
University College Cork, Ireland
Computer Science Department

FINAL YEAR PROJECT
April 2015

Caching in real-time and
embedded systems

Benchmarking the ARM
Cortex-M3 and Quark SoC

X1000 processors

Student:
Pablo Pueyo Ramon

Student ID:
114102595

Supervisor:
Dr John Vaughan

Second Reader:
Professor John Morrison

1

2

Contents

1 Introduction 5

2 Background 6
2.1 General view of the families and caching systems 6

2.1.1 Description of the processor families 6
2.2 Little changes in the features of the caches to determine the

influence on the final performance 11
2.2.1 Cache size . 12
2.2.2 Line size . 16
2.2.3 Associativity . 19

2.3 Systematic literature review about caching 22
2.3.1 Questions for the analysis 23
2.3.2 Answers to the questions applied to the documents . . 24
2.3.3 Discussion . 25

3 Building the benchmark suite 28
3.1 Boards . 28
3.2 Environment and materials . 29
3.3 Oscilloscope and wave generator 30
3.4 Looking for other benchmark programs 30
3.5 How the benchmark programs for real-time systems should be? 31

4 The benchmark suite 33
4.1 Performance in mathematical calculations 33

4.1.1 Pi . 33
4.2 Performance in mathematical calculations and memory per-

formance . 34
4.2.1 Quicksort . 35
4.2.2 Determinant . 38

4.3 Performance in Input/Output 41
4.3.1 IRreceiver . 41
4.3.2 Interruption . 44
4.3.3 Potentiometer . 45

5 Results on the boards 47
5.1 IRReceiver and Potentiometer 47
5.2 Pi . 47
5.3 Quicksort . 47
5.4 Determinant . 49

3

5.5 Interruption . 51
5.5.1 Arduino . 51
5.5.2 Galileo . 52
5.5.3 Comparisons of this program 52

6 Final highlights and conclusions 53
6.1 Tables with the results . 53
6.2 Final conclusion . 55

4

1 Introduction

Nowadays, the systems that are used in the field of the informatics are more
and more different to each other. One of the most important systems are
embedded system due to they are inside the devices that the current people
use everyday such as cars, appliances, videoconsoles, other electronic devices.

That is why these devices should work properly, without any problem, be-
cause they can affect sometimes the people’s security. So, the choice of a
good embedded processor or a bad one, depending on the features, seems to
be an important aspect.

Therefore, it is important to create a good benchmark suite which is able
to test the processor features as well as their performance in order to choice
the most suitable one depending to its application.

The end of this project is to compare two commercial processors, which
will be described later, through a suite of benchmark created for the project.

5

2 Background

2.1 General view of the families and caching systems

The processors used in this project are the following:

-Intel Quark x1000 which is included into an Intel Galileo board and,
-ARM Cortex M3, included in an Arduino DUE board.
The processors will be described deeply in the following sections:

2.1.1 Description of the processor families

2.1.1.1 Quark x1000

General View of the chip

This chip was designed by Intel. The first one was announced in September
2013 and started to be sold on the first months of 2014.

The chip was developed to support embedded operating systems, with the
goal of improving the consumption of power, but reaching good speed and
performance too.

It has only one core, manufactured on 32nm technology, and supports Pen-
tium instruction set. It is capable of reaching clock frequency up to 400 MHz .

These processors are slower and smaller than Intel previous one, Atom, but
it consumes less power, feature which is more and more important to achieve
a good embedded system-on chip nowadays.

6

Figure 1: Overview of the Quark x1000 chip [1]

Memory System

This family of processors has a unified 16 Kb cache for instructions and data,
in order to improve the performance of the whole processor, since caches are
becoming one of the most important aspects of a chip to achieve better per-
formances. In Fig.1 (in blue) it is easy to notice that two buses of data and
instructions access to the same cache.

This cache is organize as a 4-way associative one. Therefore, it has 256
sets of 64 bytes each one. Each line of the cache, named blocks, has 16 bytes,
4 words. Thereby each set is comprised of 4 blocks.

That is to say that the whole cache is capable to store up to 1024 blocks.

This cache can either work with write-back mode or with write-through one,
which can be set by the programmer or designer of the application that runs
in the processor, depending of the well-known advantages and disadvantages
of using each mode of writing from cache to main memory.

7

Write-back cache coherency

To preserve the write-back cache coherency of block, this processor uses a
MESI protocol, which is founded on 4 states of each block, in order to know
if a block can be used, if it should write on main memory if it is replaced,
or it is necessary to access main memory to read the block. The four states
are M (modified - can be read or written), E (exclusive - this cache is the
only owner of this modified block), S (shared - One or more caches have this
clean block), I (Invalid - The block cannot be used because do not respect
the coherency with main memory)

2.1.1.2 ARM Cortex

General View of the chip

ARM is a 32 bits RISC (Reduced instruction set computing) instruction
set architecture.

Its simplicity and reduced power consumption mean that the ARM is found
in approximately 90% of the microcontrollers and microprocessors of the
most of mobile and embedded systems, as smartphones, calculators, some
computer devices, PDAs and videogames consoler processors.

Big companies implement their chips with ARM architecture, such as Nvidia,
Samsung, Qualcomm, Apple and Atmel among others.

It is difficult to talk about the features of this processor, because there are
a lot of subfamilies of ARM processor, each one with different features and
properties.
The subfamily that is going to be described is Cortex Family.
Inside the Cortex subfamily, we can find up to 4 Cortex subfamilies. Those
are, from the oldest to the newest, Cortex-M, Cortex-R, Cortex-A, Cortex
A-50.

Memory System

The memory system depends of each processor again. There are Cortex
processors with a high cache memory, separated into instruction and data
ones, and Cortex processors without cache memory.
Therefore, it is better to describe one by one each family of processors in the

8

field of cache memory, even though the family with which we will work will
be the Cortex M3.

Cortex-M
Inside of this family, we can find various architectures. They are intended
for microcontroller use. The first is ARMv6-M. Cortex M1 and M0 belong
to this family. This architecture does not have cache, what can affect chip
performance.

After that, the next architecture inside this family is ARM v7-M. M3 and
4 processors do not have cache again, but the most recent processor in this
family, Cortex M7, which was announced in 2014, may have cache. It meant
a big improvement in the performance of its previous model, M4, with new
features like the possibility of having cache. It may have one instruction
cache from 0 to 64 Kb and one for data with the same size.

Cortex-R
The next step in ARM processors is Cortex-R. This was designed to work

in real-time use, so its performance is better than the M ones. These proces-
sors are based on ARMv7 architecture, and may have cache.

The first is Cortex-R4, which can have again 0-64 Kb separated caches for
instructions and data.

The next ones were optional - Multiple core processors. We can find 4–64
Kb separate caches for instructions and data again in Cortex R5 and Cortex
R7 processors.

