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Chapter 1

Introduction

Among the most important advances in science and technology during the 20** century we find the ability
to simulate complex physical systems and predict their spatial and temporal evolution. Such capabilities,
as others, have been enhanced by a simultaneous development of computer science. In with respects to
fluid mechanics, this progress has led to the appearance of a new discipline called computational fluid
dynamics (CFD). This new discipline, propelled by aerospace industry, experimented a quick development
over the past few decades and gave rise to the generation of simulation tools to be applied in a broad
variety of fields, such as aerodynamics, weather science, geophysical science, space science, bioengineering,
etc.

Many problems included within the scope of fluid mechanics are given by systems of partial differential
equations, derived from the fundamental laws of physics. Analytical solutions for such systems cannot be
found when dealing with complex geometries that appear in real problems of technological and scientific
interest. However, it is possible to find approximate solutions provided by numerical resolution of the
differential equations inside a computational domain, a discretization of the original domain. All those
numerical tools and techniques fall within the scope of study of computational fluid dynamics.

Among the different types of systems of partial differential equations, only those with an hyperbolic
nature will be considered in this work. Such systems are derived from conservation laws formulated for
certain physical quantities such as mass, momentum or energy. Hyperbolic systems of conservation laws
have been studied over the past few centuries, obtaining important results on the nature of their solutions.
Among them, it is remarkable to mention the studies on the so-called Riemann Problem, a kind of initial
value problem composed of a conservation equation together and a piecewise constant initial condition
with a single discontinuity in the middle. Nowadays, numerical algorithms for the resolution of such
problems, called Riemann solvers, are widespread and establish the basis of Finite Volume Schemes.

In this work, first order Godunov type Finite Volume Schemes and the corresponding Riemann solvers
are first studied for the resolution of hyperbolic systems of conservation laws with source term, specially
with those of geometric nature. The approach followed here is to use the Augmented solver presented
in [1, 2]. Augmented solvers [3] are constructed to provide suitable explanations to the influence of the
source terms in the numerical solution and the effect of the source terms in the stability region [4, 5]. They
include an extra wave associated to the presence of the source terms in the approximate solution. In this
family of Augmented solvers, the new wave provides two solutions at each side of the RP discontinuity.
Based on the upwind discretization of the source terms in [6] and the Roe solver [7] defined for the
homogeneous case, an Augmented solver in [1] was presented.

The preservation of high accuracy in both space and time when computing system of conservation
laws with source terms has been a major step in the resolution of complex flows. The keystone for
this important achievement is the Arbitrary Accuracy Derivatives Riemann Problem (ADER) approach
for linear problems [8, 9] that allowed the construction of arbitrarily high-order accurate schemes for
hyperbolic systems of conservation laws with source terms [10, 11, 12]. In contrast with Godunov’s first
order method [13], where the initial conditions of the Riemann Problem (RP) are piece-wise constant
functions, in ADER schemes, the initial conditions are assumed to be smooth functions. This more
general problem was termed Derivative Riemann Problem (DRP) where the initial conditions consist of
polynomials of arbitrary degree.
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Initial polynomial data for the DRP must be reconstructed by means of sophisticated conservative
reconstruction procedures. Discontinuities may introduce spurious oscillations in the numerical solution
and the choice of a proper reconstruction technique is decisive to avoid them. This issue was first
addressed in the framework of finite differences, leading to the family of total-variation diminishing (TVD)
schemes [14, 15, 16]. Later on, in the search of appropriate reconstruction techniques, the essentially non-
oscillatory (ENO) method was proposed by Harten et al. [17]. Based on the definition of an smoothness
indicator, the ENO method selects the departing information among different candidate stencils. Founded
in the ENO approach, the WENO method was then developed by Liu et al. in [18], allowing a k-th order
ENO reconstruction be transformed into an (k + 1)-th order WENO reconstruction.

