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Abstract 7 

The heating uniformity of the cooking vessels in domestic stoves depends on the type of heat source (induction, electric resistance, 8 

gas burner…) and of the way in which the power is transferred to the pan. The evaluation of the stoves functionalities is currently 9 

carried out by the manufacturers with costly experimental tests with real food, which are an important phase of the design process 10 

for the improvement of their performance in the food elaboration. In order to help to design the cookers and avoid the expensive 11 

tests, it is interesting to know how the heating power is distributed in each situation, so that the cookers can be adapted to obtain 12 

a more uniform heating. The contribution of this work is an inverse thermal model for the three aforementioned technologies of 13 

domestic cookers, which allows the calculation of the power distribution generated in the bottom of the pan from the 14 

measurement of the surface temperature. The results show that the proposed inverse model is of interest in many practical 15 

situations and can be used under diverse conditions.  16 

Keywords: Domestic cooking; Thermal model; Inverse model; Power distribution. 17 

1. Introduction 18 

Domestic cooking appliances have significantly evolved during the last decades, not only those based in the 19 

traditional technology of gas burners, but also the newest cooking hobs with induction heating elements. The main 20 
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improvements which have been introduced are related to the efficiency, the total heating power, and the number and 21 

configuration of the burners, inductors, hotplates, etc. In order to study the performance of the technologies and 22 

configurations of cookers, the manufacturers carry out different tests over their products, including cooking tests 23 

with real food, emulating a normal operation at the user’s home. However, these tests imply spending time and 24 

money which could be saved with an appropriate modeling and simulation of the cooking processes. Moreover, with 25 

theoretical studies of different cooking situations (contact frying, deep-frying, boiling, etc.), a deeper understanding 26 

of the elaboration of the food could be reached, and the cooking stoves could be improved with better designs and 27 

functionalities. 28 

Some authors in the current literature have studied the behavior of cooking stoves and pots with theoretical 29 

models or experimentation. Authors in [1] experimented with different technologies of stoves (gas, electric hotplate, 30 

induction) studying the performance in heating speed and temperature distribution in a pan frying process. Also in 31 

this context, the thermal efficiency of pots in a particular type of electric stove was calculated and measured in [2]. 32 

Further authors have developed different theoretical models of some cooking techniques, e.g. a thermal model of the 33 

elaboration of frozen hamburger patties was proposed in [3] and authors in [4] presented a model of the contact 34 

baking of thick pancakes. These models combine heat and mass transfer phenomena and include the food state 35 

variation as a result of the temperature rise. They are centered in the behavior of the food, and take into 36 

consideration that the heat source is well known and controlled, and that the temperature distribution in the pan is 37 

uniform. However, this assumption is far from a real cooking situation in a domestic environment, where the power 38 

distribution which determines the heating uniformity depends on the type of technology, the cooker design or the 39 

cooking vessel. In order to develop theoretical models closer to real scenarios and analyze the effects of the non-40 

uniform heating on the elaboration of the food, it becomes of high interest to study the power distribution in the 41 

cooking vessels depending on the type of heat source. 42 

In the particular case of induction cooktops, which is still a recent technology in the field of home appliances, 43 

there scarcely are previous works related to thermal modeling [5]. There can be found works in which the authors 44 

propose different methods to calculate the induced power distribution, generally using FEM software, which 45 

implicate elevated computational cost [6–8]. The power distribution transferred to the pans using gas range stoves or 46 

electric hotplates barely appears in the literature, even though they are the traditional technologies used in 47 
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worldwide kitchens.  48 

In this work we propose an inverse model which allows the calculation of the power distribution generated in the 49 

bottom of the pan from the measurement of the top surface temperature. Different models are developed considering 50 

the most common heating technologies used in domestic cooktops. The inverse method has been used by other 51 

authors in thermal modeling for industrial applications [9–13], and it is particularly useful for the estimation of non-52 

measurable variables, such as heat fluxes or heat transfer coefficients. In this work, for the temperature measurement 53 

we use an infrared camera, and the model is solved using a numerical method based in finite differences. In order to 54 

be able to use the infrared camera the cooking vessel must be empty, because the emissivity of the measured surface 55 

must be well known. Moreover the power distribution is considered independent of the content of the cooking 56 

vessel, thus it is not included in the proposed model.   57 

2. Theory 58 

The temperature reached inside a cooking vessel when it is heated in a domestic cooker is a consequence of the 59 

heating source and the way in which the power is transferred to the base of the pan. For example, in induction 60 

cookers this power distribution depends on the geometry of the coils, number of turns, distance between turns, etc. 61 

Thus, the design of the inductor can be optimized to obtain a uniform heating of the pans.  62 

As stated in our previous work [5], the temperature evolution on each point of the base of a cooking vessel, 63 

placed over a heating source, obeys the heat equation: 64 

𝑃 + 𝜆 𝛻2𝑇 =  𝜌 𝐶𝑝  
𝜕𝑇
𝜕𝜕

   (1) 

where 𝑃 is the volumetric power density generated by the heating source. The second term is the heat flux of 65 

conduction, where 𝛻2𝑇 is the Laplacian of the temperature (𝑇) and 𝜆 is the heat conductivity of the material. The 66 

term on the right is the variation of the energy stored in the system with time, where the material has density 𝜌 and 67 

specific heat capacity 𝐶𝑝. The inverse modeling in this thermal problem consists in obtaining the value of the power 68 

density distribution in each point of the domain and each instant, from the temperature distribution measured during 69 

a heating process (for example with an infrared camera). The first step is to define the domain and state the 70 

boundary conditions of the problem, which are different depending on the heating source employed.  71 
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The most common cooking vessels in the world’s market have a round shape. Therefore, we propose a model for 72 

a cylindrical geometry using polar coordinates (𝑟,𝜙, 𝑧) with origin in the center of the base of the pan. Thus, the 73 

heat equation (1) can be expressed as:    74 

𝑃 = −𝜆 �
1
𝑟
𝜕𝑇
𝜕𝑟

+
𝜕2𝑇
𝜕𝑟2

+
1
𝑟2
𝜕2𝑇
𝜕𝜙2 +

𝜕2𝑇
𝜕𝑧2

� +  𝜌 𝐶𝑝  
𝜕𝑇
𝜕𝜕

  . (2) 

The inverse thermal model proposed allows the study of the power transfer with different configurations of 75 

inductors, and also for other common technologies, which are gas burners and electric stoves. It is valid for each one 76 

of the studied technologies. However, a different model with different domain and boundary conditions is 77 

considered for each case. The pan is modeled as a thin disk of homogeneous ferromagnetic material with known 78 

thermal properties and geometry, Fig. 1. The disk radius is 𝑅𝑝 and its thickness is 𝑒𝑝. In the case of the induction 79 

hob and the electric stove, the steel disk is placed on a ceramic glass with thickness 𝑒𝑔, which also appears in the 80 

model. In the case of a gas cooker only the metallic disk is considered. Due to the complexity of the thermal 81 

problem, and the discrete nature of the input data (thermography), a numerical method based in finite differences is 82 

used to solve the inverse problem and compute the power distribution.  83 

  

