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Resumen

El problema de la localización global, es decir, la localización de un robot en un
entorno conocido sin información sobre sus estados previos, ha sido ampliamente
estudiado mediante diferentes métodos en la literatura. Un gran número de
algoritmos han sido presentados y probados considerando varias condiciones.

El objetivo de este trabajo es comparar diferentes métodos de representación
de ocupación de celdillas construidos a partir de datos provistos por un láser
utilizando técnicas de visión por computador. El enfoque seguido usa comparación
visual de un mapa global con uno local, creado gracias al sensor láser. Esta
elección permite una fácil integración con sistemas robóticos existentes al mismo
tiempo que evita problemas t́ıpicos de soluciones puramente visuales, como la
influencia de cambios de iluminación.

Los dos algoritmos comparados—basados en área y en puntos caracteŕısticos,
respectivamente—han sido evaluados en un entorno interior simulado. Se ha
asumido una situación estática, sin presencia de obstáculos móviles.

El trabajo ha sido realizado durante un programa de movilidad en el extranjero,
por lo que el resto del documento se adapta en fondo y forma a las especificaciones
de la Universidad de destino.
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Abstract

The problem of global localization, that is, the localization of a robot in a known
environment without information of its previous states, has been vastly studied
through different approaches in the literature. A large number of algorithms
have been presented and tested considering various conditions.

The aim of this thesis is to compare different methods for occupancy-grid repre-
sentations built from laser data using Computer Vision techniques. The approach
followed uses visual matching of a global and a local map, created from data
provided by a laser sensor. This choice allows an easy integration with existing
robotic systems at the same time that avoids typical problems of purely visual
solutions, such as the influence of lighting changes.

The two algorithms compared—area-based and feature-based, respectively—have
been tested in a simulated indoor environment. A static situation has been
assumed, without presence of mobile obstacles.
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1 Description of the Problem
One of the most fundamental abilities required for the navigation of a mobile
robot is that of self-localization, which consists on the recognition of the current
position. A large number of methods concerning different approaches have been
proposed and tested, such as [2] [3] [4].

The self-localization of a robot is usually divided into two different parts: position
tracking and global localization, as stated in [5]. The first subproblem assumes
that the initial location of the robot is known and tries to estimate the following
ones incrementally, based on the last estimation and the data provided by the
sensors. The second part, on the other hand, concerns the relocalization of
the robot under global uncertainty. This means that the position of the robot
in previous instants is completely unknown, and the current location may be
anywhere inside the global map.

The aim of this thesis is to analyze a possible solution for the second subproblem
of self-localization: the global localization of a robot. It is also defended in [5]
that the ability to recognize places using landmarks usually plays an important
role in obtaining better localization results, since high level place recognition can
detect more distinctiveness. In [6] it is stated that the key issue in the so-called
kidnapped-robot problem is that of properly matching sensor data provided by
exteroceptive sensors to a world model. The reason is that the information given
by proprioceptive sensors lacks of utility, since the state in previous instants is
not known.

In the realization of this project the following hypotheses are assumed:

� The global environment is accurately modeled and available for the match-
ing process—or can be a priori modeled. This is a reasonable premise, as it
would not be possible for the robot to find its position if it is in an unknown
area. However, it would not be appropriate for exploration purposes.

� The environment is static, which means that the obstacles that can be
encountered do not change their position over time. It restricts its applica-
tion in real-life situations, but it may be considerably useful in controlled
environments with few users.

� The situation is two-dimensional, that is, the motion of the robot always
takes place in the x − y plane, as shown in Figure 1.1. It is not a very
limiting condition, as the robot is supposed to remain always on the floor
in a flat, indoor environment. The main advantage is that the computation
costs are significantly smaller than in a 3-D case.

� The robot is equipped with a laser sensor—or similar—which provides the
data needed for the creation of the maps. This feature can be found in
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1 DESCRIPTION OF THE PROBLEM

most of the robots used.

The solution of the problem consists on the calculation of the three variables for
position (ξ) in a 2-D space referred to the global coordinate system, defined in
equation (1.1).

ξ ≡

xy
θ

 (1.1)

A local coordinate system is also defined as depicted in Figure 1.1. It is attached
to the robot, corresponding the x to the front direction. In both coordinate
systems the z axis is going up from the floor, and the robot can only change its
orientation by rotating around it an angle θ.

Figure 1.1: Position of the robot referred to the global coordinate system.
Figure extracted from [1]

The next lines are a short explanation of the outline. In section 2 the approach
followed is described. Moreover, the different tools and algorithms are named and
explained. Section 3 discusses the integration of the method described in ROS
environment. The experimental results are summed up in section 4, particularly
focusing on the differences in the performance of the algorithms used, as well as
on the influence of the parameters studied. Finally, sections 5 and 6 concern the
final conclusions and the possible further work, respectively.

2



1 DESCRIPTION OF THE PROBLEM 1.1 State of the Art

1.1 State of the Art

The problem of global localization has been largely treated through a number of
different approaches, which are classifiable by the types of algorithms used.

Several projects address it using place recognition based on visual data. Its main
advantage is the high distinctiveness of the different positions in the environment,
which helps solve the problem of perceptual aliasing specially in places such as
long corridors. However, this technique entails diverse disadvantages, like high
sensitivity to illumination changes and long time required for initial setup.

Other methods employ particle filters like AMCL (Adaptive Monte Carlo Local-
ization), which estimate the state of the robot while it is moving and sensing
the environment. When solving the problem, the method starts with a uni-
form random distribution of particles—with each particle representing a possible
state—since any point in the space is equally likely. As the robot moves, the
information provided by the odometry is used to estimate the current state,
which is correlated with the vision sensors to test the suitability of the prediction.
Eventually, the particles should converge towards the actual position of the robot.
The main downsides of this method are its slowness and the probability of large
errors.

