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ABSTRACT 

The increasing demand of analytical information related to inorganic engineered nanomaterials 

requires the adaptation of existing techniques and methods, or the development of new ones. 

The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of 

analytes, involving both chemical (composition, mass and number concentration) and physical 

information (e.g. size, shape, aggregation). Moreover, information about the species derived 

from the nanoparticles themselves and their transformations must also be supplied. Whereas 

techniques commonly used for nanoparticle characterization, such as light scattering techniques, 

show serious limitations when applied to complex samples, other well-established techniques, 

like electron microscopy and atomic spectrometry, can provide useful information in most 

cases. Furthermore, separation techniques, including flow field flow fractionation, capillary 

electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly 

hyphenated to inductively coupled plasma mass spectrometry as element specific detector. 

Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also 

coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are 

in their early stages, but they are very promising considering their portability and simplicity. 

Although the field is in continuous evolution, at this moment it is moving from proofs-of-
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concept in simple matrices to methods dealing with matrices of higher complexity and relevant 

analyte concentrations. To achieve this goal, sample preparation methods are essential to 

manage such complex situations. Apart from size fractionation methods, matrix digestion, 

extraction and concentration methods capable of preserving the nature of the nanoparticles are 

being developed. This review presents and discusses the state-of-the-art analytical techniques 

and sample preparation methods suitable for dealing with complex samples. Single- and multi-

method approaches applied to solve the nanometrological challenges posed by a variety of 

stakeholders are also presented. 

 

Keywords: Engineered nanomaterials; Nanoparticles; Complex samples; Detection; 

Characterization; Quantification. 
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1. Introduction 

 Although before 2000 nanoscience and nanotechnology were already undergoing a 

rapid growth, it was from 2006 when concerns about the potential risks of engineered 

nanomaterials in relation to the human health and the environment began to raise [1, 3]. In fact, 

the World Economic Forum included the specific topic "nanoparticle toxicity" in its Global 

Risks Reports in 2006 for the first time [4]. In parallel, the appropriateness of the available 

methodologies for risk assessment of ENMs, including analytical methods, was brought into 

question [5, 6]. In the following years, a number of revision articles were published, 

summarizing the state of the art of analytical methods with respect to the detection, 

characterization and quantification of engineered nanoparticles [7-19] or focussing on specific 

techniques, like electron microscopy [20], inductively coupled plasma mass spectrometry [21], 

light scattering [22], particle tracking analysis [23] or field flow fractionation [24-26]. Most of 

the general reviews listed advantages and potential limitations, and even proposed approaches 

and techniques with high potential to overcome already detected as well as expected problems.  

 In those days, most of the works were mainly oriented to the characterization of newly 

developed and synthesized pure nanomaterials, which means to work at high concentrations, 

with homogeneous samples, and with no complex matrices. Methods and techniques to 

characterize natural and engineered nanoparticles in simple matrices were already available, but, 

in contrast, methods to track quantitatively engineered nanoparticles released into complex 

environmental systems were rarely available [11]. The reason for this lack of analytical methods 

is related to the unique physical and chemical nature of nanoparticles, as solid analytes. For 

conventional analytes, the information demanded can be quantitative, as well as qualitative 

(including the identification of the chemical species). However, when the analyte is a 

nanoparticle, a solid phase species, the problem is far more complex: the quantitative 

information can be demanded as mass (or molar) concentration, but also as number 

concentration, and the qualitative information can involve not just detection of the NP as such, 

but also to provide both chemical (core and coating composition) and physical characterization 

(e.g. size, shape, aggregation/agglomeration). Moreover, when the NPs are embedded in a solid 
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matrix or they can dissolved, the release of free NPs or ionic components, respectively,  must 

also be considered. The need for all this information lies in that all these chemical and physical 

properties are closely tied to the occurrence, fate and toxicity of nanoparticles.  

 The current challenge for the analytical scientists is to develop innovative approaches to 

detect, characterize and quantify ENPs in complex samples, at realistic concentrations and in the 

presence of natural particles, of similar or different nature. Although a number of techniques for 

the characterization of ENPs are available, their application, when moving to complex situations 

and working at trace levels, can be unfeasible in most cases. These innovative approaches 

involves, first of all, to be fit-for-purpose and, due to the complexity of the analyses, to use a 

range of complementary analytical methods in most cases. Analytical techniques and methods 

that proved to be suitable to face some of the challenges cited above are listed in table 1, 

including also some emergent and promising techniques. Reported or commonly accepted size 

and concentration limits of detection have been included for comparative purposes. 

 The scenarios that have to be faced by analytical scientists in the domain of 

nanotechnology include (figure 1): 

(1) Analysis of industrial and consumer products containing ENMs (e.g. cosmetics, textiles, 

polymers, foods).  

(2.a) Laboratory experiments involving the release of ENMs from consumer products, as well 

as their fate, in different test media. In the case of foods, in vitro experiments related to 

digestion processes are also included. 

(2.b) Ecotoxicological and toxicological studies. The fate and transformations of ENMs added 

to in vitro and in vivo assays must be followed in the test media and the organisms along the 

assays.  

(3) Monitoring the occurrence and fate of ENMs along their life cycle in the environment and 

organisms, including humans. 

 In general terms, each of the three scenarios described imply an increment of the 

analytical complexity, both from the point of view of the sample matrix and the species 

potentially involved, and the decreasing analyte concentrations. An exception can be made in 
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the case of foods, included in scenario 1, since the nature of selected food matrices can be even 

more complex than matrices from scenario 3. In any case, just systems related to aqueous 

phases will be considered in this review, as it can be considered the main medium for dispersion 

of ENMs and their interaction with organisms [27]. 

 This review is focused on most used inorganic nanomaterials, which are mainly found 

as nanoparticles (nano-objects with three dimension in the nanoscale, 1-100 nm). They include: 

metallic nanoparticles (e.g. Ag, Au, Fe), oxides (e.g. CeO2, CuO, SiO2, TiO2, ZnO) and 

quantum dots (e.g. CdSe, ZnS). For an extensive and updated list of inorganic nanomaterials, 

their properties and toxicity, the DaNa (Data and knowledge on Nanomaterials) site is 

recommended [28]. Current approaches to analyze complex systems involving inorganic ENMs 

require to consider not just the pristine ENMs but also the corresponding derived species which 

can be found in the system under study. Figure 2 summarizes potential transformations of 

pristine inorganic ENMs (both dispersed or embedded) along their life cycle when put in 

contact with aqueous media (environmental and/or biological), and the different 

physicochemical species formed. The aim of this paper is to review the state-of-the-art of the 

analysis of engineered nanomaterials in complex systems, the analytical techniques and 

methods suitable for such analysis and also those emergent that show potential capabilities. The 

techniques for detection, characterization and/or quantification of ENMs have been grouped in 

six sections covering electron microscopy, light scattering and atomic spectrometry techniques 

(sections 3 to 5); chromatographic and non-cromatographic continuous separation techniques 

along with the appropriate detection techniques are considered in section 6; electroanalytical 

techniques are covered in section 7, and section 8 is devoted to the emerging field of chemical 

sensors. Techniques primarily used for size characterization of pristine ENMs (e.g., centrifugal 

particle sedimentation, analytical ultracentrifugation, X-ray diffraction, small-angle X-ray 

scattering) have not been considered.  The sample preparation methods required to cope with 

complex matrices are considered in section 2. Finally, special attention is paid to the approaches 

needed to solve the nanometrological problems posed by ENMs in section 9.  
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2. Sample preparation 

 Except when working with pure ENMs, most samples require some kind of preparation 

prior to their analysis by most of analytical techniques. Sample preparation methods that consist 

of removing the matrix or separating the ENM from the matrix will be considered. 

2.1. Digestion 

 Digestion of solid samples containing inorganic ENMs (e.g. foods, tissues, 

microorganisms, sediments) can involve the dissolution of the ENM, the degradation of the 

sample matrix or both. Concentrated oxidizing acids like nitric acid, alone or in combination 

with hydrogen peroxide or hydrochloric acid, are commonly used to digest organic matrices, by 

using conventional heating systems at atmospheric pressure or under pressure with microwave 

assisted techniques. Under acidic conditions some ENMs can dissolve (e.g., silver, copper, zinc 

and copper oxides), whereas others will require additional reagents (aqua regia for gold, 

hydrogen peroxide for CeO2, or hydrofluoric acid for TiO2). In any case, these acid-based 

digestions are oriented to get information of the total element content from the ENM in the 

sample, except if the ENM is insoluble in acids, as in the case of the determination of SiO2 NPs 

in food matrix [29] or biological tissues [30]. 

 Alternatives to acid digestions are those based on the use of alkaline reagents. 

Tetramethylammonium hydroxide is often employed for degradation of organic matrices [31-

35]. In a similar way, enzymatic digestions by proteases or pectinases has also been used to 

solubilise biological materials by degradation of proteins [33, 36-41] or to digest plant cell walls 

[42], respectively. Both strategies preserve the core of inorganic NPs, allowing the direct 

detection, quantification and size characterization of the NPs themselves. Although the presence 

of organic residues can affect the quantitative recovery of the NPs when SP-ICP-MS [33] or 

AF4-ICP-MS [31, 38] are used, methods based on enzymatic digestion and SP-ICP-MS [41] or 

AF4-ICP-MS [39] has been validated for sizing and quantification of Ag NPs in spiked chicken 

meat, as well as by TMAH digestion and SP-ICP-MS for Ag and Au NPs in exposed Daphnia 

magna [32].  

2.2. Separation/preconcentration 
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 The concentrations of nanoparticles in environmental and biological samples may be 

expected to be lower than those that can be directly measured and, at the same time, it may be 

necessary to remove matrix components. Separation in combination with preconcentration can 

be useful to improve the detection capability of the measurement techniques.  

2.2.1. Centrifugation 

 Centrifugation can be considered the simplest approach to isolate particulates from an 

aqueous suspension, as well as to separate nanoparticles from dissolved species [43]. However, 

high centrifugal forces and long times are required, and removal of nanoparticles from 

supernatants containing dissolved species is incomplete even at very harsh ultracentrifugation 

conditions (e.g., 150 000 g for 60 min) [44]. Moreover, in the presence of unwanted solids, they 

are also isolated along with the nanoparticles. Thus preparative centrifugation is not considered 

an efficient technique for the fractionation of nanoparticles [45]. However, it has proved to be 

useful for isolation of dissolved species when ultrafiltration fails, which is the case for elements 

bound by high molecular weight compounds, like dissolved organic matter [46] or proteins, 

unless nanoparticles exhibit a significant organic corona, which decreases their overall density.   

2.2.2. Filtration, ultrafiltration and dialysis 

 Although 0.45 µm filtration is not longer accepted to distinguish dissolved and 

particulate fractions [11], serial filtration, usually in combination with ultrafiltration, has been 

used for sized fractionation, followed by quantification and characterization of each fraction by 

a number of techniques [47]. 

 Dialysis and ultrafiltration are based on the use of nanoporous membranes of different 

materials and nominal molecular-weight cut-offs. Their use has been reported to isolate 

dissolved species from nanoparticles, hence they have been extensively applied to study the 

dissolution of nanomaterials ([48] and references therein). Because dialysis is based on pure 

diffusion, it takes long times to achieving equilibrium, hence UF is preferred to speed up the 

separation process. In UF, species below the MWCO are forced to cross the membrane through 

the use of a centrifugal force. Membranes with MWCO in the range of 1–100 kDa (from ca. 1 

nm) are available. Thus free ionic species can be easily isolated from nanoparticles, whereas the 



	 10	

separation of the corresponding complexes can be difficult depending on the molecular weight 

of the complexes and the size of the NPs [49, 50]. Moreover, depending on their composition 

and surface functionality, ENMs and the corresponding dissolved species can show interactions 

with the membrane surfaces, affecting their recoveries [51]. 

2.2.3. Liquid phase extraction 

 ENMs can be extracted from solid and liquid samples by using water or organic 

solvents preserving some of the properties of the ENMs. Clean-up procedures based on the 

defatting by hexane extraction have been used for the analysis of sunscreens containing TiO2 

[52-54] and foods containing SiO2 [55]. 

 Extraction of Ag and TiO2 nanoparticles in natural waters has been performed by 

Majedi et al. [56] by surface modification of the nanoparticles with a hydrophobic 

mercaptocarboxylic acid, followed by ion-pair extraction with an alkylamine in cyclohexane. 

Recently, cloud point extraction has been proposed for the separation of nanoparticles, 

preserving the size and morphology of the nanoparticles in the sample and providing selective 

separation of the NPs from dissolved species [57, 58]. CPE involves the addition of a non-ionic 

surfactant (usually, Triton X114) at concentrations over the critical micellar concentration, the 

incorporation of the NPs in the micellar aggregates and the separation of the surfactant phase 

from the aqueous one by mild heating (ca. 40°C). By adding a complexing agent (thiosulphate 

[58-60], EDTA [61-63], thiocyanate [64]) selective extraction of Ag, Au, CuO and ZnO NPs in 

the presence of the corresponding cations can be achieved. This strategy can be combined with 

total element determinations to obtain information about the dissolved and nanoparticulate 

element. CPE has been combined with ET-AAS [60, 61, 64] and ICP-MS [57, 58, 62, 63] for 

quantification of nanoparticles. Whereas ET-AAS allows the direct analysis of the surfactant 

phase, a previous acid digestion of this phase is needed when ICP-MS is used. These methods 

are selective to the nanoparticles, mostly regardless of the coating and their composition. 

Hartmann et al. [65] demonstrated for silver and a number of organic and inorganic coatings 

that, except for albumin coating, all Ag NPs were extracted with good efficiencies, what is 

critical for extraction of NPs from field samples, where the nature of the NPs or the coating is 
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unknown. Slight differences were observed for different coated CuO NPs [63], as well as for Au 

NPs with respect to size [60].  

2.2.4. Solid phase extraction 

 Anionic exchange resins have been proposed for the selective extraction of noble metal 

NPs [66]. The surface of the NPs was modified with mertcaptosuccinic acid for the adsorption 

of the modified NPs onto the resin, which were eluted with formic acid in methanol for ET-

AAS determination. The extraction method preserved the size and shape of the NPs and it was 

applied to NPs with different coatings, even to partial or totally sulphidated Ag NPs [67].  

Functionalized magnetic nanoparticles have also been proposed for the extraction of Au NPs 

and ionic gold [68], as well as for the selective extraction of Ag NPs in the presence of Ag(I) 

[69]. Su et al. [70] have quantified Ag NPs and Ag(I) in digested rat organs by using knotted 

reactors in combination with ICP-MS. 

 

3. Electron microscopy 

 Electron microscopy is considered one of the most powerful technique for the analysis 

of nanomaterials because of its capability to visualize nanoparticles, and hence to obtain 

information about their size, shape or aggregation state, as well as to guide the interpretation of 

results from other techniques [19, 71-73].  

 Among the different microscopy techniques, conventional transmission electron 

microscopy accomplishes most of the requirements needed for the characterisation of ENMs in 

complex matrices. Only in some cases, the use of high resolution TEM should be considered to 

study some nanoscale features, such as the nature of some nanoparticle coatings [74]. 

Additionally, the introduction of field-emission electron guns in scanning electron microscopy  

has allowed the successful use of scanning instruments for ENM characterization, due to the 

better spatial resolution (below 1 nm) generated by this type of electron sources (field-emission 

scanning electron microscopy). The visualizing capability of these techniques is complemented 

by different spectroscopic tools, which are coupled to microscopes for obtaining elemental and 

structural information. Energy dispersive X-ray spectroscopy is usually combined with SEM 
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and TEM to detect and quantify elements heavier than boron with 15-20% uncertainty [75]. 

TEM can be also equipped with electron energy-loss spectroscopy (EELS), which is capable of 

giving structural and chemical information, including the oxidation state of an element, with a 

spatial resolution down to the atomic level in favourable cases. Both spectroscopies (EDS and 

EELS) are complementary, covering the determination of light and heavy elements [75]. To 

obtain the crystal structure of the nanomaterials, selected-area electron diffraction or 

convergent-beam electron diffraction are commonly used. 

 TEM can produce bright- or dark-field images that can provide precise particle size 

information at nanoscale, being the most used technique for measuring the size of nanoparticles 

[19]. Electron microscopy provides true particle size dimensions, giving the projected area of 

the particles. However, it cannot be considered an ideal approach for quantification, because of 

the high number of particles to be counted and sized to get statistically significant and 

representative results, being a time-consuming and low-throughput technique otherwise 

automated image analysis is available [11]. Recently, Dudkiewicz et al. [76] investigated the 

uncertainty associated to the size determination of ENMs in foods, proving that the number of 

measured particles was only a minor source of uncertainty, compared to the combined influence 

of sampling, sample preparation and image analysis. They found that expanded uncertainties 

around 21–27% could be achieved, concluding that replications and matrix removal should be 

considered to improve uncertainty. 

 Key features in electron microscopy are the sample preparation procedures and the 

high-vacuum conditions required to obtain a good characterisation of ENMs. Some of the most 

frequent sample preparation procedures involve drop deposition followed by solvent 

evaporation, adsorption deposition and ultracentrifugation harvesting [7]. The transformation of 

the sample from its dispersed hydrated state to a dried high vacuum state often means that the 

particle size distribution can change dramatically, e.g. the common method of evaporating a 

sample drop into dryness could lead to the increase of particle and solute concentrations before 

the solvent was evaporated, with the consequent aggregation of particles and the possible 

precipitation of salts. As an alternative, the grid surface can be functionalized with a substance 
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that confers a charge opposite to that of the NPs (e.g., poly-L-lysine for negatively-charged 

NPs, or carboxylated ligands for positively-charged ones), NPs are then attached to the surface, 

avoiding their aggregation and allowing the washing of the salts [77]. Different preparation 

methods are used to preserve the hydrated state of particles, namely by cryofixation (a rapid 

freezing so that the water forms non-crystalline ice) or by embedding the particles in a water-

soluble resin to fix the water [7]. Alternatively, to image ENMs in their ambient conditions, 

environmental scanning electron microscopy, also named atmospheric SEM, is available. In 

ESEM, the sample chamber can be operated at 10–50 Torr, compared to 10-6–10-7 Torr in 

conventional instruments. Therefore, imaging of ENMs can be performed in their natural state 

under humidity conditions up to 100% [78]. A limitation of ESEM is that only a thin superficial 

layer of the sample is subjected to analysis and it is not currently compatible with EDS [79]. On 

the other hand, the spatial resolution drops to several tens of nm. A pioneer investigation of 

nanoparticles by ESEM in food samples was conducted by Gatti et al. [80]. Luo et al. [81] 

explored the application of ESEM to directly characterize the size distribution of a range of 

ENMs in a selection of environmental and food matrices. ENMs were detected by ESEM in 

liquids down to 30 nm and 1 mg L-1 (9×108 mL-1, 50 nm Au NPs) [81]. More recently, 

Tuoriniemi et al. [82] evaluated the use of SEM and ESEM for imaging ENMs in soils. ESEM 

with backscattered electron detection was highly valuable for imaging the heavier element (i.e. 

