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Abstract. The existence of quasi-bi-Hamiltonian structures for the Kepler problem is
studied. We first relate the superintegrability of the system with the existence of two
complex functions endowed with very interesting Poisson bracket properties and then we
prove the existence of a quasi-bi-Hamiltonian structure by making use of these two functions.
The paper can be considered as divided in two parts. In the first part a quasi-bi-Hamiltonian
structure is obtained by making use of polar coordinates and in the second part a new
quasi-bi-Hamiltonian structure is obtained by making use of the separability of the system
in parabolic coordinates.
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1 Introduction

1.1 A geometric introduction

In differential geometric terms, the phase space M of a Hamiltonian system is the 2n-dimensional
cotangent bundle M = T ∗Q of the n-dimensional configuration space Q. Cotangent bundles are
manifolds endowed, in a natural or canonical way, with a symplectic structure ω0; if {(qi) | i =
2, . . . , n} are local coordinates in Q and {(qj , pj); j = 1, 2, . . . , n} the induced coordinates in
T ∗Q, then ω0 is given by

ω0 = dqj ∧ dpj , ω0 = −dθ0, θ0 = pjdqj ,

(we write all the indices as subscripts and summation convention on the repeated index is used).
Given a differentiable function F in T ∗Q, F = F (q, p), the vector field XF uniquely defined as
the solution of the equation

i(XF )ω0 = dF

is called the Hamiltonian vector field of the function F . In particular, given a Hamiltonian
H = H(q, p), the dynamics is given by the corresponding Hamiltonian vector field XH , that is,
i(XH)ω0 = dH.

A vector field Γ ∈ X(T ∗Q) is Hamiltonian if there is a function H such that Γ = XH , i.e.,
i(Γ)ω0 = dH, and locally-Hamiltonian when i(Γ)ω0 is a closed 1-form. This is equivalent to
Γ-invariance of ω0, i.e., LΓω0 = 0.

A system of differential equations is called bi-Hamiltonian if it can be written in two different
ways in Hamiltonian form. Suppose a manifold M equipped with two different symplectic
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structures ω0 and ω1. A vector field Γ on T ∗Q is said to be a bi-Hamiltonian vector field if it
is Hamiltonian with respect to both symplectic structures, i.e.,

i(Γ)ω0 = dH0 and i(Γ)ω1 = dH1.

The two functions, H0 and H1, are integrals of motion for Γ. A weaker form of bi-Hamiltonian
system is when the only symplectic form is the first one (ω1 is a closed but nonsymplectic
2-form).

We point out that an important example of bi-Hamiltonian system is the rational harmonic
oscillator (non-central harmonic oscillator with rational ratio of frequencies) [8]

H =
1

2

(
p2
x + p2

y

)
+

1

2
α2

0

(
m2x2 + n2y2

)
.

A symplectic form determines a Poisson bivector Λ that satisfies the vanishing of the Schouten
bracket [Λ,Λ] = 0 (this property is equivalent to the Jacobi identity); we note that there exist
non-constant rank Poisson structure not related with symplectic structures. The compatibility
condition between two different Poisson structures, Λ0 and Λ1, means that the linear combina-
tion Λλ = Λ0 − λΛ1 is a Poisson pencil, that is, it is a Poisson bivector for every value of λ;
therefore the corresponding bracket {·, ·}λ = {·, ·}0 − λ{·, ·}1 is a pencil of Poisson brackets.

Bi-Hamiltonian systems are systems endowed with very interesting properties but, in general,
it is quite difficult to find a bi-Hamiltonian formulation for a given Hamiltonian vector field,
and for this reason it is useful to introduce the concept of quasi-bi-Hamiltonian system.

Definition 1. A vector field X on a symplectic manifold (M,ω) is called quasi-Hamiltonian if
there exists a (nowhere-vanishing) function µ such that µX is a Hamiltonian vector field

µX ∈ XH(M).

Thus i(µX)ω = dh for some function h.

We call µ an integrating factor of the quasi-Hamiltonian system, because it is an integrating
factor for the 1-form i(X)ω, and we note that in this case the function h is a first integral of X.
Note that this condition can alternatively be written as as i(X)(µω) = dh, but the point is that
the 2-form µω is not closed in the general case.

The scarcity of bi-Hamiltonian systems leads to relax the condition for the vector field being
Hamiltonian to a simpler situation of quasi-Hamiltonian with respect to the second symplectic
structure.

Definition 2. A Hamiltonian vector field X on a symplectic manifold (M,ω) is called quasi-bi-
Hamiltonian if there exist another symplectic structure ω1, and a nowhere-vanishing function µ,
such that µX is a Hamiltonian vector field with respect to ω1.

This concept was first introduced in [4] in the particular case of systems with two degrees of
freedom and it was quickly extended in [23, 24] for a higher-dimensional systems. Some recent
papers considering properties of this particular class of systems are [1, 2, 3, 4, 5, 6, 8, 14, 15, 23,
24, 25, 36].