Fig. 1. Scheme of the plate which models the cooking vessel and the ceramic glass used in the induction hob and the electric stove to isolate the 84 

heating element from the user. In a gas cooker there is no glass beneath the disk. 85 

2.1. Induction hob 86 

In an induction hob a planar coil generates a current density 𝐽 inside the base of a cooking vessel, which is made 87 
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of ferromagnetic material. This current is dissipated because of the Joule effect and generates a volumetric power 88 

density distribution 𝑃 which heats the material 89 

𝑃 =
𝐽2

𝜎𝑒𝑝
 (3) 

where 𝜎 is the electrical conductivity of the material and 𝑒𝑝 is the pan base thickness. There is also an additional 90 

heat generated by the hysteresis effect, which is usually negligible. In most induction hobs the pan is placed over a 91 

ceramic glass which electrically isolates the inductor from the user (Fig. 2). The heat generated in the pan is 92 

transferred by conduction to the glass through a thermal contact conductance ℎ𝐶 , which includes the imperfect 93 

contact between both surfaces due to the intrinsic rugosity of the materials. Losses to the environment in the top 94 

surface of the pan base, the disk border and the glass are due to convection and radiation (ℎ𝑝 , ℎ𝑏  , ℎ𝑔) . 95 

 

 

Fig. 2. Scheme of the thermal model in an induction hob. The coil generates a magnetic field which induces an eddy current density which is 96 

dissipated in the metallic material, resulting in the power distribution 𝑃. The heat is transferred from the pan by conduction to the glass, through a 97 

contact conductance factor ℎ𝑐. The temperature of the metallic plate and the glass are 𝑇𝑝 and 𝑇𝑔. The losses to the environment at temperature 𝑇𝑎, 98 

from the pan and the glass, are modeled with heat transfer coefficients ℎ𝑝,ℎ𝑔 , which include convection and radiation. The losses in the 99 

perimeter of the pan base are modeled with a different heat transfer coefficient ℎ𝑏, which can also model the effect of the walls of the pan. 100 

As aforementioned, in the proposed model the pan base is modeled as a disk with radius 𝑅𝑝 and thickness 𝑒𝑝of 101 

homogeneous material with known conductivity, density and heat capacity (𝜆𝑝,𝜌𝑝,𝐶𝑝𝑝) . A cylindrical area of the 102 
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glass with radius 𝑅𝑔 and thickness 𝑒𝑔, being 𝑅𝑔 ≥ 𝑅𝑝, is also considered, with known properties (𝜆𝑔,𝜌𝑔,𝐶𝑝𝑔). The 103 

boundary conditions imposed in this model are Neumann boundary conditions [14]. In the top surface of the plate it 104 

is considered that the heat flux in 𝑧 direction is equal to the losses to the environment due to convection and 105 

radiation: 106 

−𝜆𝑝
𝜕𝑇𝑝
𝜕𝑧

= ℎ𝑝 �𝑇𝑝 − 𝑇𝑎��
𝑧=𝑒𝑝,0≤𝑟≤𝑅𝑝

 (4) 

ℎ𝑝 = ℎ𝑝𝑐𝑐𝑐𝑐 + ℎ𝑝𝑟𝑎𝑟 = ℎ𝑝𝑐𝑐𝑐𝑐 + 𝜎𝜎 �𝑇𝑝2 + 𝑇𝑎2��𝑇𝑝 + 𝑇𝑎� (5) 

where 𝑇𝑝 is the plate temperature, 𝑇𝑎 is the ambient temperature, ℎ𝑝𝑐𝑐𝑐𝑐  is the convection coefficient on the plate, 𝜎 107 

is the Stefan Boltzmann constant and 𝜎 = 1 is the emissivity considering that the radiant surface behaves as a black 108 

body and that the surrounding surfaces are at the ambient temperature. A similar condition is set on the top surface 109 

of the glass, in the outer area which is not in contact with the disk: 110 

−𝜆𝑔
𝜕𝑇𝑔
𝜕𝑧

= ℎ𝑔 �𝑇𝑔 − 𝑇𝑎��
𝑧=0,𝑅𝑝≤𝑟≤𝑅𝑔

 (6) 

ℎ𝑔 = ℎ𝑔𝑐𝑐𝑐𝑐 + ℎ𝑔𝑟𝑎𝑟 = ℎ𝑔𝑐𝑐𝑐𝑐 + 𝜎𝜎 �𝑇𝑔2 + 𝑇𝑎2��𝑇𝑔 + 𝑇𝑎� (7) 

where 𝑇𝑔 is the glass temperature and ℎ𝑔𝑐𝑐𝑐𝑐 is the convection coefficient on the glass. For simplicity, in this work 111 

we consider that the convection coefficients are constant with the temperature, as the range of temperature in a pan 112 

in a domestic cooker is relatively small. In the bottom surface of the plate the vertical heat flux depends on the 113 

contact conductance ℎ𝑐 and the temperature of the glass, and it is identical to the heat flux in the top surface of the 114 

glass: 115 

−𝜆𝑝
𝜕𝑇𝑝
𝜕𝑧

= −𝜆𝑔
𝜕𝑇𝑔
𝜕𝑧

= ℎ𝑐  �𝑇𝑔 − 𝑇𝑝� �
𝑧=0

  . (8) 

The vertical heat flux in the bottom surface of the glass is considered negligible for simplicity 116 
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−𝜆𝑔
𝜕𝑇𝑔
𝜕𝑧

= 0�
𝑧=−𝑒𝑔

  . (9) 

In the radial direction, it is considered that the heat flux in the center is null, in both the plate and the glass, due to 117 

the symmetry of the problem. In the border of the plate a heat losses coefficient ℎ𝑏 is defined, which includes 118 

convection and radiation: 119 

−𝜆𝑝
𝜕𝑇𝑝
𝜕𝑟

=  −𝜆𝑔
𝜕𝑇𝑔
𝜕𝑟

= 0�
𝑟=0

 (10) 

−𝜆𝑝
𝜕𝑇𝑝
𝜕𝑟

= ℎ𝑏 �𝑇𝑝 − 𝑇𝑎� �
𝑟=𝑅𝑝

  . (11) 

Finally, a Dirichlet boundary condition is considered in the border of the domain which models the glass 120 

𝑇𝑔 = 𝑇𝑎�𝑟=𝑅𝑔 . (12) 

In order to solve the model a finite differences method is proposed [15]. The disk and the cylindrical volume of 121 

glass are discretized with the two-dimensional polar grid shown in Fig. 3. The position of each element is defined 122 

with 𝑅𝑖 ,𝜙𝑗, and the size of each grid element is Δ𝑅,Δ𝜙. The domain is not discretized in 𝑧 direction because the 123 

heat conduction inside the plate and the glass is considered unimportant in this dimension due to the small thickness. 124 