Pt, Au and Ag) containing nanomaterials. In the soil matrix, particles as small as 25 nm could 

be quantified at concentrations down to 1011 particles m-3 (1 µg kg-1 of 100 nm Ag NPs).  

 The use of electron microscopy for ENMs characterization in different types of samples 

has been considered in different reviews involving environmental [7, 8, 83], food [8, 20], and 

biomaterials [71] analysis. In relation with complex samples, electron microscopy has been 

successfully applied to characterize TiO2 nanoparticles in sewage sludge and soils amended 

with sewage sludge [84] or with biosolids [85], or to investigate the presence of ENPs in release 

studies: Ag NPs from a washing machine effluent [86] and from water-based nano-Ag spray 

products [87], TiO2 NPs from textiles [88], or SiO2 and Al2O3 from chemical mechanical 

planarization process wastewater [89]. SEM and TEM-based studies highlighted the relevance 
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of the detection and characterisation of ENPs in many products of our daily life: Ag in washing 

solutions from commercial detergents [90], Ag and ZnO in spray products [91], TiO2 and ZnO 

in sunscreens [74], metallic NPs in dietary supplement drinks [92], Ag in pears [93], SiO2 in 

tomato soup [81] or coffee creamer [55], TiO2 and ZnO in starch, yam starch, and wheat flour 

[94], or TiO2 in foods and consumer product [95]. Regarding the implications of the presence of 

ENPs in biological samples, TEM can provide the most detailed information regarding in vitro 

nanoparticle uptake and localization by allowing both visualization of nanoparticle position 

within a cell or tissue and, in conjunction with spectroscopic methods, characterization of the 

composition of the internalised nanoparticles [96-101]. 

 

4. Light scattering techniques 

 Among the different light scattering techniques, dynamic light scattering, also known as 

photon correlation spectroscopy, is the most commonly employed high-throughput technique to 

measure nanoparticle size in aqueous suspensions. DLS measures the Brownian motion of NPs, 

through the time-dependent fluctuations in scattering intensity caused by constructive and 

destructive interferences, and relates this movement to an equivalent hydrodynamic diameter 

[22]. The presence of interfering particles or samples containing particles with heterogeneous 

size distributions, as would generally be the case for environmental samples, make data 

obtained difficult to be interpreted [8]. The inability to detect the presence of smaller particles 

among bigger ones, due to the fact that the scattering intensity depends by the sixth power of the 

particle diameter, is another major drawback of this technique [19]. Besides, DLS techniques 

require information on viscosity and refractive index, which is often not available or difficult to 

know in samples that are highly complex. Direct coupling to size separation techniques, like 

FFF and HDC, may overcome polydispersity problems and the presence of interfering particles, 

by presenting narrow size fractions to the DLS detector [102], and it will be discussed in section 

6. Although DLS has serious limitations for sizing nanoparticle suspensions in complex 

matrices, it is very valuable to monitor aggregation behaviours. For example, aggregation of Ag 

NPs exposed to human synthetic stomach fluid [103], gastric juices [104] or river water [105] 
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has been studied by DLS. In addition, this technique has also been used to proof the reliability 

of AF4 data in consumer products, although some results were biased to larger particle 

diameters respect to AF4 results [106].  

 Multi-angle light-scattering, also known as static light scattering, provides measurement 

of physical properties that are derived from the angular dependency of the light scattered by 

particles. Time averaged scattering intensities are measured at several angles to derive different 

size parameters, including the radius of gyration. Consequently MALS, in combination with 

DLS or FFF, can provide information about particle shape [7]. Since MALS requires cleaner 

samples than DLS, and a relatively deep knowledge of the optical properties of the particles, its 

use for characterization of ENPs in complex samples is limited, being always associated to FFF, 

as discussed in section 6.1.  

 Nanoparticle tracking analysis is an emerging light scattering technique, in which the 

movement of particles under Brownian motion is measured by using video microscopy and their 

hydrodynamic diameters are calculated using a modified Stokes-Einstein equation [23]. Single 

particles are first detected by light scattering, and the distance the particle travels in a given time 

interval is related to its hydrodynamic diameter; finally, by compiling and processing this 

information from a significant number of particles, particle-number concentration and 

hydrodynamic-size distributions are obtained. Because NTA is tracking individual particles, the 

method is not as subjected to the intensity limitations of DLS when measuring polydispersed 

samples. NTA shows high sensitivity in terms of particle-number concentration, minimum 

perturbation of the sample and reliable size distributions in the presence of large particles or 

aggregates, being capable of measuring a large number of individual ENPs in much less time 

than microscopy techniques. Due to laser power and camera detector limitations, reliable data 

cannot be obtained for particles with hydrodynamic diameters below 20 nm [28].  

 The application of NTA to the determination of size distributions and concentrations of 

ENPs in environmental, biological and food samples was reviewed by Gallego-Urrea et al. [23]. 

NTA has been used for the size characterization of ENPs in different nanotoxicological studies. 

The measurement of hydrodynamic diameters of Ag NPs after incubation in cell culture media 
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with high protein content has been described by Bouwmeester et al. [108], confirming the 

formation of a biomolecular corona. The aggregation of Ag and TiO2 NPs was also observed in 

the same culture medium by NTA in a study of NPs added to paints [109]. Similarly, changes in 

size of Ag NPs exposed to synthetic human stomach fluid have also been studied by NTA 

[103]. In relation with environmental studies, Piccapietra et al. [110] studied the colloidal 

stability of carbonate coated silver nanoparticles in synthetic media and natural freshwaters at 

different concentration levels of NPs. The size distribution of uncoated Ag NPs in seawater has 

also been determined for ecotoxicity studies [111]. Respect to ENPs in consumer products, the 

presence of Ag NPs in the effluents of a nanosilver producing washing machine was detected by 

NTA at µg L-1 levels, although nanoparticle sizes were overestimated with respect to TEM 

measurements due to the low scattering intensities of small particles [86].  

 

5. Atomic spectrometry techniques 

 Detection of an specific inorganic ENM is probably the first step in the analysis of a 

complex sample, and the use of element-specific techniques is the most valuable tool to achieve 

this objective. Typical techniques for elemental analysis, including electrothermal atomic 

absorption, inductively coupled plasma optical emission spectrometry and inductively coupled 

plasma mass spectrometry, are considered in this section, but also synchrotron based 

techniques, like X-ray absorption spectroscopy. However, users must be aware that these 

techniques used alone are not specific to nanoparticles, except for single particle inductively 

coupled plasma mass spectrometry, which will be considered separately. 

5.1. ET-AAS, ICP-OES and ICP-MS 

 Atomic spectrometry techniques like ET-AAS, ICP-OES and ICP-MS can be used for 

sensitive detection, as well as for quantification, of the element/s present in the ENM and the 

sample [21]. Currently, one of the most common techniques for the identification and 

quantification of inorganic ENMs involves the use of ICP-MS, due to the low detection limits 

attainable (down to ng L-1). ICP-OES provide detection limits in the µg L-1 range, whereas ET-

AAS offers a half-way performance between ICP-MS and ICP-OES. In any case, conventional 
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atomic spectrometry techniques are sensitive to the element/s present in the sample that contains 

the ENM, but they are not capable of providing any information about the physicochemical 

form of the element (if present as dissolved species or as particulate), or any other information 

related to the ENM (e.g. size, aggregation). Thus the main applications of these techniques are 

oriented to get total element concentrations in a variety of samples that include bioaccumulation 

and biodistribution studies of ENMs [112, 113]. These limitations are overcome by using these 

techniques in combination with some of the sample preparation methods described in section 2 

or, in the case of ICP-MS, by using it as on-line element-specific detector coupled to a 

continuous separation technique (HDC, FFF, CE). Alternatively, a new mode of ICP-MS, called 

single particle ICP-MS, is gaining significant interest [114] and it will be discussed below.  

 Whereas ET-AAS allows the introduction of samples both in solid or liquid phase 

(solutions and suspensions), ICP-based techniques involve the use of liquid phases. This means 

that solid samples must undergo some sample treatment for the digestion of the matrix, whereas 

suspensions could be directly analyzed. In any case, the feasibility of the direct analysis of 

suspensions by ICP-MS depends on the composition and size of the particles [115]. Suspensions 

of SiO2 particles up to 1-2 µm have been successfully analyzed by using dissolved standards 

[116], as well as other metal and metal oxide nanoparticles below ca. 100 nm [117], proving 

that particulate and dissolved species behave in the plasma in a similar way. However, this 

behaviour cannot be extended to any nanoparticle [115]. 

5.2. Single particle ICP-MS 

 Single particle ICP-MS is able to provide information about the number concentration of 

nanoparticle suspensions, as well as about the elemental mass content per nanoparticle. If some 

additional information about the nature of the nanoparticles is available (shape, composition and 

density) the core size of the nanoparticles can be calculated, and number size distributions can 

be obtained. Because the dynamic range of SP-ICP-MS may be extended up to the micrometers 

region, polydispersed systems as well as aggregation or agglomeration processes may be 

studied. In addition, dissolved forms of the constituent elements of the nanoparticles can also be 

detected and determined. The topic has been reviewed recently [114], although it is evolving 
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rapidly. Basically, the methodology consists of measuring nanoparticle suspensions at very low 

number concentrations (108  L-1 or lower) and very high data acquisition frequencies (102 -105 

Hz) by using commercial instruments. Under such conditions, nanoparticles are detected as 

individual events over a continuous baseline due to the background or the dissolved element. 

Number concentration detection limits in the range of 1000 particles per mL can be achieved 

[118], whereas lowest size detection limits are in the range of 10-20 nm for monoelemental 

nanoparticles or more than 100 nm for oxides [119]. Although SP-ICP-MS shows a great 

potential for NP analysis, the presence of dissolved species of the monitored element can hinder 

or even make impossible the detection of the NPs. This limitation may be overcome with the 

last generation of ICP-MS instruments, capable of working with data acquisition frequencies up 

to 105 Hz and reading times in the microsecond range [120]. On the other hand, physical 

properties of the NPs can lead to their incomplete vaporization in the ICP, resulting in 

inaccurate results depending on the size and nature of the NPs [121]. 

 SP-ICP-MS has been used with screening purposes to detect the release of nanoparticles 

from plastic food containers [122, 123], as well as the presence of nanoparticles and/or 

dissolved forms in dietary supplements [92], waste waters [4, 124, 125], foods and biological 

tissues [41] and blood [126]. SP-ICP-MS in combination with alkaline or enzymatic digestions 

has proven to provide reliable information about size distributions and number concentrations in 

laboratory studies involving food matrices spiked with silver or gold nanoparticles [32, 38, 40, 

41], in tissues from organisms exposed to nanoparticles [33, 37, 42, 124], and native 

nanoparticles in foods and consumer products [95]. SP-ICP-MS has also been applied to study 

the fate of silver nanoparticles in in vitro human digestion [104], lake mesocosms [50] and 

washing solutions from commercial detergents [90], to track their dissolution [127] and 

agglomeration [128] in natural waters or their release from food additives [129].  

5.3. X-Ray absorption spectroscopy 

 X-Ray absorption spectroscopy is an element specific technique that is able to provide 

specific qualitative information about metal/metalloid species, as well as about their quantitative 

distribution, although not about their particulate nature, in complex liquid and solid samples 
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(e.g. soils, sediments, tissues). In addition, minor or no sample preparation is needed and the 

physical and chemical original states are preserved. XAS is divided into XANES, which 

provides information about the geometry and oxidation states, and EXAFS, which provides 

information about element coordination. The main limitations of XAS are the sensitivity of the 

technique (in the mg kg-1 range), the requirement of synchrotron radiation facilities and the 

difficulty to deconvolute and interpret the bulk data when the sample consists of a complex 

mixture of species. The technique has been recently reviewed in the context of the analysis of 

environmental [130] and biological samples [131]. 

 XAS techniques have been used to assess the fate of ZnO and Ag NPs in wastewaters 

treatment plants and sewage sludges [132-137], including incinerated sludges [138], to study the 

accumulation and transformations of ENPs in plants exposed to Ag [139], CeO2 [140, 141], 

TiO2 [142, 143] and ZnO and CuO [144], and for speciation of silver in waters and soils from 

microcosm [145] and mesocosms [146] experiments. 

 

6. Continuous separation techniques 

 A number of different separation techniques have already proven suitable for the 

separation of particles based on their size, surface, density and charge characteristics. If 

enhanced by their hyphenation to sensitive and selective detection systems, they can provide a 

sound foundation for the resolution of complex particle systems [11]. 

6.1. Field-flow fractionation 

 Field-flow fractionation is a family of separation techniques where separation takes 

place in a thin, elongated channel without a stationary phase, caused by the action of an external 

field perpendicularly applied to a laminar flow. The basis of separation and a detailed 

description of theory can be found in [147]. FFF offers: (i) Continuous size information through 

a wide size range (from 1 nm to 100 µm, depending on the separation mode); (ii) separations 

keeping the native conditions of the NPs, since the carrier solution can be adapted to the 

dispersed nanoparticle system, and (iii) the possibility of on-line coupling to a wide range of 

detectors and off-line fraction collection if necessary [148].  
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 Depending on the type of field applied, different FFF sub-techniques are defined. 

Sedimentation (SdFFF), in which a centrifugal force is applied, and flow (FlFFF), where a 

perpendicular flow (cross flow) is applied, are the only two techniques described for the 

analysis of ENMs. SdFFF is especially suitable for high density particles (i.e. metallic NPs) of 

relatively large size [52, 53, 149]. On the other hand, asymmetric flow field-flow fractionation 

(AF4), the flow FFF mode commercially available, is considered the most universal of all FFF 

techniques, since the cross flow applied affects to all the species injected, and is applicable to 

both polymers and macromolecules, as well as (nano)particles [147]. Despite SdFFF is able to 

deliver higher resolution nanoparticle size separations, the wider size range attainable by AF4, 

limited by the ultrafiltration membrane cut-off (typically 1-10 kDa) placed on the bottom of the 

channel, together with the separation based just on differences in the hydrodynamic size of the 

NPs, have made AF4 the FFF sub-technique used in most of the studies carried out for the 

separation and characterization of ENPs in complex samples [29, 31, 34, 35, 38, 39, 41, 52, 54, 

55, 95, 106, 128, 149-161].  

 The separation and characterization of nanoparticles by FFF in food and environmental 

samples was reviewed in 2011 by von der Kammer et al. [24]. Since then, a large number of 

applications to complex samples have been developed. Target nanoparticles include Ag, Au, Se, 

SiO2, TiO2 and ZnO in different complex matrices: sunscreens [52-54, 149, 154], food [29, 38, 

39, 41, 55, 95, 150, 153, 162], consumer products [41, 95, 106], environmental [128, 156-158, 

160] and biological samples [31, 34, 35, 151, 152, 155, 159, 161]. In most cases, a sample pre-

treatment for ENMs dispersion in solution or matrix degradation is required before separation 

by FFF, as described in section 2. The injection of untreated samples is also possible in some 

cases, as in the characterization of SiO2 NPs in coffee creamer [55], where a simple dilution of 

the sample in water was performed, although a filtration through a 5 µm pore size membrane 

was recommended in order to avoid clogging of tubing. Depending on the type of matrix, 

different digestion strategies (enzymatic, TMAH-based or acidic), clean-up with organic 

solvents or lixiviation with water have been described, followed by a centrifugation or a 

filtration step. For particle disaggregation, bath or tip sonication is usually required, although 
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the addition of hexane was found to be useful in the case of TiO2 NPs in sunscreens [52-54, 

154]. In any case, these pre-treatments can affect the subsequent FFF separation. Thus, a 

significant influence on the elution of the NPs has been observed in the presence of partially 

degraded matrix after the enzymatic digestion of chicken meat [38], whereas aqueous extracts 

from gastrointestinal tract and gill tissues caused a significant fouling of the membrane, likely 

due to the high content on biomolecules, interfering with the NPs elution [151].  

 The optimization of the operating conditions (carrier composition, permeation 

membrane and cross flow program) is recommended for each type of sample in order to achieve 

a separation with minimum perturbation and high recoveries for all species [24]. Uncontrolled 

particle-membrane interactions can lead to changes on the NPs elution time [163] or low 

recoveries in the case of strong attractive interactions. Therefore optimization of operating 

conditions tends to minimize these interactions. However, even under optimal conditions, 

recoveries below 80% have been reported [34, 39, 54, 149], being one of the most serious 

limitations on the quantification of NPs in complex matrices by FFF. By contrast, good 

recoveries have been reported for Ag NPs in chicken meat [38], in the determination of SiO2 

NPs in coffee creamer [55] ], tomato soup [29] and also for TiO2 NPs in sunscreens [52]. 

 Given the grade of complexity of the samples analysed, FFF is usually hyphenated to 

different detectors [25]. Although ICP-OES [149] and ET-AAS [162] have been described for 

off-line coupling, ICP-MS is commonly used as on-line elemental detector [148, 164], due to its 

high sensitivity and elemental selectivity. In addition, the mass quantification of the species 

eluted can be done by external calibration or by unspecific isotope dilution [165], using 

dissolved standards if nanoparticles and standards behave in the same way in the ICP.  

