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Abstract

We use quantum optimal control theory algorithms to design external electric fields that drive

the coupled spin and orbital dynamics of an electron in a double quantum dot, subject to the spin-

orbit coupling and Zeeman magnetic fields. We obtain time-profiles of multi-frequency electric field

pulses which increase the rate of spin-flip transitions by several orders of magnitude in comparison

with monochromatic fields, where the spin Rabi oscillations were predicted to be very slow. This

precise (with fidelity higher than 10−4) and fast (at the timescale of the order of 0.1 ns, comparable

with the Zeeman spin-rotation and the interdot tunneling time) simultaneous control of the spin

and position is achieved while keeping the electron in the four lowest tunneling- and Zeeman-

split levels through the duration of the pulse. Proposed optimized algorithms suggest effective

applications in spintronics and quantum information devices.
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I. INTRODUCTION

Among the current challenges in the fields of spintronics [1] and quantum information

technologies based on semiconductor devices, one of the most important is the fast and

accurate manipulation of electron spin in nanostructures and particularly in quantum dots

(QDs) [2]. Since the electron spin is the most typical example of a two level system, the

possibility of using single electron QDs as a physical realization of a qubit [3] has been sug-

gested and extensively studied. Just very recently, the realization of a two-qubits logic gate

has been achieved in isotopically enriched silicon QDs[4]. Moreover, the spin-orbit coupling

(SOC) – present in semiconductors used in manufacturing the QDs – entangle the spin and

the orbital motion, making possible the handling [5] and readout [6] of spin states fully

by electric means. This ability of a monochromatic electric field to coherently rotate the

electron spin, demonstrated experimentally for GaAs-based two-dimensional quantum dots

in Ref. [7], opened a venue for experimental and theoretical studies of spin manipulation by

electric fields. Several interesting regimes of the electric driving have been studied theoret-

ically (see, e.g., Refs. [8–14]) and algorithms for two-dimensional quantum dots to achieve

the spin-flip faster than it can be done by simple periodic fields, have been put forward

[15–17].

The recent progress in nanotechnologies, and the interest in novel systems for

semiconductors-based quantum technologies, have led to the manufacturing of nanowire-

based quantum dots [18], and posed a question about spin manipulation in these structures.

The double quantum dots can host two spatially separated electron spins, and thus consti-

tute a prototype of a basic two-qubits quantum information device. It is well-known that

a single isolated qubit cannot create a fully working quantum computational module, so

it is important to construct reasonable practical models of interacting qubits. A model of

two spatially separated quantum dots coupled by tunneling can serve as a starting point.

Here one deals both with the orbital degree of freedom describing the electron location in a

particular dot, and with the spin degree of freedom, which can be coupled in a non-trivial

way, for example, by the SOC. These considerations make the nanostructures with double

QD interesting candidates as hardware elements for future quantum information processing

technologies.

However, even single-electron double quantum dots, either two- or one-dimensional, where
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the electron can be localized near one of the potential minima or delocalized in both of

them, are qualitatively different from single dots and can show a rather surprising spin

dynamics (for two-dimensional dots see, e.g. Refs. [19, 20]). First of all, these two possible

localizations can make a double quantum dot a realization of a charge qubit. Second,

in contrast to a single dot, the low-energy states in a double quantum dot are formed

by interminima tunneling, making the electron position strongly sensitive to any applied

electric field that may produce even a relatively weak asymmetry in the electron energies

at the minima. Third, the electron motion between the potential minima leads to a well-

defined spin precession angle, proportional to the tunneling distance. The second and the

third factors make the spin manipulation by electric fields in double and single quantum

dots qualitatively different. These differences can be summarized as follows: (i) The spin-

flip Rabi frequency in a double quantum dot becomes much lower than expected from the

conventional linear dependence on the driving field amplitude, and (ii) the involvement of

several low-energy orbital states produces a mixed rather than a pure spin state, pushing

the spin vector inside the Bloch sphere [21]. (For a one-dimensional single quantum dot see

Ref. [22].) As a result, a full spin-flip is difficult to achieve even at long times, thus, making

the spin manipulation strongly sensitive to the decoherence.

To eliminate these obstacles and speed-up the spin manipulation, one may try to apply a

modification of the driving technique, namely, to control the quantum dynamics via specially

tailored electric fields, rather than using monochromatic ones. The theoretical design of the

shape of the fields can be achieved with the help of quantum optimal control theory [23, 24]

(QOCT). Here, we employ this technique to study the possibility of spin-flip speed-up, com-

puting the fields that allow to produce the requested spin states and electron displacements

in a fast and controllable way.

