Lloyd-model generalization: Conductance fluctuations in one-dimensional disordered systems

J. A. Méndez-Bermúdez, ${ }^{1, *}$ A. J. Martínez-Mendoza, ${ }^{1,2}$ V. A. Gopar, ${ }^{3}$ and I. Varga ${ }^{2}$
${ }^{1}$ Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
${ }^{2}$ Elméleti Fizika Tanszék, Fizikai Intézet, Budapesti Mûszaki és Gazdaságtudományi Egyetem, H-1521 Budapest, Hungary
${ }^{3}$ Departamento de Física Teórica, Facultad de Ciencias, and BIFI, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, Spain

(Received 1 October 2015; published 20 January 2016)

Abstract

We perform a detailed numerical study of the conductance G through one-dimensional (1D) tight-binding wires with on-site disorder. The random configurations of the on-site energies ϵ of the tight-binding Hamiltonian are characterized by long-tailed distributions: For large $\epsilon, P(\epsilon) \sim 1 / \epsilon^{1+\alpha}$ with $\alpha \in(0,2)$. Our model serves as a generalization of the 1D Lloyd model, which corresponds to $\alpha=1$. First, we verify that the ensemble average $\langle-\ln G\rangle$ is proportional to the length of the wire L for all values of α, providing the localization length ξ from $\langle-\ln G\rangle=2 L / \xi$. Then, we show that the probability distribution function $P(G)$ is fully determined by the exponent α and $\langle-\ln G\rangle$. In contrast to 1D wires with standard white-noise disorder, our wire model exhibits bimodal distributions of the conductance with peaks at $G=0$ and 1 . In addition, we show that $P(\ln G)$ is proportional to G^{β}, for $G \rightarrow 0$, with $\beta \leqslant \alpha / 2$, in agreement with previous studies.

DOI: 10.1103/PhysRevE. 93.012135

I. INTRODUCTION AND MODEL

The recent experimental realizations of the so-called Lévy glasses [1] as well as "Lévy waveguides" [2] has refreshed the interest in the study of systems characterized by Lévy-type disorder (see, for example, Refs. [3-15]), that is, disorder characterized by random variables $\{\epsilon\}$ whose density distribution function exhibits a slow decaying tail:

$$
\begin{equation*}
P(\epsilon) \sim \frac{1}{\epsilon^{1+\alpha}} \tag{1}
\end{equation*}
$$

for large x, with $0<\alpha<2$ (this kind of probability distributions are known as α-stable distributions [16]). In fact, the study of this class of disordered systems dates back to Lloyd [17], who studied spectral properties of a three-dimensional (3D) lattice described by a 3D tight-binding Hamiltonian with Cauchy-distributed on-site potentials [which corresponds to the particular value $\alpha=1$ in Eq. (1)]. Since then, a considerable number of works have been devoted to the study of spectral, eigenfunction, and transport properties of the Lloyd model in its original 3D setup [18-27] and in lower-dimensional versions [26-43].

Of particular interest is the comparison between the onedimensional (1D) Anderson model (1DAM) [44] and the 1D Lloyd model, since the former represents the most prominent model of disordered wires [45]. Indeed, both models are described by the 1D tight-binding Hamiltonian:

$$
\begin{align*}
H= & \sum_{n=1}^{L}\left[\epsilon_{n}|n\rangle\langle n|\right. \\
& \left.-v_{n, n+1}|n\rangle\langle n+1|-v_{n, n-1}|n\rangle\langle n-1|\right] \tag{2}
\end{align*}
$$

where L is the length of the wire given as the total number of sites n, ϵ_{n} are random on-site potentials, and $\nu_{n, m}$ are the hopping integrals between the nearest neighbors (which are set to a constant value $v_{n, n \pm 1}=v$). However, while for the standard 1DAM (with white-noise on-site disorder $\left\langle\epsilon_{n} \epsilon_{m}\right\rangle=$ $\sigma^{2} \delta_{n m}$ and $\left\langle\epsilon_{n}\right\rangle=0$) the on-site potentials are characterized by

[^0]the finite variance $\sigma^{2}=\left\langle\epsilon_{n}^{2}\right\rangle$ (in most cases the corresponding probability distribution function $P(\epsilon)$ is chosen as a box or a Gaussian distribution), in the Lloyd model the variance σ^{2} of the random on-site energies ϵ_{n} diverges since they follow a Cauchy distribution.

