictions for proteins of
subspecies

the term, the PAPA site‡ allows the analysis of protein sequences based on amino acid

propensities in prion sequences inferred from in vivo aggregation analysis. In contrast

to these available resources, PrionScan provides genomic-scale prion predictions for the

proteomes of all organisms –i.e almost 28000 putative prion proteins– in a framework

that allows an easy way to study the sequential/structural determinants of prionogenic-

ity, as well as transversal comparative studies of the implication of prions in cell biology

in different groups of organisms. The site is organized in an easy way for mining our

data and also offering a web functionality for the high-throughput analysis of sequence

variants not annotated in public databases, see the Methodology section for details. A

comparison of the predictions obtained from different updates of Uniprot gives an idea

of the increasing pace of prion prediction in proteins annotated in this database. In

fact, since the predictions obtained by us in the initial paper describing our method, in

which we used the Uniprot54 (update 2012 02) from February 2012, to the predictions

‡Available at: http://combi.cs.colostate.edu/supplements/papa/

http://combi.cs.colostate.edu/supplements/papa/
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annotated now in PrionScan, which correspond to the Uniprot (update 2013 07) of June

2013, there has been an increment of more than a 61% from the approximately 17400

predictions obtained at that time.

2.3 Discussion

2.3.1 From Amino Acid Composition to a Comprehensive Model of Prion-

forming Domains

Great effort has been devoted in recent years to the experimental characterization

of prion proteins, with a special interest in defining the sequential and structural deter-

minants of aggregate formation and prion transmission. To date, the number of prions

studied is still limited and little is known regarding the approximate number of prion-

like proteins in complete proteomes or the cellular processes in which they might be

involved. Nevertheless, several studies have shed some light into the general charac-

teristics of prions1,17,55–57 and how this information can be used to try to identify novel

Q/N-rich candidates in protein databases28,36–38. Only recently the availability of high-

throughput experimental procedures to study prions in vitro and in vivo38,58–60, and the

feasibility of extensive mutational studies28–30,61, have provided deeper insights into the

characteristics of protein domains that mediate aggregation and prion induction. It is

now clear that methodologies relying on approximating the likelihood of contiguous

protein stretches to form parallel β-sheets31–34 cannot be successfully used to predict

Q/N-rich prion domains. Among other examples, these methods are unable to predict

β-aggregation nuclei in known yeast prions such as Ure2p and Sup35p62. Instead, pre-

diction of PrDs using the distinctive amino acid composition of these domains28,36,37 and

assuming primary sequence independence for prion formation29,30,39,61, appears more

promising. A recent comparison of most of the methods currently used to predict prion

propensity has proved that approaches that focus largely on composition –e.g. PAPA

and Zyggregator– show far more predictive accuracy than those focusing on primary

sequence39.

Following this idea, we have generated here a reliable model that uses the compo-

sitional bias of PrDs, taking special care on thoroughly benchmarking the algorithm in

order to establish realistic confidence intervals for predicting in large biological sequence

databases. The results from the work by Alberti et al.38 were very valuable to provide an

ample enough training set from which we obtained the statistical potentials summarized

in Table 2.1. The odds-ratios calculated by us embody the previously described bias ob-

served in prion-forming domains28,36,37, and enable the inspection of protein sequences
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to find putative PrDs. Our method relies solely on amino acid propensities calculated us-

ing compositional bias, plus a correction to the score which accounts for the unfavorable

existence of certain proline patters in the sequences analyzed, see Figure 2.1. The vari-

ance of the score distribution of candidate prions for which there is strong experimental

evidence38, reflects the high sequential variability that aggregation-prone domains can

accommodate. In their work, Alberti and coworkers do not make a statistical evalua-

tion of the predictive power of the model used. Instead, they rely on the potentiality of

the high-scale experimental assays performed to classify the predictions. They acknowl-

edge the bias of the hidden Markov model built38, which might be related to the scant

scoring capability of the method that ranks highest a number of sequences that showed

no aggregation propensity. The training stage is very important in the construction of

HMMs63, and this is probably why this model, generated from just a few examples, is

able to identify probable candidates but is unable to score them correctly. We believe

our model improves the scoring of these sequences, as can be inferred from the scoring

of known PrDs in the complete yeast genome, see Figure 2.3.

Another recent study aimed at modeling and predicting prions28 has produced in-

teresting results. The authors carried out random mutagenesis assays of the Sup35p

sequence in specific locations and tested for amyloidogenesis in the expressed cultures,

resulting in estimations of the propensities of amino acids in PrDs. A two dimensional

analysis, complementing the prion propensity estimations with calculations of intrinsic

disorder, was also used to improve the classification method. This methodology has

been successfully used to generate synthetic prion-like sequences that were able to form

aggregates and propagate on in vivo experiments39. As stated above, this methodology

by Toombs et al., displaying a fairly high classification accuracy when compared to other

available methodologies, rely on the random mutation of just two short segments of 19

and 7 amino acids of Sup35p, a domain of almost 100 residues with long glutamine and

asparagine-rich stretches. As a consequence, it is possible that the mutational space is

not completely explored, which could result in a model not well suited to scan large sets

of protein sequences. This is evident from the results they present in their reports28,39,

on which they are unable to perform genome-wide searches with their methodology, but

instead rescue prions from sets previously filtered based on intrinsic disorder. In con-

trast, our model is based in the sequences of almost all the known proteins displaying

prion-like behavior and we have demonstrated that our method can perform as well as

PAPA§ for differentiating real and false prions. The bootstrapping assay, see Figure 2.2,

also proves that the propensities obtained are unbiased.

§Available at: http://combi.cs.colostate.edu/supplements/papa/

http://combi.cs.colostate.edu/supplements/papa/
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2.3.2 Putting the Algorithm in Context: Analyzing Real Sequence Datasets

Most of the algorithms used to predict Q/N-rich prion candidates28,36–38 have a com-

mon downside: they lack a proper statistical calibration of the methodology and thus an

estimation of the predictive capability of the model to scan sequence databases. In some

cases, protein sequences have been modeled as a Poisson36 or a binomial37 distributions

to calculate the probability of occurrence of glutamine and asparagine in a peptide, and

its statistical significance. These approximations have two main problems; the first is

that they exclude the positive or negative contributions of all other amino acids to the

prionogenicity of the domain. And the second is that not even a normalized probabil-

ity of occurrence for the Q/N composition of a stretch guaranties a good classification

performance in terms of number of false positive prions that will be returned to rescue

a desired number of true prions. Our position-independent model accounts for the pos-

itive contribution of Q and N to prion induction, but also for the favorable contribution

given by S and Y, and for the unfavorable contribution of C, E or W, among others (see

Table 2.1). Our model corresponds to an unsupervised learning classifier that represents

almost all the rules describing real prion-forming domains, also appending the negative

contribution of uncontiguous prolines. An increase in the number of PrDs sequences

available for the training, as well as the inclusion of supervised training to add biolog-

ically relevant information to the model, such as organism-specific information of the

distribution of prolines in the domains or the intrinsic β-aggregation propensity of the

sequence, might improve the predictive potential of our model.

We have confirmed here that our strategy performs reasonably well at recovering

known prions from large datasets of protein sequences, which makes it very appropriate

to make predictions at genomic scale. The method shows a consistent performance even

for 500-fold skews towards the negative instances distribution, see Figures 2.4 and 2.5,

suggesting that the compositional information embodied in the model can efficiently dis-

criminate between prions and non-prions in variable-size protein sequences databases.

This is important if the goal is to predict Q/N-rich domains in small genomes of just a

few hundred proteins, as well as in the larger eukaryotic genomes.

The benchmarking of our algorithm also gives us the opportunity to obtain statisti-

cally the confidence intervals within which we can predict prions in complete proteomes.

The choice of a classification cutoff score is always subjective, but an analytical approach

permits to ascertain the composition of the recovery sets during the search of a database,

and also enables controlling the inherent tradeoff between Precision and recall64 –i.e.

TPR– defined in Equations (2.6) and (2.4). Here we decided to set the cutoff high at 50

bits, as depicted in Figure 2.6, in accordance to the maximum prediction accuracy and

to diminish as much as possible the rate of false positives included in the predictions.
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We were primarily concerned about obtaining a high number of fall-outs that could mis-

lead the implications of our work. The false discovery rates obtained support the fairly

good classification ability of the algorithm, that minimizes down to 16% the proportion

of non-prions passing the cutoff.

It is also interesting that with our scoring model we found compositional similarities

between some IDPs65–67 and prions. Amino acid composition has been used in the past

to predict IDPs65,68–70, and those studies have concluded that such domains are enriched

in K, E, P, S and Q, and depleted in W, C, Y, G and N68. The propensities calculated in this

study represent in some cases a compositional bias similar to those found in IDPs, –i.e.

enrichment in Q and S and the depletion in C and W. This might be the reason causing

the superposition of the right tail of the Disprot score distribution with that of PrDs,

see Figure 2.4. Based in those similarities, we can argue that most of the false positive

predictions recovered in a predictive tryout would be natively disordered proteins. There

are also experimental evidences suggesting that certain intrinsically disordered proteins

might in fact propagate like prions71,72, including α-synuclein73, the Aβ peptide74 and

huntingtin75, involved in Parkinson, Alzheimer and Huntington diseases, respectively.

Huntingtin is predicted to posses a PrD, whereas Aβ and α-synuclein are not included

in our dataset. However, it is still a matter of debate whether these two proteins are

disordered or contain a significant α-helical content76,77. Therefore, it could be that

our method can correctly classify proteins in the superposed zone between the two

distributions, and that some of the predictions tagged as false positives could be in fact

prions. However, in general terms, the amino acid propensities of the rest of residues

is rather different between IDPs and PrDs, which determines that, in most cases, our

algorithm can accurately discriminate between these domain types.

2.3.3 Discovering Putative Prion-like Domains in Complete Proteomes

Although generally thought as linked to disease, prions are also associated with cen-

tral cellular functions and have been well studied in fungi and some microorganisms,

where they play important roles as epigenetic elements78,79, evolutionary capacitors14,80

and bet-hedging devices81,82 in the processes of adaptation to environmental fluctua-

tions. There are also evidences suggesting that, even in invertebrates, prions take part

in mechanisms crucial to maintain long-term physiological states83–85. However, our

knowledge of prions in higher organisms is limited to a handful of examples associated

to serious illnesses, thereby the need for strategies that can point out new putative candi-

dates that might be coupled to other cellular functions. The decisive step of a predictive

methodology is always the discovery of new instances resembling a given model under
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some statistical restrictions. Our model, and most importantly the outcomes of the cal-

ibration process that proves that our methodology can be used to scan large databases

without losing accuracy, gave us the opportunity to scan all the available proteomes.

This distinguishes our work from previous attempts in a few specific organisms. The

27925 predictions in 3236 different organisms from all the evolutionary classes¶ repre-

sents, to our best knowledge, the most extensive set of PrD predictions obtained so far,

which will help to attain a global view of the distribution of prion domains in the pro-

teomes of organisms, and to unravel the cellular processes in which proteins containing

different prion-forming domains might be involved.

Our results show that, in general terms, the number of prions per genome is low,

though there are organisms in which prion-like self-assembly might play important func-

tions, as can be inferred from the rather high number of prions in their genomes. It is

important to bear in mind that there could be a significant bias in these estimations,

when associated with annotation problems of some genomes. The analysis of incom-

plete sequenced genomes of some members of the genus Plasmodium proved that they

contain abundant hydrophilic low-complexity segments, which correspond to species-

specific, rapidly diverging regions that might be forming non-globular domains that help

the parasites to evade the host’s immune response47. Here we demonstrate this trend by

analyzing the complete proteomes of various members of this genus, and propose that

most of these stretches may correspond to PrDs, see Table 2.3 for some examples of

this case and those that follows. We also found a similar tendency in the genome of

Dictyostelium discoideum, by far the organism with more predicted prions in its pro-

teome, which implies that most of the low-complexity stretches found in the sequencing

of the genome of this organism46 could be prions, though the functional implications

of such an amount of aggregation-prone proteins is unclear. Having a high number of

low-complexity stretches appears to be characteristic of these organisms86. Accordingly,

despite being less represented than in Dictyostelium discoideum, the number of PrDs in

Dictyostelium purpureum genome is fairly high in comparison with that in other organ-

isms. It is known that Plasmodium is able to survive with an aggregation-prone proteome

even under the periodic heat shock stress that characterizes malaria, where patients suf-

fer recurrent episodes of fever exceeding 40◦C. This is possible thanks to the presence

of specialized chaperones, which are essential for parasite survival within red cells87. So

far, only one of our Plasmodium PrDs candidates has been characterized experimentally:

PFI115w (Uniprot ID Q8I2S1 PLAF7). In agreement with our prediction, the protein

aggregates intracellularly when expressed in human cells87. Plasmodium chaperones act

as cellular capacitors allowing the accumulation of potentially deleterious PrDs, whose

¶These figures correspond to the predictions generated analyzing Uniprot release of June 2013
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presence should therefore provide certain advantage to the organism. It is still to dis-

cover whether Dictyostelium exploits a similar strategy to cope with the high aggregation

load of its proteome.

Saccharomyces cerevisiae is the most studied organism regarding amyloid forma-

tion, and there are various predictive strategies reporting putative PrDs in its complete

proteome28,38,88. Here we have not only improved the scoring capability of previous

methodologies38, but have also provided an ample list of PrD predictions, including

more than 500 completely new predictions in the yeast proteome. The molecular chap-

erone Hsp104 is essential for the propagation of known yeast prions, which cannot be

propagated in cells devoid of the chaperone. The current model of amyloid propaga-

tion suggests that the prion fibrils need to be shortened or cleaved by Hsp104 in order

to be transmitted to the progeny during cell division89. Therefore, one should expect a

certain correlation between the ability of Hsp104 to propagate prionogenic species and

the number of PrDs in the proteome of this organism. Despite its homology with the

S. cerevisiae chaperone, it has been shown that the Schizosaccharomyces pombe Hsp104

is unable to propagate the [PSI+] prion90. Interestingly enough, only 3 putative PrDs

were identified in the genome of S. pombe. This is in contrast with Candida albicans, the

yeast with the largest number of predicted PrDs after S. cerevisiae (169 domains), whose

Hsp104 chaperone supports [PSI+] prion propagation91.

Prions can be defined as proteins able to shift between their soluble and aggregated

states. This equilibrium should be tightly regulated in the cell, since the accumulation of

aggregated species is inherently toxic and linked to the onset of a variety of human dis-

orders. We explored the GeneCards database92 to identify links between PrD predictions

and human disorders. Remarkably, most of the human proteins for which protein func-

tion has been reported appear to be strongly linked to severe diseases, including differ-

ent neuropathies and cancers, see Table 2.4. This suggests that physiological conditions

or genetic mutations disrupting the balance between soluble and insoluble species in hu-

man prion candidates might lead to localized pathological conditions. Moreover, owing

to the predicted prion-like nature of these proteins, it is possible that, once formed, the

seeds might spread to other locations. Thus, impeding the aggregation and/or subse-

quent dissemination of the identified candidates might constitute a way to tackle these,

in most cases, intractable disorders.
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TABLE 2.4: Association Between Proteins Bearing PrD Predictions and Diseases in Hu-
man

Gene Disease

ATXN1
Spinocerebellar Ataxia

Huntington’s disease

ATXN3
Machado-Joseph disease

Spinocerebellar Ataxias

ATXN8 Spinocerebellar Ataxia type 8

BMP2K
Internuclear ophthalmoplegia

Ulnar neuropathy

FOXP2

Speech-language disorders

Blepharophimosis

Premature ovarian failure

Autism

Dyslexia

HTT
Huntington’s disease

Spinocerebellar Ataxia

MAML

Mucoepidermoid carcinoma

Hidradenoma

Lipoadenoma

Epithelial-myoepithelial carcinoma

MED12

FG syndrome

Intellectual disability

Schizophrenia

MED15 Epicondylitis

NCOA3
Breast cancer

Ovarian carcinoma

PAXIP1 Spinocerebellar Ataxia

TAF15

Chondrosarcoma

Peripheral primitive neuroectodermal tumor

Amyotrophic lateral sclerosis

Sarcoma

Liposarcoma

TOX3 Breast cancer

TPB

Spinocerebellar ataxia

Tuberculosis

Continued on next page. . .
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TABLE 2.4: (continued)

Gene Disease

Huntington’s disease

We compiled the different diseases associated with the genes in humans for which we
found PrD predictions from GeneCards database92

2.3.4 Prion-like Domains are Associated to Specific Protein Functions, Pro-

cesses and Locations in Different Organisms

The analysis of the predictions generated in this study, a large amount of data for an

ample set of proteins from different organisms, would be quite difficult from an opera-

tive perspective if it is not organized in an efficient way for data mining. From our data,

testing if a given protein is a prion is straightforward, but more interesting questions,

such as which proteins from those encoded in the genome of an organism are prions and

which are the main biological processes, molecular functions and cellular components

they are involved or located in, would be more difficult to answer. Even more complex

transversal questions could come to mind, such as trying to analyze the distribution of

prion proteins in different groups of organisms corresponding to different or close evolu-

tionary categories, combining this information with information of function and spatial

localization in the cells, could be of great importance. To try to answer those questions

and provide the scientific community with a resource in which to extend our initial ideas

to study prion biology at a genomic scale we have developed PrionScan‖. An example

of the use of the wealth of the information stored in PrionScan is presented here for

the analysis of our prion predictions in the different proteomes combined to Gene On-

tology93 annotations, which contains the more complete classification of proteins into

functional classes, biological processes and cellular locations. This analysis has uncov-

ered similarities and differences in PrDs distribution among taxa or evolutionary related

organisms (Appendix Figures A.1, A.2 and A.3). A first surprising observation is that

the predicted PrDs appear to be associated with different cellular components and to

work in different biological processes in different taxa and organism groups. These data

are consistent with the view that the common switching mechanism underlying prion

behavior can be exploited for different physiological purposes13.

In bacteria, PrDs are depleted in the intracellular space and significantly enriched at

the cell wall. Accordingly, bacterial PrDs appear to be essentially involved in metabolic

and catabolic processes resulting in construction and disassembly of the cell wall. No

‖Available at: http://webapps.bifi.es/prionscan

http://webapps.bifi.es/prionscan
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prion protein has been characterized yet in bacteria. However, many bacterial species

form extracellular biofilms94–97, which are constituted, among other components, by

proteins assembled into amyloid structures identical to those in neurodegenerative dis-

orders98–100. Amyloidogenic proteins in biofilms are constituents or interact with the

bacterial cell wall98–100 and it is known that biofilms are important virulence factors

for bacteria, favoring the attachment to eukaryotic cells94,95,101–104. Importantly, biofilm

forming pathogens such as Staphylococcus aureus101–103, presents the highest content in

PrDs among bacteria, suggesting that the identified proteins might contribute to form

or sustain the network of amyloid contacts that stabilize the biofilm. Preliminary ex-

perimental data support this view since the predicted S. aureus PrD SSAA2 forms bona

fide amyloid fibrils in vitro (unpublished results from our group). Bacterial amyloids

can initiate the formation of pathogenic or misfolded amyloid upon interaction with di-

verse host proteins105. This template-directed process resembles prion transmission and

brings up a possible relationship between bacterial infections and neurodegenerative

diseases. Accordingly, bacterial amyloids cause the development of amyloidosis when

they are injected in susceptible mice106.

In eukaryotes, PrDs are intracellular and preferentially localized in the nucleus, as

previously suggested107. In yeasts and plants, PrDs are found associated with the tran-

scription factor II D component108–110 (TFIID), a protein complex composed of the TATA

binding protein (TBP) and a set of TBP associated factors (TAFs), well conserved across

species. Binding of TFIID to DNA is necessary for transcription initiation in most RNA

polymerase II promoters. Accordingly, in both taxa, a large number of PrDs are linked

to the transcriptional function. In fungi 86 PrDs are involved in catalyzing release of

nascent polypeptide chains from the ribosome, a function similar to that exerted by

Sup35. Overall, both in fungi and plantae PrDs are enriched in DNA and RNA-binding

proteins, controlling apparently unrelated processes such as nitrogen utilization in fungi

and hormone –e.g. auxin and ethylene– signaling pathways in plants.

In animals, PrDs are also essentially nuclear and depleted in both the mitochondrial

and plasmatic membrane, consistent with a soluble nature under physiological condi-

tions. They are also underrepresented in mitochondrion, in agreement with the obser-

vation that bacteria contain a reduced number of PrDs. Also, in animals the majority of

PrDs corresponds to DNA and RNA-binding proteins. In vertebrates, PrDs are overrep-

resented in two important functional components: the mediator111–114 and the histone

acetyltransferase115–117 complexes. Mediator is a multiprotein complex that functions as

a transcriptional coactivator in all eukaryotes118. In fact, we also find PrDs linked to me-

diator in yeast. The mediator complex is required for activation of transcription of most

protein-coding genes, but can also act as a transcriptional co-repressor. In humans, it

includes proteins such as MED12 and MED15111,114,118, which, as discussed previously,
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are linked to debilitating disorders. Histone acetylation is also linked to transcriptional

activation and associated to euchromatin115–117. Histone acetyl-transferases can also

acetylate non-histone proteins, such as transcription factors and nuclear receptors to fa-

cilitate gene expression. The DNA/RNA binding properties of mammal PrDs determine

that most of them act in the control of transcriptional and translational processes. In hu-

mans, these proteins include transcriptional factors (PAX-interacting protein 1, TOX3),

tumor suppressor proteins (MN1), histone methyl/acetyl-transferases (Histone-lysine N-

methyl-transferase MLL2, E1A-binding protein p400) and nuclear receptors (NCOA3),

and they function in essential pathways such as beta cadherin mediated Wnt signaling

or estrogen response.

Overall, in animals, protein bearing PrDs appear to work in the upstream regulation

of central biological processes and more specifically in development. In almost all cases

putative prion proteins appear related to biological regulatory processes involving the

formation of supramolecular complexes implicating an ample number of proteins and

DNA111–118, in which these prionogenic domains could play an important role in es-

tablishing the interactions stabilizing those complexes108,109,119–121, and providing great

versatility allowing the formation of complexes with different composition depending

on the environmental conditions. In vertebrates, prions might act in the development

of central nervous regions such as the putamen, caudate nucleus or the neural crest.

This regulatory activity of neuronal development is conserved between mammals and

humans, where prion proteins may additionally play a role in cerebellum and cerebral

cortex development. Therefore, it is likely that PrDs malfunction might be intimately

linked to the apparition of neurodegenerative diseases, as previously discussed (Ta-

ble 2.4). Mammal and human PrDs are also involved in embryonic development and

more generally in cell differentiation, which might explain the association of PrDs with

different types of cancer (Table 2.4).

Interestingly, 30% of the predictions in humans were found in proteins of unknown

function. If we combine all the predictions obtained in this study for all the analyzed

organisms, the percentage of PrDs predictions in proteins of unknown function raises to

56%. Therefore, our results could be of help to uncover new potential targets for exper-

imental analysis and to unravel the yet-to-discover functional implications of these pro-

teins. As one major challenge in the field of prion prediction is the lack of good datasets

on which to train and test potential algorithms122, methodologies and databases like

the ones presented here could be of great help for providing ample sets of putative pro-

teins and domains for experimental tests. This would help increasing the reliability of

predictive approaches, and guide us to a better definition of the sequence determinants

that lead prion formation. As our knowledge of the fundamental features of prion for-

mation and propagation, and the relationship between prion activity and disease grows,
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application of this knowledge to prion prediction will lead to more accurate prediction

methods and identification of new prions or prion-like proteins, potentially resulting in

additional targets for treating human neurodegenerative disorders122.

2.4 Conclusions

In this work, we have developed a probabilistic model to predict prion domains based

on the primary sequence of proteins. By using this model, which is combined with a

thorough benchmarking and calibration to handle genome-size sequence databases, we

have been successful on predicting prions in all the proteomes available, which to our

knowledge constitutes the most extensive study in this direction performed so far. We

have disclosed an ample list of proteins containing stretches with a fairly high com-

positional similarity to those of known prions, including proteins from almost all the

evolutionary classifications and taxa, from archaea and viruses to mammals and human.

Our results also show that this kind of domains is found in an ample and diverse group

of evolutionarily unrelated proteins. In fact, our predictions highlight some interesting

trends in the distribution of prion domains in different protein functional families, dif-

ferent cellular compartments and involved in dissimilar biological processes depending

on the taxonomic classification. In a time in which prion biology is a rather unexplored

field, and the number of prion proteins confirmed experimentally is scarce, predictive

approaches such as ours could be of great help to pinpoint putative prionogenic pro-

teins for further experimental characterization. We have included all our predictions in

a database with a simple and flexible query system, which allows the mining of our data

for study the distribution and functional implication of prions at a genomic scale in all

the proteomes annotated in sequence databases. Thus, the free distribution of these pre-

dictions, as well as the continuous updating and improvement of the predictive models

based on new experimental evidence, might significantly contribute to increase the un-

derstanding of prion biology, and to reach a deeper understanding of prions’ functional

and regulatory mechanisms.

2.5 Methodology

2.5.1 Sequence Datasets

A group of 29 proteins that proved heritable switch and significant in vivo amyloid

formation in yeast38 was used as the training set for obtaining the amino acid propensi-

ties in prion domains. We calculated the propensities based on the complete sequences
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that were cloned and tested experimentally in this work, which we believe, is more

credible than using the predicted PrD-cores, which are inferred solely based in statisti-

cal precepts, see Appendix Table B.1 for a complete list. Another set of 18 high scoring

prion predictions, all of which had also been experimentally tested and showed no prion-

forming propensity in any of the four assays38, was used as the negative evaluation set

in the benchmarking of the methodology, see Appendix Table B.2. The positive evalua-

tion set for the ROC plot analysis was formed with the 18 out of the 29 prions used to

construct the model that resulted positive in all the four assays described in the work

by Alberti et al38. In order to avoid artifacts due to the use of intersected sets of positive

instances for training and testing, we also performed an exhaustive jackknife bootstrap

assay to estimate the significance of the amino acid propensities obtained. In this boot-

strap assay, we resampled with replacement one million subsets from the positive set of

18 prion proteins, randomly excluding half of the prions each time. We then regenerated

the model with the remaining 9 prions and used the excluded instances as the positive

test set for the ROC plot construction, while the negative set was the same set of 18 neg-

ative sequences in all cases. Accordingly, a million ROC plots were built and processed

to obtain the average curve and the errors associated to the estimations in each point of

the curve, as depicted in Figure 2.2.

We also defined three additional evaluation datasets, comprising the Uniprot/Swis-

sprot database40 (release from February 2012), a culled list of proteins with solved tridi-

mensional structure annotated in SCOP (version 1.75) obtained from the ASTRAL com-

pendium123 (including proteins with less than 95% sequence similarity) and all the in-

trinsically disordered proteins annotated in Disprot42 (version 5.7). In the case of the

Uniprot/Swissprot dataset we randomly generated a million sets that were used in the

benchmarking, while for the other two databases we used all the protein sequences an-

notated. In all cases, the known prions were removed from the negative datasets. These

three test sets were used to measure the ability of the model to handle sequence datasets

with a high number of negative instances, as it is the case of the scanning of complete

proteome databases.

2.5.2 Construction of the Probabilistic Model

The amino acid frequency propensities obtained from the known PrD training dataset

described above were used to build an independent log-likelihood model of prion-

forming domains. In this model we assume that composition and not primary sequence

determines the principal properties of PrD29,30, thus we choose a model in which the

position of amino acids in a given sequence is irrelevant. The observed frequencies were
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transformed into statistical potentials by using the following expression:

LOri = log2
fi
pi

(2.1)

in which LOri is the log-odds ratio of amino acid ri in bits, fi is the observed frequency

of this amino acid in the training set and pi is the corresponding expected frequency in

the protein universe –i.e. frequency of amino acids in all known proteins reported in

Swissprot. The resulting statistical potentials for all the amino acids are shown in Ta-

ble 2.1. Assuming complete independence among the positions of a sequence fragment

of a certain length, these log-odds can be summed up to return an uncalibrated score

associated to the fragment, for which the higher the score the higher the probability

that the sequence is a PrD. With this model, that is essentially a ‘classifier’ for map-

ping instances into a specific class, we scanned protein sequences with a sliding-window

approach using the expression:

ScoreL =
L∑
l=1

LOrl (2.2)

where the Score of a protein sequence segment of length L is obtained accounting for

the relative support of each amino acid independently.

We added a correction to the score based on the number and distance between non-

contiguous prolines found in the PrD. It has been previously reported that the relative

abundances of the different amino acids, and not the specific sequence, is related to

the prionogenicity of a given sequence stretch28–30. However, prolines display important

differences with the other amino acids because they cause a characteristic structural

disruption of secondary structures, and it has been suggested that the abundance of

non-contiguous prolines decreases the prionogenicity of a given sequence28. Thus, we

set up a strategy in which we estimated the relative abundance of proline pairs separated

a given distance –i.e. between one and sixty residues in accordance with the scanning

window defined. In order to do so we parsed a set of 4606913 sequences included

in UniRef 50, release of February 2012. This database contains clusters of sequences

extracted from Uniprot/Swissprot40 and is both representative of the protein universe

and non-redundant, as it only contains sequences with less than 50% sequence identity.

From this assay we were able to obtain the relative frequency of proline patterns, see

Figure 2.1, and we used those frequencies to obtain the corresponding log-likelihoods
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for each proline pattern, taking into consideration the corresponding expected frequen-

cies. Then, we obtained the final corrected score using the following formula:

ScoreL(corr)
=

L∑
l=1

LOrrl +
P−1∑
p=1

LOr(dp−dp+1) (2.3)

in which the second addend accounts for the significance of non-contiguous prolines

in the sequence. The resulting corrected scores were used in the benchmarking and

predictive stages of our methodology.

2.5.3 Benchmarking of the Classification Methodology

The classifier performance was assessed with the positive and negative sets described

above in this Methodology section. The real prionogenic sequences –i.e. positive test set

as included in Appendix Table B.1– were analyzed in combination with a set of non-prion

sequences –i.e. negative test set as included in Appendix Table B.2– and the ability

of the classifier to correctly rank the positive instances in the pool of negative cases

was tested. The following statistical performance metrics were calculated to follow the

benchmarking progress:

TPR =
TP

TP + FN
(2.4)

FPR =
FP

FP + TN
(2.5)

Precision =
TP

TP + FP
(2.6)

Accuracy =
TP + TN

P +N
(2.7)

FDR =
FP

FP + TP
(2.8)

where TP , FN , FP , TN stands for true positives, false negatives, false positives and

true negatives respectively. These variables were used to calculate the false positive

(FPR) and true positive (TPR) rates, needed for constructing the receiver operating

characteristics (ROC) curves. The Accuracy, Precision and false discovery rate (FDR)

were also calculated. The areas under the ROC curves (AUC) were calculated non-

parametrically using the trapezoid algorithm. All the statistical analysis was done using

the R suite124 and a library of ad hoc Perl scripts developed by us.
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2.5.4 Predicting Q/N-rich Putative Prion Proteins in Complete Proteomes

We downloaded the complete proteomes of all the organisms sequenced so far from

the Uniprot/Knowledgebase database40 to identify novel proteins bearing prion-forming

domains. These repositories include four-weekly updates of proteins resulting from

genome sequencing and annotation projects and are subdivided in two complementary

and non-redundant datasets: a) Swissprot, for fully annotated curated entries and b)

TrEMBL, formed by computer-generated entries enriched with automated classification

and annotation. This subsection of Uniprot is organized in separate files for different

taxonomic divisions, which give us the opportunity to study the compositional charac-

teristics of our predictions in each evolutionary clade. In this dataset, there is a file for

each taxon, including all the proteins for organisms belonging to that taxon, except for

rodents, mammals and human, which are distributed in individual files each. These files

were processed with an ad hoc perl script included in Appendix Script C.1. The pro-

teins passing the cutoff defined in the predictive methodology based on the amino acid

composition of a continuous stretch of sixty residues38 –i.e. what was proposed to be a

typical length of PrD-cores– were accepted as predictions. All the predictions are stored

and are publicly available in the PrionScan site∗∗. The predictions obtained were ana-

lyzed to estimate the number of proteins with PrDs in all the taxa studied, belonging to

different ontology classifications93 in the following sub-categories: Molecular Function,

Biological Process and Cellular Component. Also, in order to estimate the significance

of the number of predictions in a given classification, we set up a tryout in which we

calculated the expected number of each GO term by randomizing the selection 1 × 106

times and then estimating the z− scores for each GO term parametrically. These results

are included in Appendix Figures A.1, A.2 and A.3.