Cortex-A
The most known and used family of Cortex processors. They are designed

to be used in an application level, so we can find Cortex-A processors in
smartphones, videogames consoles, and others embedded systems.

Inside this family, there are a lot of models, which was released in differ-
ent year and which have different features.

For example, there are 64 bit processors inside this subgroup

Every processor has cache in this subfamily, in order to improve this speed
and performance. The cache of each one, is, by release date:

9

Cortex A5: L1 cache, one for data and one for instructions separately,
each one with 4-64 Kb.

Cortex A7: Multiple Core processor. Each core has and 8-64 Kb dif-
ferent caches for instructions and data. It may have another L2 cache up to
1 Mb, shared by the two/four cores if they exist.

Cortex A8: Superscalar processor with 4-way set associative L1 cache
of 16-32 Kib separated and 8 way set-associative L2 cache with 64k to 2Mb
capacity.

Cortex A9: Multiple core processor. Separate data and instructions 4-way
set-associative cache with configurable capacity as 16, 32 or 64 Kb. L2 128
Kb-8 Mb cache shared between every cpu.

Figure 2: Cortex A9 memory schema[3]

Cortex A12: Another multiple core processor. Separated L1 caches I/D
of 32-64 Kb each one. Optional L2 256Kb-8Mb cache to every cores.

Cortex A15: Multiple Core processor. 32 Kb cache of instructions and 32
for data per core. Another level, L2, up to 4 Mb per cluster.

Cortex A17: Last released processor. Multiple core. L1 separated 4 way-
associative cache of 32-64 Kb for data and 32 Kb for instructions. Another

10

cache of L2 level, designed to work with every cores, 16 way-set associative,
with variable capacity. Since 256 Kb to 8 Mb.

To sumarise the cache features of every Cortex processors, a general table is
presented in figure 3.

Figure 3: Table resume of memory system of ARM Cortex

2.2 Little changes in the features of the caches to de-
termine the influence on the final performance

After investigating about the processors, some test about cache performance
were done in CACTI. The test is important to know how can the variation of
the cache parameters can affect to the power consumption and performance.
The cache in which the tests will be done is the Arm Cortex R4 cache. This
processor, can have cache, but it may not have one as well. The test will be
run in the cached one, in the L1 cache.

This cache is separated in Data and Instruction cache. Its capacity can
vary from 4 to 64 Kb and it is a 4-way associative with a line length of 8
words.

11

However, the test will be run modifying this parameters, to prove how the
features can affect to the cache performance.

Every test will be done in the CACTI tool. After doing the test, the re-
sults will be arranged in an array and presented as graphics.

The basic parameters will be set as specified in figure 4.

Figure 4: Basic parameters set in CACTI

2.2.1 Cache size

As the size of this cache may vary from 4 to 64 Kb, the first test will be done
about this parameter. The others parameters that are requested in CACTI,
will have been set with the values shown in figure 5. (The results of the test
has been rounded to 3 decimals)

Figure 5: Parameters set in this section

The results of the test are shown in figure 6.

12

Figure 6: Table of results modifying the cache size

2.2.1.1 Plots with the results

Figure 7: Plot Cache size/Access time

13

Figure 8: Plot Cache size/Power

Figure 9: Plot Cache size/Power

It is easy to appreciate in the graphic found in Fig.7 that, the bigger the
cache is, the more time it is needed to access to it. However, the quantity of

14

misses are incremented with a lower size of cache. That is why cache design-
ers are always trying to find the best size of caches with which cache could
achieve good access time and low miss rate too.

In the case of Random cycle time, there is a small difference between the
four first cases. The most striking change is produced in the 64 KB cache.
There is an important decrease in the Random Time Cycle with this cache,
probably because the miss rate decreases significantly too.

According to ARM manual[4], this processor can run with a performance
of above 934 MHz. That means that its cycle time is less than 1.07 ns.

About Fig.8, it can be noticed again that the consumption of energy/power
rises when cache capacity rises.

An important fact should be highlighted in this graphic. That is the re-
lationship between power and energy. Energy does not rise as fast as Power
does. The value of the power is multiplied when the cache size is 64 KB. It
happens because the frequency of the clock. The power is calculated as the
Energy multiplied by the clock frequency. As the clock frequency rises a lot
(in the previous graphic it is found access time, which is inversely propor-
tional to clock frequency) when the cache size is 64 KB, the power rises too.

Power = Clock Frequency × Energy

As can be seen in the plot found in Fig.9, the value of total area rises again
when cache size does. There is no a hard difference between 32 and 64 KB
cache, how it happened before, but know, the area of a 32 KB cache is tripled
from the 4 KB. More cache size needs more physical space. That is for why
the area increases too.

Following the data from Fig.4 every caches of the graphic could be inside
of the chip, which area is 0.48mm2 whereas that the biggest cache has an
area of 0.322mm2.

15

2.2.2 Line size

Now, the cache line size will be modified, in order to test how this can affect
the whole cache performance. The rest of parameters will be fixed as Fig.10
shows.

Figure 10: Parameters set in this section

The results are shown in Fig.11.

Figure 11: Table of results modifying the associativity

16

2.2.2.1 Plots with the results

Figure 12: Plot Line size/Access time

Figure 13: Plot Line size/Power

17

Figure 14: Plot Line size/Area

Now in the plot in Fig.12, the access time rises when Line size does. It
occurs because the bigger the line size is, the more information should be
recovered in a cache access, so the time is higher.

It is worth highlighting the striking change in the random cycle time when
the line size is 8 words. It can be due to the relationship between the Cache
size and the Line size.

Again, in Fig.13, it can be noticed that the consumption of power is higher
when the line size gears up.

When the line size is 8 words, as it can be seen in the previous graphic,
the clock frequency is low, so the power would be lower too.

When line size is more than 16 words, the power consumption is unfeasi-
ble, so line size cannot be higher than 16 words in this cache due to the
power limitation, one of the most important things in all current processors.

As it can be noticed in the Fig.14, the value of total area rises again when
line size does. Given the reference values, can be found in Fig.5, the whole
processor should have an area of 0.488mm2 so, assuming that, the only line

18

sizes can be set in this cache should be less than 16 words.

It is totally impossible for current processors to have line size of 64 words,
with a approximate area of 7mm2.

2.2.3 Associativity

It is shown in Fig.15 how the rest of parameters will be set:

Figure 15: Parameters set in this section

The results are shown in Fig.16.

Figure 16: Table of results modifying the associativity

19

2.2.3.1 Plots with the results

Figure 17: Plot Associativity/Access time

Figure 18: Plot Associativity/Power

20

Figure 19: Plot Associativity/Area

Once again, in the Fig.17, everything rise when associativity rises. Those
results are not really realistic, because increasing the associativity, a better
performance of caches is achieved even though the access time is higher.

