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ABSTRACT

Context. Cold dark matter inhomogeneities are considered in a homogeneous background of matter, radiation, and the cosmological
constant in a flat universe.
Aims. We investigate the influence of the cosmological constant on the non-linear collapse of cold dark matter clusters.
Methods. For simplicity, a spherical infall model has been used to describe the collapse of non-relativistic mass shells; besides, an
average distribution of density around a cluster of galaxies has been taken. Boundary conditions are imposed by the solution of the
linearized equation for the growth of matter perturbations and by the cold dark matter power spectrum.
Results. For an average cluster, the radii of shells and masses enclosed by them have been obtained at their zero proper accelera-
tion (ZA) redshifts, at their turn-around (TA) redshifts and at their virialization (VIR) redshifts. According to our results at present,
the shell that reaches its turn-around point shows [rTA]0 = 6.85 Mpc and [MTA]0 = 6.76 × 1014M�. The virializing shell fulfills
[rTA]0 = 4.57 [rVIR]0 and [MTA]0 = 1.95 [MVIR]0. These results differ appreciably from those derived from a model with cosmolog-
ical constant equal to zero in a flat universe: [rTA(Λ = 0)]0 = 6.62 [rVIR(Λ = 0)]0 and [MTA(Λ = 0)]0 = 5.26 [MVIR(Λ = 0)]0; this
discrepancy could be considered as a new independent proof of the existence of dark energy. The shell with zero proper acceleration
presents [rZA]0 = 1.59 [rTA]0 and [MZA]0 = 1.63 [MTA]0. We have found that there is a limit to the mass of the average cluster, which
is able to virialize; its value is {MVIR}MAX = 8.1 × 1014 M�. As expected, we found that shells present null proper acceleration at
redshift values that are smaller than 0.755.
Conclusions. We have noticed that the cosmological constant imposes an upper limit for the mass enclosed by shells, which are
able to reach zero proper velocity. Hence, this mass is the maximum mass of the virialized core, {MVIR}MAX. For the average cluster
addressed in this work, the value is 2.34 times the mass of the virialized core at present. Shells enclosing massesM > {MVIR}MAX

achieve zero proper acceleration and speed up, moving away from the virialized core, and never reach a turn-around point. Shells
withM � {MVIR}MAX show zero proper aceleration at redshifts close to that at which the universe background acceleration is null.
Finally, we have found that the relation between shell proper velocities and their radii can be adjusted by a straight line at z = 0 and
from approximately 20 up to 40 Mpc; however, this line does not intercept the origin as velocities due to the Hubble flux do.
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1. Introduction

It is accepted that more mass than visible matter is required to
explain the observed structure in the universe. The first argument
in favor of its existence was that non-baryonic dark matter was
necessary to describe the rotation curves observed in galaxies
(see, for example, Caldwell 1995), but the main argument comes
from the primordial or Big Bang nucleosynthesis. In addition,
dark matter models are consistent with other cosmological ob-
servations: the angular power spectrum of the cosmic microwave
background, the large structure of the universe, and lensing clus-
ters (see, for example: Bond 1988; Strukov et al. 1987; Trimble
1987; Peacock 1999).

At the end of the last century, it was realized that another
new component of the universe had to be considered. If our uni-
verse, which seems to be flat (Efstathiou et al. 1998), contained
just radiation and matter, it would be too young to be consis-
tent with the ages of the oldest stars (Chaboyer et al. 1995).

This new component was named “dark energy”, and its pressure
(from a hydrodynamical point of view) must be a negative func-
tion of its density. This new component not only solves the flat-
ness dilemma but also other cosmological problems such as the
strong evidence that the expansion of the Universe is speeding
up (see, for example, Perlmutter et al. 1998, 1999; Schmidt et al.
1998).

It is well known from observations that the expansion of the
universe is present even on scales of galactic clusters but some-
what diminished. The first confirmations came from studies of
the motion of our Galaxy (a revision can be found, for exam-
ple, in Huchra 1988). These studies indicated that the Local
Group shows a proper velocity with respect to the core of the
Virgo cluster of about 1000 km s−1 (the velocity of the Hubble
flow is about 1200 km s−1). It should be said in this respect that
the greatest virialized structures in the universe are the cores of
galaxy clusters. Outside the virialized region, the matter is col-
lapsing toward the core. The evolution of the density and infall
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velocity profiles around clusters of galaxies has been extensively
discussed in the literature (e.g., Gunn & Gott 1972; Peebles
1984; Weinberg 1987; Lahav et al. 1991), and observational and
theoretical advances have been obtained (e.g., Yahil et al. 1980;
Davis & Huchra 1982; Lilje & Lahav 1991; Fouqué et al. 2001;
Karachentsev & Nasovona 2010). The Virgo infall region is one
of the most extensively studied (see, for example: Silk 1974,
1977; Peebles 1976; Hoffman & Salpeter 1982; Sandage 1986;
Teerikorpi et al. 1992; Ekholm et al. 1999, 2000).

The aim of this work is to study how the cosmological con-
stant affects the collapse of cold dark matter (CDM) clusters. In
the spherical infall model (see, for example, Gunn & Gott 1972;
Peebles 1984; Weinberg 1987), mass spherical shells, which ini-
tially followed the expansion of the universe, begin to slow down
due to the gravitational attraction of the mass they enclose. Some
shells continue to slow down, reaching proper velocities equal
to zero. When this happens, their radii are at a maximum. After
reaching these turn-around radii, their proper velocities become
negative. These shells end up virializing.

However, this should not occur for all shells. Each cluster
should have a limiting shell with a radius enclosing the maxi-
mum mass, which allows a turn-around point to be reached. This
is a consequence of the repulsive effect of the dark energy. If the
mass enclosed by a shell is greater than this mass limit, there
will be a redshift, at which the proper acceleration is null. At the
zero proper acceleration radius, the attractive gravitational effect
of the mass enclosed by the shell is balanced by the repulsive ef-
fect of the dark energy. At smaller redshifts, the proper velocity
will remain positive, and the shell will keep expanding without
reaching a turn-around radius.

In Sect. 2, we look at the limit imposed by the cos-
mological constant on the size of a bound non-relativistic
cluster. In Sect. 3, the zero acceleration redshift for back-
ground non-relativistic matter is described. Section 4 deals with
the collapse of CDM clusters within a background of mat-
ter, radiation and the cosmological constant. A discussion of
the Hubble-Sandage paradox appears in Sect. 5. Finally, our
conclusions are presented in Sect. 6.

2. The effect of the cosmological constant
on bound non-relativistic systems

For a point mass, m, there is a critical distance, dc, where the
attractive gravitational effect of the particle is balanced by the
repulsion exerted by the cosmological constant, Λ. This critical
distance is (see, for example, Membrado & Pacheco 2012)

dc =

(
3Gm
Λc2

)1/3

· (1)

The same result is derived for the critical radius, Rc, of a bound
spherically symmetric cluster containing a mass M of non-
relativistic matter, where attractive and repulsive strengths are
compensated. In this case, Rc is obtained by imposing the condi-
tion dφ/dr|Rc = 0, where φ is the gravitational potential and r
the radial distance. The value of dφ/dr can be obtained from
the radial integration of the weak field approximation of the
Einstein equations for ideal fluids (see, for example, Peebles
1980, Sect. 6, p. 39):

1
r2

d
dr

(
r2 dφ

dr

)
=

4πG
c2

(ρ + 3p), (2)

where ρ and p are the total energy density and pressure,
respectively, of the fluids. By treating dark energy from
a hydrodynamical point of view and by assuming a the
cosmological constant model,

ρ = ρm + ρ̄Λ, (3)

p = p̄Λ. (4)

In Eqs. (3) and (4), ρm is the energy density of the non-relativistic
matter, ρ̄Λ, the energy density, and p̄Λ, the pressure of dark en-
ergy. The values of ρ̄Λ and p̄Λ can be deduced by imposing
that the energy-momentum tensor for Λ is [T μν]Λ = Λc2