This paper is organized as follows. In Sec. II, we introduce the quantum mechanical model

of a double quantum dot (DQD), hosting one electron, in the presence of SOC and Zeeman

magnetic fields, and a time-dependent external electric field that can drive the dynamics. In

Sec. III, we describe our implementation of QOCT for this system. In Sec. IV, we present

relevant results, that show, in particular, how the spin-flip rate can be strongly increased in

comparison to the rates computed for a monochromatic driving field in a previous study on

the same system [21]. The conclusions of this work are given in Sec. V.
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FIG. 1: (Color on-line) (a) Confinement potential U(x) and the six first energy levels of the

DQD system with the SOC and magnetic field switched-off. Each horizontal red line is two-fold

degenerate in spin. (b) The four lowest energy levels for four cases: (I) without SOC and magnetic

field; with the SOC switched-on (αR = 10−9 eV cm and αD = 0.3× 10−9 eV cm) for (II) B = 0 T,

(III) B = 1.73 T and (IV) B = 6.93 T.

II. MODEL

We use the model of Ref. [21], which can be realized by producing a nanowire-based

double quantum dot with the gating technique described, for example, in Ref. [25]. In the

absence of SOC and external magnetic field, the Hamiltonian

Ĥk =
k2

2m∗
+ U(x) (1)

describes an electron confined in a one-dimensional double quantum dot, where k = −i∂/∂x

is the momentum operator (we set h̄ ≡ 1), m∗ is the electron effective mass, and the
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confinement potential U(x) is given by:

U(x) = U0

[
1 +

(x
d

)4

− 2
(x
d

)2
]
. (2)

The shape of this potential is presented in Fig. 1. It is a double-well structure, with two

minima at −d and d (U(d) = U(−d) = 0), separated by a barrier of height U0. A character-

istic tunneling time T 0
t = 2π/∆E0

t is determined by the tunneling energy ∆E0
t � U0, that

is the gap between the ground and first excited state of Ĥk.

The presence of an external magnetic field may then be accounted for by a Zeeman

coupling term (the vector potential term does not enter the Hamiltonian Eq. (1) for a 1D

structure), defined by ĤZ = ∆0
Z σ̂z/2, where ∆0

Z = g∗µBB, and σ̂z is the corresponding Pauli

matrix (being g∗ and µB the effective g-factor and the Bohr magneton, respectively). In

addition there is a SOC term in the form:

ĤSO = (αDσ̂x + αRσ̂y) k . (3)

The strength of the SOC is determined by the structure-related Rashba (αR) and the bulk-

originated Dresselhaus (αD) parameters.

Finally, under the influence of a driving electric field, the static Hamiltonian

Ĥ0 = Ĥk + ĤSO + ĤZ (4)

described above is supplemented with a time-dependent term, and the system is governed

by the time-dependent Schrödinger’s equation during the time interval [0, T ]:

i
d

dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 =

[
Ĥ0 + ex̂ε(t)

]
|Ψ(t)〉 , (5)

where the electron-field interaction assumes the dipole-approximation in the length gauge.

Numerically, we first employ a truncated basis of planewaves, i.e. assuming a periodic

unit cell of size L ≈ 7d (large enough to ensure convergence) as simulation box:

〈x|j〉 =
1√
2πL

ei
2πj
L

x . (6)

This basis is used to represent the time-independent Hamiltonian Ĥ0:

H0
jj′ = 〈j|Ĥ0|j′〉 . (7)
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Then, we diagonalize the resulting matrix H0
jj′ , obtaining the eigenbasis {ψn}: Ĥ0|ψn〉 =

En|ψn〉. Later, in order to solve Eq. (5), the wave function Ψ(t) is expanded in this basis:

Ψ(x, t) =
∑
m

ζm(t)e−iEmt〈x|ψm〉 . (8)

Substituting Eq. (8) in (5), we obtain for the time dependence of ζm(t):

d

dt
ζn(t) = ieε(t)

∑
m

ζm(t)〈ψn|x̂|ψm〉ei(En−Em)t . (9)

III. QUANTUM OPTIMAL CONTROL THEORY

The evolution of the system modeled in the previous section is determined by the external

field ε(t). The goal now is to shape this real function in order to bring the system to in

a pre-defined state, for example, switching the spin direction. As we mentioned in Sec. I,

the theoretical tool suitable for this task is QOCT. It has already been used recently to

study the electron dynamics of 2D quantum dots and rings in the presence of THz laser

fields [16, 26–28].