Again, it can be noticed in Fig.18 that the power is proportional to the
clock frequency.

The energy is higher when the associativity rises. This test shows a less
abrupt difference in the power than in the previous one.

Seeing the Fig.19, the value of total area rises again when line size does.
An associativity with value of 16, will not be accepted to this cache, because
the area is higher than 0.48 mm2. The others values can be accepted. Now,
it is understandable that the area is proportional to the associativity because
the higher the associativity is, the more logic and physical hardware is needed
to maintain the coherence between sets.

21

2.3 Systematic literature review about caching

Caching is becoming one of the most important features in the most re-
cent and updated processor devices such as real-time and embedded systems
There are many different approaches of how caching can affect to the pro-
cessor performance and energy consumption.

While the performance is usually determined by the behavior of the ap-
plication which is running, depending on the use of the spatial locality for
example, cache energy consumption can affect up to 50% of the final pro-
cessor energy use. We can find embedded systems everywhere -cars, small
devices and appliances amog others-, they are becoming an important aspect
in recent computing studies. As power consumption is more and more impor-
tant in this field, because the increasingly dependence of batteries, there are
a large number of papers and reviews which approach that subject, through
loads of studies and experiments, trying to find the equilibrium between cache
power consumption and performance.

That is for why, this Systematic Literature Review will be made, to look
for the best papers which are describing the cache model of a processor. The
text will be found on the internet doing some searches on a searching engine
such as google, doing queries related to the subject.

22

2.3.1 Questions for the analysis

As a systematic literature review, a few question should be made in order
to facilitate the searching of relevant documents. That documents will be
chosen following the answer of the questions below, looking for this reports
which can achieve the answer “yes” in the three proposed questions. Those
documents will be the most important ones between all the selected at first in
relation with the subject of this report “Caching in real-time and embedded
systems”. In the first table, the questions are presented, followed by their
possible answers. In the second table, all the documents found are placed,
with its adequate answer for questions.

Question Answer
Q1. Does the text speak
about the caching model in
embedded/real-time systems?

Yes/No

Q2. Are some kind of ex-
periments or comparisons about
caching in real-time embedded
systems presented?

Yes/No

Q3. Is any new method or im-
provement of the cache presented
in the document?

Yes/No

23

2.3.2 Answers to the questions applied to the documents

No Author Year Topic Type Q1 Q2 Q3
[5] A. Marti Cam-

poy, E. Tamura,
S. Saez, F. Ro-
driguez, and J.
V. Busquets-
Mataix

2005 On Using Locking Caches in Em-
bedded Real-Time Systems

Y Y Y

[6] Paul Markin 2003 A Case-Study On The Impact Of
L2 Cache Size On CPU Perfor-
mance

N Y Y

[7] Rogue Wave
Software

2011 CPU Cache Optimization: Does
It Matter? Should I Worry?
Why?

N Y Y

[8] Dan Nicolaescu,
Alex Veiden-
baum, Alex
Nicolaux

- Reducing Power Consumption for
High-Associativity Data Caches
in Embedded Processors

Y Y Y

[9] Andhi Janap-
satya, Alek-
sandar Ign-
jatovic, Sri
Parameswaran

2006 Finding Optimal L1 Cache Con-
figuration for Embedded Systems

Y Y Y

[10] Yujia Jin and
Rong Chen

- Instruction Cache Compression
for Embedded Systems

Y Y Y

[11] Bruce Jacob 1999 Cache Design for Embedded
Real-Time Systems

Y Y Y

[12] Norman P.
Jouppi

1991 Cache Write Policies and Perfor-
mance

Y Y Y

[13] Bruce Jacob 1998 Software-Managed Caches: Ar-
chitectural Support for Real-
Time Embedded Systems

Y N N

[14] Bach D. Bui,
Marco Caccamo,
Lui Sha, Joseph
Martinez

2007 Impact of Cache Partitioning on
Multi-Tasking Real Time Embed-
ded Systems

Y Y Y

24

No Author Year Topic Type Q1 Q2 Q3
[15] Prabhat Jain 2008 Software-assisted Cache Mecha-

nisms for Embedded Systems
Y Y Y

[16] Emre Ozer, Re-
sit Sendag and
David Greggrr

2005 Multiple-Valued Caches for
Power-Efficient Embedded Sys-
tems

Y Y Y

[17] Abu Asaduzza-
man

2009 Cache optimization for real-time
embedded systems

Y Y Y

[18] Abu Asaduzza-
man

- Block Cache for Embedded Sys-
tems

Y Y Y

[21] Frank Vahid,
Walid Najjar
and Chuanjun
Zhang

2005 A Highly Configurable Cache for
Low Energy Embedded Systems

Y Y Y

2.3.3 Discussion

In this section, the previous research questions will be answered, regarding
the selected papers.

RQ1. How important is the caching model to the processor per-
formance?

All text are speaking about this subject. We can start describing how
the cache model can affect to the processor energy consumption, as we can
see the importance of the caches energy consumption in many papers.

Cache memories account for about 50% of the total energy consumed in
the system, as we can read in [21]. Moreover, varying some cache parame-
ters, the use of energy can be varied too. As [8] says, the difference between
set-associative and non set-associative caches could be a critic decision if the
designer wants to save energy, for example, for embedded systems, where
energy consumption is one of the most important features.

That is the same case in processor performance and speed. “Cache memories
are crucial to obtain high performance on contemporary processors.” says
[5]. And it is right. For example, following [6], doubling the L2 cache in
the processor it talks about, can suppose an improvement of the computa-
tional performance of 4-5%, an important improvement in terms of processor
performance. However, some texts says that the performance of the cache
system is highly determined by the program behavior.[21]

25

Therefore, cache memories is a thing to take into account when a new pro-
cessor is designed.

To finish with this section, it is important to remark that cache parame-
ters such as associativity, the total cache size, and the cache line size, among
others, can affect the hit rate of the cache. The hit and miss rates are the
most determinant parameters in terms of cache performance and energy con-
sumption.[21]

RQ2. Which are the improvements that can be done to the
current caches?

Some of the texts try to find the optimum set of cache parameters to im-
prove the cache yield. Some of them will be presented in this answer section.
In [21] it is presented a highly configurable cache, in order to modify dy-
namically the most important parameters such as cache line size, cache size,
among others, which affect significantly to the whole processor, as it was
presented in the previous answer.
In other texts, the parameters are varied too to show the improvement of
cache results doing that. [6] talks about cache size, [8] about associativity, in
[9], they try to find the best L1 cache configuration varying those parameters,
among others.

