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Chapter 1

Introduction

The properties of the Lie algebroid structure have been investigated in the last
years and used in the field of mechanics where they are playing a relevant role as
they gather under the same formalism a variety of different kinds of mechanical
systems, see e.g. [35]. They have also been proved to be interesting in other
problems in control theory and in classical field theory, for which we refer the
reader to [42], [40].

The attention received by the Lie algebroid structure in different branches
of mathematics is due to the fact that the concept of Lie algebroid is a gen-
eralization of two important mathematical structures, Lie algebras on one side
and tangent bundle of a manifold on the other, and appear in a natural way in
the process of reduction of such structures. Then, in the field of physics, these
structures appear as generalizing the velocity phase space or simply when we
deliberately forget the tangent bundle structure of the velocity phase space as
happens when using the so-called quasi-coordinates. Moreover, the dual of a
Lie algebroid is endowed in a natural way with a Poisson structure, and such
structures are almost ubiquitous in physics.

The notion of Lie groupoid and Lie algebroid were introduced by Pradines in
his work [48], while an important reference for the context of our work is [56], as
Weinstein was the pioneer in introducing Hamiltonian dynamical systems on Lie
algebroids using the Poisson structure on the dual of a Lie algebroid. Some few
years later Lagrangian dynamics was introduced by Martinez [41] by extending
to the framework of Lie algebroids the usual symplectic formalism, and later
on the variational calculus on Lie algebroids developed in [43]. A particular
case of variational calculus on Lie algebroids was studied by Boucetta in [5],
where Riemannian metrics on Lie algebroids are introduced. This context of
Riemannian Lie algebroids will be the one we will work on.

In classical Riemannian geometry the variational vector field of a variation
of geodesics (solutions of dynamical systems), called the Jacobi vector field, sat-
isfies the so called Jacobi equation and has received a special attention. As a
reference for it we can mainly consider the books by Michor [46] and Do Carmo
[26]. We will study the generalization of the Jacobi field in the context of vari-
ations on Lie algebroids and more specifically on Riemannian Lie algebroids.
Use will be made of the machinery developed in [13] and [44] where the con-
cept of Ehresmann connection associated to a second order differential equation
(hereafter shortened assODE) is reminded and concepts like those of non-linear
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4 CHAPTER 1. INTRODUCTION

connection and Jacobi endomorphism associated to a SODE are introduced.

On the other hand we will analyze in this work a very useful theorem in
physics called the virial theorem, which is interesting for both constrained and
unconstrained systems whose configuration space is a manifold as it offers useful
relations coming from the fact that the time average of the action of the dynam-
ical vector field upon the virial function vanishes. In particular, for systems of
mechanical type, a relation between the time averages of the potential energy
and of the kinetic energy appears. This theorem was introduced by Clausius in
[19], and it has been shown in a recent work [7] that it can be generalized from
a configuration space R™ to an arbitrary differentiable manifold. Seeger in [49]
and more recently Papastavridis in [47] considered the problem of extending the
virial theorem to nonholonomic mechanics. Here we present a generalization to
the framework of Lie algebroids and illustrate the theory with several examples.

In summary, the objective of this work is the study of some applications of
the Lie algebroid theory in some concrete mathematical and physical problems
related to the matters included in the references mentioned before.

More specifically, our objective for the mathematical part is to generalize
some well known properties from Riemannian manifolds to the Lie algebroid
framework enlarging the previously considered results by Boucetta.

In the part concerning the physical applications we have centered our atten-
tion on the virial theorem, with the main objective of showing that it admits a
generalization to both unconstrained and nonholonomic mechanical systems on
Lie algebroids and to display some of its possible applications.

In order for our work to be more selfcontained we have included in Chapter
2 some preliminaries containing a short introduction to the structure of Lie
algebroid with the most relevant and useful information concerning our work,
like the concept of admissible curves, connection, prolongation of a Lie algebroid,
and including various illustrative examples. Moreover, the symplectic approach
to the classical mechanics and its generalization to the Lie algebroid structure is
reminded, as well as the variational formalism, defining the notion of morphism
and homotopy for Lie algebroids, and the first variation formulae of the energy
of a dynamical system as presented in [43]. Some basic information about
nonholonomic systems and on Killing and conformal vector fields associated to
a Riemannian metric is also presented.

In the third chapter we generalize the concept of Jacobi field for general
second-order differential equations on a manifold and on a Lie algebroid. We
look at a variational differential equation on a manifold from a ‘new perspective’,
we later apply it for the case of a SODE on a manifold, and we introduce the
corresponding concept of Jacobi field. Such vector fields satisfy the Jacobi
equation. The non-linear connection and the Jacobi endomorphism associated
to a SODE on a manifold will be used then to express the Jacobi equation for a
SODE on a manifold. We generalize theses objects for SODEs on Lie algebroids
and then the Jacobi equation for the Jacobi sections associated to a SODE on a
Lie algebroid.

Afterwards we present the definition of Riemannian metric on a Lie alge-
broid and consider the particular case of a SODE, and that of a geodesic spray
defined with the help of the Riemannian metric. We will use the first and the
second variational formulae of the energy functional on the Lie algebroid and
the theory developed in Chapter 3 for the Jacobi sections in order to analyze
some minimizing results in the Riemannian geometry on Lie algebroids related



to the conjugate points of the geodesic spray.

The virial theorem will be generalized in the last chapter for nonholonomic
systems on the tangent bundle and for unconstrained dynamical systems on Lie
algebroids in the context of Lie algebroids — i.e. the generalization of the virial
theorem to the framework of Lie algebroids is the main purpose.

We will begin the chapter by developing virial-like results for the particular
case of mechanical type Lagrangians, and then conformal Killing vector fields
will be shown to play a relevant role. For mechanical systems, L = T, — V,
finding infinitesimal symmetries of the metric, i.e. Killing fields, is relatively
easy. As it is well known, if such a vector field is also a symmetry of the potential
we are able to get a constant of the motion, which simplifies the problem, while
if the Killing vector field is not a symmetry of the potential the virial theorem
also provides relevant information, namely the average value of the derivative of
the potential vanishes. With more generality, for a homothetic or a conformal
Killing vector field the virial theorem allows us to establish relations between the
averages of the kinetic energy and those of certain derivatives of the potential.
We consider the case of affine virial functions corresponding to special vector
fields on the configuration manifold, as Killing, homothetic, or conformal vector
fields and present the expressions of the virial theorems obtained for these types
of virial functions. We will make use of quasi-coordinates as presented in [14]
to rewrite all these instances of the virial theorem.

Our next objective will be the analysis and generalization of some results
from [49] and [47] on the virial theorem for nonholonomic systems by using
the appropriate differential geometric tools of geometric mechanics. We will
follow the results in [7, 9] in which the virial theorem is understood in terms
of the time average of the Poisson bracket of the energy and a virial function
and we will apply it here by using the equivalent of the Poisson bracket for the
nonholonomic case, the so called nonholonomic bracket. We will do it in two
approaches: the Lagrange multipliers and the distributional approach method.

Finally, the extension of some of such results to the framework of mechan-
ics in Lie algebroids is carried out. The generalization of such results to the
framework of Lie algebroids is a plus, due to the variety of dynamical systems
that can be defined on Lie algebroids. For all these cases the time average of
the energy of systems will be thus available and we will explicitly write some of
them in a couple of examples.

Before proceeding, we mention that all objects considered in this work, as
manifolds, vector fields, tensors, etc are assumed to be of C*° class, unless
explicitly mentioned.
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Chapter 2

Preliminaries

2.1 A symplectic approximation to classical me-
chanics

The use of geometric methods in classical mechanics of last forty years [1, 2,
12, 23, 24], has been very useful to get a better understanding of different prob-
lems offering us new related questions and answers. The existence of constraints
forces us to replace affine spaces by differentiable manifolds, coordinates becom-
ing then a local concept. Differential equations are replaced by vector fields, a
global concept, in such a way that the integral curves of such vector fields are
the solutions of a system of differential equations in a coordinate system. Ge-
ometric structures that are compatible with the vector field responsible of the
dynamics are playing a relevant role. In particular we will fix next our attention
on symplectic structures, which provide a common geometric framework to deal
with both Hamiltonian and Lagrangian mechanics (in the regular case).

In this section we will shortly describe the geometrical approach to classical
mechanics making use of the theory of symplectic manifolds and Poisson bracket.
For more details we refer the reader to [1, 2, 12].

2.1.1 Hamiltonian approach

The configuration space @ of a classical system with n degrees of freedom is
a n-dimensional differentiable manifold, and if pr’ : R» = R, fori = 1,...,n,
denotes the projection on the i-th coordinate, then a local chart (U, ¢) of M
introduces local coordinates q° = pr’ o ¢. Such a chart is usually denoted
(U,q',...,q"). These coordinate charts of M have associated 2n-dimensional
local charts of the tangent bundle T'Q) and the cotangent bundle T*(Q and we
can consider the coordinate basis of X(U) usually denoted {9/d¢’ | j = 1,n}
and its dual basis for QY(U), {d¢’ | j = 1,n}. Then a vector in a point ¢ € U
is v = v/ (0/9¢’)|, and a covector is ¢ = p; (dg?)|,, with v/ = (dg’,v) and
p; = (€,0/9¢’) being the usual velocities and momenta.

The Hamiltonian approach to the classical mechanics can be given using a
canonical exact symplectic structure of the cotangent bundle T*(@Q, determined
by the canonical 1-form 6y on T*Q, called the Liouville 1-form. Its exterior
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8 CHAPTER 2. PRELIMINARIES

differential wg = —dfy, is a canonical symplectic form on T*Q, i.e. it is a
nondegenerate closed 2-form; non degeneracy means that for each point in M
the associated linear map &y : T,Q — T,Q defined by Wo(v) = wo(v,-), is
invertible. This bundle map over the identity extends to the set of sections of
both bundles, i.e. there exists a C°°(M)-linear map Qo : X(T*Q) — A'(T*Q)
given by Wo(X) = wo(X, ) which is invertible and provides an identification of
the set of vectors and the set of covectors at a point ¢ € @, and by extension,
between vector fields on T*@Q and 1-forms on T*Q.

In a coordinate chart adapted to to the structure of the cotangent bundle
T*Q), i.e. induced from a local chart on ) as indicated above, the canonical 1-
form has the local expression 8y = p;dq’, while wo = dg* Adp;. Given a function
H € C°°(T*Q) the unique solution of the symplectic equation ix,wo = dH is
a vector field Xy, called Hamiltonian vector field associated to H, which gives
the Hamiltonian dynamics of the system.

In adapted local coordinates the vector field X takes the expression:

_OH 9 9H 9

Xy = 2
T p; ¢ 8¢’ dp:’

and therefore its integral curves are solutions of the Hamiltonian equations

y OH
q‘ =

Ip;
_ m
bi = g

More generally we can consider a symplectic manifold (M,w), where w
is a symplectic form, i.e. a non degenerate closed 2-form. Darboux Theo-
rem asserts that M is of even dimension 2n and there exist local coordinates
(¢%,...,q", p1,...,pn) such that the local expression of w is like that of wy in
the cotangent bundle case, that therefore is but a particular case of symplec-
tic manifold. With full similarity, a Hamiltonian dynamical system is a triplet
(M,w, H), where (M, w) is a symplectic manifold and H € C*°(M). In particu-
lar, the triplet (T*Q,wo, H) is called a Hamiltonian dynamic system with wg the
canonical symplectic form on the differential manifold 7%@Q. Thus, the Hamil-
tonian formalism of the classical mechanics is a particular case of Hamiltonian
dynamical system, for M = T*R" together with its canonical symplectic form.
We will see next that the Lagrangian formalism (in the regular case) is another
particular case, and moreover more general symplectic manifolds appear when
doing reduction by constants of motion or symmetries.

The concept of Poisson bracket plays an important role in the Hamiltonian
formulation of the classical mechanics. A Poisson bracket on a differentiable
manifold M is a skew-symmetric R-bilinear map {-,-} : C®°(M) x C*°(M) —
C (M) that satisfies the Jacobi identity and the Leibniz rule. In particular,
when (M, w) is a symplectic manifold the Poisson bracket of two functions f, g €
C*(M) is a new function {f, g} defined by:

{f.9} = w(Xp, Xg) = df(Xy) = X, f,

where X; and X, are the Hamiltonian vector fields associated to the functions

foge C=(M).
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In the case of a Poisson bracket defined by a symplectic form, the Jacobi
identity follows as a consequence of the closedness of the symplectic form, and
it is nondegenerate in the sense that the unique functions f such that {f, g} =
0,Vg € C°°(M) are constant functions.

Moreover, it can be shown that [X, X,] = X4 4}

2.1.2 Lagrangian approach

Lagrangian mechanics is also a particular case of Hamiltonian dynamical system
on the tangent space of the configuration space (Q when the Lagrangian is regu-
lar, (TQ,wr, Er), but both the symplectic structure wy, and the energy function
L, which plays the role of Hamiltonian, depend on the Lagrangian function L.
The dynamical vector field I';, giving the dynamics is a second-order differential
equation vector field, whose definition is recalled in next paragraph.

More explicitly, recall that the tangent bundle 79 : TQ — @ is a vector
bundle and then there is a dilation vector field, here called Liouville vector
field, A € X(T'Q), generator of dilations along the fibers, given by

Af(av) = 7@,
for all (¢g,v) € TQ and f € C*°(T'Q). This vector field allows us to define an
energy function associated to the Lagrangian L by means of Ey, = AL — L.
The structure of the tangent bundle is characterized by the existence of an
additional object, the vertical endomorphism S : TTQ — VTQ, with local
expression in tangent bundle coordinates [23, 24]:

o .
= 5y ® dq*.
The Louville 1-form is defined by 8, = dL o S and we say that the Lagrangian
L is regular when the associated exact 2-form, called the Cartan 2-form, wy =
—d(dL o S), is non-degenerate and therefore is a symplectic form [23, 24]. In
this case the Lagrangian dynamics is given by the uniquely defined vector field
I'z, called Lagrangian vector field, satisfying ir, wr = dEr. Actually, one can
check that I';, is a second order differential equation vector field, which we
will abbreviate by SODE, i.e. S(I'r) = A, and that the projections on @ of
the integral curves of I'j satisfy the well-known second order Fuler-Lagrange
equations.

In order to get an intrinsic definition of S we start by defining the vertical
lift map. Given a vector v € T,Q the application ¥ : T,Q) — T, 7'Q defined by:

S

d
§'(w)f = 2 fo+tw)| _Vf e CX(TQ),

is called the vertical lift map. To any vector v € T,Q the application £ as-
sociates to every vector w € T,Q, the tangent vector to the curve t — v + tw
at t = 0. The element £”(w) is called the vertical lift of w to v and will be

sometimes denoted by wz Their local expressions are related by

.0
+— £ (w) = W' — .
§"(w) 907 | (g0

w=w—
0q*lq
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The vertical endomorphism S is then defined by S = £ o T'7g.The vertical lift
of a vector field in the base X = X%(q)0/dq" is

0
ovt’

Recall that given a (hyper-)regular Lagrangian in 7'Q) we can define a related
Hamiltonian formulation on 7*@ by means of the Legendre transformation. In
fact, if L € C*°(T'Q) we denote by L, : T,Q) — R the function L,(w) = L(g, w).
For every v € T,Q the application dL4(v) o0&V : T,QQ — R is linear and therefore
defines a 1-form. The vector bundle map FL : TQ — T*(Q defined by:

FL(g,v) = (g, dLq(v) 0 £").

is called Legendre transformation and allows to associate to every vector on a
point of @ an unique covector on the same point. The pullback of the canonical
symplectic form on T*(@ is such that FL*wy = wr.

From now on we assume that L is a regular Lagrangian, which means one
of the three equivalent conditions:

i) the fibre derivative (Legendre transformation) FL: TQ — T*Q is a local
diffeomorphism;

ii) the Lagrange 2-form wy, is a symplectic form;

iii) its fibre Hessian F2L = GF: TQ — T*Q ® T*Q is everywhere a nonde-
generate bilinear form. Given u,a,b € T,Q), the fibre Hessian of the Lagrangian

X' (g.0) = X'(q)

can also be expressed as GL(a,b) = wy (@, bvu), where a € T, TQ) is any vector
projecting to a, and bvu is the vertical lift of b on the point w.

In the hyper regular case of L being a global diffeomorphism, one can define
the uniquely defined Hamiltonian function H € C*(T*Q) by HoFL = E}, and
then, SFL*].—‘L = XH

We already defined the vertical lift, and now we will remember some basic
informations about the complete lift.

The complete lift of a vector field X € X(Q) with local expression X =
X'9/0x%, to be denoted X¢, is the vector field in TQ whose flow is T'¢;, where
¢y is the flow of the vector field X € X(Q). The local coordinate expression of
X°is

9Xi ,
e o 4.0) 5 = Xa)
for any second order differential equation vector field D.

Complete lifts are determined by the action on functions on T'Q that are
linear in the fibre coordinates and are associated to 1-forms as follows. For a 1-
form « on @, let & denote the associated linear function on T'Q given by a(v) =
(Qro(v)s V), for v € TQ. In local tangent bundle coordinates, if a = a;(q) dq’,
the function @ is @(q,v) = a;(g) v!. In particular, for an exact 1-form o = df
with f € C°°(Q), the associated linear function is dAf(q7v) = v{(df/0q"),, ie.
dAf looks like the total derivative of the function f, and we denote f= (5” , which
can also be obtained by f = £ D(Té f) for an arbitrary second order differential
equation vector field D. Given a vector field X on @ its complete lift X is the
only vector field on T'QQ which projects on X and satisfies

) : )
o " (DX*)(q,v)

Xc(qﬂ)):X’L(q) wv

Lxed=Lxa (2.1)
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for every 1-form « on Q. It is clear that the vertical components of X¢ are
determined by the above condition by simply considering as 1-form « each one

of 1-forms dgi. Then Lx(dg') = dX' = (9X'/d¢/)dg’, and & = Lx(dg) =
(0X'/0q7)v?, while the left hand side of the preceding relation is the corre-
sponding vertical component of X°¢.

Let us show that the complete lift satisfies such a relation. If ¢; is the flow
of X then the flow of X ¢ is T'¢,, so that for v € TQ, with ¢ = 7¢(v), we have

d .
7Tl = G {amg@o o To (o)),

= %<a¢t(q)vT¢t(v/)>\|t:0 = %«QZ)IO‘)%UHt:O
= ((£xa)gv) = Lxa(v).

(Lxea)(v)

In particular, for o = df we have Lx.f = (LXf)

A remarkable property to be used later on is that for a given vector field X €
X(Q), [X¢, D] is a vertical vector field in T'Q for any second order differential
equation vector field D, because X¢D(q') = D(X') = DX*(¢") = v*0X"/0q".
The preceding property (2.1) can also be used to give an intrinsic proof as
follows. Indeed, the action on basic functions is

L[D,Xc]('réf) = LDLXL(Téf) — LXLLD(Téf)
= Lp(rplxf) — Lxef = (Lxf) —Lxe f=0

from where it follows that [X¢, D] is vertical.

This property may be used to show that for any Lagrangian, if X is a vector
field on @ and X¢ its complete lift, then the function G defined by G = (0, X¢)
is such that L, G = Lx-L, that is,

TL(G) = X(L). (2.2)

In fact, as L is assumed to be regular the vector field I'y, satisfies L1, 0 =
dL and then (Lp, 0 — dL,X°) = 0. Using a well-known property of the Lie
derivative,

<LFL9L>XC> = Z’XCLFLOL = LFLZ.XCHL + i([XchL])el”
we have
LL((0p, X)) —(0r, 'L, X)) = (dL, X°) = 0.

But the Cartan 1-form 6, is a semi-basic 1-form and [X¢,T'] is a vertical
vector field because I'y, is a second order vector field and then (0, 'z, X¢]) = 0.
Therefore, ', ({01, X)) =T'1(G) = (dL, X°) = X°(L).

2.2 Nonholonomic systems

A constraint on a dynamic system is called holonomic if it only limits the possible
positions of the system and correspondingly the velocities by tangency velocities.
Otherwise constraints are said to be nonholonomic.
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In this section, we will recall some elements from the theory of dynamic
systems subjected to nonholonomic constraints on the tangent space, using both
Lagrange multipliers approach and a distributional approach.

The geometric approach of the unconstrained systems was extended to non-
holonomic mechanic systems, using the symplectic [15, 36], Hamiltonian [52]
and Lagrangian [33] approach and also by means of the almost-Poisson bracket
[16]. For symmetry and reduction of the dynamics we refer to [3, 17, 18].

2.2.1 Lagrange multipliers approach

We consider an n-dimensional manifold ), and its tangent bundle 7g9: TQ — Q.
We also consider a set of linear constraints which defines a vector subbundle D C
TQ of rank r, and which is called the constraint submanifold. The admissible
velocities are the elements of D, and a curve in @ is said to be admissible if its
velocity vectors take values in D. From the annihilator D° C T*Q of D, i.e.
the set of linear 1-forms vanishing on the elements of D, we construct the set
De C T*(TQ) defined by D° = {aoTrg € T*(TQ) | « € D°}. It is a vector
bundle over T'Q), whose fibre at a point v € T'Q), such that 7o (v) = ¢, is more
explicitly described as

@vg ={\ € T;(TQ) | there exists og € Dy, such that A\, = a, 0 Ty1g }.
(2.3)
Given a Lagrangian function L € C*°(TQ), we consider the nonholonomic
system defined by the Lagrangian L and the linear constraints given by the
vector subbundle D. The evolution of the nonholonomic system is determined
by the Lagrange—d’Alembert principle, which states that the dynamics of the
system is given by the integral curves (with initial condition in D) of the vector
field Ty € X(TQ)tangent to D satisfying the second-order condition and the
Lagrange—d’Alembert equation (see for instance [34])

(ir,.wr, — dEL)|p € Sec(D°) . (2.4)

In this expression wy, is the Cartan 2-form associated with L, defined by wy =
—dfy, as explained in Subsection 2.1.2.This equation above means that at every
point of D the 1-form ir , wr — dE takes value in the codistribution D°. This
value is the reaction force exerted by nonholonomic constraints, the constraint
forces.

From now on we assume that L is a regular Lagrangian, and, moreover, in
order to avoid unnecessary complications we will assume that the constrained
system is regular, in the sense that the equation (2.4) has a unique solution 'y},
tangent to D.

For the local description of the problem, we take local coordinates (z%) on
the base manifold @ and induced coordinates (z%,v") on T'Q. If we choose a local
basis of 1-forms {w? = w dx'} of the annihilator of the constraint distribution,
the elements of D° are of the form A = A4 w? and hence the local expression of
Lagrange-D’Alembert equations is
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Tt =wv

d 0L OL 4

Bl / 2.5
dovi  oni A (2:5)
wivi =0

i
Under our regularity assumption, these equations determine the values of A4
and hence define a unique second order differential equation.

In terms of the free dynamics, i.e. the I'y, solution of the unconstrained prob-
lem ir, wr, = dEL, the constrained dynamical vector field Iy, can be written in
the form

Fon =T'p + AaZa, (2.6)
where Z, are the vector fields given by iz, wy = —@?, with @4 = w4 o TT1q.
These vector fields are vertical, since @4 € D° are semibasic and the vertical

distribution is Lagrangian for wy,.
In local coordinates the vector field I'yy, is given by:

2
Fnh:'l)ia Wij<aL— k aL,—i—)\ij‘)

@—i_ 0z " Orkou (2.7)

0
avi ’
where W represents the inverse matrix entries of the matrix [92L/0v?0v’] and
the multipliers A4 are determined by

WijwfwlB)\A = —('Uivjawf/axi + Fiw?),

with F'* being the forces of the unconstrained system (the coefficients of 9/dv®
in the above expression with A4 = 0).

We notice that in practice the constrained dynamics I'y, and the vector
fields Z 4 are considered as vector fields defined on an open neighborhood of the
constraint submanifold D, but only their values on D are relevant.

2.2.2 Distributional approach
Regularity

As we said above, the nonholonomic system (L, D) is said to be regular if there
is a unique solution to Lagrange-d’Alembert equation. In the present context
‘uniqueness’ must be understood as follows: two SODE solutions are considered
equal if they coincide when restricted to D.

There are several equivalent ways to ensure regularity of the constrained
system. We define the subbundle 72D c TD — D by

TPD={VeTD |Tro(V)eD}. (2.8)

We also consider the restriction GEP of the fibre Hessian G to the distribution
D.

THEOREM 1: The following properties are equivalent:

1. The constrained Lagrangian system (L, D) is regular,
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2. Ker GI"P = {0}.
3. TTQ|p = TPD @ (TPD)L.

where (TPD)L denotes the orthogonal complement of 72D with respect to the
symplectic form wry,.

For the proof, see for instance [22] and references there in.

REMARK 1: In the case of a constrained mechanical system L = T, — V, the
tensor G* is given by G*[a](b,c) = gr(4)(b, c), so that it is positive definite at
every point. Thus the restriction to any subbundle D is also positive definite
and hence regular. Thus, nonholonomic mechanical systems are always regular.
o

The manifold 7D has a double vector bundle structure over D with the
projections 7rg|yop and T7g|yo . The rank of TP D is rank T?D = 2rank D.
By a SODE in D we mean a section I' of the vector bundle TPD such that
T1o(I'(v)) = v for every v € D. It follows that a SODE in D can be extended
(in a non unique way) to a SODE on T'Q) which is tangent to D, and conversely,
a SODE vector field on T'Q) which is tangent to D restricts to a SODE in D.

Projection to 7°D

As a consequence of the above Theorem 1 we get that if the constrained system
(L, D) is regular we can obtain the constrained dynamics by projection of the
free dynamics according to the decomposition given in item 3. Let us denote by
P and Q the complementary projectors defined by the decomposition T,TQ =
TPD @ (TPD)* for a € D, that is,

P T,TQ - T2D and  Qu: T.TQ — (TPD)*, forallacD.

Then, we have the following result.

THEOREM 2: Let (L, D) be a regular constrained Lagrangian system and let 'y,
be the solution of the free dynamics, i.e., ir,wr, = dEr. Then the solution of
the constrained dynamics is the SODE T',, obtained by: T'py = P(Tr|p).

For the proof, see [22] and references in there.

The distributional approach

A second consequence of Theorem 1 is that we can write Lagrange-d’Alembert
equations as symplectic equations entirely in terms of objects defined on the
manifold TPD. Indeed, since (L, D) is regular, from item (3) of Theorem 1, we
have that 7D is a symplectic subbundle of (TTQ,wy). Hence the restriction
Wl of wr, to TPD is a symplectic form on the vector bundle 72D (i.e. it is
a regular skew-symmetric bilinear form). We denote by dE;, the restriction of
dEr to TPD. Then, taking the restriction of Lagrange-d’Alembert equations
to 72D, we get the following equation

il—\nhwlﬂp = JEL? (2.9)

which uniquely determines the section I'yy,. Indeed, the unique solution I'yy
of the above equations is the solution of Lagrange-d’Alembert equations: if we
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denote by A the constraint force, we have for every u € TP D that
wr(Pan(a), u) — (dEL(a) ,u) = (A(a) , T1q(u) ) =0,

where we have taken into account that T'7g(u) € D and A(a) € D°.

This approach, the so called distributional approach, was initiated by Bocha-
rov and Vinogradov [53] and further developed by Sniatycki and coworkers [3,
25, 50].

The nonholonomic bracket

The symplectic section w™?P allows us to define an almost-Poisson bracket in
D which is known as the nonholonomic bracket. An almost-Poisson bracket on
a manifold P is a bracket {-, -} of functions on P which is R-bilinear, skew-
symmetric, a derivation in each argument with respect to the usual product of
functions but it does not necessarily satisfies the Jacobi identity.

