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Black phosphorus exhibits a high degree of band anisotropy. However, we find that its in-plane static
screening remains relatively isotropic for momenta relevant to elastic long-range scattering processes. On
the other hand, the collective electronic excitations in the system exhibit a strong anisotropy. Band
nonparabolicity, due to interband couplings, leads to a plasmon frequency which scales as nβ, where n is
the carrier concentration, and β < 1

2
. Screening and charge distribution in the out-of-plane direction are also

studied using a nonlinear Thomas-Fermi model.
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Introduction.—Black phosphorus (BP) is one of the
thermodynamically more stable phases of phosphorus, at
ambient temperature and pressure. It is a layered material,
with each layer forming a puckered surface due to sp3

hybridization. In its bulk crystalline form [1–5], BP is a
semiconductor with a direct band gap of about 0.3 eV with
measured Hall mobilities in n-and p-type samples
approaching 105 cm2=V s, and highly anisotropic electrical
and optical properties. Recently, experiments emerged also
on its multilayer form [6–13].
In this Letter, we examine the collective electronic

excitations of BP, and its electrostatic screening behavior
both along the in- and out-of-plane directions. We calculate
the dielectric function ϵðq;ωÞ, at finite frequency ω and
wave vector q, within the random phase approximation
(RPA), using an effective low-energy Hamiltonian [14].
The inherent anisotropy of screening is studied, and the
out-of-plane screening properties of multilayer BP flakes
are considered within a nonlinear Thomas-Fermi model.
The 2D plasmon modes show a highly anisotropic
dispersion, ωplðq;ωÞ, and we studied its scaling behavior
with doping. Lastly, we discuss the implications of our
results for basic electrical and light scattering experiments.
Hamiltonian.—BP has an orthorhombic crystal structure

consisting of puckered layers. The lattice constant in the out-
of-plane direction is about 10.7 Å, and the effective layer-to-
layer distance is half of this value [4]. In monolayer BP,
translational symmetry in the z direction is broken, and its
band structure has a direct energy gap at the Γ point instead
of the Z point in the bulk case. Based on k · p theory and
symmetry arguments, the in-plane electron dispersion
around the Γ point can be described by the following
low-energy Hamiltonian [14]:

H ¼
�
Ec þ ηck2x þ νck2y γkx þ βk2y

γkx þ βk2y Ev − ηvk2x − νvk2y

�
; ð1Þ

where ηc;v and νc;v are related to the effectivemasses, while γ
and β describe the effective couplings between the con-
duction and valence bands.Ec andEv are the energies of the
conduction and valence band edges. The energy gap for
monolayer BP has not been measured, but recent ab initio
calculation based on theGWmethod found an energy gap of
∼1.5–2 eV [15,16].
Unlike other layered materials such as graphene and the

transition metal dichalcogenides (TMDs), electrons in BP
are energetically highly dispersive along the out-of-plane
direction. Cyclotron resonance experiments on bulk BP
[17] found an out-of-plane effective mass considerably
smaller than that of TMDs [18]. For multilayer BP,
confinement in the out-of-plane z direction leads to
multiple subbands. The in-plane dispersion within each
subband j can be described by Eq. (1), where Ec;v are being
replaced with Ej

c;v. More explicitly, δEj
c is given by

j2ℏ2π2=2mczd2 þ δcðdÞ, where j labels the subband, d is
the thickness of the BP film, and mcz is the electron
effective mass along z. Analogous expressions apply also
for the hole case. The quantities δc;vðdÞ are chosen such that
it reproduces the energy gap of the BP film [15], of 2 and
0.3 eV in the monolayer and bulk limit, respectively. In
this work, we adopt an average of the experimental [17] and
theoretically [12,17] predicted quantization mass, i.e.,
mcz ≈ 0.2m0 and mvz ≈ 0.4m0.
The in-plane dispersion is mainly determined by the