2.5.5 Construction and Design of a Database of Predicted Prion Proteins

2.5.5.1 Data Acquisition and Database Organization

Our primary source of information is Uniprot40, the standard and most complete

repository of protein sequences freely available. Following each update of this database

once a month, we thoroughly scan all the entries included both in Swissprot and TrEMBL

in the search for prion-like domains according to our model. In parallel, we also extract

some relevant information from Uniprot for those entries containing putative prion do-

mains, and store it in our database. The data generated during the prediction process

comprises the score of the highest scoring window during the scan of a protein sequence,
∗∗Available at: http://webapps.bifi.es/prionscan

http://webapps.bifi.es/prionscan
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the sequence of the highest scoring domain, the localization of the highest scoring pu-

tative prion-domain and the complete scanning profile of the protein sequence. This

data is merged with the information extracted from Uniprot entries, including the en-

try identifier and accession number, the organism and taxon, the protein names, the

Gene Ontology93 GO Terms for the molecular functions, biological processes and cellular

component in which the protein is related/located and finally, cross-references to other

databases with relevant information for the protein bearing putative prion domains.

All this information is stored in a MySQL database environment, allowing linking all

the information at all possible levels to enable the efficient querying of the database for

fine-grained data retrieval. A description of the data in the present version of PrionScan,

including the predictions for the Uniprot (update 2013 07) of June 2013, is shown in

Figure 2.7.

2.5.5.2 The PrionScan Website

PrionScan is hosted in an Apache web server that relies on a PHP bundle to con-

nect the client query patterns with the database and a set of ad hoc Perl scripts that

perform some functions, such as the prediction of prion domains in the client’s own

sequences and the connection to our computer cluster for processing a large number

of client sequences. The system processes the client searches and data submission and

generates dynamic HTML pages designed to be completely functional in the main web

browsers. The home page of PrionScan contains a short introduction to our method and

the functionalities of the site to guide the users in a glimpse, and the Submission Form

organized in checkboxes to easily select the different searching alternatives (Simple or

Complex Searches) and the two different ways of submitting sequences to be analyzed

with our method (Sequence Analysis from text or file), please see Figure 2.8, panel A.

There is also a link in the leftmost vertical menu to a page containing detailed help and

guidance on the methodology, the searchable fields of the database and the output gen-

erated. Furthermore, in order to facilitate the use of our site without the requirement

of a full reading of the Help page, we also enabled the auto completion utility in the

Simple Search tab and added hover help buttons for in-site help.

2.5.5.3 Querying the Database

PrionScan is configured to be searched in two different ways:

• Simple Searches: The easiest way for retrieving information when the user wants

to find out whether a specific protein contains prion-like domains. In this case
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FIGURE 2.8: The Simple Search Option for Direct Access to Protein Prion Prediction
Information

Figure 2 The Simple Search option for direct access to protein prion prediction information. A) The Simple Search option is used for
querying the database using the UniprotKB identifier of a given protein. B) The Detailed Output Page retrieved by the query for a protein with
putative prion domains. At the top there is a button for complete download of the results.

Espinosa Angarica et al. BMC Genomics 2014, 15:102 Page 5 of 9
http://www.biomedcentral.com/1471-2164/15/102

A) The Simple Search option is used for querying the database using the Uniprot identi-
fier of a given protein. B) The Detailed Output Page retrieved by the query for a protein
with putative prion domains. At the top there is a button for complete download of the
results
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FIGURE 2.9: The Simple Search Option for Searching with Text Keywords

plots. This information is in HTML format and can
be displayed locally using any web browser, and we
also include a version in a flat text file with the
same information that could also be easily parsed
by ad hoc scripts written by the users for performing
in-house massive offline analysis of our data.

Analyzing your own sequences
In this case the user has complete flexibility for testing
the prionogenicity of protein sequences using the (Se-
quence Analysis from text or file) functionalities, as
depicted in Figure 5. First, the right option in the Sub-
mission Form is selected in order to enable the option
for pasting a limited number of sequences in FASTA for-
mat or for uploading a file with a high number of pro-
tein sequences, which can be either a flat file or a
compressed file in FASTA format (the limit is 500 MB
for compressed files, which we estimate can contain ap-
proximately one million sequences). We also provide the
possibility that the user can select the best cutoff for
prediction according to his/her needs. In this case, if

only one among the sequences introduced by the user
happens to bear prion-like domains, the output will cor-
respond to a Detailed Output Page with the specific in-
formation for the protein. On the other hand if the
analysis of the sequences results in more than one pro-
tein with prion domain predictions, then the output will
be a General Output Page with one row for each pro-
tein with predictions. As in the case of results obtained
while searching the database, each row redirects to a
Detailed Output Page with the specific information for
the selected sequence. If the number of sequences is less
than 5000, the output will be generated in a few seconds
in HTML format as just described here, but when the
number of sequences is higher than this value, then the
job will be submitted to our computer cluster for pro-
cessing. In this last case the results will be submitted by
e-mail to the user upon completion.

Similar resources
There are a few examples of repositories with informa-
tion on prion proteins, prionogenic sequences, prion-

Figure 3 The Simple Search option for searching with text keywords. A) The Simple Search option is used for querying the database with a
text keyword –i.e. the complete name of an organism in this case. B) The General Output Page retrieved by the query with rows corresponding
to multiple entries in the database –i.e. putative prion proteins in the genome of this organism– each one redirecting to a Detailed Output Page.
At the top there is a button for complete download of the results and at the bottom there is a summary of the number of predictions and a
functionality for browsing throughout multiple pages containing all the results returned.

Espinosa Angarica et al. BMC Genomics 2014, 15:102 Page 6 of 9
http://www.biomedcentral.com/1471-2164/15/102

A) The Simple Search option is used for querying the database with a text keyword
–i.e. the complete name of an organism in this case. B) The General Output Page
retrieved by the query with rows corresponding to multiple entries in the database –
i.e. putative prion proteins in the genome of this organism– each one redirecting to a
Detailed Output Page. At the top there is a button for complete download of the results
and at the bottom there is a summary of the number of predictions and a functionality
for browsing throughout multiple pages containing all the results returned

it is possible to directly access the information of a single protein providing its

Uniprot identifier or principal accession number, as shown in Figure 2.8, panel

A. This option is also the best alternative for querying the database with infor-

mation from one of the searchable fields Taxon, Organism Name, Protein Name

(Recommended Name, Alternative Name and Submitted Name) and the Gene On-

tology Terms for Molecular Function, Biological Process and Cellular Compo-

nent. For example, it is possible to retrieve all the putative prion proteins in the

genome of an organism by providing the complete or partial organism name, as

shown in Figure 2.9, panel A.

• Complex Searches: Sometimes, however, more complex searches are needed,

especially when the user has more detailed information of the set of proteins to

be retrieved. In those cases the search can be refined by combining multiple fields

from the database –i.e. Taxon, Organism Name, Protein Name (Recommended

Name, Alternative Name and Submitted Name) and the Gene Ontology Terms
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for Molecular Function, Biological Process and Cellular Component. These fields

can be combined when needed, by introducing the search terms in the rightmost

tabs, and selecting the appropriate field that should be considered in the leftmost

tabs. You can also choose the logical operators combining the query instances.

Using this option, it is possible, for example, to retrieve all the prion-like proteins

having a similar Molecular Function or related to a specific Biological Process in

the genome of a specific organism, as depicted in Figure 2.10, panel A.

• The Output: After performing a search for a specific protein using its Uniprot

identifier or principal accession number, if the protein selected has prion-like do-

mains the output will be a Detailed Output Page including the Uniprot identi-

fier (ID) and principal accession number (AC), the source (Source) of the protein

(coming from Swissprot or TrEMBL), the organism name (Organism) and taxon

(Taxon), the names of the protein (recommended names: RecName and/or alter-

native names: AltName and/or submission names: Subname), the highest scoring

prion domain in the sequence (PrD), the score of the highest scoring prion do-

main (Score), the position in the protein sequence of the highest scoring prion

domain (Position), a representation of the complete protein sequence with the

highest scoring prion domain highlighted in green (Sequence), and a graphical

representation of the scanning of the complete protein sequence (Plot), corre-

sponding to a chart with the score profile along the sequence, also showing the

score used for making the predictions (Figure 2.8, panel B). In addition to these

fields, the Detailed Output Page might also include information regarding the

Gene Ontology Terms associated to the protein for the Molecular Function, Bi-

ological Processes and/or Cellular Component and the Cross-references to other

databases like the EMBL, Refseq, Pfam and so on, lower part of Figure 2.8, panel

B. However, if the search, either a Simple Search or a Complex Search, retrieves

more than one entry, the output will be a General Output Page with columns and

rows that could contain different information depending on the search conducted,

with some columns enabled to be dynamically ordered in ascending or decreasing

manner (Figures 2.9 and 2.10, panel B). Every row shown in this General Output

Page redirects to a Detailed Output Page as described above. At the bottom part

of the General Output Page we include a short summary of the number of results

retrieved by the query, which is also useful for browsing forward and backwards to

different pages in the General Output Page by using the page links, or just intro-

ducing the exact page in the ‘Go to page’ box (lower part of Figures 2.9 and 2.10,

panel B). Independently of the type of query, it is possible to download the results

retrieved in the form of a compressed file containing all the information displayed

in the web version, which includes all the information of entries and the associate
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scanning plots. This information is in HTML format and can be displayed locally

using any web browser. We also include a download version in flat text file for-

mat with the same information, that could also be easily parsed by ad hoc scripts

written by the users for performing in-house massive offline analysis of our data.

FIGURE 2.10: Complex Search Option for Searching with Multiple Text Keywords

related diseases, prion protein interactions and orthologs
and paralogs of prion proteins in multiple organisms.
For example, the Prion Disease Database [30] contains a
sort of experimental data on prion sequences and multi-
level data on diseases caused by prions, combined with a
set of tools for data analysis and systems biology studies
in mouse. PrionHome [31] is a non-redundant database
containing approximately 2000 prion-related sequences
obtained from different public and private sources, in
some cases with experimental support or inferred using
different predictive algorithms [24,32,33]. There is yet
another similar resource, set up as a web application for
predicting prion forming propensity [25]. Though not a
database in the strict sense of the term, the PAPA site
(http://combi.cs.colostate.edu/supplements/papa/) allows
the analysis of protein sequences based on amino acid

propensities in prion sequences inferred from in vivo ag-
gregation analysis. In contrast to these available resources,
PrionScan provides genomic-scale prion predictions for
the proteomes of all organisms, in a framework that allows
an easy way to study the sequential/structural determi-
nants of prionogenicity, as well as comparative studies of
the implication of prions in cell biology in different group
of organisms.

Conclusions
The continuous growth in the number of protein se-
quences annotated in public databases, mainly due to
massive genome sequencing programs, is challenging be-
cause the availability of experimental and computational
methodologies for the analysis of those new sequences
evolves at a rather slower pace. PrionScan intends to be

Figure 4 Complex Search option for searching with multiple text keywords. A) The Complex Search option is used for querying the
database combining the information of two columns of the database –e.g. in this case we search the putative prions in the genome of an
organism related to a specific molecular function as described in Gene Ontology. B) The General Output Page retrieved by the query with rows
corresponding to multiple entries in the database –i.e. putative prion proteins in the genome of this organism– each one redirecting to a
Detailed Output Page. At the top there is a button for complete download of the results and at the bottom there is a summary of the number of
predictions and a functionality for browsing throughout multiple pages containing all the results returned.

Espinosa Angarica et al. BMC Genomics 2014, 15:102 Page 7 of 9
http://www.biomedcentral.com/1471-2164/15/102

A) The Complex Search option is used for querying the database combining the infor-
mation of two columns of the database –e.g. in this case we search the putative prions
in the genome of an organism related to a specific molecular function as described in
Gene Ontology. B) The General Output Page retrieved by the query with rows corre-
sponding to multiple entries in the database –i.e. putative prion proteins in the genome
of this organism– each one redirecting to a Detailed Output Page. At the top there is a
button for complete download of the results and at the bottom there is a summary of
the number of predictions and a functionality for browsing throughout multiple pages
containing all the results returned

2.5.5.4 Analyzing Your Own Sequences

In this case the user has complete flexibility for testing the prionogenicity of protein

sequences using the (Sequence Analysis from text or file) functionalities, as depicted

in Figure 2.11. First, the right option in the Submission Form is selected in order to

enable the option for pasting a limited number of sequences in FASTA format or for
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FIGURE 2.11: Sequence Analysis from File and Text for Processing User’s Own Se-
quences

a repository of organized and up-to-date predictive data on
prion-like domains present in the proteins of all the organ-
isms available. In this regard we believe that our database
will provide a basis for future studies on the implication of
prions in cell biology from a genomic perspective.

Availability and requirements
PrionScan is publicly available in the following web
address: http://webapps.bifi.es/prionscan.
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Figure 5 Sequence Analysis from file and text for processing user’s own sequences. A) The Sequence Analysis from text option in which
the user can modify the cutoff used in our methodology to scan the sequences that can be pasted in the text box below. B) The Sequence
Analysis from file option useful for processing a high number of sequences by submitting the file to be processed in our server. In this case there
is an obligatory text box for providing the e-mail address for sending the results upon completion and the cutoff could also be adjusted at
user’s discretion.
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A) The Sequence Analysis from text option in which the user can modify the cutoff
used in our methodology to scan the sequences that can be pasted in the text box
below. B) The Sequence Analysis from file option useful for processing a high number
of sequences by submitting the file to be processed in our server. In this case there is
an obligatory text box for providing the e-mail address for sending the results upon
completion and the cutoff could also be adjusted at users discretion.

uploading a file with a high number of protein sequences, which can be either a flat file

or a compressed file in FASTA format (the limit is 500 MB for compressed files, which

we estimate can contain approximately one million sequences). We also provide the

possibility that the user can select the best cutoff for prediction according to his/her

needs. In this case, if only one among the sequences introduced by the user happens to

bear prion-like domains, the output will correspond to a Detailed Output Page with the

specific information for the protein. On the other hand if the analysis of the sequences

results in more than one protein with prion domain predictions, then the output will be

a General Output Page with one row for each protein with predictions. As in the case of

results obtained while searching the database, each row redirects to a Detailed Output

Page with the specific information for the selected sequence. If the number of sequences

is less than 5000, the output will be generated in a few seconds in HTML format as just

described here, but when the number of sequences is higher than this value, then the
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job will be submitted to our computer cluster for processing. In this last case the results

will be submitted by e-mail to the user upon completion.
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BERTOLOTTI. Propagation of the prion

phenomenon: beyond the seeding prin-

ciple. Journal of Molecular Biology, 421:

491–8, 2012. (see p. 98)

[72] PATRIK BRUNDIN, RONALD MELKI, and

RON KOPITO. Prion-like transmission of

protein aggregates in neurodegenerative

diseases. Nat Rev Mol Cell Biol, 11: 301–

7, 2010. (see p. 98)

[73] CHRISTIAN HANSEN et al. -Synuclein

propagates from mouse brain to grafted

dopaminergic neurons and seeds aggre-

gation in cultured human cells. J Clin In-
vest, 121: 715–25, 2011. (see p. 98)

[74] MELANIE MEYER-LUEHMANN et al. Ex-

ogenous induction of cerebral beta-

amyloidogenesis is governed by agent

and host. Science, 313: 1781–4, 2006.

(see p. 98)

[75] PEI-HSIEN REN et al. Cytoplasmic pene-

tration and persistent infection of mam-

malian cells by polyglutamine aggre-

gates. Nat Cell Biol, 11: 219–25, 2009.

(see p. 98)

[76] TIM BARTELS, JOANNA G CHOI, and DEN-

NIS J SELKOE. -Synuclein occurs physi-

ologically as a helically folded tetramer

that resists aggregation. Nature, 477:

107–10, 2011. (see p. 98)

[77] C NERELIUS et al. Alpha-helix target-

ing reduces amyloid-beta peptide toxic-

ity. Proc Natl Acad Sci USA, 106: 9191–6,

2009. (see p. 98)

[78] HEATHER L TRUE, ILANA BERLIN, and

SUSAN L LINDQUIST. Epigenetic regula-

tion of translation reveals hidden genetic

variation to produce complex traits. Na-
ture, 431: 184–7, 2004. (see p. 98)

[79] H L TRUE and S L LINDQUIST. A yeast

prion provides a mechanism for genetic

variation and phenotypic diversity. Na-
ture, 407: 477–83, 2000. (see p. 98)

[80] JOANNA MASEL and MARK L SIE-

GAL. Robustness: mechanisms and con-

sequences. Trends Genet, 25: 395–403,

2009. (see p. 98)

[81] OLIVIER NAMY et al. Epigenetic control

of polyamines by the prion [PSI+]. Nat
Cell Biol, 10: 1069–75, 2008. (see p. 98)

[82] M M PATINO et al. Support for the prion

hypothesis for inheritance of a pheno-

typic trait in yeast. Science, 273: 622–6,

1996. (see p. 98)

[83] SVEN U HEINRICH and SUSAN

LINDQUIST. Protein-only mechanism

induces self-perpetuating changes in the

activity of neuronal Aplysia cytoplasmic

polyadenylation element binding protein

(CPEB). Proc Natl Acad Sci USA, 108:

2999–3004, 2011. (see p. 98)

[84] PAROMITA BANERJEE et al. Short- and

long-term memory are modulated by

multiple isoforms of the fragile X men-

tal retardation protein. J Neurosci, 30:

6782–92, 2010. (see p. 98)

[85] KAUSIK SI, SUSAN LINDQUIST, and ERIC

R KANDEL. A neuronal isoform of the

aplysia CPEB has prion-like properties.

Cell, 115: 879–91, 2003. (see p. 98)

[86] RICHARD SUCGANG et al. Compara-

tive genomics of the social amoe-

bae Dictyostelium discoideum and Dic-

tyostelium purpureum. Genome Biol, 12:

R20, 2011. (see p. 99)



Chapter 2. Proteome-wide Prion Domain Prediction 119

[87] VASANT MURALIDHARAN et al. Plasmod-

ium falciparum heat shock protein 110

stabilizes the asparagine repeat-rich par-

asite proteome during malarial fevers.

Nat Commun, 3: 1310, 2012. (see p. 99)

[88] RANDAL HALFMANN, SIMON ALBERTI,

and SUSAN LINDQUIST. Prions, protein

homeostasis, and phenotypic diversity.

Trends Cell Biol, 20: 125–33, 2010. (see

p. 100)

[89] JAMES SHORTER and SUSAN LINDQUIST.

Hsp104 catalyzes formation and elim-

ination of self-replicating Sup35 prion

conformers. Science, 304: 1793–7, 2004.

(see p. 100)
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3.1 Introduction

Protein dynamics range from local fluctuations of specific regions1–3 to large-scale

rearrangements involving partial or global unfolding of the native state4–6. Fluctuations

between alternative structures within the native basin are thought essential for enzyme

catalysis and protein recognition1,3,7, while larger rearrangements may lead to protein

misfolding and aggregation6. Dynamism and conformational variability are intrinsic to

polypeptides and play a central role in protein folding and function7,8, and also medi-

ate the wide functional versatility of some specialized proteins that exert a remarkable

functional multiplicity, and that participate, among others, in central regulatory cell

processes9–15. Besides, protein dynamics has been proposed to constitute an essential

feature of protein evolvability16. In fact, the increasing cumulation of more experimen-

tal evidence by the recent developed high-throughput techniques, reveals that there is

a varied set of cell mechanisms to generate and take advantage of protein structural

instability and protein multitasking17–28. Traditional views that the biological functions

of proteins are carried out by single, well-defined conformations have been abandoned

and there is mounting evidence suggesting that function is mediated by ensembles of

alternative structures in equilibrium with the ‘native state’29. Local structural fluctua-

tions have been reported for some enzymes and promiscuous proteins in which multiple

conformers contribute to binding a wide range of substrates or partners1,3,7. Remarkable

flexibility involving wider rearrangements, and even fold transitions, has been described

in some proteins where different folding species in equilibrium regulate their biological

functions4,5, in prions that undergo a switch between the soluble and aggregated forms3,

or in proteins that tend to aggregate in specific conditions, causing severe diseases6.
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At present, the intrinsic flexibility and dynamic behavior of individual proteins can

be investigated at atomic or residue level, in a one-to-one basis, by using well estab-

lished techniques, such as a multitude of different NMR approaches30–38, time resolved

X-ray diffraction crystallography39–45, small and wide angle X-ray scattering46–53, Φ-

analysis54,55, and pure Molecular Dynamics simulations56–63 or strategies combining

multiple computational and/or experimental approaches64–69, among others. While

these approaches have provided a wealth of information relating structure and dynam-

ics, they are painstaking and cannot be easily applied on a proteome scale, nor can

they reveal evolutionary relationships without extreme effort. Free energy estimation-

based models, such as COREX70,71 are useful to predict local properties, such as hy-

drogen exchange rates72. The approach nevertheless requires extensive calculations and

the estimation at residue level of a thermodynamic quantity: the free energy of fold-

ing, that is very difficult to calculate accurately even using careful parameterizations73.

Coarse-grained computational models74–77, such as Elastic Network Models7,75,78–81,

have proven very useful describing slow motions of proteins and have provided strong

evidence that those motions are dictated to some extent by the fold geometry. These

models, however, do not take into account specific interactions within the protein and,

therefore, can offer limited insight into the key physicochemical characteristics of highly

dynamic protein loci. Thus, there is a need for simple and reliable methods of computa-

tional analysis that could help to identify and delineate the boundaries of such regions.

Proteins are generally organized into folding domains, some proteins consisting of

just one. The interior of protein domains is well packed on average but significantly

heterogeneous, such that tightly-packed regions, usually hydrogen bond-rich82, coexists

with others containing packing defects and cavities83. On the other hand, many impor-

tant cellular processes are mediated by molecular recognition events occurring at protein

surfaces that are constantly reshaped by internal motions. Since these motions should

be governed by the relative stability of buried interfaces, we hypothesize here that do-

main cores will contain regions with physicochemical properties specifically suited to

ease the reorganization of the contacting segments, hence allowing functionally rele-

vant intradomain motions. We show here that proteins contain buried interfaces of high

polarity and low packing density, coined as LIPs: Light Interfaces of high Polarity, whose

physicochemical properties make them unstable. The structures of well-characterized

equilibrium and kinetic folding intermediates indicate that the LIPs of the correspond-

ing native proteins fold late and are involved in local unfolding events. Importantly,

LIPs can be identified using very fast and uncomplicated computational analysis of pro-

tein three-dimensional structures, which provides an easy way to delineate the protein

segments involved in dynamics. Since LIPs can be retained while the sequences of the
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interacting segments diverge significantly, proteins could in principle evolve new func-

tional features reusing pre-existing encoded dynamics. Large-scale identification of LIPs

may contribute to understanding evolutionary constraints of proteins and the way pro-

tein intrinsic dynamics are encoded.

3.2 Results

3.2.1 Identification of LIPs by Means of 3D-structure Analysis

To test our hypothesis, we define protein interfaces as surface patches buried by the

interaction of a contiguous protein segment of an arbitrarily defined length with the rest

of the protein. Stable protein cores are characterized by a high content of hydrophobic

residues, a fine matching of buried polar groups through hydrogen bonding, and tight

packing. Most protein buried interfaces should, therefore, be highly apolar and the pro-

tein segments at the interface should be tightly packed. In contrast, protein interfaces

involved in dynamics need to be intrinsically unstable and should display physicochem-

ical features indicative of a low stability, such as a higher polarity and a lower packing

density than stable interfaces.

Our first approximation to this problem came from previous experimental studies of

the folding intermediates of the Apoflavodoxin from Anabaena PCC 711954,59,84. From

the low-resolution characterization of the Flavodoxin intermediate using Φ-analysis54

we obtained some tentative clues pointing out that regions partially unstructured in the

intermediate might be related with structural elements that pack concealing buried in-

terfaces not as apolar as expected for interfaces in the protein interior. The subsequent

structural details obtained using NMR84 and SAXS59,84 gave further support to that idea,

and allowed us to give shape to our initial postulations, because we obtained a precise

assessment of the protein loci that are unfolded in the intermediate. As can be observed

in Figure 3.1, the intermediate adopts a partially unfolded conformation, with a disor-

dered region with no definite structure, as can be inferred from NMR chemical shifts84.

On the other hand, there is another region that remains in a conformation quite similar

to that observed in the native structure. A closer inspection to our proposition can be

drawn from the inspection of Figure 3.2. A preliminary study of the physicochemical

characteristics of the buried interfaces connecting different segments of the Apoflavo-

doxin (cyan, green and and yellow subdomains in Figure 3.2) shows that the two dy-

namic segments of the thermal intermediate (yellow subdomain) correspond to regions

exhibiting high polarity ratios, and thus conforming buried interfaces with the rest of the

protein of higher polarities than other regions. This observation qualitatively indicates



Chapter 3. Protein Dynamics Driven by Buried Light Polar Interfaces 125

FIGURE 3.1: 3D Structures of the Wild-type Apoflavodoxin and the F98N Mutant

A B 

(A) Ribbon representation of the wild-type Apoflavodoxin structure (PDB id: 1FTG).
Residues assigned for F98N-Apoflavodoxin are displayed in green except for β-strands
that are displayed in cyan; residues assigned for wild-type but not for F98N mutant are
shown in yellow, and those not found in either wild-type or F98N mutant are colored
in gray. The loop corresponding to residues 144–151, whose chemical shifts differ sig-
nificantly between F98N mutant and wild-type protein, is in blue. Side-chain atoms
for residue F98 are shown in red. (B) Backbone atoms of the structure calculated for
F98N-Apoflavodoxin superposed over residues 2–8, 18–53, 71–86, 109–117, and 153–
169. Disordered regions are shown in magenta

that the buried interface in the boundary between the folded and the unfolded regions

in the thermal intermediate is unusually polar. Indeed, the electrostatic surface of the

well-folded region in the thermal intermediate (cyan and green subdomains) displays

a fairly even distribution, on which the buried interface in contact with the disordered

region is only slightly less polar than the outer surfaces. In accordance, the buried in-

terface shown by the disordered region when it appears folded in the native structure

is rather polar. In contrast, a similar analysis of two halves resulting from splitting the

ordered region of the thermal intermediate (cyan and green subdomains) exhibit quite

apolar buried electrostatic surfaces, lower panels of Figure 3.2, as is characteristic of

well-folded protein cores.

In order to develop a quantitative methodology to analyze the properties of pro-

tein buried interfaces for the assessment of these physicochemical singularities, we have

probed protein structures using a sliding-window approach. To that end, the three-

dimensional structure of a given monomeric protein, as defined by a PDB file, is scanned

from end-to-end using a contiguous peptide probe. For each peptide probe, two relevant

properties of the probed interface are computed: the ratio of polar/apolar buried area

(Printerface), and the packing density (ρinterface), as defined on Equations 3.1 and 3.2.



Chapter 3. Protein Dynamics Driven by Buried Light Polar Interfaces 126

FIGURE 3.2: Polarity of Wild-type Apoflavodoxin Buried Interfaces

Electrostatic surface of wild-type Apoflavodoxin (PDB id: 1FTG). In the same repre-
sentation the structure was divided first into two halves corresponding, respectively,
to the disordered (in yellow) and well-folded (in green–cyan) regions in the thermal
intermediate. These two halves are rotated about 90◦, as indicated, to display front
views of the buried electrostatic surfaces between disordered and ordered regions. The
half comprising the well-folded region in the thermal intermediate was further subdi-
vided into two sections: one comprising helices α1 and α5 (in green) and the other one
comprising the β-sheet and the ordered segments of helices α2, α3, and α4 (in cyan).
These two sections are rotated approximately 90◦, as indicated, to exhibit front views of
the buried electrostatic surfaces illustrating the low polarity characteristic of the buried
interfaces in protein cores

The corresponding computed values are assigned to the central residue of the probe.

When the scanning is completed, property sequence profiles are built. The profiles so

obtained are not very sensitive to probe length –i.e. 7-to-9-long probes give rise to al-

most identical profiles. However, short probes tend to make the profiles noisier while

longer probes tend to average the properties of distant regions that may include both

unstable and stable interfaces. We have thus set probe length to eight residues in all

the cases reported. We have additionally tested whether the resolution of the structures

could affect the outcomes of our method. Basically, the polarity profiles do not change

significantly in the 1.2–2.8 Å resolution range, while the packing density profiles retain

their shape –i.e. the position of maxima and minima– and exhibit slightly lower pack-

ing densities in general as the crystal resolution decreases, which is in agreement with

previous reports relating lower structural resolution with lower computed packing85.
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Altogether, our predictions based in the polarity and packing profiles are not sensitive

to structure resolution.

FIGURE 3.3: Identification and Structural Characterization of LIPs in Apoflavodoxin

A B 

C 

A) Stacked-aligned profiles for polarity ratio and packing density in Anabaena PCC
71191 Apoflavodoxin (PDB id: 1FTG, Resolution = 2.0 Å). The property values, de-
fined in Equations 3.1 and 3.2, are plotted against the position of the fourth residue
of an eight-residue probe fragment. The segments encompassing residues 87–108 and
118–152, which have been found to be unstructured in the equilibrium intermediate of
this protein84, are highlighted in grey. B) Surface representation of buried atoms at
interfaces 87–107 (yellow) and 118–152 (red) and the associated interacting fragments
(in cartoon representation) colored purple and blue, respectively. C) Surface represen-
tation of the buried atoms according to our characterization of polar light interfaces
(LIPs). The LIPs 87–99 (yellow), 120–133 (red) and 140–155 (cyan) are shown and the
associated interacting fragments are colored purple, blue and green and are depicted
in cartoon representation

TABLE 3.1: Estimations of Solvent Accessibilities for a Group of Proteins

Folded State Core Folded State Unfolded State

PDB #aas ASAp

(Å2)

ASAap

(Å2)

ASAp

(Å2)

ASAap

(Å2)

ASAp

(Å2)

ASAap

(Å2)

1LN4 98 2520.5 3301.0 1647.7 4356.5 4168.2 7657.5

1T1D 100 2763.3 3150.6 2282.2 4348.0 5045.5 7498.6

1BKR 109 2619.5 3445.5 2016.1 5112.1 4635.6 8557.6

1BGF 124 3434.0 4442.9 2240.4 4928.2 5674.4 9371.1

1JB3 131 3231.2 4402.5 2684.9 5431.1 5916.1 9833.6

Continued on next page. . .
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TABLE 3.1: (continued)

Folded State Core Folded State Unfolded State

2LIS 136 3197.6 5460.4 2697.5 5536.1 5895.1 10996.5

1QGV 142 3035.7 4085.1 3062.7 7033.9 6098.4 11119.0

1EY4 149 3077.6 4473.3 3540.8 6488.4 6618.4 10961.7

1EP0 185 4700.1 4940.4 3540.8 8802.2 8240.9 13742.6

1L3K 196 4360.3 4956.8 4671.5 8871.2 9031.8 13828.0

1BYI 224 4370.4 6409.4 4053.8 10068.8 8424.2 16478.2

1ES9 232 4151.5 5623.8 5568.9 11141.4 9720.4 16765.2

1II5 233 4039.3 6136.4 5304.8 10982.8 9344.1 17119.2

1WER 334 6882.8 9796.1 7014.2 15632.2 13897.0 25428.3

1FO9 348 6632.8 8261.1 8112.1 17889.1 14744.9 26150.2

1FCQ 350 6425.9 8197.8 9169.0 17305.2 15594.9 25503.0

1E5M 416 6490.2 9165.3 9303.4 19976.4 15793.6 29141.7

1GSO 431 8321.0 10532.7 8111.9 20189.2 16432.9 30721.9

2BCE 579 8673.8 12045.0 13471.8 29697.2 22145.6 41742.2

ASAp

ASAap
± (SD) 0.75± 0.08 0.46± 0.05 0.57± 0.04

From a set of 19 proteins from different folding families, different sizes and sharing
less than 20% of sequence similarity we obtained the polar and apolar solvent exposed
areas in the folded state (columns 3–4) and in the unfolded ensemble (columns 7–8).
We also estimated the polar and apolar buried surface in the core of the folded state
(columns 5–6). The averages ±SD of the ratio of polar and apolar areas for the three
states of each protein are indicated in the bottom line of the table

In Figure 3.3, panel A we show the polarity ratio and the packing density profiles

corresponding to a representative α/β protein: the Apoflavodoxin from Anabaena PCC

7119. The polarity profile represents the ratio of polar over apolar surface area buried

at the interface. A baseline with a polarity ratio of around 0.5 can be observed by visual

inspection of the profile. Such a baseline is present in all polarity profiles we have built

(see Appendix Figures D.1 and D.2, for profiles of other representative proteins) so it

appears to be characteristic of protein cores. To confirm that this is the case, we have

computed using the ProtSA∗ server86 the polar and apolar solvent exposed areas in the

folded state and in the unfolded ensemble87, of a representative database87,88 composed

by 19 proteins from different folding families and sharing less than 20% sequence iden-

tity. From these data (Table 3.1), we have calculated the polarity ratio characteristic of

protein cores at 0.46 ± 0.05. This value indicates that protein interfaces tend to bring
∗Available at: http://oldwebapps.bifi.es/protSA/

http://oldwebapps.bifi.es/protSA/
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into contact twice as much apolar atom surface than polar atom surface. Importantly,

the Apoflavodoxin polarity profile reveals protein segments that form interfaces of a

much higher polarity than that of the baseline, one extreme being the interface centered

at residue 150, where the contribution of polar atoms to the buried area is even larger

than that of apolar atoms –i.e. polarity ratio > 1. The packing density profile of the

same protein (Figure 3.3, panel A bottom plot) also reveals significant local variations,

with packing density minima centered at residues 13, 60, 92, 130 and 153.