Moreover, there are some algorithms based on evolutionary computation concepts.
As an example, a non linear evolutionary filter known as the Evolutionary
Localization Filter (ELF) is presented in [7]. This algorithm searches for the
solution stochastically using an evolutionary search technique, which avoids
derivatives. Therefore, it is much more robust in dealing with signals with high
noise ratio.

Relating to the matching process, there are many approaches different to the
ones studied in this thesis. In [8] a radial sampling filter is presented. The
experimental results show that it performs highly efficiently when matching
two images, disregarding their rotation angle and translation. [9] introduces a
point matching algorithm used for nonrigid shapes based on local neighborhood
structures. It can successfully handle nonrigid deformation, noise in point
locations, outliers, occlusions, and rotation.

In addition, there are several project that consider more general hypotheses in
order to adapt to changing environments. Some of the topics concerned are
feature learning and prediction of systematic changes. Moreover, some other
groups are working on robots for long-term autonomy, using semantic information
for long-term recognition.
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2 Approach
The problem of global localization deals with the positioning of a robot under
global uncertainty. The method presented in this thesis only uses laser measure-
ments provided by the sensor, which are turned into an image to be matched
with the global map. One of the main advantages of laser is the avoidance of
typical problems of purely visual techniques, such as the influence of lighting
changes.

In order to integrate the laser measurements with the usage of Computer Vision
algorithm, the representation of the environment is carried out in occupancy-grid
maps. These maps allow the transformation of the probability of existence of an
obstacle into an image.

Other map types such as feature-based maps or topological maps were discarded.
Topological maps represent the world as a network of nodes and arcs: the
nodes are distinctive places in the environment and the arcs represent paths
between places, as explained in [10], which makes them unsuitable for navigation
purposes. Feature-based maps, on the other hand, build the representation of
the environment based on landmarks, as described in [11], what constitutes a
more complex approach.

The local map created only considers three different cases for every pixel—
occupied, free or unknown—and they are represented with black, white or gray
color, respectively. Moreover, it is assumed that the robot creates the local map
being in its center and orientated as shown in Figure 2.1.

y

x

Figure 2.1: Local coordinate system of the robot in the local map

Once the local map has been created, it needs to be matched to the global map
in order to find the most probable position of the robot at the given time. When
the matching process is finished, the robot should be aware of its real position
with a reliability as high as possible.

The flowchart in Figure 2.2 summarizes the process followed when the robot
becomes lost.
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2 APPROACH 2.1 Difficulties

Figure 2.2: Global localization process

2.1 Difficulties

The problems with which this method has to deal may be summarized as the
following:

� The measurements of the laser may not contain enough information, mainly
because the range and field of vision of the laser are limited, offering more
information for higher ranges and wider fields of vision.

� There might be a number of places in the environment similar enough to
be confused. Therefore, the choice of the right position from a range of
possible solutions may not be easy.

� The orientation of the robot is a variable to estimate, which means that
the environment seen from the robot’s point of view does not necessarily
coincide with the global map stored in its memory.

� There can also be some occlusions: obstacles within the range and field of
vision of the robot but hidden by other obstacles, making them completely
unknown from the robot’s perspective.

� The computational resources are limited. As a consequence, methods with
smaller needs of computation would fit better for the purpose of global
localization.

The difficulty introduced by occlusions is more serious than it may seem. In
Figure 2.3, it can be seen that the local map created from laser measurements
has an enormous white area outside the obstacles. This would complicate the
matching process, since the algorithm would try to find a position in the global
map that agreed with all that white space.
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2 APPROACH 2.2 Tools used

Figure 2.3: Global and local map

2.2 Tools used

Different tools have been used in the realization of this project. Most of them
are related to the fields of computer vision or robotics, but there are others with
diverse purposes. In this section, a brief introduction of the most important ones
is made.

2.2.1 ROS

The Robot Operating System (ROS) is a flexible framework for writing robot
software. It consists on a series of tools and libraries that aim at simplifying the
task of developing robot systems across a wide variety of platforms.

The main reason to use ROS is that it is the most commonly used framework
when it comes to robot software. Many enterprises and organizations work on
ROS, including the Institute of Electrical and Electronics Engineers (IEEE).
Moreover, a large number of algorithms are already implemented and available as
packages, which facilitates the development of the projects. Another advantage is
that it is a modular framework, that is, that nodes can be started independently.
As a consequence, the implementations of vast systems is eased when working
with other developers.
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2 APPROACH 2.2 Tools used

2.2.2 OpenCV

Open Source Computer Vision (OpenCV) is a library of programming functions
mainly aimed at real-time computer vision algorithms with many different
purposes, such as detecting and recognizing faces, identifying objects or following
eye movements. It is used extensively in companies, research groups and by
governmental bodies.

It has been chosen for this project because it eases the task of dealing with
images. Many functions are already implemented, like the matching methods
used, being their performance very high. An additional and important feature is
it high speed, what makes it more useful for real-time applications. As a final
advantage, it is open source (BSD license).

2.2.3 Gazebo

Gazebo is a simulator broadly used in robot software. It enables the rapid test
of algorithms and of design of robots accurately and in an efficient way.

The main reason to use it in this project is that its complexity allows the
simulation of a wide range of scenarios without complicating its usage. Also,
it is compatible with ROS and can be perfectly used for real-time simulation.
Moreover, it is open source and vastly used in the robotics environment. Other
strengths of Gazebo are its realistic simulation of rigid bodies physics and its
high-quality graphics.

2.2.4 RViz

RViz is a software program used to visualize different ROS topics. It is included
as a ROS package and can be used along with gazebo as a complement for the
simulation, representing on the map the data provided by the sensors.

It has been chosen for this project because it is the preferred visualizing tool
when working with ROS. Moreover, an useful feature of RViz for this project is
its convenient way of changing the robot’s estimated pose into a false one, so
that the robot has to locate itself again.