The size of the time step selected in the discretization of the temporal dimension is Δ𝜕. The proposed method is an 125 

implicit finite differences method, in which the second derivatives of the temperature are approximated with a 126 

central differences scheme, and the first derivatives are approximated with a regressive differences scheme. Thus, 127 

the stability and convergence of the method are ensured. The power distribution in each element 𝑃𝑖 ,𝑗 for each instant 128 

is related with the disk temperature measured in each element 𝑇𝑝𝑖,𝑗 and the glass temperature 𝑇𝑔𝑖,𝑗 with the 129 

expressions: 130 

(1 ≤ 𝑖 ≤ 𝑛,   1 ≤ 𝑗 ≤ 𝑀) 
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𝑃𝑖,𝑗 = 𝑎𝑝𝑖  𝑇𝑝𝑖,𝑗 + 𝑏𝑝+𝑖  𝑇𝑝𝑖+1,𝑗
+ 𝑏𝑝−𝑖  𝑇𝑝𝑖−1,𝑗

+ 𝑐𝑝𝑖  𝑇𝑝𝑖,𝑗+1 + 𝑐𝑝𝑖  𝑇𝑝𝑖,𝑗−1 −
𝜌𝑝 𝐶𝑝𝑝
∆𝜕

 𝑇𝑝𝜏𝑖,𝑗 − 𝑎𝑝∗ 𝑖  𝑇𝑎 − 𝑑𝑝𝑖𝑇𝑔𝑖,𝑗 
(13) 

(1 ≤ 𝑖 ≤ 𝑁,   1 ≤ 𝑗 ≤ 𝑀) 

0 = 𝑎𝑔𝑖  𝑇𝑔𝑖,𝑗 + 𝑏𝑔+𝑖  𝑇𝑔𝑖+1,𝑗
+ 𝑏𝑔−𝑖  𝑇𝑔𝑖−1,𝑗

+ 𝑐𝑔𝑖  𝑇𝑔𝑖,𝑗+1 + 𝑐𝑔𝑖  𝑇𝑔𝑖,𝑗−1 −
𝜌𝑔 𝐶𝑝𝑔
∆𝜕

 𝑇𝑔𝜏𝑖,𝑗 − 𝑎𝑔∗ 𝑖   𝑇𝑎 − 𝑑𝑔𝑖𝑇𝑝𝑖,𝑗 
(14) 

 

Fig. 3. Discretization grid used in the finite differences method. The grid is based in a polar coordinate system, in which the position of the 131 

element 𝑖, 𝑗 is given by 𝑅𝑖 and 𝜙𝑗, and Δ𝑅, Δ𝜙 are the size of the grid in radial and azimuthal directions. 132 

where 𝑁,𝑀 are the number of nodes in the grid in radial and azimuthal directions, 𝑛 is the index of the last element 133 

of the disk in radial direction, 𝑇𝑝𝑖,𝑗 
𝜏 and 𝑇𝑔𝑖,𝑗 

𝜏 are the temperatures of elements 𝑖, 𝑗 of the disk and the glass in the 134 

previous instant. The coefficients 𝑎𝑝, 𝑎𝑝∗  , 𝑏𝑝, 𝑐𝑝,𝑑𝑝 are different in the boundaries and inside the grid, and are 135 

presented in Table 1. The coefficients 𝑎𝑔,𝑎𝑔∗  , 𝑏𝑔, 𝑐𝑔,𝑑𝑔 are presented as well in Table 2.  136 

The effect of the radiation increases with the temperature of the material, as seen in (5) and (7). Thus, the value 137 

of the losses factor in the disk and the glass is recalculated on each iteration, using the temperature values from the 138 

previous instant: 139 

ℎ𝑝 = ℎ𝑝𝑐𝑐𝑐𝑐 + ℎ𝑝𝑟𝑎𝑟 = ℎ𝑝𝑐𝑐𝑐𝑐 + 𝜎𝜎 �𝑇𝑝𝜏
2 + 𝑇𝑎2 ��𝑇𝑝𝜏 + 𝑇𝑎� (15) 
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ℎ𝑔 = ℎ𝑔𝑐𝑐𝑐𝑐 + ℎ𝑔𝑟𝑎𝑟 = ℎ𝑔𝑐𝑐𝑐𝑐 + 𝜎𝜎 �𝑇𝑔𝜏
2 + 𝑇𝑎2��𝑇𝑔𝜏 + 𝑇𝑎�  . (16) 

The convection coefficients and the contact conductance between the disk and the glass are obtained from 140 

experimental results with an induction hob in stationary regime. 141 

 

Table 1. Coefficients in the equation of the thermal model for the disk, in the case of induction, electric and gas cookers. 142 

Node index 𝑎𝑝𝑖 𝑎𝑝∗ 𝑖 𝑏𝑝+𝑖 𝑏𝑝−𝑖 cpi dpi 

𝑖 = 1 
𝜆𝑝
𝛥𝑅2

+
𝜆𝑝

𝑅1 𝛥𝑅
+

2𝜆𝑝
𝑅12 𝛥𝜙2 +

𝜌𝑝 𝐶𝑝𝑝 

∆𝜕
+
ℎ𝑝
𝑒𝑝

+
ℎ𝑐
𝑒𝑝

 
ℎ𝑝
𝑒𝑝

 −�
𝜆𝑝
𝛥𝑅2

+
𝜆𝑝

𝑅1 𝛥𝑅
� 0 −�

𝜆𝑝
𝑅12 𝛥𝜙2� 

ℎ𝑐
𝑒𝑝

 

1 < 𝑖 < 𝑛 
2𝜆𝑝
𝛥𝑅2

+
𝜆𝑝

𝑅𝑖 𝛥𝑅
+

2𝜆𝑝
𝑅𝑖2 𝛥𝜙2 +

𝜌𝑝 𝐶𝑝𝑝 

∆𝜕
+
ℎ𝑝
𝑒𝑝

+
ℎ𝑐
𝑒𝑝

 
ℎ𝑝
𝑒𝑝

 −�
𝜆𝑝
𝛥𝑅2

+
𝜆𝑝

𝑅𝑖  𝛥𝑅
� −�

𝜆𝑝
𝛥𝑅2

� −�
𝜆𝑝

𝑅𝑖2 𝛥𝜙2� 
ℎ𝑐
𝑒𝑝

 

𝑖 = 𝑛 
𝜆𝑝
𝛥𝑅2

+
2𝜆𝑝

𝑅𝑐2 𝛥𝜙2 +
𝜌𝑝 𝐶𝑝𝑝
∆𝜕

+
ℎ𝑝
𝑒𝑝

+
ℎ𝐶
𝑒𝑝

+
ℎ𝑏
𝛥𝑅

+
ℎ𝑏
𝑅𝑐

 
ℎ𝑝
𝑒𝑝

+
ℎ𝑏
𝛥𝑅

+
ℎ𝑏
𝑅𝑐

 0 −�
𝜆𝑝
𝛥𝑅2

� −�
𝜆𝑝

𝑅𝑐2 𝛥𝜙2� 
ℎ𝑐
𝑒𝑝

 

 

Table 2. Coefficients in the equation of the thermal model for the glass, in the case of induction and electric cookers. 143 