Block cache for embedded systems are described in [18]. Using a dynam-
ically instruction blocks can reduce the area, power use and performance of
the caches, according to the authors.
The authors of [10] speak about what they call “Instruction Cache Compres-
sion”.

In [7], some experiments are made in order to show how can the code af-
fect to the cache performance. Locking caches, which consists in locking the
cache in order to avoid unnecessary block replacements, which can be con-
figured in execution time to lock the blocks are presented in [5].
To complete this section, a new kind of software management is introduced
in [13]. we can avoid to save not important software code as initialization
code in caches with the end of saving space to necessary data.

26

RQ3. How can we validate the effectiveness of the proposed
techniques?

There are a huge number of experiments and results presented in each
report. Some of them are going to be presented now as examples, but all
reports have data which they can support their new techniques with.

For instance, in [21], [6], [8] or [9] among others, loads of graphics, numeric
results and experiments were done in order to support how dynamically vary-
ing of parameters affect positively cache performance.
In [5] they prove the excellent results of their “locking caches” showing a lot
of graphic and numeric data again.

Or for example, the visual graphic and experiments presented in [18] to show
the reliability to Block caches for embedded systems.

27

3 Building the benchmark suite

Once the investigation about embedded systems and caching there have been
done, it is important to focus the work on the benckmarking suite of this
project.
First of all, the description of tools that are disposed:

3.1 Boards

The two boards, and their features that will be used to the experiments are
the following:

ARDUINO DUE [25]
-Processor: ARM Cortex-M3 32 bits
-CPU clock: 84 Mhz
-Flash memory for code: 512 KBytes
-SRAM memory: 96 KB: Two banks: 64 KB and 32 KB

Figure 20: Arduino DUE board front

INTEL GALILEO [26]
-Processor: Intel Quark x1000, 32 bits.
-CPU clock: Up to 400 Mhz
-SRAM memory: 512 KB
-Cache memory: 16 KByte L1 Cache

28

Figure 21: Intel Galileo board front

3.2 Environment and materials

For the development in the boards, basic circuit materials, such as cables,
breadboard, buttons and other electronic stuff have been used.
The environment has been the Arduino for windows. It is an environment
which facilitate the upload of the program to the board using its own compiler
and uploader. The programs are written in C and upload to the board trough
an USB cable. It is the basic program for the Arduino board. However, an
emulator of Arduino is used in the Galileo, what should be taken into account
with the numeric results, thus it can reduce its performance.

Figure 22: Arduino program

29

3.3 Oscilloscope and wave generator

For taking times, two devices were used. They are the function (wave) gen-
erator, which generates waves whose shape can be chosen among square,
sinusoidal... This device generates the waves with a determinate frequency.
It helps to take time, because these waves can cause an interruption or change
of pins into the board.
On the other hand we have the oscilloscope, “a screen” that shows the
changes produced in a pin or an electrical signal. With both devices, it is
possible to take times. For example, with the wave generator we can create
an interruption each time the wave goes up, and make the board to process
this interruption, showing a wave in the oscilloscope. The time gap between
the input and the output, is the time that the board needs to process a simple
interruption.

Figure 23: Oscilloscope simple.
Source: [28]

Figure 24: Wave generator.
Source: [29]

3.4 Looking for other benchmark programs

After doing the first approaches with the board, it is worth to look for infor-
mation about how to do a benchmark in a real-time/embedded system and
specifically, in Arduino.

There are a lot of codes and ways to benchmark the boards. The examples
seen follow the same structure. They do some hard mathematical operations,
e.g. calculate the value of e using an infinite series, matrix multiplication, or
numerical series, among others.

The most important thing to demonstrate a processor performance is taking
times.

30

Before doing these mathematical operations, it is needed to take the time.
The time is taken again when the operation is concluded and the overall op-
eration time is calculated doing a deduction of the times taken. After that,
the operation is done in another board to make a comparison between them,
looking at the execution times.

The kind of the operation affects to the time. It is different to execute a
floating point operation and an integer operation. A board can execute an
integer operation faster than another, but it can execute floating point oper-
ations slower than other board.

3.5 How the benchmark programs for real-time sys-
tems should be?

Once the reading of these documents, the problem to create a benchmarking
set of programs to a real-time/embedded systems is facing. The difference
between a real-time and a traditional system are that the real-time should be
able to respond to external and internal events in a fixed period of time[27],
being the response time the most critical feature to them.

The Input/Output services, carried out by the sensors and actuators are
also a thing to take into account when doing benchmarking. The time of re-
sponse of that, the interrupt processing or the time to treat the interruption
are also added to the list.

The interruptions and inputs can have a order of priorities. For example,
inside a car, supposing that an accident happens, it is more important to
open the airbag than the radio continue playing. So the airbag must be more
priority than the radio player, and it can use the processor overlapping other
running tasks.

31

Figure 25: Essential part of an embedded system. Source: [27]

Therefore, what I want to measure is meanly the time.
But, what tasks should I take the time for?
Summarizing, The kinds of process which are measuring are those that are
focused on, for example:
-Multitasking
-I/O
-Memory management
-Interrupt processing
-Scheduling latency
-Interprocess communications

32

4 The benchmark suite

Thus the major features of embedded systems wanted to be tested, the suite
of benchmarking programs of this project is divided in sections, depending
on the feature of the system that it tests. The sections are the followings:

4.1 Performance in mathematical calculations

The speed calculating and working with floating point numbers is remarkable
in the effectiveness of an embedded system. For that, the program Pi was
created:

4.1.1 Pi

This program calculates the value of Pi using the Newton Approximation,
though a big number of iterations using a loop. The number of iterations
can be chosen, the more iterations you choose, the more accurate the value
of Pi you will obtain, but it will take more time.
The time taken in this program is that it uses since the first iteration to the
value of Pi is calculated.

// Pablo Pueyo

// Program which c a l c u l a t e s the approximation o f the p i
// number us ing the Newton ’ s approximation .
// Pi i s more accura te doing more i t e r a t i o n s , but i t
// makes the p r o c e s s o r to decrease the speed and to take
// more time to e x e c u t e the code .