In this work, the WENO reconstruction method [18, 19, 20] and the sub-cell derivative WENO re-
construction procedure [21] is studied and implemented. In addition to this, a novel improvement for the
traditional WENO reconstruction method is proposed. This enhanced procedure is termed WENO-PW
method and addresses some convergence issues appearing in presence of critical points (points where
derivatives vanish) when reconstructing smooth functions [22, 23]. Such problems in convergence have
proved to be more noticeable when computing transport equations with stiff reactive terms, so that we
test the performance of the WENO-PW reconstruction in combination with an ADER scheme for the
resolution of the linear scalar equation with and without reactive term, in 1D and 2D. Convergence rate
tests are also carried out and are presented in this text.

A novel ADER-type numerical scheme based on DRP Augmented solvers is also presented in this work.
The proposed method will be called Augmented Roe ADER (AR-ADER) scheme. The performance of
weak solutions for systems of equations involving discontinuous source terms is analyzed in the framework
of flux-ADER numerical schemes. A novel DRP solver, that includes the presence of the source term at
cell interfaces and solves the evolution equation of time derivatives, is presented. The AR-ADER scheme
is presented for scalar non-linear equations first and it is next extended for systems of conservation laws.
Numerical results are presented for the inviscid Burgers’ equation with source term and for the Shallow
Water Equations in 1D. In both cases, they evidence that the numerical scheme converges to the exact
solution with the prescribed order of convergence. Moreover, when computing steady cases for the Shallow
Water Equations, the numerical scheme provides the exact solution with independence of the grid size,
since the discrete energy balance property is satisfied by the AR-ADER scheme. It is worth mentioning
that the AR-ADER scheme has been recently published in [25].

The structure of this work is presented next. The first and second chapter are to serve as a theoretical
framework for numerical schemes for systems of conservation laws, including the necessary definitions
that establish the foundations for the development of Riemann solvers and numerical methods. In the
third chapter, the Finite Volume Method is introduced, emphasizing its derivation from the integral form
of the equations; Godunov’s updating scheme is also presented and the Riemann Problem is defined. The
fourth chapter is devoted to first order approximate Riemann solvers, recalling the Augmented solver
presented in [1, 2] for scalar equations and systems of equations. In the fifth chapter, ADER numerical
schemes are introduced and presented as the natural extension of Godunov’s method; first, the DRP is
introduced, then the WENO scheme is recalled and the WENO-PW is presented, after that, the ADER
scheme for linear scalar equations is recalled and eventually the AR-ADER scheme is presented. In
chapter sixth numerical tests are presented for the linear scalar equation in 1D and 2D, for Burgers’
equation and for the Shallow Water Equations and finally, in chapter seventh, some conclusions of this
work are summarized.



Chapter 2

Hyperbolic conservation laws in fluid
mechanics

2.1 Introduction to conservation laws

A wide variety of physical events are described by systems of partial differential equations (PDEs) that
correspond to conservation laws. In fluid mechanics, these conservation laws are commonly stated for
mass, momentum and energy among others, and result naturally from the application of the fundamental
laws of conservation of mass, Newton’s second law and the law for the conservation of energy, respectively.

Let us consider a spatial domain Q C R? where the fluid exists, with d the spatial dimension. Conser-
vation laws normally state that the variation of the amount of a quantity inside a certain volume, called
control volume, CV C €, is due to the flux of that quantity across the surface delimiting the control vol-
ume, called control surface, CS = OCV, and to the contribution of a source, when present. For instance,
let us consider the fixed control volume depicted in Figure 2.1 and a fluid with density p = p(x,t), where
x € ) C R3 represents the spatial position in a Cartesian coordinate system and ¢ the time. It is well
known that due to the property of the conservation of mass, the variation of the mass, m, contained
inside the CV can only be explained by a flux of mass, F;,, across the CS. If this flux, F},, is defined as
a leaving flux, then the following equation can be stated

dm
—_— = -F, 2.1
& . (21)

cv

If defining

Fm:// pvndsS, (2.2)
cs

then the variation of mass inside the control volume can be expressed as

:—//Cspvﬁds, (2.3)
cv

where the term on the right side of the equation stands for the net mass flow across the control surface
as defined in (2.2), with v = v(x) € R3 the flow velocity and @i the unitary vector normal to the control
surface. The mass inside the control volume can be expressed as m = [[ fCV pdV and Equation (2.3)

reads
d ~
—/// pdV:—// pvnds. (2.4)
dt cv cs

If considering the control volume not dependent on time and applying the divergence theorem to the
surface integral of the flux, Equation (2.4) can be rewritten as

dm

dt
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Figure 2.1: Fixed control volume (CV) containing a fluid of variable density p(x,t).