8πGg
μν

(so, [T μν;ν ]Λ = 0), for any metric gμν. Thus, assuming an ideal
fluid (i.e., [T μν]Λ = −p̄Λgμν + (ρ̄Λ + p̄Λ)UμUν; Uμ = dxμ/ds be-
ing the four-velocity tensor; xμ, the four-coordinate tensor; and
ds, the line element which fulfills (ds)2 = gμνdxμdxν),

ρ̄Λ = −p̄Λ =
c4

8πG
Λ· (5)

Hence

dφ
dr

∣∣∣∣∣
Rc

= 0 =
GM
R2

c
− c2ΛRc

3
, (6)

and, therefore,

Rc =

(
3GM
Λc2

)1/3

· (7)

In a bound spherically symmetric cluster composed of non-
relativistic matter, the gradient of matter pressure balances
the gravitational strength per volume unit (i.e. dpm/dr =
−ρm dφ/dr). This happens only if the cluster radius, R, is smaller
than the critical radius, Rc. If the cluster extends beyond Rc
(where GM(Rc)/R2

c − c2ΛRc/3 = 0 is fulfilled), then dφ/dr < 0
at r > Rc; this is due to the repulsive effect of the cosmolog-
ical constant. Therefore, the decreasing behavior of the pres-
sure of the matter is not able to compensate for the gravitational
effect, and the cluster expands according to the motion equa-
tion ρmr̈ = −dpm/dr− ρm dφ/dr. Hence, the maximum radius of
a bound cluster of massM is Rc.

The value of Rc, given by Eq. (7), coincides with that derived
by Chernin et al. (see, for example: Chernin et al. 2000; Chernin
2001; Dolgachev et al. 2003, 2004) for the radius at which a
dynamic spherically symmetric mass shell enclosing a mass,M,
shows null acceleration.

In previous papers (Membrado & Pacheco 2012, 2013), we
applied this upper limit to spheres of self-gravitating fermions,
or bosons, in the ground state, which are quantum systems.
These spheres simulated clusters of dark matter. As the equa-
tion of state of these systems is known, these bounds allowed to
infer limiting values for the mass of the constituent elementary
particle.

From Eq. (7), a critical mean energy density can also be
defined,

ρc =
3Mc2

4πR3
c
=

c4Λ

4πG
· (8)

Hence, the mean energy density of a bound non-relativistic sys-
tem must be greater than this critical density.

Equation (8) can be expressed as a function of ΩΛ = ρ̄Λ/ρ̄0
and the Hubble function at present, H0 = (8πGρ̄0/3c2)1/2. In
these equations, ρ̄0 is the background total energy density of
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the universe at present (hereafter, subindex 0 represents mag-
nitudes at present; magnitudes with a bar represent background
magnitudes). Thus,

ρc = 1.243 × 10−8

(
ΩΛ

0.73

) (
H0

71 km s−1 Mpc

)2

erg cm−3. (9)

Values for ΩΛ and H0 can be taken from Spergel et al. (2003).
This critical density, ρc, could be compared with the energy

density of the expanding background non-relativistic matter of
the universe at present,

ρ̄m0 = 2.298 × 10−9

(
Ωm0

0.27

) (
H0

71 km s−1 Mpc−1

)2

erg cm3, (10)

where Ωm0 = ρ̄m0/ρ̄0 (a value for Ωm0 can also be taken from
Spergel et al. 2003). Therefore, ρ̄m0 < ρc, and hence, at present,
bound structures could not be built from perturbations of back-
ground non-relativistic matter.

3. Zero acceleration in background non-relativistic
matter

For a homogeneous and isotropic background in a flat uni-
verse (Efstathiou et al. 1998), the line element, ds, is given
by the Friedmann-Robertson-Walker metric (see, for example,
Raychaudhuri et al. 1992, Sect. 16.1, p. 212)

(ds)2 = (cdt)2 − a2(dx)2. (11)

In Eq. (11), x is the expanding coordinate, comoving in the back-
ground model; a is the expansion parameter of the universe, and t
is the proper world time. Therefore, for such a background, any
proper distance changes with time in proportion to the expanding
parameter a, which is a universal function of the proper world
time (see, for example, Padmanabhan 1995, Sect. 2.3, p. 54).

As a consequence, the radius of a sphere, expanding with the
universe, evolves as R(a) = (a/a0) R0, where a0 and R0 are the
expanding parameter and the sphere radius at present (x = R0/a0
is the comoving radius; in other words, the expanding radius co-
moving in the background model). As the energy density of the
background non-relativistic matter fulfills ρ̄m = ρ̄m0 (a0/a)3 (see,
for example, Padmanabhan 1995, Sect. 2.4, p. 61), the matter
mass,M, inside the expanding sphere of radius R(a) is constant.

According to the previous section, as the sphere of massM
expands, it could lead to bound structures while its radius, R, are
smaller than the critical radius Rc, given by Eq. (7). UsingM =
(4π/3c2) ρ̄m0R3

0 and Rc = (ac/a0) R0 = R0/(1+zc), Eq. (7) tells us
that any mass,M, of background non-relativistic matter, reaches
its critical radius, Rc, at redshift zc fulfilling

1 + zc = 1.755

(
ΩΛ

0.73

)1/3 (
Ωm0

0.27

)−1/3

· (12)

Therefore, bound structures cannot be created from perturba-
tions of background non-relativistic matter arising at redshift z <
zc. Obviously, at this redshift, ρ̄m(ac) = ρc.

Let us now have a look at the Einstein equations for the evo-
lution of the universe. Assuming the metric given by Eq. (11),
these equations read as follows (see, for example, Padmanabhan
1995, Sect. 2.4, p. 60):
( ȧ
a

)2

=
8πG
3c2
ρ̄ = H2, (13)

( ä
a

)
= −4πG

3c2
(ρ̄ + 3 p̄). (14)

In Eqs. (13) and (14), a dot represent d/dt and H is the Hubble
function. Hence, if we consider a background composed of non-
relativistic matter and the cosmological constant, the universe
shows zero acceleration (i.e., ä = 0) at redshift, zZA

U , fulfilling

1 + zZA
U =

(
2ρ̄Λ
ρ̄m0

)1/3

= 1.755

(
ΩΛ

0.73

)1/3 (
Ωm0

0.27

)−1/3

· (15)

This redshift given by Eq. (15) is, as expected, the same as
that given by Eq. (12); i.e., zc = zZA

U . For z < zZA
U , the uni-

verse speeds up and bound structures can no longer be built from
perturbations of background non-relativistic matter.

4. The case of collapsing cold dark matter

In this section, we focus our attention on the collapse of CDM.
For simplicity, the collapse is treated with a spherical infall
model (see, for example, Peebles 1980, Sect. 19). Thus, we study
the collapse of a CDM spherical shell (assuming that no other
mass shell crosses it) by integrating its motion equation in a
background of matter, radiation and the cosmological constant.
The integration is started at redshift zI = 1000. At this redshift,
the recombination has just occurred, and the growth of pertur-
bations is fully given by the linear theory. Besides, the decay
modes are negligible, and the velocity field is given by the linear
theory, irrespective of initial velocities.

The first subsection is devoted to showing the equation of
motion of a spherical shell enclosing a mass composed of non-
relativistic matter. The resolution of this equation allows us to
follow the non-linear collapse of each mass shell. However, to
solve it, it is necessary to know the radius and velocity of each
shell at zI. In Sects. 4.2 and 4.3 we deal with the Newtonian the-
ory of perturbations to fix the value of both magnitudes. Finally,
Sect. 4.4 shows the numerical results.

