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Chapter 0

Introduction

The study of the asymptotic behaviour of one-parameter families (in particular C0-

semigroups) of operators on a Banach space has received a lot of attention in recent

years. In particular the convergence of orbits of a given family to zero is a milestone

in operator theory and differential equations. Under assumptions of very different

nature, and motivated by applications to partial differential equations, a number of

results about stability of C0-semigroups and other families have been obtained. A

fairly complete overview on the techniques used and the results obtained on this

topic can be found in [B, CT, EN, N].

In this introduction we do not pretend to give an exhaustive presentation about

the history and main results of asymptotic analysis of one-parameter families of ope-

rators. Our purpose is just to collect a set of results which allows us to understand

this memoir properly.

Stability of semigroups

Let X be a complex Banach space and let A be a closed operator on X with

7



8 Introduction

domain D(A) and range R(A). Let u : [0,∞)→ X be a (vector-valued) continuous

function which is differentiable on (0,∞) and such that u(t) ∈ D(A) for all t > 0.

The so-called Cauchy problem for A consists on finding a function u as above

such that it satisfies the equation u′(t) = Au(t), t > 0,

u(0) = x, x ∈ X ,
(ACP)

where x ∈ X is a given initial value. The problem is said to be well-posed if A

is the infinitesimal generator of a strongly continuous C0-semigroup T (t) = etA of

bounded operators on X . Then the solution u is given by u(t) = etAx, t ≥ 0.

An important question about the behaviour of the above solution u is whether

or not it is stable, which is to say by definition that limt→∞ u(t) = 0. Thus one says

that for a given x ∈ X the orbit {T (t)x : t ≥ 0} is stable when limt→∞ T (t)x = 0, and

that the semigroup (T (t))t≥0 is stable if all its orbits are stable. Next, we recall well

established facts about stability of one-parameter semigroups.

• Liapunov Theorem

We start with the simplest case. Let B(X) denote the Banach algebra of bounded

operators on a Banach space X . Then A is the generator of the exponential semi-

group (etA)t≥0 given by the (convergent in B(X)) series

etA :=
∞

∑
k=0

tkAk

k!
(t ∈ R).

In particular we can consider the full algebra Mn(C) of n×n matrices on the com-

plex field C -which corresponds to B(X) when X = Cn- and A ∈Mn(C).

The classical Liapunov stability theorem goes back to 1892, see [Li] and also

[EN, Theorem I.2.10]. For a given A ∈ Mn(C), it characterizes the stability of

(etA)t≥0 in terms of the location of the eigenvalues of A:
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Theorem 1. Let (etA)t≥0 be the one-parameter semigroup generated by A∈Mn(C).

Then the following assertions are equivalent:

(a) The semigroup is stable, i.e., limt→∞ ‖etA‖= 0.

(b) All eigenvalues of A have negative real part, i.e., ℜλ < 0 for all λ ∈ σ(A).

Naturally, mathematicians have tried to extend this finite-dimensional theorem

to infinite dimensions as much as possible. A research line in this direction is the

following.

Let A be the (closed) infinitesimal generator of a C0-semigroup (T (t))t≥0. Then

the (uniform) exponential growth bound of A -or T (t) alternatively- is the (possibly

infinite) number

ω(A) := inf{ω ∈ R : ‖exp(tA)‖ ≤Meωt for some M > 0 and all t ≥ 0}.

Let σ(A) denote the spectrum of A. The spectral bound s(A) of A is defined by

s(A) := sup{ℜλ : λ ∈ σ(A)}.

One has, for bounded A, the following extension of Theorem 1, which is also

known as Liapunov Theorem.

Theorem 2. Let A be a bounded operator on the Banach space X. Then,

s(A) = ω(A).

Thus the Liapunov theorem shows that the spectrum σ(A) of A is responsible

for the asymptotic behavior of the solution u of the equation (ACP). Note that the

relation between the two versions of the theorem -namely, Theorem 1 and Theorem

2- is given by the fact that if σ(A) is contained in the left-hand half-plane, then
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s(A) < 0, so ω(A) < 0 and the solution is uniformly asymptotically stable, that is,

‖etA‖→ 0 as t→ ∞, see [EN, Theorem I.3.14].

The proof of Theorem 2 -see for instance [DK, Theorem I.4.1] or [EN, Corollary

IV.2.4]- relies upon the spectral mapping theorem

etσ(A) = σ(etA), t ≥ 0.

See [EN, Theorem I.3.13].

Neither the spectral mapping theorem nor the Liapunov theorem are longer true

for general unbounded operators A. Even in the case of Hilbert spaces, there exist

examples of C0-semigroups whose uniform growth bound ω(A) is strictly larger

than the spectral bound s(A), see [EN, Counterexamples IV.2.7 and IV.3.4]. These

“patologies" are the starting point for the modern asymptotic theory of semigroups.

Remark. As in the bounded case, the spectral mapping theorem implies the equality

ω(A) = s(A) for general operators A. So it is important to find conditions on a

C0-semigroup (or on its generator) which allow us to prove the spectral mapping

theorem. In this sense, a well-known assumption is the eventual continuity with

respect to the uniform operator topology; this holds for compact semigroups and

holomorphic semigroups, for instance. Let us also mention some other new spectral

mapping theorems, like for example the weak spectral mapping theorem for non-

quasianalytic groups ([EN, Section IV.3. c]) and the spectral mapping theorem of

Latushkin and Montgomery-Smith ([N, Section 2.5]).

Nevertheless, the equality ω(A)= s(A) can be directly proved in some particular

cases. For example, this holds when A generates a positive semigroup on spaces

Lp(µ) or C0(Ω); see [N, Section 3.3.5] and references therein.

In the general case, one has to look for additional spectral conditions to deter-
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mine the stability of some (or all) orbits (T (t)x)t≥0 with x ∈ X . In this direction we

must quote the classical stability theorem proved by Arendt-Batty and Lyubich-Vũ

([AB, LV]), and also the semigroup version of the Katznelson-Tzafriri theorem es-

tablished by Esterle-Strouse-Zouakia and Vũ ([ESZ, V]). It is in this setting where

we focus our research. We devote the next paragraph to explain these items in some

more detail.

• Stability of orbits

Let A be a closed operator and let σP(A∗) denote the point spectrum of the

adjoint operator A∗ of A. Arendt-Batty in [AB] and Lyubich-Vũ in [LV] showed

independently and with different proofs from each other the following result.

Theorem 3. Let (T (t))t≥0 be a uniformly bounded C0-semigroup on a Banach space

X, with generator A. If

(i) σ(A)∩ iR is countable, and

(ii) σP(A∗)∩ iR= /0

then T (t) is asymptotically stable, i.e. limt→∞ T (t)x = 0 for all x ∈ X.

We refer to this stability result as the Arendt-Batty-Lyubich-Vũ theorem. None

of the above spectral requirements (i) and (ii) in the above theorem is superfluous,

see [AB]. This result was subsequently extended by Vũ to semigroups with non-

quasianalytic growth in [V1].

A positive measurable locally bounded function ω(t) with domain R or [0,∞)

is said to be a weight if ω(t)≥ 1 and ω(s+ t)≤ ω(s)ω(t) for all t,s in its domain.

A weight ω on [0,∞) is called nonquasianalytic if∫
∞

0

logω(t)
t2 +1

dt < ∞.
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Assume that liminft→∞ ω(t)−1ω(s+ t) ≥ 1 for all s > 0. Then one can define the

associated weight function ω̃ on R given by

ω̃(s) := limsup
t→∞

ω(t + s)
ω(t)

, if s≥ 0 , and ω̃(s) := 1, if s < 0.

Clearly, ω̃(t)≤ ω(t) for every t ≥ 0.

The Vũ’s result is as follows.

Theorem 4. Let A be the generator of a C0-semigroup T (t) such that

sup
t≥1

ω(t)−1‖T (t)‖<+∞,

for some nonquasianalytic weight ω on [0,∞) for which ω̃(t) = O(tk) as t→∞, for

some k ≥ 0. Assume also that σ(A)∩ iR is countable and σP(A∗)∩ iR= /0. Then

lim
t→∞

ω(t)−1T (t)x = 0 for all x ∈ X .

The stability of the semigroup obtained in the above theorems involves the

strong operator topology. It is possible to get results on uniform asymptotic con-

vergence (to 0) of the semigroup, that is, convergence in the operator norm, when

the semigroup acts on suitable operator-valued weights. These results are semigroup

extensions of the Katznelson-Tzafriri theorem:

Let A(T) be the convolution Wiener algebra formed by all continuous periodic

functions f (t) = ∑
∞
n=−∞ aneint , t ∈ [−π,π], such that ‖ f‖A(T) := ∑

∞
n=−∞ |an| < ∞,

endowed with the norm ‖·‖A(T). This algebra is regular. Let A+(T) be the convolu-

tion closed subalgebra of A(T) formed by the functions f with an = 0 for all n < 0.

Assume that T ∈ B(X) is a power bounded operator, that is, supn≥0 ‖T n‖ < ∞.

Clearly, the operator sum

f (T ) :=
∞

∑
n=0

anT n
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is well defined for every f ∈ A+(T) with f (t) = ∑
∞
n=0 aneint , t ∈ [−π,π]. In [KT],

Katznelson and Tzafriri proved that if f ∈ A+(T) is of spectral synthesis in A(T)

with respect to σ(T )∩T then

lim
n→∞
‖T n f (T )‖= 0.

What spectral synthesis does mean in regular Banach algebras is explained in Chap-

ter 1 (Section 1.4).

The continuous version of this theorem for uniformly bounded C0-semigroups

was given in [ESZ, Théorème 3.4] and [V, Theorem 3.2]), independently one paper

of each other, and with different proofs. Recall that the convolution algebra L1(R)

is a regular Banach algebra and that the Banach space L1(R+) can be seen as a

subalgebra of L1(R) in a similar way as A+(T) is of A(T) (convolution in L1(R)

corresponds to convolution of coefficients in A(T)). This version is as follows.

Theorem 5. Let A be the infinitesimal generator of a uniformly bounded C0-semigroup

(T (t))t≥0 on X. If f ∈ L1(R+) is of spectral synthesis in L1(R) with respect to

iσ(A)∩R then

lim
t→∞
‖T (t)π0( f )‖= 0,

where π0 : L1(R+)→B(X) is the bounded Banach algebra homomorphism defined

by

π0( f )x :=
∫

∞

0
f (t)T (t)xdt, x ∈ X , f ∈ L1(R+).

As an obvious corollary we obtain that, under the conditions of the above theo-

rem, the orbits {T (t)y : t ≥ 0} are stable for all y = π0( f )x, x ∈ X . That is,

lim
t→∞

T (t)y = 0, for every y = π0( f )x, x ∈ X .
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Let S0 denote the set of all functions in L1(R+) which are of spectral synthesis

in L1(R) with respect to iσ(A)∩R. From the above, we have that whenever the

subspace Y := {π0( f )x : f ∈ S0 ,x ∈ X} is dense in X then the semigroup T (t) is

stable. The density of Y on X was proved in [ESZ] provided A satisfies

σ(A)∩ iR is countable and σP(A∗)∩ iR= /0,

so it gives in this way another different proof of the Arendt-Batty-Lyubisch-Vũ

theorem.

• Decay rate of stable orbits

In the last decades, many authors have approached the issue about searching for

estimates of the decay rate of stable orbits. Motivated by applications to damped

wave equations and many other hyperbolic problems, great progress in the problem

of getting decay estimates has been achieved in the case that the infinitesimal gene-

rator of the C0-semigroup has empty boundary spectrum; that is, when σ(A)∩ iR=

/0 (see [BEPS], [BD], [Bu], [Le], [LR], for instance). It turns out from these results

that the growth of the resolvent on the imaginary axis determines the rate of decay

of smooth orbits of the semigroup. A unified statement to this subject was given by

Batty and Duyckaerts (see [BD, Theorem 1.5]):

Theorem 6. Let (T (t))t≥0 be a uniformly bounded C0-semigroup on a Banach space

X. Let A be its generator and assume that σ(A)∩ iR = /0. Let k ∈ N. Then, there

are constants Ck,Tk > 0 such that

∥∥T (t)(1−A)−k
∥∥ ≤ Ck(

M−1
log (t/Ck)

)k ∀t ≥ Tk ,
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where

M(ξ ) := sup
1≤|τ|≤ξ

‖(iτ−A)−1‖ , ξ ≥ 1 ,

Mlog(ξ ) := M(ξ ) log((1+M(ξ ))(1+ξ )) , ξ ≥ 1 .

Remark. In [BD], it is also conjectured that the logarithmic correction considered

in Mlog is necessary when X is a general Banach space but it can be dropped if X is

a Hilbert space. In the recent paper [BT], A. Borichev and Y. Tomilov confirm this

conjecture for polynomially growing M. In addition, they show that Theorem 6 is

sharp.

The proof of Theorem 6 is based on a classical contour integral method initiated

by Newman and Korevaar in [Ne] and [K], respectively. Using this technique, C.

J. K. Batty and T. Duyckaerts also estimate the decay of some Cesaro means of

a bounded vector-valued function whose Laplace transform extends to a suitable

region containing the imaginary axis ([BD, Theorem 4.1]). They conclude the work

by considering the case of semigroups whose associated boundary spectrum is at

most finite ([BD, Proposition 4.3]). Such method and results are further considered

in the present memoir (see Chapter 2 below).

Vector-valued Laplace theorems and asymptotics

As noticed at the end of the preceding section, the study of asymptotics of orbits

is related with the study of vector-valued functions through the analytic properties

of their Laplace transforms. In the present section, we follow on this idea.

For a Banach space X , let R+ := [0,∞) and let L1
loc(R+;X) denote the vector

space of functions f : R+→ X which are Bochner integrable on [0,R] for all R > 0.
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For a function f ∈ L1
loc(R+;X), the Laplace transform L f of f is given by

L f (λ ) =
∫

∞

0
f (t)e−λ tdt

for those complex values λ for which the integral exists. If such a set of numbers λ

is non-empty one says that the function f is Laplace transformable. In the particular

case that f (t) = T (t)x for t ≥ 0, x ∈ X and (T (t))t≥0 a uniformly bounded C0-

semigroup generated by A, we get that C+ ⊂ ρ(A) and

(λ −A)−1x =
∫

∞

0
T (t)xe−λ tdt, ℜλ > 0.

Then the Laplace transform is the link between Cauchy problems and spectral

properties of operators, that is, between solutions and resolvents. We will serve

from this fruitful relationship (or other variants of it) to obtain some of the main

results of this memoir. We shall not be concerned here with representation theorems

for Laplace transforms, corresponding to well-posedness of the Cauchy problem;

see [ABHN, Section 3.1] for a wide range of results on this matter. On the other

hand, we will concentrate on results of tauberian nature relating Laplace transforms

and their applications to the asymptotic behaviour of orbits of semigroups -that is,

asymptotics of solutions to (ACP)- and of other one-parameter families of bounded

operators.

• Post-Widder inversion formula

Recall that t > 0 is said to be a Lebesgue point of a function f ∈ L1
loc(R+;X) if

lim
h→0

1
h

∫ t+h

t
‖ f (s)− f (t)‖ds = 0.

Every point of continuity is a Lebesgue point of f and almost all points are Lebesgue

points of f (see [ABHN, p. 16]).
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It is a well known fact that any Laplace transformable function f ∈ L1
loc(R+;X)

is (uniquely) determined by its Laplace transform, as the following (vector-valued)

Post-Widder formula shows (see [ABHN, Theorem 1.7.7]).

Theorem 7. Let f ∈ L1
loc([0,∞);X) be such that L f (λ ) converges for some λ ∈C.

Let t > 0 be a Lebesgue point of f . Then

f (t) = lim
n→∞

(−1)n 1
n!

(n
t

)n+1
(L f )(n)

(n
t

)
.

The above theorem provides us with the vector-valued version of the classical

Post-Widder inversion formula for the Laplace transform; see [P, W]. Such a limit

is known as a real inversion formula since only properties of L f (λ ) for large real

λ are used. In recent years, the Post-Widder formula has been fruitfully applied to

numerical problems; see for instance [MCPS, SB].

In Theorem 7, if one takes f (t) = T (t)x for some x ∈ X , where T (t) = etA is a

C0-semigroup, and applies the resolvent equation

(−1)n

n!
dn

dλ n (λ −A)−1x = (λ −A)−(n+1)x, n ∈ N,

then one gets the Euler formula for semigroups

T (t)x = lim
n→∞

(I− t
n

A)−nx, t > 0;

see [ABHN, Corollary 3.3.6]. Note that this formula can be regarded as that the

orbit of the semigroup is an asymptotic limit of orbits of the resolvent function of

its generator. We give an integrated version of this property in Chapter 3 below.
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Ill-posed Cauchy problems and asymptotics of solutions

There are (closed) interesting operators A for which the Cauchy problem u′(t) = Au(t), t > 0,

u(0) = x, x ∈ X ,

is ill-posed in the sense that A is not the infinitesimal generator of any strongly C0-

semigroup, so the solution to the equation, even when it exists, is not given by the

action of a semigroup on the initial value x ∈ X .

However, in some important cases of the above situation, it is still possible to

work with families of operators which are to be found as generalizations, exten-

sions or variants of the ones formed by semigroups. These are the so-called inte-

grated semigroups. Other one-parameter families like cosine families, integrated

cosine families or Mittag-Leffler families appear in the setting of ill-posed Cauchy

problems of higher orders. We are here mostly concerned about one-parameter in-

tegrated semigroups.

Let assume that A is the generator of an exponentially bounded n-times inte-

grated semigroup (Tn(t))t≥0 (see definitions in Chapter 1 below). Then the function

u(t) :=
dn

dtn Tn(t)x, (t > 0)

is the unique solution to the equation (ACP). Thus the ergodic type limit

lim
t→∞

t−nTn(t)x = lim
t→∞

1
tn

∫ t

0
(t− s)n−1u(s)

ds
(n−1)!

,

reflects the asymptotic behaviour of the solution u at infinity.

However, it is not clear what one should handle as the most accurate notion of

stability of an integrated semigroup. In [Me], a once integrated semigroup (T1(t))t≥0

generated by A is called stable when there exists limt→∞ T1(t)x in X for every x ∈
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D(A). Such a condition seems to be fairly suitable at first sight, though it entails a

notable restriction on the generator of (T1(t))t≥0. In fact, if (T1(t))t≥0 is stable then

A is invertible. Moreover, limt→∞ T1(t)x = −A−1x, x ∈ D(A); see [Me, Proposition

5.1 and Remark 5.3].

In the above setting, the stability theorem of Arendt-Batty-Lyubich-Vũ (Theo-

rem 3) admits the following integrated version; see [Me, Theorem 5.6].

Theorem 8. Let A be the generator of a uniformly bounded once integrated semi-

group (T1(t))t≥0 such that

(i) σ(A)∩ iR is countable,

(ii) σP(A∗)∩ iR= /0,

(iii) A is invertible.

Then (T1(t))t≥0 is stable; that is, there exists limt→∞ T1(t)x(= −A−1x), for every

x ∈ D(A).

We give an extension of this result to n-times integrated semigroups, with in-

vertible generator and satisfying the growth condition supt>0 ω(t)−1‖Tn(t)‖ < ∞

-where ω is a non-quasianalytic weight-, in Chapter 4 below.

The question now is to find out results like Theorem 8 for n-times integrated

semigroups with non-invertible generator. A formally straightforward generaliza-

tion of the semigroup stability property for n-times integrated semigroups satisfying

supt>0 t−n‖Tn(t)‖ < ∞, is the requirement that limt→∞ t−nTn(t)x = 0 for all x ∈ X .

However, specialists prefer to consider this requirement as an ergodic type property

rather than stability in its own. We establish a result of this type in Chapter 6.
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Main results

In this section we give statements of the main theorems presented in the memoir.

Our first concern here is about the investigation of new results involving the Laplace

transform of vector-valued functions and their direct application to the study of

asymptotics of orbits. More precisely, we are interested in the decay rate of stable

orbits and in an Euler formula for integrated semigroups.

• Decay rate of stable orbits

As we have pointed out before, one of the methods used in the memoir, in order

to study the asymptotics of one-parameter families of bounded operators, consists of

studying analytic properties of appropriate vector-valued functions. In this setting,

it is interesting to find new results about the Laplace transform, and its inverse, of

such functions. The results obtained here locate around this circle of ideas, and are

motivated by those given by C. J. K. Batty and T. Duckaerts in [BD]. Our main

results are as follows.

Put e1(t) := e−t for t ∈ R+. Let ∗ denote the usual convolution in R and let ◦

denote the convolution product defined by

g◦ f (t) :=
∫

∞

t
g(s− t) f (s)ds, t > 0,

for g ∈ L1(R+) and f ∈ L∞(R+;X).

Theorem 2.1.1, p. 63: Let X be a Banach space and let f ∈ L∞(R+;X). Assume

that there exists a continuous function µ : (0,∞)→ (0,∞) satisfying:

(i) The Laplace transform L f has a holomorphic extension to the region Σµ :=

{z ∈ C : ℜz >−µ(|ℑz|)−1)} and ‖L f (z)‖ ≤ µ(|ℑz|) throughout Σµ ∩C−.
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(ii) µ is decreasing on (0,1] and increasing on [1,∞).

Then there exists positive constants C and τ such that

‖(e1− e1 ∗ e1)◦ f (t)‖ ≤C

(
m−1

log(t/4)+
1

M−1
log(t/4)

+
1
t

)
, t > τ,

where M−1
log and m−1

log denote the inverse functions of Mlog and mlog, respectively,

defined by

Mlog(ξ ) := µ(ξ ) log(1+µ(ξ ))(1+ξ )), ξ ≥ 1,

mlog(ξ ) := µ(ξ ) log
(

1+µ(ξ )

ξ

)
, 0 < ξ ≤ 1.

The preceding theorem is the basis to obtain the following result on decay rate

of semigroup stable orbits.

Let (T (t))t≥0 be a uniformly bounded C0-semigroup on the Banach space X ,

with infinitesimal generator A. Let M : [1,∞)→ R+ and m : (0,1]→ R+ be the

continuous functions given respectively by

M(ξ ) := sup
1≤|λ |≤ξ

‖(iλ −A)−1‖, ξ ≥ 1,

and

m(ξ ) := sup
ξ≤|λ |≤1

‖(iλ −A)−1‖, 0 < ξ ≤ 1.

Define µ : (0,∞)→ (0,∞) by

µ(ξ ) := 2m(ξ ), if 0 < ξ ≤ 1and µ(ξ ) := 2M(ξ ), if ξ ≥ 1.

Now, let Mlog and mlog be defined as in the previous theorem.
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Theorem 2.2.1, p. 71: In the above setting, assume that σ(A)∩ iR ⊆ {0}. Then,

for every k ∈ N there exist positive constants Ck,τk > 0 such that for all t > τk,

‖T (t)Ak(1−A)−2k‖ ≤Ck

(
m−1

log(t/4k)+
1

M−1
log(t/4k)

+
k
t

)k

.

This theorem admits an extension to semigroups whose infinitesimal generators

have boundary spectrum formed by a finite number of points, not necessarily the

origin. See Theorem 2.2.1 in Chapter 2.

• Post-Widder integrated formula. Euler formula for α-times integrated

semigroups

The link between Laplace transforms of vector valued Bochner-measurable func-

tions and orbits of semigroups can also be taking into account to deal with integrated

families. In this direction, we first give an inversion formula of Post-Widder type for

λ α -multiplied vector-valued Laplace transforms (α > 0), which generalizes Theo-

rem 7 above.

Let X be a Banach space, and let f ∈ L1
loc(R+;X) be such that

sup
t>0
‖t−γe−ωt f (t)‖= M < ∞

for some γ > −1 and some ω ≥ 0. Clearly, the Laplace transform L f (λ ) of f

exists at least on the open right half-plane ℜλ > ω . For such a function f we have

the following.

Theorem 3.1.1, p. 80: For every α ∈ (0,γ +1) and for any Lebesgue point t > 0

of f ,

f (t) = lim
n→∞

1
Γ(α)

∫ t

0
(t− s)α−1 (−1)n

n!

(n
s

)n+1 dn

dλ n (λ
αL f )

∣∣∣∣
λ=n/s

ds.
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Let us point out that one can also obtain an analogous result for Laplace-Stieltjes

transforms and α a positive integer; see Corollary 3.1.1 in Chapter 3 below.

The above formula may well be seen as an α-times integrated Post-Widder for-

mula. Its interest relies upon the fact that it provides us with an inversion formula

for those functions ϕ : (ω,∞)→ X which are not necessarily a Laplace transform,

but such that λ−αϕ(λ ) is a Laplace transform for some α > 0. Important classes

of (vector-valued) functions in this situation are to be found among integrated fa-

milies of operators. In fact, the formula implies inversion theorems for resolvents

of generators of integrated semigroups and integrated cosine functions. Moreover,

it recovers and extends for integrated semigroups other previously known results in

the literature, see [C, VV]:

Let (Tα(t))t≥0 ⊆ B(X) be a (strongly continuous) α-times integrated semi-

group, with generator A and existing Laplace transform on λ > ω for some ω ∈ R.

Then

R(λ ,A) := (λ −A)−1 = λ
α

∫
∞

0
e−λ tTα(t)dt , λ > ω.

Applying Theorem 3.1.1, one gets the following Euler’s type formula.

Corollary 3.2.1, p. 87: Assume that ‖Tα(t)‖ ≤Ctγeωt , t ≥ 0, for some γ > α −1

and ω ≥ 0. Then, for every t > 0 and every x ∈ X,

Tα(t)x = lim
n→∞

1
Γ(α)

∫ t

0
(t− s)α−1

(n
s

)n+1
R(

n
s
,A)n+1 xds.

Examples of integrated semigroups satisfying the assumptions of Corollary 3.2.1

can be found in [H].
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One can also obtain a similar result for generators and resolvents of integrated

cosine families (see Chapter 1 for the definition of such families).

Corollary 3.2.2, p. 88: Let A : D(A) ⊆ X → X be the generator of an α-times

integrated cosine function (Cα(t))t≥0 for which there exist constants γ > α−1 and

ω ≥ 0 satisfying ‖Cα(t)‖ ≤Ctγeωt for t ≥ 0. Then, for every x ∈ X and t > 0,

Cα(t)x = lim
n→∞

1
Γ(α)

∫ t

0
(t− s)α−1 (−1)n

n!

(n
s

)n+1 dn

dλ n

(
λR(λ 2,A)

)∣∣∣∣
λ=n/s

x ds.

Notice that the two latter theorems tell us that the orbits of integrated semigroups

and cosine families are obtained as asymptotic limits of orbits of their resolvent

functions.

• Stability of n-times integrated semigroups

We now address the question of stability for n-times integrated semigroups with

n≥ 1. First of all, in the research line initiated by O. El Mennaoui to generalize the

Arendt-Batty-Lyubisch-Vũ theorem, we extend [Me, Theorem 5.6] as follows. Let

ρ(A) denote the resolvent set of a closed operator A.

Theorem 4.0.1, p. 93: Let A be the generator of a n-times integrated semigroup

(Tn(t))t≥0 such that

• σ(A)∩ iR is countable,

• σP(A∗)∩ iR= /0,

• 0 ∈ ρ(A).

Assume that supt≥1 ω(t)−1‖Tn(t)‖ < ∞ where ω is a nonquasianalytic weight on

[0,∞) for which ω̃(t) = O(tk) as t→ ∞, for some k ≥ 0.
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We have:

(i) If ω(t)−1 = o(t−n+1) as t→ ∞, then

lim
t→∞

ω(t)−1Tn(t)x = 0, x ∈ D(A).

(ii) If ω(t)∼ t−n+1 as t→ ∞, then there exists

lim
t→∞

t−n+1Tn(t)x =−
1

(n−1)!
A−1x, x ∈ D(An).

Remark. For n = 1 Theorem 4.0.1 (ii) is [Me, Theorem 5.6]. So any n-times inte-

grated semigroup (Tn(t))t≥0 satisfying the latter equality in Theorem 4.0.1 (ii) might

well be called stable. Similarly, the ergodic type equality limt→∞ ω(t)−1Tn(t)x = 0,

x ∈ D(An), for ω(t) ∼ tn at infinity, defines a property on Tn(t) which corresponds

to stability of C0-semigroups when n = 0. Then one could say that an integrated

semigroup satisfying Theorem 4.0.1 (i) for ω(t)∼ tn as t → ∞ is stable of order n,

and stable under ω in general. However, as we have mentioned before, specialists

prefer to use the term ergodicity (to 0 in the present case) to refer to the existence of

limits like limt→∞ t−nTn(t)x.