///CV %dv T // Vv (2.5)

which leads to the equation for the conservation of mass in differential form

%+v.(pv):o. (2.6)

In this example, it is noticed that the variation of the conserved quantity, m, is only due to the mass

flow entering and leaving the control volume, as outlined before. In other cases, it is possible that the

variation of the conserved quantity is not only caused by the entering and leaving flow but also by the

contribution of a certain source term. In more mathematical terms, the source term can be regarded as

a function of the conserved quantities, spatial coordinates and time, that leads to a non-homogeneous
PDE. In this work, conservation laws in presence of source terms will be studied.

2.2 Reynolds Transport Theorem and conservation laws

From Equation (2.4), it was noticed that the variation of mass inside a fixed volume was caused by the
mass flux across its surface. Let us consider now that the surface is not still but moving at the same
velocity than the flow, vo = v. In this case, the integration volume is called fluid volume (Vy), also
referred to as closed system since there is no mass flow across the boundaries. Equation (2.4) becomes

ml _y o i/// pdV = 0. (2.7)
dt |y, at |/,

which states that the mass of the moving fluid parcel, that is, the fluid volume, is constant in time.
Remark that some physical quantities such as mass, energy or momentum are conserved inside the fluid
volume (closed system), as in this case, or equal to a certain source acting on the system, but this cannot
be affirmed for an arbitrary CV, also referred to as open system. While fundamental physical laws have to
be stated for the fluid volume, or system, it is worth mentioning that when facing a problem, integration
inside a chosen CV is much simpler than using the fluid volume, since the CV can fit our geometry of
interest.

It seems necessary to find a way to relate variations inside a CV to variations inside the fluid volume
in order to state the conservation equations obeying certain physical laws in terms of variations inside
the CV. For this purpose, the Reynolds Transport Theorem, hereafter RTT, was introduced, allowing
to express the variation of a extensive quantity inside the fluid volume as the variation of this extensive
quantity in a certain CV plus the flux of its associated intensive property across the CS. The utilization
of this theorem supposes a great advantage since all calculations can be done over the selected CV, while
at the same time the conservation of the physical quantity is stated inside the fluid volume by means of
variations in the CV and flux through it.

Let P € R? be any extensive property of the fluid (energy, mass, momentum...) with d € Z* and let
p = dP/dV be the intensive value of P per unit volume. Then, let us define a control volume, CV(t),
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bounded by its control surface, CS(t), and a fluid volume, V;(¢), bounded by, S;(t), all depending upon
time and let

CV(0) = Vy(0), (2.8)

that is, the control volume and fluid volume coincide at ¢ = 0. The total amount of P inside each volume

is calculated as
Poy(t) = / / / pdV Py, (t) = / / / pdV (2.9)
CV(t) Vi (t)

at time ¢. From conditions (2.8) and (2.9), it is straightforward to notice that the total amount of P in
both volumes is the same at t =0

Pov(0) = Py, (0). (2.10)

On the other hand, the conservation of P inside the control volume can be expressed, as in Equation
(2.4) without sources, as follows

1] wav =[] _otv—vo-aas 1)

where v is the velocity of Sy, that is, the velocity of the fluid and v, is the velocity of the CS that has
to be accounted for since it is now moving. Using definition in (2.9) and the definition of derivative,
Equation (2.11) can be expressed as

 Poy(A)—Poy(0) v va
lim = //Cs p( s) - ndS. (2.12)