 UV-Visible detection is also commonly used in FFF separations, although its sensitivity 

is limited to concentrations in the mg L-1 range, and its selectivity is relatively low (even when 

full spectra are registered), what make its use complementary to elemental detectors in the case 

of laboratory studies working at relatively high concentrations. A comparison between 

estimated detection limits for various metallic NPs by FFF coupled to different detectors (UV- 

Visible, DLS, ICP-MS and ICP-OES) can be found in [166]. The use of UV-Visible detection, 
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together with ICP-MS, has been described in the characterization of Ag NPs in enzymatically 

digested chicken meat [38] and culture medium and cells digested in TMAH [34] by AF4. In all 

these cases, ICP-MS silver peaks were related to Ag NPs because of  band at around 400 nm, 

due to their  surface plasmon resonance. The aggregation of Ag NPs in different dilutions of 

Daphnia magna toxicity test media has also been studied by AF4 coupled to a UV-Visible 

detector [167]. 

 The use of light scattering detection is also common in the characterization of ENPs by 

FFF, in particular DLS, although MALS has also been described [29, 161]. Both techniques 

provide an independent measure of the particle dimensions of the eluting particles (the 

hydrodynamic radius and radius of gyration, respectively) and confirm the correct operation of 

the FFF method. However, the low sensitivity of these detectors limits their use at relatively low 

ENP concentrations. For this reason, the FFF-DLS tandem has been described in the separation 

and determination of size standards for validation of the established linear relation between 

hydrodynamic radius and retention time used for subsequent estimation of hydrodynamic 

diameters of NPs in unknown samples at low concentrations [31]. The use of NTA as on-line 

detector has been recently described for the study of the number-based SiO2 NPs distribution in 

fetal bovine serum [161]. 

 The combination of sizing methods such as TEM [31, 34, 38, 52, 55, 106, 162], or SP-

ICP-MS [38, 39] with fraction collection has been also proposed for obtaining additional size 

information. SP-ICP-MS after AF4 collection also allows the identification of non-nano 

fractions (likely ionic silver bound to organic constituents) as described by Loeschner et al. [38] 

in the analysis of an enzymatic digestate of a chicken meat spiked with Ag NPs. 

6.2. Electrophoresis 

 Electrophoretic techniques, which are based on the migration of charged species under 

the influence of an applied electric field, are available in different formats. Gel electrophoresis  

and capillary electrophoresis, which are the two electrophoretic techniques most commonly 

used for separation and characterization of nanoparticles [168-170] will be considered. Whereas 

most of the work with electrophoretic techniques has been devoted to the separation and 
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characterization of nanoparticles according to size, shape and surface functionalization, using 

electrophoresis as diagnostic tool, the number of applications to real-world samples is still 

scarce. 

 GE is based on the different migration of analytes through a nanoporous gel by its 

sieving effect under an electric field. The most commonly used GE methods include 

polyacrylamide GE, commonly used to separate proteins, and agarose GE mainly used for 

separating charged biopolymers, such as DNA and RNA. Although PAGE has been used for 

characterization of ENPs, such as bioconjugated quantum dots [171], the small pore size of PA 

gels (less than 10 nm) limits its application for separation of nanoparticles. By contrast, the 

largest pore size of agarose gels (10-100 nm) enables the wide applications of AGE. The 

capability of AGE for separating nanoparticles of different sizes and shapes was demonstrated 

by Hanauer et al. [172], by using silver and gold nanoparticles derivatized by functionalization 

with polylethylene glycols, in order to control their charge and electrophoretic mobility. In this 

regard, AGE has been used almost exclusively for the separation and characterization of on 

purpose functionalized nanoparticles, like DNA and RNA bioconjugated Au NPs [173], or after 

derivatization, by using different thiol-containing ligands [174]. Detection of the nanoparticles 

in the cases cited above were based on visual analysis of the gels [173, 174], optical extinction 

spectroscopy [172], hyperspectral imaging [174] or TEM [172]. 

 In CE, separations are solely based on the different mobilities of the charged species 

that are injected into a thin capillary filled with a background electrolyte, whilst a high voltage 

is applied at the capillary ends. As in the case of GE, functionalization of the nanoparticles also 

plays a critical role in their separation. In this sense, bioconjugated quantum dots [175, 176] and 

protein-nanoparticle interactions [177] are commonly studied by CE. Although metal and metal 

oxide nanoparticles have been separated by using different inorganic buffers as electrolytes, the 

addition of ionic surfactants appears to be the most convenient mode for separation of metallic 

nanoparticles [168-170]. For instance, Liu et al. [178] demonstrated that addition of sodium 

dodecyl sulphate to the background electrolyte improved the size separation of Au NPs, because 

of the charge of the NPs is then related to the number of molecules of surfactant adsorbed, 
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which acts as a sort of in situ derivatizing agent. Qu et al. [180] developed a method for 

determination of Au, Pt and Pd NPs by using sodium dodecylbenzenesulfonate in the 

background electrolyte. Franze et al. [179] developed a method to separate gold and silver NPs 

and their ionic counterparts, using SDS as surfactant and penicillamine for complexing ions. 

Both methods resolved successfully metallic NPs down to 5 nm.  

 The most common detection techniques in CE for inorganic nanoparticles are UV-Vis 

absorption and fluorescence spectrometry. As in FFF, UV-Vis absorption has been extensively 

used to detect gold and silver NPs, taking advantage of their surface plasmon resonance at ca. 

500 and 400 nm, respectively; whereas the intrinsic fluorescence of quantum dots is used for 

their detection. The use of ICP-MS for element specific detection of NPs has been recently 

introduced [179, 180] for determination of metallic NPs in dietary supplements.  

 The advantage of using CE with respect to other separation techniques is the high 

resolution attainable and the capability to analyze both ionic species and NPs. However, special 

attention must be paid to the surface characteristics of the NPs in the standards and samples, 

because surface differences can cause different surfactant-particle interactions and lead to 

inconsistent migration behaviours. Furthermore, complex matrices, such as biological fluids, 

contain different macromolecules that can interact with the NPs, modifying their surface charge, 

thus altering the elution times and peak resolution. It is expected that further development using 

matrix matched NP standards will permit the acquisition of more accurate information regarding 

NP size, composition and surface chemistry. 

6.3. Hydrodynamic chromatography 

 In hydrodynamic chromatography, columns are packed with non-porous beads, building 

up flow channels, and separation is produced by the velocity gradient within the capillaries 

between beads. Thus larger particles are transported faster than smaller ones, as they spend less 

time near the edges of the capillaries [181]. The applications of HDC to the determination of 

ENPs in complex matrices are still scarce: they can be summarized as the identification of 

different natural and ENPs (TiO2, SiO2, Al2O3, Fe2O3, Ag and Au) in sewage sludge 

supernatants [181, 182], Ag NPs in natural river waters [105, 183] and synthetic surface waters 
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[184], and TiO2 and ZnO NPs in commercial sunscreens [184]. A pre-treatment based on the 

aqueous extraction with a surfactant (Triton-X 100) and a 1 µm filtration was performed before 

the analysis of sunscreens by HDC. From the two columns commercially available, the column 

with a separation range of the 5-300 nm is used preferentially [181-185] to the 20-1200 nm 

[105, 184]. Poor resolution and coating surface effects on elution time have been observed for 

Au NPs in the range from 5 to 100 nm [185], which may prove problematic in complex matrices 

since NPs surface is likely to be modified, affecting their retention behaviour, as pointed out by 

these authors. By contrast, high recoveries were found in the same work for Au NPs, ranging 

from 77 to 96%. The use of Au NPs as internal standard in HDC has been proposed [181] given 

its high stability under a range of conditions. Attempts to quantify the concentration of 

nanoparticles through the use of both pre- and post-column injection of ionic standards have 

proved unsuccessful [182]. Philippe et al. [184] state that eluent composition should be 

optimised for each sample type when quantitative results are required. Under optimal 

conditions, these authors have validated a method based on HDC-ICP-MS for determination of 

10 nm standard Au NPs in a simulated surface water solution, containing soft water and humic 

acids.  

 The use of different detectors (ICP-MS, DLS, UV-Vis and fluorescence) coupled to 

HDC has been reported. The combination of ICP-MS, UV-Vis and fluorescence detectors have 

proved to be useful for the analysis of Ag, TiO2 and ZnO NPs in artificial waters containing 

high amounts of organic matter [184]. Using SP-ICP-MS as detection technique can help in 

distinguishing between spherical and non-spherical, as well as pristine and surface modified 

NPs, because HDC provides information about the hydrodynamic diameter and SP-ICP-MS 

about the NP core [186]. The combined technique (HDC-SP-ICP-MS) has not been applied to 

the analysis of NPs in complex or real matrices so far.  

6.4. Other liquid chromatography techniques 

 Apart from hydrodynamic chromatography, other chromatographic separation modes 

have been investigated for separation of NPs. The main problem of applying these modes (e.g. 

size exclusion chromatography) is the adsorption of the NPs on to the stationary phases, 
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limiting the types of columns that can be used [187]. More recently, amino-SEC columns [188], 

as well as reverse phase [189] and cation exchange stationary phases [190]  have been proposed 

for separation of silver nanoparticles from silver (I), followed by on-line quantification with 

ICP-MS. Silver (I) was complexed with thiosulphate [188, 189] or ethanolamine [190] to 

improve the recovery of the dissolved species. The developed methods were applied to 

healthcare formulations [188, 190], spiked sewage and lake waters [188] and to study the 

release of silver species from textiles [189]. 

  

7. Electroanalytical techniques 

 Electrochemistry may provide an efficient, cost-effective approach for detection, size 

characterization and quantification of NPs. The two electroanalytical techniques specifically 

applied to the analysis of ENMs are: Voltammetry of immobilized particles and particle 

collision coulometry. Whereas VIP is sensitive to the oxidation state of the element/s in the 

sample, in principle, regardless of their dissolved/particulate state, PCC is capable of providing 

information specifically related to nanoparticles, in a similar way than SP-ICP-MS. The 

techniques have been applied to Ag, Au, Cu, Ni, Pt, Pd, CeO2, CuO, Fe2O3, Fe3O4, IrO, NiO, 

TiO2, and CdSe nanoparticles, mostly in relation to fundamental aspects of the techniques and 

occasionally applied to the analysis of real samples so far. 

 Originally, VIP was developed for the analysis of microparticles, being known as 

voltammetry of microparticles (VMP) [191], and more recently it has been applied to 

nanoparticles [192]. VIP involves the immobilization of the nanoparticles on the electrode 

surface, what means that the nanoparticles are separated from the media in which they are 

suspended. Although, there are different ways to immobilize the nanoparticles on the surface, 

the drop and dry procedure is the most used because it requires minimum manipulation of the 

sample. Typically, a few microliters of sample are deposited on the electrode and they are 

allowed to dry, preferably under an inert gas flow and by using slow evaporation rates to avoid 

agglomeration of the nanoparticles. Alternatively, the electrode surface can be modified to 

immobilize the nanoparticles by electrostatic interactions [193] or chemical reactions [194]. 
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Next, the electrode is transferred to the electrochemical cell, which contains an adequate 

supporting electrolyte, and it is voltammetrically scanned. The resulting voltammograms show 

one or more peaks whose potentials can be related to the nature of the nanoparticle, its size and 

the surface coverage of the electrode [195]. A peak potential from a NP is related to the 

standard potential of the involved redox couple in bulk form, but shifted up to 300 mV, 

depending on the size of the NP. This shift increases as the NP size decreases and can be 

estimated by using the Plieth equation [195]. Consequently, a range of potentials may be 

established for each nanoparticle composition that may be used for identification purposes. If 

the surface coverage of the electrode is low enough, the peak potential can be directly related to 

the diameter of the nanoparticle and a linear relationship between the logarithm of the diameter 

and the peak potential can be established by using a set of size standards [195]. On the other 

hand, the area under the peak represents the amount of oxidized or reduced nanoparticles during 

the electrochemical process, and it could be used to get quantitative information.  

 By using VIP, size and mass concentration of silver nanoparticles in health care 

formulations were determined by using glassy carbon and screen printed electrodes and linear 

scanning sweep [196]. Linear responses were obtained in the range of 10-100 nm for 

nanoparticle diameter and 0.5-6 mg L-1 for silver concentration. Cysteine modified glassy 

carbon [194] and screen printed electrodes [197], as well as gold electrodes fabricated from 

recordable compact discs, have been proposed for detection and quantification of silver NPs in 

seawater [198]. Although gold electrodes from recordable CDs offered higher coverage than 

surface modified electrodes, all of these proposals can just be considered as proofs-of-concept, 

and no information about their analytical performance has been provided. 

 PCC, also known as particle collision coulometry or nanoparticle-electrode impacts, is 

based on the modification of the baseline of a chronoamperogram (current vs. time plot) when a 

metal or metal oxide nanoparticle randomly impacts the surface of a microelectrode held at a 

fixed potential, due to the oxidation/reduction of the nanoparticle, or caused by some 

electrocatalytical processes triggered when the nanoparticle hits the electrode. A sharp transient 

signal is observed if the nanoparticle bounces back to the solution, whereas a step signal is 
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obtained when the nanoparticle stays on the electrode. The charge involved in the process is 

related to the mass of the electroactive species, and hence to the size of the nanoparticle [199, 

200]; thus size distributions might be obtained in a similar way than in SP-ICP-MS. Platinum 

nanoparticles down to 4 nm have been detected by PCC [201]. Quantitative information can be 

obtained from the corresponding chronoamperograms since the frequency of collisions on the 

electrode is proportional to the number concentration of nanoparticles [201]. Sensitivity can be 

increased by coupling an electrocatalytic reaction to the collision event [202]. Alternatively, the 

frequency of impacts can be increased by driving nanoparticles to the electrode surface not only 

by Brownian motion, but also by mass transfer [203] or using magnetic fields [204]. The use of 

cylindrical microelectrodes instead of microdisks has allowed to work with suspensions down to 

1010 L-1 [205]. 

 PCC has been used for the detection and sizing of silver nanoparticles in a spray 

disinfectant product, as well as spiked in seawater [206]. No treatment of the disinfectant 

product was necessary other than dilution with the supporting electrolyte. The modal size of the 

nanoparticle distribution in the product was in close agreement with NTA measurements. 

Similar results were obtained when the disinfectant product was analyzed in seawater. The same 

authors have studied the evolution of silver nanoparticles in seawater using Ag NP standards 

and they found that silver nanoparticles were aggregated in this media over the time scale of the 

measurements [207]. To date, applications involve metallic nanoparticles and anodic PCC, 

whereas cathodic PCC has just been used for the characterization of pristine nanomaterials, like 

magnetic nanoparticles of  Fe3O4 [208].  

 VIP and PCC can be considered complementary techniques and usually they are used in 

combination [209]. VIP provides information about the chemical composition of the 

nanoparticles, by checking the potentials of the voltammetric peaks, which are going to be 

applied in the PCC measurements. Additionally, mass concentration and average sizes can be 

obtained by VIP, whereas PCC is able of providing detailed information about size distribution 

of the nanoparticle and quantitative information in terms of number concentrations.  
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8. Chemical sensors 

 Although chemical sensors are considered well suited for monitoring of ENMs due to 

their low cost, sensitivity, portability and simplicity [210], the number of sensor devices 

developed and eventually tested on real samples is low, and still far from being succesfully 

applied to complex samples. Electrochemical, optical and mass sensitive sensors have been 

proposed for the detection of quantum dots, silver and gold nanoparticles. 

 In relation to electrochemical sensors, both voltammetry of immobilized nanoparticles 

and particle collision coulometry are techniques suitable of being implemented in 

electrochemical devices. Although most of the work with these techniques involves proofs-of-

concept with conventional electrodes configuration, disposable screen printed electrodes have 

been used by Cheng et al. [197] and Cepriá et al. [196], and applied to the analysis of seawater 

and consumer products, respectively. A flexible hybrid polydimethylsiloxane–polycarbonate 

microfluidic chip with integrated screen printed electrodes have also been fabricated and 

applied for the electrochemical detection of quantum dots [211]. 

 Two fluorescent probes have been developed for detection of silver nanoparticles, 

although they have not been implemented in optical devices yet. Chatterjee et al. [212] 

developed a rhodamine-based fluorogenic and chromogenic probe for Ag(I) detection, also 

applicable for the detection of Ag NPs when oxidized with hydrogen peroxide in acidic 

conditions. The sensing mechanism was based on an irreversible process promoted by 

coordination of Ag(I) to the iodide of the probe, which was accompanied by both colour and 

fluorescence changes. The probe showed high selectivity over other metal ions and detected 

Ag(I) down to 14 µg L-1, being applied for the quantification of Ag NPs in consumer products. 

More recently, Cayuela et al. [213] have reported a fluorescent probe based on amine-modified 

carbon dots. The amine groups at the carbon dots surface induce the aggregation of citrate-

coated Ag NPs, the red-shifting of the SPR absorption wavelength of the nanoparticles, and 

hence the decrease in carbon dots fluorescence due to inner filter effect. Under the same 

conditions PVP-Ag NPs remained well-dispersed, not affecting the carbon dots fluorescence. 
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The method was applied to the determination of citrate Ag NPs in cosmetic creams in the 

presence of TiO2 NPs. 

 Rebe Raz et al. [214] have developed a surface plasmon resonance (SPR) sensor based 

on human metallothionein for detection of silver nanoparticles. The metallothionein was 

immobilized directly on the surface of the SPR sensor. The sensor showed sensitivity in the µg 

L-1 range, displaying the highest sensitivity towards larger and uncoated Ag NPs. Unfortunately, 

ionic silver was the major interference and it should be previously removed by dialysis or 

ultrafiltration if present. The ability of the sensor to detect Ag NPs in food and water samples 

was evaluated by analyzing spiked river water and cucumber and tomato water extracts. 

A piezoelectric sensor was developed by Chen et al. [215] using an immunoglobuline coated 

surface for detection of gold nanoparticles with sensitivity in the ng range, although it was not 

tested on any type of sample.  

 

9. Single- and multi-method analytical approaches  

 Due to the disparity of scenarios and types of samples, it is likely that no single method 

will suffice to provide all the information demanded for studying or solving each specific 

problem. A combination of methods will be needed to ascertain the fit-for-purpose information. 