The nondegeneracy of the canonical form ω0 provides a vector bundle isomorphism ω̂0 of
T (T ∗Q) on T ∗(T ∗Q), inducing an identification of vector fields and 1-forms on the phase space.
A consequence is that the pair (ω0, ω1) determines a (1, 1) tensor field R defined as R = ω̂0

−1◦ω̂1,
that is,

ω1(X,Y ) = ω0(RX,Y ), ∀X,Y ∈ X(T ∗Q).
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Note that in the definition of R the 2-form ω1 is necessarily closed but it can be nonsymplec-
tic. If Γ is bi-Hamiltonian with respect to (ω0, ω1) then R is Γ-invariant, that is, LΓR = 0,
where L denotes the Lie derivative (this means that the characteristic polynomial of R is an
invariant for Γ, and consequently the coefficients of the polynomial are constants of motion).
The Nijenhuis tensor NR of the tensor field R is defined by

NR(X,Y ) = R2[X,Y ] + [RX,RY ]−R[RX,Y ]−R[X,RY ].

It has been proved that if Γ is a Hamiltonian dynamical system of the type described above and
such that (i) The tensor NR of R vanishes, (ii) The tensor field R has n distinct eigenfunctions
(that is, they are maximally distinct), then the eigenfunctions of R are in involution and the
system is therefore completely integrable [12, 16, 17, 18, 21]. It is important to note that the
eigenvalues of R are constants of motion for Γ even in the case that the two properties (i) and (ii)
are not satisfied (but then the eigenfunctions are not in involution).

It is known that the Liouville formalism characterize the Hamiltonians that are integrable
but it does not provide a method for obtaining the integrals of motion; therefore it has been
necessary to elaborate different methods for obtaining constants of motion (Hamilton–Jacobi
separability, Lax pairs formalism, Noether symmetries, Hidden symmetries, etc); the existence of
a bi-Hamiltonian structure with the above two mentioned properties (Nijenhuis torsion condition
and maximally distinct eigenvalues) can be considered as method to establish the Liouville
integrability of a system; because of this, these two properties are frequently included in the
definition of a bi-Hamiltonian structure.

Most of systems admitting a bi-Hamiltonian structure are separable systems; so these two
properties (separability and double Hamiltonian structure) are properties very close related
(see [18] for a detailed discussion of this question and [35] for the case of multiple separability).
Quasi-bi-Hamiltonian systems are very less known than the bi-Hamiltonian ones but it seems
that they are also related with separability. Nevertheless, in this case the tensor field R is not
Γ-invariant and the eigenvalues of the tensor field R are not constants of motion. An interesting
property is that it was shown in [4] that in the particular case of two degrees of freedom the
function µ2/ detR is a constant of the motion.

The potential of the Kepler problem is spherically symmetric and therefore it admits al-
ternative Lagrangians (the existence of alternative Lagrangians for central potentials is stud-
ied in [13, 20, 26]); recall that if there exist alternative Lagrangian descriptions then one can
find non-Noether constants of motion [7]. This system has been studied as a bi-Hamilltonian
system by making use of different approaches; Rauch-Wojciechowski proved the existence of
a bi-Hamiltonian formulation but introducing an extra variable so that the phase space is odd-
dimensional and the Poisson brackets are degenerate [34] and more recently [19] a bi-Hamiltonian
formulation for the perturbed Kepler problem has also been studied by making use of Delaunay-
type variables.

1.2 Structure and purpose of the paper

Now in this paper we will analyze certain properties of the Kepler problem related with the
existence of quasi-bi-Hamiltonian structures. The following two points summarize the contents
of the paper.

• First, we will study the existence of certain complex functions with interesting Poisson
properties and then we will prove that the superintegrability of the system is directly
related with the properties of these complex functions. As is well-known this system is
multi-separable (it separates in both polar and parabolic coordinates); so we first present
the study making use of polar coordinates and then we undertake a similar study by
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employing parabolic coordinates (the parabolic complex functions are different from the
polar ones).

• Second, we prove that the above mentioned complex functions determine the existence
of several quasi-bi-Hamiltonian structures. This is done in two steps: first with complex
2-forms and then with several real 2-forms. The properties of these geometric structures
and of the associated recursion operators are analyzed.

It is important to note that this study is concerned with the existence of quasi-bi-Hamil-
tonian structures (instead of bi-Hamiltonian). So we recall that if i(Γ)ω1 = λdH1 then
XΓω1 = dλ ∧ dH1 6= 0. Consequently the tensor field R is not Γ-invariant and the
eigenvalues of R are not constants of motion.