It is possible to compare the predictive results obtained with our method with recent

experimental data from our laboratory for the unstable regions of the Apoflavodoxin

from Anabaena PCC 7119 that experience local unfolding at mild temperatures, giving

rise to an equilibrium intermediate54,59,84. The unstable regions correspond to residues

87–108 and 118–152, while the rest of the protein retains the native conformation in the

intermediate, see Figures 3.1 and 3.3, panel B for details. The two unstable regions

of the protein are shadowed in grey in Figure 3.3, panel A. These regions include the

three peaks with higher polarity ratios. Noticeably, each of those peaks is mirrored by

a minimum in packing density and thus represents a low-density –i.e. light– interface

of high polarity. In the polarity profile, three additional, albeit lower and/or narrower,

peaks of high polarity appear centered at residues 12, 77 and 102. It is clear that the

peaks at 77 and 102 are not at packing density minima and cannot be defined as ‘light

polar interfaces’. However, the one centered at residue 12 is at a packing minimum

and represents an additional light polar interface. Indeed, this region, while ordered in

the X-ray structure due to its association to a phosphate anion, appears disordered in

solution even in the native conformation84,89.

It is important to define light, polar interfaces in a quantitative manner so that the

unstable regions of proteins can be predicted in an unbiased way. Since the proper-

ties calculated –i.e. polarity ratio and packing density– do not provide a value for the

local unfolding free energy of the probe sequence, a threshold value must be defined

to identify the unstable regions. Analysis of the solvent exposed area of the protein

database87,88 used to compute the polarity baseline described above (Table 3.1), indi-

cates that the polarity ratio of protein surfaces is of 0.75± 0.08. This means that protein

interfaces exhibiting polarity ratios of 0.8 or greater (0.8 rather than 0.75 is selected for

simplicity) are more similar to exposed surface regions than to protein cores. Based on

this fact, 0.8 constitutes an appropriate threshold in the polarity profile and we propose

that ‘light polar interfaces’ can be identified as those organized around peaks exhibiting

polarity ratios greater than this value. Each of these interfaces is considered to extend

on either side of its polarity maximum to include the peak residues with polarity ratios

above the 0.5 baseline (0.5 rather than the calculated average value of 0.46 is selected
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for simplicity). In all cases of proteins studied in this report, these buried interfaces ap-

pear located in packing density minima and, in fact, an anti-correlation between polarity

ratios and packing densities is observed. While polarity ratios exhibited by protein inter-

faces or surfaces are expected to depend on general physicochemical properties of the

amino acid residues involved and on their relative abundances, there is evidence indicat-

ing that packing densities may be related to the specific fold and size of the protein90,91.

For the protein examples that will be discussed here, the mean values of their interfaces

packing densities are different. Thus, we define the regions of low packing density of

a given protein as those with values below the mean of its specific density distribution

minus two standard deviations.

For Apoflavodoxin, only three peaks above the polarity threshold of 0.8 and located

in low density regions are identified in this manner, the corresponding unstable seg-

ments being 87–99, 120–133, and 140–155. Since the experimentally determined unsta-

ble regions of Apoflavodoxin84 are 87–108 plus 118–152 (see Figure 3.1), the correlation

between light polar interfaces and locally unstable regions is excellent for this particular

protein. Figure 3.3, panel B shows that although the unstable regions of Apoflavodoxin

are separated in the primary structure, they cluster together in the 3D structure and

define a continuous unstable region. Comparison of Figures 3.3, panel B and C allows

noticing the structural correlation between the ‘light, polar interfaces’ of the protein and

the experimentally determined unstable regions.

3.2.2 Occurrence of LIPs in All Major Protein Classes

To refer to protein buried interfaces exhibiting a high polarity ratio and a low packing

density we have coined the term LIP: Light Interfaces of high Polarity. The conserva-

tion of LIPs within structurally related proteins can be assessed using multiple sequence

alignments to compare property profiles. Superimposition of the polarity ratio profiles

corresponding to Flavodoxins of known structure (Appendix Figure D.1, top chart) in-

dicates that they are very similar. The three key peaks characteristic of the Flavodoxin

from Anabaena PCC 7119 are present in the other Flavodoxins. Similarly, comparison

of the packing density profiles (Appendix Figure D.1, bottom chart) indicates that the

distribution of packing density heterogeneity in Flavodoxin interfaces is also conserved,

which means that light polar interfaces are conserved among Flavodoxins.

Polarity and density analysis of interfaces present in a variety of proteins of known

three-dimensional structure indicates that LIPs are present in all protein classes. Exam-

ples of conservation of polarity profiles in related proteins of classes α/β (folding TIM

α/β barrel), α/β (folding Lysozyme-like), all α (folding Cytochrome c) and all β (folding
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Immunoglobulin-like β-sandwich) can be visually assessed in Appendix Figure D.2. Con-

servation of the corresponding packing density profiles is similarly good in these folds

(see Appendix Figure D.3), which indicates that related proteins of a given fold share

specific, conserved patterns of LIPs. We notice, however, that more distant proteins with

the same fold can display different LIPs patterns, as it is the case for Indole-3-glycerol

phosphate synthase, see the corresponding Figure in the sections bellow, and that of

Triosephosphate isomerase (Appendix Figure D.2, panel A). Our results show that the

polarity and packing density profiles are different for these two enzymes of similar sizes

but belonging to two different superfamilies within the TIM α/β barrel fold, and catalyz-

ing rather disparate reactions such as decarboxylation and isomerization respectively.

3.2.3 LIPs and Intermediates at the Native State Basin and Beyond

Tight packing, high hydrophobic burial and good pairing of buried polar groups are

key ingredients of protein stability92,93. LIPs are bound to display high local instability

due to their poor packing and low hydrophobicity, which, at least in Apoflavodoxin, is

associated to an abundance of buried polar groups not forming hydrogen bonds. Thus,

LIPs are expected to experience transient local unfolding events from the native con-

formation more frequently than other regions, and therefore to contain fast exchanging

protons defining unstable foldons.

The correlation between LIPs and unstable foldons identified by their fast proton

exchange rates can be illustrated for Cytochrome c. The native basin of this protein has

been characterized in detail by equilibrium proton exchange95,96. Cytochrome c contains

five foldons, or regions that can experience local unfolding uncoupled from that of the

rest of the protein, that have been well defined at residue level. The more unstable one,

so-called infrared foldon, comprises residues 40–5794. The polarity and packing profiles

calculated with our methodology for Cytochrome c are shown in Figure 3.4. There

is a single peak with polarity ratio higher than the 0.8 threshold, which defines a LIP

spanning residues 40–45. Although not at the minimum center, this segment belongs to

the wall of a deep packing density minimum including residues 40–55. Thus, the more

unstable foldon in Cytochrome c, with an unfolding free energy of 4 kcal/mol, contains

the only LIP present in the protein.

Due to their low stability, LIPs are expected to become unfolded in solution conditions

that are nevertheless compatible with the rest of the protein retaining the native confor-

mation. LIPs should therefore correlate with the unfolded regions of equilibrium inter-

mediates. These partly unfolded conformations tend to accumulate at moderately high

temperatures or denaturant concentrations, or at extreme pH values, usually low pH.
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FIGURE 3.4: LIPs and the Lowest Stability Foldon in Cytochrome c

A B 

A) Polarity ratio and packing density profiles of Cytochrome c (PDB id: 1HRC, Res-
olution = 1.9 Å). The segment shadowed in grey corresponds to the lowest stability
region of the protein (infrared foldon: residues 40–57) according to equilibrium and
kinetic H-exchange NMR experiments94. The light blue bar indicates the only LIP in
Cytochrome c, which includes residues 40–45 and is located in the unstable foldon. B)
Ribbons representation showing the unstable foldon in grey. In the charts, the polarity
and packing cutoffs are indicated as grey dashed lines

The Apoflavodoxin intermediate discussed above is a fine example of the autonomous

unfolding of LIPs in a thermal intermediate. The free energy difference between this

intermediate and the native state is of just 1.5–2.0 kcal/mol84, and the intermediate

clearly belongs to the native basin. Not surprisingly, the LIPs in Apoflavodoxin appear

located in the functional regions involved in the binding of the FMN cofactor and of

partner proteins97.

A second common type of equilibrium intermediate is the molten globule99. Molten

globules are typically observed after partial denaturation of certain proteins at low pH,

although they have also been described in truncated proteins and in certain apoproteins

at neutral pH. Molten globules have attracted attention because they bear similarity

with kinetic folding intermediates and because they have been involved in physiolog-

ical processes, such as membrane translocation. Structural characterization of molten

globules is particularly difficult. One of the best-characterized molten globules is that of

α-Lactalbumine98,100, an α+β protein organized in two domains. Its molten globule re-

tains a native-like secondary structure at the α domain, but not at the β domain, encom-

passing residues 40–81. Inspection of the polarity and packing profiles of α-Lactalbumine

in Figure 3.5 clearly shows the presence of two LIPs centered at residues 43 and 66, and
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FIGURE 3.5: LIPs and the Unfolded Domain of the α-Lactalbumine Molten Globule

A B 

A) Polarity ratio and packing density profiles of α-Lactalbumine (PDB id: 1HML, Reso-
lution = 1.7 Å). The segment shadowed in grey corresponds to the β-domain (residues
40–81), the one that lacks secondary structure in the molten globule intermediate98.
The light blue bars indicate the two LIPs in α-Lactalbumine, encompassing residues
35–51 and 64–70, and essentially defining the β-domain. B) Ribbons representation
showing the unstable β-domain in grey. In the charts, the polarity and packing cutoffs
are indicated as grey dashed lines

including residues 35–51 and 64–70. These LIPs make the β domain to be the more

unstable one and contribute to define the residual structure of the molten globule.

A third common type of equilibrium intermediates is that found in chemical unfold-

ing. The role of LIPs in chemical intermediates can be exemplified by the equilibrium in-

termediate accumulating in the urea unfolding of Indole-3-Glycerol Phosphate Synthase

(IGPS)101. The equilibrium unfolding and the refolding kinetics of this protein have been

extensively investigated by hydrogen exchange mass spectroscopy. The equilibrium in-

termediate accumulates at 5 M urea and consists of two conformations termed Ia and

Ib. The more unstable specie (Ia) is folded in the central segment (residues 48–161)

and shows little or no protection in the 1–47 and 162–220 segments101,102. In addition,

the 59–68 loop appears disordered both in the native state and in the intermediate. The

limits reported for the central folded and the N- and C-terminal unfolded regions are ap-

proximate, as they have been deduced from analysis of peptide fragments. The polarity

and packing profiles of IGPS are shown in Figure 3.6. IGPS presents several peaks with

polarity ratios higher than the 0.8 threshold that are located in packing density minima.

Those centered at residues 15 and 34 define two contiguous LIPs spanning residues 7–18

and 23–40, which nicely correspond to the N-terminal unfolded region (1–47). The next
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FIGURE 3.6: LIPs and the Unfolded Regions of the Equilibrium (and Kinetic) Interme-
diate of Indole-3-Glycerol Phosphate Synthase

A B 

A) Polarity ratio and packing density profiles of Indole-3-Glycerol Phosphate Synthase
(PDB id: 2C3Z, Resolution = 2.8 Å). The segments shadowed in grey correspond to the
unfolded regions of the equilibrium intermediate of chemical unfolding (intermediate
Ia), which coincides with the on-pathway kinetic folding intermediate101. The light blue
bars indicate the five LIPs in Indole-3-Glycerol Phosphate Synthase. LIPs 7–18 and 23–
40 map onto the N-terminal unfolded region of the protein (1–47). The next LIP, 58–68,
defines the loop that is unfolded even in the native state (59–68). Finally, LIPs 148–170
and 178–205 are located at the C-terminal unfolded segment of the protein (162–220).
B) Ribbons representation showing the unfolded regions of the intermediate in grey. In
the charts, the polarity and packing cutoffs are indicated as grey dashed lines

LIP (towards the C-terminus) appears at residue 63 and extends on 58–68, in good cor-

respondence with the loop that is unfolded in both the native and intermediate states

(59–68). Finally, peaks at 156 and 164, define a single LIP at residues 148–170, while

peaks at 186 and 194 define an additional LIP spanning residues 178–205. These two

C-terminal LIPs (residues 148–170 and 178–205) are in reasonable agreement with the

C-terminal disordered segment of the protein defined from 162–220101,102. The structure

of the IGPS equilibrium intermediate seems to arise as a consequence of the unfolding

of the LIPs present in the native protein.

3.2.4 LIPs and the Protein Folding Reaction

The free energy difference between the IGPS equilibrium intermediate and the na-

tive conformation is of 8.5 kcal/mol103. This intermediate can hardly be considered to
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be within the native basin or be expected to display a functional role under native con-

ditions. Interestingly, kinetic analysis of IGPS indicates that the structure of this equi-

librium intermediate precisely corresponds with that of the on-pathway intermediate of

the IGPS folding reaction (intermediate Ia)101. On the other hand, the infrared foldon

of Cytochrome c is also the latest folding region of the protein. Although LIPs have been

defined as protein interfaces of the native conformation displaying low stability, and

therefore prone to experience local unfolding, it is possible that they also constitute late

folding regions of proteins. Both the IGPS and the Cytochrome c data point into this

direction.

FIGURE 3.7: LIPs in the Late Transition State Ensemble of Barnase Folding

A B 

A) Polarity ratio and packing density profiles of Barnase (PDB id: 1A2P, Resolution =
1.5 Å). The segments shadowed in grey correspond to the regions displaying Φ-values
equal to or lower than 0.5 in the late transition state of barnase folding (TS2)104. The
light blue bars indicate the three LIPs in Barnase: 20–30, 44–57 and 65–89. They closely
correspond to the segments exhibiting low Φ-values in the transition state (19–37, 39–
55 y 72–88). B) Ribbons representation showing in grey the transition state regions
with low Φ-values. In the charts, the polarity and packing cutoffs are indicated as grey
dashed lines

In addition to kinetic intermediates, a key species in protein folding reactions are

transition states of folding. These ephemeral conformations are of high energy and can

only be characterized by a combination of protein engineering and fast kinetics55, or by

computer simulations. Despite the large energy gap between transition state and native

conformations, the available experimental information indicates that the differences are

not so large at the structural level. We have thus investigated whether the not-yet folded

regions of transitions states could correspond to the LIPs of the native structure. One of

the best-characterized transition states of protein folding is that of Barnase. Recently, a
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combination of Φ-analysis55 and computer simulation was used to provide a structure of

the transition state at the residue level104. The nativeness of the structure of a transition

state around a given residue is described by its Φ-value. Residues in a fully native or

a fully unfolded environment in the transition state will show Φ-values of 1.0 and 0.0,

respectively. Barnase folds via a high energy intermediate and therefore two transition

states appear in the reaction. The second transition state, connecting the high energy

intermediate with the native state, is the one expected to be structurally closer to the

native state, and will be compared to the LIPs in the native structure. The polarity

and packing profiles of Barnase are shown in Figure 3.7. The segments of the protein

exhibiting Φ-values below 0.5 in the transition state (an arbitrary threshold selected to

represent the more unfolded regions) are 19–37, 39–55 and 72–88, which are shadowed

in grey in Figure 3.7. The barnase LIPs encompass segments 20–30, 44–57 and 65–89,

which quite closely correspond to the regions with low Φ-values104.

3.2.5 Assessing the Statistical Significance of Property Profiles

An important issue to take into account is trying to estimate the statistical signifi-

cance of the observations reported in this work regarding the special characteristics of

buried interfaces related to unstable protein regions. Although the polarity ratio profiles

included in this study (Figures 3.3, 3.4, 3.5, 3.6, 3.7) visually show a clear correlation

between the LIPs and the conformationally unstable regions at the sequence level, it

would be interesting to supply statistical evidence of the differences between the values

of polarity ratios obtained for those regions when compared to stable protein segments.

We show in Table 3.2 the results obtained for a Mann-Withney-Wilcoxon rank-sum test

for comparing the polarities of the buried interfaces of stable regions versus those of

unstable ones and versus LIPs. These results demonstrate that the polarity of buried

interfaces of unstable regions are statistically different from those calculated for sta-

ble ones in all the proteins analyzed. Table 3.2 also shows the expected fact that LIPs,

as quantitatively defined above, display a significantly higher polarity than non LIP re-

gions. As can be inferred from the low ℘−values for the comparison of the distributions

returned by the test, the alternative hypothesis, determining statistical significant differ-

ences between the two distributions, should be accepted in all cases.

We also tried to compare our results with those obtained using a well-established

software such as COREX71,105, in order to test the performance of the two method-

ologies when processing the same set of proteins. In Figure 3.8, the residue specific

stability estimations calculated for the proteins included in this work using COREX is

presented. A visual inspection indicates that for these kinds of intermediates, the pre-

dictions made by COREX for unstable regions do not correspond in some cases with



Chapter 3. Protein Dynamics Driven by Buried Light Polar Interfaces 137

TABLE 3.2: Statistical Significance of Interfacial Polarity and of COREX Stability Esti-
mates

PDB Protein
Buried Interface Polarity Ratios

Unstable Regions
(℘− value)

LIPs
(℘− value)

1FTG Flavodoxin 8.585× 10−5 6.051× 10−11

1HRC Cytochrome c 6.285× 10−5 2.397× 10−2

1HML α-Lactalbumin 3.173× 10−9 2.383× 10−13

2CZ3 IGPS 2.073× 10−3 2.200× 10−16

1A2P Barnase 6.761× 10−3 2.160× 10−8

PDB Protein
COREX Stability Estimates

Unstable Regions
(℘− value)

LIPs
(℘− value)

1FTG Flavodoxin 9.266× 10−1 4.279× 10−1

1HRC Cytochrome c 3.628× 10−2 8.073× 10−2

1HML α-Lactalbumin 1.000× 10+0 6.665× 10−1

2CZ3 IGPS 2.839× 10−2 5.235× 10−5

1A2P Barnase 5.581× 10−1 5.014× 10−1

We show the results of a one-sided Mann-Withney-Wilcoxon test performed on the inter-
facial polarity and the residue specific stability profiles obtained with our methodology
and COREX71,105, respectively. In the first case the alternative hypothesis H1 tests the
significance of obtaining higher polarities in unstable segments determined experimen-
tally (column: Unstable regions) and in the segments corresponding to our definition
of LIPs (column: LIPs). For the stability estimates obtained with COREX the alterna-
tive hypothesis H1 tests the significance of obtaining lower stability values in the same
protein segments described above. The confidence interval was set to ℘ < 0.05 in all
cases

the regions reported experimentally to be unstable. We repeated the statistical analysis

described above to test whether the stabilities calculated by COREX for experimentally

unstable regions, were significantly lower than those corresponding to the stable regions

of the proteins. The results from this test are included in Table 3.2 and prove that the

alternative hypothesis determining significant differences holds only for Cytochrome c

and Indole-3-Glycerol-P synthase. In these cases, the ℘ − values obtained prove that

the residue stability values of unstable regions are lower than those of stable regions.

However, for the three other proteins there are no statistically significant differences

among the distributions. In all cases, the ℘ − values obtained are higher than those

obtained using our methodology. Not surprisingly, in only one of the five proteins tested

(Indole-3-glycerol-P synthase) there is a statistical correlation between COREX predicted

unstable regions and LIPs.
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FIGURE 3.8: Residue Stability Estimations using COREX

For each protein studied in this report using our methodology we also calculate the local
stability using this alternative procedure. As described in the Methodology section, for
each protein we first generated the structure ensemble used in the calculations, then
determined the entropy-weighting factor before obtaining the corresponding stability
constants (log(Kf ) in the ordinate axis in each chart). The residue stability obtained
are plotted in this figure in the following order: A) Apoflavodoxin, B) Cytochrome c,
C) α-Lactalbumine, D) Indole-3-glycerol-P Synthase and E) Barnase. In each case the
unstable regions determined experimentally are colored in light grey

3.3 Discussion

3.3.1 Using Buried Interface Physicochemical and Geometric Properties to

Define Protein Conformationally Unstable Regions

On the hypothesis that the intrinsic dynamics of protein domains could be related

to the presence of buried interfaces of low stability, we have devised a tool that allows

to scan protein interfaces and to compute relevant physicochemical properties of the

interfaces. Two key properties have been selected as indicative of low stability: the

ratio of polar over apolar surface buried in the interface and the packing density at

the interface. For a 200-residue protein it takes less than 2 minutes of CPU time in an

average personal computer to calculate the polarity ratio and packing density profiles.

Therefore, calculation of protein interface properties in a proteome scale is feasible.

Our analysis indicates that protein buried interfaces display significant heterogeneity in

polarity ratio and packing density. The protein examples discussed in this work contain

interfaces, established by contiguous segments of 8 residues, whose polarity ratios vary
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from 0.3 to 1.2. In all proteins analyzed, a polarity baseline can be observed around

0.5, which appears to be the typical average polarity ratio of protein cores (Table 3.1).

Above this baseline, peaks of higher polarity are observed. Since the average polarity

ratio of protein solvent exposed surfaces is of approximately 0.8, the peaks with polarity

ratios of 0.8 or greater identify the buried interfaces that are more polar than surface

exposed regions (Table 3.1).

On the other hand, the packing densities vary from 0.65 to 0.9, with local minima

along the profiles, but no obvious baseline value shared by different proteins. Never-

theless, it is clear that most interfaces of high polarity ratio appear at packing density

minima below the cutoff established. This can be quantitatively assessed by calculating

for each particular protein its average packing density and then determining whether

the peaks of high polarity display packing densities below that average minus two stan-

dard deviations. Such is the case of 13 out of 14 polar interfaces discussed in this work,

the only exception being the red foldon of Cytochrome c, which, as explained in the

Results section, appears at the wall of a deep minimum.

Proteins thus contain interfaces of high polarity and low packing density. We have

termed them LIPs (Light, Interfaces of high Polarity), they are expected to exhibit low lo-

cal stability and they can be easily identified. To test the hypothesis that LIPs are related

to the structure of protein folding intermediates, we have defined LIPs in a quantitative

manner as buried interfaces including at least one window with polarity ratio greater

than 0.8 and extending to those flanking residues with polarity ratios greater than 0.5.

In addition, the potential LIP should contain a clear minimum, defined as above, in the

packing density profile.

3.3.2 LIPs can be Successfully Used to Predict Local Instability in Different

Types of Folding Intermediates

The correspondence between LIPs, so defined, and the unfolded regions in protein

equilibrium intermediates of different kinds is excellent. Figure 3.3 illustrates the cor-

respondence of the LIPs in Apoflavodoxin with the unfolded regions of the equilibrium

intermediate that accumulates in the thermal unfolding. Figure 3.6 shows the fine cor-

respondence between the LIPs in IGPS and the unstructured segment of the equilibrium

intermediate of its chemical unfolding. In Figure 3.5 we show the location of the α-

Lactalbumine LIPs in the β domain, the one deprived from secondary structure in the

molten globule. LIPs also appear to correlate with unstable foldons exhibiting fast pro-

ton exchange from the native state and being late folding regions, as is the case of the

infrared foldon of Cytochrome c, see Figure 3.4. On the other hand, the LIPs in IGPS
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also correspond to the not-yet folded regions of its on-pathway folding intermediate, as

can be seen in Figure 3.6. It is thus possible that, due to their instability, LIPs can only

form on the scaffold provided by the rest of the protein. If this is the case, transition

states of protein folding should also display conformations where the LIPs would still be

essentially unfolded. The late transition state of Barnase folding (Figure 3.7) illustrates

this fact.

Altogether, our analysis reveals that protein domain cores contain interfaces of high

polarity and low packing density that appear to be involved in protein dynamics, as they

correlate with late folding events and with local instability in the native state, that can

lead to alternative partly unfolded conformations. Some of these conformations will

be energetically distant form the native state, while others will be close in energy. The

latter are expected to populate under native conditions and to get involved in function

more easily.

As can be seen in Table 3.2, there is a strong statistical support indicating that the

interfaces of unstable regions have a higher polarity than those of stable ones, which

confirms that the physicochemical characteristics of buried interfaces can be suitably

used to identify conformationally unstable regions with a rather low error rate. The

analysis of the polarity profiles in comparison with packing profiles indicates that the

latest are less informative, as the fluctuations observed for the packing values are lower

in comparison to those observed for interface polarity. This is why we used polarity as

our primary source of discrimination. However, as can be seen from our results (Figures

3.3, 3.4, 3.5, 3.6, 3.7), the LIPs correlate in all cases with packing density minima, which

is an interesting outcome in agreement with previous reports which had pointed to the

relation of packing efficiency with local conformational changes and disorder16,106. The

reason why the statistical correlation between unstable regions and poorly packed ones

is lower is due to the fact that although unstable regions are indeed poorly packed, there

are other poorly packed regions that are not particularly unstable, –e.g. those exhibiting

the characteristic low polarity of protein cores cavities.

Importantly, the computational methodology developed here to identify these pro-

teins’ dynamic loci is simple and fast. A brief comparison with the COREX algorithm70,71

seems appropriate because both our structural method and COREX try to capture local

differences in protein stability. COREX uses a more complex approach based in con-

structing an ensemble representation of the protein, which contains a large number of

microstates. Since the method has to deal with a huge exponential search space, heuris-

tic strategies are used to simplify the conformational search. Then, the stability of each

residue is estimated by computing its free energy of folding from a parameterization

of thermodynamic quantities as functions of the surface areas involved107. The method
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has proven to find correlation between calculated stabilities and hydrogen exchange

rates72. In contrast, our method, does not attempt to provide stability evaluation at a

residue level. We only try to identify the segments of the protein whose interaction with

the rest of the protein is far from optimal. To achieve this goal we do not calculate free

energy values, a very difficult task even if using careful parameterizations because, as it

is known, free energy values are typically small and arise from compensation of much

larger numbers involving enthalpic and entropic contributions. Instead, we compute

simple physicochemical and geometric properties to produce sequence profiles that help

to highlight the regions of proteins displaying low local stability. We do not attempt ei-

ther to give numbers for those stabilities. In this way, our approach is greatly simplified

since our ensemble is linear with the number of residues in a given protein. Analysis of

a 200-residue protein that takes less than 2 minutes with our method may take one day

using the COREX server. One clear limitation of our method is that it does not provide

stability values at residue level, however its performance identifying unstable regions

related to experimentally characterized equilibrium and kinetic folding intermediates

seems good (Figures 3.3, 3.4, 3.5, 3.6, 3.7). To evaluate the performance of COREX

towards the same prediction targets we have used the COREX/BEST server†. The stabil-

ity plots calculated for Apoflavodoxin, Cytochrome c, α-Lactalbumine, Indole-3-Glycerol

Phosphate Synthase and Barnase are shown in Figure 3.8, where the experimentally de-

termined unstable regions are shadowed in grey. Inspection of the figure indicates that

for these particular types of intermediates COREX tends to provide a significant number

of false positives (regions predicted to be unstable by COREX and not found to be unsta-

ble experimentally) together with some false negatives (experimentally unstable regions

not predicted as unstable by COREX). The results included in Table 3.2, also prove that

the stabilities calculated by COREX for unstable regions were not significantly lower

than those corresponding to stable regions in three out of five of the proteins analyzed.

In addition, this statistical test shows that, in as much as it can be approximated by the

℘ − values returned by the assay, the performance of COREX in distinguishing stable

from unstable regions is lower than that of our method.

This approach can also be of help as a complement in the process of 3D-structure

solution, when used in conjunction with mutational studies and comparative homology

modeling. In the case of the solution of the structure of the oxygen-insensitive nitrore-

ductase RdxA from Helicobacter pylori108, we were able to provide a plausible explana-

tion to the fact that a given region of the protein is missing in the crystal, please see

Figure 3.9. The absence of electron density for residues 97–128 (chain A) and 90–133

(chain B) is very likely a result of proteolysis during purification. Mass Spectrometry

data corresponding to dissolved RdxA crystals show a main peak at 12174 kDa, with

†Available at: http://best.bio.jhu.edu/BEST/index.php

http://best.bio.jhu.edu/BEST/index.php
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FIGURE 3.9: Detection of Conformationally Unstable Segments in E. coli NTR by Inter-
facial Polarity Analysis

The profile is built by assigning to each residue the ratio of the polar/apolar buried
surface area associated with the interaction of an eight-residue flanking peptide with
the rest of the protein. The sequence segment encompassing the peaks of highest ratios
over the 0.5 polarity ratio baseline is indicated by the blue bar. The packing of this seg-
ment with the rest of the protein is predicted to be unstable. The sequence shadowed
in grey represents the E. coli NTR segment structurally equivalent to the missing helices
in the structure of RdxA

two additional components at 12370 and 12530 kDa. Possible H+2 peaks appear at 6086

and 6182 kDa. The main peak thus corresponds to approximately half the mass of the

RdxA protein (24067 kDa according to the sequence). This indicates that proteolysis of

the protein sample has taken place. However, a sample of the same protein preparation

that was incubated with NADP+ (and did not crystallize under the same conditions)

was shown by SDS/PAGE to have a mass of 26313 ± 10 Da, which is close to the theo-

retical mass of the protein. The missing segments are occupied by helices F and G in the

homologous protein used as search model: the NTR of E. coli109. In this NTR, helix F

is part of a solvent-exposed channel at the dimer interface where FMN lies and helix G

is assumed to convey substrate specificity. Helices F and G exhibit high B-values in the

structure, and it has been proposed that the mobility of helix F might be important for

optimal binding and catalysis110. The polarity profile for the NTR of E. coli is displayed in

Figure 3.9. The more unstable region of this homologous nitroreductase, characterized
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by its high content of buried polar area, encompasses residues A89–M139, correspond-

ing to residues P91 and I136 of H. pylori RdxA, which mimics the missing segment of

the structure. This suggests that the missing region in the structure of RdxA will also

be locally unstable and more exposed to proteolysis. The proposal that helix F of E.

coli NTR may exhibit high functional mobility appears to be extended to the equivalent

helix of RdxA and also to helix G. Our observation that NADP+ protects RdxA against

proteolytic removal of the missing segment agrees with the role assigned to helix F of E.

coli NTR with respect to binding this cofactor110.

3.3.3 The Physicochemical and Geometric Characteristics of LIPs are Con-

served in Protein Families

Although an analysis of the evolutionary significance of protein LIPs is clearly beyond

the scope of this work, we would like to note some features of those buried interfaces

that might turn out to be relevant. As we prove in this work, the methodology pre-

sented here is useful to identify unstable regions in proteins by means of our definition

of LIPs, which in some cases match fairly well the location of unstable regions in pro-

teins. Because those interfaces are simply characterized by displaying outlying values

for averaged properties, their evolutionary conservation may not require a high conser-

vation of the sequences involved. To illustrate this fact, structural multiple alignments of

Flavodoxin, Cytochrome c and α-lactalbumine protein families are shown in Appendix

Figure E.1. The average protein identity percentage of these alignments ranges from

34% for Flavodoxins to 50% for α-lactalbumin. Comparison of the alignments with the

corresponding polarity ratio and packing density profiles obtained for members of those

families (Appendix Figures D.1, D.2 and D.3) shows that the profiles are conserved de-

spite the sequence variation observed. On the other hand, the unstable regions of pro-

teins studied in this work that superposed with LIPs often include protein segments with

one side located at the interface and the other side exposed to solvent. Therefore, if the

conservation at solvent exposed positions would tend to be lower than at buried ones,

the solvent exposed backs of those interfaces could be suited to evolve new functions –

i.e. recognition of new partners– because they could be mutationally tailored without se-

riously compromising the intrinsic dynamic nature of the interface. Actually, for the ex-

perimentally determined unstable regions and LIPs in Appendix Figure E.1, the column

averaged conservation scores estimated using the values obtained with CLUSTAL111 for

solvent exposed residues, are roughly half the averages corresponding to buried residues

(see legend of Appendix Figure E.1). This means that in these regions buried residues

presented to the interface and responsible for shaping its geometry and determining its

physicochemical characteristics are more conserved in average than residues in contact
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to solvent. These results demonstrate that the trends observed for the conservation of

buried and exposed residues obtained for LIPs, which are a methodological definition to

identify unstable regions, are shared by the stretches found to be unstructured exper-

imentally. Finally, our preliminary analysis indicates that, as can be inferred from the

comparison of the profiles in Figure 3.6 and Appendix Figure D.2 panel A, within a given

fold, less closely related proteins corresponding to different functional protein families

could contain very different LIPs. It is thus possible that the different distribution of LIPs

among distant homologues could help predict variations in dynamics, local stability and

folding mechanism.