It is also known that the eigenstates Ψ of the infinite 1DAM are exponentially localized around the site position n_{0} [45]:

$$
\begin{equation*}
\left|\Psi_{n}\right| \sim \exp \left(-\frac{\left|n-n_{0}\right|}{\xi}\right) \tag{3}
\end{equation*}
$$

where ξ is the eigenfunction localization length. Moreover, for weak disorder ($\sigma^{2} \ll 1$), the only relevant parameter for describing the statistical properties of the transmission of the finite 1DAM is the ratio L / ξ [46], a fact known as single-parameter scaling. The above exponential localization of eigenfunctions makes the transmission or dimensionless conductance G exponentially small [47], i.e.,

$$
\begin{equation*}
\langle-\ln G\rangle=\frac{2 L}{\xi} \tag{4}
\end{equation*}
$$

thus, this relation can be used to obtain the localization length. Remarkably, it has been shown that Eq. (4) is also valid for the 1D Lloyd model [41], implying a single-parameter scaling (see also Ref. [38]).

It is also relevant to mention that studies of transport quantities through 1D wires with Lévy-type disorder, different from the 1D Lloyd model, have been reported. For example, wires with scatterers randomly spaced along the wire according to a Lévy-type distribution were studied in Refs. [3,4,48,49]. Concerning the conductance of such wires, a prominent result reads that the corresponding probability distribution function $P(G)$ is fully determined by the exponent α of the power-law decay of the Lévy-type distribution and the average (over disorder realizations) $\langle-\ln G\rangle[48,49]$; i.e., all other details of the disorder configuration are irrelevant. In this sense, $P(G)$ shows universality. Moreover, this fact was already verified experimentally in microwave random waveguides [2] and tested numerically using the tight-binding model of Eq. (2) with $\epsilon_{n}=0$ and off-diagonal Lévy-type disorder [50] (i.e., with $v_{n, m}$ in Eq. (2) distributed according to a Lévy-type distribution).

It is important to point out that 1D tight-binding wires with power-law distributed random on-site potentials, characterized by power-laws different from $\alpha=1$ (which corresponds to the 1D Lloyd model), have been scarcely studied; for a prominent exception see Ref. [41]. Thus, in this paper we undertake this task and study numerically the conductance though disordered wires defined as a generalization of the 1D Lloyd model as follows. We study 1D wires described by the Hamiltonian of Eq. (2) having constant hopping integrals, $v_{n, n \pm 1}=v=1$, and random on-site potentials ϵ_{n} which follow a Lévy-type distribution with a long tail, like in Eq. (1) with $0<\alpha<2$. We name this setup the 1DAM with Lévy-type on-site disorder. We note that when $\alpha=1$ we recover the 1D Lloyd model.

Therefore, in the following section we show that (i) the conductance distribution $P(G)$ is fully determined by the power-law exponent α and the ensemble average $\langle-\ln G\rangle$; (ii) for $\alpha \leqslant 1$ and $\langle-\ln G\rangle \sim 1$, bimodal distributions for $P(G)$ with peaks at $G \sim 0$ and $G \sim 1$ are obtained, revealing the coexistence of insulating and ballistic regimes; and (iii) the probability distribution $P(\ln G)$ is proportional to G^{β}, for vanishing G, with $\beta \leqslant \alpha / 2$.