We must clearly say that the structures obtained by this method (wedge product of the
differentials of complex functions) do not satisfy the above mentioned Nijenhuis torsion con-
dition. So perhaps it is convenient to name them as weak quasi-bi-Hamiltonian structures (in
opposition to strong structures satisfying the Nijenhuis condition). Nevertheless, the purpose
in this paper is not to prove the integrability of a system as consequence of a bi-Hamiltonian
structure, since it is perfectly known that the Kepler problem is not only integrable but also
superintegrable. The purpose is to study new and interesting properties of the Kepler problem.
In fact, it has been proved that if a dynamical vector field satisfies certain properties (existence
of canonoid transformations [9, 10] or existence of non-symplectic symmetries [27, 28]) then it is
Hamiltonian with respect to two different structures without satisfying necessarily the Nijenhuis
condition.

The structure of the paper is as follows: In Section 2 we study the Kepler problem by making
use of polar coordinates (r, φ); we relate the superintegrability of the system with the existence
of two complex functions Mr and Nφ endowed with very interesting Poisson bracket properties
and then we prove the existence of a quasi-bi-Hamiltonian structure making use of these two
functions. Then in Section 3 we consider once more the same system but in terms of parabolic
coordinates (a, b) and we obtain a new quasi-bi-Hamiltonian structure (different to the previous
one) making use of a similar technique but with new complex functions Ma and Mb. Finally in
Section 4 we make some final comments.

2 From superintegrability to quasi-bi-Hamiltonian structures

After these rather general comments we restrict our study to the Kepler problem in the Euclidean
plane that, as it is well known, is superintegrable and multiseparable (polar and parabolic
coordinates).

Let us first notice that in some cases the two-dimensional Euclidean systems possess certain
interesting properties. For example, if the potential V (x, y) takes the form V = A(u) + B(v),
u = x + y, v = x − y, then it admits a new Hamiltonian structure (and also a Lax pair) [22];
unfortunately the new structure is in most of cases constant (we mean that the new Poisson
bracket is determined by a symplectic form as ω1 = dx ∧ dpy + dy ∧ dpx).

In the next paragraphs we will relate the existence of bi-Hamiltonian structures with the
properties of the two complex functions with interesting Poisson bracket properties.

2.1 Complex functions and superintegrabilty

It is well known that the Hamiltonian of the two-dimensional Kepler problem

HK =
1

2

(
p2
r +

p2
φ

r2

)
+ VK , VK = −g

r
, 0 < g ∈ R,
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is Hamilton–Jacobi (H-J) separable in polar coordinates (r, φ) and it is, therefore, Liouville
integrable with the angular momentum J2 = pφ as the associate constant of motion. Moreover,
it is also known that it is a super-integrable system with the two components of the Laplace–
Runge–Lenz vector as additional integrals of motion. Now we will prove that this property of
superintegrability can be related to the existence of certain complex functions with interesting
Poisson bracket properties.

Let us denote by Mrj and Nφj , j = 1, 2, the following real functions

Mr1 = prpφ, Mr2 = g −
p2
φ

r
, and Nφ1 = cosφ, Nφ2 = sinφ.

Then we have the following properties

(i)
d

dt
Mr1 = {Mr1, HK} = −λMr2,

d

dt
Mr2 = {Mr2, HK} = λMr1,

(ii)
d

dt
Nφ1 = {Nφ1, HK} = −λNφ2,

d

dt
Nφ2 = {Nφ2, HK} = λNφ1,

where λ denote the following function

λ =
pφ
r2
.

The property (ii), representing the behaviour of the angular functions Nφj , is true for all the
central potentials V (r); but the property (i), behaviour of the functions Mrj , is specific of the
potential of the Kepler problem.

Consider next the complexification of the linear space of functions on the manifold and extend
by bilinearity the Poisson bracket. If we denote Mr and Nφ the complex functions

Mr = Mr1 + iMr2, Nφ = Nφ1 + iNφ2,

then they have the following properties

{Mr, HK} = iλMr, {Nφ, HK} = iλNφ,

and consequently the Poisson bracket of MrN
∗
φ with the Kepler Hamiltonian vanishes

{MrN
∗
φ, HK} = {Mr, HK}N∗φ +Mr{N∗φ, HK} = (iλMr)N

∗
φ +Mr(−iλN∗φ) = 0.

We can summarize this result in the following proposition.

Proposition 1. Let us consider the Hamiltonian of the Kepler problem

HK =
1

2

(
p2
r +

p2
φ

r2

)
+ VK , VK = −g

r
,

Then, the complex function J34 defined as

J34 = MrN
∗
φ

is a (complex) constant of the motion.

Of course J34 determines two real first-integrals

J34 = J3 + iJ4, {J3, HK} = 0, {J4, HK} = 0,
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whose coordinate expressions turn out to be

J3 = Re(J34) = prpφ cosφ−
p2
φ

r
sinφ+ g sinφ,

J4 = Im(J34) = prpφ sinφ+
p2
φ

r
cosφ− g cosφ.

That is, the two functions J3 and J4 are just the two components of the two-dimensional Laplace–
Runge–Lenz vector.