Node index 𝑎𝑔𝑖 𝑎𝑔∗ 𝑖 𝑏𝑔+𝑖 𝑏𝑔−𝑖 𝑐𝑔𝑖 𝑑𝑔𝑖 

𝑖 = 1 
𝜆𝑔
𝛥𝑅2

+
𝜆𝑔

𝑅1 𝛥𝑅
+

2𝜆𝑔
𝑅12 𝛥𝜙2 +

𝜌𝑔 𝐶𝑝𝑔 

∆𝜕
+
ℎ𝑐
𝑒𝑔

 0 −�
𝜆𝑔
𝛥𝑅2

+
𝜆𝑔

𝑅1 𝛥𝑅
� 0 −�

𝜆𝑔
𝑅12 𝛥𝜙2� 

ℎ𝑐
𝑒𝑔

 

1 < 𝑖 ≤ 𝑛 
2𝜆𝑔
𝛥𝑅2

+
𝜆𝑔

𝑅𝑖 𝛥𝑅
+

2𝜆𝑔
𝑅𝑖2 𝛥𝜙2 +

𝜌𝑔 𝐶𝑝𝑔 

∆𝜕
+
ℎ𝑐
𝑒𝑔

 0 −�
𝜆𝑔
𝛥𝑅2

+
𝜆𝑔

𝑅𝑖  𝛥𝑅
� −�

𝜆𝑔
𝛥𝑅2

� −�
𝜆𝑔

𝑅𝑖2 𝛥𝜙2� 
ℎ𝑐
𝑒𝑔

 

𝑛 < 𝑖 < 𝑁 
2𝜆𝑔
𝛥𝑅2

+
𝜆𝑔

𝑅𝑖  𝛥𝑅
+

2𝜆𝑔
𝑅𝑖2 𝛥𝜙2 +

𝜌𝑔 𝐶𝑝𝑔 

∆𝜕
+
ℎ𝑔
𝑒𝑔

 
ℎ𝑔
𝑒𝑔

 −�
𝜆𝑔
𝛥𝑅2

+
𝜆𝑔

𝑅𝑖  𝛥𝑅
� −�

𝜆𝑔
𝛥𝑅2

� −�
𝜆𝑔

𝑅𝑖2 𝛥𝜙2� 0 

𝑖 = 𝑁 
2𝜆𝑔
𝛥𝑅2

+
𝜆𝑔

𝑅𝑁 𝛥𝑅
+

2𝜆𝑔
𝑅𝑁2  𝛥𝜙2 +

𝜌𝑔 𝐶𝑝𝑔 

∆𝜕
+
ℎ𝑔
𝑒𝑔

 
𝜆𝑔
𝛥𝑅2

+
𝜆𝑔

𝑅𝑁 𝛥𝑅
+
ℎ𝑔
𝑒𝑔

 0 −�
𝜆𝑔
𝛥𝑅2

� −�
𝜆𝑔

𝑅𝑁2  𝛥𝜙2� 0 

 

2.2. Electric stove 144 

In the electric stove (Fig. 4) the power is transferred by radiation from a hot electric resistance to a ceramic glass, 145 

which is heated up to temperatures around 400ºC, and transfers the heat to the pan placed on the glass by 146 

conduction. The power density distribution depends on the temperature of the resistance 𝑇𝑟 with: 147 
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𝑃 =
𝜎𝜎
𝑒𝑔

 �𝑇𝑟4 − 𝑇𝑔4�  . (17) 

In contrast with the direct heat generation in the pan which occurs in an induction hob, the heating source in the 148 

electric stove generates a power distribution in the glass. Hence, the heat flux in vertical direction flows in this case 149 

from the glass to the pan. This affects to the boundary condition (9) of the previous model, which is reformulated as: 150 

−𝜆𝑔
𝜕𝑇𝑔
𝜕𝑧

�
𝑧=−𝑒𝑔

= 𝜎𝜎 (𝑇𝑟4 − 𝑇𝑔4) = 𝑃 𝑒𝑔 . (18) 

However, the rest of the boundary conditions are the same as those considered in the model of the induction cooker.   151 

 

Fig. 4. Scheme of the thermal model in an electric stove. The resistor beneath the glass dissipates electric energy increasing its temperature and 152 

radiates heat to the surface of the glass, generating a power distribution 𝑃. Heat is transferred to the pan by conduction from the glass, through a 153 

contact conductance factor ℎ𝑐. The losses to the environment from the pan and the glass are modeled with heat transfer coefficients ℎ𝑝,ℎ𝑔 , which 154 

include convection and radiation. The losses in the perimeter of the pan base are modeled with a different heat transfer coefficient ℎ𝑏. 155 

Using the same numerical method with the discretization grid shown in Fig. 3 the power density distribution 𝑃𝑖,𝑗 156 

can be obtained with the expresions 157 

(1 ≤ 𝑖 ≤ 𝑛,   1 ≤ 𝑗 ≤ 𝑀) 

0 = 𝑎𝑝𝑖  𝑇𝑝𝑖,𝑗 + 𝑏𝑝+𝑖  𝑇𝑝𝑖+1,𝑗
+ 𝑏𝑝−𝑖  𝑇𝑝𝑖−1,𝑗

+ 𝑐𝑝𝑖  𝑇𝑝𝑖,𝑗+1 + 𝑐𝑝𝑖  𝑇𝑝𝑖,𝑗−1 −
𝜌𝑝 𝐶𝑝𝑝
∆𝜕

 𝑇𝑝𝜏𝑖,𝑗 − 𝑎𝑝∗ 𝑖  𝑇𝑎 − 𝑑𝑝𝑖𝑇𝑔𝑖,𝑗 
(19) 

(1 ≤ 𝑖 ≤ 𝑛,   1 ≤ 𝑗 ≤ 𝑀) 
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𝑃𝑖 ,𝑗 = 𝑎𝑔𝑖  𝑇𝑔𝑖,𝑗 + 𝑏𝑔+𝑖  𝑇𝑔𝑖+1,𝑗
+ 𝑏𝑔−𝑖  𝑇𝑔𝑖−1,𝑗

+ 𝑐𝑔𝑖  𝑇𝑔𝑖,𝑗+1 + 𝑐𝑔𝑖  𝑇𝑔𝑖,𝑗−1 −
𝜌𝑔 𝐶𝑝𝑔
∆𝜕

 𝑇𝑔𝜏𝑖,𝑗 − 𝑎𝑔∗ 𝑖   𝑇𝑎 − 𝑑𝑔𝑖𝑇𝑝𝑖,𝑗 
(20) 

(𝑛 < 𝑖 ≤ 𝑁,   1 ≤ 𝑗 ≤ 𝑀) 

𝑃𝑖,𝑗 = 0 (21) 

where it is considered that the disk diameter is equal or larger than the electric resistance diameter. The values of the 158 

coefficients are the same as in the induction cooker model, which were presented in Table 1 and Table 2. 159 