4.1. The equation of motion of a collapsing spherical shell

Let us consider a spherical shell i enclosing a massMi, which
at the expanding parameter aI = a0/(1 + zI) has a radius ri(aI).
At a proper distance r′(aI) ≤ ri(aI), which is at an expanding
distance x′ = r′(aI)/aI from the center, the energy density of
non-relativistic matter can be expressed as

ρm(x′, aI) = ρ̄m(aI)[1 + δ(x′, aI)]. (16)

In Eq. (16), δ(x′, aI) is the density contrast at the expanding ra-
dius x′ and at expanding parameter aI, given by the linear theory
of perturbations. Hence, the mass,Mi, which is constant in the
collapse, is

Mi =
4πG
3c2

r3
i (aI)ρ̄m(aI)[1 + Δi(aI)]. (17)

In Eq. (17),

Δi(aI) =
3

[xi(aI)]3

∫ xi(aI )

0
δ(x′, aI)x′2dx′ (18)

is the average density contrast at aI, evaluated up to the expand-
ing radius of the shell, xi(aI) = ri(aI)/aI.

For a > aI, the evolution of the radius of the shell i, ri(a), is
obtained by solving the equation of motion

r̈i = − dφ
dri
, (19)
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where r̈i is the proper acceleration of the shell i and φ is the
gravitational potential. From the weak field approximation of
the Einstein equations (see, for example, Peebles 1980, Sect. 6,
p. 39), φ fulfills ∇2φ = 4πG

c2

[
(ρm + ρ̄γ + ρ̄Λ) + 3( p̄γ + p̄Λ)

]
,

where a background of non-relativistic matter (p̄m � ρ̄m), ra-
diation ( p̄γ = ρ̄γ/3) and the cosmological constant (p̄Λ = −ρ̄Λ)
has been assumed; hence, Eq. (19) reads as

r̈i = −G

r2
i

Mi − 4πG
3c2

[
(ρ̄γ + 3 p̄γ) + (ρ̄Λ + 3 p̄Λ)

]
ri. (20)

For each shell i having a massMi, Eq. (20) must be solved with
the boundary conditions at aI, which is, from the values of the
shell radius, ri(aI), and the proper velocity of the shell, ṙi(aI).
From Eq. (17),

ri(aI) =

[
3c2Mi

4πGρ̄m(aI)[1 + Δi(aI)]

]1/3

· (21)

With respect to the proper velocity of the mass shell at aI, it can
be expressed as

ṙi(aI) = H(aI)ri(aI) + vi(aI). (22)

In Eq. (22), the first term on the right is the velocity due to the
Hubble flow; and the second term, vi(aI), is the peculiar velocity
of the shell at aI, given by

vi(aI) = aI ẋi(aI). (23)

We denote by δg the growing solution of the linearized
Newtonian equation for the growth of matter perturbations (see
next subsection). It can be shown that for this δg, the peculiar
velocity of a shell i at the expanding parameter ai, is given by
(from, for example, Eqs. (14.6) and (14.2) from Peebles 1980,
Sect. 14)

vi(aI) = −1
3

fg(aI)H(aI)Δi(aI)ri(aI) (24)

where

fg(aI) =
aI

δg(aI)

dδg

da

∣∣∣∣∣
aI

· (25)

Let us come back to Eq. (20). Defining the radius of the shell for
any time as

ri(a) = Ai(a) ri(aI) = Ai(a) aIxi(aI), (26)

and taking derivatives with respect to a, Eq. (20) reads as

a2 ρ̄

ρ̄0
A′′i = −a A′i

[
ρ̄

ρ̄0
+

1
2

a
ρ̄′

ρ̄0

]
− 1

2A2
i

ρ̄m(aI)
ρ̄0

[1 + Δi(aI)]

− Ai

2

[
ρ̄γ + ρ̄Λ

ρ̄0
+ 3

p̄γ + p̄Λ
ρ̄0

]
· (27)

This Eq. (27) must be solved with the boundary conditions

Ai(aI) = 1, (28)

A′i(aI) =
1
aI

[
1 − 1

3
fg(aI)Δi(aI)

]
(29)

(see, Eqs. (21)–(25)).

4.2. The contrast density δ(x, aI)

It is assumed that, in the past, there were small deviations from
the homogeneous background of the Universe, which grew due
to gravitational instabilities. While such inhomogeneities are
small, their growth can be studied by the linear perturbation
theory. When linear theory fails, the evolution must be studied
by non-linear methods, such as that proposed in the previous
subsection.

As inhomogeneities lead to small perturbations of the
energy-momentum tensor and of the metric, the Einstein equa-
tions can be linearized. The result is a second-order equation.
Then, its solution can be expanded in terms of some mode func-
tions. For a flat universe, the mode functions are plane waves.
Hence, by using a Fourier transformation of the variables, the
evolution of each mode, characterized by a wave vector, k, can
be determined separately.

When the proper length of a mode at some expanding pa-
rameter, a, is greater than the Hubble length at that a, the
general relativistic perturbation theory is applied; that is, for a
mode λ = (2π)/k, such a theory must be applied if a < aλ,
where aλ fulfills

λ aλ =
c

H(aλ)
· (30)

Therefore, the evolution of that mode can be known from some
initial expanding parameter up to aλ. For a > aλ, the evolution
of the perturbation can be studied from the Newtonian theory.

In this subsection, we deal with non-relativistic matter,
which is slightly perturbed, from the cosmological background
in a region where the Newtonian approximation can be applied.

Defining the density contrast, δ(x, a), by ρm(x, a) =
ρ̄m(a)[1 + δ(x, a)] (see Eq. (16)), the linearized equation for
the growth of matter perturbations is then given by (see, for
example, Peebles 1980, Sect. 10, p. 49)

ρ̄

ρ̄0
a2 ∂

2δ

∂a2
+

[
3
ρ̄

ρ̄0
+

1
2

a
ρ̄0

dρ̄
da

]
a
∂δ

∂a
=

3
2
Ωm0

(
a
a0

)−3

δ. (31)

The only differentiations that appear in Eq. (31), are those with
respect to the expansion parameter, a. So we have denoted the
density contrast just by δ; that is, δ ≡ δ(a, x). In the same equa-
tion, ρ̄ is the total energy density of the background, which
we are assuming to be (see, for example, Padmanabhan 1995,
Sect. 2.4, p. 61)

ρ̄ = ρ̄m0

(a0

a

)3
+ ρ̄γ0

(a0

a

)4
+ ρ̄Λ. (32)

In Eq. (32): ρ̄m0 = ρ̄0Ωm0 = (3c2/8πG)Ωm0 H2
0 (see Eq. (13));

ρ̄γ0 = (π2/15)[(KBTγ0)4/(�c)3] (see, for example, Padmanabhan
1995, Sect. 3.2, p. 86), where KB is the Boltzmann constant
and Tγ0 = 2.75 K is the temperature of the background radiation
at present (see, for example, Padmanabhan 1995, Sect. 1.9, p. 35,
and references there in); and ρ̄Λ = ρ̄0ΩΛ = (3c2/8πG)ΩΛ H2

0 .
Thus,

ρ̄m0 = 2.298 × 10−9

(
Ωm0

0.27

) (
H0

71 km s−1 Mpc−1

)2

erg cm−3, (33)

ρ̄γ0 = 4.338 × 10−13 erg cm3, (34)

and

ρ̄Λ = 6.213 × 10−9

(
ΩΛ

0.73

) (
H0

71 km s−1 Mpc−1

)2

erg cm−3· (35)
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It should be said that the radiation term in Eq. (32) is only valid
for a > ae+e− , where ae+e− ≈ a0 (KBTγ0/me−c2) is the expansion
parameter at which e+e− annihilation takes place; which is, for

a
a0
>

ae+e−

a0
≈ 4.639 × 10−10. (36)

Equation (31) is a second order differential equation having two
linearly independent solutions: a growing solution, δg, and a de-
caying solution, δd. A general solution for a mode k, is a linear
superposition of both; that is, δk(a) = Ak δg(a) + Bk δd(a). The
constants Ak and Bk are fixed by matching at aλ, the Newtonian
solution to the growing solution of the general relativistic per-
turbation equation, which was valid when the mode was bigger
than the Hubble length (see, for example, Padmanabhan 1995,
Sect. 4).