Figure 1 summarizes the three generic scenarios considered along this review, showing 

increasing levels of complexity due to the sample matrices involved and the expected 

concentration ranges. Scenario 1 involves the analysis of ENM-containing products, where the 

concentration of ENMs is expected to be high, although the matrix can be not so simple (e.g. 

sunscreens or foods). In scenario 2 the complexity of the sample matrix depends on the type of 

laboratory study: from the variety of synthetic media for ecotoxicological and toxicological 

essays to different types of natural and wastewaters, soils, sediments, sludges, or biological 

fluids and tissues. The main advantage of scenario 2 is that concentration, size and coatings of 

the ENMs under study are selected in accordance with the techniques and methods to be used 

and the aim followed. Finally, scenario 3 involves the monitoring of ENMs in matrices as 

complex as in scenario 2, but at their real concentrations. On the other hand, the amount and 
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variety of the information demanded implies an additional factor of complexity. This 

information can be as simple as knowing if an ENM containing a specific element is present in 

a sample (detection), although the situation can be more complicate if quantitative (as element 

mass or number nanoparticle concentration) or size information must be provided, or if the 

ENM suffers different types of transformations (e.g. dissolution, oxidation, aggregation, surface 

modification, composition).  

 Table 2 summarizes reported analysis of different samples from the scenarios 

considered above, by using techniques and methods presented in the previous sections. These 

applications have been arranged according to the scenario, the type of NP and the analytical 

techniques used. Total mass concentrations are usually determined in most applications and it 

has not been explicitly included. Native nanoparticles have been determined in consumer 

products containing ENMs (scenario 1), including foods, in release experiments from consumer 

products (scenario 2.a), and to a much less extent in environmental samples (scenario 3). The 

rest of applications involve the spiking of samples with NP standards, and toxicological and 

ecotoxicological studies (scenario 2.b), where the addition of NPs is part of the experiment. 

 Depending on the scenario, the types of demanded information and its quality, different 

approaches can be adopted in a fit-for-purpose basis. Working with inorganic ENMs, the 

simplest approach is based on the use of an atomic spectrometry technique (flame AAS, ET-

AAS, ICP-OES or ICP-MS, depending on the concentration) for monitoring of a specific 

element, both for detection and total element quantification. This may be sufficient when 

tackling with scenario 2 studies, where control samples with no added ENMs are available for 

comparison [113]; however, with samples from scenarios 1 and 3, more elaborated approaches 

are necessary. Then, an atomic spectrometry technique in conjunction with an electron 

microscopy technique (ICP-MS and TEM, most often) is viewed as the basic tools for adequate 

detection, total mass quantification and characterization (size and shape). Alternatively, it is also 

a common practise to rely just on electron microscopy for detection and characterization of the 

visualized nanoparticles, overlooking the presence of dissolved species [74]. In order to move 

from these basic approaches, table 3 summarizes different approaches currently available which 



	 32	

have been applied to complex real-world samples. Focussing on scenario 1, Tulve et al. [216] 

developed a tiered approach for the analysis of consumer products (textile, plastic and liquid 

matrices) for Ag NPs. Total silver content was determined by ICP-MS or ICP-OES, directly or 

after acid digestion. Visualization and sizing of NPs was performed by SEM or TEM in 

combination with EDS to confirm the composition of the NPs. In addition, UV-Visible 

absorption spectrometry was used as a supplementary technique to confirm the presence of 

metallic silver NPs (surface plasmon resonance absorption around 400 nm); whereas for liquids, 

DLS also provided supplementary information about hydrodynamic diameters, and free ionic 

silver was measured by ion selective electrode potentiometry. ICP-MS could be used in 

combination with the rest of techniques because total silver contents in the samples were in the 

mg kg-1 or higher. The situation is far more difficult if the expected concentrations are in the 

range of ng L-1 or ng kg-1, as it can be the case in scenario 3. In such situations the aim of the 

selected approach is currently confined to detect and quantify the element present in particulate 

form by using a sensitive atomic spectrometry technique or in combination with a 

preconcentration step. Gondikas et al. [217] applied SP-ICP-MS to detect Ti containing 

particles in surface water, number concentrations were also estimated in spite of the fact that 

just particles over 130 nm were detectable. Li et al. [67] determined the concentration of silver 

associated to nanoparticles in waste water treatment plants by ET-AAS after cloud point 

extraction or ion exchange solid phase extraction. Because concentrations as low as 1 ng L-1 

were determined, additional information about the nature of the nanoparticle was unachievable 

due to the methodology selected.  

 Undoubtedly, approaches applied in the context of environmental, toxicological and 

ecotoxicological studies (scenario 2) can show the highest level of complexity in order to get 

different types of information depending on the objectives of the study. Furtado et al. [50] 

investigate the persistence and transformation of silver nanoparticles in a littoral lake mesocosm 

by SP-ICPMS, ultrafiltration, cloud point extraction and AF4-ICP-MS. Unrine et al. [43] 

studied the dissolution and aggregation behaviour of Ag NPs in four microcosms (surface 

water; water and sediment; water and aquatic plants; water, sediment and aquatic plants) by 
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using ultrafiltration in combination with ICP-MS, and AF4 coupled to UV-Visible, DLS, 

MALS and ICP-MS detection. In addition, XANES provided solid phase speciation. As it has 

been stated in section 5.3 XAS techniques have proved their potential in different complex 

situations, being complemented with atomic spectrometry techniques usually. 

 As it has been discussed above, most of the works published by now, related to the 

monitoring of ENMs in environment, foods and organisms involve the analysis of spiked 

samples or in vivo exposed organisms, what means that approaches based on these methods may 

not be useful if concentrations in real-world samples are below the attainable detection limits. In 

this respect, approaches based on the use of SP-ICP-MS, as well as those based on AF4 

separations coupled to ICP-MS, are considered very promising. For solid samples, these 

techniques have to be combined with selected matrix digestion procedures, in order to extract 

the nanoparticles preserving their original state.  

 Although this review focuses on ENMs, natural nanoparticles cannot be forgotten 

because natural nanoparticles of different or similar composition are going to be found mixed 

with ENPs, as in the case of environmental samples [218, 219]. This means that the 

identification of ENPs in the presence of natural ones involves an additional challenge. Whereas 

different labelling methods (fluorescent labels, radiolabelling, stable isotope labelling) are 

utilized when ENPs are added deliberately to a system under study, the solution is far more 

problematic when real samples are involved, like in scenario 3. These difficulties become 

evident for techniques capable of detecting NPs regardless of their nature, like DLS, but they 

are also present when using element-specific techniques detecting NPs, like ICP-MS working in 

single particle mode or coupled to a continuous separation technique, as well as electrochemical 

techniques or chemical sensors. To distinguish ENPs from natural nanoparticles of similar 

composition, Von der Kammer et al. [220] have proposed the use of elemental ratios. The 

underlying principle is that natural NPs contain significant amounts of other elements, which is 

not the case for synthetic ones. Ti/Al and Ce/La ratios have been used for identification of 

engineered TiO2 and CeO2 nanoparticles by analysing bulk samples [217], as well as in 

combination with AF4-ICP-MS and SP-ICP-MS [102]. In any case, these techniques just 
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provide evidence of the presence of one or more elements associated to nanoparticles and not 

the exact nature of such nanoparticles. Additional information and proper interpretation is 

needed for identifying and determining ENPs in natural samples [221], as in the case study of 

the release of TiO2 ENMs from sunscreen products into surface waters [217].  

 

10. Concluding remarks and future prospects 

 Although an increasing number of analytical techniques and methods are becoming 

available for the detection, characterization and quantification of inorganic ENMs, their 

application to complex samples is still very limited and far from being incorporate to routine 

analysis. To reach this stage, additional development of standard methods, both for sample 

preparation and measurement, as well as reference materials, are needed. 

 Analyzing the actual situation, electronic microscopy and atomic spectrometry are well 

established techniques to get information about inorganic ENMs, whereas synchrotron based 

techniques can provide detailed speciation information in specific cases. Alongside these 

techniques, the use of ICP-MS in combination with FFF separations or in single particle 

detection mode are finding their way in the most recent analytical approaches, because of the 

supplementary information that can provided. Other separation techniques, like electrophoresis 

or hydrodynamic chromatography, as well as the electroanalytical techniques or the use of 

chemical sensors are yet in their early stages with respect to their application to complex and 

real-world samples and must deserve further utilization. 

 Apart from the different studies where the approaches and analytical methods discussed 

along this review are being used, another driving force for their establishment in the near future 

is going to be the development of new regulations for the control of ENMs. In this context, the 

recommendation on the definition of nanomaterials published by the European Commission 

[222] is a paradigmatic example because the correct implementation of this definition, or any 

other regulation, requires the availability of appropriate and validated analytical methods. 

Method validation is another pending issue in the field. Although there are standard methods 

and reference materials for well-established techniques (electron microscopy or DLS), this is 
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not the case for emerging techniques and with respect to the availability of standard reference 

materials in different matrices. 

 Undoubtedly, analytical scientists are at the forefront of all these pending tasks with the 

sole purpose of providing the analytical information in quantity and quality needed to support 

the sustainable development and use of ENMs. 

 

Acknowledgements 

This work was supported by the Spanish Ministry of Economy and Competitiveness, project 

CTQ2012-38091-C02-01. 

 

 

References 

 [1] A. Nel, T. Xia, L. Mädler, N. Li, Toxic potential of materials at the nanolevel, Science 

311 (2006) 622–627.  

[2] A.D. Maynard, R.J. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberdörster, M.A. 

Philbert, J. Ryan, A. Seaton, V. Stone, S.S. Tinkle, L. Tran, N.J. Walker, D.B. Warheit, Safe 

handling of nanotechnology, Nature 444 (2006) 267–269. 

[3] M.R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the Risks 

of Manufactured Nanomaterials, Environ. Sci. Technol. 40 (2006) 4336–4345.  

[4]  World Economic Forum. Global Risks 2006. Geneve. 2006. 

[5] Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). The 

appropriateness of existing methodologies to assess the potential risks associated with 

engineered and adventitious products of nanotechnologies. European Commission. Health and 

Consumer Protection Directorate. 2006. pp. 18-19 

[6] Nanomaterial Research Strategy. Office of Research and Development. U.S. 

Environmental Protection Agency. Washington, D.C. 2009. pp. 11-12. 



	 36	

[7] M. Hassellöv, J.W. Readman, J.F. Ranville, K. Tiede, Nanoparticle analysis and 

characterization methodologies in environmental risk assessment of engineered nanoparticles, 

Ecotoxicology 17 (2008) 344–361.  

[8] K. Tiede, A.B.A. Boxall, S.P. Tear, J. Lewis, H. David, M. Hassellov, Detection and 

characterization of engineered nanoparticles in food and the environment, Food Addit. Contam. 

Part A. Chem. Anal. Control. Expo. Risk Assess. 25 (2008) 795–821.  

[9] B.J. Marquis, S.A. Love, K.L. Braun, C.L. Haynes, Analytical methods to assess 

nanoparticle toxicity, Analyst 134 (2009) 425–439. 

[10] M. Farré, K. Gajda-Schrantz, L. Kantiani, D. Barceló, Ecotoxicity and analysis of 

nanomaterials in the aquatic environment, Anal. Bioanal. Chem. 393 (2009) 81–95.  

[11] A.G. Howard, On the challenge of quantifying man-made nanoparticles in the aquatic 

environment, J. Environ. Monit. 12 (2010) 135–142.  

[12] L. Yu, A. Andriola, Quantitative gold nanoparticle analysis methods: A review, Talanta. 

82 (2010) 869–875.  

[13] I. Rezić, Determination of engineered nanoparticles on textiles and in textile 

wastewaters, TrAC Trends Anal. Chem. 30 (2011) 1159–1167.  

[14] H. Weinberg, A. Galyean, M. Leopold, Evaluating engineered nanoparticles in natural 

waters, TrAC Trends Anal. Chem. 30 (2011) 72–83. 

[15] M. Farré, J. Sanchís, D. Barceló, Analysis and assessment of the occurrence, the fate 

and the behavior of nanomaterials in the environment, TrAC Trends Anal. Chem. 30 (2011) 

517–527.  

[16] A. A. Mozeto, D. Barceló, B. Ferreira, S. Pérez, P. Gardinalli, B.F. da Silva, et al., 

Analytical chemistry of metallic nanoparticles in natural environments, TrAC Trends Anal. 

Chem. 30 (2011) 528–540.  

[17] P.S. Fedotov, N.G. Vanifatova, V.M. Shkinev, B.Y. Spivakov, Fractionation and 

characterization of nano- and microparticles in liquid media, Anal. Bioanal. Chem. 400 (2011) 

1787–1804.  



	 37	

[18] C. Blasco, Y. Picó, Determining nanomaterials in food, TrAC Trends Anal. Chem. 30 

(2011) 84–99. 

[19] L. Calzolai, D. Gilliland, F. Rossi, Measuring nanoparticles size distribution in food and 

consumer products: a review, Food Addit. Contam. Part A. 29 (2012) 1183–1193. 

[20] A. Dudkiewicz, K. Tiede, K. Loeschner, L.H.S. Jensen, E. Jensen, R. Wierzbicki, 

A.B.A. Boxall, K. Molhave, Characterization of nanomaterials in food by electron microscopy, 

TrAC Trends Anal. Chem. 30 (2011) 28–43.  

[21] P. Krystek, A. Ulrich, C.C. Garcia, S. Manohar, R. Ritsema, Application of plasma 

spectrometry for the analysis of engineered nanoparticles in suspensions and products, J. Anal. 

At. Spectrom. 26 (2011) 1701–1721.  

[22] S.K. Brar, M. Verma, Measurement of nanoparticles by light-scattering techniques, 

TrAC Trends Anal. Chem. 30 (2011) 4–17. 

[23] J. A. Gallego-Urrea, J. Tuoriniemi, M. Hassellöv, Applications of particle-tracking 

analysis to the determination of size distributions and concentrations of nanoparticles in 

environmental, biological and food samples, TrAC Trends Anal. Chem. 30 (2011) 473–483.  

[24] F. von der Kammer, S. Legros, T. Hofmann, E.H. Larsen, K. Loeschner, Separation and 

characterization of nanoparticles in complex food and environmental samples by field-flow 

fractionation, TrAC Trends Anal. Chem. 30 (2011) 425–436.  

[25] M. Baalousha, B. Stolpe, J.R. Lead, Flow field-flow fractionation for the analysis and 

characterization of natural colloids and manufactured nanoparticles in environmental systems: a 

critical review, J. Chromatogr. A 1218 (2011) 4078–4103. 

[26] S.K.R. Williams, J.R. Runyon, A.A. Ashames, Field-flow fractionation: addressing the 

nano challenge, Anal. Chem. 83 (2011) 634–642.  

[27] K.L. Garner, A.A. Keller, Emerging patterns for engineered nanomaterials in the 

environment: A review of fate and toxicity studies, J. Nanoparticle Res. 16 (2014) 2503.  

[28] http://www.nanoobjects.info/en/nanoinfo/materials 

[29] S. Wagner, S. Legros, K. Loeschner, J. Liu, J. Navratilova, R. Grombe, T.P.J. 

Linsinger, E.H. Larsen, F. von der Kammer, T. Hofmann, First steps towards a generic sample 



	 38	

preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, 

characterization, and quantification by asymmetric flow-field flow fractionation coupled to 

multi-angle light scattering and ICP-MS, J. Anal. At. Spectrom. 30 (2015) 1286–1296.  

[30] S. Tadjiki, S. Assemi, C.E. Deering, J.M. Veranth, J.D. Miller, Detection, separation, and 

quantification of unlabeled silica nanoparticles in biological media using sedimentation field-

flow fractionation, J. Nanoparticle Res. 11 (2009) 981–988.  

[31] B. Schmidt, K. Loeschner, N. Hadrup, A. Mortensen, J.J. Sloth, C.B. Koch, E.H. Larsen, 

Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online 

with light scattering detection and inductively coupled plasma mass spectrometry, Anal. Chem. 

83 (2011) 2461–2468. 

[32]  E.P. Gray, J.G. Coleman, A.J. Bednar, A.J. Kennedy, J.F. Ranville, C.P. Higgins, 

Extraction and analysis of silver and gold nanoparticles from biological tissues using single 

particle inductively coupled plasma mass spectrometry, Environ. Sci. Technol. 47 (2013) 

14315–14323.  

[33]  K. Loeschner, M.S.J. Brabrand, J.J. Sloth, E.H. Larsen, Use of alkaline or enzymatic 

sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-

particle ICPMS, Anal. Bioanal. Chem. 406 (2014) 3845–3851.  

[34] E. Bolea, J. Jiménez-Lamana, F. Laborda, I. Abad-Álvaro, C. Bladé, L. Arola, J.R. 

Castillo, Detection and characterization of silver nanoparticles and dissolved species of silver in 

culture medium and cells by AsFlFFF-UV-Vis-ICPMS: application to nanotoxicity tests, 

Analyst 139 (2014) 914–922.  

[35] J. Jiménez-Lamana, F. Laborda, E. Bolea, I. Abad-Álvaro, J.R. Castillo, J. Bianga, M. 

He, K. Bierla, S. Mounicou, L. Ouerdane, S. Gaillet, J.M. Rouanet, J. Szpunar, An insight into 

silver nanoparticles bioavailability in rats, Metallomics. 6 (2014) 2242–2249.  

[36] C.E. Deering, S. Tadjiki, S. Assemi, J.D. Miller, G.S. Yost, J.M. Veranth, A novel 

method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by 

sedimentation field-flow fractionation, Part. Fibre Toxicol. 5 (2008) 18.  



	 39	

[37] M. van der Zande, R.J. Vandebriel, E. Van Doren, E. Kramer, Z. Herrera Rivera, C.S. 

Serrano-Rojero, E.R. Gremmer, J. Mast, R.J.B. Peters, P.C. H. Hollman, P.J.M. Hendriksen, 

H.J. P. Marvin, A.C.M. Peijnenburg, H. Bouwmeester, Distribution, elimination, and toxicity of 

silver nanoparticles and silver ions in rats after 28-day oral exposure, ACS Nano 6 (2012) 

7427–7442.  