The proof of Theorem 4.0.1 above relies upon a nontrivial adaptation of argu-

ments of [Me] and [V1]. In this way, we extend in passing some other auxiliary

results of [Me] and [V1].

Remark. A fairly nontrivial problem arising from Theorem 4.0.1 is how to remove

condition (iii) on the invertibility of the generator A. The arguments considered in

the original proofs of the Arendt-Batty-Lyubisch-Vũ theorem do not seem to fit well

in the integrated setting. However, there is a proof of this theorem in [ESZ] -relying

on the continuous Katznelson-Tzafriri theorem and harmonic analysis properties of
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suitable Banach algebra homomorphisms- which turned to be useful, and will allow

us to obtain some, partial but interesting, result; see Chapter 6. To start with, one

establishes a fairly nontrivial extension of the continuous version of the Katznelson-

Tzafriri theorem for semigroups in Chapter 5.

• Extension of the Esterle-Strouse-Zouakia-Vũ theorem: Katznelson-

Tzafriri theorem for integrated semigroups.

Let C∞
c (R) be the space of test functions on R, and let C∞

c (R+) be the space

of test functions gχ[0,∞) where g runs over C∞
c (R). For α > 0 and function f ∈

C∞
c (R+) we put W α

+ f to refer to the so-called Weyl derivative of order α on (0,∞).

One defines also the Weyl derivative W αg on all on R for every g ∈ C∞
c (R); see

definitions in Chapter 1 (Section 1.3) below.

Let T (α)
+ (tα), T (α)(|t|α) denote the Banach spaces obtained as the completions

of C∞
c (R+), C∞

c (R) in the norm given by

να( f ) :=
∫

Ω

|W α
+ f (t)| |t|α dt, f ∈C∞

c (Ω)

where Ω is equal to [0,∞), R, respectively. These spaces were introduced in [GM],

and are in fact Banach algebras for the usual convolution on R. Moreover, T (α)(|t|α)

is a regular Banach algebra and T
(α)
+ (tα) is a closed (non-regular) subalgebra of it.

Let (Tα(t))t≥0 be an α-times integrated semigroup in B(X) (see, once again,

the definition in Chapter 1, Section 1.2.2) such that supt>0 t−α ‖Tα(t)‖ < ∞. Then

the mapping πα : T
(α)
+ (tα)→B(X) defined by

πα( f )x :=
∫

∞

0
W α

+ f (t)Tα(t)xdt, x ∈ X , f ∈T
(α)
+ (tα),

is a bounded Banach algebra homomorphism. All the above properties can be found

in [GM].
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We have the following extension of the Esterle-Strouse-Zouakia-Vũ theorem.

Theorem 5.0.1, p. 103: For α > 0, let (Tα(t))t≥0 be an α-integrated semigroup in

B(X) with generator A such that

sup
t>0

t−α ‖Tα(t)‖< ∞, lim
t→0+

Γ(α +1) t−αTα(t)x = x, x ∈ X .

Suppose that f ∈ T
(α)
+ (tα) is of spectral synthesis in T (α)(|t|α) with respect to

iσ(A)∩R. Then

lim
t→∞

t−α ‖Tα(t)πα( f )‖= 0.

Theorem 5.0.1 is the main result in [GMM1]. Its proof relies on the harmonic

analysis of the mapping πα and some intricated duality techniques involving distri-

bution spaces.

Now, as similarly as it is indicated just after Theorem 5 (p. 13), one could prove

that

lim
t→∞

Tα(t)x = 0, x ∈ X ,

whenever the subspace Y := {πα( f )x : f ∈Sα ,x ∈ X} were dense in X and always

under the conditions

σ(A)∩ iR countable, σP(A∗)∩ iR= /0

on the generator A. Here, the set Sα denotes the space of functions f in T
(α)
+ (tα)

which are of spectral synthesis in T (α)(|t|α) with respect to iσ(A)∩R.

In fact, for usual semigroups this is obtained in [ESZ] on the basis of certain

auxiliary results about spectral synthesis and related items. It does not seem sim-

ple how to establish part of these results in the integrated setting, but, anyway, the
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corresponding quoted density of Y holds under other quite reasonable conditions, as

we show in the next section.

• Spectral synthesis and stability.

The content of this section corresponds to Chapter 6 of the memory and it is

splitted up into two parts, the first one devoted to spectral synthesis and the second

one dealing with the integrated semigroups.

Here we restrict our results to α = n, any nonnegative integer. Let (Tn(t))t≥0 be

a n-times integrated semigroup in B(X) generated by A. Let Sn denote the vector

subspace of functions in T
(n)
+ (tn) which are of spectral synthesis in T (n)(|t|n) for

S := iσ(A)∩R. In the semigroup case, when n = 0, one of the key ingredients to

show the density of πn(Sn) in X is the fact that closed countable subsets of R are

sets of spectral synthesis in L1(R). Thus one must investigate whether or not this

property still holds in the Banach algebra T (n)(|t|n) for general n. Indeed, we will

obtain that it does not hold in the latter case. Therefore, one must find out what

remains valid in this respect.

Weak spectral synthesis in T (n)(|t|n)

Let S be a closed subset of R. With F ( f ) we refer to the Fourier transform of

any f ∈ T (n)(|t|n). Such transforms are n-times differentiable in R \ {0} and the

derivatives satisfy limx→0 x j(F f )( j)(x) = 0 for j = 0,1, · · · ,n. Set

Mk(S) := { f ∈T (n)(|t|n) : x jF ( f )( j)(x) = 0 (x ∈ S; 0≤ j ≤ k)}

for k = 0, . . . ,n; M(S) := M0(S), and

J(S) := { f ∈T (n)(|t|n) : F ( f ) = 0 on a neighborhood of S}.
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Then by definition the closed subset S of R is of spectral synthesis if and only if

J(S) is dense in M(S).

Theorem 6.2.1, p. 132: For every a ∈ R,

Mn({a}) = J({a}).

At this point it must be noticed that M0(0) = Mk(0) = Mn(0) for 0 ≤ k ≤ n,

and therefore {0} is a set of spectral synthesis for the Sobolev algebra T (n)(|t|n).

Moreover, the theorem tells us that {0} is the only singleton with such a property.

Now, standard arguments give us the following.

Theorem 6.2.2, p. 134: For every countable subset S of R,

J(S) = Mn(S).

As a consequence of these results, we are ready to prove the following ones on

integrated semigroups.

Null ergodicity of semigroups

Put Mn,+(S) := Mn(S)∩T
(n)
+ (tn). We say that S is an interpolation set for

T
(n)
+ (tn) in T (n)(|t|n) if

T
(n)
+ (tn)/Mn,+(S) = T (n)(|t|n)/Mn(S).

Theorem 6.3.2, p. 136: Let (Tn(t))t≥0 be a n-times integrated semigroup in B(X)

with generator A such that

sup
t>0

t−n‖Tn(t)‖< ∞ and lim
t→0

n! t−nTn(t)x = x (x ∈ X).
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Assume that

(i) S := iσ(A)∩R is a countable compact interpolation set for T
(n)
+ (tn) in T (n)(|t|n).

(ii) σP(A∗)∩ iR= /0.

Then πn(Mn,+(S))X is dense in X and, in consequence,

lim
t→∞

t−nTn(t)x = 0 for all x ∈ X .

Asking for compactness of the set S in the above theorem is not out of all pro-

portion. Indeed, when one is dealing with general statements about (standard) ideals

in L1(R+), for example, compactness of the ideal hulls is usually assumed.

QUESTION.- What real subsets are indeed interpolation sets for the subalgebra

T
(n)
+ (tn) in T (n)(|t|n) ?

The above question is not simple to settle in all generality, but at least finite

subsets provide a positive answer. So we have:

Theorem 6.3.3, p. 140: Let (Tn(t))t≥0 be a n-times integrated semigroup in B(X)

with generator A. Assume that

(i) supt>0 t−n‖Tn(t)‖< ∞ and limt→0 n! t−nTn(t)x = x (x ∈ X),

(ii) iσ(A)∩R is finite and σP(A∗)∩ iR= /0.

Then

lim
t→∞

t−nTn(t)x = 0 for all x ∈ X .
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The theorem applies to C0-semigroups (T (t))t≥0 satisfying (ii) above, which

are not uniformly bounded in norm but for which supt>0 t−n‖Tn(t)‖ < ∞ for some

n, where

Tn(t)≡
1

(n−1)!

∫ t

0
(t− s)n−1T (t)dt.

In this way, we obtain an abstract result on (null) ergodicity of C0-semigroups.

This memoir is organized as follows. In Chapter 1, we introduce notation and

the main concepts we will use along this text. It contains a couple of new results

(Propositions 1.3.1 and 1.3.2) of great importance in other chapters. In Chapter 2,

we prove the results concerning to estimates of the rate of decay of vector-valued

functions (in terms of its Laplace transforms) and their applications on semigroup

theory. The contents of this chapter correspond to the ones in [M]. The (vector-

valued) Laplace transform is also the key of the results in Chapter 3. The main

result here is the Post-Widder type formula for λ α -multiplied Laplace transforms.

As a consequence, we get some inversion formulas for the resolvent of α-times

integrated semigroups and cosine families. These results are contained in [GMM].

The last three chapters are mainly devoted to the study of asymptotic properties

of α-times integrated semigroups. The main result of Chapter 4 is concerned to

stability (under some non-quasianalytics weights) of n-times integrated semigroups.

The assumptions on the generator of the integrated semigroup are, in particular,

invertibility and the countability of its boundary spectrum. In Chapter 5, we give

an extension to the setting of α-times integrated semigroups of the Katznelson-

Tzafriri theorem for C0-semigroups. The results in this chapter can be also found

in [GMM1]. Finally, in Chapter 6, we carry on a study of primary ideals and the

notion of spectral synthesis in the Sobolev algebras T (n)(|t|n). This allows us to
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prove a result for integrated semigroups in the spirit of the Arendt-Batty-Lyubich-

Vũ stability theorem.



Chapter 1

Basic concepts and preliminary

results

This chapter is devoted to establish notation and introduce the main concepts we

will use along the memoir.

From now on, we take X to be a complex Banach space with generic norm

‖·‖. We denote by B(X) the Banach algebra of all bounded linear operators on X

endowed with the operator norm.

For a closed operator (A,D(A)) on X , we denote by ρ(A) the resolvent set of A

defined by ρ(A) := {λ ∈ C : λ −A is invertible with inverse in B(X)}. The resol-

vent of A is the function R(·,A) : ρ(A)→B(X) given by R(λ ,A) := (λ −A)−1 for

λ ∈ ρ(A). The spectrum σ(A) of A is defined by σ(A) := C \ρ(A), and the point

spectrum σp(A) by σp(A) := {λ ∈ C : Ker(λ −A) 6= {0}}.

Let A be a densely defined operator on X . Then, its adjoint operator A∗ on the

33
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dual space X∗ is the element of B(X∗) whose domain is given by

D(A∗) := {x∗ ∈ X∗ : ∃y∗ ∈ X∗ such that 〈Ax,x∗〉= 〈x,y∗〉 for all x ∈ D(A)},

and is defined by A∗x∗ := y∗ for x∗ ∈ D(A∗). See for instance [EN, Appendix B].

Through the text, we shall consider the following function spaces. Here, I is a

real interval and X stands for a Banach space.

C(I,X) := { f : I→ X : f is continuous} ,

C0(I,X) := { f ∈C(I,X) : limt→±∞ ‖ f (t)‖= 0} , if ±∞ ∈ I′ ,

Cn(I,X) := { f ∈C(I,X) : f is n-times continuously differentiable} , n ∈ N ,

C∞(I,X) := { f ∈C(I,X) : f is infinitely many times differentiable} ,

C∞
c (I,X) := { f ∈C∞(I,X) : f has compact support} ,

S (R) := Schwartz space of rapidly decreasing functions ,

S ′(R) := Space of tempered distributions ,

L1
loc(I;X) := { f : I→ X : f is locally Bochner integrable on I} ,

Lp(I;X) := { f : I→ X : f is Bochner p-integrable on I} ,

L∞(I;X) := { f : I→ X : f is measurable and essentially bounded on I} .

Recall that ‖ f‖p := (
∫

I ‖ f (t)‖pdt)
1
p whenever f ∈ Lp(I;X) for 1 ≤ p < ∞ and

‖ f‖∞ := esssupt∈I‖ f (t)‖ if f ∈ L∞(I;X). Notice that when X = C, the spaces

Lp(I;C) are the usual Lebesgue spaces which we simply denote by Lp(I).

Also, we briefly write R+ := [0,∞), R− := (−∞,0], C+ := {z ∈ C : ℜz > 0}

and C+ := {z ∈ C : ℜz < 0}.
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1.1 Vector-valued Laplace and Fourier transforms

1.1.1 The Laplace integral

In this paragraph, we introduce the definition and some basic properties of the

vector-valued Laplace transform.

For a function f ∈ L1
loc(R+;X), the Laplace integral L f of f is formally defined

by

L f (λ ) =
∫

∞

0
f (s)e−λ sds = lim

t→∞

∫ t

0
f (s)e−λ sds , λ ∈ C, (1.1)

where the latter integral is understood in the Bochner sense.

Now, let abs( f ) denote the abscissa of convergence of L f given by

abs( f ) := inf{ℜλ : L f (λ )exists}.

It is shown in [ABHN, Theorem 1.4.1] that the Laplace integral L f (λ ) converges

if ℜλ > abs( f ) and diverges if ℜλ < abs( f ), so that the open right half-plane

{ℜλ > abs( f )} is contained in the interior of the domain of convergence of L f (λ ).

If L f converges for every λ ∈ C means that abs( f ) = −∞ and if L f does not

converge for any λ then abs( f ) = ∞.

Definition 1.1.1. We say that a function f ∈ L1
loc(R+;X) is Laplace transformable

if abs( f )<∞ and then the function L f : {ℜλ > abs( f )}→ X is called the Laplace

transform of f .

From the definition (1.1) of Laplace integral, it is straightforward to check that

any exponentially bounded function f ∈ L1
loc(R+;X) is Laplace transformable. Re-

call that a function f : R+ → X is exponentially bounded if there exist constants

ω ∈R and M ≥ 1 such that ‖ f (t)‖ ≤Meωt (t ≥ 0). The infimum of all exponents ω
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for which such a estimation holds is called exponential growth bound (or type) of the

function and it is usually denoted by ω( f ). Hence, abs( f )≤ ω( f ) but the converse

is no longer true (see [ABHN, Example 1.4.4.]). As a matter of fact, the abscissa of

convergence abs( f ) is determined by the exponential growth of the antiderivative

of f . In [ABHN, Theorem 1.4.3.], it is shown that f is Laplace transformable if and

only if its antiderivative F(t) =
∫ t

0 f (s)ds is exponentially bounded and, moreover,

abs( f ) = ω(F−F∞)

where F∞ := limt→∞ F(t) if the limit exists and F∞ := 0 otherwise.

Other remarkable fact about the Laplace integral of a given Laplace transformable

function f ∈ L1
loc(R+;X) is that L f is analytic at least for ℜλ > abs( f ) and for

every n ∈ N∪{0},

(L f )(n)(λ ) =
∫

∞

0
e−λ t(−t)n f (t)dt , ℜλ > abs( f ).

On the other hand, any Laplace transformable function f ∈L1
loc(R+;X) is uniquely

determined by its Laplace transform, as the following result shows.

Theorem 1.1.1. [ABHN, Theorem 1.7.3] Let f ,g ∈ L1
loc(R+;X) be Laplace trans-

formable functions. Assume that L f (λ ) = L g(λ ) for ℜλ sufficiently large. Then,

f = g a.e.

Other important result in this setting is the Post-Widder inversion formula (see

Theorem 7, p. 17). This formula allows us to retrieve a function f ∈ L1
loc(R+;X)

(a.e.) through derivatives of its Laplace transform.

To finish this paragraph, we focus on Laplace transforms of strongly continuous

operator-valued functions. In particular, if T : R+→B(X) is strongly continuous
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and exponentially bounded (so Laplace transformable), the Laplace integral of T is

defined for every λ such that ℜλ > abs(T ) by

L T (λ ) =
∫

∞

0
T (s)e−λ sds = lim

t→∞

∫ t

0
T (s)e−λ sds , (1.2)

where the limit exists in the operator norm. We recall that the evolution families we

will deal with along this memoir are under these conditions.

We refer to [ABHN] for a complete overview on this matter. Other specific

results about the Laplace transform will be stated when necessary throughout this

text.

1.1.2 The Fourier transform

Definition 1.1.2. For a function f ∈ L1(R;X), its Fourier transform F ( f ) : R→ X

is given by

F ( f )(s) :=
∫

∞

−∞

f (t)e−istdt , s ∈ R.

Next, we collect some well-known properties of the (vector-valued) Fourier

transform (see for instance [ABHN], [EN]). For f ∈ L1(R;X) and g ∈ L1(R) we

have:

(i) Riemann-Lebesgue Lemma: F ( f ) ∈C0(R;X)

(ii) F ( f ∗g)(s) = F ( f )(s)F (g)(s) for every s ∈ R.

(iii)
∫

∞

−∞
g(t)F ( f )(t)dt =

∫
∞

−∞
F (g)(t) f (t)dt.

(iv) Inversion Theorem: If F ( f ) ∈ L1(R;X) then

f (t) =
1

2π

∫
∞

−∞

F ( f )(s)eistds , a.e. t ∈ R.
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(v) Plancherel’s Theorem: If g ∈ L1(R)∩L2(R) then F (g) ∈ L2(R) and

‖F (g)‖2 =
√

2π‖g‖2 .

In order to study the Fourier transform of functionals, we first turn our attention

to the space of smooth, rapidly decreasing functions, that is, the Schwartz space

given by

S (R) := {ϕ ∈C∞(R) : ‖ϕ‖m,α := sup
x∈R

(1+ |x|)m|ϕ(n)(x)|< ∞, for all m,n ∈ N0},

endowed with its usual locally convex topology defined by the family of seminorms

‖ ·‖m,α . Recall that the space of test functions D(R) :=C∞
c (R) is densely contained

in S (R). It is a well known fact that the Fourier transform is a continuous, linear

and one-to-one mapping of S (R) onto itself, whose inverse is also continuous.

Moreover, if f ,g ∈S (R), we have:

(i) f ∗g ∈S (R) and

(ii) F ( f g) = F ( f )∗F (g).

Let S ′(R) denote the space of all tempered distributions, that is, the space of all

continuous linear maps from S (R) to C. The space S ′(R) is naturally embedded

in the space of distributions D ′(R). For instance, every distribution with compact

support is tempered. On the other hand, every function f ∈ L1(R) may be also

regarded as a tempered distribution f ≡ L f by

L f (ϕ) = 〈 f ,ϕ〉=
∫
R

f (x)ϕ(x)dx , ϕ ∈S (R) .

Starting from convolution of two functions, it is natural to define the convo-

lution of a tempered distribution and a function. For functions ϕ,φ : R→ C, the
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convolution product ϕ ∗φ is given by

(ϕ ∗φ)(x) =
∫
R

ϕ(y)φ(x− y)dy ,

provided that the integral exists in the Lebesgue sense a.e. x ∈ R. Now, for a tem-

pered distribution u ∈S ′(R) and a function ϕ ∈S (R), their convolution product

u∗ϕ is the tempered distribution defined as follows:

(u∗ϕ)(φ) := u(ϕ̃ ∗φ) , φ ∈S (R) ,

where ϕ̃(x) = ϕ(−x). This definition is consistent when functions are identified

with distributions. Moreover, for every u ∈S ′(R) and ϕ,φ ∈S (R),

(u∗ϕ)∗φ = u∗ (ϕ ∗φ). (1.3)

Now, for u ∈ S ′(R) we define its Fourier transform F (u) as the tempered

distribution given by

F (u)(ϕ) := u(F (ϕ)) ϕ ∈S (R).

This definition is also consistent when a function is identified with a distribution,

that is, given a function f ∈ L1(R) the Fourier transform of u f equals to uF ( f ).

The formal properties of the Fourier transform on S (R) are preserved for tem-

pered distributions. In particular, the Fourier transform is a continuous, linear and

one-to-one mapping of S ′(R) onto S ′(R). The topology considered here is the

weak*-topology that S (R) induces on S ′(R). Moreover, for every u∈S ′(R) and

ϕ ∈S (R), it holds:

(i) F (u∗ϕ) = F (ϕ)F (u).

(ii) F (u)∗F (ϕ) = F (ϕu).
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Recall that for arbitraries u ∈S ′(R) and ϕ ∈S (R), the multiplication ϕu is also a

tempered distribution such that (ϕu)(φ) := u(ϕφ).

For a fairly complete overview on convolution and the Fourier transform of

functionals, we refer to [Ru].

1.2 C0-semigroups and integrated families

In this section, we present some basic results of the theory of semigroups and other

evolution families related with the abstract Cauchy problem.

1.2.1 Strongly continuous semigroups

Definition 1.2.1. A family (T (t))t≥0 ⊆B(X) is called a C0-semigroup if it satisfies:

(i) T (0) = I (the identity operator on X).

(ii) T (t)T (s) = T (t + s) for all t,s≥ 0.

(iii) limt→0+ T (t)x = x for every x ∈ X, in the norm of X.

Observe that conditions (ii) and (iii) imply that the semigroup is strongly continuous,

that is, the orbit map t 7→ T (t)x is continuous from R+ into X for every x ∈ X .

An automatic consequence of the strong continuity is that every C0-semigroup

T ≡ T (t) is exponentially bounded, that is, ω(T ) < ∞ (see [ABHN] or [EN]).

Hence, every C0-semigroup is Laplace transformable in the sense of Definition

1.1.1.

Definition 1.2.2. The generator of a C0-semigroup (T (t))t≥0 ⊆B(X) is defined as
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the operator A on X whose domain is given by

D(A) := {x ∈ X : y = lim
t→0+

1
t
(T (t)x− x)exists}.

In that case, Ax = y.

One may define the generator of a given C0-semigroup T ≡ (T (t))t≥0 ⊆B(X)

alternatively as the unique operator A on X whose resolvent is the Laplace transform

of the semigroup in the sense that (ω(T ),∞) ⊂ ρ(A) and T̂ (λ ) = R(λ ,A) for λ >

ω(T ). Hence, the resolvent of A is given by

R(λ ,A)x =
∫

∞

0
e−λ sT (s)xds , ℜλ > ω(T ) , x ∈ X .

As a matter of fact, an operator A generates a C0-semigroup if and only if its

resolvent is a Laplace transform, that is, there exists a strongly continuous function

T : R+ →B(X) such that R(λ ,A) = T̂ (λ ) for ℜλ large enough. The functional

equation T (t)T (s) = T (t+s) follows from the fact that R(·,A) is a pseudoresolvent,

i.e., it verifies the resolvent identity:

R(λ ,A)−R(µ,A) = (µ−λ )R(λ ,A)R(µ,A) , λ ,µ ∈ ρ(A).

This identity together with the injectivity of R(·,A) implies that T (0) = I. Moreover,

the semigroup T is non-degenerate, which means that if T (t)x = 0 for all t ≥ 0 then

x = 0.

For the generator A of a C0-semigroup on X , the following properties hold:

(i) A is a closed, densely defined linear operator.

(ii) Hille-Yosida condition: There exist constants M≥ 0, ω ∈R such that (ω,∞)⊆

ρ(A) and

‖(λ −ω)n+1R(λ ,A)(n)/n!‖ ≤M (λ > ω, n ∈ N∪0).
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(iii) R(λ ,A)T (t) = T (t)R(λ ,A) for all t ≥ 0 and λ ∈ ρ(A).

(iv) If x ∈ D(A) then T (t)x ∈ D(A) and d
dt T (t)x = T (t)Ax = AT (t)x for all t ≥ 0.

(v) For all t ≥ 0 and x ∈ X ,∫ t

0
T (s)xds ∈ D(A) and T (t)x− x = A

∫ t

0
T (s)xds

(vi) A is bounded if and only if the semigroup (T (t))t≥0 is uniformly continuous

(i.e. T (·) is continuous from [0,∞) to B(X) endowed with the norm topolo-

gy). In that case, T (t) = etA :=
∞

∑
k=0

tkAk

k!
for every t ≥ 0.

The proof of these and other properties can be found in [ABHN, Proposition 3.1.9].

C0-semigroups and abstract Cauchy problems

As said in the Introduction, given a closed operator A on a Banach space X , the

initial value problem  u′(t) = Au(t), t ≥ 0,

u(0) = x, x ∈ X
(ACP)

is called the abstract Cauchy problem associated to the operator A and the initial

value x. A classical solution of (ACP) is a function u ∈C1(R+,X) such that u(t) ∈

D(A) for every t ≥ 0 and for which (ACP) holds. The problem is said to be well-

posed if for every x ∈ D(A), there exists a unique classical solution u of (ACP).

Notice that the existence of a classical solution yields x ∈ D(A). Hence, if the

initial value x is an arbitrary point in X , a weaker notion of solution should be

considered, that of mild solution. A function u ∈C(R+,X) is called a mild solution

of (ACP) if for all t ≥ 0,∫ t

0
u(s)ds ∈ D(A) and u(t)− x = A

∫ t

0
u(s)ds .
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This notion arises by integrating the differential equation in (ACP). Analogously,

the problem (ACP) is mildly well-posed if for every x ∈ X , there exists a unique

mild solution of (ACP). Mild and classical solutions only differ by regularity. As a

matter of fact, a mild solution u of (ACP) is classical if and only if u ∈C1(R+,X).

The following result shows that the existence of unique solution of (ACP) is the

same as saying that the operator A generates a C0-semigroup:

Theorem 1.2.3. ([ABHN, Theorem 3.1.12], [EN, Theorem 6.7]) Let A be a closed

operator on X. Then, the following assertions are equivalent:

(i) (ACP) is mildly well-posed.

(ii) The operator A generates a C0-semigroup (T (t))t≥0 on X.

(iii) ρ(A) 6= /0 and (ACP) is well-posed.

If these assertions hold, the mild solution of (ACP) is given by u(t) := T (t)x for

each x ∈ X.

1.2.2 α-Times integrated semigroups

Definition 1.2.4. Let α > 0. An α-times integrated semigroup is a strongly conti-

nuous family (Tα(t))t≥0 ⊆B(X) such that Tα(0) = 0 and satisfies

Γ(α)Tα(t)Tα(s) =
∫ t+s

t
(t + s− r)α−1Tα(r)dr−

∫ s

0
(t + s− r)α−1Tα(r)dr (1.4)

for every s, t ≥ 0.

Moreover, (Tα(t))t≥0 is called non-degenerate if Tα(t)x = 0 for all t ≥ 0 implies

x = 0.
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As in the case of C0-semigroups, integrated semigroups are related to their

generators by Laplace transform. Let Tα : [0,∞) → B(X) be an α-times inte-

grated semigroup and assume that it is Laplace transformable, that is, abs(Tα)< ω

for some ω ≥ 0. In this case, there exists a unique operator A on X satisfying

(ω,∞)⊆ ρ(A) and such that

R(λ ,A) := (λ −A)−1 = λ
α

∫
∞

0
e−λ tTα(t)dt , λ > ω.

Such an operator A is called the generator of (Tα(t))t≥0. A 0-times integrated semi-

group corresponds to the notion of C0-semigroup.

Hence, whereas the Laplace tranforms of C0-semigroups are resolvents R(λ ,A)

of operators A, α-times integrated semigroups are those operator-valued functions

whose Laplace transforms are of the form λ−αR(λ ,A). This property corresponds

to the functional equation (1.4) for Tα .

Moreover, we have for α ≥ 0:

(i) R(λ ,A)Tα(t) = Tα(t)R(λ ,A) for all t ≥ 0 and λ ∈ ρ(A).

(ii) If x ∈ D(A) then Tα(t)x ∈ D(A) and Tα(t)Ax = ATα(t)x for all t ≥ 0.

(iii) For every t ≥ 0 and x ∈ X ,
∫ t

0 Tα(s)ds ∈ D(A) and

A
∫ t

0
Tα(s)xds = Tα(t)x−

tα

Γ(α +1)
x .

In particular, Tα(0) = 0 .

(iv) For all t ≥ 0 and x ∈ D(A),∫ t

0
Tα(s)Axds = Tα(t)x−

tα

Γ(α +1)
x .