The formalism of QOCT for the purposes of this work can be summarized as follows:

the function ε(t) (hereafter, the control function) is determined by a set of parameters

u1, . . . , uM ≡ u: ε(t) ≡ ε[u](t). The specification of a particular set u therefore fully

determines the evolution of the system: Ψ = Ψ[u]. Next, one must encode the physical

target that one wants to achieve into the mathematical definition of a target functional F ,

that depends on the system state ψ, and possibly also on the control function parameters:

F = F [Ψ,u]. The value of this functional determines the degree of success achieved: a large

value of F should correspond to a desirable realization of the physical target.

In our case this functional is split into two parts, F [Ψ,u] = J1[Ψ] + J2[u], where J1

depends on the state of the system only and J2 is determined solely by the control function.

Regarding J1, it may depend on the evolution of the system during all the propagation time,

or only on its final state: J1[Ψ] = J1[Ψ(T )], as it is assumed in this work. It is typically

defined as the expectation value of some operator Ô:

J1[Ψ] = 〈Ψ(T )|Ô|Ψ(T )〉 . (10)

Regarding J2, sometimes called the penalty, it may be included in the definition of F in

order to penalize entering unwanted regions of the search space; for example, we wish to
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avoid solutions with high intensities, and this can be done by defining J2 as:

J2[u] = −γ
∫ T

0

ε2[u](t)dt , (11)

where γ is a positive constant, the penalty factor. In this way, as the fluency (integrated

intensity of the driving field) is higher, the value of J2 is negative and larger in the absolute

value and the sum J1 + J2 is smaller. Thus, the J2−term ensures that the optimization

algorithm will try to find solutions simultaneously maximizing the physical target and min-

imizing the pulse fluency.

Since the shape of the control function and the evolution of the system is determined by

the parameters u, the entire problem is reduced to the maximization of a function of u:

G[u] = F [Ψ[u],u] = J1[Ψ[u]] + J2[u]. (12)

There are many alternative algorithms to maximize a real function of many arguments

such as G; the most effective ones necessitate procedures to compute the value of both the

function and its gradient. With the QOCT approach one obtains for the gradient of G:

∇uG[u] = 2Im

[∫ T

0

dt〈χ[u](t)|∇uĤ[u](t)|Ψ[u](t)〉
]

+∇uJ2[u] , (13)

where, given the structure of our Hamiltonian, ∇uĤ[u](t) = x̂∇uε[u](t). Here, χ[u](t) is a

new auxiliary backward propagation wave function, defined as the solution of:

i
d

dt
χ[u](x, t) = Ĥ†[u](t)χ[u](x, t) , (14a)

χ[u](x, T ) = ÔΨ[u](x, T ) . (14b)

The maxima of G are found at the critical points ∇uG = 0 by using the quasi-Newton

method designed by Broyden et al. [29, 30].

Regarding the target operator Ô, its definition depends on the goal, which in this work

is always to populate some selected excited state ψt, that has the required spin (orbital)

orientation (position). Obviously, one easy way to achieve this goal is to use the projection

onto that state and choose Ô = |ψt〉〈ψt|. Thus, the functional J1 has the form:

J1[Ψ] = 〈Ψ(T )|Ô|Ψ(T )〉 = |〈ψt|Ψ(T )〉|2. (15)

The initial and target states can be chosen as linear combination of eigenstates of the system.
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It remains to specify the parametrization of the control function, i.e. the definition of the

parameter set u. In our case, we expand the control function in a Fourier series, so that the

parameters correspond to the coefficients. However, this correspondence is not exact, since

we must enforce several physical constraints. First, in order to ensure that the signal over

the full propagation time integrates to zero, the zero-frequency component is assumed to be

zero. Second, in order to ensure that the field starts and ends at zero, the sum of all the

cosine coefficients of the Fourier series is also set to zero.

Finally, since these optimizations are iterative algorithms, one must assume an initial

driving field. Thus, in all the cases discussed below, we start by considering a “reference”

field of the form:

εref(t) = A0 sin(ω0t), (16)

where ω0 is the characteristic frequency of the “target transition”, i.e. the difference in

energies between the initial and target states (the expectation values whenever those states

are not eigenstates), and A0 is the amplitude.

IV. RESULTS

In the following, we present results for three types of transitions in a double quantum

dot. Specifically, the first two examples show the realization of a spin-flip transition for two

different external magnetic fields. In the third example we show the possibility of controlling

the electron position, moving it from one minimum of the DQD potential to the other. In

the last example we explore the simultaneous control of spin and position.