At—0 At
Considering that At — 0, we can express P at t = At as
Pcv(At) = Pcv(O) — At // p(V - VS) -ndS (213)
cs

The same is done for the quantity inside V; after a time At, but in this case no outflow is present
since the fluid volume follows the flow and therefore

Py, (At) = Py, (0) (2.14)

Combination of Equations (2.10) and (2.14) allows to express (2.13) as

Py, (At) = Poy (At) + At //CS p(v — v,) - 1dS (2.15)

Subtracting Py, (0) and Poy(0) (which are the same) on the left and right sides of (2.15), respectively,
and dividing by At, it yields

A _ J—
PVf( t)At PVf (0) _ PCV(At)At PCV(O) + //CS p(v — Vs) -ndS (216)

Finally, the definition of derivative can be used again for (2.16) since At — 0, leading to

%Pvf(t) = jt///cvpdv—l—//csp(v—vs) -RdS (2.17)

which represents the RTT. The term on the left hand side of the equation stands for the total variation
of quantity P inside the fluid volume, Vy, that must be nil when the quantity is conserved (e.g. mass
conservation) or, on the other hand, equal to a certain source (e.g. conservation of linear or angular
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momentum, conservation of energy...). When existing, the sources will be considered acting on the
control volume, since the system coincides with the control volume at the first moment.

It is remarkable to show that the RTT inside the fluid volume is given by Leibniz’s rule for differen-
tiation under the integral sign, that reads

Pvf /// —dV + // p(v-n)dS (2.18)
OB S4(t)

For a better understanding of the RTT and the different frames of reference that can be used when
analyzing a fluid flow, let us consider two different cases: in the first case, the observer is assumed to follow
the fluid parcel as it moves along the streamlines, whereas in the second case, the observer is considered
to be steady. It is worth mentioning that, generally, the quantity p can be defined as a property of the
flow that depends upon the spatial position, x, and time, t.

a) The first case corresponds to the so called Lagrangian specification of the flow field and considers
that the property only depends on time, since the observer follows the fluid parcel as it moves along
the streamlines. As outlined before, we know that p = p(x,t) but since in Lagrangian mechanics
the position of a particle can be calculated as x = x(xg,t), the quantity can be written just as a
function of ¢ and the initial point x¢ = x(0) as

P = pi(Xo, 1) (2.19)

where the subscript [ stands for Lagrangian. In this case, the spatial coordinate at time ¢, x, is
considered a dependent variable that can be expressed in terms of x¢ and ¢ as

x(t) = %o +/O v(x(T),7)dT (2.20)

b) In the second case, the observer is considered to be still, with v = 0. Unlike in the previous case,
here magnitude p is parametrized as p = p.(x,t) and can be regarded as a scalar or vector field.
This approach is called Eulerian specification of the flow field. The relation between Lagrangian
and Eulerian specifications of the flow field is given by

x =x(x0,t) — X0 =xXo(x,t) (2.21)

and analogously a relationship between derivatives can be found by applying the chain rule when
differentiating p.(x,t) with respect to time, yielding

D 0 O0z1 8 Oxg 8
= t) = —pe(x,t) = —Pe — — 7 b(xt) =
Lagrangian der. local time der. spatial advection (222)

0
= ape(x,t) + v - Vpe(x,t)

The previous expression is called material or susbtantial derivative of p and leads to the definition
of operator

Definition 1. (Material derivative operator). Operator

D 0

5=tV (2.23)

with V the Del operator with respect to the spatial coordinates and v the velocity field, allows to
calculate the total variation of a certain quantity as its variation in time plus its variation produced
by its advection under the velocity field.
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The Eulerian specification of the flow field is the most common approach in fluid mechanics.

When addressing the resolution of a problem in fluid mechanics, two options are possible. The first
choice would be to use the integral formulation in order to find approximate solutions at certain points
or interfaces of the problem. The second choice, which this work is devoted to, would be to obtain the
equivalent differential formulation from (2.17) or (2.18) and solve the PDEs inside the spatial domain
by means of computational methods. The general procedure for the derivation of the differential form
departing from the RTT formulation is next presented.