3.4 Conclusions

Here we have developed a straightforward and computationally inexpensive method-

ological formalism based on the physicochemical and geometric properties of protein

buried interfaces that apparently captures the underlying structural bases of protein lo-

cal instability. With this method, we have analyzed the 3D-structures of an ample group

of proteins from different functional and structural categories, and we have been able

to find LIPs in all cases, an indicative that they may be characteristic of protein folds.

We have also compared our predictions of locally unstable regions with data from ours

and other groups obtained using diverse experimental techniques, and in all cases our

method was able to correctly map the regions described as conformational unstable

experimentally. This comparison encompassed different kinds of equilibrium and ki-

netic intermediates, as well as molten globules and the transition state ensemble, which

correspond to almost all the possible folding intermediates described so far. LIPs char-

acteristics also appear to be conserved in protein families despite the sequence variation

observed for the amino acids presented at the interfaces, which might be related with

a mechanism for proteins evolving new functionalities by mutational tailoring, while

conserving the essential characteristics of the buried interfaces, that determine the in-

trinsic dynamics of protein loci. The extension of this kind of studies for a wide group

of proteins, or even at a genomic scale, could be of great help to study the variations

in dynamics, local stability and folding mechanisms of close and distant homologous

proteins, and also to obtain a better insight into the evolutionary constraints of proteins

and the way protein intrinsic dynamics are encoded.



Chapter 3. Protein Dynamics Driven by Buried Light Polar Interfaces 145

3.5 Methodology

3.5.1 Estimation of Buried Interfaces’ Surface Polarity

We have developed a set of ad hoc Perl and Tcl scripts to estimate, from the 3D

structure of a given protein, the ratio of polar/apolar surface area of its buried interfaces,

for a piece of the code of the main script please see Appendix Script C.2. The input

coordinates are used to extract a fragment of variable length –eight residues was the

window size used– then the cropped protein and the extracted fragment are processed

using NACCESS112 –with a Probe Size = 1.40– to estimate the surface area of the atoms

buried by interaction of the two parts. The polar or apolar character of each atom type

is set by the NACCESS library, and it is attributed to its surface. Using this information

we defined the polarity ratio (Pr) as follows:

Printerface =

m∑
i=1

SASA(polar)i

/ n∑
j=1

SASA(hydrophobic)j
(3.1)

in which the total area of polar atoms as defined by NACCESS is divided by the total

area of apolar atoms at the interface. This procedure is repeated by means of a sliding-

window approach that permits the generation of a Printerface profile of all interfaces

along the structure of a protein. In these profiles, the Pr of each interface appears

assigned to the fourth residue of the 8-residue probe. 7-residue or 9-residue probes give

rise to close to identical profiles.

3.5.2 Buried Interface Packing Density

We have computed the packing density of buried interfaces (ρinterface) using the

following expression:

ρinterface =
N∑
i=0

V ◦i

/ N∑
i=0

Vi (3.2)

in which the numerator corresponds to Voronoi standard atomic volumes and the de-

nominator to the real Voronoi atomic volumes of the atoms found at the interface. The

standard volumes were derived in a recent report from an extensive study of the in-

tramolecular contacts made by atomic groups in small molecule crystals83. The actual

Voronoi volumes of the atoms at the interface were calculated using the program CALC-

VOL113. Packing density values close to 1 correspond to tightly packed interfaces. The

iteration of this calculation along the structure of a protein generates the packing density

profiles presented in this study. In these profiles, the packing density of each interface
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appears assigned to the fourth residue of the 8-residue probe. As in the case of the polar-

ity profiles, there are no significant differences in the packing density profiles obtained

for 7- and 9-residue windows.

3.5.3 Structural Multiple Alignments

The structural alignment of members of different protein families were constructed

with the Multiseq package of VMD114, based on the STAMP algorithm115. We aligned all

the structures available for the Flavodoxin, Cytochrome c and α-Lactalbumine and the

resulting structural alignments were processed with JOY116 and CLUSTAL111 to include

information concerning residue surface exposure (see Appendix Figure E.1). For the

other protein families studied in this work the small number of members with solved

structure precluded building an informative enough structural alignment.

3.5.4 COREX Local Stability Calculations

The structures of the five proteins analyzed in this work (Apoflavodoxin, Cytochrome

c, α-Lactalbumine, Indole-3-Glycerol Phosphate Synthase and Barnase) corresponding

to different representative folds were processed with the software COREX71,105‡ to esti-

mate the local stability of protein regions. For each protein, a structure ensemble was

first generated, which is used by the program in subsequent calculations. Based in the

ensemble of structures generated, entropy-weighting factors were determined and sta-

bility constants calculated. The results obtained are represented in Figure 3.8.

3.5.5 Assessing the Statistical Significance of the Profiles

In order to evaluate the significance of our results we performed a non-parametric

test to compare the polarity ratio of buried interfaces adjacent to structurally unsta-

ble regions, and of our predicted LIPs with conformationally stable protein segments or

with non LIP regions, respectively. For each polarity profile, we performed a one-sided

Mann-Withney-Wilcoxon rank-sum test with a confidence interval of ℘−value < 0.05 to

test the significance of obtaining higher buried interface polarities in unstable segments

confirmed experimentally or in LIPs, when compared to the polarities of stable regions,

see upper half of Table 3.2. In order to make a quantitative comparison of our method-

ology with COREX71,105, we performed the same statistical test for the residue specific

stability profiles obtained with this program in the same set of proteins analyzed in this

‡Available at: http://best.bio.jhu.edu/BEST/index.php

http://best.bio.jhu.edu/BEST/index.php
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study, depicted in Figure 3.8. In this case we aim to test the significance of obtaining

lower stabilities for experimentally determined unstable regions or for LIPs in compari-

son to stable protein regions, respectively, see bottom half of Table 3.2. All the statistical

calculations were implemented using the R statistical package117.
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LÁSZLÓ BUDAY. Structural disorder

throws new light on moonlighting.

Trends Biochem Sci, 30: 484–9, 2005.

(see p. 122)

[11] CONSTANCE J JEFFERY. Molecular mech-

anisms for multitasking: recent crystal

structures of moonlighting proteins. Cur-
rent opinion in structural biology, 14:

663–8, 2004. (see p. 122)

[12] CONSTANCE J JEFFERY. Multifunctional

proteins: examples of gene sharing. Ann
Med, 35: 28–35, 2003. (see p. 122)

[13] C J JEFFERY. Moonlighting proteins.

Trends Biochem Sci, 24: 8–11, 1999. (see

p. 122)

[14] SHELLEY D COPLEY. Moonlighting is

mainstream: paradigm adjustment re-

quired. Bioessays, 34: 578–88, 2012. (see

p. 122)

[15] DAPHNE H E W HUBERTS and IDA J VAN

DER KLEI. Moonlighting proteins: an in-

triguing mode of multitasking. Biochim
Biophys Acta, 1803: 520–5, 2010. (see

p. 122)

[16] NOBUHIKO TOKURIKI and DAN S TAWFIK.

Protein dynamism and evolvability. Sci-
ence, 324: 203–7, 2009. (see pp. 122,

140)

[17] NOBUHIKO TOKURIKI and DAN S TAWFIK.

Stability effects of mutations and protein

evolvability. Curr Opin Struct Biol, 19:

596–604, 2009. (see p. 122)

[18] SHIMON BERSHTEIN, KORINA GOLDIN,

and DAN S TAWFIK. Intense neutral drifts

yield robust and evolvable consensus

proteins. Journal of Molecular Biology,

379: 1029–44, 2008. (see p. 122)

[19] NOBUHIKO TOKURIKI et al. How protein

stability and new functions trade off.

PLoS Comput Biol, 4: e1000002, 2008.

(see p. 122)

[20] MISHA SOSKINE and DAN S TAWFIK. Mu-

tational effects and the evolution of new

protein functions. Nat Rev Genet, 11:

572–82, 2010. (see p. 122)

[21] VLADIMIR N UVERSKY, CHRISTOPHER J

OLDFIELD, and A KEITH DUNKER. Intrin-

sically disordered proteins in human dis-

eases: introducing the D2 concept. An-
nual review of biophysics, 37: 215–46,

2008. (see p. 122)
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[108] MARTA MARTÍNEZ-JÚLVEZ et al. Structure

of RdxA–an oxygen-insensitive nitrore-

ductase essential for metronidazole ac-

tivation in Helicobacter pylori. FEBS J,

279: 4306–17, 2012. (see p. 141)

[109] G N PARKINSON, J V SKELLY, and S NEI-

DLE. Crystal structure of FMN-dependent

nitroreductase from Escherichia coli B: a

prodrug-activating enzyme. J Med Chem,

43: 3624–31, 2000. (see p. 142)

[110] A L LOVERING et al. The structure of Es-

cherichia coli nitroreductase complexed

with nicotinic acid: three crystal forms at

1.7 A, 1.8 A and 2.4 A resolution. Journal
of Molecular Biology, 309: 203–13, 2001.

(see pp. 142, 143)

[111] M A LARKIN et al. Clustal W and Clustal

X version 2.0. Bioinformatics, 23: 2947–

8, 2007. (see pp. 143, 146)

[112] S HUBBARD and J THORNTON. NACCESS

Computer Program Department of Bio-

chemistry and Molecular Biology. Univer-

sity College London, London, UK. NAC-
CESS Computer Program Department of
Biochemistry and Molecular Biology. Uni-
versity College London, London, UK, 1993.

(see p. 145)

[113] N R VOSS and M GERSTEIN. Calculation

of standard atomic volumes for RNA and

comparison with proteins: RNA is packed

more tightly. Journal of Molecular Biol-
ogy, 346: 477–92, 2005. (see p. 145)

[114] W HUMPHREY, A DALKE, and K SCHUL-

TEN. VMD: visual molecular dynamics. J
Mol Graph, 14: 33–8, 27–8, 1996. (see

p. 146)

[115] R B RUSSELL and G J BARTON. Multi-

ple protein sequence alignment from ter-

tiary structure comparison: assignment

of global and residue confidence levels.

Proteins, 14: 309–23, 1992. (see p. 146)

[116] K MIZUGUCHI et al. JOY: protein

sequence-structure representation and

analysis. Bioinformatics, 14: 617–23,

1998. (see p. 146)

[117] R CORE TEAM. R: A Language and Envi-
ronment for Statistical Computing. ISBN

3-900051-07-0 R Foundation for Statis-

tical Computing, Vienna, Austria, 2012.

(see p. 147)



CHAPTER 4

Linking SNPs with Abnormal

Phenotypes in Familial

Hypercholesterolemia using

Molecular Dynamics

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.2.1 The Complete SNP Mutational Space of the LA5 domain . . . . . . 157

4.2.2 Conformational Instability of the LA5 Domain Mutant Variants . . . 160

4.2.3 Local Instability of Mutants in Residues of the LA5 Domain Struc-

tural loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.2.4 Clustering of LA5 Mutants According to the Extent of Conforma-

tional Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.3.1 Wide-ranging Direct Structural Assessment of the Effect of SNPs in

the LDL-r LA5 Domain . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.3.2 Local and Global Conformational Instability in the LDL-r Binding

Domain: Relating SNPs with FH . . . . . . . . . . . . . . . . . . . . 182

4.3.3 From Molecular Dynamics to a Strategy for Computational Diagno-

sis in Conformational Diseases . . . . . . . . . . . . . . . . . . . . 183

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.5.1 LA5 Domain Coding Sequence, Structure and Complete SNP Muta-

tional Map Generation . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.5.2 Setting up the Systems for Molecular Dynamics Simulation Production189

4.5.3 Principal Component Analysis of MD Trajectory Data . . . . . . . . 189

4.5.4 Estimating Local Instability by Comparing Dihedral Angles using

the Jensen-Shannon Distance . . . . . . . . . . . . . . . . . . . . . 193

151



Chapter 4. Linking SNPs to Abnormal Phenotypes in FH 152

4.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

THE RESULTS PRESENTED IN THIS CHAPTER ARE A COMPENDIUM OF THE FOLLOWING RESEARCH ARTICLES:

• Angarica, V.E., Orozco, M. and Sancho, J. (2013). Exploring the complete mutational space of the LDLr

LA5 domain using molecular dynamics: linking SNPs with abnormal phenotypes in Familial Hypercholes-

terolemia. to be submitted

4.1 Introduction

Familial Hypercholesterolemia (FH) is a genetic health disorder associated to abnor-

mally high levels of cholesterol-carrying LDL in the blood stream, which can cause a

varied set of pathologic manifestations related to the accumulation under the skin –i.e.

xanthelasmas, in tendinous ends –i.e. xanthomas, or in the cornea1–4, of this excess

of non-metabolized cholesterol. Probably, the most serious pathologic manifestation of

this disease is the accumulation of cholesterol in the blood vessels, with the formation

of cholesterol artery plaques –i.e. in a process termed atherosclerosis– that constitutes a

significant risk factor for cardiovascular and cerebrovascular diseases5–9. Atherosclero-

sis is also often associated to cognitive impairments and central nervous system disor-

ders10–12 and in many cases to early death caused by strokes or myocardial infarcts5,6,9,

which combined are by far the most common reason of death by unnatural causes in

the last decade, as reported by the World Health Organization∗. This disease follows

an autosomal dominant inheritance pattern, and is one of the most common genetically

inherited diseases in the human population, with well-accepted estimates13–15 report-

ing a prevalence in the most severe stage of the disease manifested in homozygosis of

1 : 106 and as high as 1 : 500 for heterozygous individuals displaying the more mod-

erated forms of FH, though in some specific populations16–22 the prevalence might be

even higher due to the founder effect15,23. FH is a complex disease with incomplete pen-

etrance24 and caused by the defects in a diverse group of proteins linked to cholesterol

internalization and metabolism in cells –e.g. Apo B-10025–27, PCSK928–31, and the LDL

receptor (LDL-r)32,33. The gravity of the phenotype is related to the specific defective

protein –e.g. the penetrance of mutations in Apo B-10034,35 is considerably lower than

that of alleles of PCSK931 and LDL-r36 (with penetrance higher than 90% in both cases)–

and the phenotypes observed in persons with a defective Apo B-100 gene are less severe

than those caused by impairments in the PCSK9 or LDL-r genes. The great majority of

FH cases and the most severe are associated to mutations in the LDL-r34, which is in

accordance the most studied protein among the three listed above to underscore the
∗WHO Fact Sheet for the Top Ten leading causes of death worldwide between 2001 and 2011:

http://who.int/mediacentre/factsheets/fs310/en/

http://who.int/mediacentre/factsheets/fs310/en/
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molecular causes of this illness. However, much still needs to be done to understand

the relationship between genetic variations and the phenotype in FH, as the number of

mutations directly related to the disease is scarce when compared to the total possible

mutations expected for these proteins. Besides, little is known on the specific molecular

mechanisms linking genetic variations and phenotype, in the sense of how mutations

affect the structure and/or function of the proteins related to FH. On top of that, it has

been reported that there exists a ‘diagnostic gap’ because many clinically diagnosed FH

patients fail to show any mutation in the above mentioned genes in FH cohorts screened

for mutations34, which might imply that other proteins from the cholesterol metabolism

pathway different from those studied so far, are also implicated in the development of

the disease. Indeed, in spite of the high prevalence of this disease worldwide and the

serious health problems related to these genetic defects, recent reports point to the fact

that in most cases FH is under-diagnosed and under-treated37,38.

The LDL receptor gene family is an ancient family of membrane receptors whose

members play important roles in multicellular organisms and that appeared very early

with the onset of the first metazoans. There are evidences of the existence of members of

the LDL-r family in primitive nematodes such as C. elegans39,40 where they are essential

proteins, in D. melanogaster where there are various members of this family coded in its

genome41,42 and they are also very distributed in higher eukaryotes. All the integrants

of this family –e.g. which are organized in the following subfamilies: LDL-r, VLDL-r,

ApoER2, LRP1, LRP2 and LRP643– have different sequence and structural composition,

and also diverse domain stoichiometry, but are assembled from the same set of struc-

tural constituents, including a) a cytoplasmic region that embodies NPxY and PPPSP

motifs, b) a single transmembrane segment anchoring the cytoplasmic and extracellular

sections to the cell membrane, c) an extracellular region formed by an epidermal growth

factor (EGF)-like domain composed by multiple EGF repeats and a β-propeller domain,

and d) the ligand binding region, consisting on a variable number of small cysteine-

rich domains (CRD)43–46 –i.e. known as LDL-r type A domains (LA domains). Some

members of the LDL-r, VLDL-r and ApoER2 subfamilies also contain additional O-linked

sugar domains positioned at the beginning of the extracellular section, right close to the

outer face cytoplasmic membrane. There is plenty of information regarding the func-

tion of the cytoplasmic domain that is subject of modification by regulatory proteins at

conserved sites for protein kinases and adaptor proteins. This domain is also responsi-

ble for establishing direct or adaptor-mediated interactions with structural proteins for

triggering the endocytosis of the receptor-ligand complex upon binding47–53. However,

the specific functions of the domains in the extracellular section of the receptor and the

structural details of the interactions with the multiple ligands that can bind the mem-

bers of the LDL-r family, are quite less known44,46,54. Lipoprotein binding is the common
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function of most members of this family but in addition they are also implicated in a

wide spectrum of important biological processes such as migration, calcium influx, tran-

scytosis, pericellular proteolysis, signal transduction, antigen presentation and synaptic

plasticity among others, through binding to a diverse set of partners such as proteases,

protease inhibitors, signaling molecules, heat-shock proteins, vitamin carriers, toxins

and antibiotics44–46,54,55.

Specifically, the LDL receptor, the protein that gives the name to the family, is the

founding member and structurally the simplest of all the integrants of the family. For

obvious reasons, the ligand binding domain has attracted great interest for the study of

the interaction with LDL and other ligands, and the mechanism of ligand release after

endocytosis. These studies have contributed to the accumulation of structural data of

this domain, and there are multiple reports of structures of different domains within

the ligand binding region, in isolation, in tandem or of the complete extracellular re-

gion56–61 and the low resolution structure of the LDL–LDL-r complex62. It has been

previously described that domains LA1–763, and most importantly domains LA4–555,64,

are the key to establishing a correct interaction with the complexes formed between

ApoE and lipids in VLDL particles, and are also necessary for efficient LDL binding,

through interactions with apolipoprotein B65. These LA domains are small domains –i.e.

less than 40 amino acids– the tridimensional structure of which are stabilized by three

disulfide bridges and a coordination of a calcium ion. Small disulfide-rich domains are

very common in the protein universe and comprise a varied set of proteins related to

diverse functions such as growth factors, toxins, enzyme inhibitors, and structural or

ligand-binding domains within larger polypeptides66,67. Among small disulfide-rich do-

mains, the LA repeats characteristic of the LDL-r and all members of this family, are

one of the most common autonomously structured extracellular modules found in non-

redundant protein sequence databases68. In these domains lacking extensive hydropho-

bic cores and with little secondary structure, the pattern of disulfide bridges formed and

the binding of the coordinating atom are essential for folding and the stabilization of

the structure55,61,66,68–71. The LA domains in the LDL-r binding region are connected

through linkers that provide great flexibility to the region59 which might be related to

adopting the correct tridimensional arrangement to bind voluminous ligands such as

LDL.

The human LDL-r is a transmembrane protein of 839 amino acids (approximately 160

kDa72) coded in the locus 19p13.2† in chromosome 19, composed of 18 exons that span

a region of ≈ 44.5 kBases that can be transcribed into approximately 14 splice variants,

of which only 9 are translated to protein species of different lengths. In the gene, exon

†Ensemble Detailed Description of the LDL-r gene: Genomic Coordinates = 19:11,200,036 -

11,244,505

http://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000130164;r=19:11200038-11244492
http://www.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000130164;r=19:11200038-11244492
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1 codes for the signal peptide, exons 2–6 code for the ligand binding site LA domains

1–7, exons 7–14 code for the EGF precursor-like domain, exon 15 codes for the O-linked

sugar domain, exons 16–17 code for the transmembrane segments and exon 18 codes for

the cytoplasmic region. The LDL-r gene is highly polymorphic, and many different types

of mutations have been found, comprising large rearrangements of coding and/or intron

regions –e.g. insertions, deletions, duplications, inversions; substitutions leading to stop

codons causing the transcription of incomplete templates (nonsense); substitutions –e.g.

synonymous or non-synonymous– which in the later case generate single amino acid

replacements (missense) and mutations in the regulatory regions or splicing sites. Most

of these different types of mutations associated with FH has been annotated in the most

extensive and up-to-date databases including genetic variations in this protein33,73. The

exact number of mutations varies from one repository to other, but the total number

of mutations known nowadays for the LDL-r is between 1741–1835 for current releases

of the LDL receptor database33 and the Professional version of the Human Gene Mu-

tation Database (HGMD)73 respectively. These figures constitute a two-fold increase

of the approximately 800 mutations compiled in 200714. Substitutions are by large the

most frequent type of mutation (≈ 73% of all the mutations), among which missense

mutations –i.e. including SNPs– are significantly more frequent than the rest (≈ 73%

of all the substitutions)33. The distribution of mutations is not uniform throughout the

coding regions in the LDL-r gene, with a fairly high accumulation of mutations in the

exons coding for the ligand binding domain LA domains 1–7 (≈ 41% of all the mutations

in the coding regions), with the highest value observed for exon 4, which concentrates

≈ 20% of all the mutations in the coding regions33. Significantly, exon 4 codes for the

complete sequence of LA domains 3–5, which includes the most relevant domains for

binding lipoproteins55,64,65.

Since the recognition of the association of FH to genetic variations in the LDL-r and

the discovery of the first mutations causing the disease74–76, a lot of information has

been gathered on different types of mutations in the LDL-r gene and deposited in se-

quence and genetic variations databases33,73,77–79. More recently, with the great devel-

opment of high-scale DNA genotyping and sequencing methodologies80–88 –e.g. usually

the procedure followed is extraction of genomic DNA that is amplified using PCR and

then processed with denaturing HPLC (dHPLC) or single-strand conformation polymor-

phism (SSCP), and finally coupled with automated sequencing or multiplex ligation-

dependent probe amplification analysis (MLPA) to identify mutations– there has been

an increase of cascade screening programs in partial populations or countries, and in

high risk groups83,85,87,89–95. These programs are promising but have some instrumen-

tal problems related to the lack of knowledge of the fate of most mutations and how

they affect the LDL-r protein, and thus standard procedures work by probing for sets of
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known mutations, and not finding at least one of them does not guarantee that the sub-

ject is FH negative96. Other important problem is the cost effectiveness tradeoff of these

tests, as most of these methods are still very expensive to be successfully applied at large

scales with affordable costs. In order to underscore the final causes of FH at the LDLr

protein structural level which are originated by DNA mutations, in vitro and computa-

tional studies have been performed with different domains of the ligand binding region,

the complete binding region or with mutant species of the LA domains55–58,68–71,97–101.

This kind of studies are of great importance because they could provide key insights

into the real gravity of mutations, inferred from the structural or stability impairments

caused in the LDL-r, which would be invaluable for broadening the spectrum of muta-

tions known to be associated to FH. This in turn would help to reformulate the cascade

screening tests described above by restructuring the set of mutations to be searched for

in patient’s DNA samples, as well as to widening the set of mutations to be considered

in the search.

Following preliminary results obtained in our lab101 regarding the potentiality of us-

ing atomistic simulations to study the effects of mutations in the native structure of

the LA5 LDL-r binding domain, we designed this study to assess the fate of all possible

missense mutations in the structure of this domain. As commented in the preceding

paragraph, for this protein only a limited set of mutations is known to be associated

to FH, and in most cases there is a lack of knowledge regarding the exact structural

or stability changes caused by genetic variations at the structural level. Besides, there

are important experimental limitations to study how all the possible mutations affect

the stability of the protein due to the high number of possible mutant variants. Thus,

we started from the cDNA sequence coding for this independent-folding interaction do-

main, and generated all the possible mutants arising from non-synonymous SNPs (256

SNPs coding for 227 different mutants) to try to understand how mutations affect the

conformational dynamics of the LA5 domain, which although operationally complex is

attainable computationally. We used state-of-the-art Molecular Dynamics simulations to

assess the distortions caused by single amino acid substitutions in the tridimensional

structure of the LA5 domain along time. As a result of this study, we generated a large

amount of MD trajectory data embodying the dynamical evolution of all the mutants.

We applied combined Data Mining methodologies including PCA and clustering tech-

niques and identified interesting singularities in the conformational behavior of different

types of mutants, that could cause the destabilization of the LA5 domain, thus impairing

recognition of LDL. We have obtained quantitative evidence for estimating the grade of

structural distortions caused by mutations, and uncovered a new set of mutations that

could cause a significant destabilization of LA5 domain. We hope that the data gener-

ated in this type of computational studies could help experimentalist to complement the
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study of conformational diseases in which mutations reduce the stability of the protein,

by reducing the search space for putative pathogenic mutations. Besides, we also believe

that the results and methodological propositions arising from this work could help in the

study of the fate of mutations in the ligand binding of other membrane receptors bearing

LA domains, and even in other unrelated protein domains, guiding in the development

of new strategies to stabilize those molecules and to better understand conformational

diseases from a structural perspective.

4.2 Results

4.2.1 The Complete SNP Mutational Space of the LA5 domain

Relating variations in the DNA sequence with phenotype is challenging, specially in

polygenic diseases such as Familial Hypercholesterolemia. The identification of muta-

tions that could be considered ‘markers’ of FH proceeds by the sequencing of the asso-

ciated genes –e.g. Apo B-10025–27, PCSK928–31, and the LDL receptor32,33– in diseased

individuals to uncover the genetic variations that could explain the pathologic pheno-

type. However, the ‘cause-effect’ link established following this approach is indirect,

because identifying a group of mutations in persons suffering this illness does not pro-

vide any clue regarding the affections at the post-transcriptional levels that are indeed

determining the abnormal phenotype. Besides, as the cascade screening procedures

used to identify FH genetic markers only probe for sets of known mutations in the as-

sociated genes96, and because of the polygenic nature of FH in which not all the genes

from the cholesterol metabolism route that are implicated have been identified, in many

cases no known mutations have been found in people with FH34,82,83. Thus, the need

for experimental or computational approaches that could shed light into the molecu-

lar mechanisms by which mutations in the DNA affect protein structure or function in

genetic diseases.

There exists a many steps between the processes of gene transcription and trans-

lation, and also beyond the processes of protein folding, maturation and turnover in

which mutations can cause a reduction of the quality or quantity of the protein avail-

able to exert its function, therefore leading to disease. Taking this into consideration, it

is also known that a significant proportion of protein mutations affect protein stability

and folding102–105, an event that is very difficult to anticipate from the assessment of

DNA sequence variations. There are different methods that try to tackle this problem

based on different rationales and at different organizational levels –e.g. some work at

the DNA level by mapping the location of SNPs for finding if the variation is found in
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a tentatively functionally important region106, while others rely on mapping SNPs into

the sequence107–112 or the structure104,113–118 of proteins, or combinations of structure

and sequence information119–121. Of course, like most predictive methodologies, those

mentioned have a more or less significant error rate, arising from the fact that their per-

formance is dependent on the quality of the data used for training and the assumptions

made in the predictive pipeline. Another possibility would be to try to assess the effect

of mutations directly at the structural level without previous assumptions or prior evo-

lutionary knowledge, for example by exploring the effects of mutations on the structure

of a protein running molecular dynamic simulations101,122,123.

FIGURE 4.1: Complete SNP Mutational Space of the LA5 Domain

A summarized graphical representation of the cDNA coding for the LA5 domain and all
the possible mutations arising from SNPs. In the chart, alternate codons are colored
in red and blue, and for each codon we also include above or below a box with the
same color than the corresponding wild-type codon, with the indexes used to identify
the mutations, the mutated codons and the mutated amino acids. We tagged with a red
dot all mutations that have been identified in persons with FH (as included in Appendix
Table F.1). For a more detailed view of this data please see Appendix Table F.2

In the specific case of trying to relate genetic variations with phenotype in FH, due to

its polygenic nature, there could be three possible outcomes for a given mutation found

in a person affected by this disease: a) the mutation is related to FH by affecting the

quality or quantity of the gene product, b) the mutation is not related to FH but there

is(are) other unidentified mutation(s) –e.g. not found in the specific screening study

or an unreported mutation– in any of the genes known to be related to the disease, or

c) the mutation is not related to FH but there is(are) other mutation(s) in other genes
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from the cholesterol metabolism pathway not yet associated to FH that are causing the

disease. Thus, the results of cascade screening studies and of any predictive method

should be taken with a grain of salt, always pondering the possibility that the genetic

variation could be a false positive. In our case, the approach is also a reductionism

because we are studying only one domain of one of the proteins associated with FH

–although specifically the protein that is related to the majority of cases of FH and the

domain that is key to LDL-r function, coded in the exon that bears the highest number

of genetic variations. However, we would able to directly appraise the extent of confor-

mational instability caused by specific mutations, and also to examine all the possible

mutations –i.e. reported and unknown LDL-r LA5 domain mutations– in the same ex-

perimental conditions. A summary of the initial dataset used in this study is shown in

Figure 4.1, where we include the coding sequence for the LDL-r LA5 domain and all the

possible SNPs, for a more detailed description please see Appendix Table F.2. From all

the possible SNPs mutations –i.e. 256 non-synonymous SNPs coding for 227 different sin-

gle amino acid substituted protein variants– only 22% have been found in persons with

FH, red dot tagged mutants in Figure 4.1 and described in detail in Appendix Table F.1.

FIGURE 4.2: Tridimensional Structure of the LA5 Domain
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The structure of the human LDL-r LA5 domain (PDB id: 1AJJ). A) The structure of
the complete LA5 domain showing the different structural loci, including the calcium
binding box and the three disulfide bridges highlighted with orange boxes with the
corresponding index starting from the N-t end: 1) between C197-C209, 2) between
C216-C231 and 3) between C204-C222. B) A close perspective of the calcium bind-
ing site showing the six residues forming the octahedral coordination box (with the
notation: Residue Name-Residue Index: Atom Name): W214:O, D217:OD1, G219:O,
D221:OD2, D227:OD2, E228:OE2

As can be seen in Figure 4.2, although LDL-r LA domains are short domains of
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less than 40 residues, they contain some important structural loci which are very im-

portant on determining their stabilization and correct folding55,61,66,68–71. The analy-

sis of the predicted effect of mutations on some of the amino acids participating in

the formation of these structural loci –e.g. the three disulfide bridges and the cal-

cium binding site– can be extracted from Appendix Table F.1, for the assessment of

the effect of mutations using four different methodologies like PMUT109,115,124, and a

consensus approach, CONDEL119, integrating the predictions made using SIFT108,125,

Polyphen-2126 and Mutation Assessor127,128. These results show that there exist discrep-

ancies among the predictions of the deleteriousness of mutations according to different

approaches due to the differences on the training of the methods and the statistical

procedures followed by each to conclude in the predictions. For example, for some

known mutations in cysteines forming the stabilizing disulfide bridges like C197{176}G,

C204{183}S and C231{210}G. The same inconsistency among predictive methods is

found for known mutations in amino acids from the calcium binding box, such as

D221{200}N, D221{200}Y, D221{200}G, D221{200}V, D227{206}V, E228{207}K and

E228{207}Q. And of course the same discrepancies are found for an ample number of

other known (Appendix Table F.1) and unknown (Appendix Table F.2) mutations in

residues all around the LA5 structure. Thus, depending on the specific predictive ap-

proach used, the conclusions draw would be completely disparate. The use of an ap-

proach such as CONDEL119 is also interesting because a consensus approach like this

permits to obtain better predictive results than the methodologies on which it is based

can obtain independently. And here again, the results obtained for a significant num-

ber of mutations by SIFT108,125, Polyphen-2126 and Mutation Assessor127,128, which are

used by CONDEL119 to conclude in its consensus deleteriousness score, show differences

from model to model, so people using these methods independently would conclude on

a different pattern of Neutral and Deleterious mutations in the LDL-r LA5 domain.