2.3. Gas burner 160 

In the gas cooker (Fig. 5) there is a heat exchange between the gas produced in the combustion process and the 161 

bottom surface of the pan. The relationship between the configuration of the burner, the flame and the power 162 

distribution generated, can be studied with a computational fluid dynamics (CFD) analysis of the problem similar to 163 

that carried out in [16], where the heat transfer mechanism is modeled as convection. If we considered a heat 164 

transfer coefficient ℎ𝑔𝑎𝑔 , it would be related to the power density distribution which heats the pan with 165 

𝑃 =
ℎ𝑔𝑎𝑔
𝑒𝑝

(𝑇𝑓 − 𝑇𝑝) (22) 

where 𝑇𝑓 is the flame temperature.  166 

The thermal model in this case is simpler, since only the base of the pan is considered and there is no glass 167 

between the plate and the heating source. The boundary conditions in radial direction and in the top surface of the 168 

plate are the same, and in the bottom surface the heat flux is given by the heat transmission from the flame: 169 

−𝜆𝑝
𝜕𝑇𝑝
𝜕𝑧

�
𝑧=0

= ℎ𝑔𝑎𝑔  �𝑇𝑓 − 𝑇𝑝� = 𝑃 𝑒𝑝 . (23) 
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Fig. 5. Scheme of the thermal model in a gas cooker. The combustion gas heats the plate by convection, generating a power distribution 𝑃 in the 170 

base of the pan. The losses to the environment are modeled with a heat transfer coefficient ℎ𝑝 which includes convection and radiation, and the 171 

losses in the disk border are modeled with a different heat transfer coefficient ℎ𝑏. 172 

Again, a numerical calculation method based in finite differences is used. In this case the domain considered 173 

only includes the disk. The power distribution in each element 𝑃𝑖,𝑗 for each instant is obtained with the expression: 174 

(1 ≤ 𝑖 ≤ 𝑛,   1 ≤ 𝑗 ≤ 𝑀) 

𝑃𝑖,𝑗 = 𝑎𝑝𝑖  𝑇𝑝𝑖,𝑗 + 𝑏𝑝+𝑖  𝑇𝑝𝑖+1,𝑗
+ 𝑏𝑝−𝑖  𝑇𝑝𝑖−1,𝑗

+ 𝑐𝑝𝑖  𝑇𝑝𝑖,𝑗+1 + 𝑐𝑝𝑖  𝑇𝑝𝑖,𝑗−1 −
𝜌𝑝 𝐶𝑝𝑝
∆𝜕

 𝑇𝑝𝜏𝑖,𝑗 − 𝑎𝑝∗ 𝑖  𝑇𝑎 (24) 

where the coefficients 𝑎, 𝑎∗, 𝑏, 𝑐 are the same as presented in Table 1, considering ℎ𝑐 = 0. 175 

3. Materials and methods 176 

The model presented in the previous section for an induction hob, an electric stove and a gas cooker requires 177 

knowing the temperature on the pan base during a heating process. In order to use the model for the study of real 178 

situations, some experiments with real stoves have been carried out, heating ferromagnetic steel disks and measuring 179 

the temperatures with an infrared camera.   180 

3.1. Experimental setup 181 

Three conventional cooktops are used to perform the experiments: an induction hob, an electric stove, and a gas 182 

cooker, Fig. 6. Different C45 ferromagnetic steel disks of 0.23 m of diameter and thickness from 3e-3 to 5e-3 m, 183 

emulating the base of conventional pans, are heated with the three cooktops. The thermal properties of the steel and 184 

of the ceramic glass which is present in the induction hob and the electric stove are shown in Table 3. The 185 
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measurement of the disk temperature has been carried out with an infrared camera FLIR A650 (Fig. 7), which 186 

records the temperature evolution at each point with resolution of 640x480 pixels and accuracy of ±2 ºC.  187 

 

 

Fig. 6. Cooktops employed in the experiments, one of each type of heating source: induction hob (PIE375N14E), electric stove (3EE721LS) and 188 

gas stove (PPQ716B91E). 189 

 

Fig. 7. Infrared camera FLIR A655sc used to measure the temperature distribution. 190 

Table 3. Thermal properties of C45 ferromagnetic steel and of the conventional ceramic glass. 191 

 

Property Value Units Property Value Units 

 𝜆𝑝 46 W
m ∙ K

 λg 2.6 
W

m ∙ K
 

𝜌𝑝 7850 kg
m3 𝜌𝑔 2600 

kg
m3 

𝐶𝑝𝑝 500 
J

kg ∙ K
 𝐶𝑝𝑔 800 

J
kg ∙ K
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3.2. Thermography and temperature filtering 192 

The thermographies recorded with the infrared camera in the experiments with the induction hob, the electric 193 

stove and the gas cooker, contain on each pixel the mean temperature measured in the corresponding pixel area. This 194 

information must be processed before computing the inverse model with two operations: a coordinate transformation 195 

and a noise-reduction filtering. 196 

 The original image gives the temperature data for each point in a rectangular grid, which must be converted to a 197 

polar grid in order to fit the proposed model. For this purpose a coordinate change is performed, using a cubic 198 

interpolation algorithm in Matlab. In the resultant image the data in the first row is the temperature in the center of 199 

the disk and the last row contains the temperatures in the circumference of the disk border. Thus the radial direction 200 

is given along the rows, and the azimuthal direction along the columns (Fig. 8). 201 

 

Fig. 8. Coordinates transformation of the thermographies recorded with the infrared camera. 202 

The infrared camera provides the temperature measurement with a certain noise level, which is produced by the 203 

non-uniformity of the emissivity of the disk surface and the own signal noise of the infrared sensor. Moreover the 204 

discrete nature of the data in the images produces discontinuities in the derivatives after the coordinate 205 

transformation. Hence, in order to improve the calculation of temperature derivatives, the images must be filtered in 206 

a previous stage. In this work we propose to use a smooth filter proposed by Savitzky & Golay, [17], which is one of 207 

the most commonly used filters in image smoothing due to the improved results which can be obtained with respect 208 

to other filters such as mean or median filters. An example of the behavior of this filter is shown in Fig. 9, where 209 

 

x 

y 
r 

θ 

r 

θ 
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both the original and filtered temperature profiles along the disk radius are shown. The first derivative shows the 210 

high noise suppression obtained. 211 

 

 

Fig. 9. Smooth filtering with the Savitzky-Golay method. Radial profile and first derivative of the original and filtered data. 212 

3.3. Parameter identification 213 

Although the model takes into account the thermal properties of the materials, which are known from the 214 

literature, there have been also considered other parameters such as convection coefficients or the contact 215 

conductance, which are specific of each problem. In order to identify these parameters, an experimental procedure is 216 

proposed in this section. 217 

In order to simplify the identification of the parameters, it is only used the induction hob because the 218 

measurement and control of the input power can be obtained with higher accuracy. A power analyzer (Yokogawa 219 

PZ4000) is connected in the output of the power stage which feeds the inductor and the real heating power 220 

dissipated in the disk is estimated as the 97% of the power measured, which is the typical efficiency of the inductor 221 