The Gauss-Strogadsky theorem can be applied to Equation (2.18) and considering the volume of
infinitesimal size with p uniform inside it, the differential form of (2.18) is obtained

dp 9

i~ 2P +V (pv) (2.24)

Using (2.23), it can be rewritten in terms of the material derivative of p as

dp D

il v s (p-V)v (2.25)

For instance, if considering the example of mass conservation equation in (2.6), it is noticeable that it
can be rewritten in the form of (2.25), yielding

Dp
=0 2.26
o TPVV = (2.26)

2.3 Conservation laws: general formulation and hyperbolicity

When applying the RTT to a specific problem, the derivation of its equivalent differential form is straight-
forward, as it was done in (2.5)-(2.6) and more generally in (2.24), obtaining a set of PDEs that could be
analytically or numerically solved. Conservation laws described in the previous section can be expressed
in their divergence form as

oU
S +V-E(U) =S (2.27)

where U = U(x, t) € R" is the vector of conserved variables with x € Q2 C R, V is the Del operator with
respect to the spatial coordinates, E(U) : R® — R"*? is the matrix of fluxes, a nonlinear mapping of
the conserved variables given by the physical flux and S € R" is the vector of sources, yet to be defined.
Normally, this vector of sources is of the form S = S(U, x,t).

System in (2.27) can also be expressed as

Z ax] = (2.28)

where E;(U) represents the flux in the i-th spatial direction. It is possible to apply the chain rule to
derivatives in (2.28) yielding

. !] ] U —_— = S 2.2
ot Z i )8xj (229)
with J;(U) the Jacobian matrix of E;(U), defined as

_ 9E,(U)

J;(U) 50

(2.30)
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Definition 2. (Hyperbolic system). The system in (2.27) is said to be hyperbolic if the matriz J (k) €
R™ "™ defined as

d
=Y kd;(0), (2.31)

is diagonalizable with real eigenvalues for all k € R? and for all U € C with C C R™ the subset of
physically relevant values of U. If the n eigenvalues are distinct, then the system is said to be strictly
hyperbolic [30].

Definition 3. (Eliptic and parabolic systems). The system in (2.27) is said to be eliptic if none of the
eigenvectors of J (k) € R"*™ is real. It is said to be parabolic if all eigenvectors are real and identical.

2.3.1 Integral form of conservation laws

For the derivation of the integral form of (2.27), it is sufficient to integrate the equation in the domain
Q =0 x [0,At], with Q C R? and x € Q, as

/At/ (+V )det /At/ SdQudt (2.32)

and applying Gauss-Ostrogradsky theorem, the following expression results

At At
/UxAtdQ /UdeQ / / xtndth—i—/ S(U(x,1),x,1)ddt  (2.33)
o0 Q

that represents that the integral of the conserved quantities at ¢ = At is equal to the integral of the
conserved quantities at ¢ = 0 minus the integral in time of the total leaving fluxes across the surface
L), plus the contribution of the source terms. This result is of great importance when finding weak
solutions for the equations and constructing finite volume numerical schemes and it will be explained in
the following chapter.

2.4 Conservation laws in 1D

This work focuses on nonlinear systems of conservation laws in 1D that can be expressed as
ou OF(U)
ot ox

where U = U(z,t) € R™ is the vector of conserved variables with z € Q@ C R, F(U) : R* — R" is the
vector of fluxes and S € R"™ the vector of sources.

=s. (2.34)

It is possible to define a Jacobian matrix for the flux F(U) as

(2.35)

that provides sufficient information for the hyperbolicity of (2.34) according to Definition 2. Making use
of the chain rule, system in (2.34) is rewritten as

ou ou

In the case when F = F(U, z), the previous approach must be rewritten as

oU U  §F(U,z)
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Assuming that the system is hyperbolic with N = n real eigenvalues

AH(U) < M(U) < ... < AMNU) (2.38)

and N, linearly independent eigenvectors

el (U), e*(U), ..., ™ (V) (2.39)
it is possible define two matrices P(U) = (e!(U), e?*(U), ...,e" (U)) and P~ (U) with the property that
they diagonalize the Jacobian J as

J(U) =P(U)A(U)P~ (V) (2.40)

with A(U) = diag (A\'(U), ..., AN (U)) a diagonal matrix composed by the eigenvalues of the Jacobian.