#define ITERATIONS 200000 // number o f i t e r a t i o n s
#define FLASH 1000 // b l i n k LED every 1000

// i t e r a t i o n s

void setup () {
pinMode (13 , OUTPUT) ;
S e r i a l . begin (9 6 0 0) ;
}

void loop () {

unsigned long s t a r t , time ;

33

unsigned long n i t e r=ITERATIONS;
unsigned long i , count =0;
double x = 1 . 0 ;
double temp , p i =1.0 ;

s t a r t = m i l l i s () ;

S e r i a l . p r i n t (” Beginning ”) ;
S e r i a l . p r i n t (n i t e r) ;
S e r i a l . p r i n t l n (” i t e r a t i o n s . . . ”) ;
S e r i a l . p r i n t l n () ;

for (i = 2 ; i < n i t e r ; i++) {
x ∗= −1.0;
p i += x / (2 . 0∗ (double) i −1);

}

time = m i l l i s () − s t a r t ;

p i = pi ∗ 4 . 0 ;

S e r i a l . p r i n t (”Number o f i t e r a s = ”) ;
S e r i a l . p r i n t l n (n i t e r) ;
S e r i a l . p r i n t (” Estimate o f p i = ”) ;
S e r i a l . p r i n t l n (pi , 1 0) ;

S e r i a l . p r i n t (”Time : ”) ; S e r i a l . p r i n t (time) ;
S e r i a l . p r i n t l n (” ms”) ;

de lay (10000) ;
}

4.2 Performance in mathematical calculations and mem-
ory performance

The two following programs have been created to test the performance of
the memory management of the system. Moreover, it does some calculations
with the arrays created, so the mathematical speed is also tested in these
programs.

34

4.2.1 Quicksort

It sorts a totally unsorted array, that is to say, an array sorted inversed, from
the highest to the lowest number. The length of the array can be modified.
After the creation of the array, it sorts the elements low to hight using the
method called quicksort. Again, the longer the array is, the more time to
complete the action it lasts. In this program, both the time of creating the
array and of sorting the elements are taken.

// QuickSort f o r benchmarking
//
// Pablo Pueyo
// February 2015
//
// This program c r e a t e s a new array , wi th l e n g t h
// i n d i c a t e d in the cons tant LENGTH
// I t f i l l s i t wi th random numbers , between 0 and
// LENGHT and u t i l i s e s the method
// q u i c k s o r t to s o r t the array .
// Af ter that , i t shows the t imes which the board
// has used to c r e a t e and f i l l t he t a b l e ,
// and the time used to s o r t the e lements . I t a l s o
// shows the f i r s t 50 e lements o f the t a b l e b e f o r e
// and a f t e r the s o r t .
// The l e d i s on when the program i s s o r t i n g the
// e lements
//
// Quicksor t method ob ta ined from the webpage
// h t t p ://www. cprogramto . com/c−program−quick−s o r t /
// wi th some m o d i f i c a t i o n s .

#d e f i n e LENGTH 2000 // l e n g t h o f the t a b l e

void setup () {
pinMode (13 , OUTPUT) ;
S e r i a l . begin (9 6 0 0) ;
}

void loop () {
unsigned long s t a r t , t imeCreate , t imeSort , show ;
int t ab l e [LENGTH] ;

35

int i = 0 ;

s t a r t = m i l l i s () ;
d i g i t a l W r i t e (13 , HIGH) ;
while (i != LENGTH − 1){

t ab l e [i] = LENGTH − i − 1 ;
i ++;

}
d i g i t a l W r i t e (13 , LOW) ;
t imeCreate = m i l l i s () − s t a r t ;
i f (LENGTH < 50){

show = LENGTH;
}

else {
show=50;

}

S e r i a l . p r i n t (” Unsorted e lements : [”) ;
for (i =0; i<show ; i ++){

S e r i a l . p r i n t (t ab l e [i]) ;
S e r i a l . p r i n t (” , ”) ; }

S e r i a l . p r i n t l n (”] ”) ;
d i g i t a l W r i t e (13 , HIGH) ;
s t a r t = m i l l i s () ;
q u i ck so r t (tab le , 0 , LENGTH) ;
t imeSort = m i l l i s () − s t a r t ;
d i g i t a l W r i t e (13 , LOW) ;
S e r i a l . p r i n t (” Sorted e lements : [”) ;

for (i =0; i<show ; i ++){
S e r i a l . p r i n t (t ab l e [i]) ;
S e r i a l . p r i n t (” , ”) ; }

S e r i a l . p r i n t l n (”] ”) ;
S e r i a l . p r i n t (”Time to c r e a t e : ”) ;
S e r i a l . p r i n t l n (t imeCreate) ;
S e r i a l . p r i n t (”Time to s o r t : ”) ;
S e r i a l . p r i n t l n (t imeSort) ;

de lay (10000) ;
}

36

void q u i ck so r t (int x [] , int f i r s t , int l a s t){
int pivot , j , temp , i ;

i f (f i r s t <l a s t){
pivot=f i r s t ;
i=f i r s t ;
j=l a s t ;

while (i<j){
while (x [i]<=x [p ivot]&&i<l a s t)

i ++;
while (x [j]>x [p ivot])

j−−;
i f (i<j){

temp=x [i] ;
x [i]=x [j] ;
x [j]=temp ;

}
}

temp=x [p ivot] ;
x [p ivot]=x [j] ;
x [j]=temp ;
q u i ck so r t (x , f i r s t , j −1);
q u i ck so r t (x , j +1, l a s t) ;

}
}

37

4.2.2 Determinant

This program creates a matrix NxN (N indicated by the user) and calculates
its determinant and matrix transpose using a recursive function. The time
is again taken to make comparisons.

// Pablo Pueyo Ramon

// This program c r e a t e s a matrix NxN (N i n d i c a t e d by the
// user) and c a l c u l a t e s i t s determinant and matrix
// t ranspose us ing a r e c u r s i v e f u n c t i o n . The time i s
// again taken to make comparisons .

// c o n s t a n t s w i l l not change . They are used here to
// s e t pin numbers :
const int l edPin = 13 ; // the number o f the LED pin

// v a r i a b l e s w i l l change :

void setup () {
// i n i t i a l i z e the LED pin as an output :
pinMode (ledPin , OUTPUT) ;

S e r i a l . begin (9 6 0 0) ;
}

void loop () {
int n = 9 ;
double mat [1 0] [1 0] , t r a s [1 0] [1 0] ;
double inv [1 0] [1 0] ;
// d i g i t a l W r i t e (ledPin , LOW) ;
for (int i =0; i<n ; i ++){

for (int j =0; j<n ; j++){
mat [i] [j] = (rand () % 3) +1;

}
}

long s t a r t = m i l l i s () ;
d i g i t a l W r i t e (ledPin , LOW) ;
double det1 = det (n , mat) ;
d i g i t a l W r i t e (ledPin , HIGH) ;
S e r i a l . p r i n t l n (det1) ;

38

// d i g i t a l W r i t e (ledPin , LOW) ;
for (int i =0; i<n ; i ++){

for (int j =0; j<n ; j++){
t r a s [i] [j]=mat [j] [i] ;

}
// d i g i t a l W r i t e (ledPin , HIGH) ;

}
S e r i a l . p r i n t l n (m i l l i s () − s t a r t) ;
de lay (1 0 0 0) ;
}

double det (int n , double mat [1 0] [1 0])
{double d = 0 ;

int c , subi , i , j , subj ;
double submat [1 0] [1 0] ;
i f (n == 2)
{

return ((mat [0] [0] ∗ mat [1] [1]) −
(mat [1] [0] ∗ mat [0] [1])) ;