For all our calculations we have considered a GaAs-based structure, with an effective

mass of m∗ = 0.067me (me is the free electron mass) and g∗ = −0.45. The potential minima

are set at d = 25
√

2 nm and U0 = 10 meV (unless otherwise indicated). These parameters

are the same as those considered in Ref. [21]. This will allow us to compare some of the new

results with those of that work. In the absence of magnetic field and SOC, the tunneling

splitting is ∆E0
t = 0.0928 meV (see Fig. 1). This value corresponds to a transition frequency

of approximately 23 GHz. Note also in Fig. 1(a) that the lowest tunneling-split doublet is

separated by a large (≈ 6 meV) gap from the higher orbital states. As discussed below, this

aspect is of great importance in relation to the fidelity of the achievable spin states. The

presence of SOC does not modify ∆E0
t , and the most noticeable effect is a global redshift,
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as it can be learned from case II in Fig. 1(b).

The presence of the SOC alone does not break the time reversal symmetry of the electron

states. Therefore, the spin twofold degeneration is preserved unless we introduce an external

magnetic field, as can be seen in cases III and IV in Fig. 1(b), that correspond to a moderate

(1.73 T) and strong (6.93 T) magnetic fields. If the SOC is not present, these magnetic fields

correspond to Zeeman splittings ∆0
Z = ∆E0

t /2 and ∆0
Z′ = 2∆E0

t , respectively. We may then

define other characteristic times and energies of the system: the Zeeman splittings ∆
(A)
Z =

0.0358 meV and ∆
(B)
Z = 0.0355 meV (and the corresponding periods T

(A)
Z = 2π/∆

(A)
Z =

115.536 ps and T
(B)
Z = 2π/∆

(B)
Z = 116.589 ps) at the low magnetic field (1.73 T) and the

Zeeman splittings ∆
(A)
Z′ = 0.18735 meV and ∆

(B)
Z′ = 0.18606 meV, associated to the higher

magnetic field (6.93 T) (T
(A)
Z′ = 2π/∆

(A)
Z′ = 22.074 ps and T

(B)
Z′ = 2π/∆

(B)
Z′ = 22.228 ps). It is

important to mention that in the absence of SOC ∆
(A)
Z = ∆

(B)
Z = ∆Z and ∆

(A)
Z′ = ∆

(B)
Z′ = ∆Z′ .

Unless otherwise indicated, the peak amplitude of the reference field is set to 1.5 × 102

V/cm, which corresponds to 2d×eA0 ≈ 0.1U0 ≈ 10∆E0
t , strongly modifying the interminima

tunneling. The latter estimate means that the field is strong enough to potentially involve

also the states higher than the four states shown in Fig. 1. To calculate the dynamics, we

have represented the wavefunction using a basis of 20 eigenstates (see Eqs. (8) and (9)).

Finally, for the parameterization of the electric field in Fourier series, we have set in all the

examples below a cut-off frequency ωcut−off = 10ω0.

A. Control of spin-flip dynamics

For the first example we consider a moderate external magnetic field, B = 1.73 T with

the chosen Rashba and Dresselhaus SOC parameters being the same as introduced earlier.

We start with a reference field whose driving frequency ω0 = ∆
(A)
Z is in resonance with the

transition that we want to maximize, that is between the states ψ0 and ψ1:

ψ0 → ψ1 (17)

The Figure 2(a) shows the electric field pulse resulting from the optimization, and the

thin line is the reference initial field εref(t), shown for comparison. The time scale is in

the units of T
(A)
Z . Note that the optimized pulse has a lower fluency than the reference

field, and contains higher-frequency oscillations, forming a very irregular temporal profile.
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These higher-frequencies components are better observed in the power spectrum in the inset

in Fig. 2(a), where one can see a bimodal frequency distribution. A sharp distribution of

frequencies is centered around the initial ω0 = ∆
(A)
Z , forming the lowest energy peak.