7



2 APPROACH 2.3 Preprocessing of local maps

2.2.5 Biicode

Biicode is a dependency manager that allows the usage of functions without the
need of writing them. It is open-source software and counts on a large number
of packages.

Biicode has been a very important tool for this project, since it avoids the need
of installing OpenCV, as its libraries are already uploaded. Moreover, it eases
the task of checking missing dependencies and solving them. Another feature
is the automatic building of the project, what saves much time by generating
all the auxiliary files itself. Finally, the code can be published and the control
of versions can be done by a very simple process, so that other users can take
advantage of it.

In fact, the code of the matching process with the different methods studied is
already uploaded to biicode1 as open source.

2.3 Preprocessing of local maps

The matching process is the fundamental step in this approach, which means that
the local map needs to be preprocessed to suit optimally its actual position in
the global map. As a consequence, two characteristics of the local maps created
must be faced: the existence of occlusions and the discretization of obstacles.

2.3.1 Dealing with occlusions

In order to solve the problem created by the occlusions, two processes can be
implemented: alpha compositing and cropping.

Alpha compositing A possible solution for the problem created by the occlu-
sions would be to ignore the outer white part by turning it into alpha channel.
This process is called alpha compositing, and it consists on combining an image
with a background to create the appearance transparency. However, because its
application did not improve the results as expected, cropping became necessary.

Cropping The cropping process consists on cutting out the outer white parts of
the local map, resulting Figure 2.4. This way, it is ensured that the mismatching

1https://www.biicode.com/mcastillon/MapMatching
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2 APPROACH 2.3 Preprocessing of local maps

caused by the outer blank space is solved. Finally, the space cropped at each
side will have to be considered, as it will be shown in Section 2.5.

Figure 2.4: Local map before and after cropping

2.3.2 Opening

The local maps extracted from the simulation are not directly suitable for the
matching. In their creation process, each occupied pixel detected by the laser is
painted black in the local map, as explained in Section 3.1, which would create
lines of obstacles if the measurements were continuous. However, the field of
vision of the robot is discretized, meaning that some pixels that contain an
obstacle may be left white. This is more likely to happen in wide spaces like
long corridors or large rooms since the long distance to the obstacles increases
the influence of the angular discretization.

Therefore, a morphological transformation called opening can be used as an
improvement. This function is implemented in OpenCV, and it consists on the
erosion of an image followed by a dilation. The result, shown in Figure 2.5, is
the joining of points laid in a line despite the distance between them.

Nonetheless, there is a problem attached to opening. As can be seen in Figure
2.6, this process has to be carefully adjusted, since it can join points that are
near to each other but do not belong to the same line—usually corners.

For those cases in which the process is difficult to adjust, another approach
could consist on applying the opening to the global map as well. Consequently,
some areas of the global map would also be excessively joined, so that the bad
adjustment would not be such an important flaw. However, some parts of the
global map would lose their uniqueness, which could lead to mismatching.

9



2 APPROACH 2.4 Matching methods

Figure 2.5: Local map before and after applying opening

Figure 2.6: Opening process not properly adjusted

2.4 Matching methods

This project also aims at comparing two methods broadly used for global location,
based on different algorithms. As presented in [12], the first of them is an area-
based method called matchTemplate, while the second one is feature-based
method named SURF.

Area-based methods perform better when the images have not many prominent
details. Their two principal limitations are that they only suit the registration of
images which differ only by a translation and that their computational complexity
is very high. They are often used because of their easy hardware implementation.

On the other hand, feature-based methods allow to register images of completely
different nature and can handle complex between-image distortions. Their main
drawback is that the respective features might be hard to detect, specially when
working with very simple images. As main characteristic of SURF, it is a specially
fast method without any worsening of its performance. Moreover, it can handle
scale and perspective changes between images, although it is not needed in this
approach.

10



2 APPROACH 2.4 Matching methods

2.4.1 matchTemplate

The process followed by matchTemplate consists on calculating the probability
attached to each pixel of the global map to be the solution for the location of the
local map, and then chooses the highest one. Therefore, the number of positions
checked is

N = (hglobal − hlocal + 1)× (wglobal − wlocal + 1), (2.1)

being hglobal × wglobal the size of the static map and hlocal × wlocal the size of the
local map, with h the number of rows and w the number of columns.

The number of positions to be checked will influence the time that will be needed.
Accordingly, the bigger the global map is and the smaller the local map is, the
more positions have to be checked and more time will be used.

The main downside of matchTemplate is the fact that it can only handle images
with a given orientation. Consequently, the rotation of the template has to be
done separately, so that the matching process can be repeated for every rotated
template. Now, the rotation process is discretized, and the number of positions
checked is

N =
360°

∆α
× (hglobal − hlocal + 1)× (wglobal − wlocal + 1). (2.2)

Then, the increment of the angle of rotation (∆α) becomes a crucial factor. The
smaller it is, the higher success rate the matching will have, since more angles will
be checked. However, its decreasing will make the number of possible positions
bigger, so it will use more time. A compromise between these two factors has to
be found.

Moreover, matchTemplate can work with different correlation methods, and two
of them will be compared: CCOEFF NORMED and SQDIFF NORMED.

The correlation used by SQDIFF NORMED is

R(x, y) =

∑
x′,y′(T (x′, y′)− I(x+ x′, y + y′))2√∑

x′,y′(T (x′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′))2
. (2.3)

On the other hand, the correlation used by CCOEFF NORMED is

11



2 APPROACH 2.4 Matching methods

R(x, y) =

∑
x′,y′(T

′(x′, y′) · I ′(x+ x′, y + y′))2√∑
x′,y′(T

′(x′, y′)2 ·
∑

x′,y′ I
′(x+ x′, y + y′))2

, (2.4)

where

T ′(x′, y′) = T (x′, y′)− 1

w · h
·
∑
x′′,y′′

T (x′′, y′′)

I ′(x+ x′, y + y′) = I(x+ x′, y + y′)− 1

w · h
·
∑
x′′,y′′

I(x+ x′′, y + y′′).
(2.5)

An explanation of these correlations can be found in [13].