In this study, we are interested in the non-linear evolution of
growing modes from zI = 1000. At this redshift, the mode hav-
ing a wavelength equal to the Hubble length is the mode labeled
by λmax with (see Eq. (30))

λmax a0 =

(
a0

aI

) (
c

H(aI)

)
≈ 2.356 × 102 Mpc (37)

(Eqs. (13) and (32)–(35) are used, and Ωm0 = 0.27 and ΩΛ =
0.73 have been assumed).

Thus, at aI, growing Newtonian modes λ < λmax fulfill

δk(aI) ≈ Ak δg(aI). (38)

In this work, we assume that the density contrast, δ(x, aI), can be
expressed as

δ(x, aI) =
δg(aI)

δg(a0)
D(x), (39)

where D(x) is the density field given by

D(x) =
1

(2π)3

∫
δk e−i k·x d3k, (40)

which considers all the λ modes. The δk’s are, therefore, the
Fourier components of the density field. Thus, the density field
is completely determined by the power spectrum, Pk = |δk | 2.
In this study, instead of dealing with D(x) given by Eq. (41),
we work with the average density field 〈D(x)〉. Section 4.3 is
devoted to this.

In this work, we are interested in the study of the non-linear
spherical collapse of Newtonian mass shells from aI. Therefore,
we only deal with shells that have sizes smaller than the Hubble
length at aI; that is, shells whose radii at aI, R(aI), fulfill

R(aI) < 1.178 × 102

(
aI

a0

)
Mpc, (41)

which enclose masses

M = 4πρ̄m0(aI)
3 c2

R(aI)3 < 2.585 × 1017M�. (42)

The growing solution of Eq. (31), assuming Eq. (32), must be
derived from an adequate boundary condition. This can be ob-
tained from the solution at the epoch where radiation dominates
the background energy densities, that is. at a� aeq, where

aeq

a0
=
ρ̄γ0

ρ̄m0
= 1.888 × 10−4

(
Ωm0

0.27

)−1 (
H0

71 km s−1 Mpc−1

)−2

. (43)

It is easy to show that this asymptotic growing solution
for ae+e− < a� aeq is given by

δg(a) ∝ 1 +
3
2

a
aeq
· (44)

Thus, we have found that the growing solution of Eq. (31) at the
expanding parameter aI fulfills

δg(aI)

δg(a0)
= 1.48 × 10−3, (45)

aI

δg(aI)

dδg

da

∣∣∣∣∣
aI

= 8.88 × 10−1. (46)

4.3. The density field D(x)

To evaluate Δi(aI) from Eq. (18), we need to know the profile
of the collapsing structure at aI. Such a profile is determined by
Eq. (39). The quotient δg(aI)/δg(a0) was already calculated in the
previous subsection (see (45)). In this subsection, we deal with
the second function appearing in (39), the density field, D(x).

In our study, the progenitors of clusters of galaxies are iden-
tified with certain peaks in the Gaussian postrecombination den-
sity field. The height of these peaks, D(x = 0), should be higher
than a certain threshold.

Bardeen et al. (1986; hereafter BBKS) studied the statistics
of the distribution of the density field around a peak in a linear
Gaussian field. In this work, the average density profile of peaks
proposed by Lilje & Lahav (1991; see Eq. (3.1)), based on the
work by BBKS, is assumed for 〈D(x)〉.

Thus, for a peak with a height

D(0) = νσ0, (47)

where

σ2
0 =

1
2π2

∫ ∞

0
Pkk2dk (48)

is the rms fluctuations of the density field, the adopted
expression for 〈D(x)〉 is

〈D(x)〉 = 1
2π2 σ0

∫ ∞

0
k2Pk

[
ν − γ2ν − γχ

1 − γ2
+
χR2
�k2

3γ(1 − γ2)

]

× sin kx
kx

dk. (49)

In Eq. (49),

R� =
√

3
σ1

σ2
, γ =

σ2
1

σ2σ0
(50)

with

σ2
i =

1
2π2

∫ ∞

0
Pkk2+2idk, (51)

and

χ =
3(1 − γ2) + (1.216 − 0.9γ4) e−γ/2(γν/2)2

[3(1 − γ2 + 0.45 + (γν/2)2]1/2 + γν/2
· (52)

The term 〈D(x)〉 in Eq. (49) is expressed as a superposi-
tion of modes, δk, with different wavenumbers, k = (2π)/λ,
where Pk =|δk | 2 is the power spectrum. As we are interested
in the collapse of CDM structures, we must deal with the CDM
power spectrum. It so happens that there is not a natural cutoff

A37, page 5 of 13



A&A 567, A37 (2014)

for high wavenumber in such a spectrum, so we have to make
use of a filter. In this work, we use a Gaussian filter. Thus,

Pk = P0 kT 2
k exp

[
−(Rfk)2

]
. (53)

In Eq. (53), k is proportional to the initial spectrum taken as
the Zeldovich spectrum that arises in inflation, and, T 2

k is the
transfer function for linear perturbations at later times. For CDM
(adiabatic fluctuations), T 2

k is given by the following numerical
fitting formulae of Bardeen et al. (1986; see Eq. (G3)):

T 2
k =

[
ln(1 + 2.34q)/(2.34q)

]2
[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]1/2
, (54)

where

q =

(
k

1 h Mpc−1

)
1
Γ
, (55)

and

h =

(
H0

100 km s−1 Mpc−1

)
· (56)

The parameter Γ was originally defined by Efstathiou et al.
(1992) for Ωm0 = 1 and ΩB0 = ρ̄B0/ρ̄0 = 0.03 (for baryons)
and generalized for Ωm0 � 1 by Sugiyama (1995); in this study,
we use the expression proposed by Sugiyama, given by

Γ = hΩm0 exp
[
−ΩB0(1 +

√
2h/Ωm0)

]
. (57)

From a combination of WMAP data with other finer scale CMB
experiments (ACBAR and CBI), 2dFGRS measurements, and
Lya forest data, it is found that (Spergel et al. 2003) h =
0.71+0.04

−0.03, Ωm0 = 0.27 ± 0.04, and ΩB0 = 0.044 ± 0.004.
With respect to the filtering scale, Rf , we take

Rf = 3 h−1 Mpc; (58)

this value was proposed by Lilje & Lahav (1991) for clusters of
galaxies. Thus, we obtain

R� = 4.26 h−1 Mpc, (59)

γ = 6.50 × 10−1. (60)

It can be seen that the values of R� and γ, given by Eqs. (59)
and (60) are a little different to those derived by Lilje & Lahav
(1991; see Table 1) for their CDM model. Such a discrepancy is
due to the value of Γ used: we use that given by Eq. (57), while
they used Γ = h.