parameters ηc;v, νc;v, and γ. These parameters are chosen
such that they yield the known anisotropic effective masses.
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In the bulk BP limit, we have mcx ¼ mvx ¼ 0.08m0,
mcy ¼ 0.7m0 and mvy ¼ 1.0m0 [4,17], and mcx ¼ mvx ≈
0.15m0 for monolayer BP [12]. Using this knowledge, we
arrive at the following parameter set: ηc;v ¼ ℏ2=0.4m0,
νc ¼ ℏ2=1.4m0, νv ¼ ℏ2=2.0m0, and γ ¼ 4a=π eVm. The
value of β is taken to be ≈2a2=π2 eV=m2 [12], where a ≈
2.23 Å and π=a is the width of the BZ in the x direction.
Dielectric function.—The dielectric function of an elec-

tron gas in the RPA can be written as

ϵðq;ωÞ ¼ κ þ vcðqÞΠðq;ωÞ; ð2Þ

where vcðqÞ ¼ e2=2ϵ0q is the 2D Coulomb interaction and
κ describes the effective dielectric constant of the two half-
spaces mediums, which for a common SiO2 substrate and
air is ∼2.5. Πðq;ωÞ is the 2D polarizability (i.e., the pair
bubble diagram) given by

Πðq;ωÞ ¼ −
gs

ð2πÞ2
X
ss0jj0

Z
dk

fsjk − fs0j0k0

Esjk − Es0j0k0 þ ℏωþ iη

× jhΦsjkjΦs0j0k0 ij2; ð3Þ

where k0 ¼ kþ q, fs; s0g ¼ �1 denote conduction and
valence bands, while fj; j0g are the subband indices
and gs ¼ 2 is the spin degeneracy. Esjk and Φsjk are the
eigenenergies and eigenfunctions after diagonalizing H.
fsjk ¼ fexp½ðEsjk − μÞ=kBT� þ 1g−1 is the Fermi distribu-
tion function, where μ is the chemical potential. Finite
damping can be modeled with the phenomenological
broadening term η. Allowed optical transitions between
these quantized subbands occur when ss0 ¼ �1 (i.e., intra-
and interband processes) and j ¼ j0. Otherwise the matrix
element h…i in Eq. (3) vanishes.
Screening in monolayer.—In the static limit, we general-

ize the well-known analytical form of the polarizability for
2D electron gas (2DEG) [19] to include anisotropy. Since
ω ¼ 0, we deal only with intraband processes. In the T → 0
and η → 0 limits, we have [20]

ΠðqÞ ¼ −
gs

ð2πÞ2
Z

kF

0

dk

�
1

Ekþq − Ek
−

1

Ek − Ek−q

�

¼ −
gsmd

π2ℏ2

Z
pF

0

dp
Z

2π

0

dθ
p

s2 − 4p2cos2θ
; ð4Þ

where we have made the transformation [21],

k →
1ffiffiffiffiffiffi
md

p Mð1=2Þp and q →
1ffiffiffiffiffiffi
md

p Mð1=2Þs; ð5Þ

whereM is the mass tensor with diagonal elements mx and
my, md is the 2D density-of-states mass given by ffiffiffiffiffiffiffiffiffiffiffiffimxmy

p ,
and pF ¼ ffiffiffiffiffiffiffiffiffiffiffi

2mdμ
p

=ℏ. After some algebra, we arrive at

ΠðqÞ ¼ g2Dℜ

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8μ=ℏ2

q2x=mx þ q2y=my

s #
ð6Þ

where g2D ¼ md=πℏ2 is the 2D density of states. We make
an interesting remark: for q ≤ 2jkF · q̂j, we see that ΠðqÞ
reduces to the familiar relation for the static polarization of
a 2DEG, ΠðqÞ ¼ g2D. Long-range potentials, such as those
induced by charged impurities, involve momenta q such
that q ≤ 2jkF · q̂j, so that screening will be isotropic, at
least in the zero temperature and disorder limits.
Figure 1(a) compares the static dielectric function