II. RESULTS AND DISCUSSION

Since we are interested in the conductance statistics of the 1DAM with Lévy-type on-site disorder we have to define first the scattering setup we shall use: We open the isolated samples described above by attaching two semi-infinite single channel leads to the border sites at opposite sides of the 1D wires. Each lead is also described by a 1D semi-infinite tight-binding Hamiltonian. Using the Heidelberg approach [51] we can write the transmission amplitude through the disordered wires as $t=$ $-2 i \sin (k) \mathcal{W}^{T}\left(E-\mathcal{H}_{\text {eff }}\right)^{-1} \mathcal{W}$, where $k=\arccos (E / 2)$ is the wave vector supported in the leads and $\mathcal{H}_{\text {eff }}$ is an effective non-Hermitian Hamiltonian given by $\mathcal{H}_{\text {eff }}=H-e^{i k} \mathcal{W} \mathcal{W}^{T}$. Here, \mathcal{W} is a $L \times 1$ vector that specifies the positions of the attached leads to the wire. In our setup, all elements of \mathcal{W} are equal to zero except \mathcal{W}_{11} and $\mathcal{W}_{L 1}$, which we set to unity (i.e., the leads are attached to the wire with a strength equal to the intersite hopping amplitudes: $v=1$). Also, we have fixed the energy at $E=0$ in all our calculations, although the same conclusions are obtained for $E \neq 0$. Then, within a scattering approach to the electronic transport, we compute the dimensionless conductance as [52] $G=|t|^{2}$.

First, we present in Fig. 1(a) the ensemble average $\langle-\ln G\rangle$ as a function of L for the 1DAM with Lévy-type disorder for several values of α. It is clear from this figure that $\langle-\ln G\rangle \propto L$ for all the values of α we consider here. Therefore, we can extract the localization length ξ by fitting the curves $\langle-\ln G\rangle$ vs L with Eq. (4); see dashed lines in Fig. 1(a). This behavior should be contrasted to the case of 1D wires with off-diagonal Lévy-type disorder [53] which shows the dependence $\langle-\ln G\rangle \propto L^{1 / 2}$ when $\alpha=1 / 2$ at $E=0[50]$.

Also, we have confirmed that the cumulants $\left\langle\left\langle(-\ln G)^{k}\right\rangle\right\rangle$ obey a linear relation with the wire length [41,54], i.e.,

$$
\begin{equation*}
\lim _{L \rightarrow \infty} \frac{\left\langle\left\langle(-\ln G)^{k}\right\rangle\right\rangle}{L}=2^{k} c_{k} \tag{5}
\end{equation*}
$$

where the coefficients c_{k}, with $c_{1} \equiv \xi^{-1}$, characterize the Lyapunov exponent of a generic 1D tight-binding wire with

FIG. 1. (a) Average logarithm of the conductance $\langle-\ln G\rangle$ as a function of L for the 1DAM with Lévy-type on-site disorder (symbols). Dashed lines are the fittings of the data with Eq. (4) used to extract ξ. (b) $\left\langle\left\langle(-\ln G)^{2}\right\rangle\right\rangle$ as a function of L (symbols). Dashed lines are fittings of the data with the function $\left\langle\left\langle(-\ln G)^{2}\right\rangle\right\rangle=4 c_{2} L$ [see Eq. (5)]. In both panels $\alpha=1 / 10,1 / 5,1 / 2,1$, and $3 / 2$ (from top to bottom). Each point was calculated using 10^{4} disorder realizations. $E=0$ was used.
on-site disorder. We have verified the above relation, Eq. (5), for $k=1,2$, and 3; as an example in Fig. 1(b) we present the results for $\left\langle\left\langle(-\ln G)^{2}\right\rangle\right\rangle$ as a function of L for different values of α. The dashed lines are fittings of the numerical data (open dots) with the function $\left\langle\left\langle(-\ln G)^{2}\right\rangle\right\rangle=4 c_{2} L$ [see Eq. (5)], which can be used to extract the higher-order coefficient c_{2}.

Now, in Fig. 2 we show different conductance distributions $P(G)$ for the 1DAM with Lévy-type on-site disorder for fixed values of $\langle-\ln G\rangle$; note that fixed $\langle-\ln G\rangle$ means fixed ratio L / ξ. Several values of α are reported in each panel. We can observe that for fixed $\langle-\ln G\rangle$, by increasing α the conductance distribution evolves towards the $P(G)$ corresponding to the 1DAM with white noise disorder, $P_{\mathrm{WN}}(G)$, as expected. The curves for $P_{\mathrm{WN}}(G)$ are included as a reference in all panels of Fig. 2 as red dashed lines [55,56]. In fact, $P(G)$ already corresponds to $P_{\mathrm{WN}}(G)$ once $\alpha=2$.

