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1. INTRODUCTION 

Drug delivery refers to approaches for transporting drugs in the body, with the 

objective to achieve site-targeting in the organism. Drug delivery technologies modify 

drug release profile, absorption, distribution and elimination, giving rise to an 

improvement in drug efficacy and safety over the free form of the bioactive agent. An 

ideally controlled release of a drug means that the liberation of the pharmacological 

compound is produced in a constant and prolonged way, not exceeding the toxicity 

levels but surpassing the minimum effective level. 

In order to achieve a controlled release of drugs, the use of nanocarriers in drug 

delivery has been proposed[1]. These systems can provide many advantages, such as the 

improvement of drug solubility and stability in the bloodstream, the reduction of 

drug toxicity and its associated side effects thanks to the reduction of the doses, the 

increasing of immune responses in vaccine formulations, the use of sensitive 

nanocarriers that only release the drug when external stimuli is applied,  and the 

potential to deliver drugs in a targetable manner, delivering sufficiently high local 

amounts to avoid the development of resistant parasite strains.  

One of the most important features of nanocarriers is their size, since it controls the 

dwell time in the bloodstream, as well as their internalization within the cell and 

bioavailability of drug-containing nanoparticles[2]. Nanocarriers with sizes ranging from 

10 to 100 nm are optimal for the application in drug delivery. 

Among the different types of nanocarriers assayed as drug delivery systems, polymeric 

micelles have been successful for biomedical applications[3],[4],[5]. Polymeric micelles 

are aqueous dispersions of amphiphilic block copolymers that form particles of 

nanometric size (10-1000 nm). This kind of structures presents features of both 

nanoparticles and hydrogels, i.e. the ability to interact with biological systems due to its 

small size, as well as to hold large amounts of water. Polymeric micelles can be 

stabilized by crosslinking providing Cross-Linked Polymeric Micelles (CLMPs)[6],[7], 

in which the preformed micellar assemblies are blocked via covalent bonding. 

CLPMs must be composed of biodegradable compounds, allowing a stable and 

prolonged liberation of the drug as the carrier degrades. Due to the amphiphilic nature 

of the constituent polymer, which results in the formation of a lipophilic core and a 

hydrophilic shell, CLPMs can encapsulate both liposoluble and hydrosoluble drugs 
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within their polymeric matrix. Drugs can be captured by non-covalent interactions 

(ionic interactions, hydrogen bonding, hydrophobic interactions, etc.) or covalently 

incorporated within the polymeric structure. 

Moreover, drug liberation can also be controlled by using CLPMs that respond to 

external stimuli[8]. This kind of materials is able to modify its structural composition 

or conformation when a certain physical or chemical stimuli is produced, promoting 

the controlled liberation of the active species previously encapsulated in the nanocarrier. 

Thermosensitive CLPMs are one of the most studied systems, and they are composed 

of polymeric materials that contain thermosensitive units in their structure[9]. These 

stimuli-responsive materials modify their conformation when the temperature varies, 

presenting an expanded conformation at low temperatures, which allows an easy entry 

and exit of the encapsulated drug, whereas at higher temperatures the nanocarrier 

contracts, holding the drug within the polymeric matrix and giving rise to a slower and 

more controlled drug release. 

Pluronic® F-127 is an amphiphilic block copolymer widely used to form 

nanocarriers for drug delivery, among many other biomedical applications[10],[11]. It is 

composed by two polyethylene oxide (PEO) units separated by a central polypropylene 

oxide (PPO) unit. Moreover, Pluronic© F127 presents thermoresponsive properties. 

This compound is soluble in water at low temperatures and is able to self-arrange in 

water above a certain temperature (Critical Micelle Temperature) and concentration 

(Critical Micelle Concentration), forming micelles consisting of a hydrophobic PPO 

core and a hydrophilic PEO shell.  

Furthermore, in the search for new materials that self-assemble in water to form 

nanocarriers, hybrid linear-dendritic block copolymers have been proposed in the last 

years[12]. These structures are formed by the combination of linear chains of a 

polymer and dendritic segments in the chain’s end. Dendritic structures are highly 

branched macromolecules composed of three parts: the core, the branching units that 

give rise to the different generations, and the periphery, which allows the introduction 

of a wide variety of functional groups. The number of functional groups in the periphery 

is determined by the generation. Dendrimers based on 2,2-bis(hydroxymethyl)propionic 

acid (bis-MPA) present several features that make them ideal candidates for their use in 

biomedical applications, i.e. their in vivo and in vitro biocompatibility, their solubility in 
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biological environments and their ability to degrade through a hydrolytic process of the 

ester bonds[13]. 