obtained numerically with the analytical model in
Eq. (6), with excellent agreement in the limits of the
model. ΠðqÞ has a kink at q ¼ 2jkF · q̂j. Figure 1(b)
illustrates how the kink migrates with a change in doping.
With increasing temperature and disorder, the kink is
smoothed out as illustrated in Figs. 1(c)–1(d), showing
obvious deviation from the analytical model. The otherwise
isotropic screening at small momenta now becomes aniso-
tropic. On the other hand, dynamical screening ϵðq;ωÞ in
BP exhibits strong directional dependence with q (see the
Supplemental Material [22]).
Plasmon and energy loss function.—The zeros of the

dynamical dielectric function ϵðq;ωÞ yield the excitation
spectrum of the plasmon modes of the electron gas. The
loss function, defined as Lðq;ωÞ ¼ −ℑ½1=ϵðq;ωÞ�, quan-
tifies the spectral weight of the plasmon mode, which
presents itself as a delta peak in the limit of zero damping.
In the long wavelength limit, i.e., q ≪ kF, these modes are
well described by classical Maxwell theory. We consider a
BP film sandwiched between two dielectric media, ϵ1 and
ϵ2. The bound modes, i.e., plasmons, are characterized by
an in-plane wave vector q pointing at an angle θ with
respect to x. The dispersion relation for the bound mode can
be obtained from the solution to the following equation:

ðȲs þMssÞðȲp þMppÞ −MpsMsp ¼ 0; ð7Þ
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FIG. 1 (color online). Static screening. (a)–(d) Dielectric func-
tion for monolayer BP in the static limit, for different conditions
as stated. Solid black lines are an analytical expression for ϵðq; 0Þ
at T → 0 K and η → 0 eV.
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where Ȳβ ¼Y1
βþY2

β (β ¼ s; p) is the total admittance, with
Yi
s¼Y0ðkzi=k0Þ and Yi

p ¼Y0ϵiðk0=kziÞ, and k2zi ¼ k20ϵi−q2,

k0 ¼ ω=c. c and Y0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
ϵ0=μ0

p
are the speed of light and

admittance of free space, respectively. The matrix elements
of M are expressed in terms of σjj, the diagonal compo-
nents of the 2D BP conductivity tensor,

Mss ¼ σxxsin2θ þ σyycos2θ;

Msp ¼ Mps ¼ ðσyy − σxxÞ sin θ cos θ;
Mpp ¼ σxxcos2θ þ σyysin2θ: ð8Þ

In the limits θ ¼ 0; π and σxx ¼ σyy, Eq. (7) reduces to

Ȳp þMpp ¼ 0: ð9Þ

In the nonretarded regime, i.e., q ≫ k0, hence kzi ≈ iq, we
obtain the “quasistatic” approximation,

−
σxxcos2θ þ σyysin2θ

ϵ0ω
¼ ϵ1

kz1
þ ϵ2
kz2

≈
2κ

iq
; ð10Þ

where κ ¼ ðϵ1 þ ϵ2Þ=2. For frequencies up to the midin-
frared, the conductivity can be approximated by the Drude
model,

σjjðωÞ ¼
iDj

πðωþ iη=ℏÞ ; Dj ¼ πe2
X
i

ni
mi

j
; ð11Þ

where Dj is the Drude weight and i denotes the subbands.
Within the model Hamiltonian, the in-plane electron
effective masses in vicinity to the Γ point are given by
the following expressions [14]:

mi
cx ¼

ℏ2

2γ2=Δi þ ηc
; mcy ¼

ℏ2

2νc
; ð12Þ

where Δi is the subband energy gap. Similar expressions
apply for the hole case. Note that in graphene,D ¼ μe2=ℏ2

instead. With Eqs. (10) and (11), we have the classical
plasmon dispersion along the j ¼ x; y directions, which
is ωpl;jðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðDj=2πϵ0κÞq
p