4.2.2 Conformational Instability of the LA5 Domain Mutant Variants

To study the relationship between mutations and the phenotype we followed a dif-

ferent approach by studying the direct effect of single amino acid substitutions in the

structure of the LDL-r LA5 domain (Figure 4.2) using Molecular Dynamics. All the 227

mutants generated by SNPs in this domain (Figure 4.1 and Appendix Table F.2) were

generated in silico at the structural level using SCWRL129, which was also used to find

the best conformations for the side chains of the substituted amino acids. Then, all

mutants were minimized and equilibrated in explicit water and we run MD production

trajectories totaling 6 µs, as described in the Methodology section. For each mutant

we run 20 ns-long MD simulations to explore its conformational evolution, taking into
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consideration that in principle in this approximated timeframe it is possible to observe

significant differences for unstable mutations101. These large amount of MD trajectory

data can be followed using different structural metrics such as the Template Modelling

score (TM − score)130,131, which is a more accurate and a protein-length independent

measure of the comparison among protein structures than more commonly used metrics

such as the Root Mean Square Deviation (RMSD) or the Global Distance Test (GDT).

Using this metric it is possible to follow multiple MD simulations to identify conforma-

tional instabilities, because in general the TM−score values tend to fluctuate very close

to 1 in equilibrium trajectories, which corresponds to the highest value obtained when

comparing identical structures. On the other hand, values below 0.5 are obtained for

proteins of different structural topologies or foldings130, and this limit score can be used

for identifying significant structural distortions in MD simulations in which the protein

has been perturbed, as in our case, by mutating a single amino acid.

These results are shown in Figure 4.3 for a selection of trajectories out of the 227 to-

tal mutants, representing some examples of the conformational instability introduced by

different mutations from those found in persons with FH. These results show some inter-

esting facts regarding the effect of mutations at the structural level, as the extent of the

conformational instability is clearly distinct for different known mutations. For example,

the substitutions C197{176}Y, F200{179}L and C, C204{183}S and Y, S206{185}R,

D221{200}Y and D227{206}V cause great conformational instability in this timescale,

in almost all cases reaching to conformations containing significant structural distortions

after a few nanoseconds of simulation. On the other hand, other known mutations such

as S198{177}L, C209{188}Y, H211{190}D, W214{193}S, D224{203}G, C231{210}R
and C231{210}Y cause mild or apparently none distortions to the structure of the LA5

domain during the simulations. Interestingly, in both groups there are mutations in

residues involved in the three disulfide bridges or the calcium binding box, and as pre-

viously stated, not all substitutions in these structurally key residues tend to affect the

global conformational stability of the domain.

We have assessed the degree of conformational distortion in all mutants as follows.

First, we performed Principal Component Analysis (PCA) of all trajectories in order to

both reduce the dimensionality of the large amount of conformational data in our MD

simulations, and to allow their comparison in the same coordinate system. PCA is a

statistical technique that has been customarily used to analyze MD data132–136 to extract

the dominant trends of motions in trajectories, and to identify the correlated movement

of different protein regions, please see the Methodology section for details. A summary

of the PCA in all the 227 trajectories corresponding to the different mutants is included

in Appendix Figures G.1 and G.2. In the first of these two charts we include an overview
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FIGURE 4.3: Protein TM − score of some LDL-r LA5 Mutants along MD Simulations
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The evolution of the TM − score for the structure of some selected LDL-r LA5 mutant
domains throughout the 20 ns-long MD simulations. In each case we include the de-
scription of the mutation as the subchart title. All these mutations have been found in
persons with FH and are a subset of those detailed in Appendix Table F.1
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of the percentage of the variance in the original trajectories explained by the correspond-

ing eigenvectors. As can be seen in the ‘Scree Plot’ in Appendix Figure G.1 for the 1st to

30th modes, in the MD simulations analyzed the first three modes describe on average

36%, 16% and 9% of the total variance. Thus, by just considering those three eigenvec-

tors it would be possible to describe as much as 61% of the variance, with a considerable

reduction of the degrees of freedom to be considered. In this chart it is also clear that

below the fourth mode, the variance described by each eigenvector individually is al-

ways below 6%, which also justify the selection of the first three modes, as previously

described132,135,137,138, for graphical summarizing which has been termed as the ‘essen-

tial dynamics’ of the system132,139–142. In the second figure (Appendix Figure G.2) we

describe a histogram of the number of modes needed for describing 95% of the total

variance in the trajectories, and in most cases this number is around 19 eigenvectors.

After performing this analysis in all trajectories, we first compared the average struc-

tures, to get an idea of the structural differences among mutants and the conformational

instabilities caused by the amino acid substitutions in the initial LDL-r LA5 domain. As

can be seen in Figure 4.4, there are some groups of mutants that are structurally dis-

similar to most other mutants, specifically trajectories M009 and M010 (C197{176}G
and Y), trajectory M029 (F200{179}C), a cluster including trajectories M049–M053

(C204{183}S, R, G, Y), another cluster including trajectories M153–M155 (D221{200}H,

Y, A), another cluster including trajectories M161–M164 (C222{201}G, Y, F, W) and

another cluster including trajectories M191–M197 (D227{206}H, Y, A, G, V, E and

E228{207}K). There exist other groups of mutants whose average structures are fairly

similar to those obtained for other substitutions, like those for which the vertical and

horizontal lines in the heatmap are colored in blue or in different tones of blue, please

see Figure 4.4 and refer to the Appendix Table F.2 for the correspondence among trajec-

tory indexes, codon change and amino acid substitutions.

To get an idea of the conformational evolution of mutants along the trajectories,

we obtained the projections of each trajectory into the first three PCs. The results of

this assay is depicted in Figure 4.5 and the associated videos‡. These charts depicts

the projections of the conformations visited during a simulation into the space formed

by the first three PCs generated from the PCA analysis of the trajectory, please see the

Methodology section for a detailed description of the PCA methodology. The projections

correspond to a statistical representation of the structures in each time step during a

simulation, represented in the transformed space defined by the eigenvectors of the tra-

jectory covariance matrix, taking into consideration the eigenvalues –i.e. the weights– of

‡While displaying the videos there are different quality options, thus for a better video experience it is
better to select the 720p in the bottom right angle of the video panel, in the Settings button. In case you
are reading the printed version of this document, please refer to Appendix Table F.3 to obtain the URL link
addresses
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FIGURE 4.4: All-to-all Comparison of the Trajectories Average Structures

The average structures of all the 227 mutants were extracted from the trajectories after
performing a PCA. The average structures were compared in pairs using the TM −
score metric. The chart is a heatmap of the comparison of all vs all, and the color in
each cell corresponds to the TM − score for the comparison of two structures whose
indexes are found in the abscissa and ordinate axes. In the rightmost side of the chart
we include the color legend for the TM − score, from red for dissimilar structures
(TM − score ≈ 0.5) to blue for identical structures (TM − score ≈ 1), passing through
various intermediate tones of orange and yellow

each eigenvector. The values of the projections correspond to a measure of the similarity

of the structure at a given time step to the average structure of the simulation, located

at the origin (01st , 02nd , 03rd , . . . , 0Nth) formed by the N th eigenvectors, and by associ-

ation, a measure of the similarity of whichever two structures from the trajectory in

the space formed by the same number of principal components. A Boltzmann-weighted

ensemble of molecules that behave harmonically will show normal ‘Gaussian’ distribu-

tions of projections in each dimension, and accordingly, deviation from this expected

behavior indicates that the ensemble of structures may not be correctly representing

the predicted accessible space132. Thus, the expected graphical outcome when plotting
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FIGURE 4.5: Dynamical Evolution of LA5 Mutants in the PCA Space (Destabilizing
Mutations)
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The MD trajectories are followed along time by projecting the structures at each time
step into the space described by the first three PCs. Each subchart is a two-dimension
density plot of the projections of the structures into PC1 vs PC2, PC1 vs PC3 and PC2 vs
PC3. The color scale goes from red (no occupancy) to blue (high occupancy), passing
through intermediate scales of yellow and green. For accessing the more descriptive
animations please visit the following links for each example: C197G, F200C, D221H,
C222F, E228K

https://drive.google.com/file/d/0B2oR8_NjxhbUOUNzaW5tVWYtSTg/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbULWtadnJPckhGVjA/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUUjY4QW9BaC1ncjg/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUOTFYQTNSSXAxZ00/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUSXYwZ2tRVFlwVE0/edit?usp=sharing
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the projections of the conformations visited during a MD equilibrium simulation in the

PC space, should be an ellipsoid around the coordinate axes origin, with the PCs corre-

sponding to the axes of the plot and the dispersion of the ellipsoid length in the ith PC

being proportional to the ith eigenvalue, please see the Methodology section for more

details. Accordingly, a deviation from this expected behavior –e.g. due to perturbations

caused by amino acid substitutions– could be taken as a qualitative and quantitative

estimate of the conformational instability caused by the perturbation.

FIGURE 4.6: 3D Density Plots of LA5 Mutants in the PCA Space (Destabilizing Muta-
tions)

We show the 3D density plots of the projections of the structural conformations visited
throughout the MD simulations in the transformed space formed by the first three PCs
in some destabilizing mutations. We include the same examples depicted on Figure 4.5
to provide a better view of the different states visited in the trajectories

In Figure 4.5 and the associated videos the significant conformational instability that

some amino acid substitutions cause on the LDL-r LA5 structure is made clear, as in some

cases the projections randomly visit different states corresponding to disparate structural

arrangements, as in the cases of C197{176}G and F200{179}C. In other cases, there are

different structural conformations which are significantly visited in the PCA space, such

as for D221{200}H and E228{207}K. Probably a clearer picture can be obtained from

the inspection of Figure 4.6 for the same examples in Figure 4.5, on which including in

the same plot the three dimensions and removing the contribution of time, the different



Chapter 4. Linking SNPs to Abnormal Phenotypes in FH 167

substates visited and the extent of the conformational instability are better appraised.

The same analysis for other mutants, as those included in Figure 4.7 and the associated

videos§, and the composite three dimensional plot in Figure 4.8, shows the fairly stable

behavior in other cases in which the amino acid substitutions have little or no effect on

the conformation of the LDL-r LA5 domain, as can be inferred from the ellipsoidal shape

of the projections plots in the first three PCs.

4.2.3 Local Instability of Mutants in Residues of the LA5 Domain Struc-

tural loci

Another important question is to assess how mutations in different positions along

the structure of the LDL-r LA5 domain affect the conformational stability of some im-

portant structural loci, such as the calcium binding box, which could have important

implications for the global stability of the domain55,61,66,68–71. An initial comparative as-

sessment of the angular deformation of the octahedral structure of the coordination box

is shown in Figure 4.9. In this figure we show the distributions and fluctuation equi-

librium values for each of the fifteen angles formed among whichever two residues out

of the six forming the coordination box and the calcium in the vertex, see Figure 4.2,

panel B. In the case of the wild-type MD simulation (top left chart of Figure 4.9), the

outcome observed is the expected for a simulation in equilibrium, in which the structure

of the calcium binding box is fairly stable, as can be inferred from the fluctuations of

all the angles fairly close to the expected equilibrium values –i.e. 180◦ and 90◦. A sim-

ilar result is observed in the MD simulation of one of the mutants involving a cysteine

forming a disulfide bridge (top right). In this case, the distributions for the fluctuation

of each angle are also fairly close to the expected equilibrium values, although there

is a clear increase in the dispersion of the distributions as indicated by the augment in

the number of outliers in each distribution. Thus, apparently, in this case the perturba-

tion caused by the disruption of the disulfide bridge is not causing great distortions in

the conformation of the calcium binding box. In the two cases included in the bottom

panels in Figure 4.9, the considerable distortions in the octahedral conformation of the

calcium binding box are evident in the case of substitutions of coordination residues, as

the equilibrium fluctuation values of most of the angles are rather far from the expected

angle range.

Probably more interesting than analyzing case by case would be to make quantitative

comparisons of the effect of different mutations in specific structural loci. In principle,

§While displaying the videos there are different quality options, thus for a better video experience it is
better to select the 720p in the bottom right angle of the video panel, in the Settings button. In case you
are reading the printed version of this document, please refer to Appendix Table F.3 to obtain the URL link
addresses
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FIGURE 4.7: Dynamical Evolution of LA5 Mutants in the PCA Space (Stable Mutations)
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The MD trajectories are followed along time by projecting the structures at each time
step into the space described by the first three PCs. Each subchart is a two-dimension
density plot of the projections of the structures into PC1 vs PC2, PC1 vs PC3 and PC2 vs
PC3. The color scale goes from red (no occupancy) to blue (high occupancy), passing
through intermediate scales of yellow and green. For accessing the more descriptive
animations please visit the following links for each example: A199G, L205V, S206N,
C209W, A232G

https://drive.google.com/file/d/0B2oR8_NjxhbUWlBBVktXNE5lZlE/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUWFJtRXBIQi1NRVU/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUcFZJQ1VJMlNucU0/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUcXR1MzA5b2NoTkE/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUYVpjci1ydjFBTnM/edit?usp=sharing
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FIGURE 4.8: 3D Density Plots of LA5 Mutants in the PCA Space (Stable Mutations)

We show the 3D density plots of the projections of the structural conformations visited
throughout the MD simulations in the transformed space formed by the first three PCs
in some stable mutations. We include the same examples depicted on Figure 4.7 to
provide a better view of the different states visited in the trajectories

PCA can also be of help to study the changes in the local stability of a specific protein

region, but the problem is that in practice the presence of large-scale motions makes

it difficult or impossible to resolve small-scale motions because the former have much

greater relative amplitudes143. Other approaches are better suited and have been ap-

plied to examine local instability of some specific residues in enzyme binding sites and

allosteric mechanisms144–146, by estimating the changes in the statistical trends of the

distributions of the dihedral angles of those residues during computational simulations.

These approaches are based on following the changes in the fluctuations of the φ and

ψ angles of a residue or residues in a perturbed simulation, and comparing them with

those observed in a simulation in equilibrium, using a statistical metric such as the

Kullback-Leibler147 or the Jensen-Shannon148–152 Divergence. We implemented a sim-

ilar method to analyze the effects of all the possible mutations generated from SNPs

in the LDL-r LA5 domain in the local stability of the six residues forming the calcium

binding box. In this bootstrapping assay, for each of the 227 mutants MD simulations,

we randomly resampled with replacement 105 sets, each containing 103 snapshots –i.e.
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FIGURE 4.9: Angular Fluctuation of the Calcium Binding Box during MD Simulations
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The boxplots of the fluctuations of all the angles formed between the atoms of two
out of the six residues forming the calcium binding box in the sides of the angle, with
the calcium ion in the vertex. Fifteen different angles could be formed (three of 180◦

and the rest of 90◦), and in each case we include the box-and-whiskers, also including
the outliers of the distribution as red dots. The angle range close to which each angle
must fluctuate is shadowed in blue. In the x-axis in each tick we include the name
and sequence number of the two residues forming the angle. In the two bottom charts
in which the amino acid substituted is one of the calcium binding box residues, the
missing angles are highlighted with vertical blue lines

5 ns of simulation– from the 20 ns-long MD simulations. Then, each structure in these

random sets is analyzed for obtaining the distribution of the φ and ψ angles of each of

the six residues of the calcium binding box. These temporal distributions are compared

using the Jensen-Shannon Distance153 metric, with the corresponding ones derived from

random samples of the simulation of the wild-type LA5 domain, obtained with the same

procedure described above, please see the Methodology section for details.

These results are included in Figure 4.10, for the comparative study of the differ-

ences in the fluctuation of the distributions of the dihedral angles of the coordinat-

ing residues, for all the mutants in our dataset using the simulation of the wild-type
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FIGURE 4.10: Assessment of the Structural Distortion of the Calcium Binding Box upon
Mutation

A B 

C D 

Boxplots of the Jensen-Shannon Distance among the distribution of the dihedral an-
gles of the coordinating residues throughout the simulation of mutants in comparison
with the corresponding distributions in the simulation of the wild-type LA5 domain. A)
Comparison of the global deformation of the complete calcium binding box by combin-
ing the individual JSdist of the twelve φ and ψ angles. In the abscissa, the distributions
of the wild-type (WT), mutants not involving residues from the calcium binding box or
disulfide bridges (Not BB/SS), mutants in residues from the disulfide bridges (SS) and
mutants in residues from the calcium binding box (BB). There exist statistical signif-
icant differences among the JSdist distributions of the three mutants subgroups with
respect to the wild-type (℘ − value < 2 × 10−3) with a significance ℘ − value < 0.01.
Panels B–D) include the distributions of the combination of the JSdist for the two φ
and ψ angles of each coordinating residue in mutants from the subgroups (Not BB/SS),
(SS) and (BB) respectively. In each panel the corresponding values for the WT MD
simulation are shown with red horizontal lines and the outliers as red dots
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LA5 domain as reference. One of the advantages of using the Jensen-Shannon Di-

vergence148–152 formulation instead of the classical Kullback-Leibler Divergence147, is

that the former is a smoothed, symmetrized and bounded (0 ≤ JSdiv(P1, P2) ≤ 1)

variation of the latter, and also it is directly related to a metric of the statistical dif-

ference among distributions148–152, see more details in the Methodology section. This

metric is the Jensen-Shannon Distance153 (JSdist(P1, P2)) which is the square root of

the JSdiv(P1, P2), and accordingly is also bounded between [0, 1], where 0 is obtained

for identical distributions, while 1 corresponds to complete dissimilarity. As well as

the Kullback-Leibler Divergence147, the JSdist is additive, thus allowing the linear com-

bination of the distance estimates for the probability distributions of whichever two

independent variables. Taking advantage of these properties, we were able to obtain

some interesting insights regarding the effect of mutations in the conformational stabil-

ity of the calcium binding box in the LA5 domain. As can be observed in panel A from

Figure 4.10, almost all amino acid substitutions in any position in the structure of the

domain, cause more or less significant perturbations in the local stability of the calcium

binding box, since for the simulations of the 227 mutants, subdivided in three different

subgroups, there are significant differences for the estimates of the box in the mutants

with respect to the simulation of the wild-type domain. As anticipated intuitively, the

less significant perturbations of the coordinating box on average are observed in the

subgroup of mutants on which the substituted amino acid is neither one of the coordi-

nating residues nor one of the six disulfide bridge-forming cysteines (Not BB/SS). This

line of thought is also justified by the observation that for the subgroup of mutants in

the cysteine residues (SS) even more marked perturbations are observed in the calcium

binding box, and the most significant differences are of course found on average for the

substitutions of any of the coordinating residues (BB).

Notwithstanding the logic trend observed for the averages of the three subgroups of

mutants, the inspection of panel A in Figure 4.10 shows a significant overlap for the

three JSdist distributions. For example, in the subgroup (Not BB/SS) there are some

mutants for which the cumulative JSdist of the binding box are rather low, like some

yet undescribed substitutions F202{181}L, K223{202}R and also for some mutations

found in persons with FH, like F200{179}L and S213{192}T. In this same subgroup,

rather high structural distortions are observed for a cluster of mutants (G218{197}S,

D, C, A), in a residue located in-between two of the coordinating residues (D217 and

G219), showing JSdist estimates as high as those observed for mutants in the binding

box residues, corresponding to the maximum values of the (Not BB/SS) distribution. In

the (SS) subgroup, the minimum of the distribution corresponds to mutants in residues

C197 and C204, which are sequentially and structurally distant to any of the coordinat-

ing residues, although in this case the absolute value for the minimum of the distribution
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is higher than that observed in the (Not BB/SS) subgroup. On the other hand, on the

top of the (SS) distribution are located mutants in residues C216 and C222, adjacent

to coordinating residues D217 and D221 respectively. Many of these SNPs have been

reported in FH patients, like (C216{195}R, Y, F) and (C222{201}R, G, F). The distri-

bution of the (BB) mutants is more dispersed than the formers, and interestingly the

lowest values of binding box distortions are observed for SNPs in residues W214 and

G219, which is consistent with the fact that these two amino acids interact with calcium

by means of atoms of the backbone, see Figure 4.2, thus the substitution by other amino

acids should have less significant effects on the local stability of the coordinating box.

In accordance, the JSdist values observed for some mutants in these residues are lower

than the mean of the distributions of (Not BB/SS) and (SS). The maximum distortions

of the box are found for mutants in residues D217, D227 and E228, some of which have

been previously described linked to FH, like D227{206}V and E228{207}K.

In panels B–C from Figure 4.10 we include a transversal representation of the lo-

cal instability of each of the six coordinating residues in the mutants subgroups (Not

BB/SS), (SS) and (BB) respectively. In this case, the local instability of each residue is

approximated by summing up the JSdist between the distributions of its two φ and ψ

angles in the mutant when compared to the reference native distributions along the MD

trajectories. In general, in the three subgroups of mutants, residue E228 is the one that

contributes the most to the instability of the binding box, although in the case of the

(BB) mutants, there is an increase in the dispersion and the mean and maximum values

of the distributions of almost all the coordinating residues. Also, these results are in

agreement with those presented in panel A, which suggests that the amount of distor-

tions caused by a given amino acid substitution in the coordinating box is case specific,

since there is an evident overlap of the distributions for each individual residue.

4.2.4 Clustering of LA5 Mutants According to the Extent of Conforma-

tional Instability

The image of the problem we are addressing in this work presented on Figures 4.5

and 4.7 for the first three PCs, although quite intuitive for graphically differentiating

unstable from stable behaviors during different trajectories, is a reductionism of a more

complex problem. It is known that although in PCA the first few eigenvectors usually

describe most of the variance in the system, a complete description of the ‘essential

dynamics’ can only be obtained by combining the contributions of the complete set of

modes that describes ≈ 90% of motion variance. Thus, in order to do that and to

perform a thorough quantitative comparisons of different trajectories, it would be nec-

essary to work in 20th-dimensional spaces, or even beyond, with a significant increase
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of the computational complexity. Also, to try to go further subjective comparisons of the

PCA results from different simulations (Figures 4.5 and 4.7), and to quantitatively com-

pare the effect of amino acid substitutions based on the essential subspaces visited by

different mutants during MD simulations, it is necessary not only to work with the com-

plete eigensystem of the trajectories, but also to apply some strategies to successfully

combine the conformational ensembles coming from independent MD simulations. The

main problem in this regard is that the PCA of two independent trajectories render com-

pletely different eigensystems, probably with different dimensions describing dissimilar

vector subspaces, in the sense of the orientation of the eigenvectors and the variance de-

scribed by each. There are different approaches for overcoming these problems154–157,

and in our case we used an alternative approach based on concatenating sections or the

complete trajectories of all the mutants into a meta-trajectory, and then performing the

PCA to obtain a common PC subspace and eigensystem, which can be used to project

and compare all the independent trajectories in the same essential subspace, please see

the Methodology section for details.

Another problem for comparing the conformational essential subspaces visited by

different mutants during MD simulations is that of contrasting stable simulations like

those described in Figure 4.7 against other unstable simulations like in Figure 4.5, not

following a Multivariate Normal Distribution in the PC space. Therefore, we used a sam-

pling methodology to compare the essential subspaces independently of the behavior of

the systems, as described in detail in the Methodology section. By randomly comparing

subsets of each simulation against each other (105 random comparisons), it was possible

to obtain a statistically significant assessment of the mean distance between the essen-

tial subspaces visited by different mutants and the wild-type LA5 domain. As described

in the Methodology section, we used the Mahalanobis distance metric158 for compar-

ing the trajectories, based on the fact that it gives a distance that is normalized by the

percentage of variance described by each eigenvector. After performing this exhaustive

comparison of the simulations, it was possible to make a clustering accordingly to the

Mahalanobis distances, which is presented in Figure 4.11, and at the same time try to

quantitatively predict the pathogenicity of each amino acid substitution –i.e. establish-

ing a link between conformational instability and the likelihood of the expression of a

LDL-r with an impaired capacity of interacting with the LDLs55,64,101– and also to group

different mutations taking into account their putative relation with FH.

The results included in Figure 4.11 correspond to the analysis of the meta-trajectory

of the concatenation of the last 10 ns of each simulation, which is the one that gave

better clustering results. The results obtained for the meta-trajectories including all the

frames and the last 5 ns of each trajectory, were on one hand rather noisy due to the
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FIGURE 4.11: Clustering of LA5 Mutants According to the Extent of Conformational
Instability

Clustering of all the mutants in the LDL-r LA5 domain according to the extent of confor-
mational instability introduced by the mutation. For the meta-trajectory of the concate-
nation of the last 10 ns of each simulation, the average Mahalanobis distance among all
pairs of simulations was used to assess the difference in the subspaces explored by each
mutant in the PCA N -dimensional space (25-dimensions). Based on these distances,
a complete-link based clustering algorithm was used, and the abstract representation
of the four more representative clusters is shown. The clusters are color-coded: green
(stable mutants), orange (unstable mutants), magenta (very unstable mutants) and
red (highly unstable mutants). For each cluster we show in parenthesis the number of
mutants found in persons with FH (in red) and the total number of mutants

rather high conformational instability in the former case, on which some simulations ex-

plored an ample region of the PC space. In the later case, the low number of frames did

not permit to make a representative sampling of the trajectories during the resmpling,

resulting in some cases on statistically significant errors in the estimation of the mean

Mahalanobis distances among simulations. Nevertheless, the last 10 ns meta-trajectory

allows both a significant sampling and comparing the trajectories in a region on which

most of them are fluctuating in a more limited subspace close to the final conformations

the system is converging to. Figure 4.11 is an abstraction to graphically represent the

clustering of the trajectories in a 25th-dimensional space, on which the clusters would

in reality correspond to hyperspheres. As expected, the projections for the trajectories
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of stable mutants and the wild-type LDL-r LA5 domain, explored an ellipsoidal subspace

close to the (01st , 02nd , 03rd , . . . , 025th) PC origin, and consequently cluster together in

the (stable) cluster, in green in Figure 4.11. This is the largest cluster, comprising 114

mutants, for a detailed list please see the color codes in the Appendix Table F.2. In de-

creasing order with respect to the number of mutants are the orange cluster (unstable

mutants) with 57, magenta cluster (very unstable mutants) with 34 and the red cluster

(highly unstable mutants) with 22 mutants respectively.

The number of mutations found in persons with Familial Hypercholesterolemia that

have been linked to the disease33,73 is also unequally distributed among clusters. Despite

being the largest cluster, the stable cluster only includes 34% of the known mutations,

while the rest 33 out of 50 are distributed in the unstable clusters (Figure 4.11). The

detailed case-by-case inspection of the group of known mutations included in the stable

cluster gives some interesting hints into the problem introduced above regarding the

establishment of a cause-effect among amino acid substitutions and the phenotype from

sequencing studies. Because in these studies the genes are scanned in the search for

a subset of the known mutations, there could be some cases on which the mutation

found might not be the responsible for the disease, but another not identified mutation

in the same gene, which is the responsible for affecting the stability of the protein, or by

disrupting key binding sites for interacting with partners. The individual inspection of

the dynamical evolution of some of the known SNPs classified by us as ‘stable’ mutations

prove that, at least in the time range explored by us in this study, the structure of the

LA5 domain is not significantly affected, as can be observed in Figure 4.12 for some

examples¶. In these specific cases, as well as in others from the other 12 remaining

cases, a comparison of the images and the accompanying videos in Figure 4.7 reveal

that the conformational behavior is not affected in any case by the mutation –e.g. except

subtle changes in the length of the ellipsoids in some axes– because the projections are

normally distributed along each PCs as expected. Even more importantly, when the

analysis is extended for all the PCs that describe as much as 95% of the total variance,

the estimations of the Mahalanobis distance among them, on which the clustering in

Figure 4.11 is based, unveil that all of them explore the same conformational subspace,

along with the wild-type LA5 domain.

Another possibility is that these known mutations that do not affect the conforma-

tional stability of the LA5 domain, may impair the binding sites mediating the interac-

tion of the LA5 domain with LDL or other proteins. In Figure 4.13, panel A we show

¶While displaying the videos there are different quality options, thus for a better video experience it is
better to select the 720p in the bottom right angle of the video panel, in the Settings button. In case you
are reading the printed version of this document, please refer to Appendix Table F.3 to obtain the URL link
addresses
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FIGURE 4.12: Dynamical Evolution of LA5 Mutants in the PCA Space (Stable FH Muta-
tions)
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The MD trajectories are followed along time by projecting the structures at each time
step into the space described by the first three PCs. Each subchart is a two-dimension
density plot of the projections of the structures into PC1 vs PC2, PC1 vs PC3 and PC2 vs
PC3. The color scale goes from red (no occupancy) to blue (high occupancy), passing
through intermediate scales of yellow and green. For accessing the more descriptive
animations please visit the following links for each example: C209Y, W214S, C216Y,
E228Q, C231Y

https://drive.google.com/file/d/0B2oR8_NjxhbUUmRJdG9Ya3hEY2M/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUalg3Z2liZFFOS2c/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUeHRFanBFSm5lT0U/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUakZ2ZzY1aDV2MlU/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUenFNSEFaSU5mWU0/edit?usp=sharing


Chapter 4. Linking SNPs to Abnormal Phenotypes in FH 178

FIGURE 4.13: The Binding Region of the LDL-r LA5 Domain

A B 

The structure of the LDL-r LA5 domain and the interaction region. A) The LA5 do-
main in the context of the structure of the complete LDL-r extracellular region (PDB id:
1N7D). The LA5 domain is shown in surface representation colored in white, highlight-
ing in red the 11 residues on which occur the 17 mutations which do not affect directly
the conformational instability of the domain. B) A close look of the LA5 domain and
the residues which bear some mutations related to FH that do not destabilize the do-
main. We highlight the upper convex region of the LA5 domain, which according to
recent experimental evidence, is the responsible for the interaction of the domain with
other domains from the LDL-r and LDL particles. From the residues highlighted in red
we also include their name and position in the sequence. Residues E201 is oriented
towards the top right face, while D227 and E228 are oriented towards the top back
face

the structural context of the LA5 domain in the extracellular region of the human LDL-

r59. According to this structural data, the LA5 domain is oriented establishing interac-

tions through residues W214, D217, G219, D221, H211, S212 and K223, which form

a network of hydrophobic and salt-bridges contacts with various residues from the β-

propeller domain, in a highly specific structural disposition, also involving a high degree

of conservation of the interacting residues in other members of the LDL-r family59. Other

reports for the direct interaction of LA modules with other proteins, such as the LA3–4

tandem with the Receptor Associated Protein (RAP), also underscored the convex face

of these modules as the most important one for interacting with binding partners, which

might correspond to a general mode for ligand recognition for LDL receptors57. Also, re-

cent structural data from our group indirectly underlined the involvement of the convex

face in the interaction with ApoB and ApoE159. The 17 known mutations included in the

green (stable) cluster, because according to our simulations they cause only marginal

distortions in the conformation of the LA5 domain, occur in 11 residues (please see
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Appendix Table F.2 for details of the specific amino acid substitutions) 8 of which are

located in the 3D structure in the convex face of the domain, with the exception of P196,

C216 and C231 (Figure 4.13, panel B). This might explain the pathogenicity of most of

these non-destabilizing known mutations by a disruption of the LA5 binding compati-

bility with other proteins. Indeed, there is a significant overlap of the interaction patch

including residues in the convex face of the LDL-r LA5 domain, that according to exper-

imental data participate in interactions with other domains from the LDL-r59 and ApoB

and ApoE159, and the patch described by residues which bear 11 of the above mentioned

non-destabilizing mutations related to FH that are classified in the stable cluster, please

see Figure 4.14.

FIGURE 4.14: The ‘Consensus’ Binding Region of the LDL-r LA5 Domain
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An upper view of of the LA5 module from the interaction face, as defined in Figure 4.13.
A) The residues in the convex face of the LDL-r LA5 domain participating in interactions
with other domains from the LDL-r59 and ApoB and ApoE159, are highlighted in red.
B) The residues which bear some mutations related to FH that do not destabilize the
domain and are classified in the stable cluster, are highlighted in red. In these 8 residues
are distributed 11 out of the 17 non-destabilizing known mutations

On the other extreme in the scale of conformational instability is the red (highly un-

stable) cluster, in which are included known FH mutations like C197{176}G, Y and F,

F200{179}C, C204{183}Y and E228{207}K among others, from which C197{176}G,

F and C204{183}Y are by far the most destabilizing SNPs. Taking into consideration

what we have just described before for some mutants in residues from the LA5 domain

structural loci (see Figure 4.12), on which the global conformation remains more or less

unaffected, it is worth saying that mutations from the magenta (very unstable) and red

clusters (highly unstable) tend to concentrate in residues forming these structural loci

such as D221, D227, E228 and C197, C204, see Appendix Table F.2 for a complete

description. Notably, as previously described for the instability of the calcium binding
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box, few of the mutations on W214 and G219 belong to the red and magenta cate-

gories, which could be explained taking into consideration that these two coordinating

residues interact with the calcium ion through backbone atoms. In this same line, for the

disulfide-bridge forming cysteines C216–C231, the number of SNPs in the most unsta-

ble clusters is also fairly low in comparison to the other two, which might be related to

the fact that it is more or less buried in the core of the LA5 domain. Finally, SNPs in the

orange (unstable) cluster, are more or less evenly distributed throughout the structure

of the LA5 domain, in some cases flanking residues from the structural loci, but in other

cases in residues forming them.