In particular, Tα(·) is differentiable and d
dt Tα(t)x = Tα(t)Ax+ tα−1

Γ(α)x .
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The following result shows that A generates an integrated semigroup if and only

if the associated Cauchy problem (ACP) admits classical solutions for every initial

value x belonging to the domain of some power of A.

Theorem 1.2.5. [ABHN] Let A be a closed operator on X and let n ∈N. Then, the

following are equivalent:

(i) A generates an exponentially bounded n-times integrated semigroup.

(ii) ρ(A) 6= /0 and for every x ∈ D(An+1) there exists a unique classical solution

of (ACP) which is exponentially bounded.

If these assertions hold, let (Tn(t))t≥0 denote the n-times integrated semigroup ge-

nerated by A. Then, for every x ∈ D(An) the (mild) solution of (ACP) is given by

u(t) = dn

dtn Tn(t)x, t ≥ 0.

See [ABHN], [AK] and [H] for the general theory of integrated semigroups.

1.2.3 Integrated cosine functions

In Chapter 3, we shall deal with α-times integrated cosine functions (α > 0). In par-

ticular, we obtain an inversion formula of Post-Widder type for the Laplace trans-

form of these functions, up to the factor λ α .

Definition 1.2.6. A strongly continuous family (Cα(t))t≥0 ⊆B(X) is an α-times

integrated cosine function if Cα(0) = I and

2Cα(t)Cα(s)=
∫ t+s

t
(t+s−r)α−1Cα(r)

dr
Γ(α)

−
∫ s

0
(t+s−r)α−1Cα(r)

dr
Γ(α)

(1.5)

+
∫ t

t−s
(r− t + s)α−1Cα(r)

dr
Γ(α)

+
∫ s

0
(r+ t− s)α−1Cα(r)

dr
Γ(α)

for every 0 < s < t.
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The family (Cα(t))t≥0 is called non-degenerate if Cα(t)x = 0 for every t ≥ 0

implies x = 0. Moreover, if the Laplace transform of Cα(·) : [0,∞)→B(X) con-

verges in (ω,∞) for some ω ≥ 0, then there exists a unique operator A on X , called

the generator of (Cα(t))t≥0, such that

λR(λ 2,A) := λ (λ 2−A)−1 = λ
α

∫
∞

0
e−λ tCα(t)dt , λ > ω.

Hence, generators of α-times integrated cosine functions are those operators for

which λ 1−αR(λ 2,A) is a Laplace transform.

A 0-times integrated cosine function is a usual cosine function. Recall that

a cosine function is a strongly continuous function Cos : R+ → B(X) such that

Cos(0) = I and

2Cos(t)Cos(s) =Cos(t + s)+Cos(t− s) (t ≥ s≥ 0).

Cosine functions are related with second order Cauchy problems, namely pro-

blems defined by closed operators A on a Banach space X in the following way:
u′′(t) = Au(t), t ≥ 0,

u(0) = x, x ∈ X ,

u′(0) = y y ∈ X .

As in the case of integrated semigroups and (ACP), integrated cosine functions

appear when weaker notions of well-posedness of the second order Cauchy problem

are considered. See [ABHN, Section 3.14.] and references therein for details.

1.3 Convolution Banach algebras of Sobolev type

As said before, there are certain convolution Banach algebras defined by fractional

derivation which are well-suited for the study of integrated semigroups. In this
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section, we give in detail definitions and basic properties of such algebras, as well

as the natural relationship with integrated semigroups via a functional calculus of

Hille-Phillips type.

For α > 0 and f ∈C∞
c (R+), the Weyl fractional integral of f of order α on R+

is defined by

W−α
+ f (t) :=

1
Γ(α)

∫
∞

t
(s− t)α−1 f (s)ds (t ≥ 0), (1.6)

and then the Weyl fractional derivative of f on R+ is defined as

W α
+ f (t) := (−1)n dn

dtnW−(n−α)
+ f (t) (t ≥ 0),

where n := [α]+1 and [α] is the integer part of α .

The operator W−α
+ : C∞

c (R+) → C∞
c (R+) defined by (1.6) is one-to-one (and

continuous for the usual topology of C∞
c (R+)) and then the fractional derivative W α

+

can be seen as the inverse operator of W−α
+ . These operators satisfy the group law

W α+β

+ =W α
+W β

+ for any α,β ∈ R where W 0
+ is defined to be the identity operator.

Definition 1.3.1. We define T
(α)
+ (tα) as the completion of C∞

c (R+) in the norm να

given by

να( f ) :=
∫

∞

0
|W α

+ f (t)| tα dt, f ∈C∞
c (R+).

For 0 < β < α , we have T
(α)
+ (tα) ↪→ T

(β )
+ (tβ ) ↪→ T

(0)
+ (t0) ≡ L1(R+), where ↪→

means continuous inclusion.

We have in fact that T
(α)
+ (tα) is a commutative Banach algebra with respect to

the convolution product on R+ given by

f ∗g(x) :=
∫ x

0
f (x− y)g(y) dy (a. e. x > 0; f ,g ∈T

(α)
+ (tα)).
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These facts can be found in [GM, Prop. 1.4] and [GMR, Prop. 2.3]. Also, the cha-

racter space of T
(α)
+ (tα) coincides with {z∈C : ℜz≥ 0} and the Gelfand transform

of T
(α)
+ (tα) is the Laplace transform [GMR1]. The fractional algebras T

(α)
+ (tα)

extend the corresponding Banach algebras introduced in [AK] for integer α .

We further consider a copy of T
(α)
+ (tα) on the negative real half-line. Analo-

gously, the Weyl fractional integral and derivative of a function f in C∞
c (R−) are

given by

W−α
− f (t) :=

1
Γ(α)

∫ t

−∞

(s− t)α−1 f (s)ds, (t ≤ 0),

and

W α
− f (t) :=

dn

dtnW−(n−α)
− f (t), (t ≤ 0),

respectively. Let T
(α)
− ((−t)α) denote the convolution Banach algebra obtained as

the completion of C∞
c (R−) with respect to the norm

να( f ) :=
∫ 0

−∞

|W α
− f (t)|(−t)α dt, f ∈C∞

c (−∞,0].

Of course, T
(α)
− ((−t)α) enjoys properties similar to those of T

(α)
+ (tα).

Now, we introduce the natural extension of these algebras for functions defined

in the whole real line:

Definition 1.3.2. Let T (α)(|t|α) be the completion of C∞
c (R) with respect to the

norm

να( f ) :=
∫

∞

−∞

|W α f (t)| |t|α dt, f ∈C∞
c (R),

where W α f :=W α
− f−+W α

+ f+, f− = f χ(−∞,0] and f+ = f χ[0,∞).

As a matter of fact, we have that T (α)(|t|α) = T
(α)
− ((−t)α)⊕T

(α)
+ (tα) and it

is T (n)(|t|n) is also a convolution Banach algebra, this time for the convolution on

all of R, see [GM, Th. 1.8]. Other properties of T (α)(|t|α) are that its character
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space is isomorphic to R and its Gelfand transform is equal to the Fourier transform.

Also, T (α)(|t|α) is regular on R since it contains the test functions.

Some additional structure of T
(α)
+ (tα) and T (α)(|t|α) as Banach algebras has

been recently studied in [GMR] and [GMR1].

Riesz kernels

Next we pay attention to a couple of distinguished families of functions related

to the algebras T
(α)
+ (tα) and T (α)(|t|α). These families are canonical examples of

integrated semigroups.

For β > 0 and t > 0, the Riesz kernel Rβ−1
t on R+ is defined by

Rβ−1
t (s) :=


(t− s)β−1

Γ(β )
if 0≤ s < t,

0 if s≥ t.

Then Rβ−1
t ∈ T

(α)
+ (tα) whenever β > α and, though Rα−1

t /∈ T
(α)
+ (tα), Rα−1

t de-

fines a multiplier of the algebra T
(α)
+ (tα) by convolution. This means that for all

f ∈T
(α)
+ (tα) and t > 0, then Rα−1

t ∗ f ∈T
(α)
+ (tα) and the inequality

να(Rα−1
t ∗ f )≤Cα tα

να( f ) (1.7)

holds. This estimate follows from the formula

W α
+ (Rα−1

t ∗ f )(s) =
χ(t,∞)(s)

Γ(α)

∫ s

s−t
(r+ t− s)α−1W α

+ f (r)dr (1.8)

−
χ(0,t)(s)

Γ(α)

∫
∞

s
(r+ t− s)α−1W α

+ f (r)dr,

valid for all s > 0, which is also the base to prove that the mapping

R+→T
(α)
+ (tα), t 7→ Rα−1

t ∗ f
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is norm continuous; see [GM, pp. 17, 34].

Moreover, the convolution product in T
(α)
+ (tα) can be expressed in terms of

Riesz kernels [GMR, Lemma 4.2]:

f ∗g =
∫

∞

0
W α

+ f (t)Rα−1
t ∗gdt f ,g ∈T

(α)
+ (tα). (1.9)

As a consequence of the above integral representation one gets that for a given

closed subspace I in T
(α)
+ (tα), I is an ideal of T

(α)
+ (tα) if and only if Rα−1

t ∗ f ∈ I

for all f ∈ I and t > 0 [GMR, Prop. 4.3].

Therefore closed ideals of T
(α)
+ (tα) are characterized as those closed subspaces

of T
(α)
+ (tα) which are invariant under the action by convolution of kernels Rα−1

t .

Thus the family of Riesz kernels plays a similar role to the one that the translation

semigroup (δt)t>0, formed by the Dirac masses on R+, has with respect to L1(R+).

This fact seems to be of interest because the algebras T
(α)
+ (tα) are not invariant

under translations [GMR, p. 5].

In the next result, we show that the family Γ(α +1) t−αRα−1
t , t > 0, is a summa-

bility kernel for T
(α)
+ (tα):

Proposition 1.3.1. [GMM1, Proposition 1.1] Let α > 0. For all f ∈T
(α)
+ (tα),

lim
t→0+

Γ(α +1) t−αRα−1
t ∗ f = f .

Proof. Let f ∈ C(∞)
c [0,∞) and t > 0. By using the formula (1.8) and the equality

αt−α
∫ s

s−t(r+ t− s)α−1dr = 1, we obtain that

να

(
Γ(α +1) t−α(Rα−1

t ∗ f )− f
)

≤ αt−α

∫ t

0

∫
∞

s
(r+ t− s)α−1|W α

+ f (r)|sαdrds+
∫ t

0
|W α

+ f (s)|sαds

+αt−α

∫
∞

t

∫ s

s−t
(r+ t− s)α−1|W α

+ f (r)−W α
+ f (s)|sαdrds.
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By Fubini’s theorem and the dominated convergence theorem, it readily follows

that the first integral on the right-hand member of the above inequality converges to

zero as t → 0+. The second integral also tends to 0 as t → 0+ by a straightforward

argument. For the third integral we apply again Fubini’s theorem to get

αt−α

∫
∞

t

∫ s

s−t
(r+ t− s)α−1|W α

+ f (r)−W α
+ f (s)|sα drds

= αt−α

∫ t

0

∫ r+t

t
(r+ t− s)α−1|W α

+ f (r)−W α
+ f (s)|sα dsdr

+αt−α

∫
∞

t

∫ r+t

r
(r+ t− s)α−1|W α

+ f (r)−W α
+ f (s)|sα dsdr.

Now, taking into account that W α
+ f ∈ C(∞)

c [0,∞) and the fact that
∫ r+t

t (r+ t−

s)α−1sα ds≤Cα t2α for some Cα > 0, we get that

t−α

∫ t

0

∫ r+t

t
(r + t − s)α−1|W α

+ f (r) − W α
+ f (s)|sαdsdr ≤ Cα‖W α

+ f‖∞tα+1

and therefore the integral tends to zero as t→ 0+.

As regards the double integral
∫

∞

t
∫ r+t

r , setting C := sup[supp(W α
+ f )], we have

αt−α

∫
∞

t

∫ r+t

r
(r+ t− s)α−1|W α

+ f (r)−W α
+ f (s)|sα dsdr

≤ αt−α

∫ C

t
sup

s∈(r,r+t)
|W α

+ f (r)−W α
+ f (s)|

∫ r+t

r
(r+ t− s)α−1ds (r+ t)αdr

=
∫ C

t
(r+ t)α sup

s∈(r,r+t)
|W α

+ f (r)−W α
+ f (s)|dr,

for 0 < t < C. Since W α
+ f is uniformly continuous, given any ε > 0 there exists

δ > 0 such that if 0 < t < δ then

∫ C

t
(r + t)α sup

s∈(r,r+t)
|W α

+ f (r) −W α
+ f (s)|dr ≤ ε

∫ C

t
(r + t)αdr ≤ (2C)α+1

α +1
ε.
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Thus putting all the above bounds together, we have shown that

lim
t→0+

Γ(α +1) t−αRα−1
t ∗ f = f

in the norm να , for every f ∈ C∞
c [0,∞). To conclude the proof, we only have to

apply the density of C∞
c [0,∞) in T

(α)
+ (tα) and the estimate (1.7).

As noticed before, we must deal with convolution on the whole real line. Thus

a version of Riesz kernels on all of R is needed, which extends the family of Riesz

kernels Rα−1
t defined previously for t > 0. We maintain the same notation for such

an extension.

For α > 0 and t ∈ R, put

Rα−1
t (s) :=



(t− s)α−1

Γ(α)
, if 0≤ s < t;

(s− t)α−1

Γ(α)
, if t < s≤ 0;

0, otherwise .

The above family satisfies similar properties to those summarized prior to Propo-

sition 1.3.1; see [GM] and [GMR]. In particular we have:

(i) Rα−1
t ∗ f ∈T (α)(|t|α) for every t ∈ R and f ∈T (α)(|t|α), with

να(Rα−1
t ∗ f )≤Cα |t|α να( f ).

(ii) For any f ,g ∈T (α)(|t|α),

f ∗g =
∫

∞

−∞

W α f (t)(Rα−1
t ∗g)dt,

where the integral converges in the norm topology of T (α)(|t|α).



Convolution Banach algebras of Sobolev type 53

Banach algebra homomorphisms and α-times integrated semigroups

The link existing between the above algebras and integrated semigroups relies

upon the following fact:

Let us assume that (Tα(t))t≥0 is an α-times integrated semigroup of homo-

geneous growth tα , that is, such that supt>0 t−α ‖Tα(t)‖ < ∞. Then the mapping

πα : T
(α)
+ (tα)→B(X) defined by

πα( f )x :=
∫

∞

0
W α

+ f (t)Tα(t)xdt, x ∈ X , f ∈T
(α)
+ (tα), (1.10)

is a bounded Banach algebra homomorphism [Mi].

Under some additional assumption and via the family of Riesz kernels, we

can establish the following one-to-one correspondence between α-times integrated

semigroups and bounded Banach algebra homomorphisms from T
(α)
+ (tα) to B(X):

Proposition 1.3.2. [GMM1, Proposition 5.1] Let X be a Banach space and let

α > 0. If Tα(t) is an α-times integrated semigroup on a Banach space X satisfying

‖Tα(t)‖ ≤Ctα (t > 0), (1.11)

and

lim
t→0

Γ(α +1)t−αTα(t)x = x (x ∈ X), (1.12)

then the bounded homomorphism πα : T
(α)
+ (tα)→B(X) given by

πα( f )x =
∫

∞

0
W α

+ f (t)Tα(t)x dt (x ∈ X) (1.13)

is such that πα(T
(α)
+ (tα))X is dense in X.

Conversely, for every bounded homomorphism πα : T (α)
+ (tα)→B(X) such that

πα(T
(α)
+ (tα))X is dense in X, the family defined by

Tα(t)x := πα(Rα−1
t ∗g)y, (x = πα(g)y ∈T

(α)
+ (tα); t ≥ 0),
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is an α-times integrated semigroup on B(X) satisfying (1.11) and (1.12) whose

associated homomorphism defined by the integral expression (1.13) is πα .

Proof. Let (Tα(t))t≥0 ⊆B(X) be an α-times semigroup on X under the assump-

tions in (1.11) and (1.12). Since the mapping f 7→W α
+ ( f ) tα , T

(α)
+ (tα)→ L1(R+)

is an isometric isomorphism of Banach spaces, we can take a sequence (en)n∈N ⊆

T
(α)
+ (tα) such that Γ(α + 1)−1W α

+ (en)(t) tα = nχ[0, 1
n ]
(t), t > 0, for each n ∈ N.

Then, for any x ∈ X and n ∈ N,

x−πα(en)x = x−n
∫ 1

n

0
Γ(α +1) t−αTα(t)xdt

= n
∫ 1

n

0

(
x−Γ(α +1) t−αTα(t)x

)
dt .

From this and the fact that limt→0 Γ(α +1)t−αTα(t)x = x for every x ∈ X , we con-

clude that

‖x−πα(en)x‖ ≤ sup
t∈(0, 1

n )

‖x−Γ(α +1) t−αTα(t)x‖→ 0, as n→ ∞.

This shows that πα(T
(α)
+ (tα))X is dense in X .

Conversely, let πα : T
(α)
+ (tα) → B(X) be an arbitrary bounded homomor-

phism such that πα(T
(α)
+ (tα))X is dense in X . Then X is a Banach (bi-)module

on T
(α)
+ (tα) through the action πα such that T

(α)
+ (tα)X = X , by the Cohen’s facto-

rization theorem, since T
(α)
+ (tα) has a bounded approximate identity (see [GM]). It

means that for every x ∈ X there exist g∈T
(α)
+ (tα) and y∈ X such that x = πα(g)y.

For a given multiplier µ of T
(α)
+ (tα) define

πα(µ)x = πα(µ ∗g)y.

The expression above does not depend on the decomposition x = πα(g)y, it gives

rise to a bounded linear operator on X , and makes πα a bounded algebra homomor-
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phism from the Banach algebra of multipliers of T
(α)
+ (tα) and B(X) [E, Proposi-

tion 5.2]. In particular one can define Tα(t) := πα(Rα−1
t ), t ≥ 0, since Rα−1

t is a

multiplier of T
(α)
+ (tα).

The fact that πα is a bounded homomorphism and that Rα−1
t is moreover an α-

times integrated semigroup implies that (Tα(t)) is an α-times integrated semigroup,

as well. Also, (Tα(t)) verifies the growth condition (1.11) because ‖Rα−1
t ‖ ≤Ctα

(t > 0). Now, for f ∈T
(α)
+ (tα) and x = πα(g)y ∈ X ,

πα( f )πα(g)y = πα( f ∗g)y = πα

(∫
∞

0
W α

+ f (t)Rα−1
t ∗g dt

)
y

=
∫

∞

0
W α

+ f (t)πα(Rα−1
t ∗g)y dt =

∫
∞

0
W α

+ f (t)Tα(t)πα(g)y dt,

where we have used the representation (1.9) in the second equality and the continui-

ty of πα in the third one. Hence

πα( f )x =
∫

∞

0
W α

+ f (t)Tα(t)x dt ∀ f ∈T
(α)
+ (tα),x ∈ X .

Finally notice that

Γ(α +1)t−αTα(t)πα( f ) = πα

(
Γ(α +1)t−αRα−1

t ∗ f
)

for any f ∈ T
(α)
+ (tα) and t > 0. Then, by the factorization X = πα(T

(α)
+ (tα))X ,

Proposition 1.3.1 and the continuity of πα we obtain that

lim
t→0+

Γ(α +1)t−αTα(t)x = x (x ∈ X).

Thus we have shown that (Tα(t))t≥0 is a Cα -semigroup, and the proof is over.

The corresponding result for α = 0 is well known and can be seen in [ESZ],

[Ki] and [CT1] for instance.
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Remark 1.3.1. Given any α-times integrated semigroup (Tα(t)) on X of homo-

geneus growth tα , there always exists a closed subspace X0 of X such that the fami-

ly (Tα(t) |X0) is an α-times integrated semigroup on B(X0) and verifies condition

(1.12) for every x ∈ X0. In fact, X0 can be taken as the closure of πα(T
(α)
+ (tα))X in

X , where πα : T
(α)
+ (tα)→B(X) is as in (1.13).

Remark 1.3.2. For α-times integrated cosine functions there is a similar result,

with the only difference that the homomorphism πα has to be replaced by a homo-

morphism γα : T
(α)
+ (tα)→B(X) with respect to the cosine convolution product ∗c

in T
(α)
+ (tα) defined for f ,g ∈T

(α)
+ (tα) by

f ∗c g(t) :=
1
2

(
f ∗g(t)+

∫
∞

t
f (s− t)g(s)ds+

∫
∞

t
g(s− t) f (s)ds

)
, t > 0.

Actually, the family (Rα−1
t )t≥0 is an α-times integrated semigroup and an α-

times integrated cosine family since it verifies the corresponding functional equa-

tions (namely, (1.4) and (1.5) in Chapter 1). Thus it seems reasonable to consider

the Riesz kernels as canonical integrated families, in the present setting. For all the

above facts we refer the reader to [GM], [GMM1] and [Mi1].

Duality in the Sobolev algebras

We shall also need to consider duality in T (α)(|t|α) and T
(α)
+ (tα). In order to

do that, we take into account the following fact:

The operator W−α
+ extends as a surjective isometry W−α

+ : L1(tα)→ T
(α)
+ (tα)

where L1(tα), endowed with the usual norm, is the Banach space of integrable func-

tions on R+ with respect to the weight tα ; see [GMR, Section 2]. Thus the mapping

W α
+ : T

(α)
+ (tα)→ L1(tα) is defined as the inverse of W−α

+ : L1(tα)→ T
(α)
+ (tα),

so that a function f in L1(R+) belongs to T
(α)
+ (tα) if and only if there exists
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F ∈ L1(tα) such that

f (x) =
1

Γ(α)

∫
∞

x
(y− x)α−1F(y) dy for a. e. x > 0.

On account of the isomorphism between T
(α)
+ (tα) and L1(tα), the dual Banach

space T
(α)
+ (tα)∗ of T

(α)
+ (tα) is automatically identified with the set of almost eve-

rywhere defined functions φ : R+→ C which satisfy t−αφ ∈ L∞(R+). The duality

is implemented by the formula

Lφ ( f )≡
〈
Lφ , f

〉
:=
∫

∞

0
W α

+ f (t)φ(t)dt, f ∈T
(α)
+ (tα),

for every φ ≡ Lφ ∈T
(α)
+ (tα)∗.

Moreover, T
(α)
+ (tα)∗ becomes a (dual) Banach T

(α)
+ (tα)-module through the

action of T
(α)
+ (tα) on itself as a Banach algebra. We denote the dual Banach module

product by •, so that

(Lϕ , f ) 7→ Lϕ • f , T (α)
+ (tα)∗×T

(α)
+ (tα)→T

(α)
+ (tα)∗

is defined by (Lϕ • f )(g) := Lϕ( f ∗g) for all g ∈T
(α)
+ (tα).

Analogous facts hold about duality in T
(α)
− ((−t)α) and functions φ , now su-

pported on (−∞,0). Then we shall represent the dual T (n)(|t|n)∗ as the (topologi-

cal) direct sum T (n)(|t|n)∗ = T
(α)
− ((−t)α)∗⊕T

(α)
+ (tα)∗, so that the continuous

linear functionals of T (n)(|t|n) correspond to functions ϕ , defined almost every-

where on R, such that |t|−αϕ ∈ L∞(R). An important observation here is that eve-

ry functional Lϕ of T (n)(|t|n)∗ can be considered as a tempered distribution on R

since the Schwartz class S (R) is continuously and densely contained in T (n)(|t|n)

[GMR, Prop. 2.3].
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1.4 Spectral synthesis on regular Banach algebras

A commutative semisimple Banach algebra A with character space M (A) is called

regular if for every closed subset E ⊂M (A) and every point p /∈ E there exists an

element f ∈A such that f̂ = 0 on E and f̂ (p) 6= 0, where f̂ is the Gelfand transform

of f .

An element f of A is said to be of spectral synthesis with respect to a closed sub-

set S ⊆M (A) if there exists a sequence ( fn) in A such that the Gelfand transform

f̂n vanishes in a neighbourhood Un of S for each n, and

lim
n→∞
‖ f − fn‖A = 0.

Then a closed subset S of M (A) is called a set of spectral synthesis for A if every

f ∈ A such that f̂ vanishes on S is of spectral synthesis with respect to S; see [K]

and [L].

It is said that A satisfies the Ditkin-Wiener property at p ∈M (A) if {p} is of

spectral synthesis for A. In a Banach algebra A satisfying the Ditkin-Wiener condi-

tion at every point of M (A) any closed subset of M (A) with scattered boundary is

a set of spectral synthesis, so is any closed countable subset; see [RS, p. 37].

An example of Banach algebra which satisfies the Ditkin-Wiener property at

every point of its character space R is L1(R). In particular, every closed set E ⊆ R

with countable boundary is of spectral synthesis (see [N, Theorem 5.4.3]).



Chapter 2

Decay estimates of functions

through singular extensions of

vector-valued Laplace transforms

In the main result of the present chapter (Theorem 2.1.1), we obtain estimates for

the rate of decay of certain slight modification of a given function f ∈ L∞(R+;X) in

terms of the growth of L f on the imaginary axis. In more detail we shall assume

that L f has an analytic extension to some region containing iR \ {0}, where it

satisfies suitable bounds. Hence, we allow L f to have a pole at the origin. Then,

we estimate the decay of (e1 ∗ e1 − e1) ◦ f where e1(t) := e−t for t ∈ R+ and ◦

denotes the convolution product defined by

g◦ f (t) :=
∫

∞

t
g(s− t) f (s)ds , t > 0 , g ∈ L1(R+) , f ∈ L∞(R+;X).

This result is in the spirit of [BD, Theorem 4.1] and [AB, Proposition 1.1].

The first section is devoted to prove the above-mentioned result (Theorem 2.1.1).

59
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In the second section, Theorem 2.1.1 is applied to C0-semigroups under the assump-

tion that the boundary spectrum of their infinitesimal generators is empty or consists

of the origin. Such semigroups appear in applications to wave equations (see [Bu],

[DFMP], [DFMP1] and references therein). We estimate the decay of certain orbits

in terms of the norm of the resolvent operator along the imaginary axis (Proposition

2.2.1). Notice that if (T (t))t≥0 is such a C0-semigroup and we consider f (t) = T (t)x

for any x ∈ X then

(e1 ∗ e1− e1)◦ f (t) = T (t)A(1−A)−2x , t ≥ 0 ,

where A denotes the generator of (T (t)). This result is in the spirit of Theorem 6

(see p. 14) mentioned in the Introduction.

Finally, in Theorem 2.2.1 we show that similar estimates can be given for the

rate of decay of certain orbits of bounded semigroups having arbitrary finite bounda-

ry spectrum. This result extends Proposition 2.2.1 and completes [BD, Proposition

4.3]. The added interest of this result is that such estimates are given in an explicit

way in terms of the resolvent operator along the imaginary axis.

The results in this chapter correspond to those of the paper [M].

2.1 The decay rate of functions

Put ez(t) := e−zt for every z ∈C and t ∈R+. Then ez ∈ L1(R+) whenever z belongs

to the open right half plane C+, and ‖ez‖1 = 1/ℜz. The family (ez)z∈C verifies the

resolvent identity

(z−ω)(ez ∗ eω) = eω − ez , z,ω ∈ C .
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Given f ∈ L∞(R+;X) and g∈ L1(R+), let g◦ f ∈ L∞(R+;X) denote the convolution

product given by

g◦ f (t) :=
∫

∞

t
g(s− t) f (s)ds , t > 0 ,

where the integral is understood in the sense of Bochner. This product is the adjoint

convolution to the usual one in L1(R+) in the sense that for any g,h ∈ L1(R+) and

f ∈ L∞(R+;X) we have

∫
∞

0
(g∗h)(t) f (t)dt =

∫
∞

0
h(t)(g◦ f )(t)dt , .

However, this product ◦ is neither commutative nor associative. Some of the

properties of this convolution that will be used in the sequel are the following (see

for instance [Mi2] and [CT1]):

(i) g◦ (h◦ f ) = (g∗h)◦ f = h◦ (g◦ f ) for f ,g,h as above.

(ii) ez ◦ eω =
1

z+ω
eω for every z,ω ∈ C+.