.
Plasmon in monolayer.—Figure 2(a) plots the RPA loss

function Lðq;ωÞ for momentum along the two main
crystallographic directions for monolayer BP, with an
electron doping of 1013 cm−2 and T ¼ 300 K. The plasmon
disperses differently due to their mass anisotropy, where the
smaller mass along x leads to higher resonance frequency.
Classical plasmon dispersion agrees well with the RPA
result in the long wavelength limit. Because of the energy
gap of 2 eV for monolayer BP, Landau damping occurs
preferentially via intraband processes. This occurs when
the plasmon enters the SP phase space, whose bounda-
ries are given by ℏω�

SPðqÞ ¼ Eð�kF þ qÞ − EðkFÞ. Our

calculation suggests that the plasmon along the y direction is
damped atmidinfrared frequencies,while the plasmon along
x persists up to the near infrared.With the assumed η in these
calculations, the plasmon figure of merit ℜ½q�=ℑ½q� can
approach ∼10.
Plasmon modes in layered materials [23–25] can also be

probed by Fourier transform infrared light scattering
experiments of nanostructures [26,27] or with infrared
nanomicroscopy techniques [28,29]. For example, nano-
structures exhibit prominent resonances in their extinction
spectra due to localized plasmons with an odd multiple of
the momentum q ∼ π=W where W can be the width of
nanoribbons, or the diameter of nanodisks. Figure 2(b)
shows Lðq;ωÞ for a different angular orientation of q for a
momentum corresponding to nanostructures of 100 nm in
size. Dashed lines are solutions of Eq. (7). The results
suggest polarization sensitive midinfrared plasmonic reso-
nances in the absorption spectra in BP nanostructures.
Plasmon in multilayers.—Multilayer BP might be

more interesting for plasmonics due to the higher carrier

(a)

(b)

FIG. 2 (color online). Energy loss and plasmon dispersion.
(a) Loss function, Lðq;ωÞ ¼ −ℑ½1=ϵðq;ωÞ�, calculated for
monolayer BP for electron doping of 1 × 1013 cm−2, for q along
the two crystal axes x (right) and y (left). We assumed T ¼ 300 K
and η ¼ 10 meV. Shaded regions are the Landau damping
regions, defined by the single particle phase space ℏω�

SPðqÞ as
described in text. (b) Polar intensity plot of Lðq;ωÞ for electron
doping of 1 × 1013 cm−2 and 5 × 1013 cm−2 under the same
conditions as (a), for specified q. The radial and azimuth
coordinates denote the frequency ω and the angular orientation
of q. Dashed lines are the plasmon solutions from Eq. (7).
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mobilities [7–9]. Figure 3 studies the scaling of plasmon
frequency (along x) with carrier concentration n. For
monolayer BP, we obtain the expected scaling relation
of ωpl ∝ n1=2, as in conventional 2DEGs. However, for
thicker samples, we found that ωpl ∝ nβ, with β < 1

2
instead. This deviation is due to the strong nonparabolicity
caused by interband coupling, particularly when the energy
gap of the BP film is ≪ γ2=ηc;v. Hence, nonparabolicity
effects are more prominent for thicker films. We also note
the general trend of increasing the Drude weight with
the film’s thickness due to the decreasing effective masses
(see the Supplemental Material [22]).
Screening and charge distribution in multilayers.—We

complete our study by considering the charge distribution
and the electrostatic screening in few-layer BP sheets. For
this aim we use a nonlinear Thomas-Fermi theory, which
has been shown to properly account for the screening
properties of graphite [30–32] and MoS2 [33]. We start by
considering a given charge transfer between the substrate
and the BP flakes, whose origin can be due to charge
impurities in the substrate or to the action of a gate voltage.
This charge transfer leads to a net surface-charge density
en0 while a layer below the substrate acquires a charge
of −en0; see the inset of Fig. 4(a). For a BP sample of
thickness d, the electrostatic potential VðzÞ and the carrier
distribution nðzÞ as a function of the distance from the
substrate z can be obtained from the energetic balance
between kinetic and interlayer capacitance terms, which
leads to the nonlinear differential equation [33]