For every function f € C*°(D) we consider the restriction df to TPD of
its differential df = df|yop € Sec((TPD)*). Since w™?P is regular, we have a
unique section Xy € Sec(TPD) such that i)gwa’D = df.
DEFINITION 1: The nonholonomic bracket of two functions f,g € C*°(D) is the
function {f, g}un € C*(D) given by

{f,g}on = WP (X, X,). (2.10)

Alternatively the nonholonomic bracket can be defined as follows. We first
notice that if f € C°(T'Q) is an extension to T'Q of f then X, = P(X;‘D). Let

f,g be two smooth functions on D and take arbitrary extensions f,g to TQ.
Let X 7 and Xy the associated Hamiltonian vector fields

inwL :df and iX§ wr, :dg
Then the nonholonomic bracket of f and g is

{f: 9}un = wr(P(XFlp), P(Xg|p)). (2.11)

Indeed, the result follows by noticing that if f is another extension of f, then
(X7— X}’)ID is a section of (TP D)L, and therefore the result does not depend
on the choice of extensions.

In what follows, the nonholonomic bracket of two functions on 7'Q) should
be understood as the nonholonomic bracket of their restrictions to D

As a consequence of the above we have the following result, which is funda-
mental for our purposes.

THEOREM 3: If f,g € C*°(D) then

{fvg}nh = ng = _ng‘ (212)

Moreover, for any function f € C*°(D) we have

f=A{f Er}un (2.13)
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Proor. If fand g are extensions of f and g, then at every point of D we have

{f,9}mn = wi(P(X7), P(Xp)) = wi (X, P(Xp)) = (df, P(X5)) = X, f,

where we have used that wL(Q(Xf),P(XE)) =0 and X; = p(Xf|®)' The
second statement follows from the first one by taking into account that I'n, =
Xg, - O

In particular, equation (2.13) implies the conservation of the energy (by the
skew-symmetric character of the nonholonomic bracket).

2.3 Riemannian structure

This section recalls some properties of Riemannian manifolds which will be used
in following chapters.

Let (Q, g) be a (pseudo-)Riemann manifold, i.e. g is a non-degenerate sym-
metric two times covariant tensor field on (). Nondegeneracy means that the
map g : TQ — T*Q from the tangent bundle 7 : TQ — Q to the cotangent
bundle 7o : T*Q — @, defined by (g(v),w) = g(v,w), where v,w € T,Q, is
regular. The map ¢ is a fibred map over the identity on @ and induces the
corresponding map between the spaces of sections of the tangent and cotangent
bundles, to be denoted by the same letter g : X(Q) — Q1(Q), ie. (G(X),Y) =

9(X.Y).
In local coordinates for @, (¢',...,q"), the expression for g is
. , o 0
= (5 dl d], 7 = Ny A o . 214
9=gij(q)dq" @dq’, gij 9<an aqj) (2.14)

Given a symmetric covariant 2-tensor field K in Q we denote by Tk €
C>*(TQ) the function

Tk(v) = %K(v,v), veTqQ.

This rule identifies symmetric covariant 2-tensor fields with quadratic homoge-
neous functions on the fibre coordinates. In particular when ¢ is a Riemann
structure in @,
1
Tg(’U) = 59(’0,1)), vE TQ7

is the kinetic energy defined by the metric. Later on, on Chapter 4 we will
consider the case of Lagrangians of a mechanical type, where in particular we
will consider the kinetic energy defined by the metric g.

DEFINITION 2: A linear connection on a differential manifold () is a mapping

V:X(Q) x X(Q) — X(Q)
which satisfies the following properties:
i) VixigyZ=fVxZ+gVyZ
i) Vx(Y+2)=VxY +VxZ
iii) Vx (fY) = X(f)Y + fVxY,
where X,Y, 7 € X(Q), and f,g € C(Q).
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DEFINITION 3: Let @@ be a differentiable manifold endowed with a linear con-
nection. There exists an unique correspondence which associates to each vector
DV

field along the differential curve ¢ : I — @, V', another vector field TR called
the covariant derivative of V' along the curve ¢, such that:

. DV+W) DV DW

) at . dt |t

df DV

.. D
ii) %(fv) = %V+fﬁ,

D
iii) IfV is induced by a vector field Y € X(Q), i.e. V(t) =Y (c(t)), then ov

a - VaY

A linear connection on a Riemann manifold (Q, g) is metric, or compatible
with the Riemann structure g, i.e. the parallel transport along any curve is an
isometry, if and only if

X(g(Y,2)) =9(VxY,Z) +g9(Y,VxZ), VX,Y,Z e X(Q). (2.15)

The main result is that there exists a unique torsion-free metric connection on
a Riemann manifold (@, g), called Levi-Civita connection, which is given by
Koszul formula:

29(VxY,2) = X9V, Z2)+Yg(Z,X)—-Zg(X,Y)

— (X, [V, 2)) + g(Y,[Z. X)) + 9(Z.[X,Y)). (2.16)

In particular, when a coordinate chart is considered, the Christoffel symbols of
the second kind, I‘é- «» defined by

d .0
Vo () = Do

are given by

(0= 50" (@ + e - W) ean)

where g% are the inverse matrix entries of the Riemann structure g.
Then, the linear connection is given by
oY’k

—xi (2 L yirk
VyY =X <aqz‘ +Y I‘”(q)>

0
g~
and correspondingly,

Vxa= Xk <g(;’z — ;k> dqj.

Another remarkable relation is that if « is the 1-form o = g(X), where
X € X(Q), then, using that the relation Vz{(,Y) = (Vza,Y) + (o, VzY), for
any two vector fields Y, Z € X(Q), can be rewritten as

Z(9(X,Y)) = (Vza,Y) + g(X,V2Y),

and having in mind the property of the compatibility of the connection with the
metric, we see that
(Vza,Y)=g(VzX,Y). (2.18)
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2.4 Killing and conformal vector fields

A diffeomorphism F': QQ — @ induces a new (pseudo-) Riemann structure F*g
on . Such a transformation F is called a conformal symmetry when there
exists a function f € C*°(Q) such that F*g = fg¢g. In particular when f is a
constant (different from one) F is said to be a (proper) homothethy and, finally,
when F*g = g, the map F' is called isometry.

In the infinitesimal approach we say that a vector field X € X(Q) is either
a conformal, a homothetic, or a Killing vector field, when its flow ¢; is made of
conformal maps, homothethies or isometries, respectively:

conformal vector field:  Lxg=fg, f€C™(Q),
homothetic vector field: Lxg = Ag, AeR,
Killing vector field : Lxg=0.

Proper conformal vector fields are those vector fields for which the conformal
factor f is non constant and similarly a proper homothetic vector field is when
A # 0. Using the well known property £Lx oLy —Ly oLy = L[x y] one sees that
the set of conformal vector fields is a Lie algebra and those of homothetic and
Killing vector fields are subalgebras. For more details see e.g. [30, 31, 37, 51].

Let us see in local coordinates, the condition of a vector fields to be Killing
with respect to the Riemannian metric g. Given a vector field on @,

; 0
X = Xi(g) 2 € X(Q), (2.19)
oq*
the Lie derivative with respect to the vector field X of the metric tensor field g
is
99ij . - X’
_ k 1) 7
Lxg=X o dq" ®@ dg’ + gi; <3qk

)¢
Oqk

dg* © dg/ + ==—dq' ® qu) 7

or using the symmetry property of the metric tensor field,

09 ; oxk oxk ; -
P22y gk ——— + gjk —— | dq¢* @ d¢? 2.20
gt Ik gr Tk an> q' ®dg’, (2.20)

Lxg: <X

and then the condition for X to be a Killing vector field, i.e. £Lxg = 0, is written
in the above mentioned local coordinates as
(Xk 8gij an an

Lo i % J o
8qk +gzk 8qj +ggk 8qz ) dq ®dq =0.

Therefore, the set of conditions for the vector field X € X(Q) given by (2.19)
to be a Killing symmetry are:

agij an 8Xk o .
g* +gik87qj+gjk7—0, ,j=1,...,n. (2.21)

X* :
aqt

Next, we want to express the condition for a vector field to be Killing with
respect to a Riemannian structure, i.e. (2.21), in terms of the Levi-Cevita con-
nection. This condition £xg = 0, can be written in an intrinsic way as the con-
dition for the covariant derivative of the vector field X to be a skew-symmetric
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endomorphism with respect to the metric g, that is (see e.g. Proposition 4.10
of [54]), for every Y, Z € X(Q),

9(VyX,Z)+¢g(Y,VzX)=0. (2.22)

Next, we prove the following relation concerning the kinetic energy and the
Killing vector fields defined by a Riemannian structure are recalled, that we will
use later on for establishing the virial theorem for a Killing vector field:

XTy =T g (2.23)
In fact,

(L) 0.0) = 3 (X T2 )07+ 05(0) G )09+ 05 (0) G )0

.. k k o
- % ( X*(q) ?)ng (q) + grj(q) %(Q) + gir(q) 88); (q)) vivd

and therefore, according to (2.20), the relation (2.23) follows. This relation may
also be proved intrinsically by using the definitions of Lie derivative and of T
mentioned earlier in the text: for all v € TQ,

XTy(v) = %Tg o T¢t(v)|t20 = % <;g(T¢t(v),T¢t(v))>l B

Ld,
2dt
Consequently, X € X(Q) is a Killing vector field for the Riemann structure

g if and only if X¢ € X(T'Q) is a symmetry for the corresponding kinetic energy,
i.e. the conditions for X¢ to be a symmetry of T, are given by (2.21).

59)(0,0)] o = 5(£x9)(0,0) = Te g0, 0).

2.5 Lie algebroids

In this section, we introduce the structure of Lie algebroid, and after exemplify-
ing it, we define some other related notions which will be useful in what follows.
For details about it and its importance we refer to [39].

DEFINITION 4: A Lie algebroid A over a smooth manifold M is a vector bundle
7 : A — M with a real Lie algebra structure on the C*°(M)-module of sec-
tions (Sec(A), [-,-]) and with a vector bundle homomorphism, called the anchor
map, p : A — TM such that if we also denote by p : Sec(A) — X(M) the
homomorphism of C*°(M)-modules induced by it, the following Leibniz rule
holds:

(01, foa] = flo1,02] + (p(01) f)oz, (2.24)

Voi,09 € Sec(A), Vf € C®(M).
It can be shown, by using the properties of the Lie bracket [-,-] and the
compatibility condition (2.24), that the induced map p : Sec(4) — X(M) is a

Lie algebra homomorphism, that is, that is, it satisfies:

ploi, o2] = [p(o1), p(o2)] M-
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Local coordinates on A: In what follows we will assume that A is finite
dimensional, and we will denote the dimension of the base manifold and of the
fibres A, = 77 (p), p € M, by: dimM = n,dimA, = m,Vp € M. Then
take a local coordinate system (z?) i=T7» on the base manifold and a local basis
{ea | =1,...,m}, of sections of A. This determines a local coordinate system
(%, y*) on A.

In this coordinate system, the functions p, and Cf§, such that:

i a
plea) = pg Eys and leasep] = Clg ey

determine locally the anchor and the bracket, and are called structure functions.
They contain the local information of the Lie algebroid.
The structure functions satisfy the following relations:

. 8/);3 i 8pfl i ; aCE )
P~ =, wd Y S anas] o

cyclic(e,8,7)

which are called the structure equations of the Lie algebroid.

The local structure of a Lie algebroid is described by the following theorem:

THEOREM 4: (Local splitting theorem). Let T : A — M be a Lie algebroid and
m € M a point where py has rank q. Then, there exists a neighborhood U of
m, a coordinate system in U, (x1,...,%q,Z1,...,%n—q) and a basis of sections
{e1,...,em} of the vector bundle A over U such that:

0
p(el) 8:1:1 ) ? » 45
p(eZ) = pzaij]? ZZQ+1am7
where pZ € C*°(U) are smooth functions depending on the coordinates Z1, . .., Tn—q

and vanishing at m, i.e. pg = pg(g‘vs) and p{(m) =0, with s =1, (n — q).

From the Local splitting theorem, it can be deduced that the image of the an-
chor map, Im p, defines a smooth integrable generalized distribution on M. The

corresponding foliation is called the characteristic foliation of the Lie algebroid
A.
In what follows, we will denote by L the leaves of the characteristic foliation.

Examples

1. Lie algebra: A Lie algebra g can be seen as a Lie algebroid over a one point
space M = {p}, 7 : g = M with the anchor map p being identically zero.

2. Standard Lie algebroid: The tangent bundle of a manifold M, 7 : TM —
M is a Lie algebroid, where the anchor map is the identity map p = Idp,.
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The linear space of sections for 7 is that of the vector fields X(M), and the Lie
bracket is just the usual Lie bracket defined on X(M).

3. Regular distribution: Let F be a regular foliation of a manifold M and
let 79 : TF — M be the tangent bundle to the foliation. Then this vector
bundle can be seen as a Lie algebroid with anchor map the canonical inclusion
py : TF — TM and with the Lie bracket on its sections, coming from the
restriction of the standard Lie bracket on X(M) to Sec(TTF).

That is, regular foliations can be thought as Lie algebroids with injective
map.

REMARK 2: Notice that, in general, given a Lie algebroid 7 : A — M whose
anchor map is injective, then its image Im p C T'M is an involutive subbundle,
i.e. a constant rank smooth distribution, which is closed for the usual Lie
bracket, and so M is a foliation. o

4. Action Lie algebroid: Consider an action of a Lie algebra g on a differ-
entiable manifold M, i.e. there is a Lie algebra homomorphism ¥ : g — X(M).
The the trivial vector bundle A = M x g — M admits a Lie algebroid structure
as follows: the anchor map p : A — TM is given by p(z,v) = ¥ (v)|, € T, M,
while the Lie bracket on the space of sections of A is:

[v, w](z) = [v(z), w(@)lg + ¥(v(z))w]e = V(w(@))v]e, Ve € M,

where we have identified sections of M x g with g—valued functions.

5. Atiyah algebroid: Let G be a Lie group and 7 : P — M be a principal
G—bundle. Let ® : G x P — P the transitive free action of G on P and
T® : GXxTP — TP the corresponding tangent action of G on T'P. The quotient
vector bundle A(P) := TP/G — M, can be endowed with a Lie algebroid
structure by defining:

e The anchor map is the map induced by T'w, i.e. p([v]) = Tw(v), which is
well defined.

e The Lie bracket on Sec(A(P)) is the one induced by the Lie bracket on
G-invariant (under the action of ®) vector fields. Here we use the one-
to-one correspondence between sections of A(P) and G-invariant vector
fields (under the action of ®).

With this Lie algebroid structure, A(P) over M is called the Atiyah algebroid
associated to the principal G-bundle 7 : P — M.

6. Cotangent Lie Algebroid of a Poisson Manifold:
A Poisson structure on M is a Lie bracket {-,-} on C°°(M) such that:

{f,gh} ={f,gth+{f h}g, Vf,g,h € C(M).

Equivalently, a Poisson structure on M is given by a Poisson bivector,
Il € Sec(A\>TM), ie. which satisfies [II,II]gy = 0, where [, ]gn denotes
the Schouten-Nijenhuis bracket.

The relation between II and {-,-} is given by:

{fs 9} = 1(df, dg),
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where f,g € C>*(M).

To any Poisson manifold (M, II) it can be associated a Lie algebroid struc-
ture on 7w : T*M — M called the cotangent Lie algebroid of the Poisson man-
ifold (M,I). The anchor is p = ¥ : T*M — TM defined by: p(a)(8) =
(e, 8),Va, 8 € T*M and the Lie bracket on sections of A = T*M, is defined
as the Koszul bracket:

[O‘>6] = LH#QB - LH#Ba - d(H(O{, 6))7 Va7ﬁ € SeC(T*M)v
where is the unique bracket on Sec(T*M) such that [df,dg] = d{f, g}.

7. The Lie algebroid of a Lie groupoid:

Very much like in Lie group theory, where every Lie group has associated a
Lie algebra, every Lie groupoid has an associated Lie algebroid.

For a Lie groupoid § = M, with source map «, target map [ and unity
section ¢, it can be associated a Lie algebroid 7: AG — M as follows. At
each point x € M, the fibre A, S is the vector space Ker T, a and the anchor
map p on A.,)G is identified with the restriction of T ;)8 at KerT,(,a. It
is easy to prove that there exists a bijection between Sec(AG) and the set of
left-invariant (resp., right-invariant) vector fields on §. If X is a section of T,
the corresponding left-invariant vector field on G will be denoted X, where

X"(g) = Te(a9))Lg(Xp(9))
for g € G. The Lie bracket of the Lie algebroid structure is defined by

[X,Y]" = [X", Y1,
for X, Y € Sec(AS) and the anchor map p(X)(z) = (Tr () 3) X (7).

Exterior differential operator on A

As indicated above a Lie algebroid structure is a generalization of the tangent
bundle structure over M. Sections of the vector bundle play the role of vector
fields. Correspondingly sections of the dual bundle will correspond to differ-
ential 1-forms for M and similarly what corresponds to p-forms on A are the
elements of A\"(A*) = Sec((A*)"? — M), which can be called p-forms for the
Lie algebroid. Moreover, the remarkable fact is that because of the properties
a Lie algebroid one can define an exterior differential operator on the space of
sections of the bundle AP(A*), taking values in AP*'(A*). It is defined by:

o if f: M — R then df,, € A}, is defind by: (dfm, ,a) = p(a)f,Va € A,
o if we AP(A*), then dw € NPT (A*) is given by

P

dw(o,01,...,00) = > (=1)'p(0:)(w(o0, ..., G, ..., 0p))

=0
+ Z(_1)2+jw([givgj]a0-07"'76'\147"'70’._\73"'70'[))7
1<J

for og,...,0p € Sec(A).
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In local coordinates defined by a coordinate set in M and a local basis of
sections of A, {e, | « = 1, m}, the differential d is determined by:

. . 1
dr' = ple and  de’ = —iC’gﬁeo‘ AéP,
where {e® | « = 1,m} is the corresponding dual basis of sections of A*. Notice
that d is a cohomology operator, that is, d*> = 0 and that the structural equations
are exactly: d?z’ =0 and d?e® = 0.
In particular, the differential of a function f : M — R has the local expres-
sion:

of
ozt P

On the other side, a section w of A*, say w = wye®, has associated a linear
function @ in A given by:

[N
o€

df =

(0%

&(z,y) = wa(w) Y.

REMARK 3: The existence of a Lie algebroid structure is equivalent to the ex-
istence of a exterior differential operator d on A”(A), because both the anchor
map and the structure constants can be derived from it. o

DEFINITION 5: The Lie derivative with respect to a section o € Sec(A) is the
operator d, : /\k A* — /\k A* given by dy =iy, 0d+doi,.

Admissible vectors. Admissible curves

In a Lie algebroid, the notion of natural prolongation is replaced by the notion
of admissible curve.

DEFINITION 6: i) A tangent vector X at a point a on a Lie algebroid T : A — M
with anchor p : A — T M is called admissible if the tangent vector to M obtained
by projecting X under Tt : TA — TM is equal to the tangent vector to M,
pla).

ii) A curve « : [tg,t1] — A Is said to be admissible if 4(t) = p(«(t)), where
~(t) = T(«(t)) is the base curve.

In local coordinates, if a(t) = (2%(t),y%(t)) is a curve in A, the curve is
admissible if its coordinates are related by: @* = pi y®.

DEFINITION 7: Let o be an admissible curve on A. A smooth curve 8 : [0,1] — A
that has the same projection on M as « is called an a— section.

We will denote by Sec,(A) the set of a-sections.

Let us give some examples of admissible curves, considering two particular
cases of Lie algebroids:
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EXAMPLE 1: Let 7 : A — M be a Lie algebroid whose anchor map p is injective.
In this case A can be thought of as an integrable subbundle of the tangent
bundle.
Let us determine the admissible curves in this case: Let be (z1,...,x,) be
a local coordinate system on an open set U C M, {e, | « = 1,...,m} a local
basis of sections over U, and denote by y™ the corresponding linear coordinates.
A curve in A, a(t) = y*(t)eq, is an admissible curve if

Aot _ pagwy),

or equivalently,

0
ozt

o ) a 1 a

— y*(D)p(ea) = ¥ (D)ol 2

() Ox?

& (t) = ' (b).
So the admissible curves in A are the curves that can be identified with the
curves in TM tangent to the leaves: (x%(t),1%(t)).

EXAMPLE 2: For the case of a Lie algebra 7 : g — {x} seen as a Lie algebroid
over a point, where the anchor map is 0, any curve o : I — g is an admissible
one, as 4 (70 a)(t) = p(a(t)) = 0. <

2.5.1 Prolongation of a fibered manifold with respect to a
Lie algebroid

Let m: P — M be a fibred manifold with base manifold M and 7: A — M
a Lie algebroid. In order to describe a dynamic system on P, we would like
to work on a space that uses also the information given by the tangent space
to P and also the one given by the Lie algebroid A, which can be thought as
a substitute of the tangent bundle to M. The TP is not an appropriate space
to describe the dynamics on, as the projection of a vector from it is a vector
from TM, and we would like instead an element from A,to ’save’ the extra
information coming from it.

A space which takes into account these requirements, conserving all this
information is the A-tangent bundle of P, also called the prolongation of P
with respect to A, which we denote by T4P. It is defined as the vector bundle
Tlé‘ : TAP — P whose fiber at a point p € P, is the vector space:

TP = {(b,v) € A x T,P | p(b) = Tym(v)},

or, in other words, it can be defined as the vector bundle over P whose total
space is the pullback of the fiber bundle T'w : TP — TM by the anchor map
p:A—TM.

An element (b,v) can be written as (p,b,v), where p is the point in which
v is tangent to P and with this notation the fiber of the total space of TAP is
written as:
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TP ={(p,b,v) € P x Ay, x T,P|w(p) = 7(b); p(b) = Tpm(v), v € T, P}.

The projection 75 : TAP — P is given by 7/ (b,v) = p and it will often be
denoted in particular cases, by 7. There is another projection 75 : TAP — A
defined by 72(b,v) = b, and the elements from T4 P whose image through 7 is
zero, are called vertical.

Local coordinates on T4P

The local coordinate system (z¢,u?) on P, with i = T,n and A = 1,dim P,
determines local coordinates on T4 P in the following way: consider an element
(p,b,v) € TAP and take for p the coordinates (m;,@*) and for b the coordinates:

(m;,b%). Then v, as p(b) = T (v), will have the form: p b2 ) + UAB%\

_ P
So, in the considered coordinates (p,b,v) will be written as (m!, @4, b*,v4).

Generically we will denote the local coordinates of T4P by (z?,u4, 2%, v4).

For the local coordinates (2%, u®) on P and a local basis {e,} of Sec(A), it
can be defined a local basis {X,,V4} of Sec(T4P) by :

0

Xa(p) = (p:ealr(®). Pl s

p) and Va(p) = (p,O, auiA‘p).

In this base, the element (p,b,v) is written as 2*X,(p) + v4V(p), when

b = z%e, and v has in consequence the form: v = pgzo‘ 8‘; + vAauiA.

A section Z in T4P which in coordinates has the expression:

Z(x,u) = (xi,uA, Z%(z,u), VA(a:,u)),

has the following expression in terms of the base {X,, V4 }:

Z =27y +VV,.

Lie algebroid structure of 74P

If A carries a Lie algebroid structure, then so does T4P. The associated Lie
bracket can be easily defined in terms of projectable sections, defining it only
for this kind of sections, as the set of projectable sections is a generating set
of Sec(TAP), that is, any section of T4P can be locally written as a linear
combination of projectable sections.

A section Z of TAP is said to be projectable if there exists a section o of
7: A — M such that 75 o = 0 o . We say that Z is a lifting of o.

Equivalently, a section Z is projectable if and only if it is of the form Z(p) =
(p,o(7(p)), X(p)), for some section o € Sec(A) and some vector field X € X(A),
which projects to p(o) i.e.: T7(X(a)) = p(o(7(p)))-
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The Lie bracket of two projectable sections Z; and Z5 is then given by

[Z1, ZQ](p) = (p7 [0—17 02](m)7 [Xh X2](p))7 peA, m=r(p),

where o1, 0o are the sections of A and X7, X» are the vector fields on P that we
said there exist for every projectable section Zi, Zy of T4P such that they can
be written as Z; 2(p) = (p,01,2(7(p)), X1.2(p)). It is easy to see that [Z1, Z2](p)
is an element of T4P for every p € A.

The Lie brackets of the elements of the basis are

[xow xﬁ] = Cgﬁ xv [xava] =0 and [VAavB} =0,

from where we get the structural functions C! - The other structural functions
of TAA, pi, are given by the following formulas:

0
ozt

0

1
V) = 2
p(Va) yi

pl (xa) = pix

as we consider the structure of Lie algebroid of T4 A with the anchor map the
one given by p'.

Exterior differential on 74P

Next to the Liouville section and the vertical endomorphism that we will present
in section 2.7.1, the exterior differential on T4 A is one of the basis elements to
be defined on T2A to make the Lagrangian formalism of mechanics on Lie
algebroid possible.

Denote by {X%, VA} the basis of (T4P)*, dual to {X4,Va}.

Then the local expression of the differential of a function on A, is

i OF e + OF ya

dF = pa oz’ out

In particular we have:

da’ = p', X* du® =vA
The differential of the sections of the basis {X%, V4} of (T4P)* is given by :

« 1 «a A
dX* = =S CEXTAXT AV =0

2.5.2 Prolongation of a Lie algebroid

The prolongation of a Lie algebroid is a particular case of the space described
above is when 7 : P — M is the Lie algebroid 7 : A — M itself and it was used
in [41] to develop the geometrical formalism of Lagrangian mechanics on Lie
algebroids. It can be simply called the prolongation of the Lie algebroid A and
it plays the role of 77y : TTM — T M in the ordinary Lagrangian Mechanics,
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as the total space of the new structure reduces to TTM when A = T'M. The
sections of it and of its dual vector bundle will be a substitute for the vector
fields and respectively for the differential forms in the classical case.

There is a certain subset of it which will play the role of diagonal of TT M,
that is: T?°M = {v € TTM | mrap(v) = T7pr(v)}, where 73y : TM — M and
Try - TTM — TM.

We say a vector v € T, A is admissible if T,7(v) = p(a) and then the set of
admissible vectors is Adm(A4) = {v € TA|To7(v) = p(a),v € Ty A}. It can be
easily seen that v is admissible if and only if (a,a,v) € T4A, so then we can
also denote by Adm(A) the subset of T4 A given by:

Adm(A) = {z € TAA |1 (2) = Ta(2)}.

Being the equivalent of T2 M, this space will be later on used, between others,
to characterize a second order differential equation.

Lifts of sections of A to sections of T4A

Some canonical lifting procedures of sections of the vector bundle A over M to
sections of T4 A over A will be presented here:

As we said, an element of T4A is vertical if it is in the kernel of the 7
projection, and therefore it is of the form (a,0,v), with v a vertical vector
tangent to A at a. The set of vertical vectors forms a vector bundle of T4A,
denoted by Ver(T4A).

We can define the vertical lift on any vector bundle and in particular on
a Lie algebroid, in a similar manner to the tangent bundle case described in
Subsection 2.1.2. Let F' be an arbitrary function defined on A and take a, b two
elements in the same fiber of it. We define then the vertical lift b — b}, € T, A
by:

d
VF = —F .
b, p (a +tb) o

By this map the fibers of the vector bundle A can be identified with the
vertical tangent space.

The map that associates to a pair of elements from the same fiber of A
an element in T4A, by £V(a,b) = (a,0,0)) is called the vertical lifting map
fv A X M A— Ver(‘J'AA).