First, R is the result matrix that stores the probability of each pixel in the global
map to be the location of the upper-left corner of the local map. T refers to the
template (local map) and I to image source (global map).

SQDIFF matches the squared difference. Therefore, the smaller the result value
stored in R is, the more probable is that pixel to be suitable for the matching,
being 0 a perfect match.

On the other hand, CCOEFF matches a template relative to its mean against
the image relative to its mean. Consequently, it has a higher computational cost
than SQDIFF, but its performance is usually better, except for some concrete
applications. Unlike SQDIFF, the most probable pixel stored in R is the one
with the highest value.

Finally, both of the methods are normed, which usually provides results with
higher success rates.

2.4.2 SURF

SURF (Speeded-Up Robust Features) is an algorithm that detects interest points
on images. Its main advantages are its computational speed and its robust
performance. In [14] and [15], an explanation of the algorithm can be found.
Once the features of the images are found, FLANN is used to match both images
and RANSAC to find the rigid transformation between them.

SURF is based on the Hessian matrix, H, which is a square matrix of second-order
partial derivatives. When it is applied to a function f(x, y), the matrix is defined
as in equation (2.6).

12



2 APPROACH 2.5 Calculating the position of the robot

H(f(x, y)) =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

]
(2.6)

Using the determinant of this matrix it is easier to discover if a point is a
local maximum or minimum. In order to translate it to the work with images,
the values of the function f(x, y) are replaced by the pixel intensities of the
image I(x, y). Moreover, the second derivative of the image is achieved by its
convolution with kernels for the Gaussian derivatives in x, y and combined xy
direction

Therefore, the new Hessian matrix H is defined as in equation (2.7).

H(p, σ) =

[
Lxx(p, σ) Lxy(p, σ)
Lxy(p, σ) Lyy(p, σ)

]
(2.7)

Where Lxx(p, σ) denotes the convolution of the second order Gaussian derivative
∂2g(σ)
∂x2

of the image at point p(x, y) and scale σ in the x direction, being g(σ) the
Gaussian distribution function. It applies similarly for Lyy and Lxy.

There is an important parameter called minHessian, which is a threshold that
defines which minimum value is needed for a point to become a feature. Therefore,
the larger this parameter is, the less points will be chosen as features.

As mentioned before, FLANN-based matcher is used in order to match both
images. FLANN (Fast Library for Approximate Nearest Neighbors) is a library
that contains a collection of algorithms optimized for fast nearest neighbor search
in large datasets and for high dimensional features. A description of FLANN
can be found in [16].

Finally, RANSAC (RANdom Sample And Consensus) is used to find the rotation
and translation between two images processed as feature point clouds. RANSAC
is broadly used for parameter estimation. Its main strength is that it can handle
data affected by noise and corrupted by outliers—points which do not fit the
model. It can deal with images that are more than 50 % of outlier contaminated.

2.5 Calculating the position of the robot

The position returned by these two methods is the one of the first pixel of the
template referred to the first pixel of the image source, starting in the upper-left
corner and defining x and y axes as in Figure 2.7. Consequently, the position of
the robot has to be calculated, defined as in equation (2.8).
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2 APPROACH 2.5 Calculating the position of the robot

−→
OR =

[
Rx

Ry

]
(2.8)

The easiest case to calculate the position of the robot is when the rotation angle
is 0° and no cropping has been made, as shown in Figure 2.7. Because the
position of the robot is assumed to be in the center (see Figure 2.1), it can be
calculated as in equation (2.9).

y

xO

P
R

Figure 2.7: Position of the robot in the matched local map

−→
OR =

−→
OP +

−→
PR =

[
Px
Py

]
+

[
wlocal

2
hlocal

2

]
, (2.9)

where P is the position of the upper left corner of the local map with respect to
the reference system of the global map image.

However, if the cropping process explained before has taken place, the robot may
not be located at the center of the cropped map, as the number of rows and
columns may not be the same as each other. Therefore, the result would be as
shown in Figure 2.8, and it can be calculated as in equation (2.10).

−→
OR =

−−→
OV +

−→
V R =

−→
OP +

−→
PV +

−→
V R =

[
Px
Py

]
+

[
−cleft
−cup

]
+

[
wlocal

2
hlocal

2

]
, (2.10)

being cup and cleft the number of rows or columns cropped from the upper and
the left side, respectively.

Now, if the size of the cropped map is noticed, defined as in equation (2.11),
equation (2.10) can be rewritten as equation (2.12).
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2 APPROACH 2.5 Calculating the position of the robot

y

xO

P R

V

Figure 2.8: Cropped local map, original in dashed line

wcropped = wlocal − cright − cleft
hcropped = hlocal − cup − cdown

(2.11)

−→
OR =

[
Px
Py

]
+

[
−cleft
−cup

]
+

[
1
2
(wcropped + cright + cleft)
1
2
(hcropped + cup + cdown)

]
, (2.12)

being cdown and cright the number of rows or columns cropped from the down
and the right side, respectively.

Therefore,

−→
OR =

[
Px
Py

]
+

[
1
2
(wcropped + cright − cleft)
1
2
(hcropped − cup + cdown)

]
. (2.13)

Equivalently, if the variation of the dimensions of the cropped map is used, with

∆w = cright − cleft
∆h = cdown − cup,

(2.14)

equation (2.13) can be rewritten as

−→
OR =

[
Px
Py

]
+

[
1
2
(wcropped + ∆w)
1
2
(hcropped + ∆h)

]
. (2.15)
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2 APPROACH 2.5 Calculating the position of the robot

Finally, if the cropping process has been made and the local map did not have
the same orientation as the global map, the number of rows and columns cropped
from each side will also rotate. Therefore, the angle of rotation has to be taken
into account as shown in equation (2.16).