Joining these trends and requirements, the Liquid Crystals and Polymers research group 

initiated a new working approach focused on CLPMs from thermoresponsive linear-

dendritic block copolymers based on Pluronic® F127 to be used as drug delivery 

nanocarriers[14],[15], with encouraging results opening new design possibilities which 

inspire the current research master project. 

 

2. OBJECTIVES AND WORKING PLAN 

The aims of this research work are the design and synthesis of new amphiphilic block 

copolymers with the ability to self-arrange in water forming micelles, which will be 

photopolymerized in order to obtain cross-linked polymeric micelles, with 

applications as nanocarriers in drug delivery.  

The motivations and plan followed in the realization of this work consists of the steps 

outlined below: 

1) Design, synthesis and characterization of the Pluronic® F127 derivatives: 

Starting from the commercial block copolymer Pluronic® F127, two different 

derivatives will be synthesized (Scheme 1). The first one will be a linear block 

copolymer derivative, F127-A-2, whereas the second compound will be a hybrid 

dendritic-linear-dendritic block copolymer, F127-A-4. They both incorporate 

carbamate moieties within their structure with the aim of promoting hydrogen bonding 

interactions, which could affect both the micellization process and the interaction with 

the encapsulated molecules, thereby increasing the load capacity of the corresponding 

CLPMs. In the case of the hybrid dendritic-linear-dendritic derivative, a first generation 

dendron of bis-MPA will be incorporated, in order to increase the number of functional 

groups in the polymer periphery. Finally, both Pluronic® F127 derivatives will be 

functionalized with acrylate groups, allowing their crosslinking by means of 

photopolymerization. The linear compound will present two acrylate groups in the 

chain’s end, whereas the hybrid dendritic-linear-dendritic one has four 

photopolymerizable groups in the periphery. 
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Scheme 1. Chemical structure of synthesized Pluronic® F127 derivatives. 

The two synthesized compounds, as well as the intermediates of their preparation, will 

be chemically characterized by conventional characterization techniques, i.e. 1H-NMR, 

13C-NMR and FT-IR. 

2) Preparation of CLPMs in water 

CLPMs will be obtained by means of the photopolymerization of micellar aggregates of 

the Pluronic® F127 derivatives formed in water. To achieve this objective, the Critical 

Micelle Concentration (CMC) will be first determined for both derivatives in order to 

know the exact concentration above which the block copolymers started to self-

assemble. Then, polymer solutions of concentrations above the CMC will be prepared, 

and the structure of the preformed micelle aggregates will be fixed through 

photocrosslinking in presence of a commercial photoinitiator.  

Photocrosslinking at different concentrations of the block copolymers will be carried 

out in order to determine its influence in the final shape and size of the CLPMs. 

3) Morphological characterization of CLPMs 

CLPMs morphology will be studied by different characterization techniques suitable for 

nanometric materials, i.e. DLS, TEM and SEM. Moreover, since CLPMs are 

composed by thermosensitive materials, the temperature influence in size will be also 

studied. 
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4) Drug encapsulation 

Finally, CLPMs will be tested for their application as nanocarriers. Two different drugs, 

a liposoluble (camptothecin) and a hydrosoluble one (chloroquine), will be 

encapsulated. For this purpose, two different encapsulation techniques will be 

employed.  

 

3. RESULTS AND DISCUSSION 

3.1. Synthesis and characterization of Pluronic® F127 derivatives 

3.1.1. Synthesis and characterization of the linear Pluronic® F127 derivative, F127-A-2. 

The synthetic route followed to obtain F127-A-2 consists of several steps detailed in 

Scheme 2.  

Firstly, commercial Pluronic© F-127 was made to react with p-nitrophenyl 

chloroformate, giving rise to F127-NP-2. The p-nitro phenyloxy group of the obtained 

carbonate functionality acted as a good leaving group, and in presence of ethanolamine 

reacted with its amino group to form a carbamate, resulting in F127-C-2. Finally, 

acrylate groups were introduced by means of the reaction of the hydroxyl groups in 

F127-C-2 with acryloyl chloride. In the first attempts, the full functionalization of 

F127-C-2 with acrylate groups was not achieved.  

In order to completely incorporate the acrylate groups, different reaction conditions 

were checked. The presence of a little amount of water entrapped within the polymer 

and in the reaction solvent was proved to be one of the problems that caused the 

incomplete functionalization, since it quickly reacts with acryloyl chloride to give rise 

to the non-reactive carboxylic acid. Therefore, first, freshly distilled dichloromethane 

was used as the reaction solvent, and F127-C-2 was thoroughly dried under vacuum and 

above its boiling point. Secondly, the concentration of reactants was also a key point. 