In Eq. (53), P0 is the normalization factor which can be de-
termined from σ8 (the present rms density fluctuations in the
sphere with a radius R = 8 h−1 Mpc; see, for example, Peebles
1980, Sect. 26, p. 121), which is given by

σ2
8 =

∫ ∞

0
k2 P0kT 2

k

2π2

[
3(sin kR − kR cos kR)

(kR)3

]2

dk. (61)

The value of σ8 can be derived by fitting the theoretically pre-
dicted number density of clusters versus temperature (cumula-
tive temperature function) to the observed X-ray cluster abun-
dance as a function of temperature. In this work, we use the
fitting by Membrado & Aguerri (2004); i.e., we assume σ8 =

0.49Ω−0.22Ωm0−0.35
m0 , which forΩm0 = 0.27, givesσ8 = 0.84. Thus,

we obtain

P0 = 4.05 × 106 h−4 Mpc4. (62)

Here, the threshold, νT σ0, is fixed, as was done by Lilje & Lahav
(1991), who used results by BBKS. Thus, we impose that the
number density of peaks in the filtered density field, that are
higher than the threshold νT, equals the observed number den-
sity of Abell clusters in the universe, npk(νT) ≈ 10−5 h3 Mpc−3

(see, for example, Abell 1958; Bahcall 1988); that is,

npk(νT) =
∫ ∞

νT

Npk(ν) dν = 10−5 h3 Mpc−3, (63)

where Npk(ν) is the differential number density of peaks with
height ν, given by Eqs. (4.3)–(4.6) of the work by BBKS. Thus,

νT = 2.95. (64)

In this study, instead of working with clusters of different height
of their maxima, we deal with the average profile of density.
Hence, we use the average value of ν weighted by the number
density of peaks at a given height; that is,

〈ν〉 =
∫ ∞
νT
νNpk(ν) dν∫ ∞

νT
Npk(ν) dν

· (65)

Assuming νT = 2.95, we obtain

〈ν〉 = 3.32. (66)

Hence, using the results (60) and (66) in Eq. (52),

〈χ〉 = 8.45 × 10−1. (67)

Finally, once σ0 is known, the density field, 〈D(x)〉, is fully de-
termined. Our result for the rms fluctuations of the density field
is (see Eq. (48))

σ0 = 9.71 × 10−1. (68)

4.4. Numerical results

In this subsection, the non-linear collapse of Newtonian spher-
ical mass shells in a CDM average cluster has been calculated
from zI = 1000. This redshift corresponds to a time tI =
4.706 × 105 yr since the beginning of the Universe; this value
has been calculated from (see Eq. (13)):

t =
∫ a/a0

0

d(a′/a0)
(a′/a0) H(a′/a0)

, (69)

with a = aI = a0/(1 + zI) and assuming Eqs. (32)–(35),
with Ωm0 = 0.27 and H0 = 71 km s−1 Mpc−1. Equation (69)
gives an age of the universe (at a = a0) of 1.368 × 1010 yr.

We have assumed an average density profile with a height
at its maximum that is equal to that of the average peak (see
Eqs. (49), (53)–(60), (62), (66)–(68)). At zI = 1000, such a clus-
ter has an overdensity at its maximum given by (see Eqs. (39),
(45), (47) (66) and (68))

〈δ(x = 0, aI)〉 = δg(aI)

δg(a0)
〈ν〉σ0 = 4.77 × 10−3. (70)

Equation (27) has been integrated for shells enclosing different
masses. Equations (28) and (29) have been used as boundary
conditions. In Eq, (29), fg(aI) is given by Eq. (46). For each
mass shell i, we use 〈Δi(aI)〉 instead of taking the average den-
sity profile Δi(aI); that is, we have taken an average density con-
trast 〈δ(x, aI)〉 in Eq. (18) assuming the average density profile
cited above.
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At zI, a shell i, which encloses a massMi, has a proper ra-
dius given by Eq. (21) and a proper velocity given by Eqs. (22)
and (24). For our average cluster, we have seen that this proper
velocity should decrease until taking a value equal to zero at
some zTA

i if Mi < 8.13 × 1014M� (i.e., the shell should be
able to reach ṙi(zTA

i ) = 0). This redshift is known as the turn-
around (TA) redshift for the shell i. At zTA

i , the shell radius is
maximum and is named the turn-around radius, rTA

i . This red-
shift, zTA

i , corresponds to a time tTA
i given by Eq. (69) with a =

a0/(1 + zTA
I ). From zTA

i , the radius of the shell would begin to
decrease. Finally, the collapse of the shell would end when a
virialized structure with a virial radius, rVIR

i , is formed at zVIR
i

which fulfills tVIR
i ≈ 2 tTA

i . In this work, the virial radius is es-
timated as was performed by Membrado & Aguerri (2004); i.e.
by imposing the conservation of the energy of the shell i be-
tween zTA

i and zVIR
i . At the turn-around point, it is assumed that

the shell i encloses a mass sphere of constant density, and at the
virial redshift, a singular isothermal sphere is taken. At zTA

i , the
kinetic energy of the shell i is zero, while at zVIR

i , its kinetic en-
ergy can be calculated imposing the virial theorem under steady
conditions. Thus, the relation between rTA

i and rVIR
i fulfills

1 =
6
5

⎡⎢⎢⎢⎢⎣2 − ζ(z
TA
i )

ρTA
i

⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝ rVIR

i

rTA
i

⎞⎟⎟⎟⎟⎠ + 5
3

⎡⎢⎢⎢⎢⎣ζ(z
VIR
i )

ρTA
i

⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝ rVIR

i

rTA
i

⎞⎟⎟⎟⎟⎠
3

, (71)

where

ζ(z) = [ρ̄γ(z) + ρ̄Λ] + 3[ p̄γ(z) + p̄Λ], (72)

ρTA
i =

ρ̄m(zI)[1 + Δi(zI)]

A3
i (zTA

i )
· (73)

However, this does not occur for all shells. As said above, we
have found that there is a limiting shell enclosing a mass for our
average cluster

{MVIR}MAX ≈ 8.13 × 1014 M�, (74)

which is able to reach zero proper velocity; therefore,
{MVIR}MAX is the maximum mass of an average cluster that can
virialize. This is a consequence of the repulsive effect of the cos-
mological constant. If a shell encloses a massMi > {MVIR}MAX,
it reaches zero proper acceleration at certain redshift, zZA

i . The
radius of the shell at zZA

i is denoted by rZA
i . For z < zZA

i , the
proper velocity continues to be positive, and the shell keeps
expanding without reaching a turn-around radius.

The horizontal axis of Fig. 1 shows masses,M, enclosed by
shells of the average cluster. The lines in Fig. 1 show redshifts at
which these mass shells reach their turn-around points, zTA

M , their
virialization, zVIR

M , and their zero acceleration points, zZA
M .

Figure 1 indicates that shells enclosing masses greater
than 8.13 × 1014 M� will never virialize. The dashed line of this
figure shows redshifts at which those shells reach zero accelera-
tion; so those shells will move away from the cluster center with
a positive acceleration at smaller redshifts.

In this work, [MVIR]0 represents the mass of the virial-
ized core of the cluster at present; [MTA]0 is the mass en-
closed by the shell that is reaching the turn-around point at
present; and [MZA]0 corresponds to the mass inside the shell
having zero proper acceleration at present. From Fig. 1, we see
that [MVIR]0 = 3.47 × 1014 M�, [MTA]0 = 6.76 × 1014 M�,
and [MZA]0 = 1.10 × 1015 M�. Therefore, for the average clus-
ter, [MTA]0 = 1.95 [MVIR]0, and [MZA]0 = 1.63 [MTA]0.

Thus, shells enclosing masses fulfilling M ≤ [MVIR]0 are
virialized at present. Those with [MVIR]0 < M ≤ [MTA]0

-1

0

1

2

3

4

10 11 12 13 14 15 16 17

z

log [M/Msun]

zTA

zZA

zVIR

Fig. 1. Zero proper velocity redshift, zTA, zero proper acceleration red-
shift, zZA, and virialization redshift, zVIR, for masses enclosed by shells
of the average cluster.

have reached their turn-around radii and virializes in the future.
Shells fulfilling [MTA]0 < M ≤ {MVIR}MAX will reach a turn-
around radius in the future and will virialize; the shell enclos-
ing a mass equal to {MVIR}MAX will reach its turn-around point
at zTA
{MVIR}MAX

= −0.753, and will virialize at zVIR
{MVIR}MAX

= −0.973.