−→
OR =

[
Px
Py

]
+

[
1
2
(w′

cropped + (∆w)′)
1
2
(h′cropped + (∆h)′)

]
, (2.16)

where

w′
cropped = wcropped · | cosα|+ hcropped · | sinα|
h′cropped = hcropped · | cosα|+ wcropped · | sinα|
(∆w)′ = (cright − cleft) cosα + (cdown − cup) sinα

(∆h)′ = (cdown − cup) sinα + (cleft − cright) sinα.

(2.17)

Therefore, for the general case, the equation (2.18) can be applied.

[
Rx

Ry

]
=


Px + 1

2
[wcropped · | cosα|+ hcropped · | sinα|+ (cright − cleft) cosα+

+(cdown − cup) sinα]
Py + 1

2
hcropped · | cosα|+ wcropped · | sinα|+ (cdown − cup) sinα+

+(cleft − cright] sinα)


(2.18)
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3 Integration with ROS
The next step in this project is to allow the usage of the methods mentioned
before in real-time simulation, which can be achieved using ROS. For doing so, a
ROS node needs to be created, in which a subscriber gets the information sent
by the sensor, and a publisher provides the calculated position once the whole
process has succeeded.

Moreover, it is worth mentioning that the actionlib ROS package is used
instead of services. Services are broadly used to send a request to a node to
perform some task, and also receive a reply to the request. However, actionlib
becomes useful when the service takes a long time to execute, since the user might
want the ability to cancel the request during execution or get periodic feedback
about how the request is progressing. Consequently, as the global location may
be time consuming, it should have the capacity to be preempted if necessary.

Apart from the node, a client attached to it is used to initialize the global location
process when needed. When the location process is used in real-time simulation,
the different parts of ROS are connected as shown in Figure 3.1.

Figure 3.1: ROS linking

Gazebo publishes the laser data provided by the sensor in the simulation to the
amcl node, along with the transforms of the physical model of the robot (as in
Figure A.2), so that the position can be estimated in normal situations.

However, when the robot becomes lost, the node created (global loc) is called
by a client (test global loc) and the recovery process starts. The node receives
the laser data and creates the local map in order to be matched with the global
map. Once it is finished, the calculated position is published on the topic
initialpose, to initialize the particle filter.

The maps used by ROS need to be stored in a pair of files: an image file and a
YAML file. The image file encodes the occupancy data, usually in gray-scale, by
giving darker colors to the pixels with higher probability to be occupied. The
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3 INTEGRATION WITH ROS 3.1 ROS node

thresholds in the YAML file are used to divide the three categories—free, occupied
or unknown. The YAML file includes the map meta-data, namely the name of the
map, its resolution, its origin and the thresholds.

3.1 ROS node

In the ROS node created, the local map is conceived as an occupancy grid map,
which consists on a number of evenly divided cells, having each of them the
probability of the presence of an obstacle attached, which are stored as an array.

The type of message used by occupancy grid belongs to navigation messages, a
family used to interact with the navigation stack. Occupancy grid consists on
three fields: header, info and data.

The header contains information used to communicate timestamped data in a
particular coordinate frame. The field info carries the size of the map (width and
height), its resolution and its origin. Finally, data contains the occupancy
probabilities for each pixel in row-major order starting with (0, 0), being in the
range [0, 100].

Furthermore, the package occupancy grid utils is used to deal with objects
created as occupancy grids.

The local map has the same resolution as the global map and its origin is in
the center, as shown in Figure 2.1. This information is taken from the YAML
file attached to the image of the map, and stored in the corresponding fields
mentioned above. Both the width and length are double of the maximum range
of the sensor, so that any obstacle that may be detected can be represented on
the map.

The node is subscribed to the measurements of the sensor, as stated before. The
data provided consists on the discretization of the field of vision, so that each
angle αi has a distance attached ri, as shown in Figure 3.2. The angles are
defined as in the figure. Also, the number of measurements will be

N =
αmax − αmin

∆α
. (3.1)

With the purpose of transforming this data into their positions referred to the
static coordinate system attached to the local map, the equation (3.2) is used.

[
xi
yi

]
=

[
1
2
· wlocal − ri · sinαi

1
2
· hlocal + ri · cosαi

]
(3.2)
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3 INTEGRATION WITH ROS 3.1 ROS node
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yl
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Figure 3.2: Laser measurements into the coordinate system attached to the local map

Afterwards, the positions of the obstacles, that are stored in a matrix with N
elements, being

N = hlocal × wlocal = 4 ·maxrange, (3.3)

need to be saved in an array of the same size, which can be used by the occupancy-
grid map. This array is built for growing row number, so that the index of the
array, k, is defined as

k = j × wlocal + i, (3.4)

where i is the column number and j, the row number.

Then, every index that contains an occupied pixel is given a value of OCCUPIED
(100), being the rest FREE (0).

Once this process is completed, an OpenCV Mat image is created painting in
black those pixels that correspond to an occupied position, leaving the rest white.
The class Mat is broadly used in OpenCV to deal with images. Every image is
represented as a matrix with a value associated to each pixel, which is often a
vector with three elements—when RGB color scale is used—called layers. The
values of these layers determine the color of the pixel.
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3 INTEGRATION WITH ROS 3.1 ROS node

After all these processes, the local map is matched with the global map, using
the methods described before. The result is the position of the robot referred to
the global coordinate system.

Moreover, a covariance matrix is associated to the position calculated. The
element of this matrix in the (i, j) position is the covariance between the ith

and jth elements of the vector of variables, which indicates the strength of the
correlation between them. As the covariance of the ith variable with the jth

one is the same thing as the covariance of the jth variable with the ith one,
the covariance matrix is symmetric. Moreover, each element of the principal
diagonal is the variance of the respective variable. In this project, a fixed
uncertainty was assigned to the variance of the variables, considering an absence
of interdependence between them.