Each eigenvalue \™(U), or eigenvector €™ (U) equivalently, for m = 1, ..., N, defines a characteristic
field associated to it. The properties of the characteristic fields will provide useful information about the
solution. Two types of characteristic fields are identified and defined next, according to [29].

Definition 4. (Linearly degenerate field). A X™-characteristic field is said to be linearly degenerate when

V. " (U)-e™(U)=0, YUeC, (2.41)
with C C R™ and where V,, stands for the gradient with respect to the components of vector U.

Definition 5. (Genuinely nonlinear field). A N"™-characteristic field is said to be genuinely nonlinear
when

V. A"(U)-e™(U) £0, YUE€EC, (2.42)

with C C R™ and where V,, stands for the gradient with respect to the components of vector U.

2.4.1 Linear conservation laws in 1D

When the Jacobian matrix in (2.35) does not depend either upon U or z, it will be constant and the
system in (2.34) is said to be linear. In this case, the flux function can be expressed as

F(U)=JU (2.43)
leading to the following linear system of conservation laws

ouU  _ouU
= T =9 (2.44)

where J is a matrix of constant coefficients.

Considering that the linear problem presented in (2.44) is hyperbolic, the diagonalization of the Jacobian
matrix can be expressed as

J=PAP! (2.45)
where P = (e!,e?,...,eM) and A = diag(A!, A%, ..., \"*) are constant matrices composed of the eigen-
vectors of J

e, e? ... eM (2.46)

and the eigenvalues of J

M <A< <M (2.47)
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respectively. In the case when the system in (2.44) is strictly hyperbolic, eigenvalues in (2.47) are all
distinct.

Now, it is possible to define a new set of variables, denoted by W = (w!, w?, .., w") and called
characteristic variables, by means of the transformation

W =P 'U (2.48)

that represent the projection of the conserved variables onto the Jacobian’s eigenvectors basis. Consid-
ering that P is constant, the following relations are stated

oW _,0U oW _,0U
— 7= —p 1= 2.49
ot ot ox ox ( )
Equivalently, a new set of variables, B = (81, 82, ..., %), is defined for the source term as
B=P'S (2.50)

ensuring the same relations presented for the derivatives of W and U in (2.49). From (2.45) and (2.49),
it is possible to rewrite the initial system in (2.44) as a decoupled system of PDEs as

oW  OW
5 TAS-=B. (2.51)

that corresponds to the expression of the original system of PDEs on the Jacobian’s eigenvectors basis.

System in (2.51) is composed of a set of independent linear scalar advection equations with source term,
called characteristic equations and given by

ow™ mow™ m B
W—F)\ or —B fOI‘m—l,...,N)\ (252)

where A\ is the eigenvalue associated to the m-th wave and represents its propagation velocity, called
characteristic speed.

Along the characteristic lines, depicted in Figure 2.2, the characteristic variables remain constant
when the contribution of the source term is nil since

D
E(wm) =0 along z =20+ A"t, form=1,...,N, (2.53)
where % represents the material derivative operator, defined in (2.23).

The solution for the original system in (2.44), w'(z,t), w?(x,t),...,w™(x,t), can be obtained as a
function of the solutions provided by the decoupled equations in (2.52). Regarding the previous results,
the wave nature of the solution is noticed: the characteristic information will travel across the domain at
different wave speeds given by A!, A2, ..., A™ and the solution for the primitive variables will be obtained
as a linear combination of the N, waves.