Lemma 2.1.1. Let f ∈ L∞(R+;X). Then,

(e1− zez ∗ e1)◦ f = ez ◦ ( f − e1 ◦ f ) , z ∈ C+ . (2.1)

Proof. Taking into account that (z−1)(ez ∗e1) = e1−ez for all z ∈C+, it is readily

seen that

(e1− zez ∗ e1)◦ f = e1 ◦ f − z(ez ∗ e1)◦ f = ez ◦ f − (ez ∗ e1)◦ f .

Now, the claim follows trivially from the basic properties of ◦mentioned above.
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Lemma 2.1.2. Let f ∈ L∞(R+;X) be such that its Laplace transform L f extends

to an analytic function in some region Ω containing C+. Then, the function

z 7→ (e1− zez ∗ e1)◦ f (t) , C+→ X

also extends analytically to Ω for every t > 0. Moreover, if z ∈ Ω \ {1} and t > 0

then

(e1− zez ∗ e1)◦ f (t) =
1

1− z
(zgz(t)+ e1 ◦ f (t))+

z
1− z

eztL f (z) (2.2)

where g(·)(t) denotes the entire function given by

gz(t) := etz
∫ t

0
e−sz f (s)ds , z ∈ C .

Proof. Let t > 0 be fixed and z ∈ C+. Notice that

ez ◦ f (t) =
∫

∞

t
e−z(s−t) f (s)ds = eztL f (z)−gz(t) .

By (2.1) and the expression of ez ◦ f above, we get that

(e1− zez ∗ e1)◦ f (t) = eztL f (z)−gz(t)− ez ◦ (e1 ◦ f )(t) .

It is also straightforward from the definition of ◦ that

ez ◦ (e1 ◦ f )(t) = ezt
∫

∞

0
e−sz(e1 ◦ f )(s)ds− ezt

∫ t

0
e−sz(e1 ◦ f )(s)ds.

Considering the integral expression of e1 ◦ f and applying Fubini Theorem in both

integrals, we obtain that if z 6= 1 then

ez ◦ (e1 ◦ f )(t) =
ezt

1− z
L f (z)− 1

1− z
gz(t)−

1
1− z

(e1 ◦ f )(t).



The decay rate of functions 63

From this, we get that, for any z ∈ C+ \{1},

(e1− zez ∗ e1)◦ f (t) =
1

1− z
(zgz(t)+ e1 ◦ f (t))+

z
1− z

eztL f (z).

Now, observe that the right-hand side of this equality has an analytic extension to

the region Ω\{1}. Thus, by the identity theorem for analytic functions, we obtain

that the function

z 7→ (e1− zez ∗ e1)◦ f (t) , C+→ X

extends analytically to the region Ω and, also, the last equality holds in Ω \ {1},

which proves (2.2) and concludes the proof.

In order to state the main result, let us introduce some notation. Given a contin-

uous function µ : (0,∞)→ (0,∞), we will denote

Σµ := {z ∈ C : ℜz >− 1
µ(|ℑz|)

} .

In Theorem 2.1.1, we assume that the Laplace transform of a given function admits

an analytic extension to a region Σµ . This assumption on the Laplace transform

is certainly natural and it has been considered in other settings, see for example

[CT1, Section 4] and references therein. The outline of the proof of Theorem 2.1.1

is inspired by that of [BD, Theorem 1.5.] mentioned above, which is based on the

contour integral method introduced by Newman and Korevaar ([Ne] and [Ko]). We

shall apply a suitable adaptation of this technique, similarly to [AFR] and [AB]

where some singularities are considered.

Theorem 2.1.1. [M, Theorem 2.3.] Let X be a Banach space and let f ∈L∞(R+;X).

Assume that there exists a continuous function µ : (0,∞)→ (0,∞) verifying the follo-

wing conditions:
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(i) The Laplace transform L f has a holomorphic extension to the region Σµ and

‖L f (z)‖ ≤ µ(|ℑz|) throughout Σµ ∩C−.

(ii) µ is decreasing on (0,1] and increasing on [1,+∞).

Then, there exist positive constants C and T such that

‖(e1− e1 ∗ e1)◦ f (t)‖ ≤ C

(
m−1

log(t/4) +
1

M−1
log (t/4)

+
1
t

)
t > T,

where m−1
log and M−1

log denote the inverse functions of mlog and Mlog, respectively,

defined by

Mlog(ξ ) := µ(ξ ) log((1+µ(ξ ))(1+ξ )) , ξ ≥ 1 (2.3)

mlog(ξ ) := µ(ξ ) log
(

1+µ(ξ )

ξ

)
, 0 < ξ ≤ 1 . (2.4)

Proof. Under the assumptions of the statement, notice that the functions Mlog and

mlog are strictly increasing and decreasing, respectively. We are then allowed to

consider the inverse functions M−1
log : [Mlog(1),∞)→ [1,∞) and m−1

log : [mlog(1),∞)→

(0,1], which satisfy:

lim
t→∞

m−1
log(t) = 0 = lim

t→∞

1
M−1

log(t)
.

For d > 0, let γ
+
d and γ

−
d denote the right and left-hand half of the circle |z|= d,

respectively. Let t > 0 and let any R > 1 and 0 < r < 1
2 . Set γ := γ

+
R ∪ γ+r ∪ γ ′ where

γ ′ is a path in Σµ ∩C−, which is to be chosen later, so that γ is closed, rectifiable

and homotopic to zero. Hence, Cauchy’s Theorem yields

(e1− e1 ∗ e1)◦ f (t) =
NR,r

2πi

∫
γ

(1+
z2

R2 )(1+
r2

z2 )(e1− zez ∗ e1)◦ f (t)
dz

z−1

where NR,r := (1+1/R2)−1(1+r2)−1 ≤ 1. The factors 1+z2/R2 and 1+r2/z2 play

an important role in order to get suitable upper estimates of the integral above. We
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will write C to denote any positive constant, which may change from line to line,

depending only on ‖ f‖∞ and the function µ .

First, we prove that the norm of (e1− e1 ∗ e1)◦ f (t) is bounded by

r +
1

R−1
+ ‖

∫
γ ′
(1+

z2

R2 )(1+
r2

z2 )
z

1− z
ezt f̂ (z)

dz
z−1

‖ (2.5)

up to some constant C > 0.

Note that if |z| = R, |1+ z2/R2| = 2|ℜz|/R and |1+ r2/z2| ≤ 2. Taking into

account the equality in (2.1), we observe that

‖(e1− zez ∗ e1)◦ f (t)‖ ≤ 2‖ f‖∞‖ez‖1 ≤C/ℜz

whenever z ∈ C+. Therefore,

‖
∫

γ
+
R

(1+
z2

R2 )(1+
r2

z2 )(e1− zez ∗ e1)◦ f (t)
dz

z−1
‖ ≤ C

R−1
. (2.6)

On the other hand, if |z|= r we have |1+ z2/R2| ≤ 2 and |1+ r2/z2|= |1+ z2/r2|=

2|ℜz|/r. In addition, if z ∈ γ+r ,

‖(e1− zez ∗ e1)◦ f (t)‖ ≤ ‖ f‖∞‖e1− zez ∗ e1‖1 ≤ C
r

ℜz

and, as a consequence,

‖
∫

γ
+
r

(1+
z2

R2 )(1+
r2

z2 )(e1− zez ∗ e1)◦ f (t)
dz

z−1
‖ ≤Cr . (2.7)

Up to now, we then have that the norm of (e1− e1 ∗ e1)◦ f (t) is bounded by

r +
1

R−1
+ ‖

∫
γ ′
(1+

z2

R2 )(1+
r2

z2 )(e1− zez ∗ e1)◦ f (t)
dz

z−1
‖ ,

up to some constant C > 0.
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Now, we consider the expression of (e1− zez ∗ e1) ◦ f (t) given by (2.2). Thus,

the norm of the last integral is bounded by

‖
∫

γ ′
(1+

z2

R2 )(1+
r2

z2 )
1

1− z
(zgz(t)+ e1 ◦ f (t))

dz
z−1

‖

+ ‖
∫

γ ′
(1+

z2

R2 )(1+
r2

z2 )
z

1− z
eztL f (z)

dz
z−1

‖.

Denote for simplicity

Gt(z) := (1+
z2

R2 )(1+
r2

z2 )
1

1− z
(zgz(t)+ e1 ◦ f (t))

1
z−1

, z ∈ C−.

By Cauchy’s Theorem, ∫
γ ′∪γ

−
r

Gt(z)dz =
∫

γ
−
R

Gt(z)dz

since both paths γ ′∪ γ−r and γ
−
R go from iR to −iR. Next, we see that the integrals

of Gt along γ
−
R and γ−r are bounded similarly to (2.6) and (2.7), respectively. First,

it is easy to check that

|ℜz|
|z|
‖zgz(t)+ e1 ◦ f (t)‖ ≤C , z ∈ C− .

Thus, acting as in (2.6), we get that

‖
∫

γ
−
R

Gt(z)dz‖ ≤ C
R−1

and, analogously to (2.7),

‖
∫

γ
−
r

Gt(z)dz‖ ≤C r.

Therefore,

‖
∫

γ ′
Gt(z)dz‖ ≤ C

(
r +

1
R−1

)
.

Finally, putting together all the estimates above, we get the estimate in (2.5).
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Next, we consider a suitable choice of γ ′. In particular, let γ+ and γ− to be the

two paths in Σµ ∩C− such that γ ′ = γ+∪γ−. We take γ± := γR
±∪γ1

±∪γ2
±∪γr

± where

γ
R
±(s) = s ± iR ,

−1
2µ(R)

≤ s≤ 0 ,

γ
1
±(τ) =

−1
2µ(τ)

± iτ , 1≤ τ ≤ R ,

γ
2
±(τ) =

−1
2µ(τ)

± iτ , r ≤ τ ≤ 1 ,

γ
r
±(s) = s ± ir ,

−1
2µ(r)

≤ s≤ 0 .

−1
2µ(r)

−1
2µ(R)

−1
2µ(1)

γR
+

γr
+

γ1
+

γ2
+ ir

i

iR

Moreover, we know that

‖L f (γR
±(s))‖ ≤ µ(R) ,

−1
2µ(R)

≤ s < 0 ,

‖L f (γ1
±(τ))‖ ≤ µ(τ) , 1≤ τ ≤ R ,

‖L f (γ2
±(τ))‖ ≤ µ(τ) , r ≤ τ ≤ 1 ,

‖L f (γr
±(s))‖ ≤ µ(r) ,

−1
2µ(r)

≤ s < 0.
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We can consider γ ′ to be piecewise smooth (if it is not, it can be approximated by

smooth paths). In particular, γ ′ remains rectifiable.

We shall now estimate the norm of the integral in (2.5). The factor z/(z− 1)

is uniformly bounded along γ ′. Straightforward calculations show that both factors

1+ r2/z2 and 1+ z2/R2 are also bounded on γ ′ by some constant depending only

on the value µ(1). We do not need sharper bounds on these factors in order to get

suitable estimates, except for γr
±.

First, the integral in (2.5) over γR
± is bounded by

C
∫ 0

−(2µ(R))−1
µ(R)est ds

|γR
±(s)−1|

≤ C
2R

.

On γr
± , we have |1+ r2/z2| ≤ 2|ℜz|/|z| and |z−1| ≥ 1, so that

‖(1+ r2

z2 )
z

z−1
L f (z)‖ ≤ 2

|ℜz|
|z−1|

‖L f (z)‖ ≤ 2
1

2µ(r)
µ(r) = 1.

Hence, the integral in (2.5) over γr
± is bounded by

C
∫ 0

−(2µ(r))−1
est ds ≤ C

t
(1− e−t/2µ(r)) ≤ C

t
.

On the other hand, the integral over γ1
± can be bounded by

C
∫ R

1
µ(τ)e−t/2µ(τ) dτ ≤ C µ(R)(R−1)e−t/2µ(R)

≤ C
R−1

(
(1+µ(R))2(1+R)2 e−t/2µ(R)

)
.

Now, we see that if we consider t > 4Mlog(1) and we set R = M−1
log(t/4), exactly as

in [BD], then R > 1 and, moreover,

(1+µ(R))2(1+R)2 = e2Mlog(R)/µ(R) = et/2µ(R) .
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Thus, the norm of the integral over γ1
± is bounded by C/(R− 1). Finally, we may

bound the integral over γ2
± by

C
∫ 1

r
µ(τ)e−t/2µ(τ) dτ

|γ2
±(τ)−1|

≤ C µ(r)e−t/2µ(r)

≤ C r
(
(1+µ(r))2

r2 e−t/2µ(r)
)
.

Analogously to the preceding case, we notice that if we set r = m−1
log(t/4) then r <

1/2 whenever t > 4mlog(1/2). Furthermore,

(1+µ(r))2

r2 = e2mlog(r)/µ(r) = et/2µ(r) ,

so that the integral over γ2
± is bounded by Cr.

In conclusion, choosing R = M−1
log(t/4) and r = m−1

log(t/4), the claim of Theorem

2.1.1 holds for some T ≥ 4max{Mlog(1) , mlog(1/2)}.

Remark 2.1.1. By looking at the estimates in detail, one realizes that the final

constant C > 0 appearing in Theorem 2.1.1 is of the form C =Cµ‖ f‖∞ where Cµ > 0

is some constant only depending on µ .

Remark 2.1.2. Assumption (ii) in Theorem 2.1.1 is not strictly necessary in order

to get similar decay estimates. In particular, given f ∈ L∞(R+;X) and a continuous

function µ : (0,∞)→ (0,∞) such that (i) is satisfied, then the function ν : (0,∞)→

(0,∞) defined as

ν(t) :=


sup

t≤s≤1
µ(s) if 0 < t ≤ 1,

sup
1≤s≤t

µ(s) if t ≥ 1

is continuous and verifies both conditions (i) and (ii). The claim of Theorem 2.1.1

then holds for Mlog and mlog defined in terms of ν .
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To illustrate Theorem 2.1.1, we next consider some particular cases of growth of

the Laplace transform near its singularities on the imaginary axis. Some examples

for the growth at infinity are considered in [BD] and remain valid in this setting.

Indeed, set M ≡ µ|[1,∞) and let α,β > 0:

• If M(ξ ) = βeαξ then M−1
log(t)∼

1
α

log(t), t→+∞.

• If M(ξ ) = β (1+ξ )α then M−1
log(t)∼Cα,β

(
t

log(t)

) 1
α

, t→+∞.

• If M is bounded then M−1
log(t)∼ eCt (C > 0), t→+∞.

As examples of growth for m≡ µ|(0,1], we can consider the following:

• If m(ξ ) = βeαξ−1
then m−1

log(t)∼
α

log(t)
, t→+∞.

• If m(ξ ) = βξ−α then m−1
log(t)∼Cα,β

(
log(t)

t

) 1
α

, t→+∞.

• If m is bounded then m−1
log(t)∼ e−Ct (C > 0), t→+∞.

2.2 Applications to semigroup theory

2.2.1 One point in the boundary spectrum

Let (T (t))t≥0 be a bounded C0-semigroup on a Banach space X and let A denote its

infinitesimal generator. See definitions and properties in Chapter 1. Assume that

σ(A)∩ iR⊆ {0}. Then, the function τ 7→ ‖(iτ−A)−1‖ is continuous on R\{0}.

Let M : [1,∞)→ R+ be the continuous increasing function defined by

M(ξ ) := sup
1≤|τ|≤ξ

‖(iτ−A)−1‖ , ξ ≥ 1 .
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Consider also the continuous decreasing function given by

m(ξ ) := sup
ξ≤|τ|≤1

‖(iτ−A)−1‖ , 0 < ξ ≤ 1 .

Now, we define µ : (0,∞)→ (0,∞) as

µ(ξ ) :=


2m(ξ ) if 0 < ξ ≤ 1;

2M(ξ ) if ξ ≥ 1 .
(2.8)

Theorem 2.2.1. [M, Proposition 3.1] Let (T (t))t≥0 be a bounded C0-semigroup on

a Banach space X and let A be its generator. Assume that σ(A)∩ iR ⊆ {0}. Let

µ : (0,∞)→ (0,∞) be the continuous function defined as in (2.8) above and let Mlog

and mlog be defined in terms of µ as in (2.3) and (2.4). Then, for any k ∈ N there

exist positive constants Ck and Tk such that for all t > Tk,

∥∥T (t)Ak(1−A)−2k
∥∥ ≤ Ck

(
m−1

log(t/4k)+
1

M−1
log (t/4k)

+
k
t

)k

(2.9)

where M−1
log and m−1

log denote the inverse functions of Mlog and mlog, respectively.

Proof. Since
∥∥T (t)Ak(1−A)−2k

∥∥≤∥∥T (t/k)A(1−A)−2
∥∥k, t ≥ 0 , it suffices to prove

(2.9) for k = 1. Let x ∈ X such that ‖x‖ = 1 and set f (t) := T (t)x for t ≥ 0. Since

(1−A)−1− I = A(1−A)−1, we have that

T (t)A(1−A)−2x = T (t)
(
(1−A)−2x− (1−A)−1x

)
=

= T (t)
∫

∞

0
(e1 ∗ e1− e1)(s)T (s)xds =

∫
∞

0
(e1 ∗ e1− e1)(s)T (t + s)xds

=
∫

∞

t
(e1 ∗ e1− e1)(s− t) f (s)ds =−(e1− e1 ∗ e1)◦ f (t).

Now, the claim follows from Theorem 2.1.1 and Remark 2.1.1 just by checking

that µ satisfies the assumptions in this theorem. It is clear from the definition that µ
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is decreasing on (0,1] and increasing on [1,+∞), as well as that µ is continuous. On

the other hand, we know that iR\{0} ⊆ ρ(A) so that we may extend the resolvent

operator into the left-half plane by means of standard Neumann series. In particular,

if z ∈ Σµ ∩C− then iℑz ∈ ρ(A) and

|iℑz− z|= |ℜz| ≤ 1
µ(|ℑz|)

≤ 1
2‖(iℑz−A)−1‖

so that z ∈ ρ(A) and

(z−A)−1 =
∞

∑
n=0

(iℑz−A)−(n+1) (iℑz− z)n .

Now, it follows easily that ‖(z−A)−1x‖ ≤ 2‖(iℑz−A)−1x‖ ≤ µ(|ℑz|).

Remark 2.2.1. Under the assumptions of Theorem 2.2.1, the operator A(1−A)−2

is a particular case of the functional calculus given by

π(h)x :=
∫

∞

0
h(t)T (t)xdt , x ∈ X , h ∈ L1(R+). (2.10)

Indeed, A(1−A)−2 = π(e1 ∗ e1− e1). Moreover, observe that the function e1 ∗ e1−

e1 ∈ L1(R+) is of spectral synthesis with respect to (iσ(A))∩R since its Fourier

transform vanishes at {0}. Therefore, the Katznelson-Tzafriri type theorem for C0-

semigroups (see [ESZ] and [V]) yields

lim
t→∞
‖T (t)Ak(1−A)−2k‖= 0 , for all k ∈ N .

Definitions and details about sets and functions of spectral synthesis can be seen in

Chapter 1 and references therein.

Corollary 2.2.1. Let (T (t))t≥0 be a bounded C0-semigroup on a Banach space X

generated by an operator B such that σ(B)∩ iR ⊆ {ip} for some p ∈ R. Let µ :
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(0,∞)→ (0,∞) be defined in terms of A := B− ip as in (2.8). Then, there are

constants Ck,Tk > 0 such that for all t ≥ Tk,

∥∥T (t)(ip−B)k(1+ ip−B)−2k
∥∥ ≤ Ck

(
m−1

log(t/4k)+
1

M−1
log (t/4k)

+
k
t

)k

where Mlog and mlog are given by (2.3) and (2.4), respectively.

Proof. The claim follows immediately from Theorem 2.2.1 by noticing that the

semigroup (e−iptT (t))t≥0 is a bounded C0-semigroup generated by B− ip such that

σ(B− ip)∩ iR⊆ {0}.

2.2.2 Arbitrary finite boundary spectrum

Let (T (t))t≥0 be a bounded C0-semigroup on a Banach space X . Assume that

the boundary spectrum of its generator A is at most finite, that is, σ(A)∩ iR ⊆⋃n
j=1{ip j} for some n ∈ N and some

⋃n
j=1{p j} ⊆ R.

Under these hypothesis, the bounded operator

(1−A)−1
n

∏
j=1

(
(ip j−A)(1−A)−1) (2.11)

is a particular case of the functional calculus given by (2.10). Indeed, let

g(x) :=
1

1+ ix

n

∏
j=1

ip j + ix
1+ ix

, x ∈ R .

Observe that g ∈C0(R) and vanishes on iσ(A)∩R. Note also that

ip j + ix
1+ ix

= 1− 1
1+ ix

+
ip j

1+ ix
= (δ − (1− ip j)u)ˆ(x) , ∀x ∈ R ,

where δ denotes the Dirac measure at the origin and ˆ denotes the Fourier transform.

Then, the function

f := u ∗
n

∏
j=1

(δ − (1− ip j)u) ∈ L1(R+)
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is such that f̂ = g. From this and the fact that finite sets of R are of spectral synthesis,

it follows that f is of spectral synthesis with respect to iσ(A)∩R. Furthermore, it

is easy to check that the operator in (2.11) is equal to π( f ). Hence, it follows from

the continuous version of the Katznelson-Tzafriri Theorem above mentioned that

lim
t→+∞

‖T (t)(1−A)−1
n

∏
j=1

(
(ip j−A)(1−A)−1)‖ = 0 .

In the following Theorem 2.2.1, we estimate this decay in terms of certain func-

tions M and m, similar to those considered in the last case, defined by means of the

resolvent operator along the imaginary axis when avoiding the possible singularities

ip j.

In order to define these functions, assume without loss of generality that n ≥ 2

and pl < p j whenever 1≤ l < j ≤ n. Let

d := min
1≤ j<n

{
p j+1− p j

2
} and D≥max{|pn +d| , |p1−d|} .

Let K := [−D,D]\
⋃n

j=1(p j−d, p j +d) and denote

mK := sup
τ∈K
‖(iτ−A)−1‖ < ∞ .

Now, let M be the continuous positive increasing function given by

M(ξ ) := sup
D≤|τ|≤ξ

{‖(iτ−A)−1‖ , mK } , ξ ≥ D .

Also, for each j = 1, . . . ,n, we define

m j(ξ ) := sup
ξ≤|τ−p j|≤d

{‖(iτ−A)−1‖ , mK } , 0 < ξ ≤ d ,

and set

m(ξ ) := sup
1≤ j≤n

m j(ξ ) , 0 < ξ ≤ d ,
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which is continuous, positive and decreasing. Moreover, we define

Mlog(ξ ) := M(ξ ) log((1+M(ξ ))(1+ξ )) , ξ ≥ D , (2.12)

and

mlog(ξ ) := m(ξ ) log
(

1+m(ξ )

ξ

)
, 0 < ξ ≤ d . (2.13)

Theorem 2.2.1. Let (T (t))t≥0 be a bounded (C0)-semigroup on a Banach space X

and let A be its generator. Assume that σ(A)∩ iR⊆
⋃n

j=1{ip j} for some n ∈ N and

{p j : 1≤ j ≤ n} ⊆ R. Then, there exist positive constants C and T such that for all

t ≥ T ,

‖T (t)(1−A)−1
n

∏
j=1

(ip j−A)(1−A)−1‖ ≤C

(
m−1

log(t/4)+
1

M−1
log (t/4)

+
1
t

)
where Mlog and mlog are defined as in (2.12) and (2.13), respectively.

Proof. We shall follow an argument analogous to that of Theorem 2.1.1 so we just

present a sketch of the proof. We will write C to denote a positive constant, which

may change from line to line, depending only on n, C̃ := supt≥0 ‖T (t)‖, the functions

M and m and the absolute values of {p j}.

Let t > 0 and let R and r be any positive constants such that

R > max{1,D} and r < min{1
2
,d}.

For p∈R and d > 0, let γ
+
p,d and γ

−
p,d denote the right and left-hand half of the circle

|z− ip| = d, respectively. Let γ ′ be any path in ρ(A)∩C− such that γ := γ
+
0,R ∪

(
⋃n

j=1 γ+p j,r)∪ γ ′ is closed, rectifiable and homotopic to zero. Thus, by Cauchy’s

Theorem,

T (t)(1−A)−1
ΠA =

1
2πi

∫
γ

F(z)
F(1)

T (t)(z−A)−1
ΠA

dz
z−1



76 Decay estimates through Laplace transforms

where F is the function given for every z ∈ C\{0}∪ (σ(A)∩ iR) by

F(z) := (1+
z2

R2 )
n

∏
j=1

(1+
r2

(z− ip j)2 )

and ΠA :=
n

∏
j=1

(ip j−A)(1−A)−1 .

As a consequence of the choice of R and r and after straightforward calculations,

we observe that

|F(z)| ≤ C̃|ℜz|
R

if |z|= R and |F(z)| ≤ C̃|ℜz|
r

if |z− ip j|= r.

Thus, acting as in the first part of the proof of Theorem 2.1.1, it is not difficult to

see that ‖T (t)(1−A)−1ΠA‖ is bounded by

1
R−1

+ r + ‖
∫

γ ′
F(z)ezt(z−A)−1

ΠA
dz

z−1
‖ (2.14)

up to a positive constant C.

To estimate the latest integral, we denote γ ′ = η ∪ (
⋃n

j=1 η j)∪ (
⋃n

j=0 α j) where

η := ηR
−∪η−∪η+∪ηR

+ and η j := η j,−∪ηr
j,−∪ηr

j,+∪η j,+ may be taken by means

of Neumann series as follows:

η
R
±(s) = s ± iR ,

−1
2M(R)

≤ s≤ 0 ,

η±(τ) =
−1

2M(τ)
± iτ , D≤ τ ≤ R .

For each j = 1, . . . ,n ,

η
r
j,±(s) = s+ i(p j± r) ,

−1
2m(r)

≤ s≤ 0 ,

η j,+(τ) =
−1

2m(τ− p j)
+ iτ , p j + r ≤ τ ≤ p j +d ,

η j,−(τ) =
−1

2m(|τ− p j|)
+ iτ , p j−d ≤ τ ≤ p j− r ,
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and

α j = [−1/2m(d)+ i(p j +d) ,−1/2m(d)+ i(p j+1−d) ] , j = 1, . . . ,n−1 ,

αn = [−1/2m(d)+ i(pn +d) ,−1/2M(D)+ iD ] ,

α0 = [−1/2M(D)− iD ,−1/2m(d)+ i(p1−d) ] ,

where [z,w] denotes the closed line segment connecting z and w. Moreover,

‖(z−A)−1‖ ≤ 2M(R) , if z ∈ η ,

‖(z−A)−1‖ ≤ 2m(r) , if z ∈ η j ,

‖(z−A)−1‖ ≤ 2mK , if z ∈ α j .

One can easily check that the function F is bounded by a constant C on the

whole path γ ′. This bound is sharp enough to our purposes except for the paths

ηr
j,±, j = 1, . . . ,n.

It is straightforward to see that the integral in (2.14) over ηR
± is bounded by C/R.

Moreover, proceeding as in (2.1), the integral over η± may be estimated by

C
R−1

(
(1+M(R))2(1+R)2e−t/2M(R)

)
.

By the equality (ip j −A)(z−A)−1 = I− (z− ip j)(z−A)−1 and noticing that

|F(z)| ≤C|ℜz|/|z− ip j| whenever z ∈ ηr
j,±, we obtain that

|F(z)|‖(ip j−A)(z−A)−1‖ ≤C on η
r
j,±.

so that the integral in (2.14) over ηr
j,± is bounded by

C
∫ 0

−1/2m(r)
est ds ≤ C

t
.
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Acting as in (2.1), the integral over η j,± can be estimated by

C r
(

1+m(r)
r2 e−t/2m(r)

)
.

On the other hand, for j = 1, . . . ,n−1, we can bound the integral in (2.14) over

α j by

C e−t/2m(d) ≤ C e−t/2m(r) .

For j ∈ {0,n}, observe that ℜz ≤ max{−1/2m(d) ,−1/2M(D)} whenever z ∈ α j.

If M(D) ≤ m(d) then the integral over α j may be bounded similarly as above by

C e−t/2m(r). Conversely, if m(d) ≤M(D), the integral over α j may be estimated by

C e−t/2M(R).

Now, we realize that if

t > max{4Mlog(max{1,D}) , 2mlog(min{1/2,d})}

and setting R = M−1
log(t/4) and r = m−1

log(t/2), then

(1+M(R))2(1+R)2 e−t/2M(R) = 1 =

(
1+m(r)

r2

)
e−t/2m(r) .