Summarizing, we have got two interesting properties. First, the superintegrability of the
Kepler problem is directly related with the existence of two complex functions whose Poisson
brackets with the Hamiltonian are proportional with a common complex factor to themselves,
and second, the two components of the Laplace–Runge–Lenz vector appear as the real and
imaginary parts of the complex first-integral of motion. Remark that Nφ is a complex function
of constant modulus one, while the modulus of Mr is a polynomial of degree four in the momenta
given by

MrM
∗
r = (prpφ)2 +

(
g −

p2
φ

r

)2

= 2p2
φHK + g2.

2.2 Complex functions and quasi-bi-Hamiltonian structures

Let us denote by Y34 the (complex) Hamiltonian vector field of J34

i(Y34)ω0 = dJ34,

that obviously satisfies Y34(HK) = {HK , J34} = 0, and by Yr and Yφ the Hamiltonian vector
fields of Mr and Nφ:

i(Yr)ω0 = dMr, i(Yφ)ω0 = dNφ.

Their local coordinate expressions are, respectively, given by

Yr = pφ
∂

∂r
+
(
pr − 2i

pφ
r

) ∂

∂φ
− i

(
p2
φ

r2

)
∂

∂pr
,

and

Yφ = (sinφ− i cosφ)
∂

∂pφ
.

Then, the vector field Y34 appears as a linear combination of Yr and Y ∗φ ; more specifically we
have

Y34 = N∗φYr +MrY
∗
φ = Y + Y ′, Y = N∗φYr, Y ′ = MrY

∗
φ .

The vector field Y34 is certainly a symmetry of the Hamiltonian system (T ∗Q,ω0, HK), but the
two vector fields, Y and Y ′, are neither symmetries of the symplectic form ω0 (that is, XY ω0 6= 0
and XY ′ω0 6= 0) nor symmetries of the Hamiltonian (that is, XYHK 6= 0 and XY ′HK 6= 0).
Moreover, remark that they are not symmetries of the dynamics, because

[Y,ΓK ] 6= 0, [Y ′,ΓK ] 6= 0, i(ΓK)ω0 = dHK .

More specifically:
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Proposition 2. The Lie bracket of the dynamical vector field ΓK with Y is given by

[ΓK , Y ] = iJ34Xλ,

where Xλ is the Hamiltonian vector field of the function λ.

Proof. A direct computation leads to

[ΓK , Y ] = ΓK(N∗φ)Yr +N∗φ[ΓK , Yr] = −iλN∗φYr +N∗φ
(
−X{HK ,Mr}

)
.

where we have used that the Lie bracket of two Hamiltonian vector fields satisfies [Xf , Xg] =
−X{f,g}. Note also that the Hamiltonian vector field of a product fg is given by Xfg =
fXg + gXf , and then the above Lie bracket becomes

[ΓK , Y ] = −iλN∗φYr + iN∗φ(XλMr) = −iλN∗φYr + iN∗φ(λYr +MrXλ) = i(MrN
∗
φ)Xλ. �

The vector field Xλ on the right hand side represents an obstruction for Y to be a dynamical
symmetry. Only when λ be a numerical constant the vector field Y (and also Y ′) is a dynamical
symmetry of ΓK .

In the following Ω will denote the complex 2-form defined as

Ω = dMr ∧ dN∗φ.

The two complex 2-forms ωY and ω′Y obtained by Lie derivative of ω0, i.e.,

LY ω0 = ωY , LY ′ω0 = ω′Y ,

are such

LY ω0 = iY (dω0) + d(iY ω0) = d(iY ω0) = d(N∗φdMr) = −Ω,

LY ′ω0 = iY ′(dω0) + d(iY ′ω0) = d(iY ′ω0) = d(MrdN
∗
φ) = Ω.

Using the preceding results we can prove:

Proposition 3. The Hamiltonian vector field ΓK of the Kepler problem is a quasi-Hamiltonian
system with respect to the complex 2-form Ω.

Proof. The contraction of the vector field ΓK with the complex 2-form Ω gives

i(ΓK)Ω = ΓK(Mr)dN
∗
φ − ΓK(N∗φ)dMr,

and recalling that

ΓK(Mr) = {Mr, HK} = iλMr, ΓK(N∗φ) = {N∗φ, HK} = −iλN∗φ,

we arrive to

i(ΓK)Ω = (iλMr)dN
∗
φ + (iλN∗φ)dMr = iλd(MrN

∗
φ). �

The complex 2-form Ω can be written as

Ω = Ω1 + iΩ2

where the two real 2-forms, Ω1 = Re(Ω) and Ω2 = Im(Ω), take the form

Ω1 = dMr1 ∧ dNφ1 + dMr2 ∧ dNφ2 = d(prpφ) ∧ d(cosφ) + d

(
g −

p2
φ

r

)
∧ d(sinφ)
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= α12dr ∧ dφ+ α23dφ ∧ dpr + α24dφ ∧ dpφ,

Ω2 = −dMr1 ∧ dNφ2 + dMr2 ∧ dNφ1 = −d(prpφ) ∧ d(sinφ) + d

(
g −

p2
φ

r

)
∧ d(cosφ)

= β12dr ∧ dφ+ β23dφ ∧ dpr + β24dφ ∧ dpφ

with αij and βij being given by

α12 =

(
p2
φ

r2

)
cosφ, α23 = pφ sinφ, α24 = pr sinφ+ 2

(pφ
r

)
cosφ,

and

β12 = −

(
p2
φ

r2

)
sinφ, β23 = pφ cosφ, β24 = pr cosφ− 2

(pφ
r

)
sinφ.