The initial condition for the decoupled system in Equation (2.52) is given by the projection of the
initial condition U = U(z,0) onto the Jacobian’s eigenvectors basis, as

W =P 'U. (2.54)

At a given point (x,t), it is possible to express the vector of primitive variables U(x,t) as a linear
combination of the Jacobian’s eigenvectors using the relation U = PW, as

Uz,t) = Y w™(z,t)e™, (2.55)

where the scalar values w™(x,t) are the characteristic variables at the sought point and represent the
strength of each wave.
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Figure 2.2: Characteristic lines passing through the point (zg,tp).

When considering that S = 0, characteristic equations in (2.52) are reduced to linear scalar transport
equations. Therefore, the initial values for the characteristic variables @™ (z,0) are simply advected at
their corresponding wave speeds

w™(z,t) =™ (x — A"t) form=1,..., Ny, (2.56)

with no change in shape. Then, the solution can be expressed as the superposition of the N, waves that
have been advected independently, as

N
Uz, t) = ™ (@ — A"t)e™. (2.57)
m=1

It is worth saying that numerical methods for the resolution of hyperbolic systems developed in this
work are based on linear approximate solutions, being the previous results the foundations for such
algorithms.
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Chapter 3

Finite volume numerical schemes for
hyperbolic conservation laws

3.1 Introduction to Finite Volume schemes

When considering realistic problems modelled by hyperbolic conservation laws, the systems of equations
are generally nonlinear. Moreover, initial conditions and source terms are normally complex enough to
make impossible the utilization of analytical methods for the resolution of the system of equations. The
most common approach to compute the solution is the discretization of the computational domain in
volume cells where equations can be integrated leading to an algebraic system of equations instead of
having the original PDEs. Inside each cell, the conserved quantities are integrated as well, leading to a
finite set of cell averaged values that provides the approximate solution of the original system of PDEs
inside the computational domain. This approach is the so-called finite volume method.

Let us consider the system of conservation laws in Equation (2.27) for d spatial dimensions to compose
the following Initial Boundary Value Problem (IVBP)

ou
PDEs: — =
s 2 +V-E(U)=S8

IC: U(x,0)=U(x) vxeQ (3.1)
BC: U(x,t) = Upq(x,t) Vx € 0N

defined inside the domain  x [0, 7] with Q C R? and T' € R*. As outlined before, the spatial domain is
discretized in N volume cells, defined as €2; C €2, such that Q = Ui\;l Q;. The volume contained in each
of these cells is computed as

W = / dQ); i=1,...N (3.2)
Q;
Inside each cell at time t™ = nAt, the conserved quantities are defined as cell averages as

U= — [ U, t")dQ  i=1,..,N. (3.3)

provided the initial condition U(x,0) = IOJ(X)

Conservation law in (3.1) is integrated inside each cell §; following (2.33) and using definition in (3.3),

leading to
At At
Ut —un - (/ / Ulx, £))AdT dt+/ / S(U(x, ), x, t)d dt) (3.4)
o0
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From (3.4), it is noticed that the cell average at t"T1, denoted by U?H, can be computed explicitly
from the cell average at t" plus a suitable approximation of the integral of the fluxes across 9€2; and the
contribution of the source term.

3.2 Godunov’s method in 1D

When considering the particular case of one spatial dimension, the IVBP in (2.34) becomes

L oU  OF(U)
PDEs: s + e S
IC: Ul,0) = Ux) (3.5)

BC: Ua,t) = Uu(t) U(b,t) =Uy(t)

defined inside the domain [a, b] x [0, T], with IOJ(x) the initial condition and U, (¢) and Uy(t) the left and
right boundary conditions. In this case, the computational grid is composed by N cells

a=z1 <ws <..<azy 1<xTy;1=b (3.6)

as shown in Figure 3.1, with cells defined as

Q; = [xi_%,xi_%} i=1,.,N (3.7)

Figure 3.1: Mesh discretization

Cell sizes are derived from (3.2) and defined as

Inside each cell, the conserved quantities are defined as cell averages as

ur= ! /x”%U(az t"dr  i=1,..,N (3.9)
7 ALEl . ) ) )