The wvertical lift of a section of 7: A — M, say o, is the section denoted by
o' of 71 : TAA — A defined by 0V(a) = ¢(a,0(7(a))) = (a,O,a(T(a))\;).

The expression of the vertical lift of a section o = o%e,, is given by o¥ =
o*V,.

Complete lift: Given a section o € Sec(A) there exists one and only one
section 0¢ € Sec(T4 A) that projects to o and satisfies for every section w € A* :

PH(0) (@) = dyw.

The expression of the complete lift of a section o is:
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0 =0"Xo + (6% + Cg,0 Y )Va.

In the particular case of T4 A, the Lie bracket is defined in terms of the
brackets of the vertical and complete lifts. For o,n € Sec(A) we have:

[UVJ?V] =05 [UVWC] = [07 77]\/7 [UCJIC] = [Ua Tl]c
The canonical involution map

There exists a canonical map ya: T4A — T4 A such that x4 = Id. It is defined
by xa(a,b,v) = (b,a,v), for every (a,b,v) € TAA, where © € T,A is the vector
which projects to p(a) and satisfies

o0 = v + df(a, b)

for every section 6 of A*.
The canonical involution is locally given by

XA(‘rivyav Zaa ,Ua) = (xia Zaa yaa v+ Cg»yzﬂilﬂ)

The canonical involution for a Lie algebroid plays a similar role to that from

the classical case, for A = T'M, where this application relates the second mixed

derivatives of v : R2 — M by: %% = XTM(%%)-

The complete lift in terms of the map x

The complete lift of a section 77 € Sec(A) can be expressed in terms of the
canonical involution map:

n(a) = xa(n(m), a, Tun(p(a))) € TAA,
where m = 7(a),
and if « is an admissible curve whose projection on M is «y, then it is written:

1(al6) = Xa (1(1(0)), a(t), - ((x(0))).

It follows that for any admissible curve o we have: noa = (no7)S

If n = n%e, is a local section of A, then the vector field associated to its
complete lift has the local expression

o) = s + (pi P2 4 e yﬁn”) 9 cra
all i BY Py By Ay )
Notice that if 7 is an admissible curve and its expression in local coordinates
is: n(t) = (2°(t),y°(t)), then: phyB = it = 4= so plyP 9n° =5, and then:

pHO(8)) = ph (O (1) 5 + (i°(1) + C3, ' ()"0 (1) % €TA.
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The map =

Given an admissible curve a: R — A over v = 7 o a we consider the map =,
defined from the sections of A whose projections on the base is v to the ones of
T A whose projection on the base is «, is given by:

Ea(ﬁ) = pl(XA(ﬁva7B))
that is: XA(B,Q,B) = (o, 8,Ea(8)).

The local expression of the map =, is:

0

Za(B)(0) = P4 )5 (0) :

oy®

+ (80 + Cra(a(0)a’5(1)) o(t)

a(t)

where o and 3 have the local expression a(t) = (2(t),a®(t)) and B(t) =
(z*(t), B(1))-
REMARK 4: The following property takes place:

Ea(fB) = fEa(B) + [B

for every function f € C*(R). o

2.6 Connections

Let 7: A — M be a Lie algebroid with anchor map p, and E — M a vector
bundle.

DEFINITION 8: An A—connection on a vector bundle E — M is an operator
V : Sec(A) x Sec(FE) — Sec(F) that is R-bilinear and satisfies:

Vias = fVas and Vo (fs) = fVas+ (pla)f)s,
any o € Sec(A), s € Sec(E), f € C°(M).
The curvature of a linear connection V is defined by:
R(a, B)s = VaVgs = VgVas — Vi, g5 (2.25)
The torsion of a linear connection V is defined by:
T(e,B) = Vaf = Vga — [, f].

DEFINITION 9: Let « : [to,t1] — A be an admissible curve. There is a unique
map V* : Sec, (E) — Sec,(E), where Sec,(FE) is the space of curves in E with
the same projection on M as «, satisfying:

l.Va(clsl + CQSQ) =1V 4+ caV%s9, c1,00 €ER;

2V fs = f's+ fV*s, where [ : [to,t1] — R is a smooth function;

3. if'5 is a local section of A which extends s and p(«a(t)) # 0, Vt € [to, t1],
then



30 CHAPTER 2. PRELIMINARIES

Vs(t) = Vo 5;

4. is§ is a local section of A which extends s and « is vertical, i.e. a(t) €
Ker(pr(a(to))), then:

o _d
Vs(t) = Va)s + as(t)

Remark that if « is an admissible curve and s € Sec,(E), then we denote
Vs the derivative of s(t) along this admissible curve, instead of V¢s.

The particular case when the vector bundle is 7 : A — M itself, then the
A-connection over A is called an A-linear connection. If we denote by Ffj the
Cristophell symbols of an A-linear connection, i.e: V.e; = Ffje;€7 then the
expression in coordinates of the covariant derivative of a a-section g is:

dBF o
Vtﬁ == (% + Ffjazﬁj)ek.

DEFINITION 10: Let A be a Lie algebroid with V an A—connection. An admis-
sible curve a : [to,t1] = A is a geodesic for the connection V, if Via = 0.

In local coordinates o = a’e; is a geodesic for the A-connection V if it
satisfies the geodesic equation:

k
ddit + I’fjaiaj =0.
REMARK 5: We recall that a spray I' is a SODE vector field, i.e. S(T') = A, who
moreover satisfies [A, '] =T

For every symmetric connection there exists a spray whose integral curves
project onto its geodesics, called the geodesic spray associated to the symmetric
connection. o

2.7 Lagrangian Mechanics on Lie Algebroids

Given a Lagrangian L € C*°(A) it can be defined a dynamical system on the
Lie algebroid A. The equations defining such dynamical system are the Euler-
Lagrange equations:

d oL oL — i OL
{ e () + GOl = Pl (2.26)

&= ply”.

They can be obtained by pulling back the canonical Poisson structure of the
dual A* by the Legendre transformation when L is regular (see [56]), by varia-
tional calculus, taking the energy functional defined on the space of admissible
curves from A and finding the extremal points of it or by using in a geomet-
ric framework as in [43], a symplectic formalism as presented in [41], when the
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dynamics can be obtained directly as a solution of a symplectic equation. In
this case it is defined a symplectic structure on the bundle 71 : 744 — A,
meaning a section w of (T4A)* A (TAA)* — A non-degenerate as a bilinear form
and closed, dw = 0. Given a regular Lagrangian one can construct a symplectic
structure, while if the Lagrangian is singular, the corresponding structure will
be pre-symplectic.

We will refer here mostly to the last two ways mentioned for arriving to
the Euler-Lagrange equations. However, with reference to the first one, we will
describe shortly the natural Poisson structure that the dual of an Lie algebroid
carries:

First, Vf € C®(A*),V0 € Sec(A*) it is defined fy € Sec(A4),Vm € M, u, €
A} by:

(st folm)) = 5| 7(00m) + by,

Then for all f,g € C*(A*), we can define {f,g},V0 € Sec(A*) which can
be verified to be a Poisson structure, a natural one, given by:

{f,9} 00 =(80,[fo,90]) + p(fo)(g°0) — p(go)(f ©0), where 0 : M — A* zero
section.

In local coordinates, if we associate to the dual basis of A : (el,...,e™), the
local system of coordinates (&1, ..., &) then, the Poisson bracket is given by:

{xhxj} = Oa {ths} = _p’g? {£S7§t} = Zc’:t u-

2.7.1 Symplectic formalism

The analogue of the Cartan 1-form and the analogue of the symplectic canonic
form, the Cartan 2-section, are introduced, and then the Euler-Lagrange equa-
tions are defined in terms of the energy and the symplectic structure.

To present the geometrical formalism for Lagrangian Mechanics on Lie al-
gebroids, gave in [41], similar to Klein’s formalism in standard mechanics (on
tangent bundle) we need to give some important canonical geometrical objects
on T4 A, space that plays the role of TT'M in this context:

e The vertical lifting map €': A xy A — TAA given by £¥(a,b) = (a,0,b)),
where b}, is the vector tangent to the curve a +tb at t =0, so b}, € T, A.

e The vertical endomorphism S: TAA — TAA defined as S = £¥ o 719, that
is:
S(a,b,v) = &¥(a,b) = (a,0,b}),

The local expression of S'is: S =V, ® X*.

The vertical endomorphism can be thought to map horizontal directions
to vertical ones, as:

S(Xa)=Ve, SVa&)=0 (2.27)
e The Liouville section is a vertical section of 7, given by:

Aa) = & (a,a) = (a,0,a).
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In coordinates the expression of A is: A = y*V,, so its corresponding
vector field by p! is given by: p'(A) = ya#.

Second order differential equation: In the case of A = T'M there exists
two equivalent definitions of a SODE. As a vectorial field on T'M whose integral
curves are the natural prolongation of the curves on the base manifold M, and
as a vectorial field on T'M whose image through the vertical endomorphism is
given by the Liouville section. In the case of a general Lie algebroid, in the first
definition we only need to replace the notion of the natural prolongation with
that of admissible curves.

DEFINITION 11: A section I' of TA A is said to be a SODE section if S(T') = A.

It can be proven that the definition is equivalent with each one of this con-
ditions:

o I takes values in Adm(A);
® T O I'= idA.

Thus, in local coordinates, a SODE I', of A is a section of the following
expression:

(z,y) = y*Xo + f*(2,y)Va,

and the integral curves of the SODE section are the integral curves of its asso-
ciated vector field:

+ f(x,y) 0

, 0
1 F z, — b
P (D)(x,y) = poy 35 o)

Oz l(2,y)
that is, they satisfy the differential equations:
@ =phy® = ().

The Cartan forms: In a similar manner as presented in the Lagrangian
approach from Section 2.1, corresponding Cartan forms can be introduced in
this new setting of a Lie algebroid.

DEFINITION 12: Given a Lagrangian function L € C*°(A) the Cartan 1-section
01 € Sec((TAA)*) is defined by

0, = SodL.

Then, its expression in local coordinates will be: 6y, = gTLan“.

We also remark that 6y, is a semibasic section, meaning that its action upon
Ver(T4A) is zero. In fact we have:

<9L,O'C>:dng <0L,UV>:O.

The Legendre transformation Fr : A — A* is given by:
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(Fr(a),b) = %L(a+tb) o’ a,be A, 7(a) =7(b).

It will sometimes prove useful to identify 61, a section of (T4A)*, with the
Legendre transformation Fr, : A — A*. In local Coordinates this means that it
will be thought of the 1-Cartan section as: 0 (z,y) = 2ke® € Sec(A*).

And it will be convenient to think {8y, ,7) for any sectlon 7 of T4 A projecting
ton, as (0r,n), and thus (0r,n) = d,vL.

DEFINITION 13: The Cartan 2-section wy, is given by: wy = —dfy,.

Then, its local expression will be:

82
YL = GyadyB

7

oz0y° P " awaypPe T o

_PL o ph 1( 0’L 0?L oL

—C7 ) X A XP,
(2.28)

DEFINITION 14: The real function Ej, on A defined by E;, = daL — L is the
energy functional of the Lagrangian system.

Its expression in the local coordinates is:

Ep=—y*—L. 2.29

L= gyt (2.29)

By a solution of the Lagrangian system (a solution of the FEuler-Lagrange
equations) we mean a SODE section I' of T4 A such that

iFwL = dEL (230)

The function L is said to be reqular Lagrangian if wy, is regular at every
2
point as a bilinear map, that is if and only if the matrix 8&17;@//3 is regular at
every point.

If L is regular the equation irw; = dF, has a unique solution the section
'y = ¢%Xo + ¥V, of TAA which satisfies g = y®, so I is a SODE.

The SODE I'p, = y*X, + f*V,, is a solution of the Euler-Lagrange equations
if and only if the functions f satisfy the linear equations

0?L 0?L oL OL

P - 207 48— Z =
ayfoye! T amiaya PV T g CesY T Py
from where:

7+ =0, foralla,  (2.31)

O?L \-1,/0L 0’L . . 0L
B _ VB - LyP 4+ pt —— ). 2.32
! (Gyﬁayo‘) (3y7 Cagy Oxi Oy~ PeY" T+ Pa amz) (2.32)

So, when a section I'j, satisfies the Euler-Lagrange equations, the integral
curves of the vector field p*(I'y) satisfy the Buler-Lagrange differential equations,
which can be written locally in the form:

d ( 0L i OL —
{ E(W) Paist + 57 Capy” =0 (2.33)

it = phy®.
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Denote by A([tg, t1], A) the space of admissible curves on A. Defining the
Euler-Lagrange operator: 0L : A([to,t1], A) = A* by

o1 = (G (5y2) + Coon’ 55— g )

where {e®} is the dual basis of {e,}, then the Fuler-Lagrange differential equa-
tions can be thought as

0L = 0.

2.7.2 Variational formalism

As we mentioned, an alternative to the symplectic formalism for recovering
the Euler-Lagrange equations, is the variational formalism. In [43] it was shown
that the Euler-Lagrange equations for a Lagrangian system on the Lie algebroid
are the equations for critical points of the energy functional defined on the space
of admissible curves, imposing some boundary conditions.

In order to give a short review of this variational principle it is needed to
present what is the space of curves to be worked on, what it is the considered
neighbohood of a curve from this space and what the manifold structure of it,
in order to have clear what is the differential of the energy functional and when
it is defined.

In the context of Lie algebroids, the finite variations with fixed base end-
points are considered the homotopies on it. We will present here what is the
considered the notion of homotopy on the Lie algebroid. First we’ll define what
a Lie algebroid morphism is and then the notion of A-homotopy-homotopy on
a Lie algebroid A-, will be generalized from the classical case.

Morphisms of Lie algebroids

Let 7: A— M and 7: B — N be two Lie algebroids with the anchor maps p
and respectively p.

DEFINITION 15: A vector bundle map ¢ : A — B over ¢ : M — N is said
to be admissible if it maps admissible curves into admissible curves, that is:
po¢ = Tyop and is said to be a morphism of Lie algebroid, if moreover it
satisfies: ¢* df = d¢p*0,V0 € Sec(AP(B)*).

Local expression: In local coordinates, a vector bundle map has the expres-
sion: ¢(x,y) = (¢*(x), d)g(x)yﬁ) and the condition that ¢ is an admissible map

. k
is: pl, %ﬁi = pl¢f and it is a morphism:

ody ;09

= 7,6 (2.34)

_ 8 .
Cg»y(ﬁ/ﬂsz + pfl, axi v 8.’1}7’ uv Ty

Particular case: When the morphism is between the Lie algebroids TR? over
R2and A over M, ¢ it can be written as: «f(s,t)dt + (s, t)ds, where a(s,t) =
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¢(%|(s,t)) and B(s,t) = d)(%h&t)). The condition that ¢ is an admissible map
says that the curves: t — «a(s,t) and s — ((s,t) are admissible.
Locally, the condition to be a morphism in this case is translated as:

k k
a7 _9B% _ ik gepl. (2.35)

Notice that if ¢ = «(s, t)dt+ B(s,t)ds is a morphism, then the tangent vector
to the variation curve s — «f(s,t) is:

Construction of a morphism: Let n € Sec(A) and take ¢, the flow of the
vector field pt(n°) € X(A) and ¢, the flow of the vector field p(n) € X(M). Tt
can be easily observed that ¢5 projects onto g, so for each fixed s, the map ¢,
is a vector bundle map which is a morphism of Lie algebroids over ;.

DEFINITION 16: The flow of a section n € Sec(A) is the pair (¢s, ps)-

From a section of A and an admissible curve of it one can construct a mor-
phism from TR? to A using the flow of the section, in the following way:

PROPOSITION 1: Let ag be an admissible curve in A, with base path g, and let
n be a section of A, with its flow (¢, ps). Then, construct:

a(s;t) = ¢s(ao(®)) (s, 1) =¢s((t))  and  B(s,t) = n(v(s,t)).

Then ¢(s,t) = a(s,t)dt + B(s, t)ds is a morphism from TR? to A over 7.
PROOF. As ¢, projects to ¢, both a(s,t) and B(s,t) project to y(s,t), so ¢ is
a vector bundle map over .

@5 is a morphism so it maps the admissible curve ay(t) into admissible curves,
such that ¢t — a(s,t) is admissible. In order to get that ¢ is an admissible map
it remains to prove that s — (s, t) are admissible. Using that ¢ is the flow of
p(n), we have that

%(87 t) = %%(Vo(t)) = p(m)(#s(10(1) = p(n(7(s,1))) = p(B(s, 1)),

Now it is left to prove the morphism condition, that is

da
—(s,t) = Eq.Bs, 2.36
0% (5,) = 20,8 (236)
equivalent to showing that: x (5, «, %) = (a, B, ‘g—;’).
The first term is equal to:

9% (5,0) = L (@ulaan(t))) = () (Gul0(t))) = (1) a5, 1) = p' (3 (s, 1)

and this is equal to the second term of relation (2.36), as by definition

Ea.Bs = p'(B. . B) = p' (8 (a5, 1)).
O
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Homotopies

Consider (s, t) a homotopy on a manifold M. Notice the tangent aplication
Ty : TR? — TM has the form Ty = %(S,t)dt + %(s,t)ds and from the
definition of homotopy on a manifold it follows: g—Z(s, 0) = g—Z(s, 1)=0. It is
used this remark in order to generalize the notion of homotopy on a Lie algebroid
A, the A-homotopy. Consider the particular case of morphism ¢ : TR? — A
written an ¢(s,t) = a(s,t)dt+b(s,t)ds with the additional conditions: b(s,0) =
b(s,1) = 0,Vs. This is the idea used to generalize the notion of homotopy to a
Lie algebroid. Indeed, remark that in particular, Ty is an T'M —homotopy.

DEFINITION 17: An A-homotopy between two admissible curves in A denoted
ag, aq : J = [tg,t1] — A is a morphism of Lie algebroids ¢ : TIxTJ — A, ¢ =
a(s,t)dt + B(s,t)ds, where s € I = [0, 1], such that:

a(0,t) = ap(t) B(s,tg) =0
a(l,t) = as(t) B(s,t1) =0.

We say that ¢ is an A—homotopy from the admissible curve ag to .
In general, the infinitesimal variation of any homotopy of a curve « has the
form given by Z,(5), where j is any a-section whose endpoints are zero.

Construction of an A-homotopy: Using the above presented construction
of a morphism it can be given the construction of an A-homotopy as a corollary
to proposition 1. We just need to use the section 7, with compact support, with
the supplementary condition that n(mg) = n(m4) = 0.

COROLLARY 1: Let oy : [to,t1] — A be a curve in A, with base path ~y such
that y(to) = mo and v(t1) = mq, where mg, my are two points in M and let n
be a section of A, with compact support such that n(mg) = n(m1) = 0 of flow
denoted by (¢s, ps). Then a map ¢ can be constructed as in Proposition 1, that
is an A-homotopy from ag to a; = ¢1 o qp.

ProOOF. The condition of compact support ensures that the flow of 1 to be
globally defined, so that ¢; be defined.

In order to have ¢ a A-homotopy, we just need that «(0,t) = ag and «a(1,t) =
a1, which is obviously satisfied, and that 8(s,tg) = 0, 8(s,t )

As n(mg) = 0 and n(my) = 0, then p(n(mo)) = p(n(m,)) = O from where

(Ps(mo) = m07<ps(m1) = mjy, SO:

B(s:to) = n(v(s:t0)) = nlps(v(to))) = n(s(mo)) = n(mo) = 0 and

B(s,t1) = n(v(s,t1)) = n(ps(7(t1))) = n(ps(mi)) = n(m1) = 0.

To anticipate, the neighborhood of a curve considered in the variation prin-
ciple described in [43] is going to be an A-homotopy and we will further describe
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what topology is going to be considered on the space of admissible curves for
the variational principle.

The space of admissible curves

In this section, we will look at the properties of the space of curves that are
going to be considered for the variational principle, that is the space of admis-
sible curves from a Lie algebroid. We will present the two manifold structures
that can be considered on it and each advantages.

One of this structures is related to the A-homotopy equivalence relation
and this one will be used in the variational principle. We will explain why the
neighborhood of a curve considered in it will be given by a A-homotopy class
and we will give the form of an infinitesimal variation of the variations that are
going to be considered.

The set of admissible curves:
d
A([thtl]vA): a: [t07t1]_>A pDa:%(Toa) 3

is a subset of the space of all the curves in a vector bundle, who are of C'-class,
and their projection is of C2-class, space which is a Banach manifold.

The A-homotopy being an equivalence relation defines a partition of the
space of admissible curves into disjoint sets. It was proven that any A-homotopy
class is a smooth Banach manifold and that such a partition is a foliation.

In fact, the A-homotopy classes are Banach submanifolds as the space of
admissible paths is a Banach manifold.

The foliation we mentioned induces a differentiable manifold structure on
A([to,t1], A). This space considered with this induced differentiable manifold
structure by the explained foliation is denoted by P([to, 1], A).

Also, the set of admissible paths admits the natural differentiable structure
given by the fact that it is a submanifold of the set of C'-paths in A, and with
this structure will be denoted also with A([to, 1], A).

The structure of A([to, 1], A) is used when working in problems which are
related to relation between neighbor A-homotopy classes, while the structure of
P([to,t1], A) is used when one is not interested to pass from one A-homotopy
class to another.

Let mg, m1 € M be two fixed points. Consider:

P([to, t1], A)pt = {a € P([to, t1], A) | T7(a(to)) =mo and 7(a(t1)) =m1 }.

mo

This set P([to, 1], A);;¢ is a Banach submanifold of P([t, 1], A), which can
be thought as the disjoint union of the A-homotopy classes of curves with base
path connecting two fixed points.

Remark also about the set A([to, 1], A);n? that one can not be sure if it has
a manifold structure.

Let a € A([to, 1], A), and denote by

Sa = { B € Seca(A) ’ B is C%(A) with B(ty) = 0 and B(t;) = 0},
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and by

F, = {v € T,A([to, t1], A) | there exists 3 € Secy(A) such that
ﬁ(t()) = 07 ﬁ(tl) =0 and v = pl(XA<ﬁ7Ol,ﬁ))}

Then F, = E4(Za), Fa C ToA(to,t1],A) and F = UaeA([to,tl],A)Fa C
TA([to, t1], A) is the integrable subbundle of the tangent bundle to A([to, t1], 4).
The leaves defined by it are the A—homotopy classes.

That is, if L is the leaf containing o, L = P([to,t1], A);n}, when 7(a(to)) =
mo and 7(a(t;)) =mq, then

ToL = {2,838 € Seca A, B(to) = B(t1) = 0}.

That is, the tangent space contains the vectors of the form Z, 8 = p'(xa (8, a, ﬂ))
(tangent to the curves s — ay), for 8 a-sections vanishing at the end-points.
This vectors define an integrable distribution whose leaves are precisely the
homotopy classes, and as a consequence, such kind of vectors span the whole
tangent space to the given homotopy class.

Notice that as for any o € A([to, 1], A) the restriction of Z, to X, is injec-
tive, there is a isomorphism between the real vector spaces ¥, and F,,.

Variational formulation

Having specified the space of curves on which the variational principle is
given, its manifold structure, its topology and the variations that are going to
be considered in its formulation on a Lie algebroid, we can now present the
theorem that shows how crtical points of the energy functional on the Banach
space P([tg, t1], A)™ satisfies the Euler-Lagrange equations.

mo

THEOREM b5: Let L € C*°(A) be a Lagrangian function on the Lie algebroid A
and fix two points mg, m1 € M. Consider the action functional &: P([tg,t1], A)M* —

mo
R given by &(a) = ttol L(a(t))dt. The critical points of & on the connected Ba-
nach manifold P([to,t1], A)y,} are precisely those elements in this space which

satisfy Lagrange’s equations.

Proor. The action functional € is a smooth function on P([to, 1], A)1. Take
a curve a € P([to, 1], A);nt. Then, it is known that the tangent vectors to it will
have the form E,(8), where 8 € 3.

Taking into account that 2o (f8) = fZa(8)+fBY, for every function f: [to, 1] —
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R, we have

0= (d&(a) Za(fB)) =/l[f(t)<dL,Ea(B)>+f<dL,BL>]dt

to

dt

Since this holds for every function f and every section g € %, it follows that
the critical points are determined by the equation dL(&(t)) = 0, that is, by the
Lagrange’s equations. O

An advantage of working on Lie algebroids is that it can appear connections
between different dynamical systems and their solutions even when this systems
are defined on different Lie algebroids, when there are morphisms between them.
In particular, when the morphism is fiberwise surjective, the variational principle
can be reduced, and the symplectic equations as well.

When two Lie algebroids and the Lagrangians defined on them are connected
through a morphism of Lie algebroids, then it was shown in [43] that there can be
found a correspondence between the solution of the Lagrange equations on the
two Lie algebroids. Also, there is a connection between the energy functionals
the two Lagrangians defined on their corresponding space.

Consider a morphism ¢: A — B of Lie algebroids and the induced map
between the spaces of paths ¢: P([to, t1], A) = P([to, t1], B), defined by ¢(a) =
¢ o a, which is a smooth map for this particular case of ¢ being a Lie algebroid
morphism. Consider a Lagrangian L on A and a Lagrangian L’ on B which are
related by ¢, that is, L = L’ o ¢. Then the associated energy functionals & on
P([to, t1], A) and & on P([0,1], B) are related by ¢, that is & o ¢ = &. Indeed,

t1

£(d() =€(@oa) = [ (Losoa)ydi= [ (Loa)t)dt=E(a).

to to

THEOREM 6: Let ¢: A — B be a morphism of Lie algebroids. Consider a
Lagrangian L on A and a Lagrangian L' on B such that L = L' o ¢. If « is an
admissible curve and o = ¢ o« is a solution of Lagrange’s equations for L' then
« itself is a solution of Lagrange’s equations for L.

PROOF. Since & o ¢ = & we have that (d&'(¢()), Tad(v)) = (d&(),v) for
every v € ToP([to, t1], A)jd. If $(«) is a solution of Lagrange’s equations for L/

then d€’(¢(a)) = 0, from where it follows that d€(a) = 0. O

= [ 10 Za) + GioLoa.B)]dt+ Fio0a.8)|,

1
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THEOREM T7: Let ¢: A — B be a fiberwise surjective morphism of Lie algebroids.
Consider a Lagrangian L on A and a Lagrangian L' on B such that L = L' o ¢.
If « is a solution of Lagrange’s equations for L then o/ = ¢ o « is a solution of
Lagrange’s equations for L.

PROOF. Since & o ¢ = & we have that (d&/(¢(a)),Tad(v)) = (d&(a),v) for
every v € ToP([to, t1], A)mi. If ¢ is fiberwise surjective, then  is a submersion,
from where it follows that (ﬁ maps critical points of € into critical points of &', i.e.

solutions of Lagrange’s equations for L into solutions of Lagrange’s equations
for L'. O



Chapter 3

Applications in
Mathematics

A second order differential equation can be seen geometrically as a vector field
I' € X(TQ) that satisfies: S(I') = A. If v is an integral curve on the base of T,
then 4 =T" o4 and the local expression of I" in natural coordinates is

I'(q,v) = viaqi + f1(q,v)0y:.

A spray is a SODE where the functions f¢ are homogeneous polynomial functions
of degree 2 in v, that is: f*(¢,v) = f}.(¢)v*v/. On a Riemannian manifold @,
the geodesic curves are the integral curves on the base of a spray: I'(q,v) =
0" 0y + % (q)v"v? 9. Thus the geodesic curves satisfy the geodesic equations:
§t = F;k(q)qi(jj, when in local coordinates on @, the curve v = (¢*) and where
I‘;k the coefficients of the Levi-Civita connection.