Then we have

i(ΓK)Ω1 = −λdJ4, i(ΓK)Ω2 = λdJ3,

what means that ΓK is also quasi-bi-Hamiltonian with respect to the two real 2-forms (ω0,Ω1)
or (ω0,Ω2).

Remark that the complex 2-form Ω is well defined but it is not symplectic. In fact, from
the above expressions in coordinates we have Ω1 ∧ Ω1 = 0, Ω2 ∧ Ω2 = 0, and Ω1 ∧ Ω2 = 0, and
therefore we obtain

Ω ∧ Ω = (Ω1 ∧ Ω1 − Ω2 ∧ Ω2) + 2iΩ1 ∧ Ω2 = 0.

The distribution defined by the kernel of Ω, that is two-dimensional, is given by

Ker Ω =
{
f1Z1 + f2Z2 | f1, f2 : R2 × R2 → C

}
,

where the vector fields Z1 and Z2 are

Z1 = (α23 + iβ23)
∂

∂r
+ (α12 + iβ12)

∂

∂pr
, Z2 = (α24 + iβ24)

∂

∂r
+ (α12 + iβ12)

∂

∂pφ
.

Therefore it satisfies

[Ker Ω,ΓK ] ⊂ Ker Ω.

That is, ΓK preserves the distribution Ker Ω.
If Y3 and Y4 are the Hamiltonian vector fields (with respect to the canonical symplectic

form ω0) of the first integrals J3 and J4, then the dynamical vector field ΓK is orthogonal to Y4

with respect to the structure Ω1 and it is also orthogonal to Y3 with respect to the structure Ω2,
that is,

i(ΓK)i(Y4)Ω1 = 0, i(ΓK)i(Y3)Ω2 = 0.

Just to close the section we remark that had we applied this technique to the isotropic two-
dimensional harmonic oscillator with frequency α we had obtained the function Mr as

Mr =

(
2

r
prpφ

)
+ i

(
p2
r −

p2
φ

r2
+ α2r2

)
,

(the angular function Nφ would be the same) and the constants so obtained are but the compo-
nents of the Fradkin tensor. This shows that the harmonic oscillator is an example of dynamical
system both bi-Hamiltonian and quasi-bi-Hamiltonian.
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2.3 Recursion operators and some comments

The bi-Hamiltonian structure (ω0,Ω) determines a complex recursion operator R defined as

Ω(X,Y ) = ω0(RX,Y ), ∀X,Y ∈ X(T ∗Q).

But as Ω and R are complex, we can introduce two real recursion operator R1 and R2 defined
as

Ω1(X,Y ) = ω0(R1X,Y ), Ω2(X,Y ) = ω0(R2X,Y ).

We recall that ω̂0 is the map ω̂0 : X(T ∗Q) → ∧1(T ∗Q) given by contraction, that is ω̂0(X) =
i(X)ω0, and then the nondegenerate character of ω0 means that the map ω̂0 is a bijection. Using
this notation we can write the two operators R1 and R2 as follows

R1 = ω̂0
−1 ◦ Ω̂1, R2 = ω̂0

−1 ◦ Ω̂2.

Then we have the following properties

(i) The coordinates expressions of R1 and R2 are

R1 = −α12
∂

∂pφ
⊗ dr +

[
α23

∂

∂r
+ α24

∂

∂φ
+ α12

∂

∂pr

]
⊗ dφ

+ α23
∂

∂pφ
⊗ dpr + α24

∂

∂pφ
⊗ dpφ

and

R2 = −β12
∂

∂pφ
⊗ dr +

[
β23

∂

∂r
+ β24

∂

∂φ
+ β12

∂

∂pr

]
⊗ dφ

+ β23
∂

∂pφ
⊗ dpr + β24

∂

∂pφ
⊗ dpφ.

(ii) R1 and R2 have two different eigenvalues doubly degenerate and one of them is null (that
is, λ1 = λ2 = 0, λ3 = λ4 6= 0). Therefore we have

det[R1] = det[R2] = 0,

what is a consequence of the singular character of Ω1 and Ω2.

We close this section summarizing the situation we have arrived. We have first introduced
two complex functions, Mr and Nφ, mainly because of the behaviour of their Poisson brackets.
Then we have proved that they are interesting for two reasons: first because they determine
the existence of superintegrability (existence of additional constants of motion) and second
because they determine quasi-bi-Hamiltonian structures (first complex (ω0,Ω) and then real
(ω0,Ω1,Ω2)).