Finally, the complete functionalization was achieved for dry conditions and using the 

smallest amount of solvent to solubilize the reagents during the reaction. 
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Scheme 2. Synthetic route to obtain F127-A-2. 

The correct functionalization of Pluronic© F-127 in each step of the synthetic route was 

corroborated by NMR and FT-IR.  

Pluronic© F-127 present two characteristic signals in the 1H-NMR spectrum. The first 

one appears at 1.12 ppm and integrates for 201 H corresponding to the methyl groups in 

the PPO block. The second one emerges as a complex signal from 3.30 to 3.70 ppm and 

integrates for about 1100 H, corresponding to the hydrogen atoms corresponding to the 

H-C-O systems in both PPO and PEO blocks. When Pluronic© F-127 is functionalized, 

the presence of new signals, and specially their relative integration in comparison with 

the Pluronic signals, provides useful information to discern whether the 

functionalization was successfully achieved or not. 

In the case of F127-NP-2 (Figure 1), three new signals appear in the 1H-NMR spectrum 

with respect to Pluronic© F-127. A multiplet integrating for 4 H at 4.41 ppm, which 

corresponds to PPO block protons directly linked to the carbonate group, is observed, 

since these hydrogen atoms are no more similar to those of the rest of the PPO chain. In 
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addition, two signals, integrating for 4 H each one, appear at 7.39 ppm and 8.27 ppm. 

These signals correspond to the hydrogen atoms of the aromatic ring.  

The correct synthesis of F127-C-2 can be checked by the displacement of the multiplet 

from 4.41 ppm to 4.21 ppm (Figure 1), due to the transformation of the carbonate group 

to a carbamate one, as well as by the disappearance of the two signals at 7.39 ppm and 

8.27 ppm corresponding to the aromatic protons. In addition, a broad signal appears at 

5.51 ppm. This signal corresponds to the N-H protons of the carbamate group.  

Finally, the 1H-NMR spectrum of F127-A-2 (Figure 1) shows three new doublets of 

doublets integrating for 2 H each one between 5.84 ppm and 6.44 ppm. These signals 

are characteristic of acrylate groups, and their correct integration confirms the complete 

functionalization.  

Pluronic© F-127 derivatives were also characterized by means of 13C-RMN. However, 

some of the characteristic peaks corresponding to the functionalization of the ends of 

the chain were difficult to observe. Specially, the signal corresponding to the carbonyl 

carbon atoms was very weak and difficult to assign. 

 

Figure 1. 1H-NMR spectra of F127-NP-2, F127-C-2 and F127-A-2 in CDCl3 (400 MHz).The 

assignment of each signal is detailed in the Annexes. 

F127-A-2

F127-C-2

F127-NP-2
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In addition to NMR, FT-IR has been used to follow the reactions. The FT-IR spectra of 

F127-NP-2, F127-C-2 and F127-A-2 are shown in Figure 2. The peak corresponding to 

the stretching vibration of the C=O bond provides useful information to determine if the 

carbonate group of F127-NP-2 has been replaced by a carbamate group in F127-C-2 

and F127-A-2. In F127-NP-2, this peak appears at 1765 cm-1, whereas in F127-C-2 and 

F127-A-2, the peaks are shifted to lower wavenumbers: 1722 cm-1 and 1728 cm-1 

respectively. Moreover, the presence of hydroxyl groups at both ends of the chain can 

also be observed in the FT-IR spectrum. Pluronic© F-127 and F127-C-2 present 

hydroxyl-terminated chains. Thus, a wide signal is observed from 3500 to 3200 cm-1. 

These signals, which correspond to the stretching of the O-H bond in hydroxyl groups, 

are not observed in the spectra of F127-NP-2 and F127-A-2.  

 

Figure 2. IR spectra of F127-NP-2, F127-C-2 and F127-A-2 (neat on NaCl). Presence and 

absence of the O-H stretching band and displacement of the stretching C=O vibration for each 

compound. 
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3.1.2. Synthesis and characterization of the hybrid dendritic-linear-dendritic Pluronic® 

F127 derivative, F127-A-4. 

The synthetic route followed to obtain F127-A-4 consists of several steps detailed in 

Scheme 3. 