[38]  K. Loeschner, J. Navratilova, C. Købler, K. Mølhave, S. Wagner, F. von der Kammer, 

E.H. Larsen, Detection and characterization of silver nanoparticles in chicken meat by 

asymmetric flow field flow fractionation with detection by conventional or single particle ICP-

MS, Anal. Bioanal. Chem. 405 (2013) 8185–8195.  

[39]  K. Loeschner, J. Navratilova, R. Grombe, T.P.J. Linsinger, C. Købler, K. Mølhave, E.H. 

Larsen, In-house validation of a method for determination of silver nanoparticles in chicken 

meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass 

spectrometric detection, Food Chem. 181 (2015) 78–84.  

[40] R.J.B. Peters, Z.H. Rivera, G. van Bemmel, H.J.P. Marvin, S. Weigel, H. Bouwmeester, 

Development and validation of single particle ICP-MS for sizing and quantitative determination 

of nano-silver in chicken meat., Anal. Bioanal. Chem. 406 (2014) 3875–3885.  

[41] R. Peters, Z. Herrera-Rivera, A. Undas, M. van der Lee, H. Marvin, H. Bouwmeester, S. 

Weigel, Single particle ICP-MS combined with a data evaluation tool as a routine technique for 

the analysis of nanoparticles in complex matrices, J. Anal. At. Spectrom. 30 (2015) 1274–1285. 

[42] Y. Dan, W. Zhang, R. Xue, X. Ma, C. Stephan, H. Shi, Characterization of Gold 

Nanoparticle Uptake by Tomato Plants Using Enzymatic Extraction Followed by Single-

Particle Inductively Coupled Plasma-Mass Spectrometry Analysis, Environ. Sci. Technol. 49 

(2015) 3007–3014.  

[43] J.M. Unrine, B.P. Colman, A.J. Bone, A.P. Gondikas, C.W. Matson, Biotic and abiotic 

interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. 

Aggregation and dissolution, Environ. Sci. Technol. 46 (2012) 6915–6924.  



	 40	

 [44] X. Xu, K.K. Caswell, E. Tucker, S. Kabisatpathy, K.L. Brodhacker, W.A. Scrivens, 

Size and shape separation of gold nanoparticles with preparative gel electrophoresis., J. 

Chromatogr. A 1167 (2007) 35–41.  

[45] T.M. Tsao, Y.M. Chen, M.K. Wang, Origin, separation and identification of 

environmental nanoparticles: a review., J. Environ. Monit. 13 (2011) 1156–1163. 

[46] J.M. Unrine, B.P. Colman, A.J. Bone, A.P. Gondikas, C.W. Matson, Biotic and abiotic 

interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. 

Aggregation and dissolution, Environ. Sci. Technol. 46 (2012) 6915–6924.  

 [47] D.M. Mitrano, E. Rimmele, A. Wichser, R. Erni, M. Height, B. Nowack, Presence of 

nanoparticles in wash water from conventional silver and nano-silver textiles, ACS Nano 8 

(2014) 7208–7219. 

[48] S.K. Misra, A. Dybowska, D. Berhanu, S.N. Luoma, E. Valsami-Jones, The complexity 

of nanoparticle dissolution and its importance in nanotoxicological studies, Sci. Total Environ. 

438 (2012) 225–232.  

[49] J. Liu, J. Katahara, G. Li, S. Coe-Sullivan, R.H. Hurt, Degradation products from 

consumer nanocomposites: A case study on quantum dot lighting, Environ. Sci. Technol. 46 

(2012) 3220–3227.  

[50] L.M. Furtado, M.E. Hoque, D.M. Mitrano, J.F. Ranville, B. Cheever, P.C. Frost, M.A. 

Xenopoulos, H. Hintelmann, C.D. Metcalfe, The persistence and transformation of silver 

nanoparticles in littoral lake mesocosms monitored using various analytical techniques, 

Environ. Chem. 11 (2014) 419–430.  

[51] D.A. Ladner, M. Steele, A. Weir, K. Hristovski, P. Westerhoff, Functionalized 

nanoparticle interactions with polymeric membranes., J. Hazard. Mater. 211-212 (2012) 288–

95.  

[52] C. Contado, A. Pagnoni, TiO2 in commercial sunscreen lotion: Flow field-flow 

fractionation and ICP-AES together for size analysis, Anal. Chem. 80 (2008) 7594–7608. 



	 41	

[53] A. Samontha, J. Shiowatana, A. Siripinyanond, Particle size characterization of titanium 

dioxide in sunscreen products using sedimentation field-flow fractionation-inductively coupled 

plasma-mass spectrometry, Anal. Bioanal. Chem. 399 (2011) 973–978.  

[54] V. Nischwitz, H. Goenaga-Infante, Improved sample preparation and quality control for 

the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow 

fractionation on-line with inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 

27 (2012) 1084-1092. 

[55] J. Heroult, V. Nischwitz, D. Bartczak, H. Goenaga-Infante, The potential of asymmetric 

flow field-flow fractionation hyphenated to multiple detectors for the quantification and size 

estimation of silica nanoparticles in a food matrix., Anal. Bioanal. Chem. 406 (2014) 3919–

3927.  

[56] S.M. Majedi, B.C. Kelly, H.K. Lee, Efficient hydrophobization and solvent 

microextraction for determination of trace nano-sized silver and titanium dioxide in natural 

waters, Anal. Chim. Acta. 789 (2013) 47–57.  

[57] J. Liu, R. Liu, Y. Yin, G. Jiang, Triton X-114 based cloud point extraction: a 

thermoreversible approach for separation/concentration and dispersion of nanomaterials in the 

aqueous phase., Chem. Commun. (2009) 1514–1516.  

[58] J. Liu, J. Chao, R. Liu, Z. Tan, Y. Yin, Y. Wu, et al., Cloud point extraction as an 

advantageous preconcentration approach for analysis of trace silver nanoparticles in 

environmental waters, Anal. Chem. 81 (2009) 6496–6502. 

[59] J. Chao, J. Liu, S. Yu, Y. Feng, Z. Tan, R. Liu, Y. Yin, Speciation analysis of silver 

nanoparticles and silver ions in antibacterial products and environmental waters via cloud point 

extraction-based separation, Anal. Chem. 83 (2011) 6875–6882.  

[60] G. Hartmann, M. Schuster, Species selective preconcentration and quantification of 

gold nanoparticles using cloud point extraction and electrothermal atomic absorption 

spectrometry., Anal. Chim. Acta. 761 (2013) 27–33.  



	 42	

[61] G. Hartmann, C. Hutterer, M. Schuster, Ultra-trace determination of silver nanoparticles 

in water samples using cloud point extraction and ETAAS, J. Anal. At. Spectrom. 28 (2013) 

567–572.  

[62] S.M. Majedi, H.K. Lee, B.C. Kelly, Chemometric analytical approach for the cloud 

point extraction and inductively coupled plasma mass spectrometric determination of zinc oxide 

nanoparticles in water samples, Anal. Chem. 84 (2012) 6546–6552.  

[63] S.M. Majedi, B.C. Kelly, H.K. Lee, Evaluation of a cloud point extraction approach for 

the preconcentration and quantification of trace CuO nanoparticles in environmental waters, 

Anal. Chim. Acta. 814 (2014) 39–48.  

[64] I. López-García, Y. Vicente-Martínez, M. Hernández-Córdoba, Speciation of silver 

nanoparticles and Ag(I) species using cloud point extraction followed by electrothermal atomic 

absorption spectrometry, Spectrochim. Acta Part B At. Spectrosc. 101 (2014) 93–97.  

[65] G. Hartmann, T. Baumgartner, M. Schuster, Influence of particle coating and matrix 

constituents on the cloud point extraction efficiency of silver nanoparticles (Ag-NPs) and 

application for monitoring the formation of Ag-NPs from Ag(+), Anal. Chem. 86 (2014) 790–

796.  

[66] L. Li, K. Leopold, M. Schuster, Effective and selective extraction of noble metal 

nanoparticles from environmental water through a noncovalent reversible reaction on an ionic 

exchange resin, Chem. Commun. 48 (2012) 9165–9167.  

[67] L. Li, G. Hartmann, M. Döblinger, M. Schuster, Quantification of nanoscale silver 

particles removal and release from municipal wastewater treatment plants in Germany, Environ. 

Sci. Technol. 47 (2013) 7317–7323.  

[68] S. Su, B. Chen, M. He, Z. Xiao, B. Hu, A novel strategy for sequential analysis of gold 

nanoparticles and gold ions in water samples by combining magnetic solid phase extraction 

with inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 29 (2014) 444–453.  

[69] S.K. Mwilu, E. Siska, R.B.N. Baig, R.S. Varma, E. Heithmar, K.R. Rogers, Separation 

and measurement of silver nanoparticles and silver ions using magnetic particles, Sci. Total 

Environ. 472 (2014) 316–323.  



	 43	

[70]		 C. Su, H. Liu, S. Hsia, Y. Sun, Quantitatively profiling the dissolution and 

redistribution of silver nanoparticles in living rats using a knotted reactor-based differentiation 

scheme, Anal. Chem. 86 (2014) 8267–8274. 

[71] O.D. Hendrickson, I.V. Safenkova, A.V. Zherdev, B.B. Dzantiev, V.O. Popov, Methods 

of detection and identification of manufactured nanoparticles, Biophysics 56 (2011) 961–986. 

[72] A. Lapresta-Fernández, A. Salinas-Castillo, S. Anderson de la Llana, J.M. Costa-

Fernández, S. Domínguez-Meister, R. Cecchini, L.F. Capitán-Vallvey, M.C. Moreno-Bondi, 

M.-P. Marco, J.C. Sánchez-López, I.S. Anderson, A general perspective of the characterization 

and quantification of nanoparticles: Imaging, spectroscopic, and separation techniques. Crit. 

Rev. Solid State 39 (2014) 423–458. 

[73] O.A. Sadik, N. Du, V. Kariuki, V. Okello, V. Bushlyar, 2014,	Current and emerging 

technologies for the characterization of nanomaterials. ACS Sustainable Chem. Eng. 2 (2014) 

1707−1716. 

[74] Z.A. Lewicka, A.F. Benedetto, D.N. Benoit, W.W. Yu, J.D. Fortner, V.L. Colvin, The 

structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercial 

sunscreens, J. Nanopart. Res. 13 (2011) 3607–3617. 

[75] D.B. Williams, C.B. Carter, Transmission Electron Microscopy. A Textbook for 

Materials Science (2009) Plenum Press, New York. 

[76] A. Dudkiewicz, A.B.A. Boxall, Q. Chaudhry, K. Mølhave, K. Tiede, P. Hofmann, 

T.P.J. Linsinger, Uncertainties of size measurements in electron microscopy characterization of 

nanomaterials in foods, Food Chemistry 176 (2015) 472–479. 

[77] A. Prasad, J.R. Lead, M. Baalousha, An electron microscopy based method for the 

detection and quantification of nanomaterial number concentration in environmentally relevant 

media, Science of the Total Environment 537 (2015) 479-486. 

[78] K. Tiede, S.P. Tear, H. David, A.B.A. Boxall, Imaging of engineered nanoparticles and 

their aggregates under fully liquid conditions in environmental matrices, Water Research 43 

(2009) 3335–3343. 



	 44	

[79] G. Singh, C. Stephan, P. Westerhoff, D. Carlander, T. V. Duncan,	Measurement 

methods to detect, characterize, and quantify engineered nanomaterials in foods, Compr. Rev. 

Food Sci. F. 13 (2014) 693–704. 

[80] A.M. Gatti , D. Tossini , A. Gambarelli , S. Montanari, F. Capitani, Investigation of the 

presence of inorganic micro- and nanosized contaminants in bread and biscuits by 

environmental scanning electron microscopy, Crit. Rev. Food Sci. 49 (2008) 275–282. 

[81] P. Luo, I. Morrison, A. Dudkiewicz, K. Tiede, E. Boyes, P. O’Toole, S. Park, A.B. 

Boxall, Visualization and characterization of engineered nanoparticles in complex 

environmental and food matrices using atmospheric scanning electron microscopy, Journal of 

Microscopy 250 (2013) 32–41. 

[82] J. Tuoriniemi, S. Gustafsson, E. Olsson, M. Hassellöv, In situ characterisation of 

physicochemical state and concentration of nanoparticles in soil ecotoxicity studies using 

environmental scanning electron microscopy, Environ. Chem. 11 (2014) 367–376. 

[83] S. Bandyopadhyay , J.R. Peralta-Videa , J.A. Hernandez-Viezcas , M.O. Montes , A.A. 

Keller, J.L. Gardea-Torresdey, Microscopic and spectroscopic methods applied to the 

measurements of nanoparticles in the environment, Appl. Spectrosc. Rev. 47 (2012) 180–206. 

[84] B. Kim, M. Murayama, B.P. Colmane, M.F. Hochella Jr., Characterization and 

environmental implications of nano- and larger TiO2 particles in sewage sludge, and soils 

amended with sewage sludge, J. Environ. Monit. 14 (2012) 1129–1137. 

[85] Y. Yang, Y. Wang, P. Westerhoff, K. Hristovski, V.L. Jin, M.V.V. Johnson, J.G. 

Arnold, Metal and nanoparticle occurrence in biosolid-amended soils, Sci. Total Environ. 485–

486 (2014) 441–449. 

[86] J. Farkas, H. Peter, P. Christian, J.A. Gallego Urrea, M. Hassellöv, J. Tuoriniemi, S. 

Gustafsson, E. Olsson, K. Hylland, K.V. Thomas, Characterization of the effluent from a 

nanosilver producing washing machine, Environ. Int. 37 (2011) 1057–1062. 

[87] H. Hagendorfer, C. Lorenz, R. Kaegi, B. Sinnet, R. Gehrig, N.V. Goetz, M. Scheringer, 

C. Ludwig, A. Ulrich, Size-fractionated characterization and quantification of nanoparticle 



	 45	

release rates from a consumer spray product containing engineered nanoparticles, J. Nanopart. 

Res. 12 (2010) 2481–2494. 

[88] L. Windler, C. Lorenz, N. von Goetz, K. Hungerbühler, M. Amberg, M. Heuberger, B. 

Nowack, Release of titanium dioxide from textiles during washing, Environ. Sci. Technol. 46 

(2012) 8181−8188. 

[89] G.A. Roth, N.M. Neu-Baker, S.A. Brenner, SEM analysis of particle size during 

conventional treatment of CMP process wastewater, Sci. Total Environ. 508 (2015) 1–6. 

[90] D.M. Mitrano, Y.R. Arroyo, B. Nowack, Effect of variations of washing solution 

chemistry on nanomaterial physico-chemical changes in the laundry cycle, (2015) just accepted. 

[91] C. Lorenz, H. Hagendorfer, N. von Goetz, R. Kaegi, R. Gehrig, A. Ulrich, M. 

Scheringer, K. Hungerbühler, Nanosized aerosols from consumer sprays: experimental analysis 

and exposure modeling for four commercial products, J. Nanopart. Res. 13 (2011) 3377–3391. 

[92] R.B. Reed, J.J. Faust, Y. Yang, K. Doudrick, D.G. Capco, K. Hristovski, P. Westerhoff, 

Characterization of nanomaterials in metal colloid-containing dietary supplement drinks and 

assessment of their potential interactions after ingestion, ACS Sustainable Chem. Eng. 2 (2014) 

1616−1624. 

[93] Z. Zhang, F. Kong, B. Vardhanabhuti, A. Mustapha, M. Lin, Detection of engineered 

silver nanoparticle contamination in pears, J. Agric. Food Chem. 60 (2012) 10762−10767. 

[94] X. Song, R. Li, H. Li, Z. Hu, A. Mustapha, M. Lin, Characterization and quantification 

of zinc oxide and titanium dioxide nanoparticles in foods, Food Bioprocess. Technol. 7 (2014) 

456–462. 

[95] R.J.B. Peters, G. Van Bemmel, Z. Herrera-rivera, J.P.F.G. Helsper, J.P. Hans, S. 

Weigel, P.C. Tromp, A.G. Oomen, A.G. Rietveld, H. Bouwmeester, Characterisation of 

titanium dioxide nanoparticles in food products : Analytical methods to define nanoparticles, J. 

Agric. Food Chem. 62 (2014) 6285–6293. 

[96]  C. Mühlfeld, B. Rothen-Rutishauser, D. Vanhecke, F. Blank, P. Gehr, M. Ochs, 

Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission 

electron microscopy, Part. Fibre Toxicol. 4 (2007) 1–14. 



	 46	

[97] C.Y. Jin, B.S. Zhu, X.F. Wang, Q.H. Lu, Cytotoxicity of titanium dioxide nanoparticles 

in mouse fibroblast cells, Chem. Res. Toxicol. 21 (2008) 1871–1877. 

[98]  A. Kumar, A.K. Pandey , S.S. Singh, R. Shanker, A. Dhawan, Engineered ZnO and 

TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of 

Escherichia coli, Free Radical Bio. Med. 51 (2011) 1872–1881. 

[99] K. Loeschner, N. Hadrup, K. Qvortrup, A. Larsen, X. Gao, U. Vogel, A. Mortensen, 

H.R. Lam, E.H Larsen, Distribution of silver in rats following 28 days of repeated oral exposure 

to silver nanoparticles or silver acetate, Part. Fibre Toxicol. 8 (2011) 1–14. 

[100]  F. Rancan, Q. Gao, C. Graf, S. Troppens, S. Hadam, S. Hackbarth, . Kembuan, U. 

Blume-Peytavi, E. Rühl, J. Lademann, A. Vogt, Skin penetration and cellular uptake of 

amorphous silica nanoparticles with variable size, surface functionalization, and colloidal 

stability, ACS Nano 6 (2012) 6829–6842. 

[101] L. Li, M.L. Fernández-Cruz, M. Connolly, E. Conde, M. Fernández, M. Schuster, J.M. 

Navas, The potentiation effect makes the difference: Non-toxic concentrations of ZnO 

nanoparticles enhance Cu nanoparticle toxicity in vitro, Sci. Total Environ. 505 (2015) 253–

260. 

[102] M.D. Montaño, G. V Lowry, F. von der Kammer, J. Blue, J.F. Ranville, Current status 

and future direction for examining engineered nanoparticles in natural systems, Environ. Chem. 