Concerning the first point, in this case the additional constants of motion are just the com-
ponents of the Runge–Lenz vector (that have been highly studied making use of different ap-
proaches). Now we have arrived to a new property: they can also be obtained as a consequence
of this complex formalism.

Concerning the second point, the two complex functions Mr and Nφ determine the above
mentioned geometric structures (first complex and then real) but unfortunately they are dege-
nerated (we recall that Ω1 ∧ Ω1 = 0, Ω2 ∧ Ω2 = 0). This can be considered as a limitation of
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these geometric structures. If a bi-Hamiltonians structure satisfies all the appropriate proper-
ties (that is, symplectic forms, vanishing of the Nijenhuis torsion of the recursion operator R,
diagonalizable recursion operator R with functionally independent real eigenvalues) then it de-
termines the Liouville integrability of the system. In fact, the aim of the approach presented
in this paper is not to prove the integrability of a system as consequence of a bi-Hamiltonian
structure as we start with a system known to be not only integrable but also superintegrable.
The existence of (Ω1,Ω2) must be considered, not as a method for arriving to the integrability
of the system, but as a new and interesting property of the Kepler problem (for the moment
only of the two-dimensional system, the generalization to the three-dimensional case must be
considered as an open question).

3 New complex functions and new quasi-bi-Hamiltonian
structures

In this section we will study the existence of new bi-Hamiltonian structures for the Kepler
dynamics by making use of parabolic coordinates (a, b) defined as

x = 1
2

(
a2 − b2

)
, y = ab.

Of course all previous results can be translated to this new language in such a way that the
functions Mr1 and Mr2 are now given by

Mr1 =
(apb − bpa)(apa + bpb)√

a2 + b2
, Mr2 =

(apb − bpa)2

√
a2 + b2

− g,

while functions Nφ1 and Nφ2 become

Nφ1 =
a2 − b2√
a2 + b2

, Nφ2 =
2ab√
a2 + b2

.

But the important point is that the behaviour of the Kepler Hamiltonian in these coordinates
will permit us to obtain new results different from the previous ones.

3.1 Complex functions and superintegrability

The general form of a natural Euclidean Hamiltonian is

H =
1

2m

(
p2
a + p2

b

a2 + b2

)
+ V (a, b).

in such a way that if the potential V is of the form

V (a, b) =
A(a) +B(b)

a2 + b2
,

then the Hamiltonian is Hamilton–Jacobi separable and it is, therefore, Liouville integrable with
the following quadratic function

J2 =
1

(a2 + b2)
(apb − bpa)(apb + bpa) + 2

(
a2B − b2A
a2 + b2

)
as the second constant of motion (the first one is the Hamiltonian itself).



Quasi-Bi-Hamiltonian Structures of the 2-Dimensional Kepler Problem 11

For simplifying the following expressions we introduce the following notation:

J = apb − bpa, Px =
apa − bpb
a2 + b2

, Py =
apb + bpa
a2 + b2

.

The Hamiltonian of the Kepler problem when written in parabolic coordinates is

HK =
1

2

(
p2
a + p2

b

a2 + b2

)
+ VK , VK = − g

a2 + b2
, (1)

and the Kepler dynamics is given by the following vector field

ΓK =

(
pa

a2 + b2

)
∂

∂a
+

(
pb

a2 + b2

)
∂

∂b
+

(
p2
a + p2

b − 2g

(a2 + b2)2

)
a
∂

∂pa
+

(
p2
a + p2

b − 2g

(a2 + b2)2

)
b
∂

∂pb
,

in such a way that, as ω0 = da ∧ dpa + db ∧ dpb, we have

i(ΓK)(da ∧ dpa + db ∧ dpb) = dHK .

The Hamiltonian HK is Hamilton–Jacobi separable in coordinates (a, b) and the associated
quadratic constant of motion is the component Rx of the Laplace–Runge–Lenz vector

Rx = JPy − g
(
a2 − b2

a2 + b2

)
.

Let us now introduce the functions Maj and Mbj , j = 1, 2, defined by

Ma1 =
Jpa√
a2 + b2

, Ma2 =
2ga− Jpb√
a2 + b2

,

and

Mb1 =
Jpb√
a2 + b2

, Mb2 =
2gb+ Jpa√
a2 + b2

.

Then, the important property is that the Poisson bracket of the function Ma1 with HK is
proportional to Ma2 while the Poisson bracket of Ma2 with HK is proportional to Ma1, but with
the opposite sign:

{Ma1, HK} = −λMa2, {Ma2, HK} = λMa1,

and the same is true for the functions Mb1 and Mb2,

{Mb1, HK} = −λMb2, {Mb2, HK} = λMb1,

where now λ denotes the following function

λ =
apb − bpa
(a2 + b2)2

.