[18]. Two different configurations are used in the experiments. First, the glass of 4e-3 m is replaced with an 222 

isolation blanket of the same thickness, which simplifies the model and allows considering null heat conduction 223 

through the bottom surface of the disk, i.e. the contact conductance is negligible, ℎ𝑐 = 0. With the temperatures 224 

measured in these experiments the losses coefficients ℎ𝑝 and ℎ𝑏 can be easily identified. Once the values of these 225 

parameters are known, from different experiments under the same conditions using the glass instead of the blanket, 226 

the contact conductance is obtained.  227 
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The C45 steel disks are heated with a low power level, such that the stationary regime is reached at a mean 228 

temperature around 250 ºC. Thus, the parameters are calculated by means of the energy balance in the stationary 229 

regime, obtained from the measurement of the temperature and the input power. The first balance is obtained by 230 

integrating the heat equation in the whole disk, in which both the losses through the top surface and the disk border 231 

are taken into account. The resultant expression is 232 

𝑃𝑇 −� ℎ𝑝�𝑇𝑝 − 𝑇𝑎� 𝑟 𝑑𝑟 𝑑𝜙
𝑅𝑝,2𝜋

0,0
−� ℎ𝑏�𝑇𝑝𝑏 − 𝑇𝑎� 𝑅𝑝 𝑑𝜙 𝑑𝑧

𝑒𝑝 ,2𝜋

0,0
=  0   (25) 

where 𝑃𝑇  is the total mean power measured in the coil with the power analyzer, and 𝑇𝑝𝑏 is the temperature in the 233 

border of the disk. The integral terms are numerically obtained using the same polar grid proposed for solving the 234 

theoretical model: 235 

� ℎ𝑝�𝑇𝑝 − 𝑇𝑎� 𝑟 𝑑𝑟 𝑑𝜙
𝑅𝑝,2𝜋

0,0
= � �ℎ𝑝𝑐𝑐𝑐𝑐(𝑇𝑝𝑖,𝑗 − 𝑇𝑎) + 𝜎𝜎(𝑇𝑝4𝑖,𝑗 − 𝑇𝑎4)�

(𝑅𝑖2 − 𝑅𝑖−12 )𝛥𝜙
2

 
𝑐,𝑀

𝑖,𝑗
 (26) 

� ℎ𝑏�𝑇𝑝𝑏 − 𝑇𝑎� 𝑅𝑝 𝑑𝜙 𝑑𝑧
𝑒𝑝 ,2𝜋

0,0
= � �ℎ𝑏(𝑇𝑝𝑐,𝑗 − 𝑇𝑎)� 𝑒𝑝𝑅𝑝𝛥𝜙 

𝑀

𝑗
 (27) 

The second balance is stated in the disk border, where the boundary condition (11) is employed:  236 

� −𝜆𝑝
𝜕𝑇𝑝𝑏
𝜕𝑟

 𝑅𝑝 𝑑𝜙 𝑑𝑧
𝑒𝑝 ,2𝜋

0,0
= � ℎ𝑏�𝑇𝑝𝑏 − 𝑇𝑎� 𝑅𝑝 𝑑𝜙 𝑑𝑧

𝑒𝑝 ,2𝜋

0,0
   (28) 

The solution of the system with two equations and two unknowns gives the value of ℎ𝑝 and ℎ𝑏 in the considered 237 

experiment. In order to obtain a better adjustment, the mean values from several experiments with different input 238 

powers have been calculated. 239 

The losses coefficient in the glass surface ℎ𝑔 is obtained experimentally. In this case a round pan with water is 240 

placed on the induction hob with the glass beneath, and it is heated up to reach a uniform boiling. Then the induction 241 

cooker is switched off and the pan is removed, letting the infrared camera measure the glass temperature. The glass 242 

is cooled by effect of the losses coefficient, which can be obtained with an energy balance 243 
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� �� ℎ𝑔�𝑇𝑔 − 𝑇𝑎� 𝑟 𝑑𝑟 𝑑𝜙
𝑅𝑝,2𝜋

0,0
+ � −𝜆𝑔

𝜕𝑇𝑔𝑏
𝜕𝑟

 𝑅𝑝 𝑑𝜙 𝑑𝑧
𝑒𝑔,2𝜋

0,0
� 𝑑𝜕

𝑡2

𝑡1
=  � 𝜌𝑔 𝐶𝑝𝑔  

𝜕𝑇𝑔
𝜕𝜕

𝑑𝜕
𝑡2

𝑡1
   (29) 

where [𝜕1, 𝜕2] is the considered time interval. 244 

Once the losses parameters are identified, the contact heat transfer ℎ𝑐 can be experimentally identified. Using the 245 

induction cooktop with a conventional glass, a disk is heated and its temperature recorded with the camera. From a 246 

power balance in the disk with the temperature evolution measured, the power transferred from the disk to the glass 247 

𝑃𝑐 can be calculated: 248 

𝑃𝑐 = 𝑃𝑇 − 𝑃𝑙𝑐𝑔𝑔𝑒𝑔 − 𝑃𝑔𝑡𝑐𝑟𝑒𝑟  

𝑃𝑐 = � ℎ𝑐�𝑇𝑝 − 𝑇𝑔�
𝑅𝑝,2𝜋

0,0
 𝑟 𝑑𝑟 𝑑𝜙 

𝑃𝑙𝑐𝑔𝑔𝑒𝑔 = � ℎ𝑝�𝑇𝑝 − 𝑇𝑎� 𝑟 𝑑𝑟 𝑑𝜙
𝑅𝑝,2𝜋

0,0
+ � ℎ𝑏�𝑇𝑝𝑏 − 𝑇𝑎� 𝑅𝑝 𝑑𝜙 𝑑𝑧

𝑒𝑝 ,2𝜋

0,0

+ � ℎ𝑔�𝑇𝑔 − 𝑇𝑎� 𝑟 𝑑𝑟 𝑑𝜙
𝑅𝑔,2𝜋

𝑅𝑝,0
   

𝑃𝑔𝑡𝑐𝑟𝑒𝑟 =
1
𝛥𝜕
� 𝜌𝑝 𝐶𝑝𝑝  

𝜕𝑇𝑝
𝜕𝜕

𝑑𝜕
𝑡+𝛥𝑡

𝑡
  . 