Those shells with {MVIR}MAX < M ≤ [MZA]0 show negative
proper accelerations at present but will fulfill r̈ = 0 in the fu-
ture and will never reach a turn-around radius. Finally, shells
enclosing masses fulfilling [MZA]0 < M show positive proper
acceleration and keep expanding.

Figure 1 indicates that the first shell, for our average cluster
model, that reached its turn-around radius did so at {zTA}MAX =
2.91. This figure also shows that the first shell that virialized did
so at redshift {zVIR}MAX = 1.43.

In Fig. 1, it is also shown that shells enclosing massesM�
{MVIR}MAX reached r̈ = 0 at redshifts close to the asymptotic
value {zZA}MAX = 0.755. This asymptotic redshift corresponds
to zZA

U at which ä = 0 (see Eq. (15), assuming Ωm0 = 0.27
and ΩΛ = 0.73). Hence, {zZA}MAX is the redshift at which the
repulsive effect of the cosmological constant equals the gravi-
tational strength due to the background non-relativistic matter.
According to what was also stated in Sect. 3, {zZA}MAX is the
redshift, zc, at which background non-relativistic matter reaches
the critical radius (see Eq. (12) withΩm0 = 0.27 andΩΛ = 0.73).

At each z, one can find one shell that virializes, a second shell
that reaches its turn-around radius, and a third one which is at its
zero acceleration point. In Fig. 2, we show the turn-around ra-
dius, [rTA]z, the zero acceleration radius, [rZA]z, and the virial ra-
dius, [rVIR]z, of these shells as a function of the redshift z. In this
figure, the maximum turn-around radius which the average clus-
ter is able to reach can be seen; its value is {rTA}MAX = 9.91 Mpc
and is reached in the future at z = zTA

{MVIR}MAX
= −0.753. In the

same figure, it is shown that the maximum virial radius of the
average cluster is {rVIR}MAX = 2.84 Mpc which will be reached
at z = zVIR

{MVIR}MAX
= −0.973.

Figure 2 shows that [rVIR]0 = 1.50 Mpc, [rTA]0 = 6.85 Mpc,
and [rZA]0 = 10.87 Mpc. [rVIR]0 is the radius of the mass shell
that virializes at present; [rTA]0 represents the radius of the shell
that reaches the turn-around point at present; and [rZA]0 indicates
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Fig. 2. For each redshift z: the continuous line represents the turn-
around radius of the shell of the average cluster that reaches its turn-
around point at that redshift; the dot-dashed line shows the virial radius
of the shell which virializes at z; finally, the dashed line indicates the
zero acceleration radius of the shell that reaches its zero acceleration
point at z.
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Fig. 3. Turn-around radius, rTA, zero proper acceleration radius, rZA, and
virial radius, rVIR, for masses enclosed by shells of the average cluster.

the radius of the shell with zero proper acceleration at present.
Figure 2 also shows {zTA}MAX and {zVIR}MAX.

It should also be said that similar figures to Figs. 1 and 2
are obtained when the filtering scale, Rf , is taken in the order of
galaxy scales or galaxy group scales. This means that the cos-
mological constant also imposes mass limits on galaxies and on
the virialized core of galaxy groups.

In Fig. 3, we show radii reached for shells enclosing different
massesM at their turn-around redshifts, rTA

M , when they virialize,
rVIR
M , and at their zero proper acceleration redshifts, rZA

M . In this
figure, rVIR

{MVIR}MAX
≡ {rVIR}MAX and rTA

{MVIR}MAX
≡ {rTA}MAX can

also be seen.
The numerical results shown in Figs. 1 and 2 for shells reach-

ing virialization or a turn-around point at different redshifts can

be fitted by analytical expressions. Here, we show some expres-
sions for redshifts 0 ≤ z ≤ z3/4 = 0.266, where Ωm(z3/4) =
(3/4)ΩΛ. Thus,
(

[MVIR]z

1014M�
)
≈ 1.03 (1 + z)1.76

(
[rVIR]z

1 Mpc

)3

, (75)

(
[MTA]z

1015M�
)
≈ 2.10 (1 + z)1.62

(
[rTA]z

10 Mpc

)3

· (76)

It should be said that the difference with respect to the numerical
results is smaller than 0.9% for Eq. (75) and smaller than 0.7%,
for (76).

The turn-around radius has often been used to estimate the
mass of a gravitationally bound system. Lynden-Bell (1981) and
Sandage (1986) derived an expression relating both magnitudes
at present; in the simplest case of spherical symmetry with Λ =
0, they showed that [rTA]0 depends only on the total mass of a
the cluster,MT, and on the age of the Universe, t0; i.e.,

MT =
π2

G
([rTA]0)3

t2
0

· (77)

Karanchentsev et al. (2002, 2006, 2009), Karanchentsev &
Kashibadze (2006), investigated the Local Group and other
proximate groups and obtained masses derived from the Lynden-
Bell and Sandage estimator. For each studied group, they calcu-
lated the quotient between its estimated mass and its virial mass;
the mean value of these quotients was 0.6 (see, for example,
Karanchentsev 2005). However, when the cosmological constant
was included in the calculations, such mean values approached
unity.

For a flat universe with Λ � 0, Eq. (77) reads as (see, for
example, Karachentsev & Novasona 2010):

MT =
π2

8G
([rTA]0)3 H2

0

f 2(Ωm0)
, (78)

where

f (Ωm0) =
1

1 −Ωm0
− Ωm0

2 (1 −Ωm0)3/2
arccosh

[
2
Ωm0

− 1

]
. (79)

Hence, assuming H0 = 71 kms−1 kpc−1 and Ωm0 = 0.27,
Eqs. (78) and (79) indicate that
( MT

1015M�

)
= 2.16

(
[rTA]0

10 Mpc

)3

· (80)

As can be seen, Eq. (76) at z = 0 and Eq. (80) are rather simi-
lar; the difference between both equations is smaller than 2.6%.
Thus,MT in Eq. (80) could correspond to [MTA]0.

Now, we can have a look at the results by Rines et al. (2003)
that relate to virial and turn-around data of the clusters stud-
ied in the CAIRNS (Cluster and Infall Region Nearby Survey)
project. When their data are averaged (the large clusters A539
and A1656, and the small cluster A194 are not considered)
and H0 = 71 km s−1 Mpc−1 is assumed, 〈rVIR〉 = 1.52 Mpc,
〈rTA〉 = 7.02 Mpc, 〈MVIR〉 = 4.15 × 1014M�, and 〈MTA〉 =
7.16 × 1014M� are obtained. These average values lead to
( 〈MVIR〉
1014M�

)
= 1.18

( 〈rVIR〉
1 Mpc

)3

, (81)

( 〈MTA〉
1015M�

)
= 2.07

( 〈rTA〉
10 Mpc

)3

· (82)
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Comparing Eqs. (75) at z = 0 and (81) for the virialized core,
we see that the difference is about 12%. However, for the turn-
around surface, such a difference is smaller than 1.5% (see
Eqs. (76) at z = 0 and (82)).

From Fig. 2, we have seen that, at each z, there could be
a shell reaching its turn-around point and another shell which
is virializing. The following expression relates the turn-around
radius of the shell which reaches the turn-around point at red-
shift z with the virial radius of the other shell that virializes at
the same z, for 0 ≤ z ≤ z3/4:

[rVIR]z ≈ 6.97 × 10−1 (1 + z)−0.57
[
[rTA]z−[rTA]{zVIR}MAX

]1/2
. (83)

In Eq. (83), [rTA]{zVIR}MAX
= 2.27 Mpc is the turn-around radius of

the shell that is reached at the greatest redshift at which a shell
can virialize, which is at {zVIR}MAX = 1.43 (see Fig. 1 or Fig. 2).