In particular, e−t/2m(r) ≤ r and e−t/2M(R) ≤ 1/R.

Finally, putting together all estimations above, we obtain the claim.



Chapter 3

Integrated version of the

Post-Widder inversion formula

for Laplace transforms

Let X be a Banach space. It is a well known fact that every Laplace transformable

function f ∈ L1
loc(R+;X) is determined by its Laplace transform. As a matter of

fact, if L f (λ ) converges for some λ ∈ C then

f (t) = lim
n→∞

(−1)n 1
n!

(n
t

)n+1
(L f )(n)

(n
t

)
(3.1)

for every Lebesgue point t > 0 of f . See [ABHN, Theorem 1.7.7]. Recall that t > 0

is a Lebesgue point of a function f ∈ L1
loc([0,∞);X) if

lim
h→0

∫ t+h

t
‖ f (s)− f (t)‖ds = 0.

Every point of continuity is a Lebesgue point of f and almost all points are Lebesgue

points of f (see [ABHN, p. 16]).

79
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The main result of this chapter, see Theorem 3.1.1 below, is an integrated Post-

Widder formula for λ α -multiplied Laplace transforms (and Laplace-Stieltjes trans-

forms) of vector-valued functions. This theorem allows us to obtain inversion for-

mulae for resolvents of generators of (α-times) integrated semigroups and inte-

grated cosine families of operators. Such formulae in particular recover and extend

for α-times integrated semigroups other previously known results in the literature,

see [C, VV]. The chapter ends with a discussion about the canonical example of in-

tegrated family formed by the so-called Riesz kernels. Let us recall that the results

in this chapter can also be found in [GMM].

3.1 The main result

Let f : (0,∞)→ X be a measurable function such that

sup
t>0
‖t−γe−ωt f (t)‖= M < ∞

for some γ > −1 and ω ≥ 0. Clearly, the Laplace transform L f exists at least on

the open right half-plane ℜλ > ω . The following is the main result of the chapter.

Theorem 3.1.1. Let γ , ω and f be as above. Then, for every α ∈ (0,γ + 1) and

every Lebesgue point t > 0 of f ,

f (t) = lim
n→∞

1
Γ(α)

∫ t

0
(t− s)α−1 (−1)n

n!

(n
s

)n+1 dn

dλ n (λ
αL f )

∣∣∣∣
λ=n/s

ds.

In the next lemma it is shown that the conditions on f and on α ensure that the

Post-Widder approximant

Ln,s [λ
αL f (λ )] :=

(−1)n

n!

(n
s

)n+1 dn

dλ n (λ
αL f )

∣∣∣∣
λ=n/s

(s > 0)
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is Bochner integrable near the origin for n sufficiently large, so that the integral in

Theorem 3.1.1 is actually convergent.

Lemma 3.1.1. Let f : (0,∞)→ X, γ , ω and α be as in the assumptions of Theorem

3.1.1. Then the function Ln,(·) [λ
αL f (λ )] is Bochner integrable in (0, t) for every

t > 0 and for every n > ωt.

Proof. First of all, notice that, due to the growth conditions on f , the integral∫
∞

0 f (u)uke−λudu is Bochner convergent for every λ > ω and k ≥ 0. Now, take

t > 0 and n > ωt. Hence if s ∈ (0, t) then n > ωs, so we get

Ln,s [λ
αL f (λ )] =

(−1)n

n!

n

∑
k=0

Cα
k,n

(n
s

)α+1+k ∫ ∞

0
f (u)uke−(n/s)udu,

where Cα
k,n := (−1)k

(n
k

)
(n− k)!

(
α

n−k

)
for k = 0, . . . ,n. Then note that, for some

M > 0, (n
s

)α+1+k ∫ ∞

0
| f (u)|uke−(n/s)udu

≤M
(n

s

)α+1+k ∫ ∞

0
uγ+ke−((n/s)−ω)udu

= M
(n/s)α+1+k

((n/s)−ω)γ+1+k Γ(γ + k+1)

≤M Γ(γ + k+1)nα+k+1sγ−α (k = 0, . . . ,n),

provided that γ >−1. Therefore, the function Ln,s [λ
αL f (λ )] is integrable in (0, t)

whenever α ∈ (0,γ +1).

Remark 3.1.1. In order to ensure the Bochner integrability of Ln,(·) [λ
αL f (λ )]

near the origin, it is enough to assume that the given function f is in L1
loc(R+;X), it

is Laplace transformable, and its Laplace transform L f satisfies∫
∞

R
λ

α+k+1(L f )(k)(λ )dλ < ∞ for every k ∈ N and R > 0.

Under these weaker assumptions, the inversion formula in Theorem 3.1.1 also holds.
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Proof of Theorem 3.1.1. Let t > 0 be a Lebesgue point of f . Denote

In(t) :=
1

Γ(α)

∫ t

0
(t− s)α−1Ln,s [λ

αL f (λ )] ds.

The convergence of this integral for n > ωt follows from Lemma 3.1.1. As before,

write

Ln,s [λ
αL f (λ )] =

(−1)n

n!

n

∑
k=0

Cα
k,n

(n
s

)α+1+k ∫ ∞

0
f (u)uke−(n/s)udu

for s ∈ (0, t) and n > ωt. Using Fubini’s Theorem we get

In(t) =
(−1)n

n!
1

Γ(α)

n

∑
k=0

Cα
k,n

∫
∞

0
uk f (u)Kn(u)du

where

Kn(u) :=
∫ t

0
(t− s)α−1

(n
s

)α+k+1
e−(n/s)uds (u > 0).

Making the change of variable z = (n/s)u− (n/t)u, we obtain

Kn(u) =
ne−(n/t)u

uα+k tα−k−1
∫

∞

0
zα−1(tz+nu)ke−zdz

=
ne−(n/t)u

uα+k tα−1
k

∑
j=0

(
k
j

)(nu
t

)k−i
Γ(α + j).

Then

In(t) =
(−1)n

n!
ntα−1

∫
∞

0
u−α f (u)e−(n/t)u

Φn,t,α(u)du

where, for u > 0,

Φn,t,α(u) :=
n

∑
k=0

Cα
k,n

k

∑
j=0

(
k
j

)(nu
t

)k− j Γ(α + j)
Γ(α)

= (−1)n
(nu

t

)n
;

see [VV, Lemma 3.1] for the general formula. Hence we get

In(t) =
nn+1

n!
tα−n−1

∫
∞

0
un−αe−(n/t)u f (u)du. (3.2)
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Notice that for every non-negative integer n > α +1,

nn+1

n!
tα−n−1

∫
∞

0
un−αe−(n/t)udu =

nα

n!
Γ(n+1−α),

which tends to 1 (n→∞), since Γ(u+1)∼ uu+1/2e−u
√

2π as u→∞ (see [T]). Thus,

to obtain the assertion of the theorem, it is enough to check that

Jn(t) := In(t)−
nα

n!
Γ(n+1−α) f (t)→ 0, as n→ ∞.

So, to proceed with it, set

G(s) :=
∫ s

t
( f (u)− f (t))du = F(s)−F(t)− f (t)(s− t),

where F(s) :=
∫ s

0 f (u)du, s ≥ 0. Then ‖F(s)‖ ≤ Msγ+1eωs for some M > 0 and

every s ≥ 0. This readily implies that the function G is exponentially bounded, so

there exist some constants µ ≥ 0 and C > 0 such that ‖G(s)‖≤Ceµs for every s≥ 0.

We may assume that µ ≥ ω . On the other hand, the fact that t is a Lebesgue point

of f implies that ‖G(s)‖= o(|s− t|), as s→ t.

By integration by parts, we have for n > max{µt,α} that

Jn(t) =
nn+1

n!
tα−n−1

∫
∞

0
un−αe−(n/t)u ( f (u)− f (t))du

=
nn+1

n!
tα−n−1

∫
∞

0

(
nun−α

t
− (n−α)un−α−1

)
e−(n/t)uG(u)du

=
nn+1

n!
tα−n−1

∫
∞

0

(nu
t
− (n−α)

)
un−α−1e−(n/t)uG(u)du

=
nn+2

n!
1
t

∫
∞

0

(
y− n−α

n

)
yn−α−1e−nyG(ty)dy.

Let now ε > 0 and choose 0 < δ < 1 such that if |y−1|< δ then

1
t
‖G(ty)‖< ε|y−1|. (3.3)
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Divide Jn(t) into three integrals J1,n(t), J2,n(t) and J3,n(t) whose intervals of

integration are (0,1−δ ), (1−δ ,1+δ ) and (1+δ ,∞), respectively.

First, we are going to estimate J1,n(t). Take n > (α + 1)/δ . In this case, the

function y 7→ yn−α−1e−ny is increasing on (0,1−δ ), and therefore

‖J1,n(t)‖ ≤
nn+2

n!
1
t

∫ 1−δ

0
|y− n−α

n
|yn−α−1e−ny‖G(ty)‖dy

≤ nn+2

n!
1
t
(1−δ )n−α−1e−n(1−δ )

∫ 1−δ

0
‖G(ty)‖dy =: an,

where we have used that δ/(α +1)≤ (n−α)/n−y < 1 for all y∈ (0,1−δ ). Then,

by Stirling’s formula,

an = O
(

n3/2
(
(1−δ )eδ

)n)
as n→ ∞,

and therefore an→ 0 as n→ ∞, since (1−δ )eδ < 1. Therefore, ‖J1,n(t)‖< ε for

n large enough.

Now, applying to J2,n(t) the estimate (3.3), we get

‖J2,n(t)‖ ≤ ε
nn+2

n!

∫ 1+δ

1−δ

|y− n−α

n
| |y−1|yn−α−1e−nydy

= ε
nn+2

n!

∫ 1+δ

1−δ

|y−1+1− n−α

n
| |y−1|yn−α−1e−nydy

≤ ε
nn+2

n!

∫ 1+δ

1−δ

(
(y−1)2 +(1− n−α

n
)(y+1)

)
yn−α−1e−nydy

= ε
nn+2

n!

∫
∞

0

(
y2− (1+

n−α

n
)y+(2− n−α

n
)

)
yn−α−1e−nydy

= ε
nα

n!

(
Γ(n−α +2)− (1+

n−α

n
)nΓ(n−α +1)+(2− n−α

n
)n2

Γ(n−α)

)
= ε

nα

n!
(Γ(n−α +1)+2αnΓ(n−α)) .
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Thus, the fact that limn→∞
nβ

n! Γ(n−β +1) = 1 for all β ≥ 0 implies that

lim
n→∞

nα

n!
(Γ(n−α +1)+2αnΓ(n−α)) = 1+2α.

Hence, ‖J2,n(t)‖< 2(1+α)ε for all sufficiently large n.

To estimate J3,n(t), take n0 ∈ N such that n0 > µt and let n > n0. Thus, the

function y 7→ yn−n0−αe−(n−n0)y is decreasing on (1+δ ,∞). Then we have

‖J3,n(t)‖ ≤
nn+2

n!
1
t

∫
∞

1+δ

(y− n−α

n
)yn−α−1e−ny‖G(ty)‖dy

≤ nn+2

n!
C
t

∫
∞

1+δ

yn−αe−nyeµtydy

=
nn+2

n!
C
t

∫
∞

1+δ

yn−n0−αe−(n−n0)yyn0e−(n0−µt)ydy

≤ nn+2

n!
C
t
(1+δ )n−n0−α

e(n−n0)(1+δ )

∫
∞

1+δ

yn0e−(n0−µt)ydy =: bn.

Similarly as before, the Stirling’s formula applies to show that bn → 0 as n→ ∞,

and we have that ‖J3,n(t)‖< ε for large enough n. The proof is completed.

Remark 3.1.2. There are some particular cases in which the inversion formula in

Theorem 3.1.1 can be obtained as a consequence of the classical (vector-valued)

Post-Widder inversion formula 3.1. For example, it occurs when the function is the

integral of order α > 0 of some suitable function:

For α > 0, set jα(t) := tα−1Γ(α)−1, t > 0. Let g ∈ L1
loc(R+;X) be an exponen-

tially bounded function. Thus, the function f := jα ∗g satisfies the assumptions of

Theorem 3.1.1, where ∗ is the usual convolution on R+. Notice that λ αL f (λ ) =

L g(λ ) for suitable complex values of λ . Therefore, applying the formula in 3.1
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and the dominated convergence theorem, we have that for every t > 0,

f (t) = jα ∗

(
lim
n→∞

(−1)n 1
n!

(
n
(·)

)n+1

ĝ(n)
(

n
(·)

))
(t)

= lim
n→∞

1
Γ(α)

∫ t

0
(t− s)α−1 (−1)n

n!

(n
s

)n+1
ĝ(n)

(n
s

)
ds

= lim
n→∞

1
Γ(α)

∫ t

0
(t− s)α−1 (−1)n

n!

(n
s

)n+1 dn

dλ n (λ
αL f )

∣∣∣∣
λ=n/s

ds.

Thus the interest of Theorem 3.1.1 relies upon the fact that it provides an in-

version formula for those functions ϕ : (ω,∞)→ X which are not necessarily a

Laplace transform, but such that λ−αϕ(λ ) is a Laplace transform for some α > 0;

see [ABHN, Example 2.2.4]. Important classes of functions in this situation involve

general α-times integrated semigroups or integrated cosine functions (see next sec-

tion).

To end this section, we point out that there exists a well known version of the

Post-Widder inversion formula 3.1 in which the Laplace-Stieltjes transform LS of

vector-valued Lipschitz continuous functions is considered. If F : R+ → X is a

Lipschitz continuous function, that is,

sup
t,s≥0

‖F(t)−F(s)‖
|t− s|

< ∞,

then the Laplace-Stieltjes transform of F is given by

LS(F)(λ ) :=−F(0)+λ

∫
∞

0
e−λ tF(t)dt

for those λ greater than the exponential growth bound of F . It follows from 3.1 that

if F : R+→ X is a Lipschitz continuous function such that F(0) = 0 then

F(t) = lim
n→∞

(−1)n

n!

(n
t

)n+1 dn

dλ n

(
LS(F)(λ )

λ

)∣∣∣∣
λ=n/s

, t > 0.
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See [ABHN, Theorem 2.3.1].

As a consequence of Theorem 3.1.1, we further obtain the following inversion

formula for Laplace-Stieltjes transforms:

Corollary 3.1.1. Let F : R+ → X be a Lipschitz continuous function such that

F(0) = 0. Let t > 0. Then,

F(t) = lim
n→∞

(−1)n

n!

∫ t

0

(n
s

)n+1 dn

dλ n (LS(F)(λ ))

∣∣∣∣
λ=n/s

ds.

Proof. For F under these assumptions, we have that L F(λ ) = λ−1LS(F)(λ ) for

λ large enough. Moreover, ‖F(t)‖ ≤Ct for every t ≥ 0 and some C > 0. Then, it

suffices to apply Theorem 3.1.1 for α = 1.

3.2 Applications to α-times integrated families

We show here that Theorem 3.1.1 applies to α-times integrated semigroups and

α-times integrated cosine families, obtaining in such a way appropriate inversion

formulae of Euler’s type for these families.

3.2.1 Euler’s exponential type formula for α-times integrated semi-

groups

Let X be a Banach space and let α > 0.

Corollary 3.2.1. Let A : D(A) ⊆ X → X be the generator of an α-times integrated

semigroup (Tα(t))t≥0 such that ‖Tα(t)‖ ≤ Ctγeωt , t ≥ 0, for some γ > α − 1 and

ω ≥ 0. Then, for every t > 0 and every x ∈ X,

Tα(t)x = lim
n→∞

1
Γ(α)

∫ t

0
(t− s)α−1

(n
s

)n+1
R(

n
s
,A)n+1xds.
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Proof. Let x ∈ X . Set f (t) := Tα(t)x for t ≥ 0. Notice that f is continuous on [0,∞)

since (Tα(t))t≥0 is strongly continuous. By definition, R(λ ,A)x = λ αL f (λ ) for λ

large enough. Moreover, the resolvent equation gives us

((−1)n/n!)(dn/dλ
n)R(λ ,A)x = R(λ ,A)n+1x .

Now, the claim follows automatically from Theorem 3.1.1 since α ∈ (0,γ +1).

The above corollary extends previous results in this setting (see [C, Theorem

3.1] for n-times integrated semigroups, n ∈ N, and [VV, Theorem 3.1] for expo-

nentially bounded α-times integrated semigroups and 0 < α < 1), and provides a

unified proof for them.

A large number of examples of α-times integrated semigroups satisfying the

assumptions of Corollary 3.2.1 can be found in [H].

3.2.2 α-Times integrated cosine functions

Another consequence of Theorem 3.1.1 is the following result, which seems to be

new.

Corollary 3.2.2. Let A : D(A) ⊆ X → X be the generator of an α-times integrated

cosine function (Cα(t))t≥0 for which there exist constants γ > α − 1 and ω ≥ 0

satisfying ‖Cα(t)‖ ≤Ctγeωt for t ≥ 0. Then, for every x ∈ X and t > 0,

Cα(t)x = lim
n→∞

1
Γ(α)

∫ t

0
(t− s)α−1 (−1)n

n!

(n
s

)n+1 dn

dλ n

(
λR(λ 2,A)

)∣∣∣∣
λ= n

s

ds.

Proof. Similar to the proof of Corollary 3.2.1.

Particular examples of generators of α-times integrated cosine functions are

provided by generators of α-times integrated semigroups. In fact, if an operator
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B on a Banach space is such that B and −B are both generators of corresponding

α-times integrated semigroups then A = B2 is the generator of an α-times inte-

grated cosine function; see [AK, MeK]. In this case the explicit calculation of

(dn/dλ n)
(
λR(λ 2,A)

)
is simple:

dn

dλ n

(
λR(λ 2,A)

)
=

1
2
[R(λ ,−iB)n+1 +R(λ , iB)n+1].

3.2.3 On Riesz kernels

Let us recall that, for α, t > 0, the Riesz kernel Rα−1
t is the function defined by

Rα−1
t (s) :=

(t− s)α−1

Γ(α)
χ(0,t)(s), s > 0.

As we have shown in Chapter 1, these kernels play a central role in the study of

Banach algebras of Sobolev type T
(α)
+ (tα), which are in close relationship with

α-times integrated semigroups and integrated cosine functions. In particular, the

function Rα−1
t is a multiplier of the Banach algebra T

(α)
+ (tα) with respect to either

the usual convolution product ∗, or even the cosine convolution product ∗c. In both

cases we have that, as a multiplier, ‖Rα−1
t ‖ ≤Ctαeωt (t > 0).

In view of Theorem 3.1.1 we have the following:

Corollary 3.2.3. Let α > 0 and ω ≥ 0. Then for every g ∈ T
(α)
+ (tα) and t > 0 we

have

Rα−1
t •g = lim

n→∞

1
Γ(α)

∫ t

0
(t− s)α−1

(n
s

)n+1
e∗(n+1)

n/s •gds

in the norm of T
(α)
+ (tα), where

e∗(n+1)
λ

(r) =
rn

n!
eλ (r), (r ≥ 0)

and • is either the usual convolution ∗ or the cosine convolution ∗c in T
(α)
+ (tα).
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Proof. Note that for every λ > ω and n ∈ N one has

eλ := e−λ ( ·) = λ
α

∫
∞

0
Rα−1

t e−λ t dt.

and
(−1)n

n!
dn

dλ n eλ = e∗(n+1)
λ

.

Hence it is enough to take f (t) = Rα
t •g in the formula of Theorem 3.1.1 to obtain

the result.

Remark 3.2.1. The formula in the preceding corollary serves to illustrate Theo-

rem 3.1.1 in a canonical situation, as regards α-times integrated semigroups. For

simplicity, assume α > 1. The equality

Rα−1
t (r) = lim

n→∞

1
Γ(α)

∫ t

0
(t− s)α−1

(n
s

)n+1 rn

n!
e−(n/s)r ds , t > 0,

holds as a particular case of the fact that formula 3.1 remains true when one replaces

functions like f with Dirac masses:

For r > 0,

δr = lim
n→∞

(−1)n

n!

(n
·

)n+1
δ̂
(n)
r

(n
·

)
= lim

n→∞

(n
·

)n+1 rn

n!
e−(n/·)r

in the sense of weak convergence of measures. In fact, for each continuous function

F on [0,∞) with limt→∞ F(t) = 0 we have

Fn(r) :=
1
n!

∫
∞

0

(n
s

)n+1
rn e−(n/s)r F(s)ds =

nn+1

n!

∫
∞

0
tn−1e−nt F

(r
t

)
dt,

with
nn+1

n!

∫
∞

0
tn−1e−nt dt = 1

Therefore

Fn(r)−F(r) =
nn+1

n!

∫
∞

0
tn−1e−nt [F (r/t)−F(r)]dt,
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and so by standard methods involving the partition of the integration domain (0,∞)

into two parts {|t − 1| ≤ ε} and {|t − 1| > ε}, for suitable small ε > 0, one gets

limn→∞ Fn(r) = F(r). In this connection, for the sake of completeness, let us point

out that integration by parts gives us

nn+1

n!

∫
∞

1+ε

tn−1e−nt dt =
1

(n−1)!

∫
∞

n(1+ε)
yn−1e−y dy

=
n−1

∑
k=1

(1+ ε)n−knn−k

(n− k)!
e−(1+ε)n +

∫
∞

(1+ε)n
e−y dy,

and this expression tends to 0 as n→ ∞ by the Stirling formula and the fact that

y 7→ e−y is integrable.)

Corollary 3.2.3 tells us that the above numerical limit holds indeed for convolu-

tion and in the norm of T
(α)
+ (tα).

Notice that starting from Corollary 3.2.3, with a direct proof independent of

Theorem 3.1.1, one can prove Corollary 3.2.1 and Corollary 3.2.2 (for γ = α and

ω = 0) by just considering the image of Rα−1
t • g and of its integral expression

through the homomorphisms πα and γα , respectively, introduced in Chapter 1 (see

Proposition 1.3.2 and Remark 1.3.2).
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Chapter 4

On stability of integrated

semigroups with nonquasianalytic

growth

The main result of this chapter extends [Me, Theorem 5.6] to n-times integrated

semigroups for every natural n and a fairly wide boundedness condition involving

nonquasianalytic weights (see definition in Chapter 1, p.11). The result is the follo-

wing.

Theorem 4.0.1. Let A be the generator of a n-integrated semigroup Tn(t) such that

σ(A)∩ iR is countable, σP(A∗)∩ iR= /0 and 0 ∈ ρ(A). Assume that

sup
t≥1

ω(t)−1‖Tn(t)‖<+∞,

for some nonquasianalytic weight ω on [0,∞) for which ω̃(t) = O(tk), as t→∞, for

some k ≥ 0.
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We have:

(i) If ω(t)−1 = o(t−n+1), as t→ ∞, then

lim
t→∞

ω(t)−1Tn(t)x = 0, x ∈ D(An).

(ii) If ω(t)∼ tn−1, as t→ ∞, then

lim
t→∞

t−n+1Tn(t)x =−
1

(n−1)!
A−1x, x ∈ D(An).

The proof of Theorem 4.0.1 is a combination of arguments and ideas of [Me]

and [V1]. In passing, we give extensions of results of [Me] and [V1]. Lemma

4.0.1 below provides a slight improvement of [V1, Theorem 7], which is in turn an

extension of the Arendt-Batty-Lyubich-Vũ theorem.

Lemma 4.0.1. Let U(t))t≥0⊂B(Y ) be a strongly continuous C0-semigroup of posi-

tive exponential type with generator L. Let β be a nonquasianalytic weight on [0,∞)

such that β̃ (t) = O(tk) as t→∞, for some k≥ 0. Assume that there exists R∈B(Y )

such that U(t)R = RU(t) for all t ≥ 0 and ‖U(t)R‖ ≤ β (t) (t ≥ 0).

If σ(L)∩ iR is countable and σP(L∗)∩ iR= /0 then

lim
t→∞

1
β (t)

U(t)Ry = 0 (y ∈ Y ).

The overall argument goes along similar lines as in [V1, Theorem 7], lemmata

included. Here we outline that argument for convenience of prospective readers.

Proof. Put

q(y) := limsup
t→∞

β (t)−1‖U(t)Ry‖Y (y ∈ Y ).
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Then q is a seminorm on Y such that q(y)≤‖y‖Y for all y∈Y . Moreover, q(U(s)y)≤

β̃ (s)q(y) for every s ≥ 0, y ∈ Y , and so N := {y ∈ Y : q(y) = 0} is a U(t)-invariant

closed subspace of Y . Hence one can define a norm q̂ on Y/N given by

q̂(π(y)) := q(y), y ∈ Y,

and an operator Û(t) on Y/N given by

Û(t)(π(y)) := π(U(t)y), y ∈ Y, t ≥ 0,

where π is the projection Y → Y/N.

It is straightforward to show that Û(t) is a strongly continuous semigroup in the

norm q̂ on Y/N. Let Z be the q̂-completion of Y/N, and let V (t) be the continuous

extension on Z of Û(t). Then:

(a) ‖π(y)‖Z = limsupt→∞
1

β (t)‖U(t)Ry‖Y , y ∈ Y . This is obvious.

(b) ‖V (t)‖ ≤ β̃ (t), t ≥ 0, and from this one readily obtains that V (t) is a strongly

continuous C0-semigroup in B(Z). The above bound follows by continuity

and density by the estimate

q̂(Û(t)π(y)) = q̂(π(U(t)y)) = q(U(t)y)

≤ β̃ (t)q(y)≤ β̃ (t)q̂(π(y), y ∈ Y, t ≥ 0.

(c) ‖V (t)z‖Z ≥ ‖z‖Z for all z ∈ Z: For y ∈ Y and t ≥ 0,

q̂(Û(t)π(y)) = limsup
t→∞

β (t + s)
β (t)

‖U(t + s)Ry‖Y
β (t + s)

≥ q̂(π(y)).

Then apply continuity and density.

(d) V (t) ◦π = π ◦U(t) (t ≥ 0) and then one easily obtains that π(D(L) ⊆ D(H)

and H ◦π = π ◦L on D(L), where H is the infinitesimal generator of V (t).
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(e) σ(H) ⊆ σ(L): By hypothesis, U(t) is of exponential type δ > 0, whence as

is well known, for y ∈ Y and λ ∈ C, ℜλ > δ ,

R(λ ,L)y :=−(λ −L)−1y =−
∫

∞

0
e−λ tU(t)y dt.

Similarly, since ‖V (t)‖ ≤ β̃ (t), t ≥ 0, the semigroup V (t) is of exponential

type 0, and therefore we have for z ∈ Z and λ ∈ C, ℜλ > 0,

R(λ ,H)z :=−(λ −H)−1z =−
∫

∞

0
e−λ tV (t)z dt

On the other hand, R commutes with (U(t) by assumption and so R commutes

with R(λ ,L), ℜλ > δ . Then q(R(λ ,L)y)≤‖R(λ ,L)‖q(y) for all y∈Y , which

implies that N is R(λ ,L)-invariant. Hence one can define the bounded opera-

tor R̂(λ ,L) on Z given by R̂(λ ,L)(π(y)) := π (R(λ ,L)y), y ∈ Y . Thus,

R̂(λ ,L)π(y) = π (R(λ ,L)y) =−
∫

∞

0
e−λ t

π (U(t)y)dt

=−
∫

∞

0
e−λ tV (t)π(y)dt = R(λ ,H)π(y);

where (d) has been applied in the last but one equality. Hence R̂(λ ,L) =

R(λ ,H), ℜλ > δ .

Now, for ℜλ > δ and any µ ∈ ρ(L), by using the resolvent identity

R(λ ,L)−R(µ,L) = (λ −µ)R(λ ,L)R(µ,L)

and its corresponding identity for R̂(λ ,L), R̂(µ,L) one readily finds that there

exists R(λ ,H) and that

R(µ,H) = R̂(µ,L);

see [V1, p. 234]. Thus µ ∈ ρ(H). Hence ρ(L)⊆ ρ(H) as it was claimed.
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(f) σP(H∗) ⊆ σP(L∗). This is straightforward to see, using restricitions of func-

tionals; see [V1, p. 234]

Suppose, if possible, that Z 6= {0}. By (e) above we have that σ(H)∩ iR is

countable and then iR\σ(H) 6= /0. So, by (c) above and [V1, Lemma 2] the semi-

group V (t) can be extended to a C0-group Ṽ (t) on R such that ‖Ṽ (−t)‖ ≤ 1 (t > 0)

and ‖Ṽ (t)‖ = O(tk), as t → +∞. Also, σ(H) is nonempty by (b) above and [V1,

Lemma 5].