We recall that for 1D tight-binding wires with off-diagonal Lévy-type disorder $P(G)$ is fully determined by the exponent α and the average $\langle-\ln G\rangle$ [50]. It is therefore pertinent to ask whether this property also holds for diagonal Lévy-type disorder. Thus, in Fig. 3 we show $P(G)$ for the 1DAM with Lévy-type on-site disorder for several values of α, where each panel corresponds to a fixed value of $\langle-\ln G\rangle$. For each combination of $\langle-\ln G\rangle$ and α we present two histograms (in red and black) corresponding to wires with on-site random potentials $\left\{\epsilon_{n}\right\}$ characterized by two different density distributions [57], but with the same exponent α of their corresponding power-law tails. We can see from Fig. 3 that for each value of α the histograms (in red and black) fall on top of each other, which is evidence that the conductance distribution $P(G)$ for the 1DAM with Lévy-type

FIG. 2. Conductance distribution $P(G)$ for the 1DAM with Lévytype disorder (histograms). Each panel corresponds to a fixed value of $\langle-\ln G\rangle$: (a) $\langle-\ln G\rangle=20$, (b) $\langle-\ln G\rangle=2$, (c) $\langle-\ln G\rangle=1$, (d) $\langle-\ln G\rangle=2 / 3$, (e) $\langle-\ln G\rangle=1 / 2$, and (f) $\langle-\ln G\rangle=1 / 5$. In each panel we include histograms for several values of α, where α increases in the arrow direction. $E=0$ was used. Each histogram was calculated using 10^{6} disorder realizations. The red dashed lines are the theoretical predictions of $P(G)$ for the 1DAM with white noise disorder $P_{\mathrm{WN}}(G)$ corresponding to the particular value of $\langle-\ln G\rangle$ of each panel.
on-site disorder is invariant once α and $\langle-\ln G\rangle$ are fixed; i.e., $P(G)$ displays a universal statistics.

Moreover, we want to emphasize the coexistence of insulating and ballistic regimes characterized, respectively, by the two prominent peaks of $P(G)$ at $G=0$ and $G=1$. This behavior, which is more evident for $\langle-\ln G\rangle \sim 1$ and $\alpha \leqslant 1$ (see Figs. 2 and 3), is not observed in 1D wires with white-noise disorder (see, for example, the red dashed curves in Fig. 2). This coexistence of opposite transport regimes has been already reported in systems with anomalously localized states: 1D wires with obstacles randomly spaced according to Lévy-type density distribution $[48,50]$ as well as in the so-called random-mass Dirac model [58].

Finally, we study the behavior of the tail of the distribution $P(\ln G)$. Thus, using the same data of Fig. 3, in Fig. 4 we plot $P(\ln G)$. As expected, since $P(G)$ is determined by α and $\langle-\ln G\rangle$, we can see that $P(\ln G)$ is invariant once those two quantities (α and $\langle-\ln G\rangle$) are fixed (red and black histograms fall on top of each other). Moreover, from Fig. 4 we can deduce a power-law behavior,