Conclusively, the position with the covariance stamped is published once the
global localization has finished. The result of the relocalization is shown in
Figures 3.3 and 3.4 for two different situations.

Figure 3.3: Relocalization of the robot in RViz. Red dots represent the laser data

Figure 3.4: Relocalization of the robot in RViz. Red dots represent the laser data
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4 Results
The different methods have been tested and compared. For doing so, it is
important to focus not only on the success of the position estimated, but also on
the time that the relocation process takes.

The global map used for the experiments was created using SLAM Gmapping,
which is implemented as a ROS node that permits the creation of a 2-D occu-
pancy grid map from laser and pose data collected by a mobile robot. Further
explanation of the algorithm can be found in B.

First, the algorithms have been tested for locals maps manually extracted from
the global one. Afterwards, once the problems that arose were solved, local maps
created from simulated scan measurements were used.

As it will be proved throughout this section, the maps edited by hand offer a
much higher success rate, as they are exactly as a part of the global one. However,
they cannot be used for the real goal of the thesis, only for academical purposes.
On the other, the local maps created in simulation can be broadly used in real
applications. Nonetheless, the results that can be obtained are not as good, since
the two maps to be matched cannot coincide completely.

The tests were run on a computer provided with an Intelr Core� i5-760 CPU of
frequency 2.80 GHz.

Throughout this section, all the graphs that compare the three methods use the
same color code:

CCOEFF NORMED / SQDIFF NORMED / SURF
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4 RESULTS 4.1 Local maps extracted from the global map

4.1 Local maps extracted from the global map

The first tests run to compare these algorithms used parts of the global map as
local maps. The factors to study were the success rate and the time needed by
each method. Furthermore, there are some parameters that may also influence
the success rate and the time needed, like the angle ∆α used to rotate the local
map when matching it, and the size of the local map once it has been cropped.

The tests were run on a series of 18 local maps, varied enough in order to cover
as many cases as possible. They had different size and angle of rotation. It is
more difficult to find the right solution when there is a number of positions that
can satisfy the matching with similar probability. This usually happens in long
corridors and corners, due to the lack of characteristic features.

A successful matching was considered when the area in the global map corre-
sponding to the local map was properly represented in the result window.

As an example, Figures 4.1 and 4.2 show the matching process performed by
matchTemplate with ∆α = 15° for the same local map, but with different rotation
angles.

Figure 4.1: Local map rotated 0°

Figure 4.2: Local map rotated 175°

It can be seen that, as the rotation angle of the local map is not checked by
matchTemplate, the matching process does not success.
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4 RESULTS 4.1 Local maps extracted from the global map

Concerning SURF, Figures 4.3 and 4.4 show successful and unsuccessful matching
processes, respectively.

Figure 4.3: Successful matching by SURF

Figure 4.4: Unsuccessful matching by SURF

4.1.1 Performance by method

First, the three methods were tested for every local map, so that their perfor-
mances could be compared. The success rate and the average time needed by
each method is shown in Figure 4.5.

The results given by matchTemplate were much more successful than the ones
from SURF. Moreover, a difference between the two correlations can be appre-
ciated, as CCOEFF NORMED had a slightly higher success rate than SQD-
IFF NORMED.

On the other hand, SURF is proved to be much faster than matchTemplate,
taking always less than 5 seconds to return the result. Both correlations of
matchTemplate need between 40 and 65 seconds, averaging around 50 seconds,
with SQDIFF NORMED a little faster.
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Figure 4.5: Success rate and time used by each method

4.1.2 Influence of the angle increment in matchTemplate

The success rate of each method and its average time are compared for two values
of ∆α in Figure 4.6.

The graph shows that both methods have a worse success rate for the largest
increment (∆α = 15°), as expected. This is because the position cannot be
properly calculated for those local maps that are rotated an angle not multiple
of 15. Of course, the worsening rate depends on the number of local maps that
are rotated an angle not multiple of 15.

However, the time needed by matchTemplate when ∆α = 15° is much smaller
than for ∆α = 5°, no matter the correlation with averages of less than 20 seconds.
It was also expected, since the slowest step in the algorithm—the rotation of the
local map—is the one that determines the time used. Therefore, and given that
the number of rotations is reduced three times, it is logical that the time needed
also decreases to around one third.

4.1.3 Influence of the size of the local map

The last factor to study in this first part of the results is the size of the local
map once it has been cropped. Figure 4.7 shows a scatter plot containing the
time used by each method for each map—depending on its size. The respective
trend lines of each method are also drawn.

This plot shows that the size of the local map influences the time used by
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Figure 4.6: Success rate and average time for different ∆α
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Figure 4.7: Influence of the size of the local map

matchTemplate in a slight way. For both correlations, the process is a little
faster for larger maps. On the other hand, SURF is not affected by the size of
the local map at all. This result could be predicted if noticing equation (2.1).
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4 RESULTS 4.1 Local maps extracted from the global map

4.1.4 Conclusions

The conclusions concerning success rate that can be extracted from these re-
sults are that matchTemplate performs much better than SURF, without a big
difference between both correlations. However, when it comes to time needed,
matchTemplate is significantly slower than SURF.

Concerning the probability of success in the result given by matchTemplate,
thresholds could be defined for CCOEFF NORMED and SQDIFF NORMED.
That way, a result with a higher score than 0.70 for CCOEFF NORMED or
smaller than 0.60 for SQDIFF NORMED could be considered successful with
very low probability of false positives. Solutions with worse scores may also be
successful, so there would be a higher number of false negatives. However, false
negatives are preferred over false positives.

With regard to the angle increment in matchTemplate, it has been observed that
larger ∆α entails shorter times but also worse performance.