This optimized pulse produces the dynamics of the population of the levels shown in

Fig. 2(b). In this plot, only the first four levels are shown since, throughout all the pulse

duration, the electron occupies mainly these four states. Clearly, in this case the target is

achieved almost entirely (0.999867, as indicated in the plot). As it was previously discussed

in Ref. [21], the dynamics of this system can be characterized approximately as a superposi-

tion of two kinds of transitions: those of spin-flip type and those of spin-conserved type. This

aspect can be clearly seen in Fig. 2(b), where one can notice the presence of fast exchanges

between the populations of the states ψ0 and ψ2, at the beginning of the pulse, and between

the populations of the states ψ1 and ψ3 at the end of the pulse. These two spin-conserving

transitions are related with the tunneling splittings ∆E
(A)
t and ∆E

(B)
t , respectively. As we

mentioned earlier, the transition that we want to maximize (Eq. 17) is of spin-flip type, and

is associated to the spin splitting ∆
(A)
Z , which is smaller than the tunneling. In contrast

with the fast spin-conserved transitions, note the slower general depopulation (population)

of states ψ0 and ψ2 (ψ1 and ψ3). Note also in Fig. 2(c) how the average position of the

electron smoothly moves from one QD to the other (the charge distribution varies slowly

between minima d and −d) in time intervals where the occupation of the states changes

very little–or does so less abruptly. In contrast, note that at the beginning and at the end

of the interval [0, T ] the charge is distributed almost equally between both QDs, showing

just faster and smaller oscillations. This explains why in these regions the average position

of the electron is found mainly within the region of the tunneling barrier. Note also that

when only one eigenstate is occupied, the charge is equally distributed in both QDs, while

a charge located mainly in one of these involves a superposition of two or more states.

Finally, Fig. 2(d) shows the time evolution of the spin vector inside the Bloch’s sphere.

Since the target eigenstate ψ1 is almost completely populated, it is therefore not surprising

that the final value of 〈σz〉 corresponds to that eigenstate. Due to the SOC, electron spin

is no longer well defined, so the z−component does not reach 〈σz〉 = −1. Note also the

absence of high-frequency oscillations in the spin vector evolution. These rapid oscillations

are associated with transitions involving higher energy levels, so their absence reveals that

the occupation of the higher orbitals during the evolution time is negligible.

10



- 0 . 4
- 0 . 3
- 0 . 2
- 0 . 1
0 . 0
0 . 1
0 . 2  r e f .   o p t .

 ��(
t) [

kV
/cm

]

 
( a )

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 � [ m e V ]

 

|��(
�)|

2

0 . 0
0 . 5
1 . 0

( b )
P 1 ( T )  =  0 . 9 9 9 8 6 7

 P 0 ( t )   P 1 ( t )  
 P 2 ( t )   P 3 ( t )

 

Oc
cup

atio
n

0 . 0 0 . 5 1 . 0

- 1
0
1

〈 x 〉 / d
( c )

t / T ( A )
Z

x/d

Z

X

0

0 . 5

1

t  =  T

t  =  0
( d )

Y | S |

FIG. 2: (Color on-line) (a) Optimized driving field for a maximized spin-flip transition between

states ψ0 and ψ1 with a magnetic field of B = 1.73 T (the reference driving field is also shown

for comparison). In the inset, the power spectrum (arbitrary units) in frequency domain of the

optimized pulse is shown. The vertical dashed line marks the initial driving frequency; (b) Time-

dependent occupation of the four lowest energy levels; (c) time-dependence of the charge distri-

bution. The white color refers to the maximum values of charge. The thick black line is the

time-dependent 〈x〉; (d) trajectory of the tip of the spin vector, S(t) in the Bloch sphere. The

color scale represents the module of S. The blue and red thick lines indicate the initial and final

spin vectors, respectively.
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FIG. 3: (Color on-line) The same as Fig. 2 but with a magnetic field of B = 6.93 T. In this case,

the target is the state ψ2.

Next, we have considered the same spin-flip goal, but using a relatively strong external

magnetic field, B = 6.93 T. Here, energy levels E0 and E1 correspond both to “spin-up”

states, while levels E2 and E3 correspond to “spin-down” states. In this case, the goal is to

maximize the transition between states ψ0 and ψ2 (ω0 = ∆
(A)
Z′ ):

ψ0 → ψ2 (18)

The results are shown in Figs 3. Importantly here, the precession time, T
(A)
Z′ , associated

with the target transition is smaller than in the previous case since this is a higher energy

transition. As a consequence it has been possible to achieve good results in terms of the
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target only by setting T = 3T
(A)
Z′ = 66.223 ps as the minimum duration for the pulse.