Then reasoning as in [V1, Theorem 7] one gets σP(H∗)∩iR 6= /0 whence σP(L∗)∩

iR 6= /0 by (f) above. This is a contradiction and so we have proved that Z = {0}.

By (a) above we get the statement.

Lemma 4.0.2. Let ω be a nonquasianalytic weight such that ω̃ is of polynomial

growth at infinity. Let X be a Banach space and (Tn(t)t≥0) be a n-times integrated

semigroup in B(X) with generator A such that ‖Tn(t)‖ ≤ ω(t), t ≥ 0. Let assume

that σ(A)∩ iR is countable and σP(A∗)∩ iR= /0.

For every µ > 0 we have:

(i) If ω(t)−1 = o(t−(n+1)), as t→ ∞, then

lim
t→∞

ω(t)−1Tn(t)An(µ−A)−nx = 0, x ∈ X .

(ii) If ω(t)∼ tn−1, as t→ ∞, then

lim
t→∞

1
tn−1 Tn(t)An(µ−A)−nx =−An−1(µ−A)−2nx

(n−1)!
, x ∈ X .

Proof. Here we follow arguments of [Me, Theorem 5.6] suitably adapted to our

setting. Take µ > δ > 0. For x ∈ X define

‖x‖Y := sup
t≥0
‖e−δ t(Tn(t)An(µ−A)−nx+

n−1

∑
j=0

t j

j!
A j(µ−A)−nx)‖X .
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Note that A(µ−A)−1 =−I+µ(µ−A)−1 is a bounded operator on X and Tn(0) = 0,

so ‖ · ‖Y is a norm on X and there exists a constant Mδ > 0 such that

‖(µ−A)−nx‖X ≤ ‖x‖Y ≤Mδ‖x‖X , x ∈ X . (4.1)

Let Y be the Banach space obtained as the completion of X in the norm ‖ · ‖Y .

By the extrapolation theorem [ANS, Theorem 0.2], there exists a closed operator

B on Y which generates a strongly continuous C0-semigroup (S(t))t≥0 ⊂B(Y ) of

positive exponential type such that D(Bn) ↪→ X ↪→ Y , A = BX where the operator

BX is given by the conditions D(BX) := {x ∈ D(B)∩X : Bx ∈ X}, BX(x) := B(x)

(x ∈ X). Moreover, σP(B∗)⊆ σP(A∗), and also ρ(A) = ρ(B) with

(λ −A)−1x = (λ −B)−1x, λ ∈ ρ(A) = ρ(B),x ∈ X ; (4.2)

see [ANS, Remark 3.1].

Let Sn(t) be the n-times integrated semigroup defined by B on Y , given by

Sn(t)y :=
1

(n−1)!

∫ t

0
(t− s)n−1S(s) ds, y ∈ Y.

Then Sn(t)x = Tn(t)x for all x ∈ X . To see this, note that Tn(t) and Sn(t) are of

exponential type so one can rewrite (4.2) above in terms of the Laplace transforms

of Tn(t) and Sn(t) respectively, for ℜλ large enough. Then it suffices to apply the

uniqueness of the Laplace transform.

From the above identification between Tn(t) and Sn(t), it readily follows that

‖Sn(u)x‖Y ≤ ‖Tn(u)‖‖x‖Y ≤ ω(u)‖x‖Y , u≥ 0,x ∈ X , (4.3)

which is to say, by density, that ‖Sn(u)‖ ≤ ω(u), for all u≥ 0.
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Now, by reiteration of the well known relation between a semigroup and its

generator S(t)y− y =
∫ t

0
BS(s)y ds, for t ≥ 0 and y ∈ D(B), we have

S(t)y = Sn(t)Bny+
n−1

∑
j=0

t j

j!
B jy, ∀y ∈ D(Bn).

Hence, for every y ∈ Y ,

S(t)(µ−B)−ny = Sn(t)
(

B
µ−B

)n

y+
n−1

∑
j=0

t j

j!

(
B

µ−B

) j

(µ−B)−(n− j)y (4.4)

and therefore there exists a constant Cµ > 0 such that

‖S(t)(µ−B)−n‖Y→Y ≤Cµω(t), t ≥ 0. (4.5)

Then, by applying Lemma 4.0.1 with U(t) = S(t), B = L and R = (µ −A)−n,

we obtain

lim
t→∞

1
ω(t)
‖S(t)(µ−B)−ny‖Y = 0, ∀y ∈ Y,

whence, by (4.1), (4.2) and (4.4),

0 = lim
t→∞

1
ω(t)
‖Tn(t)An(µ−A)−nx+

n−1

∑
j=0

t j

j!
A j(µ−A)−nx‖Y

≤ limsup
t→∞

1
ω(t)
‖Tn(t)An(µ−A)−2nx+

n−1

∑
j=0

t j

j!
A j(µ−A)−2nx‖X ,

for every x ∈ X .

Thus we get

lim
t→∞

1
ω(t)

Tn(t)An(µ−A)−2nx =− lim
t→∞

1
ω(t)

n−1

∑
j=0

t j

j!
A j(µ−A)−2nx

in X , and the statement follows readily.
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Proof of Theorem 4.0.1. In the setting of the Lemma 4.0.2, let assume in addition

that 0 ∈ ρ(A). Since the resolvent function of A is holomorphic, so continuous, in

the open subset ρ(A)⊆ C, we have that

lim
µ→0+

An(µ−A)−n = lim
µ→0+

(−I +µ(µ−A)−1) = (−1)nI.

Now, to prove (i) and (ii) of the theorem it suffices to notice that

sup
t>0

ω(t)−1‖Tn(t)‖< ∞

in both cases.

Remark 4.0.1. It looks desirable to find out the behavior of a n-integrated semi-

group at infinity when its generator A is not assumed to be invertible. According to

the discussion prior to Theorem 4.0.1 the existence of limt→∞ Tn(x) entails inverti-

bility of A. Thus the type of convergence at infinity of Tn(t), if there is some, that

one can expect if A is not invertible must be weaker than the existence of limit. In

Chapter 5, under the assumptions

sup
t>0

t−n‖Tn(t)‖< ∞ and lim
t→0+

n!t−nTn(t)x = x (x ∈ X),

it is proved that

lim
t→∞

t−nTn(t)πn( f ) = 0, f ∈Sn,

in the operator norm, where Sn is the subspace of functions of T
(n)
+ (tn) which

are of spectral synthesis in T (n)(|t|n) with respect to the subset iσ(A)∩R, and

πn( f ) = (−1)n ∫ ∞

0 f (n)(t)Tn(t) dt. Here, T (n)(|t|n) and T
(n)
+ (tn) are the convolution

Banach algebras defined in Chapter 1, Section 1.3. This result is an extension of

the Esterle-Strouse-Vũ-Zouakia theorem, which corresponds to the case n = 0 (see

[ESZ] and [V]).
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We wonder if in the case when A is not invertible, πn(Sn)X is dense in X (under

the conditions σ(A)∩ iR countable and σP(A∗)∩ iR = /0). This would give us the

ergodic type property

lim
t→∞

t−nTn(t)x = 0, x ∈ X . (4.6)

In Chapter 6, we obtain such result in the case that σ(A)∩ iR finite.

Notice that (4.6) is a consequence of Theorem 4.0.1 (i) when A is invertible;

on the other hand, the ergodicity of a n-times integrated semigroup Tn(t) such that

supt≥1 t−n‖Tn(t)‖ < ∞ is characterized in [Me] in terms of Abel-ergodicity or/and

ergodic decompositions of the Banach space X .
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Chapter 5

Katznelson-Tzafriri type theorem

for integrated semigroups

We call Cα -integrated semigroup on X any α-times integrated semigroup (Tα(t))t≥0

which, in addition, satisfies

lim
t→0+

Γ(α +1) t−αTα(t)x = x (x ∈ X). (5.1)

Notice that a C0-semigroup (T (t))t≥0 in B(X) satisfies in particular

lim
t→0+

T (t)x = x (x ∈ X).

The main result of the present chapter is the following:

Theorem 5.0.1. For α > 0, let (Tα(t))t≥0 ⊆B(X) be a Cα -integrated semigroup

with generator A such that

sup
t>0

t−α ‖Tα(t)‖< ∞.
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Suppose that f ∈ T
(α)
+ (tα) is of spectral synthesis in T (α)(|t|α) with respect to

iσ(A)∩R. Then

lim
t→∞

t−α ‖Tα(t)πα( f )‖= 0.

Recall that T (α)(|t|α) is a regular Banach algebra whose Gelfand transform is

the Fourier transform. Hence, a function f ∈ T (α)(|t|α) is of spectral synthesis

respect to a closed set E ⊆ R if there exists a sequence ( fn) in T (α)(|t|α) such that

(i) f = limn→∞ fn in T (α)(|t|α).

(ii) The Fourier transform F fn vanishes on a neighbourhood Un of E.

To prove the above theorem, we carry through a detailed analysis of the homo-

morphism πα along the same lines as it is done for the homomorphism π0 in the

case of C0-semigroups considered in [ESZ]. The procedure followed in the present

chapter has to deal with a number of new and fairly non-trivial technicalities with

respect to the proof given in [ESZ]. The stuff needed is organized in sections as

follows.

In Section 5.1, we collect results about the relationships between duality and

convolution in the algebras of Sobolev type T
(α)
+ (tα) and T (α)(|t|α). Section 5.2

contains a couple of results involving extensions of Laplace transforms of functio-

nals (of the algebras T
(α)
+ (tα) and T (n)(|t|n)) through open subsets of the imagi-

nary axis. The analysis of bounded homomorphisms of T
(α)
+ (tα) is carried out in

Section 5.3. First, we establish some formulae for Laplace transforms, of func-

tionals associated to such bounded homomorphisms, which are natural extensions

of those given in [ESZ, Section 2]. Then we give the main result of the section,

Theorem 5.3.1, which relates homomorphisms of T
(α)
+ (tα) to functions of spec-

tral synthesis. Finally, the results of previous sections are translated in terms of
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integrated semigroups to prove the main theorem of the paper, Theorem 5.0.1, in

Section 5.4. All these results can be also found in [GMM1].

The family of Riesz kernels Rα−1
t plays a key role in this chapter. Recall that

the convolution product in T
(α)
+ (tα) can be expressed in terms of Riesz kernels as

follows ([GMR, Lemma 4.2]):

f ∗g =
∫

∞

0
W α

+ f (t)Rα−1
t ∗gdt , f ,g ∈T

(α)
+ (tα) . (5.2)

As a consequence of the above integral representation one gets that closed ideals

of T
(α)
+ (tα) are characterized as those closed subspaces of T

(α)
+ (tα) which are

invariant under the action by convolution of kernels Rα−1
t . Thus the family of Riesz

kernels plays a similar role to the one that the translation semigroup (δt)t>0, formed

by the Dirac masses on R+, has with respect to L1(R+). Recall also from Section

1.3 (Proposition 1.3.1) that the family Γ(α + 1) t−αRα−1
t , t > 0, is a summability

kernel for T
(α)
+ (tα), that is,

lim
t→0+

Γ(α +1) t−αRα−1
t ∗ f = f , f ∈T

(α)
+ (tα). (5.3)

5.1 Duality and convolutions in the Sobolev algebras

We shall also need to consider duality in T (n)(|t|n) and T
(α)
+ (tα), as well as its

relationship with convolution.

Recall that the dual Banach space T
(α)
+ (tα)∗ of T

(α)
+ (tα) is identified with

the set of almost everywhere defined functions φ : R+→ C which satisfy t−αφ ∈

L∞(R+). The duality is implemented by the formula

Lφ ( f )≡
〈
Lφ , f

〉
:=
∫

∞

0
W α

+ f (t)φ(t)dt, f ∈T
(α)
+ (tα),
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for every φ ≡ Lφ ∈T
(α)
+ (tα)∗. Analogous facts hold about duality in T

(α)
− ((−t)α)

and T (α)(|t|α) and functions φ , now supported on R− and R, respectively. See

Section 1.3 above for details and references.

The following result translates to our setting the well-known property that the

function φ ∗g lies in C0[0,∞) provided φ ∈C0[0,∞) and g ∈ L1(R+). It will be used

in the proof of Theorem 5.3.1 below.

Proposition 5.1.1. If Lφ ∈T
(α)
+ (tα)∗ is such that t−αφ ∈C0[0,∞), then

lim
t→∞

t−α
〈
Lφ , Rα−1

t ∗g
〉
= 0

for every g ∈T
(α)
+ (tα).

Proof. Let φ be as above and let g ∈ T
(α)
+ (tα). Using the formula (1.8) and then

applying Fubini’s theorem, we obtain that

t−α
〈
Lφ ,Rα−1

t ∗g
〉
=

t−α

Γ(α)

∫ t

0

∫ r+t

t
(r+ t− s)α−1W α

+ g(r)φ(s)dsdr

+
t−α

Γ(α)

∫
∞

t

∫ r+t

r
(r+ t− s)α−1W α

+ g(r)φ(s)dsdr

− t−α

Γ(α)

∫ t

0

∫ r

0
(r+ t− s)α−1W α

+ g(r)φ(s)dsdr

− t−α

Γ(α)

∫
∞

t

∫ t

0
(r+ t− s)α−1W α

+ g(r)φ(s)dsdr.

First, let us see that the first of the above four integrals tends to 0 as t → ∞.

Since s−αφ ∈ L∞(R+), we have

t−α

∫ r+t

t
(r+ t− s)α−1|φ(s)|ds ≤ α

−12α‖s−α
ϕ‖∞ rα (0 < r < t).

On the other hand, the change of variables s = (r+ t)x gives us, for 0 < r < t
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and some C(r)> 0,

t−α

∫ r+t

t
(r+ t− s)α−1|φ(s)|ds≤C(r) sup

t
r+t ≤x≤1

((r+ t)x)−α |φ((r+ t)x)|

≤C(r) sup
1
2 ≤x≤1

((r+ t)x)−α |φ((r+ t)x)|,

Moreover,

lim
t→∞

sup
1
2≤x≤1

((r+ t)x)−α |φ((r+ t)x)|= 0

since s−αφ ∈ C0(R+). The claim then follows from the dominated convergence

theorem (taking sequential limits tn→ ∞), since |W α
+ g(r)|rα is integrable on R+.

For the second integral, it is straightforward to check that, as in the preceding

case, there exists some C > 0 for which

t−α

∫ r+t

r
(r+ t− s)α−1|φ(s)|ds ≤ C rα (r > t > 0),

and from here it is clear that the second integral converges to 0 as t→ ∞.

Now note that the third and fourth integrals are bounded respectively by

C
Γ(α +1)

∫
∞

0
χ(0,t)(r)

[
1−
(

1+
r
t

)α]
|W α

+ g(r)|rαdr

and
C

Γ(α +1)

∫
∞

t
[(r+ t)α − rα ] |W α

+ g(r)|dr,

which in turn go clearly to 0 as t→ ∞. The proof is over.

Now, we introduce several convolutions relating functions and functionals of

the algebras T
(α)
+ (tα) and T (α)(|t|α). Recall that T

(α)
+ (tα)∗ is becomes a Banach

T
(α)
+ (tα)-module through the action of T

(α)
+ (tα) on itself, so that

(Lϕ , f ) 7→ Lϕ • f , T
(α)
+ (tα)∗×T

(α)
+ (tα)→T

(α)
+ (tα)∗,
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where the module product • is defined by (Lϕ • f )(g) := Lϕ( f ∗ g) for all g ∈

T
(α)
+ (tα).

This module product can be expressed in terms of Riesz kernels as follows:

Proposition 5.1.2. For any Lϕ ∈T
(α)
+ (tα)∗ and f ∈T

(α)
+ (tα), we have

Lϕ • f = Lψ where ψ(t) := Lϕ(Rα−1
t ∗ f ), t > 0 .

Proof. Let ψ be as in the statement. By properties of the Riesz kernels pointed out

formerly, we obtain that t−αψ ∈ L∞(R+) and therefore Lψ ∈T
(α)
+ (tα)∗. Moreover,

for every g ∈T
(α)
+ (tα),

Lψ(g) = Lϕ

(∫
∞

0
W α

+ g(t)Rα−1
t ∗ f dt

)
= Lϕ( f ∗g) = Lϕ • f (g),

where (5.2) has been used in the next-to-last equality.

For a complex function F defined a. e. on R we put F̃(x) = F(−x). Now, from

the distribution theory we borrow the convolution product of tempered distributions

and functions and define, for Lϕ ∈ T (α)(|t|α)∗ and f ∈ T (α)(|t|α), the functional

Lϕ ∗ f by

(Lϕ ∗ f )(g) := Lϕ( f̃ ∗g), g ∈T (α)(|t|α).

Clearly, Lϕ ∗ f ∈T (α)(|t|α)∗ and the mapping f 7→Lϕ ∗ f , T (α)(|t|α)→T (α)(|t|α)∗

is linear and bounded. Also, it is readily seen that Lϕ ∗ f = (Lϕ̃ ∗ f̃ ) ,̃ that is,

(Lϕ ∗ f )(g) = Lϕ̃( f ∗ g̃), g ∈T (α)(|t|α).

From here and (5.2) we get that

Lϕ ∗ f (g) =
∫

∞

−∞

W αg(s)Lϕ̃(R
α−1
−s ∗ f )ds, (5.4)

for every f ∈T (α)(|t|α), Lϕ ∈T (α)(|t|α)∗ and g ∈T (α)(|t|α).
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Definition 5.1.1. For f ∈T (α)(|t|α) and Lϕ ∈T (α)(|t|α)∗, we set

Lϕ ◦ f := Lψ− and Lϕ � f := Lψ+ ,

where ψ(s) := Lϕ̃(R
α−1
−s ∗ f ), s ∈ R, ψ− := ψχ(−∞,0], ψ+ := ψχ[0,∞).

By the growth rate of ψ it follows that Lϕ ◦ f and Lϕ � f are elements of

T
(α)
− ((−t)α)∗ and T

(α)
+ (tα)∗, respectively. Moreover,

Lϕ ∗ f = Lϕ ◦ f +Lϕ � f in T (α)(|t|α)∗,

so that Lϕ ◦ f = (Lϕ ∗ f ) |
T

(α)
− ((−t)α )

and Lϕ � f = (Lϕ ∗ f ) |
T

(α)
+ (tα )

.

Thus we have that if f ∈ T
(α)
+ (tα) and Lϕ̃ ∈ T

(α)
+ (tα)∗ then Lϕ ◦ f and Lϕ̃ • f

are elements of T
(α)
− ((−t)α)∗ and T

(α)
+ (tα)∗, respectively, which are related by

Lϕ ◦ f = Lψ , Lϕ̃ • f = Lψ̃

where ψ(s) := Lϕ̃(R
α−1
−s ∗ f ) for s < 0.

Proposition 5.1.3. For any sequences ( fn)
∞
n=1⊆T

(α)
+ (tα) and (Lϕ̃n

)∞
n=1⊆T

(α)
+ (tα)∗,

we have that

lim
n→∞

Lϕ̃n
• fn = 0 if and only if lim

n→∞
Lϕn ◦ fn = 0.

Proof. For n ∈ N, Lϕn ◦ fn = Lψn and Lϕ̃n
• fn = Lψ̃n

where ψn(s) := Lϕ̃(R
α−1
−s ∗ fn)

for s < 0, as in the remark prior to this proposition. Then, for any g ∈T
(α)
− ((−t)α),

Lψn(g) =
∫ 0

−∞

W α
− g(t)ψn(t)dt

=
∫

∞

0
W α
− g(−s)ψ̃n(s)ds =

∫
∞

0
W α

+ g̃(s)ψ̃n(s)ds = Lψ̃n
(g̃).

We conclude the argument by noticing that g ∈ T
(α)
− ((−t)α) if and only if g̃ ∈

T
(α)
+ (tα).



110 Katznelson-Tzafriri type theorem for integrated semigroups

5.2 Laplace transform of functionals

Recall that every element in T (α)(|t|α)∗ is a tempered distribution. In particular,

if we set ez := e−z · , then the Laplace transform of a functional Lϕ ∈ T
(α)
+ (tα)∗ is

given by

L (Lϕ)(z) := Lϕ(ez) =
∫

∞

0
W α

+ (ez)(t)ϕ(t)dt = zαL (ϕ)(z) , z ∈ C+,

since ez ∈T
(α)
+ (tα) whenever z∈C+ and W α

+ (ez)= zαez on R+. As a matter of fact,

L (Lϕ) is analytic on C+. On the other hand, the Laplace transform of an element

Lϕ ∈ T
(α)
− ((−t)α)∗ is well defined and analytic on C− := {z ∈ C : ℜz < 0}. Now,

we have that W α
− (ez) = (−z)αez for z ∈ C−, so that

L (Lϕ)(z) = Lϕ(ez) = (−z)αL (ϕ)(z) , z ∈ C−.

Proposition 5.2.1. Let Lρ ∈ T
(α)
+ (tα)∗ such that L (Lρ) extends continuously to

C+ ∪U, where U is some open subset of iR. For any Ψ ∈ T (α)(|t|α) such that

F (Ψ) has compact support contained in −iU, we have that Lρ ∗Ψ ∈C∞(R)∩L∞

with, in fact,

Lρ ∗Ψ(t) =
1

2π

∫
suppF (Ψ)

F (Ψ)(y)L (Lρ)(iy)eiyt dy (t > 0).

Proof. For every x > 0, let exLρ denote the functional given by〈
exLρ , g

〉
:=
〈

Lρ , exg
〉
, g ∈T (α)(|t|α).

Let Ψ satisfy the assumptions of the proposition. Then Ψ̃ ∗ h ∈ T (α)(|t|α) for

any h ∈S (R), and F (Ψ̃∗h) = F (Ψ̃)F (h) ∈ L2(R)∩L1(R) because F (Ψ̃) is of

compact support. We can then apply the Fourier inversion formula to get that

(Ψ̃∗h)(t) =
1

2π

∫
suppF (Ψ̃)

F (Ψ̃)(y)F (h)(y)eiytdy (t > 0),
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so that

e−xt (Ψ̃∗h)(t) =
1

2π

∫
suppF (Ψ)

F (Ψ)(y)F (h)(−y)e−(x+iy)t dy .

The last integral converges in T
(α)
+ (tα) since ex+iy ∈T

(α)
+ (tα). Therefore,

〈
exLρ ,Ψ̃∗h

〉
=

1
2π

∫
suppF (Ψ)

F (Ψ)(y)F (h)(−y)Lρ(ex+iy)dy

=
1

2π

∫
suppF (Ψ)

F (Ψ)(y)F (h)(−y)L (Lρ)(x+ iy)dy.

Since L (Lρ) is continuous on the subset isuppF (Ψ) of iR, the dominated

convergence theorem applies and we get

lim
x→0

〈
exLρ ,Ψ̃∗h

〉
=

1
2π

∫
suppF (Ψ)

F (Ψ)(y)F (h)(−y)L (Lρ)(iy)dy.

On the other hand, limx→0 ex g = g in T
(α)
+ (tα) for every g ∈T

(α)
+ (tα) (see [GMR,

Lemma 3.6 (ii)]). Therefore,

lim
x→0

〈
exLρ ,Ψ̃∗h

〉
=
〈
Lρ ,Ψ̃∗h

〉
.

Applying Fubini’s theorem, we finally obtain that

〈
Lρ ∗Ψ,h

〉
=
∫
R

(
1

2π

∫
suppF (Ψ)

F (Ψ)(y)L (Lρ)(iy)eiytdy
)

h(t)dt

for all h ∈S (R). Then the statement follows automatically.

Remark 5.2.1. An analogous statement to the one of the above proposition holds

for elements Lρ ∈T
(α)
− ((−t)α)∗ whose Laplace transform extends continuously to

C−∪U .
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Proposition 5.2.2. Let U be an open subset of iR. Let Lρ1 ∈ T
(α)
− ((−t)α)∗ and

Lρ2 ∈ T
(α)
+ (tα)∗ be such that L (Lρ1) and L (Lρ2) have continuous extensions to

C−∪U and C+∪U, respectively, and verify L (Lρ1) |U=−L (Lρ2) |U . Then,

(Lρ1 + Lρ2)∗Ψ = 0 ,

for every Ψ ∈T (α)(|t|α) such that suppF (Ψ)⊆−iU.

Proof. Take ϕ ∈ S (R) such that its Fourier transform has compact support in R

and
∫

∞

−∞
ϕ = 1. Then the family ϕn := nϕ(n ·), n ∈ N, is a bounded approximate

identity in T (α)(|t|α) (the proof of this fact is similar to the one given in [GM,

Theorem 1.11(ii)]). Hence Ψ = limn→∞ Ψ∗ϕn in T (α)(|t|α) in particular.

Now, F (Ψ∗ϕn) is a compact subset of F (Ψ), so it is a compact subset of−iU .

By Proposition 5.2.1, (Lρ1 +Lρ2)∗(Ψ∗ϕn) = 0 for all n. Then, as n→∞, the weak*

continuity in (T (α)(|t|α))∗ implies that (Lρ1 +Lρ2)∗Ψ = 0.

5.3 Bounded homomorphisms from T
(α)
+ (tα) and functions

of spectral synthesis

For any element f ∈ T
(α)
+ (tα), let σ( f ) denote its spectrum in T

(α)
+ (tα). Let u be

the function e1 in T
(α)
+ (tα). The spectrum of u is σ(u) =

{
(1+ z)−1 : z ∈ C+

}
∪

{0}, and its n-th convolution product is u∗n(t) = 1
(n−1)! t

n−1e−t (t > 0). It is shown in

[GMR1, Prop. 1.1] that T (α)
+ (tα) is polynomially generated by u; that is, T (α)

+ (tα)=

span{u∗n : n ∈ N}.

Let B be a Banach algebra with a unit e and let π be a bounded algebra homo-

morphism π : T
(α)
+ (tα)⊕Cδ0→B such that π(δ0) = e, where δ0 is the Dirac mass

at the origin. Let A be the closure of the image π(T
(α)
+ (tα)) in B. We denote by
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π∗ the adjoint mapping of π : T
(α)
+ (tα)→A, so that π∗ : A ∗→T

(α)
+ (tα)∗, and by

σ(π(u))≡ σB(π(u)) the spectrum of π(u) in B.

Set Z1(π) :=
{

z ∈ C : (z+1)−1 ∈ σ(π(u))
}

and denote by Z(π) the comple-

ment of the connected component of C\Z1(π) which contains C−. Notice that Z(π)

is well-defined since Z1(π)⊆ C+.

Proposition 5.3.1. Under the above assumptions and notations, the following holds:

(i) (e− (z+1)π(u))−1 ∈A ⊕Ce for all z ∈ C\Z(π).

(ii) Let Lϕ̃ := π∗(T ) where T ∈A ∗. Then the mapping

z 7→
〈
T, π(u)(e− (z+1)π(u))−1〉 , C\Z(π)→ C (5.5)

is an analytic extension of L (Lϕ) to C \Z(π), which we continue denoting

by L (Lϕ).

Proof. (i) Put λ ≡ λ (z) := (z+1)−1. Clearly, if z ∈C\Z(π) then λ ∈C\σ(π(u)).

Moreover, {−1}⊆C− ⊆C\Z(π) and therefore λ (C\Z(π)) is contained in the un-

bounded connected component of C\σ(π(u)). Since the boundary of σA⊕Ce(π(u))

is included in the boundary of σ(π(u)) we obtain that λ (C\Z(π))⊆C\σA⊕Ce(π(u)),

as claimed.

(ii) Let z ∈ C− := {w ∈ C : ℜw < 0}. Since (z+ 1)−1 /∈ σ(u), we have that

δ0− (z+1)u is invertible in T
(α)
+ (tα)⊕Cδ0. Indeed, if να((z+1)u)< 1 then

(δ0− (z+1)u)−1 = δ0 +
∞

∑
n=1

(z+1)n u∗n ,

so that

u∗ (δ0− (z+1)u)−1(x) = e−x +
∞

∑
n=1

(z+1)n xn e−x

n!
= ezx.
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Now, let T ∈ A ∗ and set Lϕ̃ = π∗(T ). Since Lϕ ∈ T
(α)
− ((−t)α)∗, the Laplace

transform of Lϕ is well-defined and it is analytic on C−. Moreover,

L (Lϕ)(z) =
∫ 0

−∞

W α
− (ez)(t)ϕ(t)dt =

∫
∞

0
W α

+ (e−z)(s) ϕ̃(s)ds = Lϕ̃(e−z)

for any z ∈ C−. In particular, if |z+1|< να(u)−1 we have

L (Lϕ)(z) =
〈
π
∗(T ),u∗ (δ0− (z+1)u)−1〉

=
〈
T,π(u∗ (δ0− (z+1)u)−1)

〉
=
〈
T,π(u)(e− (z+1)π(u))−1〉 .