Relating to the size of the local map (not taking outer white area into account),
it was proved that matchTemplate is a little faster for bigger maps, whereas
SURF remains unchanged. The explanation of this dependency can be found
when plotting the number of positions that have to be checked versus the size
of the local map, as in Figure 4.8. It shows that for the range of sizes normally
used in these tests (both length and width between 100 and 300 pixels), the
dependency can be assumed to be linear with a coefficient of R2 ≈ 0.93.
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Figure 4.8: Number of positions checked in matchTemplate
for different local map sizes
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4.2 Simulation

The second part of the tests were run on a series of 23 local maps created in
simulation and processed as explained in previous sections. The positions used
for the experiments represent the different situations that the robot may face
when solving its global localization, such as diversity of angles of rotation and
lack of distinctive information.

In order to consider the result of the calculation as successful, the error in x and
y directions had to be both smaller than 0.2 m, whereas the error in θ lesser
than 5°.

With the purpose of studying the effect of the different parameters, they have
been changed individually, remaining the rest as in the basic case (field of vision
of 180°, range of 20 m and ∆α = 5°).

As an example, Figures 4.10 and 4.11 shows the local map (before and after
preprocessing) created in the situation of Figure 4.9.

Figure 4.9: Robot calculating its position in real-time simulation

Figure 4.10: Local map created in simulation before and after cropping
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4 RESULTS 4.2 Simulation

Figure 4.11: Local map created in simulation before and after opening

4.2.1 Performance by method

First, the results provided by each method were compared for a standard case:
field of vision of 180°, range of 20 m and ∆α = 5°. Their success rate and the
average time used is shown in Figure 4.12.
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Figure 4.12: Success rate and average time used by each method

matchTemplate has a low success rate, particularly SQDIFF NORMED, and
they both perform much worse than in the previous tests. SURF did not succeed
for any position.

Relating to the time needed, matchTemplate has a similar average to the first
series of experiments, around 45 seconds. On the other hand, SURF averages
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4 RESULTS 4.2 Simulation

less than 1 second. The reason is that not enough feature points were found in
most of the cases, so the matching process did not even start.

4.2.2 Influence of the characteristics of the laser sensor

Field of vision In relation to the field of vision of the sensor, two more values
were tested (60° and 270°) in order to study its influence on the results. In Figure
4.13 and 4.14 the success rate and the average time, respectively, are shown.
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Figure 4.13: Success rate for different fields of vision

Concerning the success rate, matchTemplate improves its performance for wider
fields of vision, as it was expected, being the rate of CCOEFF NORMED higher
than the one of SQDIFF NORMED. SURF did not succeed for any position.

When it comes to the time used, little difference can be noticed. However, the
wider the field of vision is, the larger the local map gets. Therefore, the time
slightly decreases, as explained before. The average time of SURF is higher
for 270° because most of the cases had enough feature points, so the matching
process was done. However, its average is around 3 seconds, which is much faster
than matchTemplate.

Range Relating to the range of the sensor, a comparison with a lower value
was made to see how the results change. They are shown in Figure 4.15.

The success rate for CCOEFF NORMED decreases for 4 m, as it was expected.
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Figure 4.14: Average time used by different fields of vision

However, SQDIFF NORMED remains with the same percentage. The average
time used by matchTemplate increases for a range of 4 m. It was expected, as
shorter ranges mean smaller local maps.

On the other hand, SURF cannot find enough features, what entails that no
successful positioning is achieved.

4.2.3 Influence of the angle increment in matchTemplate

The success rate of each method and its average time are compared for two values
of ∆α in Figure 4.16

As it was expected, the success rates of matchTemplate get worse for larger ∆α,
but the average time used is smaller. Precisely, the time for ∆α = 15° is around
three times shorter than for ∆α = 5°. Of course, the worsening rate depends on
the number of positions that are rotated an angle not multiple of 15.

The performance of SURF is obviously not influenced by the change of ∆α.

4.2.4 Conclusions

The results of the test in simulation reveal that the suitability of this method
depends largely on the purpose and the sensor used. If a commercial sensor were
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Figure 4.15: Success rate and average time for different ranges

used, such as Kinect, the characteristics would be similar to 60° and 4 m. With
these parameters, the results provided may not be positive enough. However,
if the sensor could provide 270° and 20 m, a success rate around 60% could be
achieved.

Moreover, ∆α could be adjusted to find an optimum between success rate and
time used, which would vary for different applications.

The performance of SURF is extremely poor, which should be further investigated.
If its low average time were required, some changes could be implemented on the
creation of the local maps to try to increase its success rate.

For instance, Figure 4.17 shows an unsuccessful matching process, in which many
feature points are found but not properly matched.

Concerning the probability of success in the result given by matchTemplate,
thresholds could not be found in order to distinguish reliably between successful
and unsuccessful solutions. This is a problematic fact, that entails further
checking of the results before considering them proper.

As an example, the global localization process with matchTemplate using CCO-
EFF NORMED for the positions shown in Figure 4.18. For the first position, the
result was unsuccessful, with a score of 0.4888. On the other hand, the method
succeeded for the second position, with a score of 0.0943.
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Figure 4.16: Success rate and average time for by different angle increments

Figure 4.17: Unsuccessful matching by SURF

Figure 4.18: Two different situations simulated in gazebo
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5 Conclusions
Two methods have been compared—matchTemplate, which is area-based, and
SURF, feature-based. Moreover, two different correlation of matchTemplate have
been tested: CCOEFF NORMED and SQDIFF NORMED.

Given the results obtained, the performance of matchTemplate has a medium
success rate, but may be too slow for some real applications. On the other hand,
SURF has not given good results in the tests performed, since more feature
points are needed when using the raw local map images.

Regarding the failure of SURF, it is mainly due to its inability to find enough
feature points and match them properly. A reason for it can be that the features
of these maps at a local level are not characteristic enough. It is worth mentioning
that it may not be the most suitable method for the images treated in this thesis,
as they also lack of small obstacles, which are easier to match. Moreover, its main
advantages—scale and perspective invariance—are not needed for this purpose.