}
else
{

for (c = 0 ; c < n ; c++)
{

sub i = 0 ;
for (i = 1 ; i < n ; i++)
{

subj = 0 ;
for (j = 0 ; j < n ; j++)
{

i f (j == c)
{

continue ;
}
submat [sub i] [subj] = mat [i] [j] ;
subj++;

}
sub i++;

}
d = d + (pow(−1 , c) ∗ mat [0] [c] ∗

39

det (n − 1 , submat)) ;
}

}
return d ;

}

40

4.3 Performance in Input/Output

Probably the most important feature in the recent embedded processors.
They should use the sensors/actuators to interact with the environment.
The programs that take into account this function are:

4.3.1 IRreceiver

Program created to benchmark the i/o of the board. In it, I used the infrared
receiver as well as the remote control. Pushing 3 buttons of the remote, 3
leds of the board are turned on and off. Pushing the shutdown button, the
three leds are turned off. In this case, the time since the signal is received
and the led are turn off/on is taken.

/∗ Author : Pablo Pueyo Ramon
∗ IRremote . Using the IR remote , the l e d 1 , 2 , 3 ,
∗ connected to the p ins 4 , 5 , 6 , turn on when the
∗ 1 , 2 , 3 b u t t o n s o f the remote are pushed . Pushing
∗ the on/ o f f button , the t h r e e l e d s are turned o f f .
∗ The time i s taken to know how f a s t i s the board
∗ with the I /O s i n c e i t r e c e i v e s the I r s i g n a l u n t i l
∗ the l e d i s on .
∗/

#include <IRremote2 . h>

int RECV PIN = 18 ;

int aPin = 4 ;
int bPin = 5 ;
int cPin = 6 ;

int aOn = 0 ;
int bOn = 0 ;
int cOn = 0 ;

d e c o d e r e s u l t s r e s u l t s ;

IRrecv r e cept (RECV PIN) ;

void setup ()
{

41

S e r i a l . begin (9 6 0 0) ;
r e c ep t . enableIRIn () ; // S t a r t the r e c e i v e r
pinMode (aPin , OUTPUT) ;
pinMode (bPin , OUTPUT) ;
pinMode (cPin , OUTPUT) ;

}

void loop () {
i f (r e c ep t . decode(& r e s u l t s)) {

long s t a r t = m i l l i s () ;
long int decCode = r e s u l t s . va lue ;
S e r i a l . p r i n t l n (decCode) ;
switch (r e s u l t s . va lue) {

case 16718055:
S e r i a l . p r i n t l n (”1 pushed”) ;
i f (aOn){

d i g i t a l W r i t e (aPin , LOW) ;
aOn = 0 ;

}
else {

d i g i t a l W r i t e (aPin , HIGH) ;
aOn = 1 ;
}
break ;

case 16724175:
S e r i a l . p r i n t l n (”2 pushed”) ;
i f (bOn){

d i g i t a l W r i t e (bPin , LOW) ;
bOn=0;

}
else {

d i g i t a l W r i t e (bPin , HIGH) ; // s e t s the LED on
bOn=1;
}
break ;

case 16743045:
S e r i a l . p r i n t l n (”3 pushed”) ;

i f (cOn){
d i g i t a l W r i t e (cPin , LOW) ; // s e t s the LED o f f
cOn=0;

}

42

else {
d i g i t a l W r i t e (cPin , HIGH) ; // s e t s the LED on
cOn=1;
}
break ;

case 16753245:
S e r i a l . p r i n t l n (”Stop”) ;
d i g i t a l W r i t e (aPin , LOW) ; // s e t s the LED o f f
d i g i t a l W r i t e (bPin , LOW) ; // s e t s the LED o f f
d i g i t a l W r i t e (cPin , LOW) ; // s e t s the LED o f f
aOn = 0 ;
bOn = 0 ;
cOn = 0 ;
break ;

default :
S e r i a l . p r i n t l n (”Waiting . . . ”) ;

}
long time = m i l l i s () − s t a r t ;
S e r i a l . p r i n t l n (time) ;

r e c ep t . resume () ; // Receive the next v a l u e
}

}

43

4.3.2 Interruption

With the help of an oscilloscope, which will take the times of the board
output, and a function generator, which will create square waves to generate
interruptions in the board.
The pin 2 is attached to an interruption routine which will change a variable
called “state” each time the square generated by the wave generator goes up.
When it happens, the output wave, attached to the pin 13, will change its
value (1 - 0) in order to take the time of processing the interruption. With
the oscilloscope, we can measure the delay between the time the function
generator generates the wave and the time that the board processes it.

// Pablo Pueyo Ramon

int l edPin = 13 ; // LED i s a t t a c h e d to d i g i t a l pin 13

int s t a t e =0;

void setup () {
S e r i a l . begin (9 6 0 0) ;
pinMode (13 , OUTPUT) ;
pinMode (2 , INPUT) ;
a t t a ch In t e r rup t (2 , increment , CHANGE) ;

}

void loop () {
i f (! s t a t e) {
d i g i t a l W r i t e (13 , HIGH) ;
}
else {

d i g i t a l W r i t e (13 , LOW) ;
}

}

// I n t e r r u p t s e r v i c e r o u t i n e f o r pin A5
void increment () {

i f (s t a t e) {
s t a t e =0;
}
else { ;
s t a t e =1;}

}

44

4.3.3 Potentiometer

With the potentiometer, used as an input device, three leds are turned on
or off depending on the position of the potentiometer. As I said, I do not
know how to take times of these programs, either because the time between
interruptions is close to 0 or because I do not know which time to be taken.

int l edPin = 8 ; // LED connected to d i g i t a l pin 8
int l ed1Pin = 9 ; // LED connected to d i g i t a l pin 9
int l ed2Pin = 10 ; // LED connected to d i g i t a l pin 10
int analogPin = 3 ; // po ten t iometer connected to pin 3
int va l = 0 ; // v a r i a b l e to s t o r e the read v a l u e

void setup ()
{

S e r i a l . begin (9 6 0 0) ;
pinMode (ledPin , OUTPUT) ; // s e t s the pin as output
pinMode (led1Pin , OUTPUT) ; // s e t s the pin as output
pinMode (led2Pin , OUTPUT) ; // s e t s the pin as output
}

void loop ()
{

va l = analogRead (analogPin) ; // read the input pin
i f (va l <400){

d i g i t a l W r i t e (ledPin , LOW) ;
d i g i t a l W r i t e (led1Pin , HIGH) ;
d i g i t a l W r i t e (led2Pin , HIGH) ;

}
else i f (val>=400 && val<=800){

d i g i t a l W r i t e (led1Pin , LOW) ;
d i g i t a l W r i t e (ledPin , HIGH) ;
d i g i t a l W r i t e (led2Pin , HIGH) ;

}

else i f (val >800){
d i g i t a l W r i t e (led2Pin , LOW) ;
d i g i t a l W r i t e (led1Pin , HIGH) ;
d i g i t a l W r i t e (ledPin , HIGH) ;

45

}
S e r i a l . p r i n t l n (va l) ;

}

46

5 Results on the boards

Once the programs are already implemented, it is time to test it on the
boards. With the results, a comparison between both processors can be
done.