Therefore the two complex functions Ma and Mb defined as

Ma = Ma1 + iMa2, Mb = Mb1 + iMb2,

satisfy

{Ma, HK} = iλMa, {Mb, HK} = iλMb.
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Proposition 4. The complex function K34 defined as

K34 = MaM
∗
b

is a (complex) constant of the motion for the dynamics of the Kepler problem described by the
Hamiltonian (1).

We omit the proof because it is quite similar to the proof of the previous Proposition 1.
Note that the modulus of the complex functions Ma and Mb are given by

MaM
∗
a = 2

(
J2HK − gRx + g2

)
, MbM

∗
b = 2

(
J2HK + gRx + g2

)
,

and then

MaM
∗
a +MbM

∗
b = 4

(
J2HK + g2

)
.

Of course the complex function K34 determines two real functions that are first integrals for
the Kepler problem

K34 = K3 + iK4, {K3, HK} = 0, {K4, HK} = 0,

with K3 and K4 given by

K3 = Re(K34) = Ma1Mb1 +Ma2Mb2 = JPx + g

(
2ab

a2 + b2

)
,

K4 = Im(K34) = Ma2Mb1 −Ma1Mb2 = −2J2HK .

Remark that the function K3 is the other Laplace–Runge–Lenz constant, while K4, that is
a fourth order polynomial in the momenta, determines the angular momentum J as a factor.

3.2 Complex functions and quasi-bi-Hamiltonian structures

First we recall that the complex functions Ma y Mb are given by

Ma =

(
Jpa√
a2 + b2

)
+ i

(
2ga− Jpb√
a2 + b2

)
, Mb =

(
Jpb√
a2 + b2

)
+ i

(
2gb+ Jpa√
a2 + b2

)
.

Let us now denote by Z34 the Hamiltonian vector field of the function K34, i.e., i(Z34)ω0 =
dZ34, such that Z34(HK) = 0, and by Za and Zb the Hamiltonian vector fields of the complex
functions Ma and Mb, that is,

i(Za)ω0 = dMa, i(Zb)ω0 = dMb.

Their coordinate expressions are given by

Za =

(
∂Ma

∂pa

)
∂

∂a
+

(
∂Ma

∂pb

)
∂

∂b
−
(
∂Ma

∂a

)
∂

∂pa
−
(
∂Ma

∂b

)
∂

∂pb
= Za1 + iZa2,

with Za1 and Za2 given by

Za1 =
1√

a2 + b2

(
(apb − 2bpa)

∂

∂a
+ apa

∂

∂b
− (apa + bpb)

a2 + b2

(
bpa

∂

∂pa
− apa

∂

∂pb

))
,

Za2 =
1√

a2 + b2

(
bpb

∂

∂a
+ (bpa − 2apb)

∂

∂b
− (apa + bpb)pb − 2gb

a2 + b2

(
−b ∂

∂pa
+ a

∂

∂pb

))
,
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and

Zb =

(
∂Mb

∂pa

)
∂

∂a
+

(
∂Mb

∂pb

)
∂

∂b
−
(
∂Mb

∂a

)
∂

∂pa
−
(
∂Mb

∂b

)
∂

∂pb
= Zb1 + iZb2,

with Zb1 and Zb2 given by

Zb1 =
1√

a2 + b2

(
−bpb

∂

∂a
+ (2apb − bpa)

∂

∂b
− (apa + bpb)

a2 + b2

(
bpb

∂

∂pa
− apb

∂

∂pb

))
,

Zb2 =
1√

a2 + b2

(
(apb − 2bpa)

∂

∂a
+ apa

∂

∂b
− (apa + bpb)pa − 2ga

a2 + b2

(
b
∂

∂pa
− a ∂

∂pb

))
.

Now recalling that

dZ34 = d(MaM
∗
b ) = M∗b d(Ma) +Mad(M∗b ),

we obtain

Z34 = M∗b Za +MaZ
∗
b = Z + Z ′, where Z = M∗b Za, Z ′ = MaZ

∗
b .

The following proposition is similar to that of Proposition 2 and we omit the proof.

Proposition 5. The Lie bracket of the Kepler dynamical vector field ΓK with the vector field Z
is given by

[ΓK , Z] = iK34Xλ,

where Xλ is the Hamiltonian vector field of λ solution of the equation i(Xλ)ω0 = dλ.

In the following we will denote by Ωab the complex 2-form defined as

Ωab = dMa ∧ dM∗b

= d

[(
Jpa√
a2 + b2

)
+ i

(
2ga− Jpb√
a2 + b2

)]
∧ d
[(

Jpb√
a2 + b2

)
− i
(

2gb+ Jpa√
a2 + b2

)]
.

Then the two 2-forms ωZ and ω′Z obtained by Lie derivation of ω0 with respect to Z and Z ′ are
given by

LZω0 = ωZ = −Ωab, LZ′ω0 = ω′Z = Ωab.

Proposition 6. The Hamiltonian vector field ΓK of the Kepler problem is quasi-Hamiltonian
with respect to the complex 2-form Ωab.