By the identity principle for analytic functions, the above equality holds on the

whole left half-plane C−. Now, observe that the mapping

z 7→
〈
T, π(u)(e− (z+1)π(u))−1〉 , C\Z(π)→ C

is analytic, so it is an analytic extension of L (Lϕ) to C\Z(π).

A first consequence of the proposition is an analytic extension result for the

Laplace transform linked to π and the product ◦.

Corollary 5.3.1. If Lϕ̃ = π∗(T ) ∈ π∗(A ∗) then L (Lϕ ◦ f ) extends to an analytic

function on C \Z(π) for every f ∈ T
(α)
+ (tα). In particular, for z ∈ C+ \Z(π) we

have

L (Lϕ ◦ f )(z) =
〈
T,π( f )π(u)(e− (z+1)π(u))−1〉 .

Proof. Let Lϕ̃ = π∗(T ) for some T ∈ A ∗. Recall that Lϕ ◦ f = Lψ− with ψ(s) :=

Lϕ̃(R
α−1
−s ∗ f ), s ∈ R (see Definition 5.1.1). Next, we show that Lψ̃− ∈ π∗(A ∗):

For every g ∈T
(α)
+ (tα),

Lψ̃−(g)=
∫

∞

0
W α

+ g(t)Lϕ̃(R
α−1
t ∗ f )dt =Lϕ̃

(∫
∞

0
W α

+ g(t)Rα−1
t ∗ f dt

)
=Lϕ̃(g∗ f )

= 〈π∗(T ),g∗ f 〉= 〈T,π(g)π( f )〉 .



Homomorphisms from T
(α)
+ (tα) and functions of spectral synthesis 115

Let T π( f ) denote the element of A ∗ defined by 〈T π( f ),a〉 = 〈T,aπ( f )〉 for all

a ∈A . Then one has that

Lψ̃−(g) = 〈T,π(g)π( f )〉= 〈T π( f ),π(g)〉= 〈π∗(T π( f )),g〉

and therefore L
ψ̃−

= π∗(T π( f )) ∈ π∗(A ∗) as claimed.

The statement follows now from Proposition 5.3.1. In addition, we have that

L (Lϕ ◦ f )(z) =
〈
T,π( f )π(u)(e− (z+1)π(u))−1〉

if z is taken in C+ \Z(π).

Now we relate the products ◦ and � for functionals associated with the homo-

morphism π . The result extends [ESZ, Proposition 2.5].

Corollary 5.3.2. For every Lϕ̃ ∈ π∗(A ∗) and f ∈T
(α)
+ (tα),

L (Lϕ ◦ f )+L (Lϕ � f ) = L (Lϕ) L ( f ) in C+ \Z(π). (5.6)

Proof. Let Lϕ̃ ∈ π∗(A ∗) and z ∈ C+ \ Z(π) be fixed. By Proposition 5.3.1 and

Corollary 5.3.1, the mapping Φ : T
(α)
+ (tα)→ C given for each f ∈T

(α)
+ (tα) by

Φ( f ) := L (Lϕ ◦ f )(z)+L (Lϕ � f )(z)−L (Lϕ)(z)L ( f )(z)

is well-defined and linear. Furthermore, it is continuous. To prove that we note

firstly that f →L ( f )(z) is clearly continuous. Secondly, recall that Lϕ � f = Lψ+ ∈

T
(α)
+ (tα)∗ with ψ(s) = Lϕ̃(R

α−1
−s ∗ f ), s ∈ R. Hence,

|L (Lϕ � f )(z)|= |Lψ+(ez)| ≤ |z|α
∫

∞

0
e−ℜzt |Lϕ̃(R

α−1
−t ∗ f )|dt

≤C να( f ) |z|α
∫

∞

0
tαe−tℜz dt =C(z)να( f ).
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Finally, by Corollary 5.3.1 we have that

L (Lϕ ◦ f )(z) =
〈
T,π( f )π(u)(e− (z+1)π(u))−1〉

for all z ∈ C+ \ Z(π). Thus |L (Lϕ ◦ f )(z)| ≤ C′(z)να( f ). In conclusion, Φ is

bounded on T
(α)
+ (tα).

Now we want to prove that Φ = 0. Clearly, it will be enough to show that Φ

vanishes on C∞
c (R+). So take f ∈C∞

c (R+). Then we have that Lϕ ∗ f ∈C(∞)(R) and

supp(Lϕ ∗ f ) ⊆ supp(Lϕ)+ supp( f ) ⊆ (−∞,a] where a := sup(supp( f )) ≥ 0 [Ru,

Th. 6.30 b) and Th. 6.37 b)]. Hence, L (Lϕ ∗ f ) exists and it is analytic at least

on C−. Moreover, L (Lϕ ∗ f ) = L (Lϕ)L ( f ) on C−, where all factors have sense

simultaneously. On the other hand, we have by definition that Lϕ ∗ f = Lϕ ◦ f +Lϕ �

f , where Lϕ ◦ f and Lϕ � f are supported on (−∞,0] and [0,∞), respectively. Since

supp(Lϕ ∗ f ) ⊆ (−∞,a], it follows that supp(Lϕ � f ) ⊆ [0,a], so that its Laplace

transform is an entire function. Therefore, L (Lϕ ∗ f ) =L (Lϕ ◦ f )+L (Lϕ � f ) on

C−. Then, L (Lϕ ◦ f )+L (Lϕ � f ) = L (Lϕ)L ( f ) on C−. Indeed, this equality

holds on C\Z(π) by the identity theorem for analytic functions. This concludes the

proof.

Next, we give the key result on functions in T
(α)
+ (tα) ⊆ T (α)(|t|α) which are

of spectral synthesis with respect to (−iZ(π))∩R. Such a result is in the spirit of

[ESZ, Théorème 2.7].

Theorem 5.3.1. Let (Tn)n∈N be a bounded sequence in A ∗ and denote Lϕ̃n
:=

π∗(Tn), n ∈ N. If f ∈ T
(α)
+ (tα) is a function of spectral synthesis with respect

to (−iZ(π))∩R then

lim
n→∞

t−α
n Lϕn ◦ (Rα−1

tn ∗g)◦ f = 0,



Homomorphisms from T
(α)
+ (tα) and functions of spectral synthesis 117

in the weak∗ topology of T
(α)
− ((−t)α)∗, for every g ∈ T

(α)
+ (tα) and (tn)n∈N ⊆ R+

such that limn→∞ tn = ∞.

Proof. For g∈T
(α)
+ (tα) and (tn) as above, set gn := t−α

n Rα−1
tn ∗g (n∈N). Note that

να(gn) ≤Cνα(g) for all n. We want to prove that limn→∞ Lϕn ◦ gn ◦ f = 0 weakly∗

in T
(α)
− ((−t)α)∗.

The fact that (Tn)n∈N is uniformly bounded implies that the sequences (Lϕn ◦gn)

and (Lϕn �gn) are uniformly bounded in T
(α)
− ((−t)α)∗ and T

(α)
+ (tα)∗, respectively.

Indeed, for all n,

‖Lϕn ◦gn‖, ‖Lϕn �gn‖ ≤C sup
n
‖π∗(Tn)‖να(g).

Also, since T
(α)
− ((−t)α) and T

(α)
+ (tα) are separable Banach spaces their bounded

subsets are weak∗ metrizable and then by the Banach-Alaouglu theorem there exist

(taking subsequences if necessary) the two weak∗ limits

lim
n→∞

Lϕn ◦gn =: Lρ1 ∈T
(α)
− ((−t)α)∗ (5.7)

and

lim
n→∞

Lϕn �gn =: Lρ2 ∈T
(α)
+ (tα)∗ (5.8)

On the other hand, the family (L (Lϕn ◦gn)) is a normal family of analytic func-

tions in C\Z(π): By Proposition 5.3.1, L (Lϕn ◦gn)(z) extends holomorphically to

z ∈ C\Z(π) as

L (Lϕn ◦gn)(z) :=
〈
Tn,π(gn)π(u)(e− (z+1)π(u))−1〉 .

Since the sequences (Tn) and (να(gn)) are uniformly bounded and the mapping

z ∈ C+\Z(π) 7→ π(u)(e− (z+1)π(u))−1 ∈A is analytic in C\Z(π), we have that
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(L (Lϕn ◦gn)) is uniformly bounded on compact subsets of C\Z(π) as well. In other

words, (L (Lϕn ◦gn)) is a normal family on C\Z(π).

Therefore, by the Montel theorem we can assume (by passing to a subsequence

if necessary) that there exists an analytic function H in C\Z(π) such that

lim
n→∞

L (Lϕn ◦gn) = H (5.9)

uniformly on compact subsets of sets of C\Z(π). Also, it is readily seen that

(L (Lϕn � gn))n∈N converges to an analytic function on C+ uniformly on compact

subsets.

Now, we are going to prove that limn→∞ L (gn)(z) = 0 for any z ∈ C+. Note

that

L (gn)(z) =
∫

∞

0
gn(t)e−zt dt =

∫
∞

0
W α

+ gn(t)D−α(ez)(t)dt

for every z ∈ C+, where

D−α(ez)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1ez(s)ds , t > 0.

Then t−αD−α(ez)∈C0([0,∞) and so limn→∞ L (gn)(z)= 0 (z∈C+), by Proposition

5.1.1.

Applying formula (5.6) to ϕn and gn, and then using (5.9) and (5.8), we obtain

H = lim
n→∞

L (Lϕn ◦gn) =− lim
n→∞

L (Lϕn �gn) =−L (Lρ2)

in C+\Z(π). Hence, the function given by

F(z) :=


H(z) , if z ∈ C\Z(π);

−L (Lρ2)(z) , if z ∈ C+

is well-defined and analytic on C\(Z(π)∩ iR). In addition, F |C−=L (Lρ1) by (5.7)

and (5.9), and also F |C+=−L (Lρ2).
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Denote U := iR\(Z(π)∩ iR). Recall that f is assumed to be a function of spec-

tral synthesis with respect to (−iZ(π))∩R. Thus there exists a sequence ( fn)n∈N ⊆

T (α)(|t|α) such that suppF fn ⊆−iU and limn→∞ να( f − fn) = 0. Clearly,

lim
n→∞

(Lρ1 +Lρ2)∗ fn = (Lρ1 +Lρ2)∗ f

in the weak∗ topology of T (α)(|t|α)∗. On the other hand, L (Lρ2) can be conti-

nuously extended to U as H, and so we get that L (Lρ2) |U := −L (Lρ1) |U . Then,

by Proposition 5.2.2 we have that (Lρ1 +Lρ2)∗ fn = 0 for every n ∈ N . Therefore,

(Lρ1 +Lρ2)∗ f = 0 in T (α)(|t|α)∗. In particular, if h ∈T
(α)
− ((−t)α) then

(Lρ1 ∗ f )(h) =−(Lρ2 ∗ f )(h) =−Lρ2( f̃ ∗h) = 0

since supp(Lρ2)⊆ [0,∞) and supp( f̃ ∗h)⊆ (−∞,0]. In other words, Lρ1 ◦ f = 0.

In conclusion, we have proved that any weak∗ cluster point of the sequence

(Lϕn ◦gn ◦ f )n∈N is 0. This implies (recall again the Banach-Alaouglu theorem and

the metrizability of bounded weak∗ subsets of T
(α)
− ((−t)α)∗) that limn→∞ t−α

n Lϕn ◦

(Rα−1
tn ∗g)◦ f = 0, as we wanted to show.

5.4 Katznelson-Tzafriri theorem for integrated semigroups

On the base of what has been established in previous sections, we go on to prove

the main result of the paper (Theorem 5.0.1).

Recall that we have defined a Cα -semigroup as an α-times integrated semigroup

on X such that

lim
t→0

Γ(α +1) t−αTα(t)x = x (x ∈ X).

In Proposition 1.3.2, we have proved that Cα -semigroups on X of growth tα

are in a one-to-one correspondence with bounded Banach algebra homomorphisms
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πα : T
(α)
+ (tα)→ B(X) for which πα(T

(α)
+ (tα))X is dense in X . In particular,

if (Tα(t))t≥0 is a Cα -semigroup on X such that supt>0 t−α‖Tα(t)‖ < ∞ then the

bounded homomorphism πα : T
(α)
+ (tα)→B(X) given by the formula in (1.10) is

such that πα(T
(α)
+ (tα))X is dense in X . Conversely, for every bounded homomor-

phism πα : T
(α)
+ (tα)→B(X) such that πα(T

(α)
+ (tα))X is dense in X , the family

defined by

Tα(t)x := πα(Rα−1
t ∗g)y, (x = πα(g)y ∈T

(α)
+ (tα); t ≥ 0),

is a Cα -semigroup on X verifying supt>0 t−α‖Tα(t)‖ < ∞ whose associated homo-

morphism defined by formula (1.10) is πα .

Next, we give the proof of Theorem 5.0.1. Let us point out first the following

lemma:

Lemma 5.4.1. Let A be the generator of a sub-homogeneous α-times integrated

semigroup Tα(t). Let πα be defined as in (1.10). Then, −iZ(πα)∩R= iσ(A)∩R.

Proof. Set B :=−A and D(B) for the domain of B. Note that

(B+ I)−1 =
∫

∞

0
e−tTα(t)dt = πα(u) ∈B(X).

In particular, X = (B+ I)D(B). These facts imply that

[I− (z+1)πα(u)]X = (B− zI)D(B)

for every z∈C. As a result, Z1(πα) =σ(B). Therefore, Z(πα)∩ iR= Z1(πα)∩ iR=

−σ(A) ∩ iR.

Proof of Theorem 5.0.1. Let f ∈T
(α)
+ (tα) be a function of spectral synthesis with

respect to the subset iσ(A) ∩ R. Since Tα(t) = πα(Rα−1
t ), we have to prove that
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limt→∞ πα(t−αRα−1
t ∗ f ) = 0 in norm. Take g ∈ T

(α)
+ (tα) and (tn)n∈N ⊆ R+ be

such that limn→∞ tn = ∞. Put gn := t−α
n Rα−1

tn ∗ g, n ∈ N. For h ∈ T
(α)
+ (tα), by the

Hahn-Banach theorem there exists a sequence (Tn)n∈N ⊆ A ∗ such that ‖Tn‖ = 1,

and

‖πα(h∗ f ∗gn)‖= 〈Tn,πα(h∗ f ∗gn)〉 , for all n.

Hence, if Lϕ̃n
:= π∗α(Tn), we have that

‖πα(h∗ f ∗gn)‖=
〈
Lϕ̃n
•gn • f ,h

〉
, for all n.

By Proposition 5.1.3 one has that limn→∞ Lϕ̃n
•ϑn • f = 0 weakly∗ in T

(α)
+ (tα)∗ if

and only if limn→∞ Lϕn ◦gn ◦ f = 0 weakly∗ in T
(α)
− ((−t)α)∗. The latter limit holds

as a consequence of Theorem 5.3.1, since f is of spectral synthesis with respect to

iσ(A) ∩ R=−iZ(πα)∩R. Therefore

lim
n→∞

t−α
n ‖πα(Rα−1

tn ∗ f ∗g∗h)‖= lim
n→∞
‖πα(h∗ f ∗gn)‖= 0,

that is,

lim
n→∞

t−α
n ‖Tα(tn)πα( f ∗F)‖= 0 for every F ∈T

(α)
+ (tα),

since T
(α)
+ (tα) factorizes and Tα(tn) = πα(Rα−1

tn ). Finally, letting F running over a

a bounded approximate identity family in T
(α)
+ (tα), we get the desired result:

lim
n→∞

t−α
n ‖Tα(tn)πα( f )‖= 0 .

Remark 5.4.1. There are proofs of the Esterle-Strouse-Vũ-Zouakia theorem on the

basis of the Ingham’s tauberian theorem or using the notion of complete trajectories,

see [CT, pp. 84, 85]. We wonder if such arguments admit analogues, in the setting
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of integrated semigroups, which could be fruitfully employed to give alternative

proofs of Theorem 5.0.1.

The Esterle-Strouse-Zouakia and Vũ’s theorem can be regarded as a result on

stability of orbits T (·)x, for x ∈ Im π0( f ) and appropriate f in L1(R+). Further, it is

proven in [ESZ] that the aforementioned theorem implies (in a certainly non-trivial

way) the Arendt-Batty-Lyubich-Vũ stability theorem.

Here, we do not deal with stability of integrated semigroups. Instead, we con-

sider another type of asymptotic behaviour (which is of clear ergodic nature when

the integrated semigroup Tα(t) comes from a C0-semigroup T (t) as given by Tα(t)=

Γ(α)−1 ∫ t
0(t− s)α−1T (s)ds).

Definition 5.4.1. Given an α-times integrated semigroup (Tα(t))t≥0 on X, we call

an orbit Tα(·)x (x ∈ X) o(tα) -ergodic if

lim
t→∞

t−α ‖Tα(t)x‖= 0 .

We say that (Tα(t))t≥0 is o(tα) - ergodic if Tα(·)x is o(tα) - ergodic for every x ∈ X.

Proposition 5.4.1. Let Tα(t), A and πα be under the assumptions of Theorem 5.0.1.

Let ρ(A) be the resolvent set of A. If σ(A)∩ iR= /0 then

lim
t→∞

t−α
∥∥Tα(t)(λ −A)−1∥∥= 0 ∀λ ∈ ρ(A).

In consequence, (Tα(t))t≥0 is o(tα) - ergodic; that is,

lim
t→∞

t−α ‖Tα(t)x‖= 0 ∀x ∈ X .

Proof. Take λ with ℜλ > 0, so that λ ∈ ρ(A) in particular. Recall that the function

eλ (t) = e−λ t (t > 0) is in T
(α)
+ (tα) with W α

+ eλ = λ αeλ (see Section 4, prior to
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Proposition 5.2.1). Hence, for x ∈ X ,

(λ −A)−1x =
∫

∞

0
(W α

+ eλ )(t)Tα(t)xdt = πα(eλ )x.

Notice now that every function in T
(α)
+ (tα), so eλ , is of spectral synthesis for the

empty set. Hence, by Theorem 5.0.1, one gets

lim
t→∞

t−α‖Tα(t)(λ −A)−1‖= lim
t→∞

t−α‖Tα(t)πα(eλ )‖= 0.

For arbitrary µ in ρ(A) it is enough to apply the resolvent identity for µ and λ

with ℜλ > 0 to obtain limt→∞ t−α‖Tα(t)(µ−A)−1‖= 0.

Finally, the o(tα)-ergodicity of Tα(t) follows by factorising

x = (µ−A)−1(µ−A)x

if x belongs to the domain D(A) of A, and then for arbitrary x ∈ X by the density of

D(A) in X and the uniform boundedness of t−αTα(t).

Remark 5.4.2. (1) The assumption σ(A)∩ iR= /0 implies that 0 ∈ ρ(A) and there-

fore we obtain from the above proposition that

lim
t→∞

t−α
∥∥Tα(t)A−1∥∥= 0.

This extends [V, Corollary 3.3].

(2) For a bounded C0-semigroup T (t) the necessary property given in the first

part of Proposition 5.4.1 is in fact an equivalence:

lim
t→∞

t−α
∥∥Tα(t)(λ −A)−1∥∥= 0 ∀λ ∈ ρ(A) ⇔ σ(A)∩ iR= /0;

see [N, Cor. 5.2.6]. Thus we wonder if this equivalence also holds for integrated

semigroups. One of the ingredients to prove the above result is that if f ∈ L1(R+)
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is such that limt→∞ ‖T (t)π0( f )‖ = 0 then its Fourier transform F ( f ) vanishes on

σ(A)∩ iR. Unfortunately, the argument used in [N, Th. 5.2.6] to show this property

of F ( f ) does not work for integrated semigroups. The reason is that in the latter

case one cannot appeal to translations δs ∗ f in T
(α)
+ (tα). The natural substitute in

T
(α)
+ (tα) for δs is the family of Riesz kernels Rα−1

s , but then by taking convolutions

Rα−1
s ∗ f one gets that the lower bound obtained for semigroups in [N, Th. 5.2.6]

fails for integrated semigroups.

(3) An alternative way to show the o(tα)-ergodicity of Tα(t) in Proposition 5.4.1

relies on the idea employed in [ESZ] to prove the Arendt-Batty-Lyubich-Vũ stability

theorem from [ESZ, Théorème 3.4].

Let Sα be the set formed by all functions f ∈ T
(α)
+ (tα) which are of spectral

synthesis with respect to iσ(A)∩R. By Theorem 5.0.1 it follows that the subset Y

of X given by

Y := {πα( f )x : f ∈S,x ∈ X}, (5.10)

defines a family of o(tα) - ergodic orbits of a Cα -semigroup (Tα(t))t≥0. Trivially, if

the set Y is dense in X then the integrated semigroup is o(tα) - ergodic. From this

observation, and since the empty set is of spectral synthesis, using Proposition 1.3.2

and the Cohen’s factorization theorem we obtain that limt→∞ t−α ‖Tα(t)x‖ = 0 for

every x ∈ X , whenever σ(A)∩ iR= /0.

(Note that if one assumes additionally that the integrated semigroup Tα(t) is

Lipschitz continuous then that conclusion follows automatically by [Me, Th. 2.4].)



Chapter 6

Weak spectral synthesis and

ergodicity of semigroups

One of the purposes of the present chapter is to show that, at least in some cases,

the argument considered in [ESZ] to deduce the Arendt-Batty-Lyubich-Vũ theorem

works (partially) for integrated semigroups. More precisely, we prove that

πn(Sn)X is dense in X , (6.1)

which, by applying Theorem 5.0.1 (p. 103), gives limt→∞ t−nTn(t)x = 0 for every

x ∈ X . The proof in [ESZ] appeals to the Hahn-Banach theorem and methods of

harmonic analysis, and relies on the fact that countable sets in R are sets of spectral

synthesis for L1(R). Thus, we first need to analyse the type of spectral synthesis

properties that the algebra T (n)(|t|n) enjoys, and related items.

The organization of the chapter is as follows. In Section 6.1 we collect some

specific lemmata on convolution and derivations of Fourier transforms which will be

needed in subsequents sections. In Section 6.2, we study primary ideals and (weak)

125
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spectral synthesis properties of the algebra T (n)(|t|n). In contrast with the L1-case,

not even points in R are of spectral synthesis in T (n)(|t|n) for n ≥ 1, with the only

exception of t = 0. This is proved in Theorem 6.2.1 together with a characterization

of the primary closed ideals of T (n)(|t|n). In particular, we prove that a function f ∈

T (n)(|t|n) is of spectral synthesis in T (n)(|t|n) with respect to a countable subset

S of R if x jF f ( j)(x) = 0 for every x ∈ S and 0 ≤ j ≤ n. This implies a sort of

weak spectral synthesis in the algebra T (n)(|t|n) for closed countable subsets, see

Theorem 6.2.2. In Section 6.3 we apply these results to the asymptotic behavior of

(integrated) semigroups, and prove the density result (6.1) and its consequences, see

Theorem 6.3.2 and Theorem 6.3.3.

6.1 Derivatives, convolution and Fourier transform

Lemma 6.1.1. For g ∈S (R), n ∈ N and k = 0, . . . ,n,

(ix)k(Fg)(k)(x) =
k

∑
j=0

(
k
j

)
k!
j!

F (t jg( j))(x), x ∈ R. (6.2)

Proof. Let k = 1, . . . ,n. Using integration by parts k times and the Leibniz’s deriva-

tion rule we get, for x ∈ R,

(ix)k(Fg)(k)(x) = (ix)k
∫

∞

−∞

(tkg)(k)(t)
e−ixt

(ix)k

=
k

∑
j=0

(
k
j

)∫
∞

−∞

(tk)(k− j)g( j)(t)e−ixt dt

=
k

∑
j=0

(
k
j

)
k!
j!

F (t jg( j))(x),

as we wanted to show.
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Let D(0,∞) denote the space of test functions with compact support in (0,∞).

The following lemma is part of folklore. We include a proof for the sake of com-

pleteness, since it will be significantly used in Section 6.2 (Proposition 6.2.2) and

Section 6.3.

Lemma 6.1.2. Let n and N be nonnegative integers. For am ∈ R, m = 0,1, . . . ,N,

and c jk ∈C, j = 0,1. . . . ,N, there exist functions u j ∈D(0,∞), j = 0,1, . . . ,N, such

that

(Fu j)
(k)(am) = δ j,mc jk ( j,m = 0,1, . . . ,n;k = 0,1, . . . ,n).

Proof. For 0≤ j ≤ N and 0≤ k ≤ n define the distribution Φ jk ∈D ′(0,∞) by

Φ jk(u) := u(k)(am) = (−i)k
∫

u(y)yke−iamydy, u ∈D(0,∞).

The above family Φ jk is linearly independt: If for some d jk ∈ R one has 0 =

∑ j,k d jkΦ jk(u) for all u ∈D(0,∞) then

0 = ∑
j,k
(−i)kd jkyke−iamy =

n

∑
k=0

(
N

∑
j=0

d jke−iamy

)
(−i)kyk,

for all m = 0,1, . . . ,N and every y > 0. Dividing by yn in the above equality one

obtains that

lim
y→+∞

N

∑
j=0

d jne−iamy = 0.

Since ∑
N
j=0 d jne−iamy is almost periodic it follows that d jn = 0 for all j = 0,1, . . . ,N.

Now, by recurrence on k from k = n to k = 0 one ends finding that c jk = 0 for all

j = 0,1, . . . ,N and k = 0,1, . . . ,n.

Hence Fjk := span{Φm,l : (m, l) 6= ( j,k)} is a finite-dimensional subspace of

D ′(0,∞) and Φ jk does not belong to Fjk. By Hahn-Banach theorem there is v jk ∈
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D ′(0,∞)′=D(0,∞), since D(0,∞) is reflexive, such that Φml(v jk) = 〈v jk,Φml〉= 0,

if j 6= m or k 6= l, and Φ jk(v jk) = 〈v jk,Φ jk〉= 1.

For every j = 0,1, . . . ,N, put u j := ∑
n
l=0 c jlv jl . Then,

u j(Φ jk) =
n

∑
l=0

c jlv jl(Φ jk) = c jkv jk(Φ jk) = c jk,

whereas

u j(Φmk) =
n

∑
l=0

c jlv jl(Φmk) = 0 if m 6= j, for every k,0≤ k ≤ n.

It follows that (Fu j)
(k)(am) = δ j,mc jk as required.

Lemma 6.1.3. Given a0,a1, . . . ,sN ∈ R and c jk ∈ C for j = 0,1, . . . ,N and k =

0,1, . . . ,n there exists u ∈D ′(o,∞) such that

(Fu)(k)(a j) = c jk, (0≤ j ≤ N;0≤ k ≤ n).

Proof. It suffices to take u := u0 +u1 + · · ·+uN with u0,u1, . . . ,uN the functions in

the statement of Lemma 6.1.2.

Lemma 6.1.4. Let f be a complex function on R such that tk f ∈ L1(R) for k =

0,1, . . . ,n. Then, for every g ∈S ,

tn( f ∗g)(n) =
n

∑
j=0

(
n
j

)
(tn− j f ∗ t jg(n)). (6.3)

Proof. This is straightforward. For f and g as in the statement, and t ∈ R,

tn( f ∗g)(n)(t) = tn( f ∗g(n))(t) =
∫

∞

−∞

(t− s+ s)n f (t− s)g(n)(s)ds

=
n

∑
j=0

(
n
j

)∫
∞

−∞

(t− s)n− j f (t− s) s jg(n)(s)ds,

as we wanted to show.
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Let h∈ L1(R) and put hρ(x) := ρh(ρx), a.e. x∈R, ρ > 0. It is well known that,

for every g ∈ L1(R),

‖hρ ∗g−Fh(0)g‖L1 → 0, as ρ → ∞. (6.4)

See [RS, p. 8] for details. Notice that (hρ)ρ>0 is a summability kernel in L1(R) if

Fh(0) = 1. In order to study primary ideals in T (n)(|t|n) we need a version of the

above convergence for derivatives of functions.