-1
2

at time ¢™ and the integration of (2.34) yields

tn+1

1
urtl —yr— /
¢ ‘ Al‘l ( tn
(3.10)

with t"T1 = ¢ + At. If considering a explicit suitable approximation of the integral in time of the physical
fluxes at cell boundaries, it is possible to define the numerical fluxes

tn+1 tn+1

F(U(, 1, 0))dt - / F(U(xié,t))dt> +/ﬂ

tn

L[ U ). 2. t)de dt
x| s . e

tn+1

1 1 tn+1
-1 + o
Fo, o~ /t F(UGrg )it B, ~ /t F(U(z,_y,)dt (3.11)

2
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and express them in terms of the two contiguous averages at ¢t = t" as F.. 1= F_ . (U}, U},) and

F", = F;r_%(Uf_l, U?). Equivalently, the source term

it3

i-i
tn+1 X. 1
— ]_ z+§
Si ~ —/ / S(U(z,t),z,t)dzx dt (3.12)
At tm T. 1
-3
can be expressed as S; = Si(U?,xi,t”L making possible to rewrite (3.10) as the following explicit
updating formula
At At
n+1 _ n _ — _ + .
Ut = U - o (FH% FF%) S (3.13)

that represents the Godunov’s numerical scheme.

Remark that depending on the nature of the source term, a centered integration of the source term
as used in (3.13) may not be adequate to preserve an exact balance between fluxes and sources and to
achieve the equilibrium. Otherwise, it may be necessary to account for the value of its jump across the
interface by means of including it in the approximate fluxes obtained in the resolution of the DRP [1, 25].
This is the case of the so-called geometric source terms, which are of the form

S(U,z,t) = Ss(U, z,t) <£CSg(U,x,t)> (3.14)

with S;(U, z,t) and Sy(U,z,t) two different functions with dependence upon U, z and ¢, where Sy is
the geometric part and may present discontinuities along the spatial domain. In this case, the integral
of the source at the interface will be expressed as S; /0 = S;11/2(U}, U}, |, 24, 2541,t") and included in
the numerical fluxes, leading to a modified updating formula

- +
F., —FF%) (3.15)

At
urtl —ynr —
v ¢ AZE,L (

where F;% = F;%(U?a Uiy, Si+1/2) and F;-t% = Fj,%( i1, U7, Si—1/2)~

RP(U}, Uy)

I
I
| n
| Ui :
n
Ui, ! ur, |
I i+l
| 1
I
] 1 ] ] I z
T T T T T
Ti—1 T : €T; Tipl  Tig1 |

Figure 3.2: Neighbouring region of cell €2; and representation of piecewise defined data, showing RP at
;11 that will be referred to as RP(UY, UZ,).

3.3 The Riemann Problem

At each interface, numerical fluxes in (3.11) can be computed by locally solving a initial value problem
(IVP) composed of the system of PDEs and a initial condition given by the piecewise constant data at
both sides of the interface, as depicted in Figure 3.2. For instance, the problem to be solved at cell
interface x; 1 is defined as
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oU  OF(U)

ot T S

PDEs:

(3.16)
ur? T < Tyl
IC: Uz, t") = { 3 e
inside the domain [;41/2 — %, Tip1/2+ %] x [t™, t" 4+ At]. Problem in (3.16) is called Riemann Problem,
hereafter RP. At interface z;, 1, it will be referred to as RP(U}, U}, ;). For the sake of clarity, spatial
2
and temporal variables will be redefined setting the reference for the spatial coordinate at x, 1tox= 0
and for the time t" to t = 0, leading to

oU  JF(U)
= —-S
o " ow
(3.17)
Ul' x <0
U(l‘70) o { Ui+1 x>0
inside the domain [—45%, £2] x [0, At]. The similarity solution is denoted by U(z/t) and composed of

Ny + 1 constant states separated by Ny waves [29]. When the system in (3.17) is linear, the solution can
be easily constructed as a superposition of N, waves that advec