(30) 

An example of this calculation is shown in Fig. 10, where each contribution to the power balance is plotted 249 

separately. The heated disk has a diameter of 0.23 m and a thickness of 4e-3 m. The coil has a diameter of 0.21 m 250 

and the ceramic glass has a thickness of 4e-3 m. The values estimated for the losses coefficients in this case are 251 

ℎ𝑝𝑐𝑐𝑐𝑐 = 9.5 W
m2K

 and ℎ𝑏 = 75 W
m2K

 . In order to obtain the value of the contact conductance the temperature of the 252 

glass must be obtained, which at the same time depends on the contact conductance. Thus, an iterative algorithm is 253 

used to simulate the temperature of the glass, based on the equations of the theoretical model proposed, for different 254 

values of ℎ𝑐. Then the power transferred from the disk to the glass is calculated from the simulations and compared 255 

with the obtained through (30). We select a value of the coefficient with which a best fitting is obtained. For the 256 

considered case the calculated value is ℎ𝑐 = 50 W
m2K

 . The fitting between the curves of power transferred from disk 257 

to glass is presented in Fig. 11. 258 
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Fig. 10. Power balance obtained from the temperature measurement when heating a disk of diameter 0.23 m and thickness 4e-3 m with a 0.21 m 259 

coil in an induction cooktop. 260 

 

Fig. 11. Power transferred from disk to glass due to the contact conductance with the time. The experimental and simulated curves are shown. 261 

4. Results and discussion  262 

In this section, the power density distribution in different heating situations with the three technologies 263 

considered in this work is calculated with the proposed inverse model. The values of the parameters in the model are 264 

identified using the previous method with long duration experiments in which a stationary heating is reached. 265 

Nevertheless, in order to improve the quality of the results obtained with the inverse model, the power density is 266 

obtained from new experiments using higher power levels, considering the transient regime of the heating process. 267 

The larger inductor of the induction hob with two cooking zones is used for heating a disk of 0.23 m of diameter 268 
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and 3e-3 m of thickness. The coil diameter is 0.21 m, with a non-equally spaced distribution of turns, as seen in Fig. 269 

12. The power stage which feeds the inductor is a half-bridge resonant inverter, and it is activated with constant 270 

frequency and duty cycle during the heating process, which ends when the maximum temperature reached in the 271 

disk is 200 ºC. The temperature of the disk is measured with the infrared camera and the power density distribution 272 

is calculated for each instant with the proposed inverse model, using the parameters shown in Table 4. An example 273 

of the result is presented in Fig. 13, which shows a three-dimensional representation of the power distribution 274 

generated in the disk after 20 s, normalized to a total power of 1W.  We also present the temperature map in color 275 

scale at the same instant. Fig. 14 shows the evolution of the mean power calculated by integration of the power 276 

density distribution, and the measured power in the output of the power stage. The result obtained from the model 277 

shows a good agreement with the experimental data. 278 

Table 4. Parameter values identified for a disk of 0.23 m of diameter and 0.003 m of thickness, placed on a ceramic glass. 279 

Parameter Value Units 

ℎ𝑝𝑐𝑐𝑐𝑐 9.5 
W

m2 ∙ K
 

ℎ𝑏 75 
W

m2 ∙ K
 

ℎ𝑔𝑐𝑐𝑐𝑐 
 15 

W
m2 ∙ K

 

ℎ𝑐 50 
W

m2 ∙ K
 

 

 

Fig. 12. Planar coil in the conventional induction hob with 0.21 m of diameter and optimized geometry for a uniform heating.  280 
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The same disk is heated with the double cooking zone of the electric stove, which consists of two resistances that 281 

can be activated independently, Fig. 15. The diameter of the inner resistance is 0.12 m and the diameter of the outer 282 

resistance is 0.21 m. The maximum power level of the cooking zone is selected, such that both heating elements are 283 

fed constantly from mains with a mean consumption of 1990 W, measured in the input of the stove. The temperature 284 

of the disk is measured with the infrared camera and the inverse model is calculated using the same values of the 285 

parameters from the previous case. The temperature map in the instant in which the maximum temperature reaches 286 

200 ºC and the 3D representation of the normalized power distribution transmitted from the glass to the disk through 287 

the contact conductance are shown in Fig. 16. This power distribution is comparable with the power distribution 288 

generated inside the disk in the case of the induction hob, because it is the one which determines the temperature 289 

distribution in the pan. Nevertheless the power distribution which heats the glass and the glass temperature can also 290 

be obtained with the model. Integrating the power distribution in the disk volume for each instant, the mean power 291 

transferred to the disk along the time is obtained, Fig. 17. The difference between this curve and the power measured 292 

in the input of the electric hob is the energy employed to heat up the resistance and the glass, which involves 293 

spending more than the 60% of the supplied energy. 294 

Finally, a similar experiment is carried out with the gas stove, burning butane gas in the medium-sized burner 295 

with a diameter of 0.12 m. The maximum power supplied by this burner is 3000 W, according to the manufacturer, 296 

and the gas faucet is opened approximately at the half of the maximum. The temperature of the disk is monitored 297 

and the power distribution transferred through the bottom surface of the plate is calculated with the inverse model. 298 

The obtained results are presented in Fig. 18. Again, the mean power transferred to the disk for each instant is 299 

calculated by integrating the power density distribution in the disk volume, Fig. 19. 300 
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Fig. 13. Temperature map measured with the infrared camera and 3D representation of the normalized power density distribution obtained with 301 

the inverse model for the inductor of diameter 0.21 m after 20 s of heating.  302 

 

Fig. 14. Evolution of the mean power which heats the disk in the induction hob. The measured power and the calculated with the inverse model 303 

are in good agreement. 304 
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Fig. 15. Double resistance in the electric stove. The inner resistance has a diameter of 0.12 m and the outer resistance a diameter of 0.21 m. 305 

 

Fig. 16. Temperature map measured with the infrared camera after 125 s of heating and 3D representation of the normalized power density 306 

distribution transferred from the glass to the disk calculated with the inverse model for the double cooking zone of the electric stove.  307 
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Fig. 17. Evolution of the mean power which heats the disk, transferred through the bottom surface in the electric stove. 308 

 

Fig. 18. Temperature map measured with the infrared camera after 72 seconds of heating and 3D representation of the normalized power density 309 

distribution, calculated with the inverse model, transferred to the base of the plate from the burnt gas. 310 
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Fig. 19. Evolution of the mean power which heats the disk using the medium-size burner in the gas stove. 311 

From the obtained results, the heating performance of the three considered technologies can be observed and 312 

compared. There are some differences in the power distributions which heat the disk, which are a consequence of 313 

the type of heating source.  314 

In the case of the induction hob, the power distribution is null in the center of the pan and has two maximums in 315 

the radial direction, which are produced by the particular distribution of wire turns of the coil. It is also observed the 316 

effect of the 8 ferrite bars beneath the coil, which produce an amplification effect of the magnetic field over its 317 

position, increasing the efficiency of the coil. The evolution of the mean power transferred to the disk shows the 318 

effect of the temperature in the electrical conductivity of the material, which decreases as the material is heated, thus 319 

the induced current decreases and the dissipated power is lower. Nevertheless, in a conventional induction hob the 320 

power control implemented in the induction electronics automatically corrects the modulation parameters in order to 321 

obtain a constant power supply. 322 

The power distribution transferred to the disk in the double cooking zone of the electric stove shows a peak in the 323 

central area of the plate, which is originated by the higher power density radiated by the internal resistance. It can be 324 

also observed the effect of the ring which isolates both resistances, producing a low-power area with circular shape. 325 