11 (2014) 351–366. 

[103] S.K. Mwilu, A.M. El Badawy, K. Bradham, C. Nelson, D. Thomas, K.G. Scheckel, T. 

Tolaymat, L. Ma, K.R. Rogers, Changes in silver nanoparticles exposed to human synthetic 

stomach fluid: Effects of particle size and surface chemistry, Sci. Total Environ. 447 (2013) 90–

98. 

[104] A.P. Walczak, R. Fokkink, R. Peters, P. Tromp, Z.E. Herrera Rivera, I.M.C.M. 

Rietjens, P.J.M. Hendriksen, H. Bouwmeester, Behaviour of silver nanoparticles and silver ions 

in an in vitro human gastrointestinal digestion model, Nanotoxicology (2013) 1198–1210.  



	 47	

[105] G. Metreveli, A. Philippe, G.E. Schaumann, Disaggregation of silver nanoparticle 

homoaggregates in a river water matrix, Sci. Total Environ. (2014). 

doi:10.1016/j.scitotenv.2014.11.058. In press. 

[106] H. Hagendorfer, R. Kaegi, M. Parlinska, Characterization of Silver Nanoparticle 

Products Using Asymmetric Flow Field Flow Fractionation with a Multidetector Approach − a 

Comparison to Transmission Electron Microscopy and Batch Dynamic Light Scattering, Anal. 

Chem. 84 (2012) 2678–2685. 

[107] R.I. MacCuspie, K. Rogers, M. Patra, Z. Suo, A.J. Allen, M.N. Martin, et al., 

Challenges for physical characterization of silver nanoparticles under pristine and 

environmentally relevant conditions., J. Environ. Monit. 13 (2011) 1212–1226. 

[108] H. Bouwmeester, J. Poortman, R.J. Peters, E. Wijma, E. Kramer, S. Makama, et al., 

Characterization of translocation of silver nanoparticles and effects on whole-genome gene 

expression using an in vitro intestinal epithelium coculture model, ACS Nano. 5 (2011) 4091–

4103. 

[109] J.P. Kaiser, M. Roesslein, L. Diener, P. Wick, Human health risk of ingested 

nanoparticles that are added as multifunctional agents to paints: An in vitro study, PLoS One. 8 

(2013) 1–11. 

[110] F. Piccapietra, L. Sigg, R. Behra, Colloidal stability of carbonate-coated silver 

nanoparticles in synthetic and natural freshwater, Environ. Sci. Technol. 46 (2012) 818–825. 

[111] A. Turner, D. Brice, M.T. Brown, Interactions of silver nanoparticles with the marine 

macroalga, Ulva lactuca, Ecotoxicology. 21 (2012) 148–154. 

[112] P. Krystek, A review on approaches to bio distribution studies about gold and silver 

engineered nanoparticles by inductively coupled plasma mass spectrometry, Microchem. J. 105 

(2012) 39–43.  

[113] P. Krystek, J. Tentschert, Y. Nia, B. Trouiller, L. Noël, M.E. Goetz, A. Papin, A. Luch, 

T. Guérin, W.H. de Jong, Method development and inter-laboratory comparison about the 

determination of titanium from titanium dioxide nanoparticles in tissues by inductively coupled 

plasma mass spectrometry., Anal. Bioanal. Chem. 406 (2014) 3853–3861.  



	 48	

[114] F. Laborda, E. Bolea, J. Jiménez-Lamana, Single particle inductively coupled plasma 

mass spectrometry: A powerful tool for nanoanalysis, Anal. Chem. 86 (2014) 2270–2278. 

[115] W.W. Lee, W.T. Chan, Calibration of single-particle inductively coupled plasma-mass 

spectrometry (SP-ICP-MS), J. Anal. At. Spectrom. 30 (2015) 1245–1254. 

[116] J.W. Olesik, P.J. Gray, Considerations for measurement of individual nanoparticles or 

microparticles by ICP-MS: determination of the number of particles and the analyte mass in 

each particle, J. Anal. At. Spectrom. 27 (2012) 1143–1155.  

[117] F. Laborda, J. Jiménez-Lamana, E. Bolea, J.R. Castillo, Selective identification, 

characterization and determination of dissolved silver(I) and silver nanoparticles based on single 

particle detection by inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 26 

(2011) 1362–1371.  

[118] F. Laborda, J. Jiménez-Lamana, E. Bolea, J.R. Castillo, Critical considerations for the 

determination of nanoparticle number concentrations, size and number size distributions by 

single particle ICP-MS, J. Anal. At. Spectrom. 28 (2013) 1220–1232.  

[119] S. Lee, X. Bi, R.B. Reed, J.F. Ranville, P. Herckes, P. Westerhoff, Nanoparticle size 

detection limits by single particle ICP-MS for 40 elements., Environ. Sci. Technol. 48 (2014) 

10291–300. 

[120] M.D. Montaño, H.R. Badiei, S. Bazargan, J.F. Ranville, Improvements in the detection 

and characterization of engineered nanoparticles using spICP-MS with microsecond dwell 

times, Environ. Sci. Nano. 1 (2014) 338–346. 

[121] W.W. Lee, W.T. Chan, Calibration of single-particle inductively coupled plasma-mass 

spectrometry (SP-ICP-MS), J. Anal. At. Spectrom. 30 (2015) 1245–1254. 

[122] Y. Echegoyen, C. Nerín, Nanoparticle release from nano-silver antimicrobial food 

containers., Food Chem. Toxicol. 62C (2013) 16–22.  

[123] N. von Goetz, L. Fabricius, R. Glaus, V. Weitbrecht, D. Günther, K. Hungerbühler, 

Migration of silver from commercial plastic food containers and implications for consumer 

exposure assessment., Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 

30 (2013) 612–620.  



	 49	

[124] D.M. Mitrano, E.K. Lesher, A. Bednar, J. Monserud, C.P. Higgins, J.F. Ranville, 

Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass 

spectrometry, Environ. Toxicol. Chem. 31 (2012) 115–121.  

[125] J. Tuoriniemi, G. Cornelis, M. Hassellöv, Size Discrimination and Detection 

Capabilities of Single-Particle ICPMS for Environmental Analysis of Silver Nanoparticles, 

Anal. Chem. 84 (2012) 3965–3972.  

[126]  S. V. Jenkins, H. Qu, T. Mudalige, T.M. Ingle, R. Wang, F. Wang, P.C. Howard, J. 

Chen, Y. Zhang, Rapid determination of plasmonic nanoparticle agglomeration status in blood, 

Biomaterials. 51 (2015) 226–237.  

[127] D.M. Mitrano, J.F. Ranville, A. Bednar, K. Kazor, A.S. Hering, C.P. Higgins, Tracking 

dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, 

natural, and processed waters using single particle ICP-MS (spICP-MS), Environ. Sci. Nano. 1 

(2014) 248–259. 

[128] D.C. António, C. Cascio, Ž. Jakšić, D. Jurašin, D.M. Lyons, A.J.A Nogueira, F. Rossi, 

L. Calzolai, Assessing silver nanoparticles behaviour in artificial seawater by mean of AF4 and 

spICP-MS, Mar. Environ. Res. (2015) available on-line. doi:10.1016/j.marenvres.2015.05.006. 

[129] E. Verleysen, E. Van Doren, N. Waegeneers, P.-J. De Temmerman, M. Abi Daoud 

Francisco, J. Mast, TEM and SP-ICP-MS Analysis of the Release of Silver Nanoparticles from 

Decoration of Pastry, J. Agric. Food Chem. 63 (2015) 3570–3578.  

[130] M. Gräfe, E. Donner, R.N. Collins, E. Lombi, Speciation of metal(loid)s in 

environmental samples by X-ray absorption spectroscopy: A critical review, Anal. Chim. Acta. 

822 (2014) 1–22.  

[131] R. Ortega, A. Carmona, I. Llorens, P.L. Solari, X-ray absorption spectroscopy of 

biological samples. A tutorial, J. Anal. At. Spectrom. 27 (2012) 2054–2065. 

[132] R. Kaegi, A. Voegelin, B. Sinnet, S. Zuleeg, H. Hagendorfer, M. Burkhardt, H. Siegrist, 

Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant, Environ. Sci. 

Technol. 45 (2011) 3902–3908.  



	 50	

[133] E. Lombi, E. Donner, E. Tavakkoli, T.W. Turney, R. Naidu, B.W. Miller, K.G. 

Scheckel, Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and 

Post-Treatment Processing of Sewage Sludge, Environ. Sci. Technol. 46 (2012) 9089–9096.  

[134] R. Kaegi, A. Voegelin, C. Ort, B. Sinnet, B. Thalmann, J. Krismer, H. Hagendorfer, 

M. Elumelu, E. Mueller, Fate and transformation of silver nanoparticles in urban wastewater 

systems, Water Res. 47 (2013) 3866–3877.  

[135] E. Lombi, E. Donner, S. Taheri, E. Tavakkoli, Å.K. Jämting, S. McClure, R. Naidu, 

B.W. Miller, K.G. Scheckel, K. Vasilev, Transformation of four silver/silver chloride 

nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge, 

Environ. Pollut. 176 (2013) 193–197.  

[136] C.L. Doolette, M.J. McLaughlin, J.K. Kirby, D.J. Batstone, H.H. Harris, H. Ge, G. 

Cornelis, Transformation of PVP coated silver nanoparticles in a simulated wastewater 

treatment process and the effect on microbial communities., Chem. Cent. J. 7 (2013) 46.  

[137] R. Ma, C. Levard, J.D. Judy, J.M. Unrine, M. Durenkamp, B. Martin, B. Jefferson, G.V. 

Lowry, Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in 

processed biosolids, Environ. Sci. Technol. 48 (2014) 104–112.  

[138] C. A. Impellitteri, S. Harmon, R.G. Silva, B.W. Miller, K.G. Scheckel, T.P. Luxton, D. 

Schupp, S. Panguluri, Transformation of silver nanoparticles in fresh, aged, and incinerated 

biosolids, Water Res. 47 (2013) 3878–3886.  

[139] C. Larue, H. Castillo-Michel, S. Sobanska, L. Cécillon, S. Bureau, V. Barthès, L. 

Ouerdanee, M. Carrière, G. Sarret. Foliar exposure of the crop Lactuca sativa to silver 

nanoparticles: Evidence for internalization and changes in Ag speciation, J. Hazard. Mater. 264 

(2014) 98–106.  

[140] M.L. López-Moreno, G. De La Rosa, J. a. Hernández-Viezcas, J.R. Peralta-Videa, J.L. 

Gardea-Torresdey, X-ray absorption spectroscopy (XAS) corroboration of the uptake and 

storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant 

species, J. Agric. Food Chem. 58 (2010) 3689–3693.. 



	 51	

[141] J.A. Hernandez-Viezcas, H. Castillo-Michel, J.C. Andrews, M. Cotte, C. Rico, J.R. 

Peralta-Videa, Y. Ge, J.H. Priester, P.A. Holden, J.L. Gardea-Torresdey, In Situ Synchrotron X-

ray Fluorescence Mapping and Speciation of CeO2 and ZnO Nanoparticles in Soil Cultivated 

Soybean (Glycine max), ACS Nano 7 (2013) 1415–1423.  

[142] A.D. Servin, H. Castillo-Michel, J.A. Hernandez-Viezcas, B.C. Diaz, J.R. Peralta-

Videa, J.L. Gardea-Torresdey, Synchrotron Micro-XRF and Micro-XANES Confirmation of the 

Uptake and Translocation of TiO 2 Nanoparticles in Cucumber ( Cucumis sativus ) Plants, 

Environ. Sci. Technol. 46 (2012) 7637–7643.  

[143] C. Larue, H. Castillo-Michel, S. Sobanska, N. Trcera, S. Sorieul, L. Cécillon, L. 

Ouerdane, S. Legros, G. Sarret, Fate of pristine TiO2 nanoparticles and aged paint-containing 

TiO2 nanoparticles in lettuce crop after foliar exposure, J. Hazard. Mater. 273 (2014) 17–26. 

[144] C.O. Dimkpa, J.E. McLean, D.E. Latta, E. Manangón, D.W. Britt, W.P. Johnson, M.I. 

Boyanov, A.J. Anderson, CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and 

induction of oxidative stress in sand-grown wheat, J. Nanoparticle Res. 14 (2012) 1125.  

[145] A.J. Bone, B.P. Colman, A.P. Gondikas, K.M. Newton, K.H. Harrold, R.M. Cory, J.M. 

Unrine, S.J. Klaine, C.W. Matson, R.T. Di Giulio, Biotic and abiotic interactions in aquatic 

microcosms determine fate and toxicity of Ag nanoparticles: Part 2-toxicity and Ag speciation, 

Environ. Sci. Technol. 46 (2012) 6925–6933.  

[146] G. V Lowry, B.P. Espinasse, A.R. Badireddy, C.J. Richardson, B.C. Reinsch, L.D. 

Bryant, A.J. Bone, A. Deonarine, S. Chae, M. Therezien, B.P. Colman, H. Hsu-Kim,E.S. 

Bernhardt, C.W. Matson, M.R. Wiesner, Long-term transformation and fate of manufactured ag 

nanoparticles in a simulated large scale freshwater emergent wetland., Environ. Sci. Technol. 46 

(2012) 7027–7036.  

[147] M. Schimpf, K. Caldwell, J.C. Giddings, eds., Field-Flow Fractionation Handbook, 

John Wiley & Sons, Inc., 2000. 

[148] B. Meermann, Field-flow fractionation coupled to ICP–MS: Separation at the 

nanoscale, previous and recent application trends, Anal. Bioanal. Chem. 407 (2015) 2665–2674. 



	 52	

[149] C. Contado, A. Pagnoni, TiO2 nano- and micro-particles in commercial foundation 

creams: Field Flow-Fractionation techniques together with ICP-AES and SQW Voltammetry 

for their characterization, Anal. Methods 2 (2010) 1112–1124. 

[150] R. Grombe, J. Charoud-Got, H. Emteborg, T.P.J. Linsinger, J. Seghers, S. Wagner, F. 

von der Kammer, Thilo Hofmann, A. Dudkiewicz, M. Llinas, C. Solans, A. Lehner, G. 

Allmaier, Production of reference materials for the detection and size determination of silica 

nanoparticles in tomato soup Characterisation of Nanomaterials in Biological Samples, Anal. 

Bioanal. Chem. 406 (2014) 3895–3907.  

[151] A.D. Hawkins, A.J. Bednar, J.V. Cizdziel, K. Bu, J.A. Steevens, K.L. Willett, 

Identification of silver nanoparticles in Pimephales promelas gastrointestinal tract and gill 

tissues using flow field flow fractionation ICP-MS, RSC Adv. 4 (2014) 41277–41280.  

[152] J.G. Coleman, A.J. Kennedy, A.J. Bednar, J.F. Ranville, J.G. Laird, A.R. Harmon, et 

al., Comparing the effects of nanosilver size and coating variations on bioavailability, 

internalization, and elimination, using Lumbriculus variegatus, Environ. Toxicol. Chem. 32 

(2013) 2069–2077.  

[153] K. Ramos, L. Ramos, C. Cámara, M.M. Gómez-Gómez, Characterization and 

quantification of silver nanoparticles in nutraceuticals and beverages by asymmetric flow field 

flow fractionation coupled with inductively coupled plasma mass spectrometry, J. Chromatogr. 

A. 1371 (2014) 227–236.  

[154] I. López-Heras, Y. Madrid, C. Cámara, Prospects and difficulties in TiO2 nanoparticles 

analysis in cosmetic and food products using asymmetrical flow field-flow fractionation 

hyphenated to inductively coupled plasma mass spectrometry, Talanta 124 (2014) 71–78. 

[155] A.R. Poda, A.J. Bednar, A.J. Kennedy, A. Harmon, M. Hull, D.M. Mitrano, J.F. 

Ranville, J. Steevens, Characterization of silver nanoparticles using flow-field flow 

fractionation interfaced to inductively coupled plasma mass spectrometry, J. Chromatogr. A 

1218 (2011) 4219–4225. 



	 53	

[156] M.E. Hoque, K. Khosravi, K. Newman, C.D. Metcalfe, Detection and characterization 

of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with 

inductively coupled plasma mass spectrometry, J. Chromatogr. A 1233 (2012) 109–115. 

[157] G.F. Koopmans, T. Hiemstra, I.C. Regelink, B. Molleman, R.N.J. Comans, Asymmetric 

Flow Field-Flow Fractionation of Manufactured Silver Nanoparticles Spiked into Soil Solution, 

J. Chromatogr. A 1392 (2015) 100–109.  

[158] L. Gimbert, R. Hamon, P. Casey, Partitioning and stability of engineered ZnO 

nanoparticles in soil suspensions using flow field-flow fractionation, Environ. Chem. 4 (2007) 

8–10. 

[159] P. M-M, W. Somchue, J. Shiowatana, A. Siripinyanond, Flow field-flow fractionation 

for particle size characterization of selenium nanoparticles incubated in gastrointestinal 

conditions, Food Res. Int. 57 (2014) 208–209. 

[160] T.K. Mudalige, H. Qu, S.W. Linder, Asymmetric flow-field flow fractionation 

hyphenated ICP-MS as an alternative to cloud point extraction for quantification of silver 

nanoparticles and silver speciation: Application for nanoparticles with a protein corona, Anal. 

Chem. 87 (2015) 7395–7401.  

[161] D. Bartczak, P. Vincent, H. Goenaga-Infante, Determination of size- and number-based 

concentration of silica nanoparticles in a complex biological matrix by online techniques, Anal. 

Chem. 87 (2015) 5482−5485. 

[162] C. Contado, L. Ravani, M. Passarella, Size characterization by Sedimentation Field 

Flow Fractionation of silica particles used as food additives, Anal. Chim. Acta. 788 (2013) 183–

192. 

[163] A. Ulrich, S. Losert, N. Bendixen, A. Al-Kattan, H. Hagendorfer, B. Nowack, C. 

Adlhart, J. Ebert, M. Lattuada, K. Hungerbühler, Critical aspects of sample handling for direct 

nanoparticle analysis and analytical challenges using asymmetric field flow fractionation in a 

multi-detector approach, J. Anal. At. Spectrom. (2012) 1120–1130.  