In general terms, the behavior observed in this regime of stronger magnetic field is similar

to the behavior typical for a moderate B. However, in this case the optimized pulse exhibits

peaks that are slightly higher than the reference field, as it can be seen in Fig. 3(a). This

has consequences for the occupation of higher energy levels, as discussed below. In the inset

of Fig. 3(a), we note that the distribution of the frequencies that comprise the optimized

pulse is broader than that for a moderate magnetic field. In addition, there is only one

main peak, centered around a frequency equal to ∆
(A)
Z′ /3. Furthermore, in Fig. 3(b) one

can observe at the beginning (end) of the time interval, a strong exchange of population

between levels E0 and E2 (E1 and E3), that is, between pairs of states with the same spin

orientation. As in the previous case, the dynamics of the average position of the electron

in Fig. 3(c) shows a higher frequency oscillatory behavior of 〈x〉 in the intervals of fast spin-

conserved transitions, whereas in the rest of the time interval the dynamics is less abrupt,

showing a slow oscillatory displacement between both minima, d and −d. The result of the

optimization can be considered as satisfactory given the degree of occupation of the target

at the end of the pulse as well as the final spin orientation (Fig. 3(d)).

In these two examples we have demonstrated how electric field pulses with suitably

designed temporal profiles can produce spin-flip transitions on time scales much shorter than

the period of the corresponding Rabi oscillations: these periods were shown in Ref. [21] to

be about one order of magnitude longer.

It becomes therefore clear that the tailored shapes allow for population transfer mech-

anisms that cannot be accessed with the simple Rabi-like resonance-based processes. For

example, in these two first cases the population dynamics has three phases. The first phase

is characterized by a fast exchange between same spin levels, i.e. the driven tunneling tran-

sitions. However, in the presence of strong SOC, this active spatial motion triggers the spin

flipping mechanism, which forms phase two where the two same-spin initial state compo-

nents decrease, whereas the other two with opposite spin begin to grow. Finally, there is a

third phase similar to the first one, in which same-spin transitions take place. These final

oscillations help to “settle” the final state with the required spin orientation. Note that

the electric field amplitudes are higher and oscillate faster in the first and last phases of the

process. Therefore, the spin-flip transfer takes place during the relatively slow second phase,

and occurs thanks to the initial preparation of the faster field at the initial phase. Finally,
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some faster motion is required in the last phase of the process in order to select one specific

final state in the subspace of states with the desirable spin direction.

Although we have used given reference field amplitude A0 for the starting-guess of the

optimization algorithm; other values of A0 could be considered. In a simple two-level Rabi

picture, the population of the target state grows with the amplitude of a resonant monochro-

matic field. However, as already shown in Ref. [21], the population does not grow monotoni-

cally with increasing A0. For the short time-intervals that we employ here, these target state

populations are very small when using monochromatic fields, regardless of the A0 amplitude

used. Within the QOCT scheme, this A0 is merely a starting value in the search algorithm;

in fact, as discussed in the previous section, we have introduced a penalty in the target

definition that leads to a preference of solutions with lower fluence, i.e. average intensity

over time. The reason for doing that is that we expect that the population of higher lying

states, favored by higher amplitudes, would lead to faster decoherence. Nevertheless, it is

interesting to check how an optimization solution looks if we chose other values of A0, since

the solutions are not unique, and depend on the starting guesses. For that purpose we

have performed an extra calculation for the driven spin-flip dynamics. In this case we have

reproduced the conditions for Fig. 2 with higher A0 value, i.e. A0 = 3 × 102 V/cm. The

results (displayed in a Supplemental Material [33]) show that the optimized driving field

has a greater overall amplitude than that obtained in Fig. 2(a). The latter has resulted in

the participation of higher energy orbital states (with the energies are around U0 or higher),

manifested in the high frequency oscillations in the dynamics of the observables.

B. Control of electron position

In the example shown in this Section, the aim is manipulating the position of the electron

in the DQD system, keeping the spin z-component unchanged. For this purpose, we begin

with a state ψi localized in one of the potential minima, and aim at moving it to the other

one with conserved spin orientation (the target state, ψt). The initial and target states are

not single eigenstates of the system, being each one of these a linear combination of two

eigenstates:

|ψi〉 =
1√
2

(|ψ0〉 − i|ψ2〉)→ |ψt〉 =
1√
2

(|ψ0〉+ i|ψ2〉) .

(19)
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FIG. 4: (Color on-line) (a) Optimized driving field for a manipulation of electron position with

B = 1.73 T, both with and without SOC. In the inset, the power spectrum (arbitrary units)

in frequency domain of the optimized pulse (with SOC) is shown; (b) time-dependence of the

occupation of the initial and target states; (c) time-dependence of the charge distribution (with

SOC). The thick black line is the time-dependent 〈x〉, while – as comparison – the thin dashed

line correspond to the case without SOC; (d) trajectory of the tip of the spin vector, S(t) in the

Bloch sphere (with SOC). The color scale represents the module of S. The blue and red thick lines

indicate the initial and final spin vectors, respectively.