d2fðzÞ
dz2

¼ 5

2
β⊥fðzÞ3=2; ð13Þ

where fðzÞ ¼ ½enðzÞ�2=3 and we have defined β⊥ ¼
ð4e2=5ϵ0κÞðgsd0md

ffiffiffiffiffiffi
mz

p
=6π2ℏ3Þ2=3, where d0 ≈ 1.07 nm

and κ ≈ 8.3 are the interlayer separation and dielectric

constant, respectively [4]. Using the boundary conditions
f0ð0Þ ¼ 5

2
β⊥en0 and f0ðdÞ ¼ 0, one can obtain the charge

density from the solution of the integral equation

Z
fðzÞ

fð0Þ

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f5=2 − f5=2ðdÞ

p ¼
ffiffiffiffiffiffiffiffi
2β⊥
d0

s
z: ð14Þ

On the other hand, the potential difference across a BP
sample of thickness d can be shown to be given by [33]

ΔVðdÞ ¼ 2e2

5ϵ0κβ
3=5
⊥

�
25d0e2n20

8

�
2=5 1 − rd

ð1 − r5=2d Þ2=5
; ð15Þ

where we have defined the dimensionless parameter
rd ¼ n2=3ðdÞ=n2=3ð0Þ. Although these analyses were for
the zero temperature limit, we do not expect relevant finite
temperature effects at these carrier densities [32].
The potential difference obtained from the above model is

shown, for different carrier concentrations, in Fig. 4(a) for a
n-doped sample (see the Supplemental Material for results
also on p-doped samples [22]). The screening of charged
impurities or the gate potential increases as the thickness of
the BP layer grows. The dependence ofΔVðdÞ on d suggests
an intermediate screening behavior between the strong
coupling limit of graphene, where the carriers concentrate
close to the interface [31] and theweak coupling regimewith
reduced screening properties that dominates the screening of
MoS2 [33]. Our results suggest that the gate will have
negligible effect, 10 nm, into the bulk of BP, consistent with
recent experiments onmultilayer BP transistors [9].We have
also calculated nðzÞ for a sample with a given thickness d
but different charge carrier concentrations n0 as shown in
Fig. 4(b). We observe a strong dependence of the screening
strength on n0. We infer a screening length of the order of the
interlayer spacing for σ0 ¼ 1013 cm−2, whereas for lower

FIG. 3 (color online). Plasmon scaling with carrier concen-
tration. Plasmon energies ωpl, as function of density n, calculated
for the monolayer and for a 20 nm BP thick film at a specified q
along x. Graphene plasmons are shown for comparison. Dashed
lines are from Eqs. (10) and (11).

(a) (b)

FIG. 4 (color online). Interlayer screening. (a) Potential differ-
ence ΔVðdÞ as a function of the thickness for an electron doped
sample, obtained from the Thomas-Fermi model. Inset shows a
sketch of the model. We show the results for different carrier
concentrations n0. (b) Normalized surface-charge distribution
nðzÞ induced in a 13 nm thick sample for different gate carrier
densities n0 as stated.
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concentrations, like 1011 cm−2, the screening length is an
order of magnitude larger.
Conclusions.—In conclusion, whereas we find a relatively

isotropic static screening, the band nonparabolicity leads to
highly anisotropic plasmons, whose resonance scales with
doping as nβ, where β < 1

2
. Furthermore, the modes dis-

persing along one of the crystallographic directions are long
lived, being Landau damped only for near infrared frequen-
cies. Finally, we find that the strength of the electric field
screening in BP flakes seem to be between the strong
coupling regime characteristic of graphene, and the weak
coupling regime of the TMD semiconductors, such as MoS2.
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