One of our objectives for this chapter is to study variations of integral curves
of a general SODE on a manifold, their variational vector fields and the differen-
tial equation satisfied by such vector fields. We would like to find this equation
in a way that resembles as much as possible the original Jacobi equation in
Riemannian geometry.

There, a Jacobi field W along a geodesic +y is defined as a solution of the Ja-
cobi equation DD+ W + Rie(W,5)% = 0, where D is the Levi-Civita connection
associated to a given Riemannian metric and Rie is the curvature tensor, associ-
ated to the Levi-Civita connection. Jacobi fields are interpreted as infinitesimal
variations of the geodesic v by geodesics, or in other words, as the infinitesimal
variation vector field associated to a 1-parameter family of geodesics.

As our initial objective is to find similar Jacobi equation for this more gen-
eral context of a SODE on a manifold, and as in the Riemannian manifold the
Jacobi equation is given with the help of the Levi-Civita connection and the
Jacobi endomorphism, we will like to use objects who generalize them. In Sec-
tion 3.1 we introduce a non-linear connection and the Jacobi endomorphism
associated to a SODE on a manifold, given in [44]. We will also present other
properties concerning Lie transported vector fields and 1-parameter family of
integral curves of a vector field that will allow us to define Jacobi fields for a
general SODE. In the end we give the Jacobi generalized equation. In Section
3.2 we generalize this results to the framework of SODE on Lie algebroids.

41
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Afterwards we will generalize this results to the frame of Lie algebroids, that
is for general SODE on Lie algebroids and having done that we will consider the
case of a geodesic spray on a special kind of Lie algebroid, a Riemannian Lie
algebroid, introduced by Boucetta in [5].

Remember that in the Riemannian manifold, a geodesic, an integral curve of
a geodesic spray, minimizes the energy functional if it has no conjugate points
along it [26]. Conjugate points in that frame are points along a geodesic, for
which there exists a Jacobi field that annuls in them.

What we want to do in Section 3.3 is to generalize this result for the case
of a Riemannian Lie algebroid. This will situate us in the particular case of
the theory for SODE on Lie algebroids,from Section 3.2, where the SODE will
be a geodesic spray associated to the Levi-Civita connection or, in other words,
a lagrangian SODE for L(a) = 3g(, a), where g is the Riemannian metric on
the Lie algebroid. We will thus relate the conjugate points corresponding to

geodesic spray to second variation of the energy functional.

In Section 3.3 we will introduce a Riemannian metric on a Lie algebroid and
its corresponding Levi-Civita connection as done in [5]. For the particular case of
a geodesic spray on a Lie algebroid, we will take a look at its integral curves, the
geodesics, at the variation of its integral curves with their corresponding Jacobi
sections and conjugate points. For the energy functional we will consider, as in
the classical case, its first and second variation along variations of integral curves
of the sprays in Section 3.4, as they are fundamental tools to study minimizing
results.

An advantage of our generalizing results on Lie algebroids from Section 3.2
is that we will obtain an equation which is valid for second order systems with
holonomic constraints, systems defined on Lie algebras and systems with sym-
metry, in addition to the standard case. For applications of the theory of Lie
algebroids in Classical Mechanics, Control Theory and Field Theory we refer to
the reader to [41, 35, 42, 40].

3.1 The standard case of sodes on tangent bun-
dles

In this section we will review the basic results about the variational equation
and we reformulate the Jacobi equation in a way suitable for the generalization
to SODE on Lie algebroids that will be given in Section 3.2.

In Subsection 3.1.1 we will study the properties satisfied by the infinites-
imal variation vector field of a 1-parameter family of solutions of a general
first-order differential equation, which corresponds to the linear variational dif-
ferential equation. These results will be applied to the case of a second-order
differential equation (SODE), in Subsection 3.1.2 clarifying the geometrical mean-
ing of the concept of Jacobi field in terms of the geometry of the tangent bundle.
In Subsection 3.1.3 by using the non-linear connection associated to the SODE,
we will find the equation satisfied by the variation vector fields, which gener-
alizes the Jacobi equation. The form of this equation, VVW + ®(W) = 0, is
similar to the original Jacobi equation.
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3.1.1 The variational differential equation and its geomet-
ric interpretation

We consider a vector field X € X(M) on a manifold M and we denote by {¢;}
its local flow. We fix an integral curve (yp: ICR — M of X defined on a compact
interval I = [0,T]. We set m = (o(0) the initial point, so that (o(t) = @+(m).

A vector field along the curve (o is a map Z: I — TM such that Z(t) €
TeotyM for all t € I. The following definitions are from [7].

DEFINITION 18: A vector field Z along (g is said to be Lie transported along
the flow of X if there exists £ € T,, M such that Z(t) = Tp.(&) for every t € I.

DEFINITION 19: The Lie derivative of a vector field Z along (, with respect
to X is the vector field L x Z along (o defined by
d o1

REMARK 6: As a consequence of the above definition, if Z € (M) is an exten-
sion of Z then Lx Z(t) = [X, Z]({o(t)). o

We recall that given a vector field W along a curve (o the complete lift of W
is the vector field W€ along (o given by W(t) = xram (W (¢)). Similarly, if ¥ is
a vector field on M, the complete lift of Y is the vector field on TM defined by
Y = xrap o TY. Both definitions are consistent in the sense that the complete
lift of the restriction of ¥ to the curve (o is the restriction of the complete lift
to the curve (p, that is, Yo (o = (Y 0 (). As it is well known, if {¢;} is the
flow of Y then the flow of Y is {T'¢;}.

PROPOSITION 2: The following properties are equivalent:

1. Z is Lie transported along the flow of X.

2. For every t € I and every s such that s +t € I we have To,(Z(t)) =
Z(t+s).

3. The Lie derivative of Z vanishes identically, Lx Z(t) =0 for all t € I.

4. The curve Z: I — TM is an integral curve of the complete lift X¢ €
X(TM) of X.

In local natural coordinates (z*,v*) in T M, the above properties express that
the components x* = ¢} (t), v* = Z*(t) of Z satisfy the linear variational equation

it = X(x)
_oX! ,

= 90 (z)v7.

The proof will be postponed to Section 3.2 where it will be given for the
more general case of Lie algebroids.

Our first aim is to prove that a Lie transported vector field along the flow of
a vector field X, is obtained via variation of integral curves of the vector field.

)

DEFINITION 20: A 1-parameter family of integral curves of X is a map : (—¢, €)x
ICR? — M such that for every s € (—e¢,€) the curve (;: I — M, given by
¢s(t) = ((s,t) is an integral curve of X. The vector field Z along (o defined by
Z(t) = %(O,t) is said to be the infinitesimal variation vector field defined by
the 1-parameter family.
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We will also say that ( is a finite variation of (y by integral curves of X.

PROPOSITION 3: A vector field Z along an integral curve y of X is the infinites-
imal variation vector field defined by a 1-parameter family of integral curves of
X if and only if it is Lie transported by the flow of X.

PRrOOF. If ((s,t) is a 1-parameter family of integral curves of X then we have
that ((s,t) = ¢+({(s,0)). Taking the partial derivative with respect to s at
s =0 we get that the variational vector field Z(¢) = %(O, t) satisfies

_ %(&t) - th%(ao) =Tp(Z(0)),

Z(t) s

so that Z is Lie transported.

Conversely, let Z(t) be Lie transported along the integral curve (o(t) =
wr(m), that is Z(t) = Tp(€). Consider any curve «(s) in M such that a(0) =
Co(0) = m and &(0) = £. The 1-parameter family ((s,t) = ¢(a(s)) is a family
of integral curves of X satisfying the given properties. Indeed, for every fixed
s we have that (s(t) = @:(a(s)) is an integral curve of X; for s = 0 we have
€(0,t) = pi(a(0)) = pt(m) = (o(t); and the variational vector field is

%@7 1) = Tii(6(0)) = Tipi(€) = Z(1),

where in the last equality we have used that Z is Lie transported. O

3.1.2 The case of second-order differential equations

As T is a SODE if it satisfies T'rg(I'(v)) = v for every v € T'Q, it follows from
this property that the integral curves of I' are natural or tangent lifts ¥ of curves
~ in the manifold @), which are said to be integral curves of I' in the base.

We consider now the special case of the constructions above with M = TQ)
and X = I" a SODE on ). We have that a variation by integral curves of I"
is of the form ((s,t) = %z(s,t), for (s,t) a l-parameter family of curves in @
(each one is an integral curve in the base of I'). We will denote by W (t) the
variational vector field of the base family,

W(t) = %(O,t).

Then, the variational vector field for the family ((s,t) is

_9¢
T 9s

0 Oy d 0v

0,8) = = (s,1) o XTQ&E(OJ) = xTQW(t) = W<(t).

2() ds Ot

DEFINITION 21: Given a second-order vector field T € X(T'Q), a vector field
W (t) along an integral curve in the base o of T' is a Jacobi field of the SODE
' if Z = W€ is a variation vector field along the integral curve +y by integral
curves of T.

It follows that a vector field W (t) is a Jacobi field if and only if it satisfies
the equation LW = 0, or equivalently W€ is Lie transported along the flow
¢y of T or equivalently T, (WE(t)) = WE(t + s).
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3.1.3 The Jacobi equation

The equation that W needs to satisfy to be a Jacobi field for the considered
SODE LrW¢€ = 0, is a second-order linear differential equation, as it will be
presented in local coordinates in Section 3.1.4. In the particular case when I' is a
geodesic spray one can rewrite such equation in terms of the associated covariant
derivative. A general SODE does not define such a covariant derivative, but
has an associated canonical non-linear connection. We will use such nonlinear
connection to find an explicit expression of that equation. The reference [44]
offers a detailed construction of the objects in this section. We will present in
the following paragraphs first the notion of sections of a fiber bundle along a
map, then an Ehresmann connection associated to a SODE and other properties
that will be useful in rewriting the Jacobi equation in a convenient way for
SODEs on a manifold, that will further allow us a smooth generalization for the
Jacobi equation for SODEs on Lie algebroids.

Sections of a fiber bundle along a map. Consider the differential map
¢ : N — M. A section of the fiber bundle 7 : £ — M along ¢ is a map
o : N — FE that satisfies m 0 0 = ¢. The space of sections along ¢ will be
denoted by Y4(m) and when E is a vector bundle it has a C°°(N)—module
structure and so does the space of the pullback of E by ¢. In this case between
them there exists a module isomorphism.

Classical examples of vector fields along maps are the restriction of a vector
field X € X(M) to a curve v : I — M, which is a vector field along ~, and
the tangent vector field to the curve ~, which is a section 4 : R — T'M of the
tangent fiber bundle to M along ~.

The Ehresmann connection associated to a sode. Any SODE I' deter-
mines on the fiber bundle of a manifold  an Ehresmann connection. If S is
the vertical endomorphism on T'Q, it is well known that the tensor LS, satis-
fies (LrS)? = I. The subbundle corresponding to the eigenvalue +1 coincides
with the vertical subbundle and the projector on it is Py = %(I +LrS), Py :
TTQ — Ver(TQ). Therefore, at every point, the eigenspace of eigenvalue —1 is
a subbundle complementary to the vertical subspace, that is, a connection on
7q : TQ — @Q and hence it defines a splitting TT'Q = Hor(TQ) & Ver(T'Q). The
projector onto the horizontal subbundle is Py = (I — Lr.9).

In local coordinates, if I' = v* a;aci + f a?;i then LS is identified with the

matrix < ofi ) and then the expression of Py in coordinates is:
T ove

0 . 19f7 0 .
= —Qdx'+ - =~ ®dz".
8w1®x+28v’61ﬂ®x
The coefficients of the connection are given by:
, 1of

It =—-—-——.
J 2 Ovi
A local basis of vector fields adapted to the distribution is given by:

Py

(3.1)
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where the brackets of the basis elements are:

ark  ory  arkoy | ATS oy
[Hi, H] = {W o ool it i Vi
ark ory
[H;, V] = [H;, Vi] = 555 Vi = 55 Vi,

and its dual basis of the dual space \'(T'Q) is given by:
{H'=dz', V' =dv' + ldv’}.

REMARK 7: We know that the curvature of a nonlinear connection is given by
R(U,V) = [U", V"] — [U,V]", where U,V € X(Q) and where U" denotes the

horizontal lift of the vector field U. Thus R( 6‘2_1-, %) = [H;, Hj], from where:

o 9 ork ory ork , ory
R( e 507) = (Gar — 3r ~ gor Do + ot ) Ve

The dynamical covariant derivative and the Jacobi endomorphism
associated to a sode.  Both subbundles Hor(7'Q) and Ver(T'Q) are isomor-
phic to 75(TQ) = TQ xq T'Q via horizontal and vertical lift, respectively. It
follows that every vector field Z € X(TQ) can be written in an unique way as
Z =X"4+YV, with X,Y vector fields along the map 7q.

Taking into account this decomposition the Lie derivative of a horizontal
lift defines two geometrical objects: the generalized Jacobi endomorphism & :
Yo (1q) — 7, (1) and the covariant derivative V : ¥, (7q) — ¥+, (7q), by
means of

LrX" = (VX)" + (2(X))",

where by ®(X) we understand ®(X)(v) = D,(X(v)).

Applying this relation to the vector field fX for a function f € C*°(TQ) we
find that V is a derivation along T, that is, it satisfies V(fX) = (Lrf) X+ fVX,
while @ is a (1,1)-tensor field, ®(fX) = f®(X). Indeed, on one hand we have
Lr(fX)"=(V(fX)"+ (®(fX))¥ and on the other:

Lr(fX)" = (TfHX"+ fLp(X)" =
= [THX"+ F(VX)" + f(2(X))" =
= (OfX + fVX)" + (fB(X))",

from where the conclusion follows.

The Lie derivative of a vertical lift does not define any new object, but can
be expressed in terms of V,

LrXY = —X"+ (VX))

We can extend the same relations for a vector field W along an integral curve
in the base v of T’

LW = (VW) + (@(W))"  and  LoWY = —W" + (VIW)",
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where ®(W) stands for ®(W)(t) = @) (W(t)).
In the basis {H;, V;} the local expression of ' becomes:
I =v"H; + (f' + o))V,
and the Lie derivatives with respect to I' of the vector fields of the basis are:

LrH; = [T, H,] =TV H; + &1V,
LrV; = [T,Vi] = —H; + TV}

where the functions @g are the components of the Jacobi endomorphism and
are given by:

i of

;= Ol

In local coordinates (x%,v%) on TQ, if the SODE vector field is I' = v¢0,: +

f0,:, the horizontal lift of a coordinate vector field 9/0z° is H;. If W is of the

form W (t) = Wi(t)9,:, then the dynamical covariant derivative of W takes the
expression:

—TTh = T(I). (3.2)

0
I
Taking in consideration Remark 6 a similar formula is valid for a vector field X
along ¢ :

v (t) = (W (1) + Ti ()W (1))

VX (g,0) = (X (0,0)) + T5X(0,0) o

The expression of the Jacobi endomorphism acting upon W, a vector field
along the curve ~(¢) is:

0
oz’

O(W)(t) = ©5(3(1))W (1)

Jacobi equation for sode on manifold. Since we are interested in the
equation Lr W< = 0, we need to decompose the complete lift W in its horizontal
and vertical components. We have that:

We=W"+ (V).

Indeed, the difference between X< and X" is a vertical vector field X“— X" =YV,
Applying L£1S to this expression we find:

YV =(LrS)YY = (LprS)X - (LpS)X" =
=Lp(SX) - S(LrX )+ X"=Lr X"+ X" = (VX)",
where we have used that L X€ is vertical (as it can be proved easily in coordi-

nates).
From all this facts it is now easy to prove the following result.

THEOREM &: A vector field W along an integral curve in the base vg of I is a
Jacobi field if and only if it satisfies the second-order differential equation

VYW + ®(W) = 0.

This equation will be called the (generalized) Jacobi equation.
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PROOF. Taking the Lie derivative of W€ = W" + (VIV)¥ with respect to I" we
have

LoWe = LoWH + Lp(VIV)
= ((VW)" + (2(W))¥) + (= (VW)" + (VVIV)")
= [VVW + &(W)]".

From where the result follows immediately. O

Jacobi fields are related to infinitesimal symmetries of the SODE I'. If Y €
X(T'Q) is an infinitesimal symmetry of T, that is LrY = 0, then it is of the form
Y = X" + (VX)Y for some vector field X along the projection 7g. Therefore,
if v is an integral curve in the base of T, the vector field W (¢) = X o v satisfies
Yoqy=Wand LrW® =0, and hence W is a Jacobi field. This result already
appeared in this form in [13].

3.1.4 The variational sode

The Jacobi equation LW = 0 for a given SODE on @), is itself a second order
differential equation as it can be seen from the equivalence of item 3 with item
4 from Proposition 2, and it corresponds to a SODE vector field. More exactly,
in the local coordinates (z%, v, w’, u’) on TTQ this property is written as:

T4 ="
Ua — fa
P (3.3)
) afe afe
a__ ..b b
R
which reduces to
jfa — f(l
.. of® af® (3.4)
_ b b
W =w Db +u D0

from where it is obviously it is a SODE in the coordinates (z°,w?).

It is therefore natural to look for a SODE on T'(QQ whose solutions are the
Jacobi fields together with the solutions of the original SODE on Q.
PROPOSITION 4: With the fixed notation, if W is a Jacobi field then W is an
integral curve of the vector field I'"** = T'xpgol'“oxrq.

ProoF. If W is a Jacobi field, then, from Definition 21, W is the variational
vector field along the integral curve % by the integral curves of I', from where
using Proposition 3 and the equivalent condition 4 from Proposition 2 we get
that W' is an integral curve of I'°. Taking into account that W< = XTQOW we
have that the derivative of W satisfies:

d d

. d .
%W = a(XTQOWC) = TXTQO%WC = Txrqol'“oW*® = T'xpqol “oxrqgoW,

from where the conclusion follows.
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THEOREM 9: The map I = Txpgol'“oxrq is a vector field on TTQ and
satisfies the following properties:

1. I'® is xpq-related to I'“.

2. T is a SODE vector field on T'Q.
3. I'Y™ is T'rg-related to I'.
4

. If ¢, is the local flow of I', then the local flow of T'™® is @™ =
X1QoTdroxTq-

If W: R — TQ is an integral curve in the base of T""* € X(TTQ), then v =
TgoW is an integral curve on the base of I' and W is a Jacobi field along .
Conversely, if v is an integral curve in the base of I' and W is a Jacobi field
along ~ then W is an integral curve on the base of T'*%.
PrOOF. We have that I'" = T'ypgol“oxrg = TXTQOFCOX;IQ, which proves
the first. As a consequence, the flow of I'*® is xpgoT ¢:oxTg where ¢, is the
flow of I', which proves 4. Taking into account that 7pgoxrg = T'7g, we have

T(T1q)oI'* =T (Ttgoxrq)ol “oxrg = T'rrgol “oxrg = I'otrgoxrg = T'oT'Tg,
which proves 3. Finally item 2 follows easily from the coordinate expression of

Ie:

0 0
+ f*

+u

0 of® af*y 0
FC — @ a ( b b ) )
Y Bga v tu ow® v Oxb ot J due
[=]For the direct implication we will apply in W the expression correspond-
ing to I'® being T'rgp-related to I' , i.e.:

[T(T7q) o TY(W) = [I' o Trg](W).
Then, on one hand, using the hypothesis that TV**(T) = W, in the first
term we have:

T(Trg) o T™(W) = T(T7g) o W = T(T1g o W) = T(T(1g 0o W)) = %

and on the other side: T'o T (W) = T(T(1g o W)) = I'(¥)
Equalizing the two parts we get : I'(¥) = 4, which proves that + is an integral
curve on the base of I.

Now using the definition of W being an integral curve in the base for I'"** =
TxrqoTl“oxrg,ie: TxrgoI'“oxrgo(W) =W, so on one side we will have
that:

FVAR(W) =Txrq © I'o XTQ(W) =Txrqo FC(WC)
while on the other side:

W = (XTQ O WC) = TXTQ o WC

and it results: TS(W<) = W<, so W€ is the integral curve of I and so W is a
Jacobi field along 7.

[«<]For the inverse implication, from the Proposition 4 we have that if W
Jacobi field then W is the integral curve of I'Y*® and using item 2 of this theorem,

it results W is an integral curve in the base of 'R,
O
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3.2 The case of sodes on Lie algebroids

In what follows we consider here the generalization of the results from the pre-
vious section to the case of SODEs on Lie algebroids. After defining what a Lie
transported section of a Lie algebroid is, we will prove the property similar to
Proposition 2 from the classical case. In Subsection 3.2.1 we will define the
1-parameter family of integral curves of a section of a Lie algebroid and in Sub-
section 3.2.2 the Jacobi section, where we will also present the generalization of
the Jacobi equation to the context of Lie algebroid.

Let 7 : A — M be a Lie algebroid and o € Sec(A4). We will denote the
flow of the section o by (¢, ¢¢). An integral curve of a section o € Sec(A) is
an integral curve of the vector field p(o) € X(M). We set a point m € M and
consider the integral curve (o(t) = @¢(m) of p(o), starting at m and defined on
an interval I.

DEFINITION 22: A section Z of A along ( is said to be obtained by Lie transport
along the flow of ¢ if there exists £ € A, such that Z(t) = ¢4(&) for allt € I.

DEFINITION 23: The Lie derivative of a section Z of A along (o with respect to
o is the section along (o given by

(do2)(t) = d%qLSZ(t ws)| = }llii%%[q’),hZ(t +h) - Z(b).
It follows from the definition that if n € Sec(A) then [o,n] o (o = dx (10 (o).
PRrROPOSITION 5: The following properties are equivalent:
1. Z is Lie transported along the flow of o.
2. Foreveryt € I and every s such that s+t € I we have ¢p4(Z(t)) = Z(t+5s).
3. The Lie derivative of Z vanishes identically, d,Z(t) =0 for all t € 1.
4

. The curve Z: I — A is an integral curve of the complete lift vector field
pt(c°) € X(A) of the section o.

In Iocal coordinates (z%,y*) in A, the above properties express that the compo-
nents z' = (}(t), y* = Z*(t) of Z satisty the variational equation

) 7

' =plo

o .
= 0 P + ",
PROOF. We first prove (1) = (2) = (3) = (1) and later on (2) = (4) and
1). The final statement follows from (4) and the local expression of

yie3

Y

) I Z(1) = 94(€) then 6u(Z(1)) = 6u(64(¢
) Aplying ¢ we get ¢_(Z(t + 5)) = Z(
) The derivative of ¢_;Z(t) is

) = ¢s4(&) = 2(t +8)-
t) so that d, Z(t) =

—
— W N

%qb_tz() lim — [¢thz(t+h) $_1Z(t)]

= ¢ im - [¢ nZ(t+h) = Z(t)]
= ¢_yd, Z(t ) =0.
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Therefore it is constant, ¢_;Z(t) = £ and hence Z(t) = ¢.(§).

(2) = (4) The flow of the complete lift vector field p'(c) is {¢;}. Taking the
derivative of ¢4(Z(t)) = Z(t+s) with respect to s at s = 0 we get p' (0°)(Z(t)) =
Z(t). Therefore Z(t) is an integral curve of p* (o).

(4) = (1) If Z(t) is integral curve of p!(c¢), then Z(t) = ¢;(Z(0)) because {¢;}
is the flow of p!(c¢). Taking & = Z(0) we get that Z(¢) is Lie transported. [J

For the standard Lie algebroid A = T'M we have that ¢; = T'¢;, and we
recover the standard definitions and properties, and in particular a proof of
Proposition 2.

3.2.1 One-parameter families of solutions

We now consider a section o € Sec(A) and the integral curve (y of the vector
field p(o) starting at m € M, that is (o(t) = p:(m).

DEFINITION 24: A I-parameter family of integral curves of o € Sec(A) is a
morphism of Lie algebroids 0: TR? — A over (: (—¢,€) x ICR? — M of the
form 6 = o (((s,t))dt+p6(s,t)ds. The section Z along (, defined by Z(t) = 5(0,t)
is said to be the infinitesimal variation defined by the 1-parameter family.

It is implicit in this definition that the base map of 8 is ¢ and that for every
fixed s, the curve (s(t) = ((s,t) is an integral curve of o, i.e for p(c). Indeed,

p(0)(Go(1)) = ploCls, 1) = G 5,1) = (1),

where we have used that ¢t — o(((s,t)) is admissible, because 0 is a morphism.

THEOREM 10: A section Z along (g, an integral curve of o is the infinitesimal
variation defined by a l-parameter family of integral curves of o if and only if
it is Lie transported along the flow of o.

PROOF. [«<] Let Z(t) = ¢(&) for some £ € A,,. Consider an admissible curve
w: (—e,€) = A such that p(0) = £, and denote by v the base path, v = 7 o p.
The map

0(s,t) = als, t)dt + (s, t)ds = o (p(v(s)))dt + b4 (u(s))ds,

is a l-parameter family of integral curves of o. The base family is ((s,t) =
T(a(s,t)) = ¢e(v(s)). To prove it, we recall (see [43]) that 6 is a morphism
of Lie algebroids if and only if as(t) = «a(s,t) is admissible, b;(s) = B(s,t) is
admissible and x 4 (a,ﬂ, g—os‘) = (ﬂ,a, %).

Indeed, from [o,0] = 0 we get that ¢,o0 = cgop;, and therefore we can
rewrite as(t) = ¢:(o(v(s))), which is admissible because it is an integral curve
of p1(°). On the other hand, b;(s) = ¢;(u(s)) is admissible because ¢; is a mor-
phism of Lie algebroids (morphisms transform admissible curves into admissible
curves). Finally, to prove x4 (04757 g—i‘) = (5, «Q, %—f) it is enough to show that

Pt (xa(e, ,%)) = %. On one hand we have

%f(s,t) = %ﬁbt(ﬂ(s)) = ' (@) (@e(1(5))) = (p (0°)0B) (5, 1)

and on the other

XA (a,ﬂ, g—j) =xa (ooC,ﬂ,Tcro%) = xa(0o(, B, ToopoB) = o4,
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and applying p' to it we get p' (x4 (e, 8, 92)) = p!(c%0f) = p'(c°)oB = 2.

Therefore 6 is a morphism of Lie algebroids. The infinitesimal variation
defined by 6 is B(0,£) = 6,(1(0)) = &1(€) = Z(1).

[=] Conversely, given a 1-parameter family 0(s,t) = o({(s,t))dt + B(s, t)ds
of integral curves of o we will prove that Z(t) = £(0,t) is Lie transported by
showmg that it is an integral curve of p'(c°). Since # is a morphism we have
‘?)f = p'(xa(a,8,%2)), where a(s,t) = o(¢(s,t)), which at s = 0 gives

2(6) = 520, = (xa (o16(0,0), 5(0,0), To (52 (0,1))) ) =

= 0" (xa (o(Go®), Z(0). To(p(Z(1))))) ) = p'(e)Z (1)),

where we have used that 0(a) = xa(o(7(a)),a,To(p(a))), for a € A. O

From the proof we deduce that every 1-parameter family of integral curves
is necessarily of the form 6(s,t) = o(pi(v(s)))dt + ¢(u(s))ds and we have

v(s) =((s,0), puls) = B(s,0) and Z(t) = ¢¢(14(0))-

3.2.2 Jacobi equations

Jacobi sections. Our results in Subsection 3.1.2 for a SODE on a manifold
extend easily to the case of a SODE I' on a Lie algebroid.

DEFINITION 25: A I-parameter family of integral curves of a SODE T € Sec(T4 A)
is a morphism of the form O(s,t) = I'(a(s,t))dt + B(s, t)ds.