Proof. This can be proved by a direct computation

i(ΓK)Ωab = ΓK(Ma)dM
∗
b − ΓK(M∗b )dMa = (iλMa)dM

∗
b + (iλM∗b )dMa = iλd(MaM

∗
b ). �

The complex 2-form Ωab can be decomposed as

Ωab = Ωab1 + iΩab2,

where the two real 2-forms, Ωab1 = Re(Ωab) and Ωab2 = Im(Ωab), take the form

Ωab1 = dMa1 ∧ dMb1 + dMa2 ∧ dMb2, Ωab2 = −dMa1 ∧ dMb2 + dMa2 ∧ dMb1,
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Considering the real and imaginary parts we obtain

i(ΓK)Ωab1 = −λdK4, i(ΓK)Ωab2 = λdK3,

what means that ΓK is also quasi-bi-Hamiltonian with respect to the two real 2-forms (ω0,Ωab1)
and (ω0,Ωab2).

Once more we obtain that the factor λ determines that the system is quasi-bi-Hamiltonian
instead of just bi-Hamiltonian.

The complex 2-form Ωab is well defined but it is not symplectic. The kernel is two-dimensional
and it is invariant under the action of ΓK

[Ker Ωab,ΓK ] ⊂ Ker Ωab.

The coordinate expressions of Ωab1 and Ωab2 are

Ωab1 =
2J

(a2+ b2)2
(α13da ∧ dpa + α14da ∧ dpb + α23db ∧ dpa + α24db ∧ dpb + α34dpa ∧ dpb),

Ωab2 =
2g

(a2+ b2)2
(β13da ∧ dpa + β14da ∧ dpb + β23db ∧ dpa + β24db ∧ dpb),

with αij and βij being given by

α13 =
(
2gb− apapb − bp2

b

)
b, α14 = −

(
2ga− ap2

a − bpapb
)
b,

α23 =
(
−2gb+ apapb + bp2

b

)
a, α24 =

(
2ga− ap2

a − bpapb
)
a,

α34 = 2J
(
a2 + b2

)
,

and

β13 =
(
2abpa − a2pb − b2pb

)
b, β14 =

(
2abpb − a2pa − b2pa

)
b,

β23 =
(
−2abpa + a2pb + b2pb

)
a, β24 =

(
−2abpb − a2pa − b2pa

)
a.

We close this section with the following properties:

(i) The two real 2-forms are not symplectic. In fact we have verified that Ω1 ∧ Ω1 = 0,
Ω2 ∧ Ω2 = 0, and also Ω1 ∧ Ω2 = 0.

(ii) These two 2-forms, Ωab1 and Ωab2, determine two recursion operators ((1, 1) tensor fields)
Rab1 and Rab2 defined as

Ωab1(X,Y ) = ω0(Rab1X,Y ), Ωab2(X,Y ) = ω0(Rab2X,Y ),

or in an equivalent way

Rab1 = ω̂0
−1 ◦ Ω̂ab1, Rab2 = ω̂0

−1 ◦ Ω̂ab2.

As in Section 2.3, a consequence of the singular character of Ωab1 and Ωab2 is that

det[Rab1] = det[Rab2] = 0.

(iii) If we denote by Z3 and Z4 the Hamiltonian vector fields (with respect to the canonical
symplectic form ω0) of the integrals K3 and K4, then the dynamical vector field ΓK is
orthogonal to Z4 with respect to the structure Ω1 and it is also orthogonal to Z3 with
respect to the structure Ω2, that is,

i(ΓK)i(Y4)Ωab1 = 0, i(ΓK)i(Y3)Ωab2 = 0.
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4 Final comments

The Kepler problem is separable in two different coordinate systems, and because of this, it
is superintegrable with quadratic integrals of motion. Now we have proved that this super-
integrability is directly related with the existence of certain complex functions possessing very
interesting Poisson bracket properties and also that these functions are also related with the
existence of quasi-bi-Hamiltonian structures.

We finalize with some questions for future work. First, as stated in the Introduction, quasi-
bi-Hamiltonian structures is a matter that still remain as slightly studied (in contrast to the
bi-Hamiltonian systems); so the particular case of the Kepler problem can be a good motivation
to undertake a better study of these systems. Second, the existence of these complex functions
is not a specific characteristic of the Kepler problem; in fact, it has been proved that the
superintegrability of certain systems recently studied (as the isotonic oscillator or the TTW
or PW systems) [11, 29, 30, 31, 32, 33] is also related with such a class of complex functions.
Therefore, an interesting open question is whether these other superintegrable systems are also
endowed with bi-Hamiltonian structures or with quasi-bi-Hamiltonian structures; the starting
point for this study must be a deeper analysis of the properties of these complex functions
making use of the geometric (symplectic) formalism as an approach.
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[30] Rañada M.F., Higher order superintegrability of separable potentials with a new approach to the Post–
Winternitz system, J. Phys. A: Math. Theor. 46 (2013), 125206, 9 pages, arXiv:1303.4877.
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