On the other hand, for the reference field we have chosen the driving frequency ω0 corre-

sponding to the splitting between the levels E0 and E2: ∆E
(A)
t = 0.0967 meV. The time for

one period of oscillation at this frequency is T
(A)
t = 42.757 ps.
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Fig. 4(a) shows the pulse optimized to maximize the transition ψi → ψt. In order to

assess the possible relevance of SOC for this charge transfer transition, we have performed

calculations both with and without this term. (The Lyapunov-based control of the charge

qubit in the absence of SOC was recently analyzed in Ref.[31]). For these calculations, we

have set the pulse length to 2T
(A)
t since for shorter time intervals it was impossible to reach

target occupancy over 90%. Note that the power spectrum of the field, presented in the

inset, is centered around ω0/2. The optimized pulses allowed to nearly fully occupy the

target state, as it can be seen in Fig. 4(b). As for the optimized field, the dynamics of

the occupancy of states ψi and ψt shows odd symmetry with respect to the center of the

time-interval. The time-dependence of the populations of states ψ0, ψ1, ψ2 and ψ3 (not

shown here) reveals just a minor contribution of the “spin-down” states (ψ1 and ψ3) around

t = T/2. Fig. 4(c) shows the evolution of the charge distribution (including SOC) and 〈x〉

(for both, with and without SOC) as the electron is transferred between the minima. Finally,

Fig. 4(d) shows the dynamics of the spin and a high-fidelity conservation of its z-component.

One can see that the mean value of the electron spin performs a precession around the z-axis

corresponding to the dominating spin projection without reversing its sign during the whole

time interval.

We conclude that the presence of SOC makes the charge manipulation slightly harder, as

the amplitude of the optimized field needs to be higher. In addition, the time-dependence

of the field and the observables is more complex.

C. Simultaneous spin-orbital control

Next, in the final example, we seek to maximize the fidelity of a transition that involves

the transfer of the electron from one QD to the other, while reversing the sign of 〈σz〉.

Again, the system parameters and the magnetic field that we have used are the same as in

the previous example.

We start from the same initial state ψi of the previous example. The target, however,

differs:

|ψi〉 =
1√
2

(|ψ0〉 − i|ψ2〉)→ |ψt〉 =
1√
2

(|ψ1〉 − i|ψ3〉) .

(20)
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FIG. 5: (Color on-line) The same as Fig. 4 but for a simultaneous spin-orbital manipulation with

a magnetic field of B = 1.73 T.

In this state, the electron is located near the minimum at x = d with negative z-component

of spin. The energy of this transition is ∆Et = ω0 = (E1 + E3)/2− (E0 + E2)/2 = (∆
(A)
Z +

∆
(B)
Z )/2 = 0.0357 meV and the associated period is T

(A)+(B)
t = 116.06 ps.

As in previous cases, the Figure 5(a) shows the pulse shaped to maximize population of

the target ψt. The length of the pulse in this case is T = T
(A)+(B)
t , which is enough to reach

a target occupation of 0.999947, as it can be seen in Fig. 5(b). The population dynamics of

states ψi and ψt follows the relation |〈ψt|Ψ(t)〉|2 = |〈ψi|Ψ(−t)〉|2, noting that in the central

region both states are just slightly occupied. It is in this region where the spin-flip transitions

occur and almost the full occupation is due to the superposition of the ψ2 (spin-up) and ψ1
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FIG. 6: (Color on-line) The same as Fig. 5 but considering U0 = 5 meV.

(spin-down) states (not shown here). Returning to Fig. 5(a) we note in the inset that, as well

as in Fig. 2(a), the spectral component at the resonance frequency of the target transition,

ω0 = (∆
(A)
Z + ∆

(B)
Z )/2, remains the largest, dominating in the bimodal distribution. Finally,

Fig. 5(c) shows the time-dependence of the charge distribution and the average electron

position, whereas Fig. 5(d) presents the evolution of the spin vector. One can see a clear

displacement of the electron from the left- to the right-QD with a simultaneous spin-flip. As

was studied in Sec. IV A, the slow oscillatory behavior of the charge distribution between

both QDs –in the central region of the time interval, reveals the region where spin-flip phase

is occurring.

It is worth mentioning that in all the examples considered, the occupation of the higher

18



energy states (above the lowest four) is practically negligible (below 10−3 in all cases).