4.3 Discussion

4.3.1 Wide-ranging Direct Structural Assessment of the Effect of SNPs in

the LDL-r LA5 Domain

The concept of Conformational Diseases160–164 has gained great popularity, from

the realization that some of the events that affect the correct adoption of the native

conformation of proteins, widely studied in vitro for many years, could play an im-

portant role in vivo and be the main cause of many serious diseases. It is now well

described that changes in the physicochemical conditions in the cell environment or

mutations, are related to pathological states arising from alterations in the protein con-

formational equilibrium. This could result in a reduction in the quantity or the quality

of the protein that is available to play its normal role160,161, and in other cases lead

to a transition to aggregation-prone conformations, resulting in the accumulation of

protein aggregates162–164. In Familial Hypercholesterolemia, an ample number of mu-

tations identified by cascade screening assays of people with the disease or popula-

tions of risk83,85,89,90, have beed reported to be genetic determinants of the disease74–76.

Although there have been attempts to experimentally asses the real effect of muta-

tions in some of the domains of the LDL-r56–58,68–70,97–99, much remains to done to

explore the consequences of all the biologically accessible mutations, and how they

might be related to pathological phenotypes. Indeed, of all the possible mutations in

this key protein in the cholesterol metabolism and the main player in this disease, only

a small proportion has been catalogued and reported in genetic variations and sequence

databases33,73,77–79. There are a great variety of computational methodologies avail-

able for trying to predict the fate of mutations in proteins104,107–109,113,114, but they are

mainly based on genetic, structural or evolutionary assumptions, and they can not an-

ticipate the real effect of the amino acid substitution at the structural level, and whether

it might cause a perturbation in the protein conformational equilibrium. Besides, these
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methodologies are of course biased by the representation of deleterious and neutral

genetic substitutions for different types of proteins in the training sets, and also are

strongly dependent on the quality of the multiple alignments used to try to trace evo-

lutionary relationships, and thus may render results with different confidence levels for

different groups of proteins. To try to tackle this important problem, and to make a com-

plete exploration of the effect of all biologically accessible mutations caused by SNPs in

the structure of the LDL-r LA5 binding domain, and how they might relate to FH, we

present here a computational strategy based exclusively on structural information and

relying on short MD simulations.

In our study, we have generated at the structural level all the possible mutants arising

from SNPs in the cDNA for the LDL-r LA5 binding domain (Figure 4.1), and have then

performed short MD simulations in combination with a thorough data mining analysis

to try to correlate conformational instability to disease phenotypes in FH. Our propo-

sition is inspired by recent reports demonstrating the feasibility of the use of MD to

make detailed studies of the variations in the conformational behavior of small proteins

caused by mutations101,122,123. Distinctively, instead of concentrating on some specific

amino acid substitutions, we explored all the mutational landscape of the key domain for

establishing functional interactions with LDLs55,64, and the one that is encoded in the

LDL-r exon which exhibits the higher susceptibility to polymorphisms, and that bears

the higher proportion of mutations identified in persons with FH. From the inspection

of the 3D structure of the LA5 domain (Figure 4.2) some important structural loci can

be easily identified, on which in principle the substitution of an amino acid could be ac-

companied by a significant change in the conformational stability. However, our results

point out to a case-dependent scenario where the specific physicochemical perturba-

tions caused by the amino acid substitution, determines whether the structure of the

LA5 domain will be significantly affected or exhibit stable dynamical behavior during

MD simulations. This finding is illustrated in Figure 4.3 with a selection of trajectories

from the 227 possible mutants generated by biologically accessible SNPs. Some of these

mutants have been reported as markers of FH in databases33,73. The evolution of the

TM − score130,131 along the simulations prove that, despite involving in some cases

residues from the calcium coordinating box or the disulfide-bridge forming cysteines,

some simulations show stable evolution along time, while for others the conformation

stability appears to be significantly affected. Also, as described in Appendix Table F.1,

there are disparities in the prediction of the deleteriousness of mutations using available

approaches108,119,124,126,127, which highlights the need for computational methods that

evaluate directly the fate of mutations in proteins, and allow differentiating substitu-

tions affecting conformation from others that could affect function by other means –e.g.

by affecting conserved active center or binding site residues.
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4.3.2 Local and Global Conformational Instability in the LDL-r Binding Do-

main: Relating SNPs with FH

An essential step of a wide-ranging study such as this is to take advantage of tools

for processing the large amounts of high-dimensional data generated from a multitude

of trajectories, and to perform data mining for extracting biologically relevant informa-

tion. In this sense, we performed PCA in all the trajectories for describing the ‘essential

dynamics’132,139–142 and to establish quantitative criteria for comparison of the confor-

mations visited by different types of mutants during MD simulations. In this regard,

the preliminary outcomes from this PCA study, as shown in Figure 4.4, allow to rate

the structural differences among the average structures of each trajectory, based on the

TM − score. In this chart clusters of mutants that are structurally different from any

other are evident, while other mutants share high structural resemblances. This sug-

gests the possibility of grouping different mutants into clusters according to the extent

of the instability introduced by the amino acid substitution, by using a more sphisticated

procedure than just comparing the average structures along the trajectories. Further

insights of the dynamical evolution was obtained from Principal Component represen-

tations depicted on Figures 4.5, 4.7 and the 3D composite equivalent Figures 4.6, 4.8.

The evolution of the projections of the conformations visited by some destabilizing mu-

tants (Figure 4.5), most of which are mutations associated to FH (Appendix Table F.1),

graphically confirms the scope of the instability caused by each mutation from the dis-

tancing from the Multivariate Normal behavior. On the other hand, Figure 4.7 shows the

other extreme cases, with stable conformational evolutions around the average. These

results reaffirm the discussion regarding case-dependency introduced above, as for ex-

amples such as C209{188}W of Figure 4.7, as well as in others included in Figure 4.12

for some amino acid substitutions in residues from the disulfide-bridges or the calcium

coordinating box, we observed little or none modifications of the conformational equi-

librium during the MD simulations.

Aiming at understanding the specific effect of mutations in the local stability of the

calcium binding box, we also set up a thorough bootstrapping assay for estimating the

statistically significant differences among the distributions of the dihedral angles of each

calcium coordinating residue. As shown in Figure 4.9 the overall octahedral structure

of the binding box is significantly affected in some cases, and it would be expected that

substitutions in coordinating residues would determine significant distortions, such as

those shown in the two bottom charts of this figure. On the other hand, at least for some

mutations in the disulfide-bridge forming cysteines (top right chart in Figure 4.9), the

structure of the binding box remains fairly stable during the complete simulation. The

quantitative assessment of the stability of the calcium binding box could be obtained by
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estimating the Jensen-Shannon Distance153 among the bootstrapped distributions of the

φ and ψ angles of each coordinating residue, in comparison to the stable equilibrium sim-

ulation of the wild-type LA5 domain. The results depicted in Figure 4.10, panel A prove

that though almost all mutations in the LA5 domain cause more or less some instability

in the binding box, the proportion of the instability depend on the structural environ-

ment around the amino acid to be mutated. While it is clear that, on average, mutations

in residues not directly forming part of the structural loci, cause less instability than

disulfide-bridge cystein mutations, and less than coordinating residues, respectively, the

significant superposition of the distributions of JSdist for these three subgroups demon-

strates that for some particular cases the instability introduced can be considerably high.

For example, mutations of G218, structurally close to two binding box residues, cause

significant distortions in the binding box, while mutations of C197, C204 cause mild

distortions as they are structurally distant, but mutations of C216, C222 destabilize the

box thanks to their structural proximity. The hotspots regarding binding box destabi-

lization among coordinating residues concentrate on residues D217, D227 and E228

while for W214 and G219 the distortions are less significant, which can be rationalized

from the way in which each residue interacts with the calcium, the first three by means

of the side-chain, and the last two with backbone atoms. The variability of the local

instability and the abundant presence of outliers in the distributions of the JSdist of

each coordinating residues (Figure 4.10, panels B–D) justify this case-dependency for

destabilization of the binding box by mutations.

4.3.3 From Molecular Dynamics to a Strategy for Computational Diagnosis

in Conformational Diseases

The final goal of our work is to devise a rational and quantitative way of identifying

SNP mutations that could destabilize the structure of the LDL-r LA5 binding domain,

and also to group different types of mutations according to the possible destabilizing

effects. As pointed out above, to do this thoroughly, it is indispensable to work with

the complete eigensystem describing the ‘essential dynamics’ of the system, and to put

all the trajectories on the same comparative context. The resampling presented here

for comparing the essential subspace more probably visited by each mutant during the

MD simulations gave us the possibility of doing that, and the results in Figure 4.11 give

a good summary of how different mutants group together according to their possible

pathogenicity. This figure, along with Appendix Table F.2, offers a color-coded classi-

fication of the destabilizing effect of each mutant, as inferred from a clustering based

on the Mahalanobis distance among trajectories, estimated from an exhaustive all-to-all
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comparison of the essential subspace explored in each simulation. In principle we be-

lieve that the discrimination achieved with this strategy is fairly promising, as we were

able to successfully classify 66% of the known mutations into one of the three clusters

of (unstable), (very unstable) or (highly unstable) mutants. Also, regarding the discrep-

ancies with the rest 17 known mutations that are classified by us as ‘stables’, the results

in Figure 4.12 prove that at least in the time-range of this study, these mutations do not

significantly alter the conformational behavior of the LA5 domain.

This might be an indication that they could be related to the disease not by affecting

the conformation of the LA5 binding domain, but by impairing the interaction with

other domains from the LDL-r binding region or other proteins from the cholesterol

metabolism pathway, or by causing a decrease in the expression efficiency with the

concomitant reduction of the quantity of membrane receptor molecules. The pathologic

nature of some of these 17 mutations could be explained following this rationale, as in

most cases they cause a substitution in residues presented to the interacting face of the

LA5 domain, please see Figures 4.13 and 4.14. From the structural point of view, there

could be two different scenarios, one in which the substituted amino acid is essential for

establishing direct contacts with specific residues from the binding partners, or a second

one in which the mutated residue, even not being directly involved in the formation of

non-covalent bonds, could change the physicochemical compatibility of the interaction

patch. Examples of the former case would be mutation W214{193}S, which would

abolish the multiple hydrophobic interactions among this residue and amino acids E602,

K603; and D221{200}N, G that would also eliminate the interaction with K603 from the

β-propeller domain. Also, the substitution S198{177}L which would break an hydrogen

bond with LA4 domain residue R185, can be included in this case. It could also be the

case of mutations H211{190}D, Y, L in a residue which forms a cluster of histidines with

β-propeller domain residues H583 and H607, which are responsible for determining

the acid sensitivity essential for endosomal LDL release58,59,165. Experimental data for

tyrosine substitution of these histidines proved a significant reduction of the expression

of LDL-r molecules in fibroblasts97, and the reduction of the efficiency of LDL release in

the endosome58,165. Actually, as can be inferred from recent structural experiments from

our group, residues W214, D221, D227 and E201 positioned in the convex face of the

LA5 domain, are the responsible for the interaction with ApoB and ApoE159, which is

essential for correct internalization of LDLs and cholesterol metabolism.

There is another possible scenario, in which can be included the other 3 known mu-

tations out of the remaining 9 clustered in the ‘stable’ cluster –i.e. excluding those de-

scribed above implicated in direct interactions with other domains or proteins– when the

mutation could affect a residue and change the physicochemical compatibility of the in-

teraction patch. In this group can be included mutations C209{188}Y, D227{206}E and



Chapter 4. Linking SNPs to Abnormal Phenotypes in FH 185

E228{207}Q, all involving residues located in the convex interaction face of the LA5 do-

main, see Figures 4.13 and 4.14, panel B. For these substitutions, notwithstanding there

is no direct evidence of their implication in the formation of interactions upon binding to

other domains, they could be related to FH by modifying the physicochemical and steric

conformation of the interaction surface, significantly impairing the binding efficiency.

Thus, our results demonstrate that most of the known mutations that do not cause desta-

bilizations of the conformational equilibrium of the LA5 domain, occur in residues from

the interaction region. Considering this, our computational estimations of the confor-

mational instability caused by mutations, combined with the experimental knowledge

of the LA5 domain interacting residues, makes possible to anticipate the disease phe-

notype for 44 out of the 50 SNPs known to be related to Familial Hypercholesterolemia.

Following this idea, it would be possible to make a tentative computational diagnosis for

this disease, taking into consideration both the degree of conformational instability and

the possible impairment of the interacting region, as proposed in Appendix Table F.2.

In this table, all the mutations not reported in genetic variation databases are classi-

fied solely taking into consideration its destabilizing effect. However, for mutations in

residues from the interaction region, we tentatively evaluated the possible impairment

that the amino acid substitution could cause in the binding efficiency. Anticipating the

effect of mutation in protein binding regions in the binding efficiency is difficult, spe-

cially if, as in our case, there is no detailed knowledge of the binding partner. The

information extracted from the structure of the LDL-r complete extracellular region59

is limited because its low resolution does not allow an accurate appraisal of some non-

covalent interactions that could exist between the LA5 and β-propeller domains. Also,

in the case of the interaction with lipoprotein peptides159, the structural information is

indirect, because there is no information of the exact conformation of the peptides in the

complexes. However, we indirectly approximated the effect of mutations in binding, by

using qualitative structural criteria –e.g. steric and physicochemical differences between

the wild-type and substituted residue– and combined this information with conforma-

tional instability, to propose the disease phenotype in mutants in interacting residues,

please see Appendix Table F.2. However, in these cases, due to the uncertainties in the

evaluation of the effect of mutation in binding as discussed above, our predictions are

less conclusive.

The remaining 6 cases correspond to substitutions in residues P196 and the disulfide-

bridge forming cysteines C216–C231. These cases are special because these residues are

not in the interaction face of the LA5 domain, but on the other hand they are located

in the N- and C-terminal ends. These amino acid substitutions could cause a significant

distortion of the possible orientations of the LA5 domain with respect to domains LA4
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and LA6, also altering the interaction efficiency of the LDL-r binding domain. For ex-

ample, P196 is located in the linker connecting domains LA4–5, in which it may play

a role in reducing the flexibility of the linker, to guarantee specific conformations of

these domains to interact with LDL59. Mutations in residues C216–C231, on the other

hand, would cause a destabilization of the native conformation of the linker connecting

domains LA5–6, which could cause an increase of the length of the linker region, con-

tributing to the adoption of conformations in which these two domains are not correctly

oriented for binding, as previously studied experimentally166. This might explain the re-

lation with FH for those known mutations that have been classified by us as stables, as

in those cases the specific physicochemical or steric changes caused by the substitutions

could affect the binding interface compatibility among the LA5 domain and lipoproteins

or other biological binding partners. Also, it might be the improbable but non negligible

case that some of these stable known mutations were false positives, and are not related

to FH in any way, but have been identified by chance during sequencing of the gene in

persons with FH, on which the real genetic variation responsible for the phenotype is

in another region of the same LDL-r gene, or other genes from the cholesterol uptake

pathway25–31.

According to our calculations, the structure of the LDL-r LA5 domain has some

hotspots on which there is an accumulation of SNPs resulting in substitutions that might

affect its conformational stability. Those are D221, D227, E228 and C197, C204, C222,

which in some cases coincide with residues whose substitution destabilize the calcium

binding box, as described in the previous section. The same trend is observed for mu-

tations on coordinating residues W214 and G219, which besides affecting the less the

stability of the binding box, also appear to accept few mutations that significantly desta-

bilize the complete structure of the LA5 domain, whilst as exposed above, there are some

exceptions that oppose this trend depending on the case-specific physicochemical and

structural environment associated to the amino acid substitution. Recent experimen-

tal reports from our group of low-resolution studies of the oxidative unfolding of the

wild-type and mutated LA5 domain69 have proven in vitro that mutants E208{187}K
and D221{200}G can fold into a native-like conformation, though less efficiently than

the wild-type, because of the accumulation of intermediates with a scrambled disulfide

pattern. For two other mutants: D224{203}A and D227{206}E the oxidative fold-

ing leads through a path of scrambled isomers and it is impossible to reach the native

structure. The last of the two mutations described before has also been assayed experi-

mentally in vitro, along with amino acid substitution D224{203}G in another report167,

also concluding in the existence of folding defects in the final LA5 species. These muta-

tions have been classified by us as unstable, stable, unstable, stable and unstable, and
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although these findings have not been tested experimentally with high resolution tech-

niques, they suggest that some mutations that do not destabilize the LA5 structure when

folded, could affect the oxidative folding, an event that can not be accounted for compu-

tationally without the use of more sophisticated MD simulation techniques and longer

time-scales.

There is a lot that needs to be done to understand the complete picture of the in-

teraction among the LDL-r binding domain and LDLs, and how the efficiency of the

interaction is affected by the independent contribution of different LA domains, and the

interactions established among them during LDL-recognition. With our work we be-

lieve we have provided a clear view of the complete mutational landscape of the LA5

domain, with a quantitative classification of the conformational instability caused by

each different biologically accessible amino acid substitutions, which could be useful

for planning experimental tests to measure the real extent of the structural instabil-

ity of the domain upon mutation. By extension, as small disulfide-rich domains are

fairly widespread in the protein universe, our outcomes could also serve as a reference

for studying how mutations could affect the structure and the function of other proteins

bearing this kind of interacting domains associated to other pathologies, or even in other

small proteins. Though undoubtedly our approach is more computationally expensive

and requires more data processing and analysis than others available for predicting the

deleteriousness of mutations108,109,115,119,124–128, with the advent of great advances in

the field of MD simulations for reaching longer simulation times168–173, which together

with the emergence of online services for performing client-based and high-throughput

MD simulations174–176, performing studies such as ours will become feasible in the near

future.

4.4 Conclusions

In this work we have presented an alternative strategy for studying the complete SNP

mutational space of a protein using Molecular Dynamics, and try to correlate the con-

formational instability introduced by amino acid substitutions with a disease phenotype.

Differently to other bioinformatics approaches for predicting mutation deleteriousness

based on protein family or evolutionary information, ours rely solely on the knowledge

of the structure of a protein, as a starting point for performing short Molecular Dynamics

simulations. We have been able to quantitatively classify different types of mutations ac-

cording to the extent of local and global conformational instability caused by the amino

acid change, and also have found that our predictions are in fairly good agreement with

pathologic mutations reported in databases. Also, with our method, it is possible to



Chapter 4. Linking SNPs to Abnormal Phenotypes in FH 188

directly appraise the real effect of mutations in the structure of the protein, and to dif-

ferentiate mutations associated with the disease that directly affect the conformation,

from others that do not, which can be useful to give some hints of mutations that might

be affecting the function of the protein at other levels, instead of impairing its folding

or conformational stability. Our results display a layout of all the biologically accessi-

ble mutations in the LDL receptor LA5 domain responsible for interacting with LDL, an

impairment of which is the cause of one of the most common and serious diseases in

human populations, Familial Hypercholesterolemia. As performing this wide-ranging

studies experimentally is rather difficult, our work might be of help for proposing new

SNP candidates for being studied in vitro to finally assess the real cause-effect of SNPs

in this disease. Also, as the LA5 domain is fairly abundant in the protein universe, our

propositions could also be of value for studying the effect of mutations in the confor-

mation of other proteins bearing this kind of domains and related to other diseases, for

which there is less experimental, mutational or evolutionary information. Besides, our

approach could be used to study other small proteins or independent folding domains

associated to other molecular functions, like SH3 or PDZ.

4.5 Methodology

4.5.1 LA5 Domain Coding Sequence, Structure and Complete SNP Muta-

tional Map Generation

We started from the protein sequence for the complete human LDL-r accessible in

Uniprot77 (ID: LDLR HUMAN, AC: P01130), from where we extracted the DNA coding

sequence for the LA5 domain by accessing to the entry for this gene in the Ensembl

database177 (ID: ENSG00000130164). The protein sequence for the LA5 domain cor-

responds to residues 195–233 in the sequence of the complete receptor, while in the

structure of the domain used as the starting point for the structural analysis (PDB id:

1AJJ), are included residues 196–232. Thus, we just extracted the coding sequence for

amino acids 196–232, leaving out the codons for the N- and C-terminal serine and va-

line. The cDNA sequence was then processed with an ad hoc script for generating all

the biologically accessible mutants arising from the substitution of a single nitrogen

base (SNPs), please see Figure 4.1. All the non-synonymous SNPs were identified –i.e.

256 non-synonymous SNPs coding for 227 different single amino acid substituted protein

variants– and then we generated all the corresponding mutations in the structure of LA5

domain using the program SCWRL129, for finding the best rotamers for the side chain of

the mutated amino acid. Then, we organized the mutants with a specific code for each

one (Appendix Table F.2), to be further processed before running the MD simulations.
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4.5.2 Setting up the Systems for Molecular Dynamics Simulation Produc-

tion

Each of the 227 mutants, plus the wild-type LA5 domain, was solvated in a cubic wa-

ter box with approximately 5500 TIP3 water molecules, and neutralized with Na+Cl−

counter ions using the solvate package in VMD178. We set up a thorough procedure for

preparing the systems previous to run the production MD simulations, including multi-

ple cycles of step-descending minimization/equilibration steps in a preparation phase of

about 5 ns of simulation, which encompasses: a) short CPT dynamics of water molecules

with the protein atoms fixed to eliminate the possible potential strains in the water box,

b) slow release of the protein atoms by imposing decreasing elastic restraints and c)

very slow heating of the systems to the final simulation temperature (310 K) using a

gradient temperature ramp. We followed the evolution of the systems during the prepa-

ration phase to check for the fluctuations of the different energies –e.g. the potential,

kinetic and total energies– and the duration of the preparation (5 ns) was set in conse-

quence to guarantee the stabilization of all the system variables. Also, during the slow

heating temperature ramp step, we also checked in the final step that the temperature

of the systems was stabilized at the desired temperature. Then, the production MD sim-

ulations were run for each mutant, in a production phase of 20 ns using NAMD179 and

the CHARMM180 force field. The simulations were run using Langevin Dynamics, with

periodic boundary conditions and Particle Mesh Ewald (PME) for modeling long-range

electrostatic interactions with a cutoff distance of 14 Å. The Nosé-Hoover thermostat

was used for pressure coupling of the system and the friction coefficients of atoms to

be used in the Langevin formulations were set to 0.5 and 60 ps−1 for protein atoms

and water molecules and ions respectively. All the simulations were run mainly in the

Marenostrum Supercomputer, and also in the CaesarAugusta and Terminus clusters. The

trajectories were analyzed with VMD178 and a set of ad hoc TCL and Perl scripts.

4.5.3 Principal Component Analysis of MD Trajectory Data

Principal Components Analysis (PCA) is a procedure from the field of multidimen-

sional statistics based on performing a linear transformation of data, very useful for

capturing the correlations among variables and significantly reducing the number of

degrees of freedom, and at the same time hierarchically decomposing the variance in

data. This technique has been extensively used for analyzing MD trajectory data aim-

ing at describing the ‘essential dynamics’132,139–142, and to underscore the motions that

determine the characteristics of the conformational ensemble of the system. The proce-

dure for performing PCA on MD data starts by removing the translational and rotational
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components of movement throughout the trajectory, thus commonly it is necessary to

align all the snapshots using one of the available methodologies for finding the best

solution to transforming structural data181. Then, the trajectory is centered to the refer-

ence structure Sref –e.g. the initial or an average structure can be used– by subtracting

the reference structure to the aligned snapshots and it is represented as a matrix of

the type (Tc = [3N × F ]), on which the rows are the coordinates of the N residues

of the system, and the columns the number of frames or snapshots F of the trajectory.

Subsequently, the covariance or correlation matrix is calculated from the product of the

trajectory matrix by its transpose (Σ = 1
3N Tc ·T

T
c ), which has the dimensions [3N ×3N ].

The eigenvalue decomposition of the covariance matrix renders a set of eigenvalues

and orthogonal eigenvectors –i.e. 3N eigenvectors result from the matrix decomposi-

tion if F > 3N , but there are six zero eigenvectors for the translational and rotational

movements which are excluded from the subsequent analyses– organized in the form

(Λ = V T · Σ · V ), where Λ is the diagonal matrix of the eigenvalues (λ1, λ2, . . . , λ3N−6)

and V is the matrix of the 3N − 6 eigenvectors paired to the eigenvalues. The eigenval-

ues are sorted in descending order with respect to the amount of variance of the original

data described by the pairing eigenvectors.

After obtaining the eigensystem from the covariance matrix as described above, it is

possible to take advantage of the significant reduction of the multidimensionality of data

–e.g. usually just a few eigenvectors are enough for describing most of the variance (see

Appendix Figure G.1), and in practice there is no need to work with all the eigenvectors,

but to retrieve the number of eigenvectors sufficient to describe, for instance, 90 or 95%

of the total variance in the system. One of the possibilities is to project the coordinates

in the cartesian space coming from the simulation into the eigenspace, which is known

as the Principal Components representation. Following the symbology described above,

the structure at time Sti represented as a vector of the type (Sti = [1 × 3N ]) can be

projected into the Principal Components space according to (Pti = Sti ·V ), resulting in a

vector of scalar values of the projections (p1, p2, . . . , p(3N−6)) of the structure at timestep

ti into the eigenvectors (v1, v2, . . . , v(3N−6)). Hence, the projections of all the snapshots

in a trajectory are obtained by multiplying the transpose of the trajectory matrix and the

matrix of eigenvectors (P = T T
c · V ).

Sti = Sref + p1 · v1 + p2 · v2 + . . .+ p(3N−6) · v(3N−6) (4.1)

As shown in Equation 4.1132, the projections in the PC space are the weights for

scaling the pairing eigenvectors for regenerating the coordinates of structure Sti , by

adding the scaled eigenvectors to the reference structure Sref . Seen from another angle,

the higher the values of the elements in the vector resulting from the series of products
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(p1 · v1 + p2 · v2 + . . . + p(3N−6) · v(3N−6)) the higher the structural differences between

Sti and Sref . Formally, for a simulation in equilibrium, on which the conformational

ensemble must oscillate harmonically around the reference structure, the geometrical

representation expected for the distribution of the projections must be a set of ellipsoids

in the 3N − 6 dimensions. This can be deduced from the analysis of the Probability

Density Function of Multivariate Normal Distributions:

f(x, y) =
1√

(2π)k|Σ|
exp(−1

2
(x− µ(x))Σ(y − µ(y))T ) (4.2)

where the Moment Generation Function is the exponential element, and defines the ge-

ometrical ellipsoidal representations for independent variables, each distributing fol-

lowing a normal distribution. In this equation, the (x{y} − µ(x{y})) parameters cor-

respond to the dispersion of the distribution in the x{y}-plane. In the case of the

eigensystems generated from PCA, the eigenvectors are orthogonal, thus the projec-

tions in these eigenvectors should distribute as Multivariate Normal Distributions as

described above in a simulation in equilibrium. Specifically, in the case of the eigen-

system of a simulation, the Moment Generation Function in Equation 4.2 is generated

from (T T
c · Λ · V ), which results in a matrix of the projections in each PC scaled by

the eigenvalues (λ1p1, λ2p2, . . . , λ(3N−6)p(3N−6)) in each frame fi –i.e. with dimensions

[F × (3N − 6)]. In this representation the λi is the factor of proportionality with the

square of the length –i.e. dispersion– of the distribution in this component –i.e. the

structural differences among the snapshots and the reference structure– and the pro-

jections are the variables determining the Gaussian behavior along PCi. Accordingly,

a deviation from this geometrical behavior can be an indicator of perturbations in the

system, and the amount of this deviation as estimated from the projections can be taken

as a quantitative measure of the perturbations.

We also carried out a procedure for quantitatively compare the PCA subspace ex-

plored by different mutants and the wild-type LA5 domain. In order to do so, we con-

catenated different subsections of all the trajectories –e.g. the complete, last 10 and 5

ns– into meta-trajectories using the VMD178 CATDCD utility. After doing so, we recalcu-

lated the complete eigensystems for each meta-trajectory and obtained the projections of

the frames of each independent simulation in the principal components using the meta-

trajectory eigensystem. This is necessary because when comparing essential subspaces

from different simulations, the subspace metrics are dependent on the dimensions of

each specific subspace and the dimensions of the full vector subspace143 –i.e. the PCA

analysis from different simulations renders a different set of eigenvectors (in number

and orientation) and a different set of eigenvalues (different percentage of variance de-

scribed by each mode). By using this approach it is possible to put all the different
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simulations in a common PC space, and obtain a single set of eigenvectors for the com-

plete system on which any independent trajectory can be easily projected into. After

performing this procedure we intended to assess quantitatively the effect of mutations

on the structure of the LA5 domain by calculating the distance among the subspace ex-

plored by each mutant and the wild-type domain. In order to do so, we utilize a metric

routinely used in the field of multivariate statistics which is the Mahalanobis distance158

(MDpp′), which in contrast to the classic Euclidean distance, accounts for the correla-

tions on data and is independent of data transformations. In the specific case of PCA,

the Mahalanobis distance between a pair of points p and p′ in the PC space is defined in

Equation 4.3:

MDpp′ =

√√√√ N∑
i=0

(projpi − projp′i)
2

λi
(4.3)

on which projp{p′}i are the corresponding projections in the N -dimensional PCA space,

and λi is the corresponding eigenvalue for the PCi. By using MDpp′ it is possible to

make a more realistic assessment of the distance among points in the PCA space, by

normalizing the contributions of all the PCs according to the percentage of variance the

pairing eigenvector describes, out of the total variance in the system.

For obtaining the mean distance among trajectories there is an additional problem in

our case, which is related to the fact that for some mutants there is a significant deviation

from the ellipsoidal behavior expected for simulations in equilibrium as described above.

In those cases, obtaining the mean distance between a pair of simulations is rather com-

plicated because non compliance to the ellipsoidal behavior makes it impossible to use

the mean of the projections in the N -dimensional distribution. Thus, in this case, we

set a resampling strategy to overcome these drawbacks and make it possible to estimate

the real average distance between whichever two trajectories, notwithstanding whether

they follow a Multivariate Normal Distribution. Specifically, for each pair of simulations,

we resampled with replacement a subset of snapshots –e.g. 5 or 2.5 ns depending on

the meta-trajectory– from each trajectory, and calculated MDpp′ for all possible pairs

of points in the N -dimensional PCA space –e.g. 20–25 eigenvectors. We repeated this

step 105 times for each pair of simulations and from that exhaustive subspace compari-

son, we obtained in all cases normal distributions for the Mahalanobis distances among

points in the trajectories, with rather low standard deviations. From this comparison

we obtained the mean MDT1,T2 among whichever two trajectories. After calculating the

distance matrix among trajectories according to the procedure described above, we per-

formed a clustering –i.e. using a complete-link clustering procedure– of the trajectories

according to the PCA subspace explored in each case. All the manipulation of MD data

for PCA analysis was performed with a set of ad hoc TCL and Perl scripts, alongside with
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the package PCAZIP‖. We compressed all the trajectories using PCAZIP, taking into con-

sideration only the backbone atoms of the LDL-r LA5 domain and retrieving in each case

the number of eigenvalues and eigenvectors sufficient to describe 95% of the total vari-

ance in the system. Using one of the tools from the PCAZIP package we then extracted

all the metrics and data used in the statistical analyzes in our study –e.g. eigenvectors,

projections, etc. The processing of PCA data, and all the resampling, clustering and

statistical analyses were done in the R statistical package182 with a group of ad hoc R

scripts.