Let us analyze the expression in coordinates of the morphism O:

If we set the expression of I'(a(s, t)) = (a(s, t), B(s,t), V (s, t)), thenasT'is a
SODE whose base is a(s,t), we have that: a(s,t) = ((s,t). From the condition
of the curves ¢t — T'(«a(s,t)) to be admissible, we get the expresion of V' (s, t):

V(S,t):pl(l“(a(s,t))):w % .0,

Thus:

(afs, 1)) = (a(s,0), als, 1), 9 (5,1)).

Now consider the expression of B(s,t) = (a(s,t),3(s,t),V(s,t)). From the
condition of the curves s — B(s,t) to be admissible, we get that V(s t) =

‘g‘;‘ (s,t), thus:

B(Sat) = (a(s,t),ﬁ(s,t), %(Svt))

Next let us relate the infinitesimal variational section of this 1-parameter
family to the infinitesimal variational section of the corresponding 1-parameter
family in the base. Recall that the projection onto the second component of
elements from the prolongation of a Lie algebroid defined in Section 2.5.1, de-
noted by 7o is also a morphism of Lie algebroids. Thus the composition of
the morphism © with 7 will also be a morphism of Lie algebroids. With the
expressions that we obtained above we have:

T 00(s,t) = 0(s,t) = a(s, t)dt + B(s, t)ds
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is a morphism of Lie algebroids.

Denote by W (t) = 5(0,t) the infinitesimal variational section associated to
0 and by ap = «(0,t). Therefore we have the following relation between W and
the infinitesimal section corresponding to © at s =0 :

20(t) = B(0.1) = (a0(1), 5(0,0), 22(0,1)) =

0,
= xa (W) a0(0), 220,1)) = xa (WD) a0(0), W (1)) = W, (1),

DEFINITION 26: Given an integral curve ag of a SODE I' on a Lie algebroid A,
a section W of A along g = Toaq is said to be a Jacobi field along aq if its
complete lift Z = W¢ is an infinitesimal variational section.

Equivalently, W is a Jacobi section if it is an integral curve of p*(I'°), or
equivalently W is Lie transported, or equivalently if dr Wy = 0.

The Ehresmann connection associated to a sode on a Lie algebroid.
In the same way as in the standard case, any SODE on a Lie algebroid determines
an Ehresmann connection. The horizontal distribution associated to the SODE
I'=y*X,+ f*V, is also constructed as the eigenspace of eigenvalue —1 of drS.
Thus, in local coordinates, the connections coefficients are given by:

o 1 afa o

Also, related to this coefficients we introduce the following functions to be used
later: s

75 =T -Chy" =— (aﬁ+Cﬁ7 ). (3.6)
A local basis corresponding to the splitting associated to this SODE is:
{Ho =20 —TEVs, Vo ="V},

and the brackets of the elements from this basis are given by:

" ors ; Fg 8F“ ore
[HO“H[;]:C” HW"'(C::BF Paaf+Pﬂ i +F 5‘7 F%ay )V
ory
[Hao, V3] = 3y BV
[Va, V] = 0.

REMARK 8: The curvature of this nonlinear connection is given by: R(eq,eg) =
[Ha, Hg] — [eqa, es]", and similar to Remark 7 we observe that its expression in
local coordinates is:

) gre ore ore
_ a i B ) « B b «
R(ea,eﬁ) = (C;/ﬂ]‘—"y — pa@ + pg% -+ Fle — FBT:/JI’)VG
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The dynamical covariant derivative and the Jacobi endomorphism
associated to a sode on a Lie algebroid. Using the same arguments as
in the standard case we have that there is a derivation V and a tensor field ®
satisfying:

deif' = (Vo) + @) and  dpo’ = o'+ (V)"

where 7 is a section of 7*A = A X s A. Similar expressions hold for a section
W along the base curve of an integral curve of T :

drW" = (VW) + (W)Y and drWY¥ = —n" + (VW)Y,
If the local expression of a section W along g is W (t) = W%(t)e, then:

VW (1) = [W(t)+75(ao(t)) WP ()] ea  and (W) = DF(ao(t))W” (t)ea,
where the components of the Jacobi endomorphism are:

ofe

e drl'§ — 4§ T% —T§Chy". (3.7)

®F = —pp
Jacobi equation for a sode on a Lie algebroid. On the other hand, the
same arguments as in the standard case show that the complete lift of a section
W (with respect to an integral curve a of I, which we omit in the notation) has

the expression
We=Ww"+ (VW)".

From these facts, it follows that drW€ is vertical and has the expression
drWe = [VVW + ®(W)]Y,

and we have proved the following result.

THEOREM 11: A section W along the base curve of an integral curve a of the
SODE I' is a Jacobi section along a if and only if it satisfies the second-order
differential equation

VVW + ®(W) = 0.

This equation is the generalized Jacobi equation.

3.3 Riemannian geometry on Lie algebroids

A Riemannian metric can be introduced on the Lie algebroid structure. This was
done in [21], and later on in [5], where the Riemannian metric has been defined
as a fibre metric on a vector bundle. To its associated Levi-Civita connection
it corresponds a geodesic spray, whose integral curves are the geodesics of the
mentioned given connection.

DEFINITION 27: A Riemannian metric on a Lie algebroid 7 : A — M is a family
of scalar products, one for each point p € M (-,-), on the fibre A, such that
for any local sections «, B € Sec(A) the function p — (a(p), B(p) )p is smooth.
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Consider now 7 : A — M a Riemannian Lie algebroid, where the Riemannian
metric is denoted by (-, - ). For any leaf L of the characteristic foliation described
in Section 2.5, Vp € L we have A, = G, ® 9 , where 9; is the orthogonal to
Gp = Ker p,, with respect to (-, >p.

The restriction of the anchor p to 9; is an isomorphism on 7}, L, and hence
it induces a scalar product on T}, L :

(pla),p(b))r = (a,b),

where a,b € G- So, (-,-) induces a Riemannian metric (-,- )z on L. We call it
the induced Riemannian metric on the leaf L.

As in the classical case, to a Riemannian metric it can be associated an
unique A-connection, denoted by D, compatible with the metric, that is, it
satisfies: p(a)(B,n) = {(DsB,n)+{Dyn, S ) and that is symmetric, i.e., torsion
free: Dof—Dpga = [a, B]. This connection is called the Levi- Civita A-connection
associated to the Riemannian metric (-,-). It is uniquely determined by the
relation:

2(Daf,n) = pla)(B,n)+p(B){a,n)—pmn){a,B)+
+ ([n,al,B)+ ([n,6],a)+ ([, B],7m).

As in the case of Riemannian geometry on manifolds, from this relation the
expression of the Christoffel coefficients of the Levi-Civita A-connection follows:

Ffd =

a +pd 8 Pa 6Z‘i

59

1 a 8gda agca i 695(1
59 (” )+

1 _ _ .
+§9fa(cédgia + Chegid + Chagic)-

Denote the coefficients of the associated curvature defined by relation (2.25) by
R:.,., where R(e;,e;)e, = R;;pes. From the following relations:

ijk
Lo
Ve, (Ve,er) = Ve, (Trea) = p; 5t em + L linem
ory n
VEJ' (Vei ek) = VEJ (szen) - p? 81, em + sz:F]nem

Vieie;1€k = vC%eaek =ClINem = (I‘?j — F‘]lz) em

iy a

we get their expression:

_,0 arjk aarzk
zgk T Hpa 7 O

+ T, Iy — T8 — TLT5 + T4 T (3.8)

REMARK 9: As from now on we will work on Riemannian Lie algebroids, we will
consider the regular curves parametrized by arc length and thus defined on the
standard interval [0, 1].

The arc length for all continuous curve « which we denote by: s(t) =
ftt V(a(t),a(t'))dt’ is an increasing function as s'(t) > 0,Vt. In consequence
0
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the function s(t) is invertible, and its inverse 7(s) is also an increasing function.
Denote the base curve of a by «(t). If we reparametrize v by t = 7(s) we get
the curve n(s) = v(7(s)). Consider the curve 3(s) along 7 :

dr 1
= T (s)alr(s) =

B(s)
which is an admissible curve, as:

p(B(3)) = plalr()) T (5) = D (r(s)) I (s = LA _ i)

In this case it can be verified that §(s) is parametrized by arc length, in the
sense that:

We recall the notation D, for the covariant derivative associated to the
A—connection, as specified in Section 2.6, and we give the following definition:

DEFINITION 28: Let 7 : A — M be a Riemannian Lie algebroid and denote by
D the associated Levi-Civita connection. An admissible curve o : [0,1] — A is
a geodesic for D if it satisfies Dy = 0.

Then the geodesic spray for this Levi-Civita A—connection (see Remark 5)
is written in coordinates as follows:

1—‘geod = yaxa - FZdycdef' (39)

We consider, now, the relation between the dynamical covariant derivative
and the connection.

PROPOSITION 6: Let D be the Levi-Civita connection associated to the metric

and let V be the dynamical covariant derivative associated to the geodesic spray
Pgeod- Then
V - Dt~

PROOF. Take (8 a section along the integral curve « of the geodesic spray. Then:

DB = (B* +TXa"B)ey, and VB = (B(t) + 72 (e(t)) B™ (t))€as

where
1,0f¢ 1,0(-Te y™y™)
a_ (4 o0y (L Ttmnd I ) e vy _pa Y
VB 2(8y5 + B'yy ) 2( 8:[/’8 + ﬂ'yy ) fyﬂy ’
and so vy, (a(t)) = I'5,,,a”, from where the conclusion follows. O

Moreover, the Jacobi endomorphism can be expressed in terms of the cur-
vature of the connection.
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THEOREM 12: The Jacobi endomorphism associated to the geodesic spray of the
Levi-Civita connection and the curvature tensor of such connection are related

by:
0. (8) = R(B,a)o.

PrOOF. From the expression of the geodesic spray given in (3.9) we get that
ff= —Ffdycyd, and substituting it in formula (3.5) we have the coefficients of
its associated connection Iy = T, y*. On the other hand, from (3.7), using (3.6)
we get that the coefficients of the Jacobi endomorphism associated to I'geoq are
given by:

of®

ozt
a
mmn , m, n

Ol ; oIy

= Pi ax’ y'y — p:n a;zn ynym + F%mnrglymyn_F
1

+ 5(_ 7m - F?nl + Clam)rénynym - F?ncémynym =

_ % 8ann 7 argn

_(pb It — Pm At

Of = —pj—— —drly —v§Th —T5CH, " =

+ Flmn Zl - Fgmrlfrlnl + Flmbl_‘?n - Fém ;zn)ymyn.
Taking into consideration the formula of the curvature coefficients given by
(3.8) we get the wanted conclusion. O

It follows from the above results that a section S is a Jacobi section along a
geodesic « if and only if it satisfies

DtDtﬁ + R(B7 Oé)O[ = Oa

as in the case of standard Riemannian geometry. Therefore, in this case, we
always have the following Jacobi sections:

e 5(t) = a(t),
* (1) = ta(t),

which are trivial consequences of the relations Dy = 0 and R(a, a)a = 0.

REMARK 10: The equations of the geodesics of the Levi-Civita A-connection
coincide with the Euler-Lagrange equations for the regular Lagrangian L asso-
ciated to the Riemannian metric considered on the Lie algebroid, by the expres-
sion:

L(a(t) = 5 (a(t),a(t)) = 50050y, (3.10)

where g, is the matrix of a Riemannian metric on A. Indeed the system (2.33)
of the Euler-Lagrange equations in (2%, y)-a local system of coordinates on A,
becomes:

= poy”.

{?Jf (t) = —T Ly (t)y™ (1) (3.11)
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For this particular Lagrangian we have tha Bye = gap(x(t))y? and we then

compute: (L) = Szt ()y°(t)+9ar (2()3 (1) and G5 = L5 (w(0)y()y(¢).
Substituting in the first equation of the differential equations system (2.33)
we get:

o 3 (1) + g (203 (1) + Ol 0o’ = & ph o2 0y (1)1

The Lagrangian used is regular, that is, the matrix g,; is invertible. We
separate y/ from the above equation, denoting by ¢®f the inverse of the metric
matrix, and we indeed get the first equation from (3.11):

. 1 ; 09ed dg
gl =g ( P VY = 5 P’y ~ Clcgwdycyd) =

1 « 8gcd agac @ c
=59 f( v o T2, zpd) — 9™ Cgvay y” =
1 agda 8960( 8gcd 1 i i i 3
= _§9a (p opi TP —Pa oz )ycyd—igaf (CcdngrCZydgidﬂLOadgic)y°yd =

1 0 0 0 . ) _
_ af( i O9do YJea gcd) af(cl ) C s C s )] c,d _
[29 ¢y +pd Oz pa o +59 cd9iatCqq9id+Cqqbic ) |V Y

= chy (t )yd(t)'
<

REMARK 11: From this calculus it is also easy to notice that the Lagrangian
SODE for this L is the geodesic spray for the Levi-Civita connection given by
(3.9). o

3.4 Variational formulae

Let 7: A — M be a Riemannian Lie algebroid, with Riemann metric denoted
by (-,-). Then we can consider the action functional € : P([0,1], A) — R defined
by the metric Lagrangian:

which in this context will be called the energy functional, as in the case of
standard Riemannian geometry.

We already saw in Chapter 2 the first variation formula of the energy func-
tional of a Lagrangian system. For the particular case of the Lagrangian defined
by (3.10) we will rewrite this formula that appears in the proof of the Theorem
5, in terms of the Levi-Civita connection and moreover, we will give the formula
of the second variation of the energy for this particular Lagrangian.

First we will see the form the morphism condition (2.35) takes in terms of
the Levi-Civita connection.
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PROPOSITION 7: Consider a vector bundle ¢ map between TR? over R? and A
over M, written as ¢ = a(s,t)dt + B(s,t)ds, and assume that t — «(s,t) and
s+ fB(s,t) are admisible curves. Let D be a symmetric A-connection. Then ¢
is a Lie algebroid morphism if and only if

Dtﬁ = DSOé.

PrOOF. Indeed, using the expressions of the covariant derivative:

D3 = (% + chacﬂd> er and Dya = (% + cmacﬁd> €k,

we have that:

= +a’(Thy - F’jc)ﬁd) Ck-
S

Since the connection D is symmetric, the condition F’C“d — F’;C = Cfd takes place,
from where we get: D;3—Dsa = (%— ag: +Cfdacﬁd)ek,. It follows that D;3—
D;a =0 is equivalent to condition (2.35) characterizing such morphisms. [

First variation formula:

As in chapter 2, we consider variations a(t) = (s, t) of a given admissible curve
ap(t), with fixed base endpoints, and the associated morphism of Lie algebroids
¢ = als,t)dt + B(s,t)ds. We will use the Levi-Civita connection D to find a
expression of the fist derivative of the energy functional.

PROPOSITION 8: For any morphism ¢ : [0,1] x [0,1] — A of Lie algebroids,
¢ = a(s,t)dt + (s, t)ds we have the following expression of the first derivative
of the energy functional:

Ze(a) = (8l 1) a5, D)~ (5(s.0).als,0) = [ (5. Da)at. (3.12)
0

PROOF. Indeed, from the definition of the Levi-Civita connection we have

d d [*1 '
%E(QS)—%/O §<a,a>dt—/0 (Dsar, v )dt

and using the relation given by Proposition 7 we get:

C;ig(as):/01<D3a,a>dt:/ol<Dtﬁva>~

Finally integrating by parts, we arrive to

d%e(as):/o (D, / Di(a /1<5 Dia)dt =

1
:<5(871),04(871)>—<ﬁ(s,0),a(s,0)>—/0 (B, Dy ydt
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REMARK 12: When ¢ is an F-homotopy, the critical points of the energy func-
tional are the geodesics of the Levi-Civita connection, which as we mentioned in
Remark 10, satisfy the Euler-Lagrange equations for the Lagrangian associated
to the Riemannian metric by the expression (3.10). This is a particular case of
Theorem 5. o

Second variation formula:

Let us consider know the second derivative of the energy functional.

PROPOSITION 9: Let ¢ = «(s, t)dt + ((s,t)ds be a smooth homotopy such that
the curve ap(t) = «(0,t) is a geodesic. We have the following expressions for
the second derivative of the energy functional,

d2 1
@8(04) o /0 [( D¢Bo , DiBo )dt — { Bo , R(Bo, o) v )]dt, (3.13)
and
d2 1
e =- /O (Bo, DiDiflo + R(Bo, ao)axo dt, (3.14)

where R is the curvature tensor of the Levi-Civita connection, and 3y denotes
the curve Bo(t) = B(0,t) for all t € [0,1].

ProOF. Following the steps in the proof of proposition 8, we have that the first
derivative of the energy functional is

d 1
—&(ag) = D3, ).
Sl = [ (Dis.a)
Taking the derivative with respect to s in this expression we get

d2
ds?

1
e<a>:/0 (D.Dif .0} + (Dif . Ducr)] dt
:/O (DD, + R(B,a),a) + (DB, DyB)] dt
1 1
:/ <DtDsﬁ,a>dt+/ [(R(B,0)B,a)+ (DB, D)) dt,
0 0

where, in the second step, we have used DsD:§ — D:Ds8 = R(B,a)8 in the
first term, and we have taken into account that D;8 = Dy« in the second term.
Integrating by parts in the first term of this expression we get

d? 1

1
@ — [ (D.B.Dya)dt
ds? /0 (Daf, Dycx) dirt

€(a) = (D,B.a)]

t=0

1
+/ (DuB.DuB) + (R(B,)8 )] dt
0
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At s = 0 we have

d? !
@E(Q)L:O = <Dsﬁ‘820 » A0 >‘

1
- / (DyBls—0, Dicvy ) dit+
. 0
+ / [(Difo . DeBo) + ( R(Bo, a0)Bo » 0 )] dt
0

1
- /0 [(DuBo . Defio) + ( R(Boa)fo a0 )] dt

due to the following facts: (1) ap is a geodesic, so that Diag = 0, and (2) ¢ is
a homotopy, so that 8(s,0) = 0 and S(s,1) =0 for all s € [0,1], and taking the
derivative at s = 0 we get D;3(0,0) = 0 and D;3(0,1) = 0. Formula (3.13) fol-
lows by taking into account that the endomorphism R(«yg, Bo) is skew-symmetric
with respect to the scalar product, and hence

(R(Bo,0)Bo,a0) = —(Bo, R(Bo, ) ).

The second expression in the statement, equation (3.14), follows by taking
again integration by parts in (3.13),

d2
ds?

1
e(@) _, = (- Difo)|| = [ (50 DuDi)at+ (. R, o)

and taking into account that 5y(0) = 5(0,0) = 0 and fp(1) = 5(0,1) =0. O

REMARK 13: Taking into account the relation expressed in Using that the Ja-
cobi endomorphism ®,,(8y) = R(Bo, o) the second variation formula can be
written as

d2

78(0‘5)

1 1
= :/O (Dtﬁo,Dtﬁo>dt—/0 (Bo, Pay(Bo) )dt.

s=0
After integrating by parts we get:

d2

a2 ¢()

1
= 7/0 (Bo, DD o + oy (Bo) )dt.

s=0
o
REMARK 14: Taking into account Proposition and Theorem 12, that is V = D,

and ¢, (8) = R(B, o), we can recognize in equation (3.14) the expresion in the
left hand side of Jacobi equation, so that we can write

d2

@E(Q)

1
_ /O (Bo V'V B0 + By (o) Vit

s=0

Therefore, as in the case of standard Riemannian geometry, we have con-
nected the concept of Jacobi sections with the problem of minimizing the energy
functional. This is considered in the next section.
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3.5 Conjugate points and minimizing properties

In this Section we will study the minimizing properties of the geodesics, using
the second variation of the energy functional, in terms of the conjugate points.
More exactly we will generalize to Lie algebroids the result we have for the
tangent fibre bundle, that a geodesic, an integral curve on the base of a geodesic
spray has no conjugate points along it if and only if its integral curve is a weak
minimum for the energy functional.

DEFINITION 29: Let « : [0,1] — A be a geodesic. The points «(0), (1) are
said to be conjugated along « if there exists a a-Jacobi section  such that

B(0) = 5(1) = 0.

We shall need a slight generalization of the formulas for the second variation.
Up to now, we have considered only smooth sections. In order to ensure differ-
entiability of the energy functional in the topology of P(A,[0,1]);1 (we recall
that it is a foliated Banach submanifold of the the manifold A(A, [0, 1])7:! of ad-
missible C* curves with base C?) we need to generalize our results to piecewise
smooth sections.

Let a be a geodesic over the base curve 7, and consider the set of continuous
sections of A along v which are smooth on [t;,t;41] for 0 < t; < -+ <t = 1,
and which vanish at ¢ = 0 and t = 1. Then taking care about the computations
at the points ¢; one can find that the second differential of the energy functional
at a geodesic (i.e. a critical point) « is given by

1
&) (EaB1,Zafa) = _/o (B2, DD fr + R(Br, o) )dt+
k

+ Z<Dtﬂl(ti_+1) — DiBi(t]), Ba(tisn))-

=0

We will not prove this result, and we will take this expression as the definition
of a bilinear form that will denoted d?&(«)(81,82). In other words, we define

1
PE() (B, Ba) = — /0 (Ba, DyDifhy + R(Br, ) )i+

k

+ Z<Dt51(ti_+1) — Difi(t]) , Ba(tisn))-

=0

It should be clear that d?& is continuous in the given topology, and that for a
smooth homotopy we have

d2

a2 o)

= d*&(a)(Bo, o)-

s=0

This will be important later on, since we will approximate piecewise smooth
sections by smooth ones.

THEOREM 13: Let « : [0, 1] — A be a geodesic of a Riemannian Lie algebroid A.
If @ minimizes the energy functional, then o does not have conjugated points.

PRrROOF. By contradiction, suppose that 0,¢; are conjugated values along «,
0 < t; < 1. Then, there exists a a/[g¢,]-Jacobi section 8 # 0, 3(0) = 0, 3(t1) = 0.
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Let 0 <ty < t1 <ty <1 and let ( be any a—section such that:
Co,t0) = 0, Cltz,0) = 0,C(t1) = —(DeB) (1)

Let A3 a continuous piecewise smooth a-section given by the conditions B|[0,t1] =
ﬂ|[0,t1]7 and 6|[t17a] =0.
Then, for any n € R, the curve V = B+ n( is a continuous piecewise smooth

a-section, which is not differentiable at ¢; and it vanishes at 0 and 1. From
bilinearity we have

PE(a)(V,V) = d*E(a)(B, B) + 2nd*E(e) (B, C) + n*d*E(@) (¢, ©).

We now calculate each term in this expression.

On one hand

Dtﬂ Dt( dt—Aa<R(37a)av<>dt

0

(D, DyC )t + / (DB, DiC)dt+
0 t1

7/1<R(B,a)a,<>dt7/a<R(ﬂ~,o¢)a,<>dt
0 t1

=/1<Dt<Dtﬁ,c>—<DtDtﬁ,<>>dt+

0

+/ta<Dt<Dt/§,c>—<DtDtB,c>>dt+

—/1<R<5,a)a7<>dt—/a<R<B,a)a,<>dt
0 t1

= ((D:B)(t1),¢(t1) ) = (DeB)(07),€(0) )+
+{((DeB)(a) . ¢(a)) = (DB, C(tr) )+

a

0 DtDtB+R/67 ) aC>dt

= ((DeB)(t1), — tﬁ(t1)>
= —|DB(t)]* <
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On the other

)G, 3) = [ (D, Dij dtf/ (B, R(B,a)a)dt
0 0
_ [ (D8, D)t + / (DB, Do Vdt+
—/ (B.R (B,a)a>dt—/a<O,R(O,a)o¢>dt
0 t1

= /0 I(Dt<6aDtﬂ> - <57DtDtﬂ>)dt+

Jr/a(Dt(B,DtB)* < (B, DyD:f3))dt+

t1

—/01<57R(ﬁ,a)ﬂ>dt—0

a

t1 tl - -
7/ (8.DDif — R(B,a)a)dt + (5, D,5)|" —0
0 0

t1

:<57Dtﬂ>
=0.

Therefore

d*€(a)(V, V) = n*d?E(a)(C, O) — 2n| DeB(t1)I,

from where it follows that d*&(a)(V,V) < 0 for > 0 small enough.
_As d*&(a) is continuous, we can approximate 8 4+ n¢ by a smooth a-section
V, vanishing at 0 and 1, and such that d?&(a)(V,V) < 0

Let ¢ = a(s,t)dt+[(s,t)ds be a homotopy, defined on some interval (—¢, €) x
[0, 1], such that ag(t) = «(t) and B(0,t) = V. Taking into account that o = ayg
is a critical point of € we have the Taylor expansion

&) = 8(a)+§d28( )(V, V) + s°h(s),

where h(s) = 01 (1_2u)2 j—;c‘:(au) du.

It follows that &(a;) < &(a) for all s # 0 sufficiently small, which contradicts
the hypothesis. O

From now on we will consider a local basis of sections of A along the base
curve 7y of a geodesic a defined as follows. We consider an orthonormal basis of
Ay o) and we extend it to an orthonormal basis of A, ) by parallel transport.
Then we get an orthonormal basis of the module of sections of A along v. We
recall that a section o along 7 is parallel (with respect to «) if Dio = 0 for
all t € [0,1]. This is a linear differential equation for o which has a global
unique solution once fixed the initial condition for ¢(0). Therefore the above
procedure is well defined, and produces a basis {e,}. Moreover, such a basis is
orthonormal because

Di(eq,e5) = (Dieq,e5)+ (eq,Dieg) =0,

so that (eq,eg) is constant, and equal to the initial value 0, 3.
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In such a basis, if 0 = 0%(t)e, then Do = 6%(t)eq, so that D, reduces to
the usual derivative. The Jacobi endomorphism will be represented by a matrix
®(t) so that R(o,a)a = oG (t)oB (t)eq

From now on we fix one of such basis and we identify a section S with the
tuple of its components, which will be denoted by the same symbol. With this
notation, a section 3 is a Jacobi section if and only if 3 + ®3 = 0. The second
variation along a smooth section takes the expression

1
9(B1, B2) = d*E(a(t))(Br, B2) :/O [B1(6)T B2 (t) — Br()T @ (1) Ba (1)) dt.

With this convention we can now proceed as in the standard case.

THEOREM 14: Let o : [0,1] — A be a geodesic with a(0) = p, a(1) = q. Then,
p has no conjugate points along « if and only if the quadratic form

96, 8) = / BB + BT B(0)dt,

is positive definite on the vector space ¥y of the C! functions 3 : [0,1] — R™
such that $(0) = B(1) = 0.

PROOF. [«] In order to demonstrate this implication we suppose that there
exists a tg € (0,1] such that ag(tg) is conjugate to p along a and f is a Jacobi
a-section such that 5(0) = B(tg) = 0, 8 not identically zero.

If we define 3 to be the a-section such that

then ((t) is a a-section, not identically zero, 3 € ¥.
For this 3, which is derivable on [0, %] and on [to, 1], but whose derivatives
will not be the same in ¢y, so we’ll have to integrate it by parts, we have that:

1 .7.
[ BB~ o -
to . . 1
:/ [5T5—/3T<I>a6}dt+/ 0dt
0 to
tO .
:0—/ [B+ @B Bdt +0 =0,
0

as 3 is a Jacobi a4, -section, that vanishes in to.

_ T
So there exists an a-section, 3(t), not identically zero, such that fol B 65—

7T —
B ®p]dt = 0, so the functional is not positive defined, statement that contra-
dicts the hypotesis.