This not only happens for the dynamics generated by the optimized fields, but also for the

dynamics produced by the monochromatic reference fields. The occupation of those higher

energy states is difficult due to both the large energy gap between them and the lowest

ones, and due to their small spatial overlap. In addition, it is important that the desired

transitions can be obtained with relatively weak fields, also preventing occupation of the

higher orbitals.

In all the previous examples we have fixed the structural parameters (distance between

wells, barrier height, etc.). These parameters set a regime of interdot coupling that keeps

the two well clearly separated, and separate the lower energy levels from the higher ones,

although do not make them inaccessible. The variation of these parameters may lead to

different dynamics, and we finish by discussing here these possibilities. First, by decreasing

the interdot coupling, either by enlarging the distance or by increasing the barrier, we would

get slower tunneling, but not qualitatively different results, as the higher energy levels would

intervene even less.

The opposite, that is an increase in the coupling, is more interesting. In order to study

this realization, we analyzed another example with reduced potential barrier (U0 = 5 meV)

and the same distance between the QDs. Since the change in U0 modifies the entire set

of electron states, in order to obtain the same final configuration as in the previous case

the target state must be set as |ψt〉 = (|ψ1〉+ i|ψ3〉) /
√

2. Obviously, the change in U0 also

modifies the tunneling splitting, ∆Et and the values of ω0 (0.0375 meV), T
(A)+(B)
t (110.32

ps) and A0 (7.5× 101 V/cm).

Fig. 6(a) shows the optimized field obtained in this simulation, where the presence of

higher frequency components of larger amplitude is well-seen. Nevertheless, the resonant

frequency of the target transition is still the main component, as can be seen in the inset.

The fact that the optimized field includes these higher frequencies is a sign of the increased

presence of transitions involving states above the lowest four. This is logical given that,

as U0 decreases, the gap between these lowest states and the higher ones decreases too, so

that the transient occupations of the latter becomes more probable. In the previous case

[Fig. 5(a)], the energy gap prevents the optimization algorithm from making use of those

higher energy states, avoiding the need of electric field oscillations of greater amplitude.

On the contrary, in this case [Fig- 6(a)] this gap is smaller, the higher energy states more
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accessible, and therefore the optimization algorithm uses them.

The presence of higher energy transitions during the dynamics is also reflected in the

evolution of the observables (see Figs. 6(b), 6(c) and 6(d)). Note the higher frequency

oscillations in the three cases compared with those observed in Fig. 5. In particular, in

Fig. 6(c), note that the charge density oscillates much faster and with smaller amplitudes

(the charge is almost equally distributed in both QDs), in comparison with Fig. 5(c). Note

also that the charge distribution penetrates more deeply into the barrier region throughout

all the dynamics.

In Sec. IV A, we referred to the fact that the QOCT scheme aims at to minimizing

driving field fluence. For the present case we have reduced the amplitude of the reference

driving field. However, it was interesting to see that even if we keep the original amplitude

(A0 = 1.5 × 102 V/cm), the results (not shown here) are quantitatively similar to those

shown in Fig. 6.

V. CONCLUSIONS

This paper has shown how to optimally control, using the spin-orbit coupling, the electron

localization and the simultaneous spin dynamics in single-electron nanowire-based double

quantum dots by electric means. The manipulation is fast (of the order of 0.1 ns, much

shorter than the decoherence time induced by the unavoidable hyperfine interactions [32])

if the electric pulses are properly shaped, which we have achieved with the help of quantum

optimal control theory. The dynamics of these systems had been known to be complex (and

to some extent surprising) as it was found [21] that the Rabi spin oscillations frequency does

not grow monotonously with the electric field amplitude, but rather exhibits an unexpected

nonlinear behavior. Due to this fact, the use of monochromatic radiation results in rather

slow spin-flip transitions. In addition and for the same reason, it is not useful to simply

increase the field amplitude. This is a challenge if these systems are to be used in spintronics

devices. Here we have shown how the problem can be solved by making use of control

techniques to design more complex electric pulses. The obtained shape of the pulse is

relatively simple and includes less than 10 main spectral components, just simplifying the

pulse generation.

In this paper we concentrated on the systems with the parameters corresponding to the
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spectrum of the optimal pulses in the sub-THz domain. It is possible to modify the double

quantum dot parameters such that the splitting of the levels, and, correspondingly, the

spectral range of the pulses will become of the order 1 GHz. This is a better frequency scale

for conventional semiconductor-based electronics and involves the use of lower magnetic

fields. In this case the pulse design is based on the same approach as we applied here, and

the results will be similar to the results obtained here.
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