The term
[
[rTA]z − [rTA]{zVIR}MAX

]1/2
is used in Eq. (83) because at

z5/4 ≤ z ≤ {zVIR}MAX,

[rVIR]z ≈ 7.30 × 10−1 (1 + z)−0.72
[
[rTA]z−[rTA]{zVIR}MAX

]1/2
, (84)

where Ωm(z5/4) = (5/4)ΩΛ, so z5/4 = 0.501. As can be seen
from Eq. (84), [rVIR]{zVIR}MAX

= 0 (see Fig. 2). The difference
with respect to the numerical results is smaller than 0.2% for
Eq. (83) and smaller than 0.6% for (84).

Now, we could calculate the quotient between the radius of
the shell, for the average cluster, which reaches its turn-around
point at present and the radius of the shell which virializes at
present. Thus,[

rTA
]
0
= 4.57

[
rVIR

]
0
. (85)

With respect to the quotient between the mass enclosed by the
shell that reaches its turn-around point and the mass enclosed by
shell that virializes, we have found[
MTA

]
0
= 1.95

[
MVIR

]
0
. (86)

Equations (85) and (86) can be compared with the results by
Rines & Diaferio (2006), who used the Fourth Data Release of
the Sloan Digital Sky Survey (SDSS). Their results averaged
over all clusters were〈

rTA
〉
= 4.75

〈
rVIR

〉
, (87)

〈MTA〉 = 1.97 〈MVIR〉. (88)

The difference between Eq. (85) and (87) is about 4%, while it
is 1% between (86) and (88).

Hence, Eqs. (76) at z = 0 and (86) derived from our theoret-
ical average cluster agree with Eqs. (82) and (88) coming from
observational measurements, which are averaged over clusters.
However, Eq. (75) at z = 0 and (85), which deal with virial radii,
must only be considered as estimations; the difference between
these equations and (81) and (87) could be due to the simple
model we have used to determine the virial radii.

From Fig. 2, we know that at each z, there could be a shell
reaching its turn-around point and another shell that shows zero
proper acceleration. The relation between the turn-around radius
of the first shell and the zero proper acceleration radius of the
second can be shown using the following analytical expression,

[
rZA

]
z
≈ 1.88 × 101 Gz

[[
rTA

]
z
−

[
rTA

]
{zZA}MAX

]−1/2
, (89)

where

Gz =

{
9.71 × 10−1 (1 + z)−0.31, z5/4 ≤ z ≤ {zZA}MAX

1.00 (1+ z)−0.39, 0 ≤ z < z5/4
(90)

and [rTA]{zZA}MAX
= 3.89 Mpc.

Finally, it should also be said that the zero acceleration radii
of shells fulfillingM >MVIR

MAX show the behavior

[MZA]z =
Λc2

3G
([rZA]z)3, zTA

{MVIR}MAX
< z ≤ {zZA}MAX, (91)

which agrees with Eq. (7).

4.5. Comparison with the case Λ = 0

This subsection compares the model presented in previous sub-
sections with a similar model in which the cosmological constant
is zero in a flat universe. Hence, we assume ρ̄Λ = p̄Λ = 0.

With respect to the growing solution at the expanding pa-
rameter aI of the linearized Eq. (31) for the growth of matter
perturbations, we find

δg(aI)

δg(a0)
= 1.03 × 10−3, (92)

aI

δg(aI)

dδg

da

∣∣∣∣∣
aI

= 9.67 × 10−1. (93)

The spectral parameters, which fix the average density field,
〈D(x)〉, are found to be

R� = 3.85 h−1 Mpc, (94)

γ = 7.31 × 10−1, (95)

P0 = 4.86 × 104 h−4 Mpc4, (96)

νT = 3.20, (97)

〈ν〉 = 3.54, (98)

〈χ〉 = 6.06 × 10−1, (99)

σ0 = 6.21 × 10−1 (100)

(a filtering scale, Rf = 3h−1 Mpc, and H0 = 71 km s−1 Mpc−1

have been assumed).
As in the previous subsection, the non-linear collapse of

Newtonian spherical mass shells in an average cluster has been
studied from zI = 1000. At this redshift, this cluster has an over-
density at its maximum,

〈δ(x = 0, aI)〉 = δg(aI)

δg(a0)
〈ν〉σ0 = 2.26 × 10−3. (101)

Results of this model are shown in Figs. 4 and 5. In theses fig-
ures, wide lines represent results assuming Λ = 0 in a flat uni-
verse, while narrow lines are those obtained in Sect. 4.4 for our
ΛCDM model.

From Fig. 4, we see that, for Λ = 0, turn-around points are
later than z ≈ 1.06 and that virialization appears at redshifts
smaller than 0.3. These results could be in conflict with the ob-
served high redshift clusters (see, for example, Gladders & Yee
2005; Goto et al. 2008; Wen et al. 2009; Hao et al. 2010; Wen &
Han 2011).

In Fig. 4, it is also shown that, at present, [MVIR(Λ = 0)]0 =
1.51 × 1014 M� and [MTA(Λ = 0)]0 = 7.94 × 1014 M�. These
results indicate that

[MTA(Λ = 0)]0

[MVIR(Λ = 0)]0
= 5.26. (102)
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Fig. 4. Wide lines (Λ = 0 model): zero proper velocity redshift, zTA(Λ =
0), and virialization redshift, zVIR(Λ = 0), for masses enclosed by shells.
Narrow lines (ΛCDM model shown in Fig. 1): zTA, zZA, and zVIR for
masses enclosed by shells.
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Fig. 5. Wide lines (Λ = 0 model): the continuous line represents the
turn-around radius of the shell that reaches its turn-around point at red-
shift z; the dot-dashed line shows the virial radius of the shell that viri-
alizes at z. Narrow lines (ΛCDM model shown in Fig. 2): rTA, rZA, and
rVIR as a function of z.

The quotient expressed by Eq. (102) is 2.67 times greater than
that shown in Eq. (88) and derived from the work by Rines &
Diaferio (2006). According with this result, we can say that our
Λ = 0 model does not agree with observations.

At present, Fig. 5 indicates that [rVIR(Λ = 0)]0 = 0.943 Mpc
and [rTA(Λ = 0)]0 = 6.24 Mpc. Therefore,

[rTA(Λ = 0)]0

[rVIR(Λ = 0)]0 = 6.62.
(103)

As happened with Eq. (102), this quotient does not agree with
that derived from the work by Rines & Diaferio (2006) (see
Eq. (87)).

The following relations are also obtained from our Λ =
0 model:(

[MVIR(Λ = 0)]0

1014M�
)
= 1.80

(
[rVIR(Λ = 0)]0

1 Mpc

)3

, (104)

(
[MTA(Λ = 0)]0

1015M�

)
= 3.27

(
[rTA(Λ = 0)]0

10 Mpc

)3

· (105)

The relations shown by Eqs. (104) and (105) also differ from
those derived from the work by Rines et al. (2003), as expressed
by Eqs. (81) and (82). These results also confirm that Λ = 0
model disagrees with observations.