[=] For the direct implication, we start by observing that for any differen-
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tiable symmetric matrix W and for all § € X it takes place:
1y .
= — dt
0= [ GE"Wa)
1
= / (BTWB+ BTWS + BTWB)dt
0
1 . 1 .
= [(@hyar2 [ (W
0 0

so, adding this term to J(j, 5), won’t change the value of it:

1
/ 375 — BT®5 + 4TIV B + 257 W Bldt. (2)
0

Showing that J is positive definite is equivalent to showing that the above
expression (2) is positive definite.

An idea would be writing the integrand of (2) as a perfect square (step a)
and show it can never be zero (step b). One detail stays in the fact that the
integrand of (2) can be written as a perfect square if the matrix W can be
chosen such that

—®,, + W =W? (3)

that is, we need W to be a solution of this Ricatti equation.

We will concentrate on weather this equation has or not an useful solution
later (step c).

(a) Now, let us see that indeed, if we use (3) what becomes of the integrand
of (2) can be written as a perfect square. Substituting, we get:

Brop+pTWE+ BB+ 26" W B (4)
which can be written as a perfect square:

B+WBRT(B+WB).

(b) Moreover we must show that 3 + W} can not vanish on (0, 1], unless 3
is identically zero. )

It is obvious that S identically zero is a solution of the equation S+ W 5 = 0.
As B has to fulfill the boundary condition 8(0) = 0 as 8 € ¥, then by the
uniqueness theorem for first order differential equations, we have that the unique
solution of 3 4+ W3 = 0 that satisfy the mentioned boundary condition is 3
identically zero.

(¢) All we need now to show in order to conclude the demonstration is that
the Ricatti equation (3) has a solution W defined on (0, 1] such that with this
choice of W we have that the functional J is positive definite.

In order to show this, we’ll use the hypothesis that ag contains no conjugate
points to p along ag|o,1]-

The equation (3), a first order differential equation quadratic in the un-
known function, can be reduced to a linear equation of second order by making
the following change of variables W = —UU !, where U is the new unknown
invertible matrix. Then the equation turns into:

—U —oU =0. (5)
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(we need at least a solution of this equation with determinant different than
zero on (0,1])

The solution of the equation above with the initial condition U(0) = O,,, U(0) =
I,,, is a solution whose determinant does not vanish on (0, 1], due to the fact
that « contains no conjugate point to «(0) along it.

This solution of the Ricatti equation, W converted the functional into perfect
square in the way described, from where we get the wanted conclusion. O
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Chapter 4

Applications in Physics:
Virial Theorem

4.1 Introduction

The virial theorem was originally introduced by Clausius in 1870 [19] in the
field of the classical statistical mechanics, but soon it became more and more
important in many other different branches of physics. Nowadays the virial
theorem has a wide range of applicability, as it is applicable to dynamical and
thermodynamical systems, it can also be formulated to deal with relativistic
(in the sense of special relativity) systems, and it is also applicable to systems
with velocity dependent forces and for viscous systems. Even if it provides less
information than the equations of motion, it is simpler to apply and can provide
information concerning systems whose complete analysis may defy description.
For instance, in astronomy, the virial theorem finds applications in the theory
of dust and gas of interstellar space as well as cosmological considerations of the
universe as a whole and in other discussions concerning the stability of clusters
of galaxies. For an excellent historical account one can see [20].

In the particular case of the motion of a particle of mass m under the action
of a force F we can introduce a (virial) function G(x,v) = mx - v, and using
the Newton second law, one easily sees that when either the motion is periodic
of period T, or when the possible values of the function G remain bounded, the
limit of T' going to infinity of the time average over the time interval T" of G is
zero:

T T
@)= im 1 [ = pm L [CimvevexcEl=0
0 0

T—o0 T—o0

and as a consequence he obtained the following relation, where E. is the kinetic
energy, B, = %v -V,
{(2E.(v)+x-F)) =0.

Then, for the particular case of a conservative force, i.e. when there exists
a potential function V' (x) such that F = —VV:

(2E.(v)—x-VV) =0.

Moreover, when the potential V' is homogenous of degree k, Euler’s theorem for
homogenous functions establishes that x-VV = k V| and then the values for the

69
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time averages of the kinetic and the potential energies can be written in terms
of the total energy, E, as follows:

(B =1y and (V)= 1oy

When non-holonomic constraints are present, the forces are F = —VV +F,,
where F. are the constraint forces due to the nonholonomic constraints. In this
case, to be considered in section 4.4, a similar calculation shows that:

(2E.(v)—x-VV +x-F.) =0.

Assuming ideal constraints, so that the energy E is conserved, and in the par-
ticular case of a homogeneous potential of degree k we get:

k 1

(Ev) = ore e
2 1
(V) = mE + m«Fc “X)).

It has recently been shown in [7] that there exist geometric virial-like the-
orems that are generalizations for systems with a configuration space different
from R"™. These generalizations are based on the use of symplectic formalism as
an approach both in the Hamiltonian and the regular Lagrangian case. More
specifically it was proved that if (M,w) is a symplectic manifold, and Xg de-
notes the Hamiltonian vector field defined by the function F on M, i.e. the
one such that ix,w = dF, then for a function G remaining bounded in its time
evolution, using the property that the flow of the Hamiltonian vector field X g
on the symmetric manifold commutes with the action of Xz, one easily proves
that:

(XcH)) =0, (4.1)
where, as indicated before, by the time average we mean:
1 (7
(F) = Jim % [ PO a,

where -y is the evolution curve. In particular, when the motion of the dynamical
system is periodic with period 7 the time average reduces to:

1 T
(Fy =7 [ Fow@) .
T Jo
It is also remarkable that if (F})) and ((F5)) do exist, then ((F + F5)) also exists
and (F1 + F2)) = (F1)) + (F2).

When the configuration space is R3, the phase space is the cotangent bundle
T*R? which is endowed with its canonical symplectic structure wy. Then, for
the Clausius function in terms of Cartesian coordinates, G(x,p) = x - p, the
Hamiltonian vector field X is given by

) )

Xg=2"— —pi=—
¢ x@xl p(’?pi
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and represents the canonical lift to T*R? of the generator of dilatations in R3,
i.e. of the vector field in R3,

.0
D=z"—.
¥ ori
When the Hamiltonian is natural, i.e. of the form:

p-p
H(x,p) = Ho(p) + V(x) = —  t V(x),
and the function G remains bounded in its time evolution, the above virial
relation reduces to the usual one (2Hy — x - VV')) = 0, therefore the standard
virial theorem appears as a particular case of the more general property stated
for Hamiltonian systems in symplectic manifolds.

For the particular case of Hamiltonian systems, a regular Lagrangian system
(TQ,wr, Er), the virial relation for an appropriate function G € C*°(TQ) is:

(Xe(EL)) =0. (4.2)

When the Lagrangian function is of the mechanical type, L(x,v) = %m V-v—

V(x), the energy and the symplectic form corresponding to L are respectively
given by:

1 n ) )
Er(x,v) = 5mv~v+V(x), wr, = g mdx® A\ dv’,
i=1

and then if G(x,v) = mx - v the corresponding Hamiltonian vector field is

L0 0
Xo=2'55 ~ Vg

from which we recover the original virial theorem, because:

Xc(EL)(x,v)=x-VV(x) —mv-v.

The geometric version of the virial theorem for Hamiltonian systems given
in [7] can be expressed in terms of the Poisson bracket. On a Poisson manifold
(M’',{-,-}), every function H € C*°(M’) defines a dynamical system by & =
Xp(x) = {x, H}, ie. Xy = {-,H}. In the case of a Hamiltonian system
defined in a symplectic manifold, the Poisson bracket of two functions Fy, Fy
on the symplectic manifold is defined as {F1, Fo} = w(Xp,, XF,). For a virial
function G € C*°(M), as XgG = {G, H} the virial theorem (4.1) states that
the time average of the Poisson bracket {G, H} vanishes:

(G, 7)) =o0.

This relation is simply (4.1) in the case of a Hamiltonian dynamical system,
and it becomes (4.2) in the Lagrangian case where the Poisson bracket is given
by {F, G} = wL(XF, Xg)

In this chapter leaving from the geometric approach for the generalized virial
theorem given in [7], we pretend to both particularize some of the results ob-
tained there, for standard Lagrangians (i.e. of a the mechanical type), and to
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generalize them first to mechanical systems on Lie algebroids, and then to non-
holonomic systems both on the tangent bundle and on Lie algebroids. Moreover
it will be made use of quasi-coordinates to state in these instances the virial
theorem.

In Section 4.2 we will restrict to the Lagrangian formalism, and write in-
trinsically and in local coordinates the virial theorem for a Lagrangian system
of mechanical type on a Riemannian manifold. An important case we study is
that of an affine virial function associated to a vector field on the configuration
manifold. The special cases of a virial function associated to a Killing, a homo-
thetic and a conformal Killing vector field are considered and the corresponding
virial theorems are established for this type of functions.

Then, in Section 4.3 the geometric approach to the virial theorem developed
in [7] is written in terms of quasi-velocities in the Lagrangian case (see [14]),
and respectively in quasi-momenta in the Hamiltonian case.

In Section 4.4 we approach the virial theorem for nonholonomic mechanical
systems, using the Lagrange multipliers method and afterwards the distribu-
tional method for the description of this kind of systems. The second one
permits us to create a similarity between the holonomic and the nonholonomic
case, as it will make possible the writing of the virial theorem using a nonholo-
nomic bracket. In the end it will be given a description of the main results using
quasi-velocities.

Afterwards, the extension of similar results to the framework of mechanics in
Lie algebroids is made in Section 4.5, and to nonholonomic mechanical systems
on Lie algebroids, in Section 4.6.

4.2 Virial Theorem for Mechanical Lagrangians
on 1()

In Subsection 4.2.1 the form of mechanical Lagrangians is reminded. Then,
the virial theorem for Lagrangian systems of mechanical type is presented, in
Subsection 4.2.2 both in intrinsic form and in terms of local coordinates. As
a particular case, a special virial function G, and then a spherical geometry
problem, are used in order to show some examples.

In Subsection 4.2.3 we consider a particularly important case of an affine on
the velocities virial function, as associated to a vector field on the configuration
manifold. The cases where the vector field is either a Killing, a homothetic
or a conformal Killing vector field, are considered in Subection 4.2.4. Several
examples are used to illustrate the theory.

4.2.1 Mechanical Lagrangians

We can define Lagrangians of mechanical type for systems with configuration
space @, L € C*(TQ), by choosing a (pseudo-)Riemann structure g on @ and
a potential function V' € C*(Q) as follows:

Low(0,0) = 5 94(0.0) — (0V)(@,0) = 3 g(0,0) = V(@) (43)
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Le. the Lagrangian function is of the form L, v = T, — 75V, where the function
T, € C*(TQ) represents the kinetic energy for the Riemannian metric g given
above, which can be rewritten as:

1
T, = 5 9(T1g o D, T1g 0 D),

with D being any second order differential equation vector field, i.e. a vector
field on T'Q) such that 7rq o D = idrq, while the potential energy V = 75V is a
basic function, i.e. the pull-back of a smooth function V' on the base manifold
Q.

Given a Riemann structure g on a manifold @) with local expression in a local
chart (2.14), the expression for the corresponding free (i.e. V = 0) Lagrangian,
i.e. the function Ty is:

1 i g
Tg(q7 U) = 5 glj (Q) v UJ7 (44)
while the coordinate expression of an arbitrary second order vector field is:
;0 ; 0
D 5 =" e ¢ 3 e 45
(q,v) vaqﬁf(qv)avz (4.5)

4.2.2 Virial theorem for Mechanical Lagrangians

The energy of a Lagrangian system is defined by Ey, = AL — L, where A is
the Liouville vector field, generator of dilations along the fibres.

If the Lagrangian is of a mechanical type Lg v, then, as A(Ty) = 2T, and
A(V) =0, the total energy of a Lagrangian system of mechanical type is Ej, =
T, + V. The coordinate expression of the Cartan 1-form ; = dL o S for such
Lagrangian (4.3) is given by:

01(q,v) = gij(q) v dg’
and the symplectic form wy, = —dfy, by:

. 1 /g - Ogei o\
wr, :gijdqz/\dvj—i—( Jij —gkjvj) dg' A dg".

2 \ Og* oqt

The dynamics is then given by the dynamical vector field I';, defined for a regular
Lagrangian L by:
z'prL = dEL, (46)

and the solution of such dynamical equation (4.6) turns out to be

.0 . o OV 0
i i 7.,k ©j
FL (qa ’U) v aqz ( J (q)'U v g (q) 8q-7 (q)> i )

where I‘é- . are the Christoffel symbols of the second kind with respect to the
Levi-Civita connection defined by the metric g, as given by (2.17).
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The Hamiltonian vector field of a smooth function G on T'Q is determined
by the equation ix,wy, = dG and in local coordinates is given by

o 0G 0
- J(g) 2= i

ik Jin n __ 9kn n lj el o
+ 9"(q) K " (q)v od (q)v )g (@) 5.5 (@) o0 (@v)| 55

(4.7)
Since the total energy of the system is Fr, =T + V, then,
_ oG (L a0V oG o

Xa(Br) = ~T1(6) = 55 (Tt 44150 ) - 28 (4.3

The wirial theorem, {Xa(EL))) = 0 (see e.g. [7] for a geometric approach),
establishes the following relation of time average:

0C (1 ik 1OV 8G i

We will see that the preceding expression is much simpler when the vector field
Xq is a complete lift.

From the expression I', (G) = X°(L), evaluating on the time evolution and
averaging on the interval [0, 7], in the limit when T' — oo, we get as we did in
[7] in an analogous case, the wvirial theorem stating that if G remains bounded,
then:

(X(L)) = 0 = (X(Ty) = X(V))) =0,

whose local coordinate expression is

1 dg; ax* oV
k ij z j J k
(X*3 20UVt Bg griviv? — X 5t ) =0. (4.9)

A particular case studied in [7], is when there exists a nonzero real number a
such that XL = a L, and then we recover the result (L)) = 0,i.e. (T—-V)) =0

EXAMPLE 3 (Spherical geometry): Consider as an illustrative example the mo-
tion of a unity mass point on a sphere of radius R = 1/ VX centred at the origin
and the usual spherical polar coordinates, i.e. a point P on the sphere is fixed
by two coordinates (6, ¢) such that

x(0,¢) = (R sinf cos ¢, R sin 6 sin ¢, R cos ),

and then
goo = R*, 9oy =0, ggs = R*sin?9,

i.e. the arc-length is
ds? = R*(d6* + sin® 0 do?). (4.10)
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Suppose that the motion is under the action described by a potential function
V() that does not depend on ¢ but only on the distance to the North pole.
Then, if X is the vector field on the base X = tanf9d/00, with complete lift

X°¢= tan@% + secQHUgaiUe,

as the kinetic energy is T' = 3 R*(v} + sin® 6 v2) and

X¢(T) = R*(sec*0 vj + sin? 905,), X(V) =tan6 887‘9/’

the Virial Theorem establishes that

oV
(R?(sec?0 v} + sin® 0 vi)» = ((tan @ %»
The points of the lower half sphere can be described by the points obtained
by central projection onto the tangent plane x3 = —R, i.e. points (g1, ¢2, —R)
such that
R R? sinf
q = e e cos ¢ = —Rtan#f cos ¢
—T3 ) R cos®
R R? sind si
qG = 2 W sin g = —Rtan# sin¢
—x3 R cosf

or eliminating the South pole and using polar coordinates (r,¢) centred at
(0,0,—R), i.e. r = —Rtan6, having in mind that

do 1 1 1 1

dr — R 1+(r/R2 R 1+Ar?
the expression of the arc-length becomes

2
1 9 T

ds* = ———d —d¢*.
STt T ®
In terms of the new coordinates, as tanf = —r/R,
20 =14 M2 20 = (14 x2)! — R(1+ \”
sec”d = 1+ Ar?, sin —ﬁ(—i—r) ) v = R(1 4 Ar®)ug

and then we can rewrite the preceding equation as

(0 + 227 02 40220 = (r (4 ) 00, (4.11)

which coincides with the expression (14) of [55]. However, in [55] such expression

was only proved for two special cases and it was proposed as a guess for the
general case. 4

4.2.3 Virial Theorem for Killing vector fields
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As mentioned earlier, the Virial Theorem for a given smooth bounded func-
tion G is but (Xg(EL))) = 0, which for systems of mechanical type reduces to
{Xa(T) + Xa(V)) = 0. A particularly simple case would be when X¢ is a
complete lift and this property constraints the possible form of G.

Note first that looking at expression (4.7) and asking for the vector field X
to be 7o projectable, a necessary and sufficient condition for this to happen is
that G /Ov® be a basic function, i.e. G is an affine in velocities function, or in
more geometric language, there must be a 1-form a = ax(q)d¢® on Q and a
function ¢ on @ such that

G =a+T1H,
and then the To-related vector field is g~ (a).

With this form of G, in order for X to be a complete lift, the 7g-related
vector field must be g7!(a), i.e.: drg(Xe) = g '() and the n functions oy
and the function ¢ on the base manifold must satisfy, for any index i:

0 ij k_ ik | (09 n  OGkn )\ i jOa;  Op
o o) ot =5 | (G - G ) ey —v Gt - 28,

These conditions can be rewritten for any pair of indices (i, k), as:

99" i 0a; i 091k im im O9mk 1 o, 45 o
Q; aqk +y9 6qk_g 8ng Om — g 8ql g aj_aqjg ) aiqk—ov
and therefore as follows
g Oay n do\ _ _9g™ 4 giighn gk im_in O9mk 9 _
Oqk  OgI " gk dq’ oqt )’ gk '
Using now that N
8970 _ ilgjmaglm
Oq* gk’

the preceding equation becomes
(0o oy o . 0g om0 OGmi
i J ) — ir ns2JTs ij In °_ im In ZIMR
g <8qk + 5qj> Qn <g g dq* +9°9 B g g aq )

or equivalently

(Do Oy y g1 Ogi.  Ogjn ;
7 J : _ ij Iln J v J =9 n lan .
I (8(1’“ * 861]) “nge (aqk MY nd Tk

which can be rewritten as
8ij 80ék i
ot ag 2 Lie

or in other words, for any pair of indices 1, k,

Oa; i Oay, i

Multiplying both sides by Z7Y”* and summing on repeated indices we see that
this equation is the coordinate expression of the intrinsic one

(Vya,Z) +(Vza,Y) =0, VY, Z € X(Q),
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so that the 2-covariant tensor field Vo is skew-symmetric. But as o = g(X), the
relation (2.18) allows us to express this condition as ¢(Vy X, Z)+¢(Z,Vy X) =
0, which means that X satisfies the Killing condition (2.22). The preceding
result can be summarized in the following proposition whose intrinsic proof is
also given:

PRrROPOSITION 10: The vector field X € X(Q) is a Killing vector w.r.t. the
Riemann structure g iff Xz = X¢, where Q is the linear in the fibers function
defined by the 1-form o = g(X).

PRrOOF. The linear in the fibers function G' = (fr,, X¢) is nothing but the
function @, because:

(0,, X) = (T, 0 5, X°) = (dT,, S(X°)) = XV (Ty),

where the vector field XV is the vertical lift of X [23, 24], and therefore,

(0,, X)(v) = %Tg(v +5X (1 (v))],_y = 9(X (1 (v)),v) = a(v),

for every v € TQ.

If the Hamiltonian vector field X is the complete lift X ¢, then the relation
(2.2) shows that X¢(Ep) = —X¢(L), because X(L) = TG = —Xg(FL) =
—X°(Ep). Therefore, X°(T,) — X°(V) = =X°(T,) — X°(V), i.e. X°(Ty) =0,
and then X is a Killing vector.

On the other hand, if X is a Killing vector we have that Tz, , = 0. Since
i(chXc)ng = eTLxg =0, then X = X°. O]

Let X be a Killing vector field, and oo = g(X) the associated 1-form. As we
have seen, X5 = X¢, from where we have:
{Er,a} = XgEL = X°Ep = Exer, =To g+ 75 (LxV) =75 (LxV).
Taking mean values we get that for every Killing vector field X:
(LxV) =o0.

Therefore, if X is not a symmetry of the potential energy then the mean value of
the derivative £xV vanishes along any trajectory of the Lagrangian dynamical
system.

EXAMPLE 4 (Spherical geometry revisited): Coming back to the case of the
spherical geometry, we can say that the vector field

0 0
X=Xo—=+Xp—
Y.
is a Killing vector field if and only if its complete lift
, 0 0 0Xop 0Xop 0 0X, 0Xy 0
X=Xy — 4+ Xy — + [ 22 20 (e —
" 56 " “’a(ﬁ( 26 """ 96 %) auﬁ( 20 "t 99 ) Bu,

is a symmetry of the kinetic energy

1
T(0,0,v9,v8) = 5(1)3 + sin® 6 v3).
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From the condition

(aa)ge Vg + 88);9 %) v9+Sin29 <a[“)X02¢ vo + 3;;45 %) vy+Xp sin 6 cos0v¢2 -0,

we obtain the conditions:

0Xp
tol7}
0Xp .9 ,0Xy

—ad) + sin 975‘9 =0

sin 6 <cos0Xg + sinﬁ%) =0

:O7

One solution is given by Xy = 0 and X, = 1, i.e. the vector field X5 = 0/0¢
is a Killing vector field. Another particular solution is Xg = cos¢ and X4 =
—sin ¢ cotan @, and then another Killing vector field is

0 . 0
X7 = cos (/5% — sm(bcotanea—d).

The corresponding virial theorem is
ov . oV
{(Lx, V) = 0= ((cos g7 ) = (sin ¢ cotan 9%».
N

EXAMPLE 5 (Periodic Toda lattice with n particles): A periodic Toda lattice
system with n particles without impurities (each particle as the same mass m),
is defined by a mechanical Lagrangian L =T — V on TR". The kinetic energy
is the quadratic function defined by the Euclidian metric on R",

1 n
T(vi) = 5 vaiz,
i=1
and the potential is given by

n
Vig) = Ze(Ii_q'HJ,
i=1

where ¢,4+1 = ¢q1. Consider the following vector field, for a fixed k =1,...,n,
0
X = —.
g,

The vector field is a Killing vector w.r.t. the Euclidean metric.
Then the Virial Theorem implies that (Lx, V) = ((e% %+t —e@-170k ) = ().
Therefore, (e~ +1)) = (e-1~ %) for every k and hence (V) = n{{e?~92)).
N

ExaMPLE 6 (Kepler problem in polar coordinates): Consider a particle P of
mass m moving in a plane under the action of a central force F(r) = —ymm//r?
on the direction of a fixed point O of mass m’ > m, where 7 is a positive constant
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and r represents the distance between O and the point particle P. Let ¢ be
the angle that the line OP makes with a fixed direction on the plane. In polar
coordinates the arc-length is given by ds? = dr? + r2d¢?. The kinetic energy of
the particle is given by

m
T(r,6,,.00) = ' (02 41 02)

and the potential is the function V(r) = —ymm’/r. The vector field

1
X :cos¢% — ;sin¢ﬁ

is a Killing vector field of the Euclidean metric in polar coordinates. Then the
Virial Theorem tell us that (£ xV)) = 0, that is, {(— cos(¢)ymm//r?)) = 0.
<

4.2.4 Virial Theorem for conformal and homothetic vector
fields

Conformal Killing vector fields and in particular homothetic vector fields
have also been relevant in many problems in physics and more particularly in
space-time geometry (see e.g, [37, 6, 29]). We now explore the information that
we can extract from them in the problem of virial theorem we are considering.
With this aim we first find the difference between the Hamiltonian vector field
Xg associated to the 1-form o = g(X), where X is a vector field on @ and X¢
the complete lift of X.

DEFINITION 30: A vector field X on Riemannian manifold (Q, g) is a conformal
Killing vector field if there exists a function f € C*(Q) such that Lxg = fg.

ProproOSITION 11: If X is the vector field on ) associated to the 1-form «,
a = g(X), and as before @ € C™(TQ) is the function a(v) = g(X(rg(v)),v),
forv € T'Q, then the difference of the complete lift X¢ of X and the Hamiltonian
vector field Xg associated to @ with respect to the symplectic form wr, is the
vertical vector field whose contraction with the symplectic form wr, is the semi-
basic 1-form Or, .

PRrROOF. Notice first that as both vector fields, X¢ and Xg, are projectable on
the vector field X = §~!(a), the difference vector is vertical. Moreover, taking
into account the above mentioned relation (f7,, X¢) = &, we have

i(Xa - xe)WT, = ixa0r, — ixewr, = da +ixedor,, (4.12)

and then
i(xaxeywr, = d(ix<0z,) +ixeddr, = LxcOr, = Oxer, =07, ,,  (4.13)
where the last equality follows from (2.23). O

It is also well known (see e.g. [15]) that contraction with the symplectic forms
wy, defined by a regular Lagrangian L establishes a one-to-one correspondence of
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vertical vector fields with semi basic 1-forms. More explicitly, in the particular
case we are considering of L = T}, the semi basic 1-form corresponding to the
Liouville vector field A, generating dilation along the fibers of T'Q, is —fr,
because, as 67, is semi-basic,

iawr, = —iadlr, = —LablT,,
and as 07, is homogeneous of degree one in velocities, we find that
iawr, = —0r,. (4.14)
This allows us to write:
I(Xy—X)WT, = *iAWTLXg~

As a consequence, in the case of a conformal Killing vector field, we have
the following result.

THEOREM 15: A vector field X on the Riemannian manifold (Q, g) is a confor-
mal Killing vector field if and only if Xz = X¢ — f A, where « is the 1-form
a=g(X).
PROOF. Indeed, if X is a conformal Killing vector field, there exists a function
f € C*(Q) such that Lxg = fg, and then 0r. ., = fOr,. The relation
(4.13) reduces in this case to i(x,—xeywr, = f0r,, and then using (4.14), to
I(Xa—Xe)WT, = —i(f A)wT,- As wr, is nondegenerate we find Xz — X = —fA.

Conversely, if there exists a function f € C°°(Q) such that Xz — X¢ = — fA,
then

i(Xa—Xc)ng = 77;(][ AT, = faTg’

and as a consequence of (4.13) we obtain that HTL.XH = f0r,, which implies
Lxg= fgand then X is a conformal Killing vector field. O

This result is in agreement with the meaning of being a conformal Killing vector
field: its flow transforms geodesics in re-parameterized geodesics, the responsible
for reparametrization is the term f A. Of course, for f = 0 we recover the result
of Proposition 1.

Virial Theorem for conformal Killing vector fields: The preceding
result allows us to now state:

THEOREM 16: Let us consider a Lagrangian of mechanical type L = Ly vy =
Ty — 75V, a conformal Killing vector field X for g, and the associated 1-form
a =g(X). Then we have that

(fTy — LxV)) =0.

PROOF. If o = g(X) is the associated 1-form, from the relation Xz = X — fA
it follows that

{EL,a} = XaFE, =X°E, — fAE, = Execy, — 2ng = —ng + Té(va),

where we have used that Excr, = T¢ o +75(LxV) = fT,+75(£x V). Applying
the virial theorem (({Er,a})) = 0 we obtain the result. O
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ExaMPLE T7: Consider now the spherical geometry metric (4.10) for R = 1
and look for a conformal vector field of the form X = Xy(0) 9/00. From the
relationships

Lx(d?) = 2Xpdf?,  Lx(sin?0dp?) = 2 sinf cosb Xg do?
we see that in order to be a conformal vector field one must have:
2 Xy = 2cotan § Xy = f(6),

from where we obtain Xy = siné and f(0) = 2 cos . Therefore the correspond-
ing Virial relation reads

(2 cosOT,) = ((cosf (v + sin? 91}5)))) = ((sin 0%—‘9/»

EXAMPLE 8: Another example with three degrees of freedom is the metric
ds* = h(r) dr? + r2(d6* + sin” 0 dp?), h(r) > 0.