	 54	

[164] M-M. Pornwilard, A. Siripinyanond, Field-flow fractionation with inductively coupled 

plasma mass spectrometry: past, present, and future, J. Anal. At. Spectrom. 29 (2014) 1739–

1752.  

[165] B. Meermann, A.L. Fabricius, L. Duester, F. Vanhaecke, T. Ternes, Fraction-related 

quantification of silver nanoparticles via on-line species-unspecific post-channel isotope 

dilution in combination with asymmetric flow-field-flow fractionation (AF4)/sector field ICP-

mass spectrometry (ICP-SF-MS), J. Anal. At. Spectrom. 29 (2014) 287–296. 

[166] A.J. Bednar, A.R. Poda, D.M. Mitrano, A.J. Kennedy, E.P. Gray, J.F. Ranville, C.A. 

Hayes, F.H. Crocker, J.A. Steevens, Comparison of on-line detectors for field flow fractionation 

analysis of nanomaterials, Talanta 104 (2013) 140–148.  

[167] I. Römer, T.A. White, M. Baalousha, K. Chipman, M.R. Viant, J.R. Lead, Aggregation 

and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests., J. 

Chromatogr. A 1218 (2011) 4226– 4233.  

[168] N. Surugau, P.L. Urban, Electrophoretic methods for separation of nanoparticles, J. Sep. 

Sci. 32 (2009) 1889–1906. 

[169] P.S. Fedotov, N.G. Vanifatova, V.M. Shkinev, B. Y. Spivakov, Fractionation and 

characterization of nano-and microparticles in liquid media, Anal. Bioanal. Chem. 400 (2011) 

1787–1804.  

[170] A.I. López-Lorente, B.M. Simonet, M. Valcárcel, Electrophoretic methods for the 

analysis of nanoparticles, Trends Anal. Chem. 30 (2011) 58–71. 

[171] S. Wang, N. Mamedova, N. A. Kotov, W. Chen, J. Studer, Antigen/Antibody 

immunocomplex from CdTe nanoparticle bioconjugates, Nano Letters 2 (2002) 817–822. 

[172] M. Hanauer, S. Pierrat, I. Zins, A. Lotz, C. Sönnichsen, Separation of nanoparticles by 

gel electrophoresis according to size and shape, Nano Letters 7 (2007) 2881–2885. 

[173] E. Crew, S. Rahman, A. Razzak-Jaffar, D. Mott, M. Kamundi, G. Yu, N. Tchah, J. Lee, 

M. Bellavia, C.J. Zhong, MicroRNA conjugated gold nanoparticles and cell transfection, Anal. 

Chem. 84 (2012) 26–29. 



	 55	

[174] A. V. Beskorovaynyy, D.S. Kopitsyn, A.A. Novikov, M. Ziangirova, G.S. Skorikova, 

M.S. Kotelev, P.A. Gushchin, E.V. Ivanov, M.D. Getmansky, I. Itzkan, A.V. Muradov, V.A. 

Vinokurov, L. Perelman, Rapid optimization of metal nanoparticle surface modification with 

high-throughput gel electrophoresis, ACS Nano 8 (2014) 1449–1456. 

[175] F. Sang, X. Huang, J. Ren, Characterization and separation of semiconductor quantum 

dots and their conjugates by capillary electrophoresis, Electrophoresis 35 (2014) 793–803. 

[176] M. Stanisavljevic, M. Vaculovicova, R. Kizek, V. Adam, Capillary electrophoresis of 

quantum dots: Minireview, Electrophoresis 35 (2014) 1929–1937. 

[177] S.S. Aleksenko, A.Y. Shmykov, S. Oszwaldowski, A. R. Timerbaev, Interactions of 

tumour-targeting nanoparticles with proteins: potential of using capillary electrophoresis as a 

direct probe, Metallomics 4 (2012) 1141–1148. 

[178] F.K. Liu, F.H. Ko, P.W. Huang, C.J. Wu, T.C. Chu, Studing the size/shape separation 

and optical properties of silver nanoparticles by capillary electrophoresis. J. Chrom. A 1062 

(2005) 139–145. 

[179] B. Franze, C. Engelhard, Fast separation, characterization and speciation of gold and 

silver nanoparticles and their ionic counterparts with micellar electrokinetic chromatography 

coupled to ICP-MS, Anal. Chem. 86 (2014) 5713–5720. 

[180] H. Qu, T.K. Mudalige, S.W. Linder, Capillary electrophoresis/Inductively-Coupled 

Plasma-Mass Spectrometry: Development and optimization of a high resolution analytical tool 

for the size-based characterization of nanomaterials in dietary supplements, Anal. Chem. 86 

(2014) 11620–11627. 

[181] K. Tiede, A.B.A. Boxall, D. Tiede, S.P. Tear, H. David, J. Lewis, A robust size-

characterisation methodology for studying nanoparticle behaviour in "real" environmental 

samples, using hydrodynamic chromatography coupled to ICP-MS, J. Anal. At. Spectrom. 24 

(2009) 964–72. 

[182] K. Tiede, A.B.A. Boxall, X. Wang, D. Gore, D. Tiede, M Baxter, H. David, S.P. Tear, 

J. Lewis, Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver 

nanoparticles in activated sludge, J. Anal. At. Spectrom. 25 (2010) 1149–54 



	 56	

[183] K. Proulx, K.J. Wilkinson. Separation, detection and characterisation of engineered 

nanoparticles in natural waters using hydrodynamic chromatography and multi-method 

detection (light scattering, analytical ultracentrifugation and single particle ICP-MS). Environ. 

Chem. 11 (2014) 392–401. 

[184] A. Philippe, G.E. Schaumann, Evaluation of hydrodynamic chromatography coupled 

with uv-visible, fluorescence and inductively coupled plasma mass spectrometry detectors for 

sizing and quantifying colloids in environmental media, PLoS One. 9 (2014) 1–9. 

[185] E.P. Gray, T.A. Bruton, C.P. Higgins, R.U. Halden, P. Westerhoff, Analysis of gold 

nanoparticle mixtures: A comparison of hydrodynanmic chromatography (HDC) and 

asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS, J. Anal. At. Spectrom. 27 

(2012) 1532–39. 

[186] S.A. Pergantis, T.L. Jones-Lepp, E.M. Heithmar, Hydrodynamic chromatography 

online with single particle-inductively coupled plasma mass spectrometry for ultratrace 

detection of metal-containing nanoparticles, Anal. Chem. 84 (2012) 6454–62.  

[187] G.T. Wei, F.K. Liu, C.R.C. Wang, Shape Separation of Nanometer Gold Particles by 

Size-Exclusion Chromatography, Anal. Chem. 71 (1999) 2085–2091.  

[188] X. Zhou, R. Liu, J. Liu, Rapid Chromatographic Separation of Dissoluble Ag(I) and 

Silver-Containing Nanoparticles of 1–100 Nanometer in Antibacterial Products and 

Environmental Waters, Environ. Sci. Technol. 48 (2014) 14516–14524.  

[189] J. Soto-Alvaredo, M. Montes-Bayón, J. Bettmer, Speciation of silver nanoparticles and 

silver(I) by reversed-phase liquid chromatography coupled to ICPMS, Anal. Chem. 85 (2013) 

1316–1321.  

[190] T.A. Hanley, R. Saadawi, P. Zhang, J.A. Caruso, J. Landero-Figueroa, Separation of 

silver ions and starch modified silver nanoparticles using high performance liquid 

chromatography with ultraviolet and inductively coupled mass spectrometric detection, 

Spectrochim. Acta Part B At. Spectrosc. 100 (2014) 173–179.  

[191] F. Scholz ,U. Schröder, R. Gulaboski, A. Doménech-Carbó, Electrochemistry of 

Immobilized Particles and Droplets, Springer International Publishing Switzerland, 2015. 



	 57	

[192] F. Scholz, The electrochemistry of particles, droplets, and vesicles - the present 

situation and future tasks, J. Solid State Electrochem. 15 (2011) 1699–1702. 

[193] O.S. Ivanova, F.P. Zamborini, Size-Dependent Electrochemical Oxidation of Silver 

Nanoparticles, J. Am. Chem. Soc. 132 (2010) 70–72 

[194] K. Tschulik, R. G Palgrave, C. Batchelor-McAuley, R. G Compton, ‘Sticky electrodes’ 

for the detection of silver nanoparticles, Nanotechnology 24 (2013) 295502. 

[195] S.E.W. Jones, F.W. Campbell, R. Baron, X. Lao, R.G. Compton, Particle size and 

surface coverage effects in the stripping voltammetry of silver nanoparticles: Theory and 

experiment, J. Phys. Chem. C 112 (2008) 17820–17827. 

[196] G. Cepriá, W.R. Córdova, J. Jiménez-Lamana, F. Laborda, J. R. Castillo, Silver 

nanoparticle detection and characterization in silver colloidal products using screen printed 

electrodes, Anal. Methods 6 (2014) 3072–3078 

[197] W. Cheng, E. J. E. Stuart, K. Tschulik, J. T. Cullen, R. G. Compton, A disposable sticky 

electrode for the detection of commercial silver NPs in seawater, Nanotechnology 24 (2013) 

505501. 

[198] E.J.E. Stuart, K. Tschulik, D. Lowinsohn, J.T. Cullen, R.G. Compton, Gold electrodes 

from recordable CDs for the sensitive, semi-quantitative detection of commercial silver 

nanoparticles in seawater media, Sensors and Actuators B 195 (2014) 223–229. 

[199] W. Cheng, R.G. Compton, Electrochemical detection of nanoparticles by ‘nano-impact’ 

methods, Trends Anal. Chem. 58 (2014) 79–89. 

[200] N.V. Rees, Electrochemical insight from nanoparticle collisions with electrodes: A 

mini-review. Electrochem. Commun. 43 (2014) 83–86. 

[201] X. Xiao, F.R.F. Fan, J. Zhou, A. J. Bard, Current transients in single nanoparticle 

collision events J. Am. Chem. Soc. 130 (2008) 16669–16677. 

[202] X. Xiao, A. J. Bard, Observing single nanoparticle collisions at an ultramicroelectrode 

by electrocatalytic amplification, J. Am. Chem. Soc. 129 (2007) 9610–9612. 



	 58	

[203] T.M. Alligrant, M.J. Anderson, R. Dorsari, K.J. Stevenson, R.M. Crooks, Single 

nanoparticle collision events at microfluidic microband electrodes. The effect of electrode 

material and mass transfer, Langmuir 30 (2014) 13462–13469. 

[204] G.P. Santos, A.F.A.A. Melo, F.N. Crespilho, Magnetically controlled single 

nanoparticle detection via particle collisions, Phys. Chem. Chem. Phys. 16 (2014) 8012–8018. 

[205] J. Ellison, C. Batchelor-McAuley, K. Tschulik, R.G. Compton, The use of cylindrical 

micro-wire electrodes for nano-impact experiments; facilitating the sub-picomolar detection of 

single nanoparticles, Sens. Actuator B-Chem. 200 (2014) 47–52. 

[206] E.J.E. Stuart, K. Tsculik, D. Omanovic, J.T. Cullen, K. Jurkschat, A. Crossley, R.G. 

Compton, Electrochemical detection of commercial silver nanoparticles: identification, sizing 

and detection in environmental media, Nanotechnology, 24 (2013) 444002. 

[207] E. J. E. Stuart, N. V. Rees, J . T. Cullen and R. G. Compton, Direct electrochemical 

detection and sizing of silver nanoparticles in seawater media, Nanoscale 5 (2013) 174–177. 

[208] K. Tschulik, R.G. Compton. Nanoparticle impacts reveal magnetic field induced 

agglomeration and reduced dissolution rates.  Phys. Chem. Chem. Phys16 (2014) 13909–13913. 

[209] E.J.E. Stuart, Y.G. Zhou, N.V. Rees, R.G. Compton, Determining unknown 

concentrations of nanoparticles. The particle impact electrochemistry of nickel and silver, RSC 

Advances 2 (2012) 6879–6884. 

[210] O.A. Sadik, A.L. Zhou, S. Kikandi, N. Du, Q. Wang, K. Varner, Sensors as tools for 

quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials., J. 

Environ. Monit. 11 (2009) 1782–800.  

[211] M. Medina-Sánchez, S. Miserere, S. Marín, G. Aragayab, A. Merkoçi, On-chip 

electrochemical detection of CdS quantum dots using normal and multiple recycling flow 

through modes, Lab Chip 12 (2012) 2000–2005. 

[212] A. Chatterjee, M. Santra, N. Won, S. Kim, J.K. Kim, S.B. Kim, K.H.Ahn, Selective 

fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in 

aqueous media, J. Am. Chem. Soc. 131 (2009) 2040–2041.  



	 59	

[213] A. Cayuela, M.L. Soriano, M. Valcárcel, Reusable sensor based on functionalized 

carbon dots for the detection of silver nanoparticles in cosmetics via inner filter effect, Anal. 

Chim. Acta. 872 (2015) 70–76. 

[214] S. Rebe Raz, M. Leontaridou, M.G.E.G. Bremer, R. Peters, S. Weigel, Development of 

surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the 

environment, Anal. Bioanal. Chem. 403 (2012) 2843–2850.  

[215] Y.S. Chen, Y.C.Hung, K. Chen, G.S. Huan, Detection of gold nanoparticles using an 

immunoglobulin-coated piezoelectric sensor, Nanotechnology 19 (2008) 495502. 

[216] N.S. Tulve, A.B. Stefaniak, M.E. Vance, K. Rogers, S. Mwilu, R.F. LeBouf, D. 

Schwegler-Berry, R. Willis,T.A. Thomas, L.C. Marr, Characterization of silver nanoparticles in 

selected consumer products and its relevance for predicting children’s potential exposures, Int. 

J. Hyg. Environ. Health. 218 (2015) 345–357.  

[217] A.P. Gondikas, F. Von Der Kammer, R.B. Reed, S. Wagner, J.F. Ranville, T. Hofmann, 

Release of TiO2 nanoparticles from sunscreens into surface waters: A one-year survey at the 

Old Danube recreational lake, Environ. Sci. Technol. 48 (2014) 5415–5422.  

[218] H. Zänker, A. Schierz, Engineered nanoparticles and their identification among natural 

nanoparticles, Annu. Rev. Anal. Chem. 5 (2012) 107–132.  

[219] B. Nowack, M. Baalousha, N. Bornhöft, Q. Chaudhry, G. Cornelis, J. Cotterill, A. 

Gondikas, M. Hassellöv, J. Lead, D.M. Mitrano, F. von der Kammer, T. Wontner-Smith, 

Progress towards the validation of modeled environmental concentrations of engineered 

nanomaterials by analytical measurements, Environ. Sci. Nano. 2 (2015) 421–428.  

[220] F. Von der Kammer, P.L. Ferguson, P.A. Holden, A. Masion, K.R. Rogers, S.J. Klaine, 

A.A. Koelmans, N. Horne, J.M. Unrine, Analysis of engineered nanomaterials in complex 

matrices (environment and biota): general considerations and conceptual case studies, Environ. 

Toxicol. Chem. 31 (2012) 32–49. 

[221] B. Nowack, M. Baalousha, N. Bornhöft, Q. Chaudhry, G. Cornelis, J. Cotterill, A. 

Gondikas, M. Hassellöv, J. Lead, D.M. Mitrano, F. von der Kammer, T. Wontner-Smith, 



	 60	

Progress towards the validation of modeled environmental concentrations of engineered 

nanomaterials by analytical measurements, Environ. Sci. Nano. 2 (2015) 421–428. 

[222] European Commission, 2011/696/EU: Commission Recommendation of 18 October 

2011 on the definition of nanomaterial, Off. J. Eur. Communities: Legis. 275 (2011) 38–40. 

  



	 61	

LIST OF CAPTIONS 

 

Fig. 1. Potential scenarios for the analysis of ENMs along their life cycle. 

Fig. 2. Transformations of pristine inorganic ENMs (dispersed of embedded in a solid matrix) in 

contact with an aqueous medium. 
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Table 1  
Analytical techniques proved to be suitable for analysis of complex systems (emergent 
techniques are also included). 
 
Technique Acronym Size LOD Concentration LOD Analytical information 

Electron microscopy    

Transmission 
electron microscopy 

TEM <1 nm  - Size (average and distribution)  
- Shape 
- Elemental composition (+EDS) 
- Chemical structure (+EELS) 
- Crystal structure (+SAED/CBED) 

Field-emission 
scanning electron 
microscopy 

FESEM 1 nm  - Size (average and distribution)  
- Shape 
- Elemental composition (+EDS) 

Environmental 
scanning electron 
microscopy 

ESEM 30 nm [81] 1012 L-1 [81] - Size (average and distribution)  
- Shape 

     

Light scattering      

Nanoparticle 
tracking analysis 

NTA 20 nm 
[107] 

109 L-1 [23] - Size (average and distribution)  
- Number concentration 

     

Atomic spectrometry     

Inductively coupled 
plasma mass 
spectrometry 

ICP-MS - ng L-1  
 

- Bulk element composition 
- Total mass concentration 

Single particle ICP-
MS 

SP-ICP-MS 10-20 nm 
[119] 

106 L-1 [114] 
ng L-1 

- Detection of dissolved element/NP  
- Element mass per NP (average and 
distribution) 
- Size (average and distribution) 
- Number concentration 
- Mass concentration 

X-ray absorption 
spectroscopy 

XAS - mg kg-1 - Chemical composition 
- Identification/quantitative 
distribution of chemical species  

     

Separation techniques     

Asymmetric flow 
field-flow 
fractionation 

AF4 1-5 nm 1-10 µg L-1 AF4-ICP-MS 
0.1 mg L-1 AF4-UV-Vis 
1 mg L-1 AF4-DLS   
[166] 

- Detection of complexed 
elements/NP 
- Size (average and distribution)  
- Mass concentration 

Capillary 
electrophoresis 

CE 5 nm 0.2 µg L-1 CE-ICP-MS 
[179] 

- Detection of dissolved element /NP 
- Size (average and distribution)  
- Mass concentration 

Hydrodynamic 
chromatography 

HDC 5 nm 1 µg L-1 HDC-ICP-MS 
[182] 
 

- Detection of dissolved element /NP 
- Size (average and distribution)  
- Mass concentration 

    

Electroanalytical techniques    

Voltammetry of 
immobilized 
particles 

VIP 10 nm µg L-1 - Element composition 
- Oxidation state 
- Size (average) 
- Mass concentration 

Particle collision 
coulometry 

PCC 5 nm 1010 L-1 [205] - Detection of NPs 
- Size (average and distribution) 
- Number concentration 
- Mass concentration 
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Table 2 
Reported analysis of complex samples from the scenarios defined in figure 1, sample 
preparation methods and analytical techniques used, and analytical information obtained. 
 