5. Discussion

The time integration of Eq. (20), when radiation terms are
neglected, is straightforward. Its value is

1
2

ṙ2
i −

G
ri
Mi +

2πG
3c2

[
ρ̄Λ + 3 p̄Λ

]
r2

i = Ki, (106)

where Ki is the total mechanical energy of the shell i. The pa-
rameter Ki is conserved in the evolution of the shell i. From
Eqs. (34) and (35), the radiation terms equal the cosmological
constant terms at redshift

1 + zγ=Λ = 1.094 × 101

(
ΩΛ

0.73

)1/4 (
H0

71 km s−1 Mpc−1

)1/2

· (107)

Hence, Eq. (106) can be used at redshifts z � zγ=Λ.
As was shown in the previous section, a shell i from our av-

erage cluster with a massMi > {MVIR}max ≈ 8.13 × 1014 M� is
not able to reach a turn-around point. Besides at some zZA

i , which
corresponds to a time tZA

i (see Eq. (69)), this shell i shows zero
proper acceleration. Figure 1 shows that shells reach their zero
proper acceleration radii at redshifts zZA < zZA

U = 0.755. Hence,
ρ̄γ(zZA)/ρ̄Λ < 6.62× 10−4 (ΩΛ = 0.73 and H0 = 71 km s−1 kpc−1

have been assumed). Thus, for these shells, Eq. (106) is valid,
and their evaluation at their corresponding zZA

i ’s could be used
to obtain their Ki’s. That is,

Ki =
1
2

(
ṙZA

i

)2 − G

rZA
i

Mi +
2πG
3c2

[
ρ̄Λ + 3 p̄Λ

]
(rZA

i )2. (108)

At times t > tZA
i , these shells acquire positive acceleration, and

at long enougth times, t � tZA
i , their radii are so large that the

matter gravitational term in Eq. (106) is negligible with respect
to the cosmological constant term. Hence, at t � tZA

i ,

ṙi =

(
8πGρΛ

3c2

)1/2

ri. (109)

Equation (109) was the argument given by Chernin et al. (2010)
to solve the Hubble-Sandage paradox on the scale of ∼10 Mpc
(Sandage 1986, 1999) observed that the local expansion was
similar to that due to the Hubble flow. In the case of a shell i,
its proper velocity at t � tZA

i is ṙi = HGC ri with HGC =

[(8πGρΛ)/(3c2)]1/2, while the velocity due to the Hubble flow
is Hri, H being the Hubble function at t.

However, the asymptotic behavior shown in Eq. (109) has
not been reached by any shell at present. To note this, we can
have a look at Eq. (106) and to our average cluster at present.
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At z = 0, shells with radii, ri(z = 0), greater than [rZA]0 =
10.87 Mpc have crossed their zero proper acceleration radii, rZA

i
(see Fig. 2), and show positive proper accelerations. These shells
enclose masses, Mi, greater than [MZA]0 = 1.10 × 1015M�.
Further shells are going to enclose larger masses (see Fig. 1).
Therefore, in Eq. (106), although the matter gravitational term is
diminished by the radii of farther shells, it is enlarged because
such shells also show larger masses.

From Eq. (106), the matter gravitational term of a shell i
is neglected with respect to its cosmological constant term at
redshift z which fulfills

ri(z) � 21/3

(
3c2

8π
Mi

ρ̄Λ

)1/3

= 21/3 rZA
i . (110)
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Fig. 8. v(z = 0)/r(z = 0) for shells as a function of their radii at present.
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Fig. 9. Proper velocity of shells at z = 0, v(0), and the current veloc-
ity due to the Hubble flux, H0r(0), as a function of their radii, r(0).
The dotted line is the best-fitting straight line to v(0) between 20 Mpc
and 40 Mpc (see the text).

Figure 6 shows proper radii at present, r(z = 0), and zero
proper acceleration radii, rZA, of shells that enclose different
masses, M. In Fig. 7, (r(0)/rTA) is shown for shells enclos-
ing different masses M. The curve in Fig. 7 indicates that the
relation (110) is not fulfilled at present, and therefore, the asymp-
totic behaviour given by Eq. (109) has not been reached by any
shell.

The radius at z = 0 of a shell i fulfilling Mi � [MZA]0
shows the asymptotic behavior

ri(0)→ 1.755 rZA
i . (111)

According to Fig. 2, zTA
i → zTA

U = 0.755; therefore, Eq. (111) tell
us that shells enclosing masses Mi � [MZA]0 tend to expand
with the universe at present, as was expected.
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Figure 8, shows quotients between proper velocities of shells
and their radii at present, v(0)/r(0), as a function of their present
radii, r(0). It can be seen that these quotients are not con-
stant. In our average cluster model, this could mean that the
Hubble-Sandage paradox could not be present. In Fig. 9, proper
velocities of shells at present, v(0), are shown as a function of
their radii, r(0); in the same figure velocities due to the Hubble
flux, H0r(0), are also represented. In this figure, proper ve-
locities beyond the zero proper acceleration radius at present,
[rZA]0 = 10.87 Mpc, can be compared with velocities due to the
Hubble flux. From about 20 Mpc up to 40 Mpc, in Fig. 9, we
can see that the relation between v(0) and r(0) is a straight line,
which does not cross the origin (v(0) = 0, r(0) = 0). Thus, while
velocities due to the Hubble flux behave as H0r, proper veloci-
ties from 20 up to 40 Mpc fulfill HCr + C with HC and C be-
ing constants (the best-fitting straight line to v(0) is achieved for
HC = 76.30 km s−1 Mpc−1 and C = −344.2 km s−1). Finally, we
should add that a similar behavior has been observed in mod-
els where the filtering scale Rf is taken of the order of galac-
tic scales or of galaxy group scales. So, the same conclusion
with respect to the Hubble-Sandage paradox is obtained for these
smaller systems.

6. Conclusions

1. The goal of this work has been to investigate the infall region
of CDM clusters, which are modeled by the attractive grav-
itational strength generated by matter and by the repulsive
effect exerted by the cosmological constant.

2. For this purpose, we have dealt with a spherical infall model.
Thus, the non-linear collapse of non-relativistic spherical
mass shells has been studied for an average cluster, where
a background of non-relativistic matter, radiation, and the
cosmological constant have been included.

3. In this study, we have found that each cluster has a maximum
mass which can virialize. In the case of the average cluster,
this mass is [MVIR]MAX = 8.13 × 1014M�. In the evolution
of shells enclosing massesM > [MVIR]MAX, the shells reach
zero proper acceleration at redshifts at which the attractive
and repulsive effects are balanced. At smaller redshifts, their
proper accelerations are positive, so they will never collapse.

4. Shells enclosing massesM� [MVIR]MAX reach zero proper
acceleration at redshifts which asymptotically tend to 0.755.
This asymptotic value coincides with the redshift at which
the repulsive effect of the cosmological constant equals
the gravitational strength due to the background of non-
relativistic matter (ä = 0).

5. Some results obtained for our average cluster at z = 0 can be
summarized as follows:
a) There is a shell that is virializing at present. It has a ra-

dius [rVIR]0 = 1.50 Mpc and encloses a mass [MVIR]0 =
3.47 × 1014M�; these values represent the mass and ra-
dius of the virialized core.

b) There is another shell whose proper velocity is equal
to zero. This shell presents [rTA]0 = 6.85 Mpc and
[MTA]0 = 6.76 × 1014M�. Thus, we have found that
[MTA]0 = 1.95 [MVIR]0 (it differs appreciably from the
case Λ = 0 in a flat universe: [MTA(Λ = 0)]0 =
5.26 [MVIR(Λ = 0)]0); this result agrees with that de-
rived by Rines & Diaferio (2006) averaging over all clus-
ters of the Fourth Data Release of the SDDS. The masses
and radii of the virialized core and of the zero proper
velocity shell of our average cluster at present are also

consistent with results by Rines et al. (2003) for clusters
studied in the CAIRNS project. It should be noted that
the infall region between these two shells shows negative
proper velocities.

c) A third shell with [rZA]0 = 10.87 Mpc and [MZA]0 =
1.10 × 1015M� shows null proper acceleration. Let us
again remember that the infall region between the zero
proper velocity shell and the zero proper acceleration
shell shows positive proper velocity and negative proper
acceleration. Nevertheless only shells enclosing masses
6.76 × 1014M� < M < 8.13 × 1014M� in this region
are able to virialize in the future. Shells enclosing masses
M > 8.13×1014M� reach a positive proper acceleration.
Currently, regions outside the zero proper acceleration
shell have positive acceleration.

6. Finally, at present (z = 0) and from approximately 20 Mpc
up to 40 Mpc (i.e., beyond the zero proper acceleration
shell), we must state that the relation between shell proper
velocities and their radii could be ajusted by a straight line.
This straight line differs from that of velocities due to the
Hubble flux, as shown in Fig. 9.
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