If we look for a conformal vector field of the form X = X,.(r) 9/0r we arrive to
the relationship

Lxg=(hX, +2hX,)dr*+2r X, (d6? +sin® 0 d¢*) = f g,
and we see that in order to be a conformal vector field one must have:

' ) 2X,
%X,+2X = =

f

from where we can conclude that X, is a solution of the differential equation

: 1h 1 r
XT+<2hT‘>XTO:>XTChl/2

and f = 2C/hY?. In particular for h(r) = 1, the Euclidean metric, we have
the homothetic dilation vector field X = r 9/9r, with f = 2 while for h(r) = 12
we find the conformal vector field X = 0/0r with a conformal factor f =
2/r.Therefore the corresponding Virial relations read

ov

(2Ty) = (LxV) = (0 +1?(vf +sin® 0v3))) = {r5,

)-

and
2 . oV
(ST) = (LxV) = (r (0 + 08 +sin 022)) = (5.
<
We can prove a similar result when we have two Riemann metrics g and ¢’ on
Q@ and the vector field X € X(Q) relates them in the following way Lxg = fg¢'.

THEOREM 17: Consider a Lagrangian of mechanical type L = Ly v =Ty =14V
If there exists a function f € C*°(Q) such that Lxg = f ¢', and @ = G(X), then,

(fTy — LxV) = 0.
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PROOF. Since @ = (0, X°), then I', (&) = X°(L). Hence,

(Ep.a} = XaBy = —X°(L) = —X(T,) + 76(£xV) =
= _TLXg + Té(va) = —ng/ + Té([;xV)

The Virial Theorem implies that (—fTy + £xV)) = 0, and the result follows.
0

EXAMPLE 9 (Spherical geometry): In example 3 the vector field X = tan(6)dy
defines the virial function. In polar coordinates, this vector is given by

X =71+ M?)0,.

The vector field X is not a conformal vector field of the Euclidian metric ¢’
given by ds? = dr? + r2d¢?, but Lxg = 2(1 + Ar?)~!g’. In this case, we have
the formula: {(2(1 + Ar?)~'T,)) = (Lx V) which is equivalent to (4.11). N

Virial theorem for homothetic vector fields: When the vector field X is
homothetic, i.e. f = pis a real constant, Lxg = p g, then LxT; = 1Ty, where
T, is the kinetic energy T'.

In example 9, when A — 0, the limit vector field is the infinitesimal generator
of dilations on R? written in polar coordinates, and it is a 2—homothetic vector
field of the Euclidian metric, so in the limit the Virial Theorem implies that
2(T,) = (rd, V).

If V is a X-homogeneous function of degree v, i.e. LxV = vV, then (uT, —
vV)) = 0 because of (X°(T,) — LxV)) = 0. Using that the energy is a constant
E along a trajectory we also have (T, + V) = E, from where

v t
T,) = E and V) = E.
(T = R
As a particular case, if both degrees of homogeneity are equal v = u = a
then we have that

(T) = (V) = 5.

On the other hand, this condition is equivalent to £Lx.L = alL, and hence we
can apply directly a result in [7] obtaining (L)) = 0, from where we also get
E =2(Ty) = 2(V)-

4.3 Virial Theorem for Mechanical systems on
T'( in quasi-coordinates

In this section, using this time quasi-coordinates, we will present the modern
geometric approach to the virial theorem developed in [7], where a Hamiltonian
formalism is being used, and as a particular case is obtained the virial theorem
for a regular Lagrangian system.

In many problems in classical mechanics and control theory it is useful to
consider quasi-velocities. For instance, in studying the rotation of a rigid body,
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it is traditional to use Euler’s angles to parametrize the orientation of the body
while using body angular velocities to describe the dynamics. Similarly, for a
system with nonholonomic constraints (i.e. constraints on the velocities that
are not derivable from position constraints) one can define quasi-velocities in
such a way that some of them coincide with the constraints, obtaining in this
way fewer equations to solve.

An important fact of using quasi-coordinates in determining the virial the-
orem on 7T'Q, is that, as the quasi-coordinates are not related with the tangent
structure of 7 : TQ — @, using only the vector bundle structure of it and the
Lie algebra structure on X(Q), we will be able to naturally generalize in Section
4.5 and Section 4.6 the virial theorem obtained in quasi-coordinates on T'Q to
a Lie algebroid, where, as there is no preferred basis of sections, there is no
preferred choice of coordinates.

We consider a configuration manifold () where a mechanical system is evolv-
ing. The traditional concept of velocities and momenta are obtained when con-
sidering a local chart (U, q',...,q"), the coordinate basis {9/9¢’} and its dual
{dg’}. Then, as we mentioned in section 2.1, if v, respectively ¢ are written in
this basis as: v = v70/9¢’ and ( = p; d¢’, then v/ = (d¢’,v) and p; = (¢,0/0¢")
are the usual velocities and momenta.

Alternatively we can chose a local basis of vector fields on Q, { X7, ..., X, },
and the dual basis {a!,...,a™}. Any tangent vector v € T,Q can be expressed
uniquely as v = w’/ X;(¢g). The real numbers (w?',...,w™) are called the quasi-
velocities of v in the given basis. In terms of the dual basis w/ = (o’ (q), v). Sim-
ilarly a covector ¢ € T,/() can be expressed as ( = 7; a’(q), and then (71, ..., 7,)
are called the quasi-momenta of  in the given basis, which can be obtained as
m; = (¢, X;(q)). The pair (¢*,w’) is called the quasi-coordinates of v € T'Q and
the pair (¢°,7y) is called the quasi-coordinates of ( € T*Q (see [14]).

The relation between standard velocities and quasi-velocities is given by the
well-known basis change formulas. If X; = ﬁ]k (q) % is the coordinate expression

J .
then dg? = ,Bi (q)a* and it follows that v’ = wjﬂ; (q) and 7, = p;BL(q). A system
of quasi-coordinates has an associakted set of local functions on @ called Hamel’s
symbols given by 7»]%1 = ﬁ{nﬁl’(%aq{ — gﬁ), where !, is the inverse matrix of

7, e af, 87" = 6., They can be defined by means of da* = —2kam A,
or alternatively by [X,, X;] = 7%, Xk.

of the vector field X; in the coordinate basis, where

4.3.1 Lagrangian formalism

Consider now a dynamical system defined by a regular Lagrangian L € C*>°(TQ).
As mentioned in Subsection 2.1.2, the dynamical vector field 'y, € X(T'Q) is de-
termined by the dynamical equation ¢r,w; = dEr, where w;, = —dfr, is the
Cartan 2-form associated to the Lagrangian and Ej, is the energy function de-
fined by L. In quasi-coordinates (¢*,w’) on the tangent bundle 7'Q, the differen-
tial of an arbitrary function G € C*°(T'Q) is given by dG = X;(G)ad + 2<% duw/,
and the expression in quasi-coordinates of the Cartan 2-form wy, = —dfy, by:

1, 0L oL oL I 0L k .
= X ) X [ )| @™ — dw’ .
wr 9 |:7ml wk + A <awm) 2 (awl>:| aAal+ Swi Owk o A cw
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Therefore, the dynamical vector field I';, = Xg, is given by

; i oL oL 0
FL = ’U)ij + WTZ [wmvﬁllawk - anXm <8u}l) + XZ(L):| W’

where [IW"] is the inverse matrix of [0?L/0w!dw"], and the Hamiltonian vector
field of the function G is

5 0G - oL oL oL oG 0
X =WI'_=X;+Wi{ | =4k + X s—= | ~ X | 2= | | W™ = — Xi(G) } =—-
¢ ow! al { [awk Ymi A ow™ ow! ow" 1@ owJ
For a virial function G the virial theorem on T'Q in quasi-coordinates takes
the form

oG oL oL

(et [ Xon (55 ) = XalL) = um by | —wi X)) =0 (419

The above equation provides a geometric interpretation of the Boltzmann’s for-
malism of the virial theorem.

An important case is that of the function G = (01, X¢), where X is a
vector field on @ and X°€ is its complete lift to T'Q. It was proved in [7] that
{G,EL} = TG = X°L, from where it follows that from the condition of the
virial theorem we have (X¢L)) = 0. In quasi-coordinates, if X = f*X; then the
expression of the complete lift is

c % 7 7 j 4 0
X = "X + [Xu(f') +7iyf] wk@wi’

and therefore

(FAG(L) + [Xe(f) + 7y 1] w* Sj )=

If moreover the Lagrangian is of mechanical type, L = T — V, then the virial
theorem has the form {(X¢(T)) = (X(V))). In coordinates, turns out to be

(FXUAT) + KR + kg b ooy = (P, (416)

ExaMPLE 10 (Kepler problem and quasi-velocities): Let us consider a particle
P of mass m moving in a plane under the action of a central force F(r) =
—ymm’ /r? on the direction of a fixed point O of mass m’ > m, where 7 is a
positive constant and r represents the distance between O and the particle P.
The configuration space of the system is @ = R? — {O}. Let 6 be the angle
that the line OP makes with a fixed direction on the plane. Consider as quasi-
velocities w! = 7 and w? = 2 9, corresponding to twice the area swept-out per
time unit. Then,
1,2 m 12, L2 ymm/
L(r,@,w,w)—2 (w™) +r2(w) "

Let X = r0, be the infinitesimal generator of dilations on the space R? written
in polar coordinates. The complete lift of X is the vector field X¢ = r0, +
w!dy1 + 2w?0,2 on the tangent bundle TR?. If the virial function is defined
by G = (0, X¢), that is, G(r,0,w', w?) = mrw!, then the Hamiltonian vector
field of G turns out to be Xg = 79, — w'd,1. Applying formula (4.16), we
obtain (rd, V) = (m(w")? + m@SY, that is, (—V) = (2T) as expected. <

r2
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4.3.2 Hamiltonian formalism

As specified in Subsection 2.1.1, a function in the phase space, H € C*(T*Q),
determines an associated Hamiltonian vector field Xy by the dynamical equa-
tion ix,wo = dH, where wy = —dfp is the canonical symplectic form on T%Q).
The motions of the system are the integral curves of Xy. In quasi-coordinates
(¢°,m;) on the cotangent bundle T*Q, the differential of an arbitrary function
G € C>®(T*Q) is given by: dG = X;(G)a’ + g—fjdﬂ. The canonical 1-form

6y has the expression 6y = m,a* and the canonical symplectic form wy = —dfy
is locally given by wg = o* A dm; + %ﬁk%kjoﬂ A a?. Therefore, the Hamiltonian
vector field associated to the function G is given by:

oG 0G e
Xe =g ki~ (’Bi og T T aw)

0
(“)m-'

Given a virial function G on T*Q, the virial theorem in the Hamiltonian
formulation written in quasi-coordinates is:

;0G 0H ;0G 0H  0G O0H

Y« ¥ B AT =
(5 om; O¢J & o¢’ Om; i om; Om; )

This equation provides a geometric interpretation of the virial theorem as pre-
sented in [28] by using the Poincaré’s formalism.

Particularly important are fibrewise linear virial functions. Every vector field
X on the base manifold @ is associated with a linear function G € C*(T*Q)
defined by G(¢) = (¢, X(q)) for ¢ € T;Q. The associated Hamiltonian vector
field is the complete lift X¢ of X to T*Q. In quasi-coordinates (¢*, ;) on T*Q,
if X has the expression X = f'X;, then G(q,7) = 71, f*(¢) and the Hamiltonian
vector field has the expression:

ofk

) , o 0

For such a function the virial theorem can be expressed in the form:

- OH  _Off oH
J £ _ I
<<ﬂzf aqj 7 0qj Trkaﬂ_i

) = 0. (4.17)

OH
— meyf f I

4.4 Virial Theorem for Nonholonomic Mechan-
ical systems

We will first use the standard description of the nonholonomic systems in
terms of Lagrange multipliers, using D’Alambert principle, and later on we will
pose the problem in the more modern language of the distributional approach
in which the Lagrange multipliers are eliminated by considering the appropriate
manifolds, in order to study the virial theorem for nonholonomic mechanical
systems. This second approach permits us to get similar results as in the un-
constrained case, using this time the nonholonomic bracket, which is a Poisson
bracket that does not satisfy the Jacobi identity, i.e. an almost-Poisson bracket.
Finally we will make again appeal to the use of quasi-velocities.
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4.4.1 Lagrange multipliers approach

For the regular nonholonomic system (L, D), with L a regular Lagrangian,
the following elementary result is the basis of the Virial Theorem. By a virial
function we mean any function on 7T'Q) whose time evolution is bounded. This
of course depends on the initial conditions of the solution, and in what follows
we will implicitly assume the hypothesis that we have selected a set of initial
conditions satisfying this property.

ProposiTiON 12: If G is a virial function on T'Q, then the time average of
Lr . G vanishes:

nh

{(£r,,G) = 0. (4.18)
PROOF. Let y(t) be a solution of the constrained dynamics, 'y, 0y = lsz' Then,
v*(Lr,,G) = % (v*@) . From the definition of the time average we have:

w19 _ o (G)(r) = (v G)(0)
(£Lr,,G) = lim — @ (v'G)dt = lim - _
Since v*G is bounded we conclude that the limit is zero. O

As an immediate consequence we have the following result.

THEOREM 18: Under the conditions stated above, if GG is a virial function on
TQ, we have that

(TL(G) + Aa Za(G)) = 0. (4.19)
In local coordinates, taking in account (2.7) this relation is:
L 0G /0L 02L oG
i Y ijg ([ Y2k A =
(v £ +W <8xj Ll + Aawj > B » =0. (4.20)

In applications, the virial function G is generally chosen as the Hamiltonian
function associated to a vector field which generates a 1-parameter group of
transformation of interest (for instance the dilation group in the case Q =
R™) and we pretend to write the consequences of the virial theorem in the
nonholonomic case directly in terms of such a vector field.

THEOREM 19: Let X¢ be the complete lift of a vector field X on @, and G =
(0, X°) be the virial function. Then,

(X(L) + M aw? (X)) = 0. (4.21)

PROOF. Since the solution 'y, = ', + AaZ4 is a SODE vector field we can
rewrite Lagrange-D’Alembert equations in the form:

Lr. 0p =dL + Xy 0™,
Contracting with X¢ we obtain:
Lun(G) = Lr,, ({01, X))
= (Lr,, 00, X — (0r,Lp,, X°)
= dL(X®) + A w?(X)
where we have taken into account that Lr,, X¢ is vertical and 0y, is semibasic.

It follows from Proposition 12 that (T (G)) = 0, ie. (X°(L) + Aaw? (X))
vanishes. O
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We remark that, if X is a section of the vector bundle D, the constraint
manifold described in detail in the Section 2.2.1, then the above Virial Theorem
reduces to the simpler form (X¢(L)) = 0.

ExXAMPLE 11 ( Nonholonomic harmonic oscillator): To illustrate the theory we
will consider the nonholonomic dynamical system known as the nonholonomic
harmonic oscillator.

Consider an isotropic harmonic oscillator moving in @ = R? with coordinates
(21,22, 23). The Lagrangian function

1 1
L:T—V:§u€+£+¢@—§@€+ﬁ+x9
We have wy, = dx1 A di1 + dxo A dio + dxs A dis and dE, = &1dT1 + Todds +
T3di3+x1dry+rodrs+x3drs, so the unconstrained dynamics is the well-known
dynamics described by the vector field

. .0 .0 0 0 0
FL=$17+$27+£37—$17,— - —

axl 8:02 85C3 8{,171 2 8@2 x?’aix‘g

We constraint the motion of the particle by introducing the nonholonomic
constraint
¢:£.C3—ZL'2$1:0.

The constraint submanifold is given by

D = {(z1, x2, x3; &1, &2, 23) € TQ | &3 = T2y }.
Applying Lagrange-D’Alembert’s principle we find
T1&o — 2122 + 23 < 0 0 >

Ty =T 2 ., 2
: L+t 1+ a2 O 2 011

We consider the dilation vector field

X=x ier iJrsc 9
- 18.’1)1 28.132 38l‘3

and we apply the virial theorem. The virial function is G = z1&1 + z2&s + 33
and we get
<<2T — X(V) + l‘lngil‘li‘g» = O7

or in other words

T1Z9 — T1T2 + 23
1+ a3

<<2T — 2V 4+ (.Z‘g — leg)» = 0,

and taking into account conservation of the energy we finally get

FE 1 x129 — 120 + 23

(T) =5 —7(

(z3 — 1172)))

2 4 1+ 23
E 1, &1Zo — 172 + T3
V=242 - ,
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4.4.2 Distributional approach

In the above treatment using the Lagrange multipliers, it is not explicit that
the different objects have to be defined in the constraint distribution. Moreover,
in the unconstrained case, the virial theorem, as well as many other interesting
results, are stated in terms of the Poisson bracket associated to the symplectic
form. So, in what follows we will study how the theory can be developed only
in terms of objects intrinsically defined in D and in terms of an almost-Poisson
bracket, the nonholonomic bracket.

The virial theorem

With the help of the nonholonomic bracket defined by relation (2.10), or al-
ternatively by (2.11), and taking into account Theorem 3, we can rewrite the
nonholonomic virial theorem in the following form.

THEOREM 20: For any virial function G we have that

({G, Ec}an) = 0. (4.22)

In this way the nonholonomic virial theorem can be expressed in a similar
manner to the holonomic virial theorem with the only difference that the bracket
is the nonholonomic bracket instead of the Poisson bracket associated to the
symplectic form.

In particular, if X is a section of D, i.e. a vector field on @ taking values
in D, then for G = (61 ,X¢) a simple calculation shows that {G, Er}nn =
Lp, G =LxcL|p, so that {(Lx-L)) = 0.

4.4.3 Virial theorem for nonholonomic mechanical sys-
tems in quasi-velocities

In nonholonomic mechanics the use of quasi-velocities is highly convenient [14].
Consider a local basis {X,} of vector fields spanning the distribution D C T'Q
and complete with a family of vector fields {X4} to a local basis {X,} =
{Xa,Xa} of X(Q). Taking a local coordinate system (z%) on the manifold @
we have that 9

oz’
for some local functions p?, € C°°(Q). The brackets of the vector fields in such
a basis are [Xo,Xg] = C7,X,, where the functions Cg € C*°(Q) are the so

¥
called Hammel’s transpositional symbols, which are determined by

Xo = pfx (423)

k
P % ) opk
* Ozt B oxi

=pkCl,. (4.24)

Associated to this choice of coordinates in @ and the local basis of vector
fields in @ there is a coordinate system (x%,y®) in T'Q where y* are the coor-
dinates of a vector in the basis {X,}. For vector fields on T'Q we have a local
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basis {X,, V. } given by

0 0

Notice that we have denoted with the same symbol X, the local vector fields on
Q@ and on T'Q which have the same coordinate expression. The dual basis will be
denoted by {X*,V*}, and it is related to the differential of the coordinates by
means of dz’ = pi,X® and dy® = V. Notice that X* = w4 are the constraint
1-forms that we used in section 4.4.1.

The local expressions for the Lagrangian energy and the Cartan 2-form are [8,
14]

E,=—y*“—1L 4.26
L dye Y ( )
0%L 1 0°L . 0’L . oL
= —— XAV + - : - LA O ) X AP
wr Oy>0yP *3 (39:13310‘ Ps OxioyP Poc Oy “5>

(4.27)

In the coordinates (z°,y®) = (z*,y%, y*) on T'Q the equations for D, i.e. the
constraints, are simply y4 = 0, or in other words, (z°,y®) are coordinates for
D. In what respect to the decomposition TTQ|p = TPD @ (TPD)L we have
that {X,,V,} is a local basis of TPD, and a simple calculation shows that a
local basis {Ya, Z4} of sections of (TPD)" is given by

Za=Va—Q%WVa,  Ya=Xa—Q4Xs+CMay, — MupQ%)Ve, (4.28)

where Q4 = Wa,C% and €% are the components of the inverse of the matrix
Cap = %(mi,yc,gf‘ =0), and Myp = wr,(Xqa, Xg). Therefore the expression
of the projector onto (TPD)L is Q = Z4 @ VA 4+ Y, ®@ XA,

For the constrained dynamics, we look for a section I'yy of TPD, so that
it is of the local form I'yy, = g%X, + f*V,. Assuming a regular constrained
system, from the local expression (4.27) of the Cartan 2-form and the local
expression (4.26) of the energy function, we get that g = y* and the functions
f® are the solution of the linear equations

oL ., L ,, oL oL
: Oy —pi =2 =0 4.29
ooy’ T amiay Y T g el T Pag =0 (4.29)

where all the partial derivatives of the Lagrangian are to be evaluated on y = 0.
The differential equations for the integral curves of I'yy, i.e. Lagrange-
d’Alembert differential equations, are in quasi-velocities

@' = pLy”,
d (0L\ 0L . OL
yt =0

Finally, the contraction of ir ,wy — dE;, with X4 just gives the value of the
Lagrange multipliers Ay = (ir,,wr — dEL,Xa )| a—¢, i.e. the components of
the constraint forces A\ = A4 X4.
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In what respect to the virial theorem, if X is a section of D with local
expression X = X*X,, then

oL
oy®

T8 el P Lo ST B

oL
Ot P OxJ

+ CA Xdyb
bd ayA

» =0. (4.31)
where all partial derivatives must be taken at y4 = 0.

EXAMPLE 12 (The nonholonomic harmonic oscillator): Consider again an isotropic
harmonic oscillator in @ = R3, with Lagrangian function

1. . . 1
L= 5(@1 +5 +&3) - 5 (] + 23+ 23),

subjected to the nonholonomic constraint ¢ = &3 — xod1 = 0.
As a basis {X1,Xa} of sections of D we can take,

O 0 0
1= (3'£E1 26$3 ’ o 8952

which we can complete with the vector field X3 = 8%3 . The only non-vanishing
bracket is [X1,Xa] = —X3, so that C3; = —C%, = 1, and for other indices
c) 5 =0.
The associated quasivelocities are related to the velocities by
(Y1,y2,93) = (21,22, T3 — Tad1),

(i'l, ig,ig) = (y17y27y3 + I2y1)7

and substituting in the Lagrangian we get

1
L(wy,x23,91,Y2,Y3) = (Z/% + 3+ (ys + ﬂf2y1)2) - 5@% + 23+ 23).

|~

Taking the vector field X = x1X; + x2X5 so that

0 0 0
X =a1 X1 +22X2 + ylaT,l + y287y2 + (Y21 — nyl)aTJ?,

and applying the virial theorem we get (X°L) = 0 which, after taking into
account that y3 = 0, reads

(2T — X (V) + z1229192))) = 0,
or equivalently

(2T — 2V + 21299192 + w3(23 — 2172))) = 0.

4.5 Virial Theorem for Mechanical systems on
Lie algebroids
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In this section, a generalization of the virial theorem for mechanical systems
on Lie algebroids is given, using the geometric tools of Lagrangian and Hamil-
tonian mechanics on the prolongation of the Lie algebroid A in the Lagrangian
case, respectively of A* with respect to the Lie algebroid A for the Hamiltonian
case. (see [35, 41])

The two Lie algebroids 744 — A and T4A4* — A are both particular
cases of symplectic Lie algebroids, i.e a Lie algebroid with a regular bilinear
2-form, closed with respect to the exterior differential operator defined on it.
For any symplectic Lie algebroid, ¥ — M, with anchor map denoted by p,
every function H € C*°(M) defines a dynamical system on the base manifold
M as follows. Given the function H, there is a unique section oy of F, called
Hamiltonian section of H, such that i,,w = dH. The vector field Xy = p(og)
is the infinitesimal generator of such a dynamical system. In both particular
instances considered here, the basis manifold is A, so any smooth function on A
defines a dynamical system on it, and so, unique Hamiltonian sections of T4 A,
respectively of T4A*.

The Hamiltonian vector field Xy can also be obtained in terms of a Poisson
bracket on the base manifold M. Indeed, given two function F,G € C*(M),
the bracket defined by {F,G} = w(op,0q) is a Poisson bracket on M. We
clearly see the relations {F, G} =i, dF = p(og)F = X¢F = - XrG.

We remark that the generalization of the virial theorem to the framework of
the Lie algebroids can be done naturally. In the tangent bundle case, we have
proved these results using quasi-coordinates. The geometrical interpretation for
quasi-coordinates has been given in [14]. As it forgets the tangent structure
and uses only the vector bundle structure 7o : TQ — @ and the Lie algebra
structure |-, -] on the set of vector fields on @, it follows naturally to consider
these results to the more general framework of Lie algebroids. In this formalism
we also do not have a preferred choice of coordinates on the base manifold, as
we do not have a canonical choice of basis for sections.

4.5.1 Lagrangian formalism

As we presented in Section 2.7.1, the dynamical section 'y, € Sec(T4A)
determined by the equation iprL = dEyp, is given by: 'y = y*X, + f*V,

with fo = Wo? (pfg ggfl - pﬁy Oﬂay -C ﬁyﬁ E}y’Y) where [IW?] is the inverse

matrix of [82L/ 8ya8y5]. In the above expressions {X,,V,} denotes a basis of
T4 A constructed as in Section 2.5.1 and {X%,V*} denotes its dual basis.

The differential of a function G € C*(A) is dG = p’, 5 ga x> + ﬁ\?a and
therefore the wvirial theorem in this case, which states that (pt(TL)GY) = 0,
which locally amounts to {(pl,y® gg + f“ gyG

) = 0, or explicitly

oL 0%L oL\ 0G
B_~ = B
( 96 @ pﬁy OxtOy? C(’By é)gﬂ)ay b=

(oo™ 5

ExAMPLE 13: Consider a Lagrangian function L on a finite-dimensional Lie
algebra g, that we consider as a Lie algebroid over a point. For a constant
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vector a € g we consider the virial function G(y) = a” %. The virial theorem

becomes ((ad; 2—5» = 0, which in quasi-coordinates reads (( gyLw Cogy™) = 0,
where we already took into account that a is arbitrary.

In the particular case of a free rigid body, we have g = s0(3) and the La-
grangian is L(w) = %w - Iw, where I are the inertia tensor. It follows that,
{w x Iw)) = 0, in concordance with the result in the Hamiltonian formalism. <

Let o be a section of A, ¢ its complete lift to T4A4, and take as virial
function G = (1, 0°). Then, as it was proved in [41] that we have drG = d,- L,
or in other words {G, F,} = d,cL. Therefore we can prove the following result.

THEOREM 21: Let o be a section on the Lie algebroid A and let o¢ be its com-
plete lift to TAA. Assume that G = (01, 0°) is bounded on its time evolution.
Then {(p*(o¢)(L))) = 0.
EXAMPLE 14: A heavy top can be modeled on the Lie algebroid S? x s0(3) — 52
with Lagrangian L = %w - Tw — mgly - e (see [41] for the notation and other
details). Taking the linear function G = a - v and applying the virial theorem
we get ((a- (v x w))) =0, and since a is arbitrary we arrive to (v X w)) = 0.
On the other hand, we consider a constant vector a on R?® = s0(3) and the
associated constant section of A given by o(v) = (v, a). The complete lift of o
is 0¢ = a'X; + (a X w)*V;. Applying theorem 21 we get that (p(c°)L)) = 0, and
after an straightforward computation and taking into account that a is arbitrary
we arrive at {(w x Tw)) = mgl{{y x e)). q

4.5.2 Hamiltonian formalism

Let 7 : A — M be a Lie algebroid over a manifold M, with anchor p
and bracket [-,-]. In the construction of the prolongation a fibered manifold
with respect to a Lie algebroid, from Section 2.5.1, as the fibre bundle P we will
consider v : A* — M, the dual bundle of A. Thus we will work on the A-tangent
to A*, who is a Lie algebroid (T4A* [-,-], p'). Taking local coordinates (z%)
on M and choosing a basis {e,} of sections of A and the dual basis {e®}, we
have the local coordinates (x%, u,) on the bundle A*, and we can define the local
basis {X,, P} of sections of T4 A* as explained in Section 2.5.1. We will denote
by {X*,P,} the dual basis. We then have, p*(X,) = p,0,: and p'(P*) = d,.,,
and for a function f € C°°(A*) its differential is df = p’, ga{i X + a%;?a.