5.1 IRReceiver and Potentiometer

These programs cannot have been used to make comparisons because the
IRReceiver only can be used in Arduino due to the pins and connections and
in the potentiometer there is no time to be taken.

5.2 Pi

A number of 200000 iterations was set in this program. The accuracy of the
program achieved to reach a number π with 10 decimals.
The times taken are the following:

Arduino DUE (ARM Cortex-M3): 3280 ms
Intel Galileo (Quark x1000): 63.7 ms

The time of calculating the π approximation in Quark x1000 is almost 50
times faster than ARM M3. Of course, the clock frequency of the the proces-
sors is related to the results. 84 Mhz vs 400 Mhz, so it is logic that Galileo is
faster doing mathematical calculation. Moreover, Quark has a floating point
unit, with a floating point calculation unit, floating point registers and so on,
while Cortex-M3 only emulates the floating point operation. Those reasons
make the Quark x1000 faster working with floating point operations than the
Cortex-M3.

5.3 Quicksort

The limited memory of the Cortex-M3 allows to use a maximum length of the
array of 2000 elements. However, it is a good number to make comparisons
looking at the results.
Here, the results are split in two times, the time of creation the array and
the time used to sort the table:

47

Creating the table:
Arduino DUE (ARM Cortex-M3): 280 µs
Intel Galileo (Quark x1000): 2.2 ms

The captions of the oscilloscope of this program are the following:

Figure 26: Time creating the array to
quicksort on Arduino

Figure 27: Time creating the array to
quicksort on Galileo

Now, the time to create the table and write the 2000 elements on Cortex-
M3 is much lower than on Quark x1000, 1000 times faster. That is to say
that the memory management in the first processor is better than in the
other one. It is curious because Quark counts with a cache, thus the memory
access should be faster, and its RAM memory is much bigger, 512 KB vs 96
KB. The emulation of Arduino in the intel Galileo can affect this time.

Sorting the table:
Arduino DUE (ARM Cortex-M3): 270 ms
Intel Galileo (Quark x1000): 85 ms

48

Figure 28: Time sorting the array to
quicksort on Arduino

Figure 29: Time sorting the array to
quicksort on Galileo

Now, the time sorting the elements is less in the Galileo Board, due to
the faster clock frequency of the processor.

5.4 Determinant

Again, the memory of the Cortex-M3 doesn’t allows to use more length of
the matrix than 81 elements 9x9. But the results are big enough to make
comparisons.
Again, the results are separated in two different times, the times of the cre-
ation of the matrix and the time used to calculate the determinant of the
matrix:

Creating and storing the array:
Arduino DUE (ARM M3): 300 µs
Intel Galileo (Quark x1000): 2.4 ms

The captions of the oscilloscope of this program are the following:

49

Figure 30: Time creating the matrix
on Arduino

Figure 31: Time creating the matrix
on Galileo

Again, the time to create a matrix 9x9 is 1000 times faster in Arduino
than Galileo. It confirms that the memory management is better in Cortex-
M3 than Quark x1000 that the results of the qsort experiment showed.

Sorting the table:
Arduino DUE (ARM M3): 1000 ms
Intel Galileo (Quark x1000): 380 ms

Figure 32: Time calculating the deter-
minant of the matrix on Arduino

Figure 33: Time calculating the deter-
minant of the matrix on Galileo

And, once again, the time calculating the determinant, working with
floating point numbers again, is much less in Galileo than Arduino. It also
confirms that Quark x1000 is faster doing mathematical calculations than
Cortex-M3.

50

5.5 Interruption

Now, we want to see which processor is better with the interruption manage-
ment, one of the most important features of the embedded processors. For
that, the program previously explained is executed in both boards with the
next results:

5.5.1 Arduino

First of all, experiments in Arduino board will be done. The board generates
an output which variate depending on the branches and the machine instruc-
tions it should execute, as it can be seen in the following pictures (scale: 2µs
per square)

Figure 34: Minimum gap between
waves in Arduino board (9µs)

Figure 35: Maximum gap between
waves in Arduino board (13µs)

As it can be seen in the pictures, the gap between waves goes from 9 to 13
µ. That is why, the time for the arduino boards will be the average between
them, 11 µs.
This is the time the board uses to process an interruption.
According to the manual, interrupt latency lasts 12 cycles. As the processor
frequency is 84 Mhz (cycle time 0.0119 µs), 12 cycles would be 0,1547 µs.
In this case, the information do not match with the information done by the
board developer.

51

5.5.2 Galileo

Now, the experiments will be executed in the Galileo board:

Figure 36: Minimum gap between
waves in Galileo board (14 ms)

Figure 37: Maximum gap between
waves in Galileo board (17.5 ms)

It is important to remark that now, the scale is set as 2 ms per square,
so the time taken will be much bigger.
Again, the time taken will be the average between 14 and 17.5, so the time
that Galileo needs to process a simple interruption would be 15,75 ms.

5.5.3 Comparisons of this program

This experiment is very useful to know which board takes more time to
process interruptions. Arduino lasts 11 µs, Galileo 15,75 ms.
The result of this test is unusual. Galileo takes more than 1000 times more
than Arduino Due does to process a simple interruption. It is strange because
Galileo is a more powerful, newer board than Arduino. All the experiments
done show that Galileo board takes much less time than Galileo processing
data, even though it is less powerful processing interruptions.

52

6 Final highlights and conclusions

6.1 Tables with the results

The overall results sorted in two tables (Table 1 and Table 2), after doing 10
iterations.