The mean power transferred from the glass to the disk is much lower than the power measured in the input of the 326 

stove. This reflects the behavior of this technology in a transient heating, in which the resistance and the glass take 327 

the major part of the energy to be heated up to the working temperature. As a result, the efficiency of the stove 328 

during the first minutes of a preheating process is low, seen from the point of view of the pan. 329 
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The power distribution generated in the gas cooker shows a maximum in the area in which the temperature of the 330 

flame is higher, and a large central zone in which the burnt gas has a lower incidence. It can also be observed the 331 

effect of the metallic structure which supports the disk above the burner, which isolates the plate surface from the 332 

flame and generates gaps in the power distribution. The evolution of the mean power shows in this case that a high 333 

power is transferred from the beginning of the heating process, and there is a fluctuation of the power transfer due to 334 

the instability of the flame temperature and the gas flow. 335 

5. Conclusions 336 

In this work the thermal modeling in the most common cooking stoves, with different heating technologies, has 337 

been presented. The inverse model developed in this paper allows the calculation of the power distribution heating 338 

the base of the pan, from the measurement of the temperature distribution with an infrared camera.  339 

The proposed model provides good results with the three considered technologies (induction, electric resistance 340 

and gas), and can be used to establish comparisons between the different power distributions and achieve a deeper 341 

understanding of the different behavior of the pan temperature during a cooking process in each situation. In the 342 

particular cookers studied in this work, the induction hob provides a more uniform power distribution and efficiency 343 

when using a cooking vessel of a similar size than the inductor. However, the gas cooker is suitable for a wider 344 

range of pan sizes, because the power is more concentrated in the outer area of the pan base. The electric stove 345 

showed the worst performance in the heating uniformity, which could be improved by increasing the power supplied 346 

by the outer resistance in the double cooker.  347 

The proposed inverse model is an alternative method for the calculation of the power distribution which can be 348 

used in situations where a higher computational cost is required with other methods, e.g. with finite element 349 

methods or CFD. The results obtained with the inverse model are of high interest and can be employed to simulate 350 

heating processes with a direct thermal model in situations under different conditions, with different pans or 351 

including the effect of the food. 352 

Acknowledgements 353 

       This work has been partially supported by projects IPT-2011-1158-920000 (INNPACTO) and RTC-2014-354 



   

26 

 

1847-6 (RETOS-COLABORACION), from Ministerio de Economia y Competitividad, Spain, and by grant 355 

AP2013/02769 from Ministerio de Educacion, Cultura y Deporte, Spain.  356 

References 357 

[1] J. Cernela, B. Heyd, B. Broyart, Evaluation of heating performances and associated variability of domestic cooking appliances (oven-358 
baking and pan-frying), Appl. Therm. Eng. 62 (2014) 758–765. doi:10.1016/j.applthermaleng.2013.08.045. 359 

[2] F.J. Cadavid, Y. Cadavid, A.A. Amell, A.E. Arrieta, J.D. Echavarría, Numerical and experimental methodology to measure the thermal 360 
efficiency of pots on electrical stoves, Energy. 73 (2014) 258–263. doi:10.1016/j.energy.2014.06.017. 361 

[3] S.E. Zorrilla, R.P. Singh, Heat transfer in double-sided cooking of meat patties considering two-dimensional geometry and radial 362 
shrinkage, J. Food Eng. 57 (2003) 57–65. doi:10.1016/S0260-8774(02)00273-X. 363 

[4] A.H. Feyissa, K. V. Gernaey, S. Ashokkumar, J. Adler-Nissen, Modelling of coupled heat and mass transfer during a contact baking 364 
process, J. Food Eng. 106 (2011) 228–235. doi:10.1016/j.jfoodeng.2011.05.014. 365 

[5] F. Sanz, C. Sagues, S. Llorente, Induction Heating Appliance with a Mobile Double-Coil Inductor, IEEE Trans. Ind. Appl. 51 (2015) 366 
1945–1952. doi:10.1109/TIA.2014.2367136. 367 

[6] J.K. Byun, K. Choi, H.S. Roh, S.Y. Hahn, Optimal design procedure for a practical induction heating cooker, IEEE Trans. Magn. 36 368 
(2000) 1386–1389. doi:10.1109/20.877697. 369 

[7] H.N. Pham, H. Fujita, K. Ozaki, N. Uchida, Estimating Method of Heat Distribution Using 3-D Resistance Matrix for Zone-Control 370 
Induction Heating Systems, IEEE Trans. Power Electron. 27 (2012) 3374–3382. doi:10.1109/TPEL.2011.2179984. 371 

[8] M. Souley, J. Egalon, S. Caux, O. Pateau, Y. Lefevre, P. Maussion, Optimization of the settings of multiphase induction heating 372 
system, IEEE Trans. Ind. Appl. 49 (2013) 2444–2450. doi:10.1109/TIA.2013.2264924. 373 

[9] P. Wikström, W. Blasiak, F. Berntsson, Estimation of the transient surface temperature and heat flux of a steel slab using an inverse 374 
method, Appl. Therm. Eng. 27 (2007) 2463–2472. doi:10.1016/j.applthermaleng.2007.02.005. 375 

[10] F.L. Rodríguez, V. De Paulo Nicolau, Inverse heat transfer approach for IR image reconstruction: Application to thermal non-376 
destructive evaluation, Appl. Therm. Eng. 33-34 (2012) 109–118. doi:10.1016/j.applthermaleng.2011.09.019. 377 

[11] A. Plotkowski, M. Krane, The Use of Inverse Heat Conduction Models for Estimation of Transient Surface Heat Flux in Electroslag 378 
Remelting, J. Heat Transfer. 137 (2015) 031301–031301–9. doi:10.1115/1.4029038. 379 

[12] J. Luo, A.J. Shih, Inverse Heat Transfer Solution of the Heat Flux Due to Induction Heating, J. Manuf. Sci. Eng. 127 (2005) 555–563. 380 
doi:10.1115/1.1949617. 381 

[13] J. Zhou, Y. Zhang, J.K. Chen, Z.C. Feng, Inverse estimation of surface heating condition in a three-dimensional object using conjugate 382 
gradient method, Int. J. Heat Mass Transf. 53 (2010) 2643–2654. doi:10.1016/j.ijheatmasstransfer.2010.02.048. 383 

[14] T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. Dewitt, Fundamentals of heat and mass transfer, seventh ed, John Wiley & Sons, 384 
2011. 385 

[15] R. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, 386 
Society for Industrial and Applied Mathematics, 2007. doi:10.1137/1.9780898717839. 387 

[16] J.G. Shin, J.H. Woo, Analysis of Heat Transfer Between the Gas Torch and the Plate For the Application of Line Heating, J. Manuf. 388 
Sci. Eng. 125 (2003) 794–800. doi:10.1115/1.1616949. 389 



   

27 

 

[17] A. Savitzky, M.J.E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem. 36 (1964) 390 
1627–1639. doi:10.1021/ac60214a047. 391 

[18] J. Acero, J.M. Burdio, L.A. Barragan, D. Navarro, R. Alonso, J.R. García, et al., Domestic induction appliances, IEEE Trans. Ind. Appl. 392 
Mag. 16 (2010) 39–47. doi:10.1109/MIAS.2009.935495.  393 

 394 