$$
\begin{equation*}
P(\ln G) \propto G^{\beta}, \tag{6}
\end{equation*}
$$

FIG. 3. Conductance distribution $P(G)$ for the 1DAM with Lévytype on-site disorder. Each panel corresponds to a fixed value of $\langle-\ln G\rangle:($ a) $\langle-\ln G\rangle=1$, (b) $\langle-\ln G\rangle=3 / 4$, (c) $\langle-\ln G\rangle=1 / 2$, and (d) $\langle-\ln G\rangle=1 / 4$. In each panel we include histograms for $\alpha=1 / 4,1 / 2,3 / 4$, and 1 , where α increases in the arrow direction. $E=0$ was used. For each value of α we present two histograms using different Lévy-type density distributions of on-site disorder: $\rho_{1}(\epsilon)$ in red and $\rho_{2}(\epsilon)$ in black; see Ref. [57]. Each histogram was calculated using 10^{6} disorder realizations.
for $G \rightarrow 0$ when $\alpha<2$. For $\alpha=2, P(\ln G)$ displays a lognormal tail (not shown here), expected for 1D systems in the presence of Anderson localization. Actually, the behavior (6) was already anticipated in Ref. [41] as $P(G) \sim G^{-(2-\lambda) / 2}$ for $G \rightarrow 0$ with $\lambda<\alpha$, which in our study translates as $P(\ln G) \propto$ $G^{\lambda / 2}[$ since $P(\ln G)=G P(G)]$ with $\lambda / 2 \equiv \beta \leqslant \alpha / 2$. Indeed, we have validated the last inequality in Fig. 5 where we report

FIG. 4. Probability distribution functions $P(\ln G)$ for the 1DAM with Lévy-type on-site disorder. Same parameters as in Fig. 3. Recall that in each panel we included histograms for $\alpha=1 / 4,1 / 2,3 / 4$, and 1. Here, α increases in the arrow direction.

FIG. 5. The exponent β [see Eq. (6)] as a function of α for $\langle-\ln G\rangle=1 / 10$ (circles), 1 (diamonds), and 10 (triangles). The dashed line corresponds to $\beta=\alpha / 2 . \beta$ was obtained from power-law fittings of the tails of the histograms of $P(\ln G)$ in the interval $P(\ln G) \in\left[10^{-5}, 10^{-3}\right]$.
the exponent β obtained from power-law fittings of the tails of the histograms of $P(\ln G)$. In addition, we have observed that the value of β depends on the particular value of $\langle-\ln G\rangle$ characterizing the corresponding histogram of $P(\ln G)$. Also, from Fig. 5 we note that $\beta \approx \alpha / 2$ as the value of $\langle-\ln G\rangle$ decreases.

III. CONCLUSIONS

In this work we have studied the conductance G through a generalization of the Lloyd model in one dimension: We consider 1D tight-binding wires with on-site disorder
following a Lévy-type distribution [see Eq. (1)] characterized by the exponent α of the power-law decay. We have verified that different cumulants of the variable $\ln G$ decrease linearly with the length wire L. In particular, we were able to extract the eigenfunction localization length ξ from $\langle-\ln G\rangle=2 L / \xi$. Then, we have shown some evidence that the probability distribution function $P(G)$ is invariant, i.e., fully determined, once α and $\langle-\ln G\rangle$ are fixed; in agreement with other Lévy-disordered wire models [2,48-50]. We have also reported the coexistence of insulating and ballistic regimes, evidenced by peaks in $P(G)$ at $G=0$ and $G=1$; these peaks are most prominent and commensurate for $\langle-\ln G\rangle \sim 1$ and $\alpha \leqslant 1$. Additionally we have shown that $P(\ln G)$ develops power-law tails for $G \rightarrow 0$, characterized by the power-law β (also invariant for fixed α and $\langle-\ln G\rangle$) which, in turn, is bounded from above by $\alpha / 2$. This upper bound of β implies that the smaller the value of α the larger the probability of finding vanishing conductance values in our Lévy-disordered wires.