Program t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Average
[1] Pi
(ms)

3280 3280 3280 3280 3280 3280 3280 3280 3280 3280 3280

[2] Ir-
Receiver(ms)

18 19 18 19 19 19 18 19 18 18 18,5

[3.1]
Qsort(µs)

-* - - - - - - - - - 280

[3.2]
Qsort2(ms)

270 270 270 270 270 270 270 270 270 270 270

[4.1]
Deter-
minant
(µs)

-* - - - - - - - - - 300

[4.2] De-
termi-
nant(ms)

-* - - - - - - - - - 1000

[5]
Inter-
ruption
(µs)

-* - - - - - - - - - 11

Table 1: Board with the results of the programs in the Arduino DUE
(ARM Cortex-M3)

53

Program t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Average
[1]
Pi(ms)

64 63 64 64 64 63 64 64 63 64 63.7

[3.1]
Qsort
(ms)

-* - - - - - - - - - 2,2

[3.2]
Qsort
2(ms)

-* - - - - - - - - - 85

[4.1] De-
termi-
nant(ms)

-* - - - - - - - - - 2.4

[4.2] De-
termi-
nant(ms)

-* - - - - - - - - - 380

[5] In-
terrup-
tion(ms)

-* - - - - - - - - - 15.75

Table 2: Board with the results of the programs in the Intel Galileo
(Quark X1000)

The times taken are explained here:

1 - Pi: Time used calculating the Newton approximation of Pi, in 2000 loops.
3.1 - Qsort: Time needed to create the list of elements, which length is 2000.
3.2 - Qsort2: Time used to sort the array before created, totally unsorted.
4.1 - Determinant: Time taken to create and save in memory a matrix 9x9.
4.2 - Determinan2: Time taken to calculate the determinant of a matrix 9x9.
5 - Interrupt: Time to process a simple interruption.
(*Taken with the oscilloscope, there is no average)

54

6.2 Final conclusion

With these boards, it is possible to make final comparisons between both
boards/processors. With these experiments, it is shown that the processor
Quark X1000 is more powerful doing mathematical calculations and process-
ing data in general. However, the ARM M3 is much more powerful and faster
processing simple interruptions, what would be taken into account whether
the interruptions in the embedded system where the processor will work are
important or not. The Cortex-M3 is also faster in the programs in which the
interaction with the memory play an important role.

Therefore, it is difficult to choose only one processor. The election would
depend on the application the processor is required to execute. Thus, if the
embedded system is designed to interact with the I/O via interruptions, or
the speed with the memory management is important, Cortex-M3 would be
chosen.
However, if the system has to work with mathematical calculations or cal-
culations in general, and it is wanted that these calculations are fast, the
election would be the Quark X1000.

55

References

[1] Intel staff: Intel Quark Core HW Reference Manual. Site: http:

//caxapa.ru/thumbs/497461/Intel_Quark_Core_HWRefMan_001.pdf .
October 2013.

[2] Intel staff: Intel Quark Core developer’s Manual. Site:
http://download.intel.com/support/processors/quark/sb/

intelquarkcore_devman_001.pdf. October 2013.

[3] Prof. Dan Grigoras: Slides from Mobile Devices and Systems 2015: Uni-
versity College Cork.

[4] ARM staff: Cortex R4 datasheet Site: http://www.arm.com/products/
processors/cortex-r/cortex-r4.php

[5] A. Marti Campoy, E. Tamura, S. Saez, F. Rodriguez, and J. V. Busquets-
Mataix On Using Locking Caches in Embedded Real-Time Systems 2005:
Departamento de Informatica de Sistemas y Computadores: Universidad
Politecnica de Valencia, Grupo de Automatica y Robotica: Pontificia
Universidad Javeriana - Cali, Colombia

[6] Paul Markin A Case-Study On The Impact Of L2 Cache Size On CPU
Performance 2003: www.overlockers.com

[7] Rogue Wave Software CPU Cache Optimization: Does It Matter? Should
I Worry? Why? 2011: United States of America

[8] Dan Nicolaescu, Alex Veidenbaum, Alex Nicolau Reducing Power Con-
sumption for High-Associativity Data Caches in Embedded Processors
Dept. of Information and Computer Science, University of California at
Irvine

[9] Andhi Janapsatya, Aleksandar Ignjatovic, Sri Parameswaran Finding Op-
timal L1 Cache Configuration for Embedded Systems 2006: School of
Computer Science and Engineering, The University of New South Wales
at Sydney, Australia

[10] Yujia Jin and Rong Chen Instruction Cache Compression for Embedded
Systems Berkeley

[11] Bruce Jacob Cache Design for Embedded Real-Time Systems 1999: Elec-
trical & Computer Engineering Department, University of Maryland at
College Park

56

[12] Norman P. Jouppi Cache Write Policies and Performance 1991: West-
ern research laboratory at University Avenue Palo Alto, California

[13] Bruce Jacob Software-Managed Caches: Architectural Support for Real-
Time Embedded Systems 1998: Electrical Engineering Department, Uni-
versity of Maryland, College Park

[14] Bach D. Bui, Marco Caccamo, Lui Sha, Joseph Martinez Impact of
Cache Partitioning on Multi-Tasking Real Time Embedded Systems 2007:
University of Illinois at Urbana-Champaign, Lockheed Martin Aeronau-
tics Company

[15] Prabhat Jain Software-assisted Cache Mechanisms for Embedded Sys-
tems 2008:Massachusetts institute of technology

[16] Emre Ozer, Resit Sendag and David Greggr Multiple-Valued Caches
for Power-Efficient Embedded Systems 2005: University of Rhode Island,
Trinity College Dublin

[17] Abu Asaduzzaman Cache optimization for real-time embedded systems
2009: Florida Atlantic University

[18] Dominic Hillenbrand, Jorg Henkel Block Cache for Embedded Systems
University of Karlsruhe

[19] Raull Mata Botana Tablas en Latex 2008.

[20] David R. Wilkins Getting started with Latex

[21] Chuanjun Zhang, Frank Vahid and Walid Najjar A Highly Configurable
Cache for Low Energy Embedded Systems 2005.

[22] Venkat Rao, Gaurav Singhal, Anshul Kumar , Nicolas Navet Battery
Model for Embedded Systems 2005: Random House, N.Y.

[23] Software Engineering Group, Department of Computer Science Guide-
lines for performing Systematic Literature Reviews in Software Engineer-
ing 2007: Keele University and University of Durham.

[24] Nabilah Kamarul Bahrin, Radziah Mohamadi A Systematic Literature
Review of Test Case Generator for Embedded Real Time System 1986:
Faculty of computing of Universiti Teknologi Malaysia 2005.

[25] www.arduino.cc Arduino Due Board information Site: http://www.

arduino.cc/en/Main/arduinoBoardDue

57

[26] www.arduino.cc Intel Galileo Board information Site: http://www.

arduino.cc/en/ArduinoCertified/IntelGalileo

[27] Sorin Cotofana, Stephan Wong, Stamatis Vassiliadis Embedded Proces-
sors: Characterictics and Trends

[28] Image from: https://encrypted-tbn3.gstatic.com/images?q=tbn:

ANd9GcT0UgHy9HvB-81lyS7JMIEJ-0BWnAkMZLoPJ2fg5ne4yFJDKtzg

[29] Image from: https://www.testequipmentconnection.com/images/

products/Array_Electronic_3400A.JPG

58