4.5.4 Estimating Local Instability by Comparing Dihedral Angles using the

Jensen-Shannon Distance

The trends of the distributions of φ and ψ angles of an amino acid during a MD sim-

ulation can be used as an indirect measure of residue local instability. When measured

in a simulation perturbed in some way –e.g. by introducing a mutation101 or run in

potential accelerated conditions144– local instability estimates can be approximated by

comparing the fluctuations of the dihedral angles of a residue or residues in the per-

turbed simulation, with a reference simulation in equilibrium. In our study, we carried

out an evaluation of the changes in the local stability of the calcium binding box caused

by mutations in the LA5 domain. For each mutant, we followed the temporal evolution

throughout the MD simulations of the φ and ψ angles of the six residues of the calcium

binding box (see Figure 4.2), which were calculated using the program DSSP183,184 for

each frame in the trajectory. Then, the distribution of each dihedral angle was com-

pared with the corresponding one in the simulation of the wild-type LA5 domain, using

the Jensen-Shannon Distance153. In order to guarantee the statistical robustness of our

estimations, as well as to make a thorough comparison of the distributions and to avoid

the bias of the results caused by outliers, we set up a bootstrapping assay for comparing

the distributions of angle fluctuations. This is of great importance because, although

in the simulations in equilibrium the dihedral angles distribute normally for the coordi-

nating residues (not shown), in some mutants the perturbations caused could result in

non-normal distributions, with a significant number of outliers. In that sense, it is im-

portant to choose a metric independent of the characteristics of the distributions to be

compared, such as the Jensen-Shannon Distance. In the jackknife bootstrapping assay,

from the MD simulation of each mutant we randomly extract with replacement 103 snap-

shots, which correspond to 5 ns of simulation, and compare the random distributions

of the two dihedral angles of the six coordinating residues, with the corresponding ran-

dom distributions obtained from the simulation of the wild-type LA5 domain, following

‖PCAZIP repository: http://holmes.cancres.nottingham.ac.uk/pcazip/

http://holmes.cancres.nottingham.ac.uk/pcazip/
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a similar procedure as described above. We repeated these steps 105 times, for each mu-

tant, and then calculated the average Jensen-Shannon Distance from the bootstrapped

sets for the φ and ψ angles of each binding box residue.

The Jensen-Shannon Distance153 (JSdist(P1, P2)) is a metric of the statistical differ-

ence among probability distributions (P1 and P2), and is the square root of the Jensen-

Shannon Divergence148–152 (JSdiv(P1, P2)), which is a special case of the λ-divergence

(λdiv(P1, P2)), defined in Equation 4.4:

λdiv(P1, P2) = λKLdiv(P1, λP1 + (1− λ)P2) + (1− λ)KLdiv(P2, λP1 + (1− λ)P2) (4.4)

on which (KLdiv(P1, P2) =
∑N

i=1 log(P1i/P2i)P1i) is the Kullback-Leibler Divergence147.

The λ-divergence is a generalization of the original symmetrized Kullback-Leibler Diver-

gence, and in the case of (λ = 1/2), it transforms into the Jensen-Shannon Divergence,

as defined in Equation 4.5:

JSdiv(P1, P2) =
1

2
KLdiv(P1,M) +

1

2
KLdiv(P2,M) (4.5)

on which M is the average of the probability distributions P1 and P2. The JSdiv has

many important characteristics, such as it is symmetrical and smoother in comparison

to KLdiv, and also it is bounded (0 ≤ JSdiv(P1, P2) ≤ 1) provided that (log2) is used for

calculating theKLdiv. Therefore, the JSdist also takes values between [0, 1] and formally

corresponds to the expected information gain when deciding (by means of a sample of

length 1) between two distributions, given a uniform prior over the distributions153.

Besides being a special case of the symmetrized Kullback-Leibler Divergence, the JSdiv
and in consequence the JSdist are additive, which make them very useful for obtaining

cumulative divergence estimates by means of the linear combination of divergence or

distance estimates for the probability distributions of independent variables. We also

assessed the statistical differences of the binding box instability among different sub-

groups of mutants –e.g. mutants not involving residues from the calcium binding box or

disulfide bridges (Not BB/SS), mutants in residues from the disulfide bridges (SS) and

mutants in residues from the calcium binding box (BB)– with the JSdist value obtained

for the inner comparison of the wild-type with itself, used as control in the bootstrapping

assay (Figure 4.10). We used the non-parametric Mann-Withney-Wilcoxon rank-sum test

with a significance ℘ − value < 0.01 and we found significant differences in all cases,

with an upper limit for the comparisons of (℘ − value < 2 × 10−3) obtained for the

subgroup (Not BB/SS). All the bootstrapping and statistical analyses were implemented

in R182 with a group of ad hoc R scripts.
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CHAPTER 5

Conclusiones y Perspectivas
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5.1 Conclusiones

Los resultados de las investigaciones que se han realizado para alcanzar los objetivos

de esta Tesis Doctoral, permiten extraer las siguientes conclusiones:

A nivel de Secuencia de Protéınas: Predicción de secuencias priónicas basada en

consideraciones composicionales en todos los proteomas completos anotados en bancos

de datos

1. Es posible modelar las caracteŕısticas composicionales de secuencias priónicas co-

nocidas para identificar una gran cantidad de protéınas con posible actividad

priónica en genomas completos de organismos de todas las clasificaciones ta-

xonómicas

2. Las protéınas con posible actividad priónica se distribuyen desigualmente en dife-

rentes clasificaciones funcionales, están vinculadas a procesos biológicos diversos,

regulan diferentes funciones moleculares y se localizan en diferentes comparti-

mentos celulares en diferentes clasificaciones taxonómicas y grupos de organismos

3. Las protéınas con posible actividad priónica regulan importantes procesos y fun-

ciones moleculares mediadas por la formación de complejas redes de interacción

entre biomoléculas, como la regulación de la expresión génica, interacción entre

protéınas y ADN o ARN, o la formación de biofilmes extracelulares en microorga-

nismos
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A nivel de Estructura de Protéınas: Identificación de regiones de inestabilidad con-

formacional en protéınas utilizando información geométrica y f́ısico-qúımica de interfa-

ces enterradas

4. Es posible identificar regiones localmente inestables de las protéınas a partir del

análisis de ficheros de coordenadas atómicas

5. Las regiones localmente inestables están asociadas a interfases con alta polaridad

y baja densidad de empaquetamiento

6. La conservación de estas propiedades estructurales es compatible con variaciones

a nivel de secuencia, lo cual puede estar relacionado con mecanismos molecula-

res para el desarrollo de nuevas funciones conservando una dinámica local carac-

teŕıstica

A nivel de Dinámica de Protéınas: Predicción de fenotipos patológicos asociados a

enfermedades conformacionales causados por Mutaciones de Nucleótido Simple utili-

zando Dinámica Molecular: caso de estudio “Hypercolesterolamia Familiar”

7. Las simulaciones de Dinámica Molecular permiten analizar la inestabilización es-

tructural causada por mutaciones en protéınas, permitiendo incluso estudiar todas

las posibles mutaciones generadas por SNPs en protéınas pequeñas o módulos de

plegamiento autónomo

8. De todas las posibles mutaciones del dominio LA5 del receptor de LDL, con cambio

de un solo amino ácido, aproximadamente el 50 % son mutaciones que desestabi-

lizan la estructura del dominio

9. Casi la totalidad de las mutaciones descritas como causantes de la Hypercoles-

terolamia Familiar corresponden a mutantes que desestabilizan la estructura del

dominio o a mutaciones en residuos del sitio de interacción con otras protéınas

5.2 Perspectivas

En los proyectos que forman parte del cuerpo de esta Tesis Doctoral, nuestros resul-

tados espećıficos podŕıan contribuir de manera significativa en la continuación de estos

proyectos en nuestro propio grupo, o incluso en el desarrollo de proyectos similares

en otros grupos de investigación. Las posibles perspectivas futuras de nuestro trabajo

podŕıan incluir:
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A nivel de Secuencia de Protéınas: Predicción de secuencias priónicas basado en

consideraciones composicionales en todos los proteomas completos anotados en bancos

de datos

• El desarrollo de nuestra base de datos con predicciones de protéınas con posible

actividad priónica en los genomas completos de todos los organismos anotados en

bancos de datos de secuencias biológicas, aśı como la libre distribución de nues-

tro algoritmo, podŕıa contribuir a la realización de estudios a nivel genómico del

papel de los priones en el funcionamiento celular y en el desarrollo de enferme-

dades causadas por estas protéınas en uno o varios organismos, o en differentes

clasificaciones taxonómicas

• La utilización de nuestra bases de datos de posibles priones o de nuestro método

de predicción podŕıa ser de gran interés para experimentalistas interesados en

identificar y comprobar experimentalmente la prionogenicidad de una o varias de

estas protéınas en uno o varios genomas. De hecho, en estos momentos tenemos

una colaboración en la cual estamos intentando comprobar in vitro e in vivo el

carácter prionogénico de varias posibles protéınas priónicas no descritas hasta la

fecha en bacterias y humano, y también tenemos información de proyectos en

otros grupos de investigación intentando comprobar experimentalmente nuestras

predicciones en varios genomas de plantas

A nivel de Estructura de Protéınas: Identificación de regiones de inestabilidad con-

formacional en protéınas utilizando información geométrica y f́ısico-qúımica de interfa-

ces enterradas

• Una de las principales ventajas de nuestro método, a diferencia de otros dispo-

nibles, es que permite la rápida identificacion de regiones de inestabilidad local,

utilizando pocos recursos computacionales. Por esta razón, podŕıa ser fácilmente

utilizado para analizar todas las protéınas de una familia de las cuales se disponga

de información estructural, para estudiar cómo está codificada la información que

determina la dinámica intŕınseca de las protéınas

• En este sentido, tenemos un proyecto en curso para el desarrollo de una base de

datos con predicciones de regiones de inestabilidad local para todas las protéınas

de un solo dominio de estructura conocida. Esta base de datos permitiŕıa hacer

estudios de la relación entre inestabilidad conformacional y función, y de cómo

las protéınas pertenecientes a diferentes familias funcionales o clasificaciones de

plegamiento han diversificado sus funciones a lo largo de la evolución, conservan-

do o variando simultáneamente los determinantes estructurales de la inestabilidad

conformacional
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A nivel de Dinámica de Protéınas: Predicción de fenotipos patológicos asociados a

enfermedades conformacionales causados por Mutaciones de Nucleótido Simple utili-

zando Dinámica Molecular: caso de estudio “Hypercolesterolemia Familiar”

• Los resultados generados en este estudio podŕıan ser de gran ayuda para estable-

cer criterios concretos que relacionen los distintos tipos de mutaciones y el con-

texto estructural en donde ocurren, con un fenotipo patológico en enfermedades

conformacionales. Dada la abundancia de estos dominios de interacción (LA) en

muchas otras protéınas y receptores de membrana, involucrados en muchos im-

portantes procesos de regulación, transducción de señales y metabolismo de com-

puestos, nuestros resultados podŕıan servir no solo de referencia de comparación

para otros dominios LA de secuencia y función diferente, sino como inspiración

para desarrollar proyectos similares para el estudio de otras protéınas espećıficas

desde el punto de vista computacional

• Dada la gran dificultad de realizar estudios mutacionales masivos para estudiar

in vitro el efecto de todas las posibles mutaciones en este u otros dominios de

interacción, nuestro método podŕıa servir como una herramienta de ‘diagnóstico

anticipado’ para identificar las posibles mutaciones que con mayor probabilidad

puedan ser las causantes de la enfermedad, de entre todas las posibles. De esta

manera se reduciŕıa significativamente el número de ejemplos a ser estudiados en

detalle en el laboratorio para intentar relacionar mutación y fenotipo

• El gran desarrollo de diferentes métodos computacionales para alcanzar mayores

tiempos de simulación, aśı como la creciente disponibilidad de plataformas para

realizar simulaciones de Dinámica Molecular online sin la necesidad de forma-

ción especializada, podŕıa abrir las puertas para realizar rutinariamente estudios

similares al nuestro en el futuro, para evaluar el efecto de las mutaciones en la

estabilidad conformacional de una protéına, utilizando solamente información es-

tructural, de manera no sesgada y sin asunciones evolutivas o funcionales previas



APPENDIX A

Representation of Prion Predictions

in Gene Ontology Classifications

We tested the significance of the number of predictions found in all taxa according

to the belonging of proteins bearing putative PrDs to different classifications in Gene

Ontology –i.e. Molecular Function, Biological Processes and Cellular Component. We

compared the abundance of predictions in a given class with the expected frequency

obtained by randomly selecting a set of the same size in the proteomes over 1 × 106

randomizations. In each taxon we represent the z−score for a number of representative

GO terms. The GO terms description might be trimmed in some cases to fit in the chart.

Given the large quantity of data included in these charts, they have to be considerably

reduced to fit in the page margins of this document. In each case, we provide a link

to a high quality figure for a closer look into our results (Figure A.1 (High-Res Image);

Figure A.2 (High-Res Image); Figure A.3 (High-Res Image)).
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FIGURE A.1: Significance Over- or Under-representation of PrD Predictions According
to Gene Ontology Molecular Function Classifications
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FIGURE A.2: Significance Over- or Under-representation of PrD Predictions According
to Gene Ontology Biological Processes Classifications
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FIGURE A.3: Significance Over- or Under-representation of PrD Predictions According
to Gene Ontology Cellular Component Classifications



APPENDIX B

Sequence Datasets

TABLE B.1: These 29 proteins were predicted as prions using a HMM model and were
then studied experimentally to test their aggregation propensity and prionogenicity in
a previous work. These sequences experimentally validated as real prions were used as
the positive training set for obtaining the amino acid propensities in prion domains in
our study

Gene Sequence

CYC8 YEAST QPNDQGNPLNTRISAQSANATASMVQQQHPAQQTPINSSA

TMYSNGASPQLQAQAQAQAQAQAQAQAQAQAQAQAQAQ

AQAQAQAQAQAQAQAQAHAQAQAQAQAQAQAQAQAQA

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQLQPLP

RQQLQQKGVSVQMLNPQQGQPYITQPTVIQAHQLQPFSTQ

AMEHPQSSQLPPQQQQLQSVQHPQQLQGQPQAQAPQPLIQ

HNVEQN

YBM6 YEAST SANDYYGGTAGEKSQYSRPSNPPPSSAHQNKTQERGYPPQQ

QQQYYQQQQQHPGYYNQQGYNQQGYNQQGYNQQGYNQ

QGYNQQGYNQQGHQQPVYVQQQPPQRGN

CBK1 YEAST YNSSTNHHEGAPTSGHGYYMSQQQDQQHQQQQQYANEM

NPYQQIPRPPAAGFSSNYMKEQGSHQSLQEHLQRETGNLGS

GFTDVPALNYPATPPPHNNYAASNQMINTPPPSMGGLYRHN

NNSQSMVQNGNGSGNAQLPQLSPGQYSIESEYNQNLNGSS

SSSPFHQPQTLRSNGSYSSGLRSVKSFQRLQQEQENVQVQQ

QLSQAQQQNSRQQQQQLQYQQQQQQQQQQQHMQIQQQ

QQQQQQQQQSQSPVQSGFNNG

Q6Q7I0 YEASX SDSNQGNNQQNYQQYSQNGNQQQGNNRYQGYQAYNAQA

QPAGGYYQNYQGYSGYQQGGYQQYNPDAGYQQQYNPQGG

YQQYNPQGGYQQQFNPQGGRGNYKNFNYNNNLQGYQAGF

QPQSQGMSLNDFQKQQKQ

Continued on next page. . .
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TABLE B.1: (continued)

Gene Sequence

RNQ1 YEAST SGSGGGSQSMGASGLAALASQFFKSGNNSQGQGQGQGQG

QGQGQGQGQGSFTALASLASSFMNSNNNNQQGQNQSSGG

SSFGALASMASSFMHSNNNQNSNNSQQGYNQSYQNGNQN

SQGYNNQQYQGGNGGYQQQQGQSGGAFSSLASMAQSYLG

GGQTQSNQQQYNQQGQNNQQQYQQQGQNYQHQQQGQ

QQQQGHSSSFSALASMASSYLGNNSNSNSSYGGQQQANEY

GRPQQNGQQQSNEYGRPQYGGNQNSNGQHESFNFSGNFS

QQNNNGNQNRY

GPR1 YEAST NNNNNDNDNDNNNSNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNSNNIKNNVDNNNTNPADNIPTLSNEAFTPSQQ

FSQERVNNNADRCENSSFTNVQQHFQAQTYKQ

NEW1 YEAST GSNNASKKSSYQQQRNWKQGGNYQQGGYQSYNSNYNNYN

NYNNYNNYNNYNNYNKYNGQGYQKSTYKQSAVTPNQSG

PUF2 YEAST NSYFNNQQVVYSGNQNQNQNGNSNGLDELNSQFDSFRIAN

GTNLSLPIVNLPNVSNNNNNYNNSGYSSQMNPLSRSVSHNN

NNNTNNYNNNDNDNNNNNNNNNNNNNNNNNNNNNSNN

SNNNNNNDTSLYRYRSYGY

NRP1 YEAST SGNNNIAPNYRYNNNINNNNNNINNMTNNRYNINNNINGN

GNGNGNNSNNNNNHNNNHNNNHHNGSINSNSNTNNNN

NNNNGNNSNNCNSNIGMGGCGSN

SWI1 YEAST DFFNLNNNNNNNNTTTTTTTTNNNNTNNNNTNNNNNPAN

NTNNNNSTGHSSNTNNNTNNNNTNTGASGVDDFQNFFDP

KPFDQNLDSNNNNSNSNNNDNNNSNTVASSTNFTSPTAVV

NNAAPANVTGGKAANFIQNQSPQFNSPYDSNNSNTNLNSLS

PQAILAKNSIIDSSNLPLQAQQQLYGGNNNNNSTGIANDNVI

TPHFITNVQSISQNSSSSTPNTNSNSTPNANQQFLPFNNSAS

NNGNLTSNQLISNYAASNSMDRSSSASNEFVPNTSDNNNNS

NNHNMRNNSNNKTSNNNNVTAVPAATPANTNNSTSNANT

VFSERAAMFAALQQKQQQRFQALQQQQQQQQNQQQQNQ

QPQQQQQQQQNPKFLQSQRQQQQ

SAP30 YEAST QGGGYASNNNGSCNNNNGSNNNNNNNNNNNNNSNNSNN

NNGPTSSGRTNGKQRLTAAQQQY

GTS1 YEAST QQQYAMAMQQQQQQQQQLAVAQAQAQAQAQAQAQVQA

QAQAQAQAQAQAQQIQMQQLQMQQQQQAPLSFQQMSQG

GNLPQGYFYTQ

Continued on next page. . .
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TABLE B.1: (continued)

Gene Sequence

YP022 YEAST QQAQQPQQVQQSQQPQQIQQLQQLQFPQQLRAPLQQPML

QQQMHPQQASPTFPSYDPRIRNNGQNGNQFFNLIFDNRTG

VNGFEVDAANNNGNGNDQNMNINPAVQQQRYQDRNFASS

SYQQPLQPLTQDQQQEQYFQQQKLAQQQQQQQQQQQQQ

QQLPPQN

MED3 YEAST QAQAQAQAQAQVYAQQSTVQTPITASMAAALPNPTPSMINS

VSPTNVMGTPLTNMMSPMGNAYSMGAQNQGGQVSMSQF

NGSGNGSNPNTNTNSNNTPLQSQLNLNNLTPANILNMSMN

NDFQQQQQQQQQQQQPQPQYNMNMGMNNMNNGG

RLM1 YEAST GPNSAKPGNTNNPGTFPPVQTAVNNGNSSNISSTNNTNNN

NNNNNNNSSNNNSNNGNDNNSNNSNNSYYSNN

LSM4 YEAST QQINSNNNSNSNGPGHKRYYNNRDSNNNRGNYNRRNNNN

GNSNRRPYSQNRQYNNSNSSNINNSINSINSNNQNMNNGL

GGSVQHHFNSSSPQKVEF

YBI1 YEAST QSSNSFQSHNAPSHQSNYHPHYNHMKYNNTGSYYYYNNN

NNSSVNPHNQAGLQSINRSIPSAPYGAYNQNRANDVPYMNT

QKKHHRFSANNNLNQQKYKQYPQYTSNPMVTAHLKQTYPQ

LYYNSNVNAHNNNNNSNNNNNNNNNSNNNNNLYNQTQF

STRYFNSNSSPSLTSSTSNSSSPYNQS

PUB1 YEAST NNNNNNYQQRRNYGNNNRGGFRQYNSNNNNNMNMGMN

MNMNMNMNNSRGMPPSSMGMPIGAMPLPSQGQPQQSQT

IGLPPQVNPQ

HRP1 YEAST QQKSSNNGGNNGGNNMNRRGGNFGNQGDFNQMYQNPM

MGGYNPMMNPQAMTDYYQKMQEYYQQMQKQTGMDYTQ

MYQQQMQQMAMMMPGFAMPPNAMTLNQPQQDSNATQG

SPAPSDSDNNKSNDVQTIGNTSNTDSGSPPLNLPNGPKGPS

QYNDDHNSGYGYNRDRGDRDRNDRDRDYNHRSGGNHRR

NGRGGRGGYNRRNNGYHPYNR

MRN1 YEAST MVVSYNNNNNNNNNNNNNNISNNNNNNNMFPPFPSSDDF

AMYQQSSSSGPYQETYASGPQNFGDAVYPMNGN

Continued on next page. . .
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TABLE B.1: (continued)

Gene Sequence

MOT3 YEAST NADHHLQQQQQQRQQHQQQQHQQQQHQHQHQQQQHT

ILQNVSNTNNIGSDSLASQPFNTTTVSSNKDDVMVNSGAREL

PMPLHQQQYIYPYYQYTSNNSNNNNVTAGNNMSASPIVHN

NSNNSNNSNISASDYTVANNSTSNNNNNNNNNNNNNNNI

HPNQFTAAANMNSNAAAAAYYSFPTANMPIPQQDQQYMFN

PASYISHYYSAVNSNNNGNNAANNGSNNSSHSAPAPAPGPP

HHHHHHSNTHNNLNNGGAVNTNNAPQHHPTIITDQFQFQ

LQQNPSPNLNLNINPAQ

KSP1 YEAST GFSNNNNKQYRQNRNYNNNNNNSNNNHGSNYNNFNNGN

SYIKGWNKNFNKYRRPSSSSYTGKSPLSRYNMSYNHNNNSSI

NGY

NUP59 YEAST FGIRSGNNNGGFTNLTSQAPQTTQMFQSQSQLQPQPQPQP

QQQQQHLQFNGSSDASSLRFGNSLSNTVNANNYSSNIGNN

SINNNNIKNGTNNISQHGQGNNPSWVNN

PDR1 YEAST YAQPTNGQNNTQVQSNKPINAQQQIPTSVQVPFMNTNEINN

NNNNNNNNKNNINNINNNNSNN

URE2 YEAST MNNNGNQVSNLSNALRQVNIGNRNSNTTTDQSNINFEFST

GVNNNNNNNSSSNNNNVQNNNSGRNGSQNNDNENNIKNT

LEQHRQQQQ

NGR1 YEAST QQQQQQQLQQQHQQLDQEDNNGPLLIKTANNLIQNNSNM

LPLNALHNAPPMHLNEGGISNMRVNDSLPSNTYNTDPTNTT

VFVGGLVPKTTEFQLRSLFKPFGPILNVRIPNGKNCGFVKFEK

RIDAEASIQGLQGFIVGGSPIRLSWGRPSSSNAKTNSTIMGAS

QYMSSNGLRAPSAASSVDNSKQILEQYAEDKRRLFLHQQQQ

QQQQQQQDGNFSMEQMAHNNYYNYNNYDYHRNKNGSHS

DLVNLQRSNVPYMQEDGALYPHQYSSPSYSLHPTGNQFSNA

TNNLPQFGNAMSISMQLPNGNSNKTASSMNTNPNTNMIMN

SNMNMNMNVNPVPYGMGNGANMY

RBS1 YEAST QVNKPQQQFYDSRRGRGGRRRGTNNYKDAYRGQSRRNKE

NGGYQSGYSSPYLVYPPPQMGGNSLPTYPLMYNPAGPAPGP

APSPMVMGNNTVFMNPYMYNMNPQGSCSFGTPIPMYPPYQ

YQYQYQYNTQYHSGPYSNTPSYNSNNYTRSSANKYHHFQG

KNSYSG

Continued on next page. . .
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TABLE B.1: (continued)

Gene Sequence

NSP1 YEAST NFNTPQQNKTPFSFGTANNNSNTTNQNSSTGAGAFGTGQS

TFGFNNSAPNNTNNANSSITPAFGSNNTGNTAFGNSNPTSN

VFGSNNSTTNTFGSNSAGTSLFGSSSAQQTKSNGTAGGNTF

GSSSLFNNSTNSNTTKPAFGGLNFGGGNNTTPSSTGNANTS

NNLFGATANAN

GLN3 YEAST QYNHGSLGNSVSKSSLFPYNSSTSNSNINQPSINNNSNTNAQ

SHHSFNIYKLQNNNSSSSAMNITNNNNSNNSNIQ

TABLE B.2: These proteins were predicted using a HMM model and were then studied
experimentally to test their aggregation propensity and prionogenicity in a previous
work. These 18 proteins resulted as negatives in all four experimental tests and in
accordance were used as the negative dataset for estimating the predictive performance
of our methodology

Gene Sequence

ENT2 YEAST NSQGTGYKQVTNEPKNNPFLSNQYTGLPSTNIVPTQTGYGF

GNQPQSPPTNSPQQNPTGISYSQPQQQQQPQQQPQYMQN

FQQQQPQYAQNFQQQPQYTQNYQQQPQYIQPHQQQQQQ

QQQQQQQQGYTPDQG

MCM1 YEAST GNDMQRQQPQQQQPQQQQQVLNAHANSLGHLNQDQVPA

GALKQEVKSQLLGGANPNQNSMIQQQQHHTQNSQPQQQQ

QQQPQQQMSQQQMSQHPRPQQGIPHPQQSQPQQQQQQQ

QQLQQQQQQQQQQPLTGIHQPHQQAFANAASPYLNAEQN

AAYQQYFQEPQQGQY

NAB2 YEAST NAQSLGQSDIAQQQQQQQQQQQPDIAQQQPQQQPQQQP

QQQPQQQPQQQPQQQPQQQPQQQPQLQPLQPQLGTQNA

MQTDAPATPSPISAFSGVVNAAAPPQFAPVDNSQRFTQRGG

GAVGKNRRGGRGGNRGGRNNNS

TAF12 YEAST QESTQQQRVQQQRVQQQQQQQQQQQQQQQQQQQQQQ

QRQGQNQRKISSSNSTEIPSVTGPDALKSQQQQQN

KC11 YEAST NKQLQMQQLQMQQLQQQQQQQQYAQKTEADMRNSQYK

PKLDPTSYEAYQHQTQQKYLQEQQKRQQQQKLQEQQLQEQ

QLQQQQQQQQQLRATGQPPSQPQAQTQSQQFGARYQPQQ

Q

Continued on next page. . .
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TABLE B.2: (continued)

Gene Sequence

MED2 YEAST NNINNNINSTKNGKDNNNESNKNNNGDEKNKNNNEDNEN

NNNSSEKNNNNNNNNNNNNDDNGNNNNNNSGNDNNNT

TNNDSNNKNNS

AKL1 YEAST QQQGQRYQQAQNQTGTQGNTFPDESQYQSRVEQQQQQQ

DQPKGPANYSQRNFYTGRDRSNKPMQLGGTIAGDSGNRRV

NFQNISQNYATNSQSGYLPSQNSPAIPMVRPVISMNQQQAQ

QIQAQQLQAQQMQAKQQMQAKQQMQVQQQLQVQQQMQ

IQNANNNG

PUF4 YEAST QNHMPLMNSANNKHHGRNNNSMSSHNDNDNIGNSNYNN

KDTGRSNVGKMKNMKNSYHGYYNNNNNNNNNNNNNNNS

NATNSNS

PCF11 YEAST QVQMQLRQVFSQDQQVLQERMRYHELQQQQQQQQQQQQ

QQQQQQQQYHETKDMVGSYTQNSNSAIPLFGNNSDTTNQ

QNS

SKG6 YEAST QPLNYQDQYQQQEQSPVYNGHTQYPGNGYSGNPQQQGYT

AQFVQNPQWYGVPTPQQQQHNHPQ

EPL1 YEAST IQHLQQQQQQQQQQQQQAQQQKQKSQNNNSNSSNSLKKL

NDSLINSEAKQNSSITQKNSS

SNF2 YEAST QFAAKQRQELQMQRQQQGISGSQQNIVPNSSDQAELPNNA

SSHISASASPHLAPNMQLNGNETFSTSAHQSPIMQTQMPLN

SNGGNNMLPQRQSSVGSLNATNFSPTPANNGENAAEKPDN

SNHNNLNLNNSELQPQNRSLQEHNIQDSNVMPGSQINSPM

PQQAQMQQAQFQAQQAQQAQQAQQAQQAQARLQQG

SCD6 YEAST GLGRGRGNYRGNRGNRGRGGQRGNYQNRNNYQNDSGAY

QNQNDSYSRPANQFSQPPSNVEF

YAK1 YEAST MNSSNNNDSSSSNSNMNNSLSPTLVTHSDASMGSGRASPD

NSHMGRGIWNPSYVNQGSQRSPQQQHQNHHQQQQQQQ

QQQQQNSQ

YL177 YEAST NNSSQKYYPQKQQQQQQQQQQQQQQSIFDPGRRSSYISDA

LIHGNAATQQPQYSQPVYINNNPSLQVPYTAPSEYTQQQQY

SSPFNARRNTQ

CAF40 YEAST MFSAQKPIYGNGAGVNMGGGGPSTNNPGSMSMPGVPTSM

GPGMNQQIPSGGPMLMGNTPNNNNSNENGENNGNNGNN

GGNDANATRNNPNMVNNRG

Continued on next page. . .
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TABLE B.2: (continued)

Gene Sequence

NRD1 YEAST QQYVQPMMQQPYGYAPNQPLPSQGPAAAAPPVPQQQFDPT

AQLNSLMNMLNQQQQQQQQS

PDC2 YEAST NNQNHLSMSQASHNPDYNSNHSNNAIENTNNRGSNNNNN

NNGSSNNINDNDSSVKYLQQNTVDNSTKTGNPGQPN





APPENDIX C

Scripts

CODE C.1: This ad hoc script comes with a man page (run

[./prion parse proteome.pl man] in a UNIX/Linux console) which explains

the functionality and parameters needed for running in a Linux environment and the

required libraries dependencies. It is designed to read genomes in a Swissprot format

and to run in a multicore environment to speed up the prediction in large protein

sequence sets, as those distributed in Uniprot. We only show some sections of the 500

lines of the original script. For a complete version please download it at the following

address: prion parse proteome.pl

229 my @seq_ids = keys %sequences;

230 my $total_sequences = scalar @seq_ids;

231 my $fragment_size = int ($total_sequences / $CORES);

232 my @threads;

233 for my $i (0 .. ($CORES - 1))

234 {

235 my @partial_array = splice (@seq_ids , 0, $fragment_size);

236 my $t = threads ->new(\& parse_proteome , \@partial_array);

237 push(@threads ,$t);

238 }

239 my $t = threads ->new(\& parse_proteome , \@seq_ids);

240 push(@threads ,$t);

241

242 my %cores;

243 my %organism_total_proteins;

244 foreach my $thread (@threads)

245 {

246 my @pack = @{$thread ->join};

247 my %partial_results = %{ $pack[0]};

248 my %partial_organism_total_proteins = %{$pack[1]};

249

250 while (my ($organism , $predictions_ref) = each (% partial_results))

251 {

252 $organism_total_proteins{$organism} +=

$partial_organism_total_proteins{$organism };

253 my @predictions;

254 while (my ($seq_id , $info_ref) = each (%{ $predictions_ref }))

255 {

256 my $score = $info_ref ->{’Score’};

257 my $core = $info_ref ->{’Seq’};

258 my $window_pos = $info_ref ->{’Window ’};

259 my $protein_id = $1 if ($seq_id =~ m/^>(\w+);/);

260
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261 push @predictions , "\t$protein_id\tWindow Position=

$window_pos; Score=$score | Prion Domain: $core\n";

262 }

263 push @{$cores{$organism}}, @predictions;

264 }

265 }

266

267 while (my ($organism , $predictions_ref) = each (%cores))

268 {

269 my @predictions = @{$predictions_ref };

270 my $proteins = $organism_total_proteins{$organism };

271

272 my $total_predictions = scalar (@predictions);

273 print PRED_FILE_FILTERED ">$organism: Total=$total_predictions\

n@predictions\n";

274 }

275

276 close (PRED_FILE_FILTERED);

277

278 #A subroutine to move a window along a sequence and report a score relative to

the prionogenicity of the stretch

279 sub parse_proteome

280 {

281 my $ids = shift;

282 my @identifiers = @{$ids};

283

284 my %cores;

285 my %organism_total_proteins;

286

287 foreach my $seq_id (@identifiers)

288 {

289 my $seq = $sequences{$seq_id };

290 next unless (length ($seq) >= $WINDOW);

291

292 my $organism = &get_organism($seq_id);

293 $organism_total_proteins{"$organism"}++;

294

295 my %results;

296 for my $i (0 .. (length ($seq) - $WINDOW))