Scenarios NP Sample Sample preparation Techniques Analytical information Ref. 

(1) Consumer products containing ENPs 
 Ag Disinfectant 

products	
 TEM    

SEM-EDS 
Size [87] 

 Ag Disinfectant 
products	

 TEM-EDS Size    
Shape   
Elemental composition 

[91] 

 Ag  
Au  
Cu  
Ir 
Pd  
Pt 
Si  
Zn 

Dietary 
supplements  

 SP-ICP-MS 
TEM-EDS 
 

NP Detection 
Size     
Elemental composition 

[92] 

 Ag Antibacterial 
products  

CPE ET-AAS Mass concentration NP [64] 

 Ag Antibacterial 
products 

CPE + MW digestion ICP-MS   
 

Mass concentration NP [59] 

 Ag Dietary 
supplement 
Beverages 

 AF4-ICP-MS Size [153] 

 Ag Consumer 
products 

 AF4-UV-Vis-DLS-ICP-MS  Size  [106] 

 Ag Healthcare 
formulations 

 HPLC-UV-Vis-ICP-MS  Mass concentration  
NP/dissolved 

[190] 

 Ag Healthcare 
formulations 

 SEC-ICP-MS  Mass concentration  
NP/dissolved 

[188] 

 Ag Healthcare 
formulations 

 VIP NP detection      
Size  
Mass concentration NP 

[196] 

 Ag Disinfectant 
products 

 PCC NP detection      
Size 

[206] 

 Ag  hand sanitizer gel          
fabric softener 

Oxidation (H2O2) Optical sensor  Mass concentration NP [212] 

 Au Dietary 
supplements 	

 CE-ICP-MS Size [180] 

 Au Dietary 
supplements 	

 CE-ICP-MS Size  
Mass concentration  
NP/dissolved 

[179] 

 metal 
NPs 

Bread and 
biscuits 

 ESEM-EDS Size    
Elemental composition 

[80] 

 Pt   
Pd 

Dietary 
supplements 

 CE-ICP-MS Size [180] 

 SiO2 Coffee creamer Clean up (hexane)    AF4-ICP-MS    
TEM 

Size    
Mass concentration NP 

[55] 

 SiO2 Powdered 
cappuccino mix 
Food integrator 

Water extraction SdFFF-UV-Vis  Size  [162] 

 TiO2	 Moisturizing 
cream 

Clean up (hexane) AF4-ICP-MS Size  
Mass concentration NP 

[154] 

 TiO2	 Sunscreen Clean up (hexane) AF4-ICP-MS Size  
Mass concentration NP 

[54] 

 TiO2	 Sunscreen Clean up (hexane) AF4-UV-Vis    
ICP-OES 

Size  
Mass concentration NP  

[52] 

 TiO2	 Food      
Personal care 
products 

Digestion (H2O2) FESEM-EDS    
AF4-ICP-MS  
SP-ICP-MS 

Size 
Mass concentration NP 

[95] 

 TiO2	 Sunscreen Clean up (hexane) SedFFF-ICP-MS Size  
Mass concentration NP 

[53] 

 TiO2 

ZnO 
Sunscreen Water extraction HDC-ICP-MS   Size [184] 
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Scenarios NP Sample Sample preparation Techniques Analytical information Ref. 

 TiO2 

ZnO 
Sunscreens Clean up (chloroform) 

Evaporation 
TEM    
FESEM-EDS    
XRD 

Size   
Shape  
Elemental composition 
Crystal structure 

[74] 

 ZnO Disinfectant 
products 

 TEM-EDS Size   
Shape  
Elemental composition 

[91] 

(1) Consumer products spiked with ENPs 
 Ag Pears  TEM    

FESEM-EDS    
NP detection 
 

[93] 

 Ag Chicken meat	 Digestion (enzymatic) SP-ICP-MS Size  
Mass concentration 
Number concentration 

[40] 

 Ag  Chicken meat	 Digestion (enzymatic) SP-ICP-MS Detection NP    
Size 

[41] 

 Ag  
Au 

Beef meat   Digestion (TMAH) SP-ICP-MS Size   
Mass concentration  NP 
Number concentration 

[32] 

 Ag Chicken meat	 Digestion (enzymatic) SP-ICP-MS    
AF4-ICP-MS  
TEM 

Size  [38] 

 Ag Chicken meat Digestion (enzymatic) AF4-ICP-MS Size  
Mass concentration NP 

[39] 

 Ag  Foods     
Waters 

 optical sensor  NP concentration [214] 

 Ag Cosmetic cream Clean up (cloroform) optical sensor  NP concentration [213] 
 SiO2	 Tomato soup	 Digestion (acid) AF4-ICP-MS Size [150] 
 SiO2	 Tomato soup	 Digestion (acid) AF4-ICP-MS Size 

Mass concentration NP 
[29] 

 SiO2	 Tomato soup  ESEM   
FESEM   
TEM    
NTA 

Size  [81] 

 TiO2 

ZnO 
Starches 
Wheat flour 

Ashing  SEM-EDS Size   
Shape  
Elemental composition 

[94] 

(2.a) Laboratory release experiments 
 Ag Socks Water extraction HPLC-ICP-MS  Mass concentration  

NP/dissolved 
[189] 

 Ag Plastic food 
containers  

Extraction (acetic acid, 
methanol) 

SEM-EDS 
SP-ICP-MS   

Detection NP [122] 

 Ag Plastic food 
containers 

Extraction (acetic acid, 
methanol, olive oil) 

SEM   
TEM-EDS 
SP-ICP-MS 

Detection NP/dissolved [123] 

 Ag Food additive	 Water extraction	 TEM-EDS    
SP-ICP-MS 

Size [129] 

 QD  QD lighting Extraction + UF (3kDa) ICP-OES Mass concentration  
NP/dissolved 

[49] 

 TiO2 textiles  Washing solution TEM-EDS    
SEM-EDS 

Size [88] 

(2.a) In vitro digestion simulation 
 Ag Synthetic gastric 

juice 
 TEM 

DLS 
NTA 

Size [103] 

 Ag Synthetic saliva 
Gastric juice  
Intestinal juice 

 SP-ICP-MS   
DLS   
SEM-EDS 

Size  
Number concentration 

[104] 

 Se Gastric juice  
Intestinal juice 

 AF4-ICP-MS Size 
Mass concentration NP  

[159] 

 Ag Washing 
solutions 
(commercial 
detergents) 

UF TEM-EDS    
SP-ICP-MS 

Size 
Mass concentration  
NP/dissolved 

[90] 
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Scenarios NP Sample Sample preparation Techniques Analytical information Ref. 

(2.a) Environmental fate studies 
 Ag Soils  ESEM   

FESEM 
Size [83] 

 Ag Microcosm    
water    

Filtration (0.7 µm) +    
ultracentrifugation  

ICP-MS Mass concentration  
NP/dissolved 
Aggregation 

[43] 

 Ag Mesocosm lake 
water 

Filtration (35 µm)               
Filtration (0.45 µm)  
Ultrafiltration (3kDa) 

ICP-MS Mass concentration  
dissolved 

[50] 

 Ag Freshwater  NTA  
DLS  
UV-Vis 

Size     [110] 

 Ag Incinerated 
sludge 

 SEM-EDS    
XANES 

Solid phase speciation [138] 

 Ag Natural waters  SP-ICP-MS Mass concentration  
NP/dissolved 

[127] 

 Ag Sewage sludge Centrifugation TEM-EDS  
XANES 

Size    
Shape   
Composition    
Solid phase speciation     

[132] 

 Ag Microcosm 
water   

Filtration (0.02 µm)   XANES Solid phase speciation [145] 

 Ag Sewage sludge  XANES Solid phase speciation [136] 
 Ag Soil   XANES   EXAFS Solid phase speciation [146] 
 Ag Seawater  NTA size  [111] 
 Ag  Mesocosm lake 

water 
CPE + MW digestion ICP-MS NP mass concentration [50] 

 Ag   Sewage sludge  XANES Solid phase speciation [133] 
 Ag  Au Sewage sludge Centrifugation TEM-EDS      

XANES    
EXAFS    

Size    
Shape   
Composition    
Solid phase speciation 

[134] 

 Ag 
ZnO 

Sewage sludge  XANES    
EXAFS 

Solid phase speciation [137] 

 Au Soils  ESEM    
FESEM 

Size [83] 

 ZnO Sewage sludge  XANES Solid phase speciation [133] 
(2.b) Ecotoxicological and toxicological studies (in vivo exposure) 
 Ag Gastrointestinal 

tract  
Gills   
(fish) 

Water extraction  AF4-ICP-MS Size [151] 

 Ag Lumbriculus 
variegatus  

Water extraction AF4-ICP-MS Size [155] 

 Ag Biological tissue 
homogenate 

Water extraction  SP-ICP-MS  
AF4-ICP-MS 

Size [152] 

 Ag Human hepatoma 
cells 

Digestion (TMAH) AF4-ICP-MS Size [34] 

 Ag Faeces  
(rat) 

Digestion (TMAH) AF4-ICP-MS Size [35] 

 Ag Various organs 
(rat) 

Digestion (enzymatic) SP-ICP-MS Size [37] 

 Ag Liver (rat) Digestion (enzymatic) SP-ICP-MS detection NP    
Size 

[41] 

 Ag  
Au 

Daphnia magna   Digestion (TMAH) SP-ICP-MS Size   
Mass concentation  NP 
Number concentration 

[32] 

 Ag Various organs 
Blood  
(rat) 

Solid phase extraction 
(knotted reactor) 

ICP-MS Mass concentration  
NP/dissolved 

[70] 

 Ag Plant tissue  XANES    
SEM-EDS    

Solid phase speciation 
Detection 

[139] 
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Scenarios NP Sample Sample preparation Techniques Analytical information Ref. 

 Au Spleen (rat) Digestion (TMAH) 
Digestion (enzymatic) 

SP-ICP-MS Size  
Number concentration 

[33] 

 Au Plant tissue Digestion (enzymatic) SP-ICP-MS Size 
Mass concentration  
 

[42] 

 Au Liver (rat) Digestion (TMAH)  AF4-ICP-MS Size 
Mass concentration  
 

[31] 

 CuO  
ZnO 

Plant tissue  XANES Solid phase speciation [144] 

 TiO2 Plant tissue  XANES    
SEM-EDS    
 

Solid phase speciation 
Detection NP 

[139] 

(2.b) Ecotoxicological and toxicological studies (spiked samples) 
 Ag  

Au 
Lumbriculus 
Variegatus 

Digestion (TMAH) SP-ICP-MS Size   
Mass concentation  NP 
Number concentration 

[32] 

 Ag Cell culture 
medium  

 NTA   
TEM 

Size [108] 

 Ag 
TiO2 

Cell culture 
medium  

 NTA Size  [109] 

 Au Blood  SP-ICP-MS  
TEM 

Detection NP [126] 

 SiO2	 Lung  
Liver (rat)   
Human aortic 
endothelial cells 

Digestion (enzymatic) SdFFF-DLS Size [36] 

 SiO2	 Lung  
Liver (rat)   
Human aortic 
endothelial cells 

Digestion acid SdFFF-DLS Size [30] 

 SiO2 Serum  AF4-NTA-ICP-MS size distribution  
number concentration 

[161] 

 TiO2 Bovine serum 
albumin 

 ESEM   
FESEM   
TEM    
NTA 

Size [81] 

(3) Analysis of environmental samples 
 Ag Waste water   CPE ET-AAS Mass concentration NP [67] 
 Ag Waste water SPE (ion exchange) ET-AAS Mass concentration NP [67] 
 Ag Tap water    

Sea water 
CPE ET-AAS Mass concentration NP [64] 

 Ag River water 
Waste water 

CPE ET-AAS Mass concentration NP [61] 

 Ag Washing water Serial filtration (0.45 
µm-0.1 µm-10kDa) 

ICP-MS   
TEM-EDS 

Mass concentration   
Shape 

[47] 

 Ag  Waste water    SP-ICP-MS Detection NP/dissolved  
Size 

[41] 

 Ag Waste water  SP-ICP-MS Detection NP/dissolved [124] 
 Ag Washing 

machine effluent 
 SP-ICP-MS  

TEM-EDS    
NTA 

Detection NP    
Size 

[86] 

 Ag  
Ti  
Ce 

Waste water filtration (5 µm+0.45 
µm) 

SP-ICP-MS Detection NP [125] 

 CuO River water 
Waste water 

CPE  
CPE + MW digestion 

ET-AAS    
ICP-MS 

Mass concentration NP [63] 

 SiO2   
Al2O3 

Wastewater  SEM-EDS  
ESEM 

Size [89] 

 TiO2 Sewage sludge Centrifugation FESEM    
TEM 

Size    
Shape 

[84] 

 TiO2 Sewage sludge 
amended soil  

 FESEM    
TEM 

Size    
Shape 

[84] 

 TiO2 Sewage sludge 
amended soil 

Suspension in water TEM-EDS composition  size [85] 
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Scenarios NP Sample Sample preparation Techniques Analytical information Ref. 

 TiO2 Lake water  ICP-MS   
SP-ICP-MS 

detection NP   
number concentration   
natural NP/engineered 
NP 

[217] 

(3) Analysis of environmental samples (spiked) 
 Ag River water  

Lake water  
Waste water 

CPE + MW digestion ET-AAS Mass concentration  NP [58] 

 Ag Lake water    
Wastewater   

CPE + MW digestion ICP-MS Mass concentration NP [59] 

 Ag Tap water 
Surface water 

SPE (magnetic NPs) +     
acid digestion 

ICP-MS Mass concentration NP [69] 

 Ag 
Au  
Pd 

River water SPE (ion exchange) ET-AAS mass concentration NP [66] 

 Ag  
TiO2 

Natural waters Functionalization 
+liquid extraction 

ICP-MS Mass concentration NP [56] 

 Ag River water Derivatization 
(albumin) 

AF4-ICP-MS Mass concentration  
NP/dissolved 

[160] 

 Ag Wastewater Filtration (0.45 µm) AF4-ICP-MS Size 
Mass concentration NP 

[156] 

 Ag Soil water 
extracts 

Filtration (0.45 µm) AF4-UV-Vis   Size [157] 

 Ag Artificial sea 
water  

Filtration (0.45 µm) AF4-UV-Vis  
SP-ICP-MS 

Size   
Agglomeration 

[128] 

 Ag River water Filtration (0.45 µm) HDC-ICP-MS  Size [105] 
 Ag sewage sludge   HDC-ICP-MS 

TEM 
Size  [181] 

 Ag Sewage sludge  
Tap water 

 HDC-ICP-MS  
TEM 

 Size [182] 

 Ag Lake water 
Sewage sludge   

 SEC-ICP-MS Mass concentration  
NP/dissolved 

[188] 

 Ag Seawater  PCC detection NP     size [207] 
 Ag Seawater  VIP Detection NP [198] 
 Ag  Seawater  Electrochemcial sensor  

VIP 
Detection NP [197] 

 Ag  Seawater  VIP Detection NP [194] 
 Au Sediment  Ultracentrifugation ESEM    

FESEM   
TEM   
NTA 

Size [81] 

 Au River water 
Wastewater 

CPE ET-AAS Mass concentation NP [60] 

 Au Fresh water  
Seawater   
Wastewater 

SPE (magnetic NPs) +     
acid digestion 

ICP-MS Mass concentration  
NP/dissolved 

[68] 

 ZnO Soil suspensions  Settling AF4-ICP-MS Size [158] 
 ZnO Tap water    

Wastewater   
CPE + MW digestion ICP-MS Mass concentation NP [62] 
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Table 3  
Selected single and multi-method approaches for the analysis of complex samples. 

 
Scenario Sample preparation Atomic 

spectrometry 
AAS/ICP-OES 
/ICP-MS 

Electron 
microscopy 
EM-EDS 

AF4-ICP-MS SP-ICP-MS Atomic 
spectrometry 
XAS 

Analytical information Ref. 

Scenario 1         
Consumer products 1   !    NP characterization [74] 
Consumer products 2 Acid digestion ! !    Total element conc. 

NP characterization 
[216] 

Food/  
biological samples 1 

Digestion  
(acid, TMAH, 
enzymatic) 

  !   
Size 
Element mass conc. vs. 
size 

[39] 

Food/  
biological samples 2 

Digestion  
(acid, TMAH, 
enzymatic)    !  

Size 
Number conc. 
Element mass conc. vs. 
size 

[40] 
 

Scenario 2         
Bioaccummulation Acid digestion !     Total element conc. [113] 
NP dissolution Ultrafiltration !     Dissolved/NP element 

conc. 
[50] 

Release from consumer 
products 

Filtration/ultrafiltration ! !    Element size fractionation 
NP characterization 

[47] 

Environmental fate 1 
 

Ultrafiltration 
Cloud point extraction 

!  ! !  

Total element conc. 
Dissolved/NP element 
conc. 
NP characterization 

[50] 

Environmental fate 2 
 

Ultrafiltration 
!  !  ! 

Total element conc. 
NP characterization 
Solid phase speciation 

[43] 
[145] 

Environmental/ 
bioaccumulation fate 3 
 

Acid digestion 
! !   ! 

Total element conc. 
NP characterization 
Solid phase speciation 

[143] 
[133] 

Scenario 3         
Waters 1     !  NP detection [41] 
Waters 2 Preconcentration !     NP conc. (mass element)  [67] 
Differentiation natural 
NP/ENPs 

 !  ! !  Natural/engineered NP [102] 

         

 
 

	
 