ACKNOWLEDGMENTS

J.A.M.-B. and A.J.M.-M. thank F. M. Izrailev and N. M. Makarov for useful comments. J.A.M.-B. and A.J.M.-M. also thank FAPESP (Grant No. 2014/25997-0), CONACyT (Grants No. I0010-2014-246246 and No. CB-2013-220624), VIEP-BUAP (Grant No. MEBJ-EXC15-I), and PIFCA (Grant No. BUAP-CA-169) for financial support. V.A.G. acknowledges support from MINECO (Spain) under Project No. FIS2012-35719-C02-02. I.V. acknowledges financial support from OTKA (Grant No. K108676) and The Alexander von Humboldt Foundation.
[1] P. Barthelemy, J. Bertolotti, and D. S. Wiersma, Nature (London) 453, 495 (2008).
[2] A. A. Fernandez-Marin, J. A. Mendez-Bermudez, J. Carbonell, F. Cervera, J. Sanchez-Dehesa, and V. A. Gopar, Phys. Rev. Lett. 113, 233901 (2014).
[3] C. W. J. Beenakker, C. W. Groth, and A. R. Akhmerov, Phys. Rev. B 79, 024204 (2009).
[4] R. Burioni, L. Caniparoli, and A. Vezzani, Phys. Rev. E 81, 060101(R) (2010).
[5] A. Eisfeld, S. M. Vlaming, V. A. Malyshev, and J. Knoester, Phys. Rev. Lett. 105, 137402 (2010).
[6] J. Bertolotti, K. Vynck, L. Pattelli, P. Barthelemy, S. Lepri, and D. S. Wiersma, Adv. Funct. Mater. 20, 965 (2010).
[7] P. Barthelemy, J. Bertolotti, K. Vynck, S. Lepri, and D. S. Wiersma, Phys. Rev. E 82, 011101 (2010).
[8] M. Burresi, V. Radhalakshmi, R. Savo, J. Bertolotti, K. Vynck, and D. S. Wiersma, Phys. Rev. Lett. 108, 110604 (2012).
[9] C. W. Groth, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev. E 85, 021138 (2012).
[10] R. Burioni, S. di Santo, S. Lepri, and A. Vezzani, Phys. Rev. E 86, 031125 (2012).
[11] S. M. Vlaming, V. A. Malyshev, A. Eisfeld, and J. Knoester, J. Chem. Phys. 138, 214316 (2013).
[12] R. Burioni, E. Ubaldi, and A. Vezzani, Phys. Rev. E 89, 022135 (2014).
[13] P. Bernabo, R. Burioni, S. Lepri, and A. Vezzani, Chaos, Solitons Fractals 67, 11 (2014).
[14] S. S. Zakeri, S. Lepri, and D. S. Wiersma, Phys. Rev. E 91, 032112 (2015).
[15] A. G. Ardakani and M. G. Nezhadhaghighi, J. Opt. 17, 105601 (2015).
[16] V. V. Uchaikin and V. M. Zolotarev, Chance and Stability. Stable Distributions and Their Applications (VSP, Utrecht, 1999).
[17] P. Lloyd, J. Phys. C 2, 1717 (1969).
[18] M. Saitoh, Phys. Lett. A 33, 44 (1970); Prog. Theor. Phys. 45, 746 (1971).
[19] A. P. Kumar and G. Baskaran, J. Phys. C 6, L399 (1973).
[20] K. Hoshino, Phys. Lett. A 56, 133 (1976).
[21] W. R. Bandy and A. J. Glick, Phys. Rev. B 16, 2346 (1977).
[22] S. Kivelson and C. D. Gelatt, Phys. Rev. B 20, 4167 (1979).
[23] B. Simon, Phys. Rev. B 27, 3859 (1983).
[24] D. E. Rodrigues and J. F. Weisz, Phys. Rev. B 34, 2306 (1986).
[25] E. Kolley and W. Kolley, J. Phys. C 21, 6099 (1988).
[26] R. Johnston and H. Kunz, J. Phys. C 16, 4565 (1983).
[27] D. E. Rodrigues, H. M. Pastawski, and J. F. Weisz, Phys. Rev. B 34, 8545 (1986).
[28] D. J. Thouless, J. Phys. C 5, 77 (1972).
[29] K. Ishii, Suppl. Prog. Theor. Phys. 53, 77 (1973).
[30] R. Abou-Chacra and D. J. Thouless, J. Phys. C 7, 65 (1974).
[31] D. J. Thouless, J. Phys. C 16, L929 (1983).
[32] A. MacKinnon, J. Phys. C 17, L289 (1984).
[33] M. O. Robbins and B. Koiller, Phys. Rev. B 32, 4576 (1985).
[34] D. L. Shepelyansky, Phys. Rev. Lett. 56, 677 (1986).
[35] S. Fishman, R. E. Prange, and M. Griniasty, Phys. Rev. A 39, 1628 (1989).
[36] G. Casati, I. Guarneri, F. Izrailev, S. Fischman, and L. Molinari, J. Phys. Condens. Matter 4, 149 (1992).
[37] C. Mudry, P. W. Brouwer, B. I. Halperin, V. Gurarie, and A. Zee, Phys. Rev. B 58, 13539 (1998).
[38] L. I. Deych, A. A. Lisyansky, and B. L. Altshuler, Phys. Rev. Lett. 84, 2678 (2000); Phys. Rev. B 64, 224202 (2001).
[39] D. M. Gangardt and S. Fishman, Phys. Rev. B 63, 045106 (2001).
[40] C. Fuchs and R. v. Baltz, Phys. Rev. B 63, 085318 (2001).
[41] M. Titov and H. Schomerus, Phys. Rev. Lett. 91, 176601 (2003).
[42] D. Roy and N. Kumar, Phys. Rev. B 76, 092202 (2007).
[43] G. G. Kozlov, Theor. Math. Phys. 171, 531 (2012).
[44] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[45] 50 Years of Anderson Localization, edited by E. Abrahams (World Scientific, Singapore, 2010).
[46] P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. B 22, 3519 (1980).
[47] I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988).
[48] F. Falceto and V. A. Gopar, Europhys. Lett. 92, 57014 (2010).
[49] A. A. Fernandez-Marin, J. A. Mendez-Bermudez, and V. A. Gopar, Phys. Rev. A 85, 035803 (2012).
[50] I. Amanatidis, I. Kleftogiannis, F. Falceto, and V. A. Gopar, Phys. Rev. B 85, 235450 (2012).
[51] C. Mahaux and H. A Weidenmüller, Shell Model Approach in Nuclear Reactions (North-Holland, Amsterdam, 1969); J. J. M. Verbaarschot, H. A. Weidenmüller, and M. R. Zirnbauer, Phys. Rep. 129, 367 (1985); I. Rotter, Rep. Prog. Phys. 54, 635 (1991).
[52] R. Landauer, IBM J. Res. Dev. 1, 223 (1957); 32, 306 (1988); M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986); IBM J. Res. Dev. 32, 317 (1988).
[53] It is pertinent to remark that the dependence $\langle-\ln G\rangle \propto L^{1 / 2}$, when $\alpha=1 / 2$ at $E=0$, reported in Ref. [50] for 1D wires with off-diagonal Lévy-type disorder was observed when the wire length L was defined as the total sum of the hopping integrals $L=\sum_{n} \nu_{n, n+1}$.
[54] H. Schomerus and M. Titov, Eur. Phys. J. B 35, 421 (2003); Phys. Rev. B 67, 100201(R) (2003).
[55] Using the results in Ref. [56], Eq. (2) of that work, $P_{\mathrm{WN}}(G)$ is given by