297 {

298 my $domain = substr ($seq , $i, $WINDOW);

299 my @domain = split (//, $domain);

300

301 my $prolines = $domain;

302 $prolines =~ s/[^P]/-/g;

303 @prolines_number = $prolines =~ m/[P]/g;

304

305 my $domain_score = 0;

306 foreach my $aa (@domain)

307 {

308 $domain_score += $aa_scores{’PrD’}{$aa};

309 }
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CODE C.2: This ad hoc script (surface analyzer.pl) is designed and tested to run in

a UNIX/Linux environment and requires the previous installation of other third-party

software, such as NACCESS and CALC VOL for estimating the accessible surface areas

and atom packing, as described in the Methodology section. It is designed to read PDB

files along with a group of command line parameters defining the size of the probe used

to decompose the structure of the protein being analyzed. We only show some sections

of the 800 lines of the original script

574 sub compare_fragments

575 {

576 my ($chain_asa_ref , $fragment_asa_ref , $buried_file , $pymol_file) = @_;

577

578 my %chain_asa = %{ $chain_asa_ref };

579 my %fragment_asa = %{ $fragment_asa_ref };

580

581 my %polar_buried_residues;

582 my %volume_info;

583 my $fragment_polar_asa = 0;

584 my $fragment_apolar_asa = 0;

585 my $fragment_vol = 0;

586 my $theoretic_fragment_vol = 0;

587 my @intrafase_obj;

588 my @polar_intrafase_obj;

589 my @apolar_intrafase_obj;

590 while (my ($resnum , $resname_info_ref) = each (% fragment_asa))

591 {

592 while (my ($resname , $atom_info_ref) = each (%{ $resname_info_ref

}))

593 {

594 my @output;

595 my @atomnames;

596 my @polar_atomnames;

597 my @apolar_atomnames;

598 my $polar_asa_cum = 0;

599 my $apolar_asa_cum = 0;

600 my $vol_cum = 0;

601 my $theoretic_vol_cum = 0;

602 while (my ($atomname , $asa) = each (%{ $atom_info_ref }))

603 {

604 if ($fragment_asa{$resnum }{ $resname }{ $atomname} >

$chain_asa{$resnum }{ $resname }{ $atomname })

605 {

606 if ($polarities{$resname }{ $atomname} == 1

)

607 {

608 $polar_asa_cum += $asa;

609 push @polar_atomnames , $atomname;

610 push @{$polar_buried_residues{

$resname }{ $resnum}}, $atomname;

611 }

612 elsif ($polarities{$resname }{ $atomname}

== 0)

613 {

614 $apolar_asa_cum += $asa;
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615 push @apolar_atomnames , $atomname

;

616 }

617 my $volume = $pdb_vol_info{$resnum }{

$resname }{ $atomname };

618 my $theoretic_vol = $standard_vol{

$resname }{ $atomname };

619 $vol_cum += $volume unless ($volume == -1

.00);

620 $theoretic_vol_cum += $theoretic_vol

unless ($volume == -1.00);

621 push @output , "\t\t$atomname = ASA:

$fragment_asa{$resnum }{ $resname }{ $atomname }(ASA0:$chain_asa{$resnum }{ $resname

}{ $atomname }); Vol:$volume(Vol0: $theoretic_vol)\n";

622 push @atomnames , $atomname;

623 }

624 }

625 $fragment_polar_asa += $polar_asa_cum;

626 $fragment_apolar_asa += $apolar_asa_cum;

627 $fragment_vol += $vol_cum;

628 $theoretic_fragment_vol += $theoretic_vol_cum;

629 push @output , "\t\tPolar ASA = $polar_asa_cum | APolar

ASA = $apolar_asa_cum | Volume = $vol_cum | Standard Volume =

$theoretic_vol_cum\n";

630 if (scalar (@output) > 1)

631 {

632 my $corrected_resid = $resnum + $residue_offset;

633 print $buried_file "\t$resname -$corrected_resid :\

n";

634 foreach my $line (@output)

635 {

636 print $buried_file $line;

637 }

638 }

639 if (scalar (@output) > 1)

640 {

641 my $atomnames = lc join ("+", @atomnames);

642 my $polar_atomnames = lc join ("+",

@polar_atomnames);

643 my $apolar_atomnames = lc join ("+",

@apolar_atomnames);

644 my $corrected_resid = $resnum + $residue_offset;

645 #push @residues , " res_$corrected_resid ";

646 push @intrafase_obj , "(resi $corrected_resid and

(name $atomnames))";

647 push @polar_intrafase_obj , "(resi

$corrected_resid and (name $polar_atomnames))" unless (scalar(

@polar_atomnames) == 0);

648 push @apolar_intrafase_obj , "(resi

$corrected_resid and (name $apolar_atomnames))" unless (scalar(

@apolar_atomnames) == 0);

649 }

650 }

651 }

652 my $intrafase_obj = join (" or ", @intrafase_obj);
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653 my $polar_intrafase_obj = join (" or ", @polar_intrafase_obj);

654 my $apolar_intrafase_obj = join (" or ", @apolar_intrafase_obj);

655 print $pymol_file "create intrafase , ($intrafase_obj)\n";

656 print $pymol_file "create intrafase_polar , ($polar_intrafase_obj)\n";

657 print $pymol_file "create intrafase_apolar , ($apolar_intrafase_obj)\n";

658 print $buried_file ">>>Fragment resume: Polar ASA = $fragment_polar_asa |

APolar ASA = $fragment_apolar_asa | Volume = $fragment_vol | Standard Volume

= $theoretic_fragment_vol\n";

659 #print $pymol_file " @residues\n";

660 print $pymol_file "\n";

661 $volume_info{’Vol’} = $fragment_vol;

662 $volume_info{’T_Vol ’} = $theoretic_fragment_vol;

663 return (\% volume_info , \% polar_buried_residues);

664 }





APPENDIX D

Polarity Ratio and Packing Density

Profiles in Some Protein Families

FIGURE D.1: Conservation of the Polarity and Packing Density Profiles in the Flavodoxin
Family

	  
The polarity and packing density profiles of some members of the Flavodoxin family
with known structure are shown. The different members of this family were structurally
aligned and the polarity and packing profiles obtained were superposed taking the
structural alignment as template. The proteins analyzed were (PDB id: 1AHN), (PDB
id: 1FUE), (PDB id: 1OFV) and (PDB id: 1FTG)

223



Appendix D. Protein Families Property Profiles 224

FIGURE D.2: Conservation of Polarity Profiles in Representative Folds in SCOP (Struc-
tural Classification of Proteins) Database

A) SCOP class α/β (fold TIM α/β barrel), B) SCOP class α+β (fold Lysozyme-like), C)
SCOP class all α (fold Cytochrome c) and D) SCOP class all β (fold Immunoglobulin-
like β-sandwich). The PDB ids of the proteins analyzed are indicated and a cartoon
representation of each protein fold is shown. The Apoflavodoxin profiles shown in
Figure D.1, represent an additional example of polarity ratio conservation in class α/β
(fold Flavodoxin-like)
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FIGURE D.3: Conservation of Packing Density Profiles in Representative Folds in SCOP
(Structural Classification of Proteins) Database

A) SCOP class α/β (fold TIM α/β barrel), B) SCOP class α+β (fold Lysozyme-like), C)
SCOP class all α (fold Cytochrome c) and D) SCOP class all β (fold Immunoglobulin-
like β-sandwich). The PDB IDs of the proteins analyzed are indicated and a cartoon
representation of each protein fold is shown. The Apoflavodoxin profiles shown in
Figure D.1, represent an additional example of polarity ratio conservation in class α/β
(fold Flavodoxin-like)





APPENDIX E

Sequence conservation of LIPs in

three protein families

Each protein family was aligned as described in the Methodology section and the

corresponding structural alignments were processed using JOY to obtain a detailed rep-

resentation of the alignment including structural information. In the alignments, the

solvent accessible residues are in lower case and buried residues in uppercase. We also

show in the top line of each alignment fifty-column block the qualitative representation

of conservation, and in the bottom line we include the histogram with the quantitative

estimates of conservation scores in a given position as calculated by CLUSTAL. With

this data, the average conservation scores for alignment columns (corresponding to a

given aligned residue) have been calculated for the complete alignments, for the exper-

imentally determined unstable regions, and for the LIPs. We report the PDB codes of

the proteins aligned, colored in light grey the experimentally unstable regions, and re-

marked the LIPs with a light blue line. A) Structural alignment of Flavodoxin family (the

identity percentage PID = 34%). The unstable regions 87–108 and 118–152 are high-

lighted. The average column conservation score is 24%. However, the average column

conservation score for buried and exposed residues in LIPs are 29 and 9%, respectively,

and for buried and exposed residues in the experimentally unstable regions are 30 and

10%, respectively. B) Structural alignment of the Cytochrome c family (PID = 47%)

showing the 40–57 flexible region. The global average column conservation score is 33%,

while the average column conservation scores for buried and exposed residues in LIPs

are 49 and 30%, respectively, and for buried and exposed residues in the experimentally

unstable regions are 42 and 25%, respectively. C) Structural alignment of α-Lactalbumin

family (PID = 50.4%) with the unstable region 40–80 in grey. The global average col-

umn conservation score is 43%, while the average column conservation scores for buried

and exposed residues in LIPs are 73 and 41%, respectively, and for buried and exposed

residues in the experimentally unstable regions are 70 and 44%, respectively.
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FIGURE E.1: Sequence Conservation of LIPs in Three Protein Families

!



APPENDIX F

LDL-r LA5 domain Missense

Mutations

TABLE F.1: We compile the list of non-synonymous SNPs in the coding sequence for the
LDL-r LA5 domain. In the first column we include the initial and mutated codons and
in the second column the position of the SNP in the LDL-r gene. In column 3 there is
a description of the mutation in the protein sequence in the numeration starting from
the first translated amino acid (bold) and from the ATG in the gene (italics between
braces), respectively. In column 4 we include the results for the prediction of the fate
of each mutation –e.g. Deleterious (D), Neutral (N)– using the program PMUT, and in
column 5 the predictions using the program CONDEL. In the last column we include
the two-letter code of the countries where each mutation has been identified. All these
data has been extracted from database HGMD Professional, version 2013.3 and the LDL
Receptor Database

wt→ mt SNP wt→ mt PMUT CONDEL Country

CCC→ACC c.586C→A P196{175}T N N NL

TGC→CGC c.589T→C C197{176}R D D GB, IT

TGC→GGC c.589T→G C197{176}G N D FR

TGC→TTC c.590G→T C197{176}F D D US

TGC→TGG c.591C→G C197{176}W D D PL

TGC→TAC c.590G→A C197{176}Y D D SV

TCG→TTG c.593C→T S198{177}L N N

TTC→TGC c.599T→G F200{179}C N N

TTC→TTA c.600C→A F200{179}L N N TW, DE

GAG→AAG c.601G→A E201{180}K N N VE, RU

TGC→TTC c.611G→T C204{183}F D D

TGC→TCC c.611G→C C204{183}S N D JP

TGC→TAC c.611G→A C204{183}Y D D FR, IT

AGT→AGG c.618T→G S206{185}R D D RU

GAG→AAG c.622G→A E208{187}K N N NL, IL

TGC→TAC c.626G→A C209{188}Y D D CZ, RU

ATC→AAC c.629T→A I210{189}N N D

CAC→GAC c.631C→G H211{190}D N D PT

Continued on next page. . .
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TABLE F.1: (continued)

wt→ mt SNP wt→ mt PMUT CONDEL Country

CAC→CTC c.632A→T H211{190}L D N AT

CAC→TAC c.631C→T H211{190}Y N D US

AGC→ACC c.638G→C S213{192}T N N GB

TGG→TCG c.641G→C W214{193}S D D FR

CGC→AGC c.643C→A R215{194}S N N VE

TGT→CGT c.646T→C C216{195}R D D ES

TGT→TTT c.647G→T C216{195}F D D

TGT→TAT c.647G→A C216{195}Y D D GR, DE

GGC→GAC c.656G→A G219{198}D N N GB

GAC→AAC c.661G→A D221{200}N N D

GAC→GGC c.662A→G D221{200}G N D NL, IT, AT, PT,

ES

GAC→TAC c.661G→T D221{200}Y N D PT, ES, IT, DE, FI

GAC→GTC c.662A→T D221{200}V N D ES

TGC→CGC c.664T→C C222{201}R D D DK

TGC→GGC c.664T→G C222{201}G D D GB

TGC→TTC c.665G→T C222{201}F D D NL

TGC→TAC c.665G→A C222{201}Y D D FI, IT

GAC→GCC c.671A→C D224{203}A N D ZA

GAC→AAC c.670G→A D224{203}N N N PT

GAC→GGC c.671A→G D224{203}G N N IT

GAC→GTC c.671A→T D224{203}V N D DE

TCT→TGT c.677C→G S226{205}C N D ES

TCT→CCT c.676T→C S226{205}P N D US

GAC→GAG c.681C→G D227{206}E N D GB, NL, IT, ZA

GAC→GTC c.680A→T D227{206}V N D FR

GAG→GCG c.683A→C E228{207}A D D CN

GAG→CAG c.682G→C E228{207}Q N N GB

GAG→AAG c.682G→A E228{207}K N D PT, NL, ES, IT

TGC→CGC c.691T→C C231{210}R D D CN

TGC→GGC c.691T→G C231{210}G N D NO

TGC→TGG c.693C→G C231{210}W D D FR

TGC→TAC c.692G→A C231{210}Y D D KR
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TABLE F.2: A list of all the possible non-synonymous SNPs that can be generated in
the coding sequence for the LDL-r LA5 domain. In the first column are the initial and
mutated codons, in the second column the mutation in the protein sequence in the
numeration starting from the first translated amino acid (bold) and from the ATG in
the gene (italics between braces), respectively. In column 3 are the indexes used to
identify the mutations. In columns 4 and 5 are the predictions of the fate of each mu-
tation –e.g. Deleterious (D), Neutral (N)– using the programs PMUT and CONDEL,
respectively. Due to the degenerate nature of the genetic code in some cases different
SNPs could result in the same amino acid change. In these cases the corresponding
rows are surrounded by horizontal lines. All mutations identified in persons with FH
(Appendix Table F.1) are highlighted with an asterisk (*), and those in residues located
in the interaction sites for the β-propeller and ApoB and ApoE, are highlighted with
(⊕). The colored bullets in the sixth column correspond to a code for the clustering of
mutants according to their conformational instability, as described in Figure 4.11, on
which green corresponds to (stable mutants), orange to (unstable mutants), magenta
to (very unstable mutants) and red to (highly unstable mutants). In the seventh column
there is a classification according to our study for each mutation, considering both the
contribution of the effect on the conformational stability of the domain (sixth column),
and the occurrence of the mutated residue in the domain interaction sites with other
domains from the LDL-r, or other proteins. In the latter case, the effect of the muta-
tion in binding was rationalized following qualitative criteria of the physicochemical
and steric change in a given residue upon mutation. For those cases the phenotype
prediction are in italics

wt→ mt wt→ mt Index PMUT CONDEL Cluster Phenotype

*CCC→ACC P196{175}T M001 N N • N

CCC→GCC P196{175}A M002 N N • N

CCC→TCC P196{175}S M003 N N • D

CCC→CAC P196{175}H M004 N N • D

CCC→CGC P196{175}R M005 N N • N

CCC→CTC P196{175}L M006 N N • N

TGC→AGC
C197{176}S M007 N N • D

TGC→TCC

*TGC→CGC C197{176}R M008 D D • D

*TGC→GGC C197{176}G M009 N D • D

*TGC→TAC C197{176}Y M010 D D • D

*TGC→TTC C197{176}F M011 D D • D

*TGC→TGG C197{176}W M012 D D • D

TCG→ACG ⊕S198{177}T M013 N N • D

TCG→CCG ⊕S198{177}P M014 N N • D

TCG→GCG ⊕S198{177}A M015 N N • D

TCG→TGG ⊕S198{177}W M016 D D • D

*TCG→TTG ⊕S198{177}L M017 N N • D

GCC→ACC A199{178}T M018 N N • N

GCC→CCC A199{178}P M019 N N • N

Continued on next page. . .
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TABLE F.2: (continued)

wt→ mt wt→ mt Index PMUT CONDEL Cluster Phenotype

GCC→TCC A199{178}S M020 N N • N

GCC→GAC A199{178}D M021 N N • N

GCC→GGC A199{178}G M022 N N • N

GCC→GTC A199{178}V M023 N N • D

TTC→ATC F200{179}I M024 N N • N

TTC→CTC

F200{179}L M025 N N • D*TTC→TTA

TTC→TTG

TTC→GTC F200{179}V M026 N N • D

TTC→TAC F200{179}Y M027 N N • N

TTC→TCC F200{179}S M028 N N • N

*TTC→TGC F200{179}C M029 N N • D

*GAG→AAG ⊕E201{180}K M030 N N • D

GAG→CAG ⊕E201{180}Q M031 N D • D

GAG→GCG ⊕E201{180}A M032 N D • D

GAG→GGG ⊕E201{180}G M033 N D • D

GAG→GTG ⊕E201{180}V M034 N D • D

GAG→GAT
⊕E201{180}D M035 N D • D

GAG→GAC

TTC→ATC F202{181}I M036 N D • D

TTC→TTG

F202{181}L M037 N N • DTTC→TTA

TTC→CTC

TTC→GTC F202{181}V M038 N D • N

TTC→TAC F202{181}Y M039 N D • N

TTC→TCC F202{181}S M040 N D • D

TTC→TGC F202{181}C M041 N D • D

CAC→AAC H203{182}N M042 N N • N

CAC→GAC H203{182}D M043 N N • D

CAC→TAC H203{182}Y M044 N N • D

CAC→CCC H203{182}P M045 D N • N

CAC→CGC H203{182}R M046 N N • D

CAC→CTC H203{182}L M047 N N • N

CAC→CAA
H203{182}Q M048 N N • D

CAC→CAG

Continued on next page. . .
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TABLE F.2: (continued)

wt→ mt wt→ mt Index PMUT CONDEL Cluster Phenotype

*TGC→TCC
C204{183}S M049 N D • D

TGC→AGC

TGC→CGC C204{183}R M050 D D • N

TGC→GGC C204{183}G M051 N D • D

*TGC→TAC C204{183}Y M052 D D • D

*TGC→TTC C204{183}F M053 D D • D

TGC→TGG C204{183}W M054 D D • N

CTA→ATA L205{184}I M055 N N • N

CTA→GTA L205{184}V M056 N N • N

CTA→CAA L205{184}Q M057 N N • N

CTA→CCA L205{184}P M058 N N • N

CTA→CGA L205{184}R M059 N N • N

*AGT→AGG

S206{185}R M060 D D • DAGT→AGA

AGT→CGT

AGT→GGT S206{185}G M061 N N • N

AGT→TGT S206{185}C M062 N D • N

AGT→AAT S206{185}N M063 N N • N

AGT→ACT S206{185}T M064 N N • D

AGT→ATT S206{185}I M065 N D • D

GGC→AGC G207{186}S M066 N N • N

GGC→CGC G207{186}R M067 D N • D

GGC→TGC G207{186}C M068 N D • D

GGC→GAC G207{186}D M069 N N • N

GGC→GCC G207{186}A M070 N N • D

GGC→GTC G207{186}V M071 N D • D

*GAG→AAG E208{187}K M072 N N • D

GAG→CAG E208{187}Q M073 N N • N

GAG→GCG E208{187}A M074 N N • D

GAG→GGG E208{187}G M075 N D • N

GAG→GTG E208{187}V M076 N D • D

GAG→GAT
E208{187}D M077 N N • D

GAG→GAC

TGC→AGC
⊕C209{188}S M078 N D • D

TGC→TCC

Continued on next page. . .
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TABLE F.2: (continued)

wt→ mt wt→ mt Index PMUT CONDEL Cluster Phenotype

TGC→CGC ⊕C209{188}R M079 D D • D

TGC→GGC ⊕C209{188}G M080 N D • D

*TGC→TAC ⊕C209{188}Y M081 D D • D

TGC→TTC ⊕C209{188}F M082 D D • D

TGC→TGG ⊕C209{188}W M083 D D • D

ATC→CTC I210{189}L M084 N N • D

ATC→GTC I210{189}V M085 N N • D

ATC→TTC I210{189}F M086 N D • N

*ATC→AAC I210{189}N M087 N D • D

ATC→ACC I210{189}T M088 N D • N

ATC→AGC I210{189}S M089 N D • N

ATC→ATG I210{189}M M090 N D • D

CAC→AAC ⊕H211{190}N M091 N D • D

*CAC→GAC ⊕H211{190}D M092 N D • D

*CAC→TAC ⊕H211{190}Y M093 N D • D

CAC→CCC ⊕H211{190}P M094 D N • D

CAC→CGC ⊕H211{190}R M095 N N • D

*CAC→CTC ⊕H211{190}L M096 D N • D

CAC→CAG
⊕H211{190}Q M097 N D • D

CAC→CAA

TCC→ACC ⊕S212{191}T M098 N N • D

TCC→CCC ⊕S212{191}P M099 N N • D

TCC→GCC ⊕S212{191}A M100 N N • D

TCC→TAC ⊕S212{191}Y M101 D N • D

TCC→TGC ⊕S212{191}C M102 N N • D

TCC→TTC ⊕S212{191}F M103 D N • D

AGC→CGC

S213{192}R M104 D N • NAGC→AGA

AGC→AGG

AGC→GGC S213{192}G M105 N N • D

AGC→TGC S213{192}C M106 N N • N

AGC→AAC S213{192}N M107 N N • N

*AGC→ACC S213{192}T M108 N N • D

AGC→ATC S213{192}I M109 N N • N
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TABLE F.2: (continued)

wt→ mt wt→ mt Index PMUT CONDEL Cluster Phenotype

TGG→AGG
⊕W214{193}R M110 D D • D

TGG→CGG

TGG→GGG ⊕W214{193}G M111 D D • D

*TGG→TCG ⊕W214{193}S M112 D D • D

TGG→TTG ⊕W214{193}L M113 D D • D

TGG→TGT
⊕W214{193}C M114 D D • D

TGG→TGC

*CGC→AGC R215{194}S M115 N N • D

CGC→GGC R215{194}G M116 N N • N

CGC→TGC R215{194}C M117 N D • D

CGC→CAC R215{194}H M118 N N • N

CGC→CCC R215{194}P M119 D N • N

CGC→CTC R215{194}L M120 N N • N

TGT→AGT
C216{195}S M121 N D • N

TGT→TCT

*TGT→CGT C216{195}R M122 D D • D

TGT→GGT C216{195}G M123 D D • D

*TGT→TAT C216{195}Y M124 D D • N

*TGT→TTT C216{195}F M125 D D • N

TGT→TGG C216{195}W M126 D D • N

GAT→AAT ⊕D217{196}N M127 N D • D

GAT→CAT ⊕D217{196}H M128 N D • D

GAT→TAT ⊕D217{196}Y M129 N D • D

GAT→GCT ⊕D217{196}A M130 N D • D

GAT→GGT ⊕D217{196}G M131 D D • D

GAT→GTT ⊕D217{196}V M132 D D • D

GAT→GAG
⊕D217{196}E M133 N D • D

GAT→GAA

GGT→AGT ⊕G218{197}S M134 N D • D

GGT→CGT ⊕G218{197}R M135 D D • D

GGT→TGT ⊕G218{197}C M136 N D • D

GGT→GAT ⊕G218{197}D M137 N D • D

GGT→GCT ⊕G218{197}A M138 N N • D

GGT→GTT ⊕G218{197}V M139 D D • D

GGC→AGC ⊕G219{198}S M140 N N • D
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TABLE F.2: (continued)

wt→ mt wt→ mt Index PMUT CONDEL Cluster Phenotype

GGC→CGC ⊕G219{198}R M141 D N • D

GGC→TGC ⊕G219{198}C M142 N D • D

*GGC→GAC ⊕G219{198}D M143 N N • D

GGC→GCC ⊕G219{198}A M144 N N • D

GGC→GTC ⊕G219{198}V M145 D D • D

CCC→ACC P220{199}T M146 N N • N

CCC→GCC P220{199}A M147 N N • D

CCC→TCC P220{199}S M148 N N • N

CCC→CAC P220{199}H M149 N N • N

CCC→CGC P220{199}R M150 N N • N

CCC→CTC P220{199}L M151 N N • D

*GAC→AAC ⊕D221{200}N M152 N D • D

GAC→CAC ⊕D221{200}H M153 N D • D

*GAC→TAC ⊕D221{200}Y M154 N D • D

GAC→GCC ⊕D221{200}A M155 D D • D

*GAC→GGC ⊕D221{200}G M156 N D • D

*GAC→GTC ⊕D221{200}V M157 N D • D

GAC→GAG
⊕D221{200}E M158 N D • D

GAC→GAA

TGC→TCC
C222{201}S M159 N D • N

TGC→AGC

*TGC→CGC C222{201}R M160 D D • D

*TGC→GGC C222{201}G M161 D D • D

*TGC→TAC C222{201}Y M162 D D • D

*TGC→TTC C222{201}F M163 D D • D

TGC→TGG C222{201}W M164 D D • D

AAG→CAG ⊕K223{202}Q M165 N N • D

AAG→GAG ⊕K223{202}E M166 N N • D

AAG→ACG ⊕K223{202}T M167 D N • D

AAG→AGG ⊕K223{202}R M168 N N • D

AAG→ATG ⊕K223{202}M M169 N D • D

AAG→AAT
⊕K223{202}N M170 N N • D

AAG→AAC

*GAC→AAC D224{203}N M171 N N • D

GAC→CAC D224{203}H M172 N D • D
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TABLE F.2: (continued)

wt→ mt wt→ mt Index PMUT CONDEL Cluster Phenotype

GAC→TAC D224{203}Y M173 N D • D

*GAC→GCC D224{203}A M174 N D • D

*GAC→GGC D224{203}G M175 N N • D

*GAC→GTC D224{203}V M176 N D • D

GAC→GAG
D224{203}E M177 N D • D

GAC→GAA

AAA→CAA K225{204}Q M178 N N • N

AAA→GAA K225{204}E M179 N N • N

AAA→ACA K225{204}T M180 D D • D

AAA→AGA K225{204}R M181 N N • N

AAA→ATA K225{204}I M182 N N • N

AAA→AAT
K225{204}N M183 N N • D

AAA→AAC

TCT→ACT S226{205}T M184 N N • N

*TCT→CCT S226{205}P M185 N D • D

TCT→GCT S226{205}A M186 N N • D

TCT→TAT S226{205}Y M187 N D • D

*TCT→TGT S226{205}C M188 N D • D

TCT→TTT S226{205}F M189 N D • D

GAC→AAC ⊕D227{206}N M190 N D • D

GAC→CAC ⊕D227{206}H M191 N D • D

GAC→TAC ⊕D227{206}Y M192 N D • D

GAC→GCC ⊕D227{206}A M193 N D • D

GAC→GGC ⊕D227{206}G M194 N D • D

*GAC→GTC ⊕D227{206}V M195 N D • D

GAC→GAG
⊕D227{206}E M196 N D • D

*GAC→GAA

*GAG→AAG ⊕E228{207}K M197 N D • D

*GAG→CAG ⊕E228{207}Q M198 N D • D

*GAG→GCG ⊕E228{207}A M199 D D • D

GAG→GGG ⊕E228{207}G M200 N D • D

GAG→GTG ⊕E228{207}V M201 N D • D

GAG→GAT
⊕E228{207}D M202 N N • D

GAG→GAC

GAA→AAA E229{208}K M203 D N • N

Continued on next page. . .
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TABLE F.2: (continued)

wt→ mt wt→ mt Index PMUT CONDEL Cluster Phenotype

GAA→CAA E229{208}Q M204 N N • D

GAA→GCA E229{208}A M205 D N • N

GAA→GGA E229{208}G M206 N N • D

GAA→GTA E229{208}V M207 N N • N

GAA→GAT
E229{208}D M208 N N • N

GAA→GAC

AAC→CAC N230{209}H M209 N N • N

AAC→GAC N230{209}D M210 N N • N

AAC→TAC N230{209}Y M211 D N • N

AAC→ACC N230{209}T M212 N N • N

AAC→AGC N230{209}S M213 N N • N

AAC→ATC N230{209}I M214 D N • N

AAC→AAG
N230{209}K M215 D N • N

AAC→AAA

TGC→TCC
C231{210}S M216 N N • D

TGC→AGC

*TGC→CGC C231{210}R M217 D D • N

*TGC→GGC C231{210}G M218 N D • N

*TGC→TAC C231{210}Y M219 D D • N

TGC→TTC C231{210}F M220 D D • N

*TGC→TGG C231{210}W M221 D D • D

GCT→ACT A232{211}T M222 N - •
GCT→CCT A232{211}P M223 N - •
GCT→TCT A232{211}S M224 N - •
GCT→GAT A232{211}D M225 N - •
GCT→GGT A232{211}G M226 N - •
GCT→GTT A232{211}V M227 N - •
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TABLE F.3: We include a table with the link addresses to the online videos for the
dynamical evolution of the PC projection density plots of some of the LDL-r mutants
referenced in the text. In the first column are the amino acid changes, and in the second
one the URL addresses for the online videos. This table is meant to serve as guide for
accessing the videos in case of being reading the printed version of this document, and
includes the examples described in Figures 4.5, 4.7 and 4.12

wt→ mt URL

C197G https://drive.google.com/file/d/0B2oR8 NjxhbUOUNzaW5tVWYtSTg/edit?usp=sharing

F200C https://drive.google.com/file/d/0B2oR8 NjxhbULWtadnJPckhGVjA/edit?usp=sharing

D221H https://drive.google.com/file/d/0B2oR8 NjxhbUUjY4QW9BaC1ncjg/edit?usp=sharing

C222F https://drive.google.com/file/d/0B2oR8 NjxhbUOTFYQTNSSXAxZ00/edit?usp=sharing

E228K https://drive.google.com/file/d/0B2oR8 NjxhbUSXYwZ2tRVFlwVE0/edit?usp=sharing

A199G https://drive.google.com/file/d/0B2oR8 NjxhbUWlBBVktXNE5lZlE/edit?usp=sharing

L205V https://drive.google.com/file/d/0B2oR8 NjxhbUWFJtRXBIQi1NRVU/edit?usp=sharing

S206N https://drive.google.com/file/d/0B2oR8 NjxhbUcFZJQ1VJMlNucU0/edit?usp=sharing

C209W https://drive.google.com/file/d/0B2oR8 NjxhbUcXR1MzA5b2NoTkE/edit?usp=sharing

A232G https://drive.google.com/file/d/0B2oR8 NjxhbUYVpjci1ydjFBTnM/edit?usp=sharing

C209Y https://drive.google.com/file/d/0B2oR8 NjxhbUUmRJdG9Ya3hEY2M/edit?usp=sharing

W214S https://drive.google.com/file/d/0B2oR8 NjxhbUalg3Z2liZFFOS2c/edit?usp=sharing

C216Y https://drive.google.com/file/d/0B2oR8 NjxhbUeHRFanBFSm5lT0U/edit?usp=sharing

E228Q https://drive.google.com/file/d/0B2oR8 NjxhbUakZ2ZzY1aDV2MlU/edit?usp=sharing

C231Y https://drive.google.com/file/d/0B2oR8 NjxhbUenFNSEFaSU5mWU0/edit?usp=sharing

https://drive.google.com/file/d/0B2oR8_NjxhbUOUNzaW5tVWYtSTg/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbULWtadnJPckhGVjA/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUUjY4QW9BaC1ncjg/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUOTFYQTNSSXAxZ00/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUSXYwZ2tRVFlwVE0/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUWlBBVktXNE5lZlE/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUWFJtRXBIQi1NRVU/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUcFZJQ1VJMlNucU0/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUcXR1MzA5b2NoTkE/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUYVpjci1ydjFBTnM/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUUmRJdG9Ya3hEY2M/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUalg3Z2liZFFOS2c/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUeHRFanBFSm5lT0U/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUakZ2ZzY1aDV2MlU/edit?usp=sharing
https://drive.google.com/file/d/0B2oR8_NjxhbUenFNSEFaSU5mWU0/edit?usp=sharing
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PCA Summary of all LDL-r LA5

Mutants MD Trajectories

FIGURE G.1: Motion Variance Described by Each Principal Component in LDL-r LA5
Mutants MD Trajectories
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‘Scree Plot’ of the percentage of the motion variance that is described by each Principal
Component. For all the 227 MD simulations we plot the mean and standard deviation
of the motion variance –i.e. the eigenvalues– that is described by each mode –i.e. the
eigenvectors– between the first and the thirtieth
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FIGURE G.2: Distribution of Principal Components in LDL-r LA5 Mutants MD Trajecto-
ries
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