Lemma 6.1.5. Let h be a locally integrable function on R with compact support

and let g ∈S (R). Then

‖hρ ∗g−
m

∑
j=0

(−i) j

j!
ρ
− j (Fh)( j)(0)g( j)‖L1 = O(ρ−(m+1)), as ρ → ∞, (6.5)

for every m ∈ N∪{0}.

Proof. For ρ > 0 and 0 ≤ j ≤ m, (Fh)( j)(0) = (−i) jρ j
∫

∞

−∞

y jhρ(y)dy. Then, for

x ∈ R,

R(x,ρ) := (hρ ∗g)(x)−
m

∑
j=0

ρ
− j (−i) j

j!
(Fh)( j)(0)g( j)(x)

=
∫

∞

−∞

hρ(y)

(
g(x− y)−

m

∑
j=0

g( j)(x)
j!

(−y) j

)
dy

=
∫

supp(h)
h(t)

(
g(x− t/ρ)−

m

∑
j=0

g( j)(x)
j!

(−t/ρ) j

)
dt

=
1

(m+1)!

∫
supp(h)

h(t)(−t/ρ)m+1g(m+1)(ξx,t)dt

where we have applied the Taylor formula with Lagrange remainder, so that ξx,t

inside the last integral is a point between x− t/ρ and x.

Since h has compact support, one can choose ρ > 0 large enough so that ξx,t ∈

(x− 1,x + 1) for all x ∈ R and t ∈ supp(h). Moreover, as g ∈ S (R) there is a

constant C such that |g(m+1)(ξx,t)| ≤C(1+ξ 2
x,t)
−1.
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Hence, for all ρ > 0,

ρ
m+1‖R(·,ρ)‖L1 ≤

C
(m+1)!

(∫
supp(h)

|h(t)| |t|m+1 dt
)

×
(

2
∫

∞

1

dx
1+ |x−1|2

+
∫ 1

−1
dx
)
=

C(π +2)
(m+1)!

‖h‖L1(|t|m+1).

This proves (6.5).

6.2 Weak spectral synthesis in Sobolev algebras

Recall from Chapter 1 that the character space of T (n)(|t|n) is isomorphic to R and

its Gelfand transform is equal to the Fourier transform F . Moreover, T (n)(|t|n) is

regular on R since it contains the test functions. See Chapter 1

Next, we study the range space of F on T (n)(|t|n). Let C(n)
0 (xn) denote the

space formed by the continuous functions ϕ : R → C such that, for every k =

0,1 . . .n:

(i) There exists the k-th derivative ϕ(k) on R\{0}.

(ii) The function Φk : x 7→ xkϕ(k)(x) belongs to C0(R).

(iii) Φk(0) = 0 for k = 1, . . . ,n.

It is readily seen that C(n)
0 (xn) is a Banach algebra endowed with pointwise mul-

tiplication and norm ‖ · ‖∞,(n) given by

‖ϕ‖∞,(n) :=
n

∑
k=0
‖xk

ϕ
(k)‖∞ , ϕ ∈C(n)

0 (R).

Proposition 6.2.1. For every f ∈T (n)(|t|n), we have F ( f )∈C(n)
0 (xn) and then the

Fourier transform F : T (n)(|t|n)→C(n)
0 (xn) is a bounded Banach algebra homo-

morphism.
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Proof. Obviously, Fϕ ∈C(n)
0 (xn) for every ϕ ∈S (R). Moreover, for ϕ ∈S (R),

and 0≤ j ≤ n there is a constant C j

‖F (t j
ϕ) j‖∞ ≤ ‖t j

ϕ
( j)‖1 = ‖ϕ‖1,( j) ≤C j‖ϕ‖1,(n),

where the last inequality reflects the continuous inclusion T (n)(|t|n) ↪→ T ( j)(|t| j).

Thus, for some constant C, we get ‖Fϕ‖∞,(n) ≤C‖ϕ‖1,(n) by (6.2). Then the result

follows by density of S (R) in T (n)(|t|n).

Remark 6.2.1. Since the norm in C(n)
0 (xn) implies pointwise convergence of all the

weighted derivatives and S (R) is dense in T (n)(|t|n), the equality (6.2) in Lemma

6.1.1 holds for functions f in T (n)(|t|n) as well. Also, it is readily seen that the

coefficient matrix implicit in the system of n+1 equations defined by (6.2) is self-

invertible, so that we get the reverse equality

F (tk f (k))(x) =
k

∑
j=0

(
k
j

)
k!
j!

x j(F f )( j)(x) , x ∈ R,

for every f ∈T (n)(|t|n) and k = 0,1, . . . ,n.

Now, let S be a closed subset of R. Notice that a function f ∈ T (n)(|t|n) is of

spectral synthesis for S if there is a sequence (τk)
∞
k=1 in T (n)(|t|n), with F τk ≡ 1 on

Uk, such that limk→∞ f ∗ τk = 0 in T (n)(|t|n). Also, the spectral synthesis property

of S can be rewritten in term of ideals. Set

Mk(S) := { f ∈T (n)(|t|n) : Φ j(x) := x j(F f )( j)(x) = 0 (x ∈ S;0≤ j ≤ k)}

for k = 0, . . . ,n; M(S) := M0(S), and

J(S) := { f ∈T (n)(|t|n) : F f = 0 on a neighborhood of S}.
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Then the closed subset S of R is of spectral synthesis if and only if J(S) is dense

in M(S). For singletons S = {a}, a ∈ R, we put Mk(a) = Mk({a}), if 0 ≤ k ≤ n,

and J(a) = J({a}). Note that M0(0) = Mk(0) = Mn(0) for 0 ≤ k ≤ n since F f ∈

C(n)
0 (xn). We will show that J(a) = Mn(a) for every a ∈ R. In the case when a = 0,

one gets that {0} is a set of spectral synthesis for the Sobolev algebra T (n)(|t|n). To

see this, we first give a density result of functions of compact support.

Proposition 6.2.2. In the above setting,

Mn(a)∩D is dense in Mn(a) for all a ∈ R.

Proof. Assume a 6= 0. Let f ∈Mn(a) and ε > 0. Take h∈D such that ‖ f −h‖1,(n) <

ε . By Lemma 6.1.2, there are functions u0, . . .un ∈D such that (Fu j)
(k)(a) = δ j,k,

j,k = 0,1 . . . ,n. Take g := h−∑
n
j=0(Fh)( j)(a)u j in D . Clearly, (Fg)(k)(a) = 0

(k = 0 . . .n), and so g ∈Mn(a)∩D . On the other hand,

|a j(Fh)( j)(a)|= |a jF ( f −h)( j)(a)| ≤ ‖x jF ( f −h)( j)‖∞

≤ ‖F ( f −h)‖∞,(n) ≤ ‖ f −h‖1,(n)

where the last inequality is Proposition 6.2.1. Hence,

‖ f −g‖1,(n) ≤ ‖ f −h‖1,(n)+
n

∑
j=0
|(Fh)( j)(a)|‖u j‖ j‖1,(n)

≤ (1+
n

∑
j=0

a− j‖u j‖1,(n))ε.

This proves the proposition for a 6= 0. The case a = 0 is similar and easier.

We now proceed to describe the closed primary ideals of T (n)(|t|n).

Theorem 6.2.1. For every a ∈ R,

Mn(a) = J(a).
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Proof. Let a ∈ R, a 6= 0, and let f ∈D ∩Mn(a). Take τ ∈S (R) such that F τ ≡ 1

on a fixed neighborhood of 0. Let ea,Ea,ρ denote the functions given by ea(x) :=

e−iax, Ea,ρ(x) := e−a(x)τ1/ρ(x), x∈R, respectively, where ρ > 0. Clearly, F (Ea,ρ)=

F τ(·−a), so F (Ea,ρ)≡ 1 in a neighborhood Uρ of a.

Claim:

‖ f ∗Ea,ρ‖1,(n)→ 0, as ρ → ∞. (6.6)

If the above assertion holds then f − f ∗Ea,ρ tends to f in T (n)(|t|n) and its

Fourier transform vanishes on Uρ , so (ii) is true for functions in D ∩Mn(a). Since

D ∩Mn(a) is dense in Mn(a) by Proposition 6.2.2, we have done. Thus let us prove

the claim.

The following elementary equality will be used later on: For every nonnegative

integers p,m,

F (eat p f )(m)(0) = ip(F f )(p+m)(a). (6.7)

We have ‖ f ∗Ea,ρ‖1,(n) = ‖tn( f ∗Ea,ρ)
(n)‖L1 , and by formula (6.3) in Lemma

6.1.4

tn( f ∗Ea,ρ)
(n) =

n

∑
j=0

(
n
j

)
(tn− j f ∗ t jE(n)

a,ρ),

so we must show that

lim
ρ→∞
‖tn− j f ∗ t jE(n)

a,ρ‖L1 = 0 (0≤ j ≤ n). (6.8)

Thus let j be fixed such that j ∈ {0,1, . . . ,n}. Then

tn− j f ∗ t jE(n)
a,ρ =

n

∑
k=0

(
n
k

)
(ia)n−k

ρ
j−k(eatn− j f )ρ ∗ (t j

τ
(k)). (6.9)

For 0≤ k ≤ n such that k > j, we use the estimate

ρ
j−k‖(eatn− j f )ρ ∗ (t j

τ
(k))‖L1 ≤ ρ

j−k‖tn− j f‖L1‖t j
τ
(k)‖L1 ,
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whence

lim
ρ→∞

ρ
j−k‖(eatn− j f )ρ ∗ (t j

τ
(k))‖L1 = 0, if k > j. (6.10)

For 0≤ k ≤ n such that k ≤ j, we apply (6.7) so that

F (eatn− j f )(m)(0) = in− j(F f )(n− j+m)(a) = 0

for every m = 0,1 . . . , j− k, since 0≤ n− j+m≤ n− k ≤ n and f ∈Mn(a). Then,

by (6.5) in Lemma 6.1.5, for some constant C

ρ
j−k‖(eatn− j f )ρ ∗ (t j

τ
(k))‖L1 ≤Cρ

j−k
ρ
− j+k+1 =Cρ

−1

and therefore

lim
ρ→∞

ρ
j−k‖(eatn− j f )ρ ∗ (t j

τ
(k))‖L1 = 0, if k ≤ j. (6.11)

Now, (6.9) (6.10) and (6.11) implies (6.8). Thus the claim (6.6) follows and we

have completed the proof for a 6= 0. The case a = 0 is simpler and it is left to the

reader.

Theorem 6.2.2. For every countable subset S of R,

J(S) = Mn(S).

Proof. The argument is an adaptation of [RS, Th. 2.5.9(iii)] to our setting. Let f be

in Mn(S). Since the Sobolev algebra T (n)(|t|n) possesses (bounded) approximate

identities formed by functions whose Fourier transforms are of compact support,

one can assume without loss of generality that suppF f is compact.

Let enumerate the elements of S, say S = {am : m = 1,2, . . .}. For every m ∈ N

let µm be the measure given by

µm := δ0−Eam,ρm ,
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where ρm is to be chosen later, in the notation of the proof of Theorem 6.2.1. For

all m ∈ N, one has f ∗µm ∈S (R) and F µm = 0 on the open interval Um := (am−

ρ−1
m ,am−ρ−1

m ).

Take now ε > 0. By (6.6),

‖ f − f ∗µ1‖1,(n) ≤ ε/2

for ρ1 large enough. Since f ∗µ1 ∈Mn(a2), by (6.6) again there exists ρ2 > ρ1 big

enough such that

‖ f ∗µ1− f ∗µ1 ∗µ2‖1,(n) ≤ ε/22.

In fact, using induction, we find a sequence (ρk)
∞
k=1 such that for every k = 1,2, . . . ,

‖ f ∗µ1 ∗ . . .∗µk− f ∗µ1 ∗ . . .∗µk ∗µk+1‖1,(n) ≤ ε/2k+1.

Therefore, for every m ∈ N,

‖ f − f ∗µ1 ∗ . . .∗µm‖1,(n)

≤ ‖ f − f ∗µ1‖1,(n)

+‖ f ∗µ1 ∗ . . .∗µk− f ∗µ1 ∗ . . .∗µk ∗µk+1‖1,(n)

≤ ε

m−1

∑
k=0

1
2k+1 = ε(1− 1

2m ).

Set K := S∩ suppF f . As K is compact there exists m ∈N such that K ⊆U :=

∪m
k=1Uk. Take then g := f ∗ µ1 ∗ · · · ∗ µm ∈ S (R). Clearly, Fg vanishes on the

open subset U ∪ (R \ suppF f ) of R. Moreover, S = K ∪ (S∩ (R\ suppF f )) ⊆

U ∪ (R\ suppF f ).

In conclusion, g ∈ J(S) with ‖ f −g‖1,(n) < ε(1− 1
2m ) and the proof is over.
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6.3 Null ergodicity of semigroups

For S a closed set of real numbers, put Mn,+(S) := Mn(S)∩T
(n)
+ (tn), where M(S) is

as in Section 6.2.

Definition 6.3.1. We say that S is an interpolation set for T
(n)
+ (tn) in T (n)(|t|n) if

T
(n)
+ (tn)/Mn,+(S) = T (n)(|t|n)/Mn(S),

that is, for every f ∈ T (n)(|t|n) there exists g ∈ T
(n)
+ (tn) such that (Fg)(k)(a) =

(F f )(k)(a) for every a ∈ S\{0}, k = 0,1, . . . ,n, and Fg(0) = F f (0) if 0 ∈ S.

Set Y := πn(Mn,+(S))X in X . By the functional law of integrated semigroups,

Tn(t) commutes with πn and therefore Y is Tn(t)-invariant. Thus the prescription

T̃n(t)[x] := Tn(t)x+Y where [x] = x+Y ∈ X/Y,

is well defined. It is readily seen that T̃n(t) is a n-times integrated semigroup on

X/Y which satisfies

sup
t>0

t−n‖T̃n(t)‖< ∞ and lim
t→0+

n!t−nT̃n(t)[x] = [x] ([x] ∈ X/Y ), (6.12)

and its generator is the well defined closed operator Ã[x] := Ax+Y , for x ∈ D(A),

with dense domain D(Ã) = {[x] : x ∈ D(A)} in X/Y . Moreover, σ(Ã) ⊆ σ(A) and

σP(Ã∗)⊆ σP(A∗).

We are ready to give the main result of this section:

Theorem 6.3.2. Let Tn(t) be a n-times integrated semigroup in B(X) with genera-

tor A such that

sup
t>0

t−n‖Tn(t)‖< ∞ and lim
t→0

n! t−nTn(t)x = x (x ∈ X). (6.13)

Assume that
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(i) S := iσ(A)∩R is a countable compact interpolation set for T
(n)
+ (tn) in T (n)(|t|n).

(ii) σP(A∗)∩ iR= /0.

Then πn(Mn,+(S))X is dense in X and, in consequence,

lim
t→∞

t−nTn(t)x = 0 for all x ∈ X .

Proof. Let X ′ be the topological dual of X . As before, set Y := πn(Mn,+(S))X . In

order to prove that Y = X we want to show that Y⊥ = 0 where Y⊥ = {`∈ X ′ : `(Y ) =

0} from which the equality will follow by the Hahn-Banach theorem. We identify

Y⊥ with the dual (X/Y )′.

Take ` ∈ Y⊥ and x ∈ X and define `⊗ x ∈T
(n)
+ (tn)′ by

(`⊗ x)(g) := 〈πn(g)x, `〉, g ∈T
(n)
+ (tn).

Since `∈Y⊥ it is clear that (`⊗x)(Mn,+(S)) = 0. Besides this, T (n)
+ (tn)/Mn,+(S) =

T (n)(|t|n)/Mn(S) because S is a set of interpolation, so `⊗ x defines a continuous

functional in (T (n)(|t|n)/Mn(S))′ given by (`⊗ x)([ f ]) := (`⊗ x)([g])≡ (`⊗ x)(g)

where g ∈ T
(n)
+ (tn) is such that g+Mn(S) = f +Mn(S) = [ f ]. By composition

with the projection T (n)(|t|n)→ T (n)(|t|n)/Mn(S) the functional `⊗ x extends to

T (n)(|t|n)′. On the other hand, `⊗ y = 0 on T
(n)
+ (tn) for all y ∈ Y , whence one

readily sees that, for some constant K, ‖`⊗ x‖ ≤ K‖`‖ ‖[x]‖ where [x] = x+Y ∈

X/Y .

Then there exists an almost everywhere defined mapping ϕ : R→ C such that

the function t 7→ t−nϕ(t;x, `)≡ t−nϕ(t; [x], `) is in L∞(R) and

(`⊗ x)( f ) = (−1)n
∫

∞

−∞

f (n)(t)ϕ(t;x, `) dt, f ∈T (n)(|t|n). (6.14)
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Notice that for g ∈T
(n)
+ (tn),

(`⊗ x)(g) = 〈πn(g)x, `〉= (−1)n
∫

∞

0
g(n)(t)〈Tn(t)x, `〉 dt,

from which one deduces that ϕ(t;x, `) = 〈Tn(t)x, `〉 for all t ≥ 0 a. e., and that

sup
t 6=0
|t|−n|ϕ(t;x, `)| ≤ K‖`‖‖[x]‖. (6.15)

Abbreviate ϕ(t;x, `) = ϕ(t) for a moment. The integral in (6.14) means that `⊗x =

ϕ(n) in the distributional sense (recall that T (n)(|t|n) contains S (R) densely). As

(`⊗ x)(Mn(S)) = 0 the Fourier transform (·)nFϕ of `⊗ x is concentrated on S by

Theorem 6.2.2, and therefore supp(Fϕ) ⊆ S∪{0}. By the Paley-Wiener theorem

([Ru, Th. ]), ϕ is an entire function such that

|ϕ(z;x, `)| ≤C(1+ |z|N)er|ℑz|, z ∈ C, (6.16)

for some C,r > 0 and N ∈ N, N ≥ n.

Define F(z) :=(z+ i)−Neirzϕ(z;x, `) for ℑz≥ 0. Then F is analytic and bounded

on {ℑz > 0} with |F(t)| ≤ K‖`‖‖[x]‖, for all t ∈ R, by (6.15). Then a version of

the Phragmen-Lindelöff theorem applied to the function F implies that |F(z)| ≤

K‖`‖‖[x]‖, for all z∈C. Similarly, taking G(z) := (z− i)−Ne−irzϕ(z;x, `) for ℑz≤ 0

and using the same argument as above for G on {ℑz < 0}, one eventually deduces

altogether that, for all z ∈ C,

|ϕ(z;x, `)| ≤ K‖`‖‖[x]‖
(
(ℜz)2 +(1+ |ℑz|)2)N/2

er|ℑz|. (6.17)

Let now write ϕ as a power series

ϕ(z;x, `) =
∞

∑
k=0

βk(x, l)
k!

zk, z ∈ C, (6.18)
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with βk(x, l) ∈ C independent of z and depending on [x] but not on y in [x].

Since Tn(t) (and T̃n(t)) satisfies

Tn(t)x =
∫ t

0
Tn(s)Axds +

tn

n!
(t ≥ 0) (6.19)

one has βk = 0 for k = 0,1, . . . ,n−1 and βn(x, `) = 〈x, `〉 ≡ 〈[x], `〉 for every x ∈ X

and ` ∈ Y⊥ (it suffices to apply the L’Hopital rule, for instance). Also, using the

Cauchy integral formula for derivatives one obtains from (6.17) that

|βk(x, `)| ≤
(k−1)!

δ k Kδ‖`‖‖[x]‖, for k ≥ n+1, and δ > 0, (6.20)

where Kδ is a constant depending on δ .

Now, by derivation in (6.19) one obtains

(d/dt)ϕ(t;x, `) = ϕ(t;Ax, `)+(tn−1)/(n−1)!.

Identifying the coefficients of the corresponding power series one then finds for

k = n,n+1, . . . and x ∈ D(A),

βk+1(x, `) = βk(Ax, `) = βk(Ã[x], `).

This in particular means that for all [x] ∈ D(Ã),

〈Ã[x], `〉= 〈Ax, `〉= βn+1(x, `),

and it follows by (6.20) that Ã is a bounded operator on X/Y since D(Ã) is dense

in X/Y . By induction one gets also that βk([x], `) = 〈Ãk−n[x], `〉 for all [x] ∈ X and

k ≥ n. Hence,

T̃n(t) =
∞

∑
k=n

Ãk−n tk

k!
, t ≥ 0,
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in B(X/Y ). In other words,

etÃ = ÃnT̃n(t)+ IX/Y + Ãt + · · ·+ Ãn−1 tn−1

(n−1)!
(t ≥ 0).

Thus by the estimate assumed in (6.13) we have that the (holomorphic) C0-

semigroup etÃ on X/Y is of polynomial growth along the nonnegative half-line.

One needs to control the growth of etÃ on (−∞,0) too. For this, we apply [V1,

Lemma 3 & proof of Theorem 7]: There exists a Banach space E, a bounded ho-

momorphism Θ : X/Y → E with dense range, and a group (V (t))t∈R in B(E) such

that V (t)Θ(ξ ) = etÃξ for every ξ ∈ X/Y and

‖V (t)‖= O(tn), as t→+∞, ‖V (t)‖= O(1), as t→−∞. (6.21)

Moreover, if H is the infinitesimal generator of V (t) then σ(H)⊆σ(Ã) and σP(H∗)⊆

σP(Ã∗).

We now finish the proof adapting the argument of [V1, p. 236]: Suppose if

possible that ` 6= 0. Then T̃n(t) 6= 0 so the semigroup etÃ, and so the group V (t),

are nontrivial. By (6.21) one gets that σ(H) is a subset of iR, and then it is also

countable by on eof the assumptions of the statement. Moreover, it is nonempty by

[V1, Lemma 5]. Hence there is an isolated point iω in σ(H). Using the projection

on E associated with iω by the holomorphic functional calculus one arrives at the

conclusion that H∗φ = iω φ for some nonzero φ ∈E∗. Therefore /0 6=σP(H∗)∩ iR⊆

σP(Ã∗)∩ iR ⊆ σP(A∗)∩ iR, which contradicts one of the assumptions. It follows

that `= 0 as we wanted to show.

A clear consequence of Lemma 6.1.3 is that finite sets in R are interpolation sets

for T
(n)
+ (tn) in T (n)(|t|n). This implies immediately the result which follows.
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Theorem 6.3.3. Let Tn(t) be a n-times integrated semigroup in B(X) with genera-

tor A. Assume that

(i) supt>0 t−n‖Tn(t)‖< ∞ and limt→0 n! t−nTn(t)x = x (x ∈ X),

(ii) iσ(A)∩R is finite and σP(A∗)∩ iR= /0.

Then

lim
t→∞

t−nTn(t)x = 0 for all x ∈ X .

Remark 6.3.1. (i) Both preceding theorems have interest only when {0} ⊆ iσ(A)∩

R, in view of Theorem 4.0.1.

(ii) The compactness of the boundary spectrum σ(A)∩ iR in the statement of

Theorem 6.3.2 is not, morally, a very strong condition in our setting. For instance,

compactness of hulls is a kind of usual assumption when one wants to establish

general statements on the (standard) ideals structure in L1 spaces. On the other

hand, the finiteness of boundary spectra of generators is not generally an easy-to-

handle condition about semigroups; see [BD] and [M].

One would like to remove the compactness assumption, anyway, but it does not

seem to be simple.

We finish the chapter with a result on ergodic behaviour of (certain) non neces-

sarily uniformly bounded C0-semigroups.

Corollary 6.3.1. Let T (t) = etA be a C0-semigroup in B(X), which is not necessar-

ily uniformly bounded in t > 0, such that iσ(A)∩R is finite and σP(A∗)∩ iR = /0.

Assume moreover that there exists n ∈ N for which supt>0 t−n‖Tn(t)‖< ∞ where

Tn(t)x :=
1

(n−1)!

∫ t

0
(t− s)n−1T (s)x ds, x ∈ X :
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Then

lim
t∞

t−nTn(t)x = 0, for all x ∈ X .

Proof. The generator A of T (t) is also the generator of Tn(t). Moreover, since T (t)

is a C0-semigroup one gets that Tn(t) satisfies the limit property in condition (6.13).

Thus it is enough to apply Theorem 6.3.3 to obtain the corollary.

Examples of non-bounded C0-semigroups T (t) but which satisfy the estimate

supt>0 t−n‖Tn(t)‖< ∞ for some n are given in [CSS].
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[Ki] J. Kisyński, Around Widder’s characterization of the Laplace transform of

an element of L∞(R+), Ann. Polon. Math. 74 (2000), 161 – 200.

[Ko] J. Korevaar, On Newman’s quick way to the prime number theorem, Math.

Intelligencer 4 (1982), 108–115.

[L] R. Larsen, Banach Algebras, A series of Monographs and Textbooks, Marcel

Dekker, Inc., New York, 1973.

[Le] G. Lebeau, Équation des ondes amorties, In Algebraic and geometric meth-

ods in mathematical physics (Kaciveli, 1993), vol. 19 of Math. Phys. Stud.

Kluver Acad. Publ. Dordrecht, 1996, 73–109.

[Li] A. M. Liapunov, Stability of Motion, Ph.D. thesis, Kharkov, 1892, English

translation, Academic Press, 1966.

[LR] Z. Liu, and B. Rao, Frequency domain approach for the polynomial stability

of a system of partially damped wave equations, J. Math. Anal. Appl. 335

(2007), 860–881.
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Notation

Subsets of R or C
R+ set of non-negative real numbers p. 34

R− set of non-positive real numbers p. 34

C+ open right half-plane p. 34

C− open left half-plane p. 34

T unit circle p. 12

Function, Distribution and Operator
Spaces

B(X) space of all bounded linear operators on X p. 33

C(I,X) space of continuous functions p. 34

C0(I,X) space of continuous functions vanishing at infinity p. 34

Cn(I,X) space of n times continuously differentiable functions p. 34

C∞(I,X) space of infinitely differentiable functions p. 34

C∞
c (I,X) ,C∞

c (I) space of infinitely differentiable functions having com-

pact support

p. 34

L1
loc(I;X) space of locally Bochner integrable functions p. 34
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Lp(I;X) space of Bochner p-integrable functions p. 34

Lp(I) space of Lebesgue p-integrable functions p. 34

L∞(I;X) , L∞(I) space of measurable, essentially bounded functions p. 34

T
(α)
+ (tα) Banach algebra of Sobolev type on R+ p. 47

T
(α)
− ((−t)α) Banach algebra of Sobolev type on R− p. 48

T (α)(|t|α) Banach algebra of Sobolev type on R p. 48

D(R) space of test functions p. 38

S (R) Schwartz space of rapidly decreasing functions p. 38

S ′(R) space of tempered distributions p. 34

D ′(R) space of distributions p. 38

Convolutions, Norms and Dualities
‖ · ‖p Lebesgue-Bochner norm p. 34

να Lebesgue norm for the algebras T
(α)
+ (tα),

T
(α)
− ((−t)α) or T (α)(|t|α)

p. 47

esssup essential supremum p. 34

f ∗g convolution product of two functions (distributions) p. 39 (39)

f ◦g adjoint convolution product of two functions p. 61

f ∗c g cosine convolution product of two functions p. 56

X∗ dual space of X p. 34

〈·, ·〉 duality between a space X and its dual X∗ p. 38

Functions and Transformations
L ( f ) Laplace transform of f p. 35

abs( f ) abscissa of convergence of L f p. 35
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ω( f ) exponential growth bound of f p. 36

F ( f ) , f̂ Fourier transform p. 37

LS Laplace-Stieltjes transform p. 86

W−α
+ Weyl fractional integral of order α > 0 on R+ p. 47

W α
+ Weyl fractional derivative of order α > 0 on R+ p. 47

W−α
− Weyl fractional integral of order α > 0 on R− p. 48

W α
− Weyl fractional derivative of order α > 0 on R− p. 48

W α Weyl fractional derivative of order α > 0 on R p. 48

Rβ−1
t Riesz function p. 49

ez exponential function t 7→ e−zt p. 60

Operators
ρ(A) resolvent set of an operator A p. 33

R(λ ,A) resolvent of an operator A in λ p. 33

σ(A) spectrum of an operator A p. 33

σp(A) point spectrum of an operator A p. 33

A∗ adjoint operator of A p. 33

(ACP) abstract Cauchy problem p. 42