However, feature-based methods count on positive characteristics, such as their
fast performances. Therefore, in order to take advantage of them, some changes
in the method and in the image processing could be implemented to try to
raise its success rate. Moreover, other descriptors different to SURF could be
implemented with the aim of finding a more suitable one.

In relation to the different correlations of matchTemplate studied, the average time
needed by both of them are very similar. Nonetheless, when it comes to success
rates, CCOEFF NORMED performs usually better than SQDIFF NORMED,
sometimes significantly.

Concerning the characteristics of the laser sensor, which is crucial in this approach,
the results are always better for wider fields of vision and longer ranges, as
expected. When working with matchTemplate, ∆α becomes a very important
factor, which, depending on the application aimed, can be adjusted for a higher
success rate or for shorter execution times.

Relating to the probability score given by matchTemplate to every location in the
global map, a threshold cannot be found to distinguish between successful and
unsuccessful matches. Therefore, the likelihood of errors when estimating the
reliability of the solution is high enough to consider further checking methods.

Finally, it has also been observed in the realization of this project that a de-
pendency manager saves time during the configuration and implementation
phases.
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6 Future Work
In applications using narrow fields of vision, the local maps created with the
current method may not contain enough information. Therefore, an interest-
ing process for creating it would be a 360° scan, that would provide further
information, leading to better performances. Nonetheless, if the field of vision
were wide enough, an easy improvement would be to locate the robot twice for
every position—once with the initial orientation, and a second one after having
turned 180°. Afterwards, if both processes returned the same position (with a
180° difference, considering an error margin), the probability of success would be
significantly higher.

Moreover, a problem observed in the creation of the local maps that included long
corridors was the large distance between points representing the same obstacles.
A possible solution would be to apply a stronger opening process, but that might
lead to the joining of near corners. Consequently, a cropping algorithm that
considered the density of occupied positions could be implemented as further
development.

Another possible approach would be the usage of the method analyzed in this
project when the solution can be considered successful with very high reliability—
a suitable method to assess this reliability will be necessary. For the rest of the
cases, AMCL in global localization mode could be used. This way, the problem
concerning the errors in the localization could be avoided.

It would also be useful the incorporation of the probability given by matchTem-
plate to each position of the global map to be the actual location of the robot.
Therefore, the covariance matrix attached to every possible solution would de-
pend on that score, what would be a more reliable result than only returning
the highest-rated position, which could be used to initialize a particle filter.

As a final step, once the algorithm has been proved to perform properly, the new
improvements can be added to the already released code.
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A Model of the Robot
The robot used for the simulations was the Pioneer 3-DX, which is vastly used
for research purposes due to its versatility, reliability and durability.

Figure A.1: Robot Pioneer 3-DX, used for the simulations

Moreover, the transformation tree of the robot is shown in Figure A.2. This
information allows amcl to find the right relationships between the laser mea-
surements provided by the sensor and the rest of the parts of the robot, so that
it can be located properly in the environment.

Figure A.2: Scheme of the physical model of the robot
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B SLAM
Simultaneous Localization and Mapping (SLAM) is one of the most widely
researched topics in Robotics. It is useful for building and updating maps within
unknown environments, while the robot keeps the information about its location.
The main problems that SLAM faces are:

� Cumulative errors induced by proprioceptive sensors when estimating the
movement of the robot.

� Difficulty on determining whether sensor measurements taken at different
points in time correspond to the same object in the world.

� Existence of non-static worlds, whose features may change over time.

In [17] a comparison of the SLAM methods already implemented in ROS is
developed. One of the best-known SLAM algorithms is Gmapping, which is also
used in this project in the creation of the global map. It is a laser-based SLAM
approach with a very good performance when there is a high number of particles
available. Another algorithm is HectorSLAM, that combines a 2D SLAM system
based on robust scan matching and 3D navigation technique using an inertial
sensing system rather than odometric sensors. As a downside, it needs high scan
rates in order to achieve good results. Moreover, KartoSLAM is a graph-based
SLAM approach, in which each node represents a pose of the robot along its
trajectory and a set of sensor measurements. Different nodes are connected by
arcs, that represent the motion between successive poses.

When comparing these SLAM algorithms, the conclusion in [17] is that Gmap-
ping is highly robust, with very low error and CPU load. On the other hand
KartoSLAM and HectorSLAM also provided good results, but this last one may
get better one if equipped with specific hardware.

36



References
[1] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Intro-

duction to autonomous mobile robots. MIT press, 2011.

[2] Stephen Se, David G Lowe, and James J Little. Vision-based global local-
ization and mapping for mobile robots. Robotics, IEEE Transactions on,
21(3):364–375, 2005.

[3] Patric Jensfelt and Steen Kristensen. Active global localization for a mobile
robot using multiple hypothesis tracking. Robotics and Automation, IEEE
Transactions on, 17(5):748–760, 2001.

[4] Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun. Monte
carlo localization: Efficient position estimation for mobile robots. AAAI/I-
AAI, 1999:343–349, 1999.

[5] Tom Duckett and Ulrich Nehmzow. Mobile robot self-localisation using oc-
cupancy histograms and a mixture of gaussian location hypotheses. Robotics
and Autonomous Systems, 34(2):117–129, 2001.

[6] Tai-hoon Kim, Hojjat Adeli, Hyun-seob Cho, Osvaldo Gervasi, Stephen S
Yau, Byeong-Ho Kang, and Javier Garcia Villalba. Grid and Distributed
Computing: International Conferences, GDC 2011, Held as Part of the
Future Generation Information Technology Conference, FGIT 2011, Jeju
Island, Korea, December 8-10, 2011. Proceedings, volume 261. Springer
Science & Business Media, 2011.

[7] Luis Moreno, Santiago Garrido, and Dolores Blanco. Mobile robot global
localization using an evolutionary map filter. Journal of Global Optimization,
37(3):381–403, 2007.

[8] Hae Yong Kim and Sidnei Alves De Araújo. Grayscale template-matching
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