In the A-tangent of A* there is a canonical section 64 of (T4A*)*, called
the Liouville section, defined by 64 (a*)(b,v) = a*(b), for (b,v) € ToxA*, and a
canonical symplectic section wq = —df4. In coordinates, they are given by

1
04 = paX® and wy =X*AP, + 5Ogﬁmoca AXP.

The Hamiltonian section I'zy € Sec(T4A*) defined by a function H € C>(A*)
is written in local coordinates

OH OH - OH
Ty = 79604 _ Y e i : o zJ-AA*
1= e = (o G+ 0257 ) 77 € Sec(T47),
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and then, the virial theorem in the Hamiltonian formalism on a Lie algebroid
{p*(T)G) = 0 in local coordinates is:

JOH 0G  ,0H 0G . OH 0G

(0o g a2~ P 5 o~ o8 1 B

D=0, GeC=(A). (4.32)

ExAMPLE 15: Consider a finite-dimensional Lie algebra g as a Lie algebroid over
a singleton M = {e}. For a Hamiltonian H € C'*°(g*) and a linear virial func-
tion G(u) = (a,p), with a € g a constant vector, the virial theorem becomes
((ad*%y w) = 0. Taking a local basis on g and the corresponding linear coordi-

nates on g* we get (1,CJ 5 2 i a®)) = 0, where C ; are the structure constants.

Since a is arbitrary we get ((uﬂ,C’ZB gli » =0 for every a = 1,...,dimg.

An important particular case is that of a free rigid body. The Lie algebra
is g = s0(3) and the Hamiltonian is defined by H(u) = p -1 'y, where [ is
the inertia tensor. The virial theorem tell us that each component of the cross

product I~1p x p has vanishing time average. <

4.6 Virial Theorem for Nonholonomic Mechan-
ical systems on Lie algebroids

Finally, in this section, we present another application of the Lie algebroids,
the virial theorem for nonholonomic systems on this structure, using again the
two approaches considered in the tangent bundle case: the Lagrangian multi-
pliers approach and the distributional approach.

4.6.1 Lagrange multipliers approach

Consider a dynamical system defined by a regular Lagrangian L on the Lie
algebroid A. Suppose the system has k linear nonholonomic constraints ¢, = 0,
each one associated to a 1-form ¢, € Q(A), defined by:

an(l',y) = <¢a(.’£) ’y> = ¢abybvv(xay) S A

Consider a vector subbundle D — M of A, where D is the constrained
manifold. The dynamics of the nonholonomic system is defined by a section
Iy on the D-tangent bundle to the bundle D — M, TPD, and obeys the
d’Alambert-Chetaev principle (i.e. the work of the reaction forces is null for all
virtual displacements):

irnth —dFEL € SeC(@O)
Fnh|rD S Sec(‘J’D‘D)

where DO = {¢,|a = 1, k} is the annihilator of D and D° = {p3(¢a)|a =1, k}
is a vector bundle given by the lift of the elements of DY to elements of the dual
bundle of T4 A, where 75 : TAA — A is the projection defined by 7 (a,b,c) = b.
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The dynamics is given by the equation
irwr — dEL = =Aa75 (%),

where the semi-basic sections 73 (¢?) = ¢,5X? are the reaction forces and the
Lagrange multipliers A, € C*°(A) are determined by the tangency conditions
p'(Tan)da = 0,Ya =1, %.

In order to determine the multipliers we will assume the compatibility con-
dition that: Cgp = p? (Za)ngb is a regular matrix for all points in the constrained
manifold D. The nonholonomic system (L, D) is called regular when the com-
patibility condition is satisfied, and we will further assume this to be satisfied.

The solution can be written as I'y, = ' + Ay Z4, where I'f, is the solu-
tion of the unconstrained system and Z, is the vertical section of the T4A
given by iz wr = —p5(ds); in coordinates the vertical section is given by
Zo =W e Vp.

Under the previous conditions of regularity, we can establish a virial theorem
for nonholonomic systems.

For a virial function G on the Lie algebroid A, that is, a bounded smooth
function on the algebroid, we have

(p' (Cun)G)) = 0.

THEOREM 22: Let (L,D) be a regular nonholonomic system defined on a Lie
algebroid. If G is a virial function on the Lie algebroid, then

(p"(TL)G + Xap' (Z2)G)) = 0,

where I'y, is the solution of the unconstraint system, Z, is the vertical section
of TAA given by iz, wr = —75(¢a) and )\, represents the Lagrange multipliers
determined by the tangency conditions.
Proor. If X¢ is 7o— projectable, that is, 79 0 X¢ = o o 7, then we can prove
that p'(Z,)G = ¢u(0).
In fact, pl(Za)G = iZaiXGwL = _iXGiZaWL = ’L'XGTQ*(gba) = ¢a(0).
Then, the theorem implies (p*(T'L)G + Aaa(c)) = 0. O
The section Ty, = T'p + Ao Z, is a SODE because S(T'y,) = A, and then,

Lr 0 =dL+ \o75 Pa-

nh

Let o¢ be the complete lift to T4 A of a section ¢ of A.

THEOREM 23: Let G = (0, ,0°) be the virial function. Then the virial theorem
implies that {p*(0¢)L + X\adq(0))) = 0.

The proof is an immediate generalization of the proof of Theorem 19.
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EXAMPLE 16 (The Suslov system):

A rigid body about a fixed point moves under the action of the following
nonholonomic constraint: the angular velocity vector of the body is orthogonal
to a fixed direction of the space, given by the vector V.

The configuration space of the problem is the Lie group SO(3). The Lie
algebra in this case, so(3) will be identified with R3, and under this identification
the Lie bracket on so(3) will be the cross product x on R3. We will think of
this Lie algebra as a Lie algebroid over a one point basis.

Denote an element of the Lie algebroid so(3) by w which by the identification
with R? can be seen as: w = (w1, ws,ws3). Then a basis of the prolongation of this
Lie algebroid is given by: Xo(a) = (a, e;, pi,52) and Va(a) = (a,0, 325). The
Lagrangian of the system is given by L(w) = 5(/(w),w), while the constraint
is: (w,V)=0.

The dynamic section is: 'y, = w®Xy + [I7Hw x (Iw))]*Ve + AT V)YV,

where \ = —{UJw)xw.l_ V) (IZU‘)/X’}?{‘;EV>

Then we have:

(V-

((Iw) X w, I71V)

pl(rnh) = [I_l(w x (Iw)) — (V,I-1V)

a) For 0 = wie; as 0 = 2L.X* = [,3wPX* then G = (0L, ,0°) = L.

owe

Then if G is bounded the Virial theorem states that:
(({w) x w,I*1V>
(V,I71V)

{(p' (Can)L) =0 — (— Vw) =0.

b) For o = a’e; the function G is G = Ioégwo‘a/3 and from the virial theorem
if G is bounded, it results:

((Iw) x w, I71V)
(V. I-1V)

([ w x (Iw)]*Iapa” ~ (I7'V) Lagad”) =

((Iw) x w,I7V)
(V,I71V)

= {((wx (Iw),Ia) - V-a) =0.

4.6.2 Distributional approach

Regularity

In what follows we will also assume the considered Lagrangian is regular in at
least a neighborhood of D, and that the constrained system (L, D) is regular,
i.e: the Lagrange-d’Alembert equations have a unique solution.

An important geometric object in this case, is the subbundle F' C TAA|p —
D of TAA — A, whose fiber at a point a € D is F, = wzl('D:(a)).

F, = {ve T2A] exists ¢ € D24y such that wr(v,u) = (¢, Trar|pop(u) ), Vu € TAA}.

In this case it will also be useful to give a geometrical characterization for
the nonholonomic regular systems, equivalent to Theorem 1.



96 CHAPTER 4. APPLICATIONS IN PHYSICS: VIRIAL THEOREM

THEOREM 24: The following properties are equivalent:

(1) The constrained Lagrangian system (L, D) is regular;

(2) Ker G1'P = {0};

(3) TADNF = {0} & (3') TAA|p = TAD @ F;

(4) TPD N (TPD)L = {0} & (&) TAA|p = TPD @ (TP D)L,

where (TPD)+ C TAA|p the orthogonal to TP D with respect to the sym-
plectic form w;, and where as in the TQ counterpart G1°P is the restriction of
the Hessian fiber GF to D.

For the complete proof see [22].

Due to this theorem and using the same reasoning as in the Section 2.2.2; it
results that any nonholonomic mechanical system on a Lie algebroid is always
regular.

Projectors

Using the equivalent conditions for the regularity of a constrained Lagrangian
system from Theorem 24 we will be able to arrive to the constrained dynamical
section in terms of the free dynamical section, in two manners. For it, corre-
spondingly we will define two projections onto T4D and TP D, corresponding
to the decomposition (3’), respectively (4°) of TPD.

Projection to 74D : As a consequence of the assumption that the con-
strained system (L, D) is regular, we have the direct sum decomposition given
by (3"): TAA=TAD & F,, for every a € D.

This allows us to define the following complementary projectors, defined by
the decomposition from above: P, : TAA — TAD and Q, : TAA — F,,Ya € D.

THEOREM 25: Let (L, D) be a regular constrained Lagrangian system and let T'f,
be the solution of the free dynamics, i.e.: ir wr, = dE,. Then the solution of the
constrained dynamics is the SODE, I'yp,, obtained by projection T'py, = P(T'r|p).

Local expression in adapted coordinates: Let (z%) be local coordinates on
an open set U C M , and {e,} a local basis of sections of D C A and complete
it to a basis of local sections of A, defined on U : {e,,ea}. In this case we
denote the associated coordinates on A to this local basis by (27, y®, y*). In this
set of coordinates, the constraints imposed by the submanifold D C A are just
y? = 0. If {e?, e} is the dual basis of {e,, e}, then a basis for the annihilator
D° of D is {e*} and a basis for Do is XA

A basis {Z 4} of the local sections of F is given by Z4 = X4 — Q%V,, where

Q%Y = WapC%, with € is the inverse matrix of Cyp(z?,y¢) = %(zi,ycﬁ).
The local expression of the projector @, over F is then: Q = Z4 ® V4 and
the expression of the constrained dynamic section is given by:

1_‘nh = yaxa + (,fa + fAQ%)’V(M

where all the functions f® are evaluated at y* = 0 and the expression of free
dynamic section is: 'y, = y*X, + f*V,.
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Projection to 7PD : Again according to the regular condition for the con-
strained system (L, D) it takes place (4’). This decomposition gives birth to the
following two projections, P, : T4A — TPD and Q, : T4A — (T2D)*, for all
a € D. They are the equivalent to the ones presented in section 2.2.2 and with
their help it can be arrived to the same result of the nonholonomic dynamical
section, as using the preceding projections. The equivalent result to Theorem
2 takes place for a nonholonomic mechanical system on a Lie algebroid:

THEOREM 26: Let (L, D) be a regular constrained Lagrangian system and let T'f,
be the solution of the free dynamics, i.e.: ir,wr, = dEy. Then the solution of the
constrained dynamics is the SODE, 'y, obtained the projection Ty, = P(Tr|p).

Local expression: In the adapted coordinates presented above, a basis of
(TPD)* is {Ya, Z4} where the sections Z4 are given by 3.9!!, and the sections
Yq are: Yu =Xy — Q%:xa + GbC(MAb — MabQ%)Vc, with M,3 = wL(xa,DC5).
Then it can be given the expression of the projector onto (TPD)* :

Q=Z10V+Y, 0 XA

For complete proofs for Theorem 25 and Theorem 26 see [22].

The distributional approach

Just like in the tangent bundle framework, here the Lagrange-d’Alembert equa-
tions can be entirely written in terms of objects in the manifold 72D | which
is not a Lie algebroid, but is a symplectical subbundle of (T4A,wy) if (L, D) is
regular. On the bundle (T4A,wr), the restriction of wy, to TPD, denoted with
wlP is a symplectical section. Again, denoting by dFy, the restriction of dEL,
to TP D, the restriction of the Lagrange-d’Alembert equations to T2 D:

ipnth’D = EE‘L7

which uniquely determines the section I'yy,. The proof of this statement is similar
to the one found in Section 2.2.2.

Similar equations, within the framework of Lie algebroids, are the base of
the theory proposed in [45].

Remark that if the constraint force, wy, and dEy, were restricted to T4D, a
Lie algebroid, wy, is closed in this case, but as it is in general degenerated, no
advantage over the previous approach would be obtained.

The nonholonomic bracket

Denote by X; the Hamiltonian section on T4 A corresponding to a smooth func-

tion f on D. The nonholonomic bracket, an almost-Poisson bracket, is defined
by

{f,9}an = wr(P(Xy), P(X,))

and the formulae f = {f, EL}un takes place, that implies the conservation of
the energy in this case.
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The virial theorem:

{({G, EL}un)) = 0.

4.6.3 Virial theorem for nonholonomic systems on Lie al-
gebroids in adapted coordinates:

Observe that we could use adapted coordinates to write the local expres-
sion of the Lagrange-d’Alembert equations and the virial theorem in this case.
However as the equations are so similar to the ones in the T'Q) framework, gave
in section 4.4.3, instead of writing them, we will follow the virial theorem for
nonholonomic systems on Lie algebroids in adapted coordinates through the
following examples.

ExXAMPLE 17 (The Chaplygin sleigh):

The chaplygin sleigh is a rigid body sliding on a horizontal plane. The body
is supported at three points, two of which slide freely without friction while the
third is a knife edge, a constraint that allows no motion orthogonal to this edge.

The configuration space of this system is the group SFE(2) of Euclidian mo-
tions of the two-dimensional plane R2. As local coordinates we can choose the
angular orientation of the blade and the position of the contact point on the
blade on the plane. Another choice of coordinates is given by considering the
origin at the contact point and the first coordinate axis in the direction of the
knife edge. Denoting by w the angular velocity of the body, and by vy, vy the
components of the linear velocity of the contact point (relative to the body
frame) we get a new coordinate system called the body frame. Then (w, vy, v2)
is regarded as an element of the Lie algebra se(2).

0 C3 C1
The elements of the se(2) are matrices of the form | —c3 0 ¢z |, and the
0 0 0
standard basis of the Lie algebra se(2) ~ R3 is given by:
0 0 1 0 0 O 0 -1 0
{Eb =0 0 0);E;=10 0 1];E2=1|1 0 0]} For this basis,
0 0 0 0 0 O 0 0 O

the Lie brackets are given by: [Es, Eg| = E1;[E1, F2] = Eg and [Ey, Eq] = 0.

The position of the center mass is specified by the coordinates (a, b) relative
to the body frame, and through m and J is specified the mass and the moment
of inertia of the sleigh relative to the contact point. Then, the corresponding
symmetric positive definite inertia operator I : se(2) — se(2)*, which is also
the Hessian matrix of the Lagrangian to be considered, is:

J+m(a®>+b*) —bm am A b —a
I = —bm m 0 and 7' = i b % + b2 —ab
am 0 m —a —ab L4 g2

m
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The reduced nonholonomic Lagrangian system (L, D) on se(2) is defined by
the Lagrangian:

L(W,UMUQ) = §<I(W,U1,U2),(W,U1,U2)> =

1
= 5[(J +m(a® + b?))w? + m(v? 4+ v3) — 2bmwv; + 2amwvs).

and by the constrained manifold

D = {(w, v1,v2) € se(2) | vy = Og.We will denote the given constraint v, =0
with ¢1 = v = 0 and with ¢, = Sow -

The Lagrange-D’Alembert equations are:

W= 57 (bw — v1)
01 = Fimar (7 +m(a® +5%)w — mbuy)
Vo = 0.

Thus we will consider a basis adapted to the decomposition D @ D+, pre-
cisely:

{ep = E3;e1 = Ep;ea = —maFEy — mabEy + (J + ma2)E1}.
Then indeed, D = span{eg, e1} while D+ = span{es}. So the coordinates asso-
ciated to this basis are: (v1,ve,w). The only Lie bracket that is not zero with
this choice of basis is:

ma mab
e
J+ ma2 J T ma !

[60) el]D

Corresponding we have the basis of TP D given by:
0 0
{Xo(b) = (b, e0(m), 0); Xa (b) = (b, ex(m), 0); Vo(b) = (b0, 57); Va(b) = (b, 0, 5 )}

And then: X; = w®*X, + I‘“’Cl?awb[ﬂ,mwm\?a and using that ¢19 = 0; ¢11 =
0; ¢12 = 1 we get:

Don = Xp + MW,V = X1 + MW 1.7, =
= X1 + MWV + N\ W2V, so:

0 0 —a 0 —ab 0
a b m a b
PM(Tan) = 1% G’ Lyt ™) 5 4 (1O Lyt ™ 55 + A 2+ A oy =
0 —ab, 0
__ 170a Y b M la v _
= [I"C) w’ Lymw™ —|—)\J}a + [0 WP L™ + A J]avl
_maw —a, 0 bm(vl—bw)—Jw —ab, 0
=[5 =) £ ATl law 7 AT e =
0 0
= [Si]5 - +[92]

ow vl
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where
m2a?(v! — bw)w

A=
J+a’m

(4.33)

0L = [(J + m(a® + b*))w — 20mu*)X° + [mo; — bmw] X .

a) For 0 = a%¢, = 0¢ = a*X, + B*V,, where the expression of B does not
influence the virial function G whose expression is:

G =(0r,0°) = w[(J +m(a® +b?))a* — bma?] + v (ma? — 2bma®).

The virial theorem ((p!(X,,)G)) = 0 says that:

<<[m§bw (’Ul — bW) + /\_TG][(J + m(a,2 + b2))a1 _ bma2]+
bo! 1 b —ab ) )
+ [maW(7 - (% + 7)) )\T][—2bma +ma’l) = 0,
where we can afterwards replace A by the expression (4.33).
Replace A:
2 2.1 B
<<[m5w (v — bw) — %7@][(‘]4_ m(a® + b))a' — bma?]+
bo! 1 b2 m2a2(vl . bw)w —ab X ,
A [maw(T - (E + j)) - WT][—Qbma + ma“])) = 0.

b) For 0 = we; + v'ey, the virial theorem: (p!(X,,)G)) = 0 gives that:

U[S1][(J + m(a® + b%))2w + 3vtbm] + [S2]2vim)) = 0.

c) For o0 = vle; + wey, the virial theorem takes the following form:

{[S1][(J +m(a? + b2))v! — 2bmw + mol] + [So][wm — 4bmot + (J + m(a® +
b%))w])) = 0.

EXAMPLE 18 (TR? x R3 — R?):

Consider the dynamical system on the Lie algebroid 4 = TR? x R? — R?
determined by the Lagrangian L = %(i‘2+y2)—|—%2(w§+w§ +w?) and by the con-
straints: ¢1 = & —rw, and ¢2 = ¥ + rw,. The coordinates (z, y, &, Y, Wz, wy, wy)
are associated to the following basis of sections of A: {e; = (0;,0); e2 =
(8y,0); €3 = (O,Xg), €4 = (O,X4); €5 = (07X5)}

The structural functions of the Lie algebroid for this basis are given by:



4.6. VIRIAL THEOREM FOR NONHOLONOMIC MECHANICAL SYSTEMS ON LIE ALGEBROIDS101

-les, es]a = —es; [e3, e5]a = es; [es, €5]4 = —e3; so the corresponding struc-
tural functions are: C§, = —1,C4; = 1,C%; = —

-p(e1) = du; p(ez) = 9y, so p; = p3 = 1, while the rest of the p} = 0.

Then the basis of T4 A is: {X1(a) = (a, e1(m), 0z|a); Xa2(a) = (a, e2(m), 8y| ) Xj(a) =
(a,€j(m),0),j = 3,4,5; Vi(a) = (a,0,0:|a); V2(a) = (a,0,0ya); Vs(a) = (a,0,0,,a); Va(a) =
(a,0, 8wy la); Vs(a) = (a,0,0..a) },

while the basis of TPD is {X1, X2, X3, V1, Vo, V3}.

However, we will work with the following coordinates adapted to the restric-
tions the movement has:

where for simplicity we changed the notation of the initial coordinates in the
fiber by v;.

Let us denote by {f;},i = 1,5 the basis of sections of A which correspondes
to this change of coordinates. Then the corresponding basis of T4 A is:

{X1(a) = (a, fr(m), 0z]a); X3(a) = (a, fa(m), Oyla); Xi(a) = (a, fi(m),0),i =
3,4,5; Vi(a) = (a,0,0yila),t = 1,5}.

Note that V', Vi are not zero, but as for the elements in TPD, w* = ¢; =0
and w5 = ¢ = 0, so: pt(V}) = pt (VL) = 0.

In this adapted coordinates, the basis of TP D is: {0}, X%, X5, Vi, V5, V5}.

We will use the following formulae to find the expression of the dynamical

section:
Fow =X+ A2, =
=w*X, + 0V, + N\ Z3V., = (4.34)
= wX,, 4+ bV, + AW oy Ve, for a =1,5,
where ¢qy = gﬁ.

Using v4 = (w' — w*)/r and v3 = (w

grangian in adapted coordinates follows :

5 — w?)/r, the expression of the La-

2 W — w
L=+ @)+ By 4 )

while the elements of the inverse matrix of W are:

Wll W22 W41 W52 W14 W25 =1
W33:ﬁ 7W44:W55:1+F'
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As the change of coordinate matrix is:

1 00 0 O
01 0 0 O
w=]0 0 0 0 1]v
1 00 — O
01 r»r 0 O

then the corresponding change of basis is given by:

10 0 1 0
01 = 0 o0
fi=10 0 O 0 11e
00 0 =0
00 1 0 o0
so f1=e1 + %64; fg_ =€y — %63; fs=es5, f1= —%64; fs= %63 and remark that

as a consequence pl = pl.

Using the Czk for e;, we get the Cjk for f;.

7‘27
15 __ 13 __ 1
034 - 71 035 - 11 C’45 - T r2

r2

{Cg = —T12§ C'13 =-1 C{% = %25 023 =1 024 = —:5;

Having all this information, from the expression of b* which is left to b =
WeBywe Cfﬁ 83 156, we get that b = 0 and in consequence the dynamical section
is: X7, = wlX] + w2X} + w3Xj, more explicitly:

Xp(a) = (a,wlfl(m) + w2f2(m) + wgfg(m),wlf)'ﬂa + w2ay\a).

Indeed, the Lagrange-d’Alembert equations are:

K? 4\ 'k OL __
w4 S (0t —wt) = w O 55 =0

—&—K—(w — %) —wJC’J”;ai)Lk =0
K2w3 wJC'j’gaaLk =0
k OL
(w — ') =w C 75 =0

o)
(w —w?) = wJCfgaka =0

and therefore we obtain: w! = 1w? = 43 = w* = w® =0

We will calculate Z;, Z; in order to be able to use formula (4.34), taking
into consideration that as ¢1 = w? and ¢o = w® and that in consequence we
have ¢14 = 1 and ¢25 = 1, while all the other ¢;; are zero.

AR Waﬂ(bmva = Wa4¢14\7; = W14¢14V/1 + W1,V =
2

2 )Vi-



4.6. VIRIAL THEOREM FOR NONHOLONOMIC MECHANICAL SYSTEMS ON LIE ALGEBROIDS103

Zo = WPhogVy = W¥Phos V!, = W hosViy + W s Vi =
2
=V +(1+ %)vg.

Now, to calculate A1, Ay use:

d¢1(XL) + )‘ad(bl(Za) =
doa(X1) + Xedg2(Zs)

Using dF = p/i 2E 0 4 gTﬂV"’ we get:

a 9zt

;091 ;091 ;091 ;091 ;091
. n 11 7 12 7 13 /7 14 /7 15
8¢1 /1 8¢1 /2 a¢1 /3 8(151 14 8¢1 5
+ 8w1v T anV + 8w3v + 3w4v + 8w5v B
_ a(bl :x:/l + %x& + \7/4 — V/4
Ox Oy '
dps = V7.
We get that Ay = Ay = 0 from equation (1) and (2) as:
2
1) & VAXL) + MVAHZ)) + 2V Zs) =0 A\(1+ ——) =0, so A, = 0.
K2
. . . r?
(2) 4 V/O(XL) + )\1’\7/0(Z1) + )\ZVIJ(ZQ) =0¢& )\2(1 + ﬁ) = 0, so Ay = 0.

In conclusion I'y, = X, thus:

ot (Xun) = w'o, + wzﬁy.
With the help of:

0 1 }<2 1 4 xll 2 ‘1<2 2 5 le
L =(w +T—2(w —w")) + (w +T—2(w —w”)) X"+
K? K?
+ KX’ + —(w4 — wl)f)C’4 +—

5 (w® — w?)X'’>.
r

,
we will construct the function G = (0 ,0°)|p, where we remember that for
o = o'e; the expression of its complete lift is: 0¢ = 0%X,, + (6 + Cgvaﬂy"y)\?a.

Note that only the coefficients of X, i = 1,2,3 of ¢ will count in determin-
ing the function G, due to the fact that 6 has only X°.

a)o = afi +yfo = G = (1+ E) (zw! + yu?).
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b)o = zyfs = G = K2w3zy

(! (TG = (' 5+ w L ()

(K (w'y + w?z))) = 0.

o=2*fi+y’fo=G=(0L,0%]p =(1+ %)[wlxz + w?y?

( (Ta)G) = '+ w0+ )P + )

(0 + 5 a0 + 2y(w?)) =0

Vo =yfi +afs =G = (01,00 = (1+ L) [yw' + zw?]

(P (TG = w5+ w0+ 5 )t + 0]

(+ B eututy) = o



Conclusions and future
work

The main purpose of our work is to present applications of the Lie algebroid
structure in both mathematical and physical context. In the first chapter we
have introduced the notion of Lie algebroid, presenting a number of examples,
and we have presented some useful properties that we used later on.

One of our principal results in the mathematical part was to give a gen-
eralization of the notion of Jacobi fields corresponding to SODE on manifolds
and on Lie algebroids. We have done that considering a new take on a first
order variational equation on a manifold. We also generalized the Jacobi equa-
tion for this generalized cases of Jacobi fields associated to SODE. For that we
had to generalize the non-linear connection and the Jacobi endomorphism to
the context of Lie algebroid. We used this theory in the particular instance of a
geodesic spray on a Riemannian Lie algebroid. For this case we have shown that
an integral curve of it has no conjugate points along it if and only if it minimizes
the energy functional of the system whose solution are given by the geodesic
spray. To exemplify the theorem we considered the space of skew-symmetric
matrices of dimension 3 who has a Lie algebroid structure.

In Chapter 4, for the physical counterpart, we analyzed the virial theorem
in the first place for mechanical systems and nonholonomic systems on the
tangent bundle, and afterwards, for unconstrained and nonholonomic systems
on Lie algebroids. We could prove that a virial like theorem holds for systems
on Lie algebroids, fact that will allow us to obtain information about the time
average of the action of the dynamical section upon the virial function for more
systems than before due to the wide range of systems that can be described with
the help of a Lie algebroid structure. Also in this chapter we have presented in
detail instances of this theorem through some examples.

We find interesting for further investigation to see if the minimizing theorem
presented here takes place for any Lagrangian, not necessarily a Riemannian
one and for the other topology. Precisely see in what conditions the result holds
when we look for the geodesic to be a strong minimum for the energy functional.

105
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