$$
P_{\mathrm{WN}}(G)=C \sqrt{\frac{\operatorname{acosh}(1 / \sqrt{G})}{G^{3} \sqrt{1-G}}} \exp \left[-\frac{1}{s} \operatorname{acosh}^{2}\left(\frac{1}{\sqrt{G}}\right)\right]
$$

where C is a normalization constant and $s=L / \ell$, with ℓ being the mean free path. The parameter s can the obtained numerically from the ensemble average $\langle\ln G\rangle=-L / \ell$.
[56] I. Kleftogiannis, I. Amanatidis, and V. A. Gopar, Phys. Rev. B 88, 205414 (2013).
[57] We have used the particular density distributions:

$$
\rho_{1}(\epsilon)=\frac{1}{\Gamma(\alpha)}\left(\frac{1}{2}\right)^{\alpha} \frac{1}{\epsilon^{1+\alpha}} \exp \left(-\frac{1}{2 \epsilon}\right)
$$

and

$$
\rho_{2}(\epsilon)=\frac{\alpha}{(1+\epsilon)^{1+\alpha}},
$$

where Γ is the Euler gamma function.
[58] M. Steiner, Y. Chen, M. Fabrizio, and A. O. Gogolin, Phys. Rev. B 59, 14848 (1999).

[^0]: *jmendezb@ifuap.buap.mx