 

Scheme 3. Synthetic route to obtain F127-A-4. 
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Starting from commercial Pluronic© F-127, the reaction with benzylidene-2,2-

bis(oxymethyl) propionic anhydride gave rise to F127-Bn-2[16]. This anhydride was 

previously synthesized from commercial 2,2-bis(hydroxymethyl) propionic acid, which 

was first made react with benzaldehyde dimethyl acetal to protect the hydroxyl groups 

and subsequently condensed to obtain the respective anhydride. The hydroxyl groups of 

F127-Bn-2 were deprotected by means of hydrogenation with H2 catalyzed by Pd/C to 

obtain F127-OH-4.  

The incorporation of the bis-MPA dendritic structure at the end of the polymeric chains 

increased the number of terminal hydroxyl groups from two to four. Then, the same 

synthetic route as in the case of the linear derivative was followed: the reaction of F127-

OH-4 with p-nitrophenyl chloroformate gave rise to F127-NP-4. The carbamate group 

of F127-C-4 was obtained through reaction of F127-NP-4 with ethanolamine. In both 

reactions, the conditions were adjusted in order to incorporate the four functional 

groups. Finally, the introduction of acrylate groups was attempted.  

Unlike in the case of the linear derivative, the complete functionalization was not 

achieved for the hybrid dendritic-linear-dendritic Pluronic© F-127 derivative. The 

reaction conditions optimized for the linear derivative were applied to obtain F127-A-4. 

In addition, both trimethylamine and acryloyl chloride, the reactants used during the 

acrylation process, were distilled too. Moreover, the reaction time was increased up to 

three days. Nevertheless, only partial acrylation was accomplished, even under dry 

conditions, at high reactant concentrations and long reaction times. The number of 

acrylate groups introduced during the reaction was not reproducible. At best, a 

functionalization of the 60 % was achieved, as determined by the integration of the 

characteristic signals of acrylate groups in the 1H-NMR spectrum (see Annexes). As a 

consequence of these results, only F127-A-2 has been used for posterior studies of this 

master project. 

The characterization of all the compounds obtained during the synthetic process was 

similar to that of the linear derivative. 1H-NMR and FT-IR were used to confirm the 

presence of the functional groups in each step of the synthesis (see Annexes).  
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3.2. Preparation of CLPMs 

3.2.1. Critical Micelle Concentration determination. 

The Critical Micelle Concentration is a characteristic value of amphiphilic materials that 

defines the concentration above which they start to self-assemble forming micelles in a 

solvent. When F127-A-2 is placed in water, the lipophilic chains interact with 

themselves to form the core and the hydrophilic parts are extended towards the aqueous 

solution. The lipophilic core is formed by the PPO block, whereas the hydrophilic 

chains are the PEO blocks. The determination of the CMC in water was required since 

the posterior photopolymerization process were performed at concentrations above this 

value, ensuring the formation of the aggregates. 

For the determination of the CMC in water, the pyrene method[17] was carried out. This 

method is based on the difference in the excitation spectrum of pyrene depending on 

whether it is in a hydrophilic environment (λexc máx=332 nm) or in a lipophilic 

environment (λexc máx=335 nm). Therefore, in copolymer water solutions below the 

CMC, pyrene will be in a hydrophilic environment, whereas for copolymer 

concentrations above the CMC, pyrene, which is a lipophilic molecule, will be 

encapsulated within the lipophilic core of the self-assembled micelles. Accordingly, the 

encapsulation of pyrene shifts its excitation maximum from 332 nm to 335 nm. 

Representing the intensities ratio -I335/I332- versus the polymer concentration logarithm 

(logC), the CMC can be determined by calculating the intersection between the two 

linear domains of the graph (Figure 3). 

 

Figure 3. Plot of the excitation maxima intensities ratio of pyerene vs F127-A-2 concentration 

for CMC calculation. 
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To obtain this graph, solutions of F127-A-2 of concentrations 0.0001, 0.001, 0.01, 0.05, 

0.1, 0.3, 0.5 and 1 % (w/v) were prepared (1 % (w/v) is equal to 10 mg/mL). A pyrene 

solution was added to obtain a final pyrene concentration of 6·10-8 M, and the excitation 

spectra from 300 to 350 nm and λem=390 nm was recorded. Temperature strongly 

affects the CMC value, so the sample’s preparation and the measurements were carried 

out at 25⁰C. 

The CMC for F127-A-2 was 0.025 % (w/v). This value is much lower than that of 

Pluronic© F-127, which has a CMC of 0.25 % (w/v). The decrease in one order of 

magnitude of the CMC value for F127-A-2 with respect to commercial Pluronic may be 

due to the effect of the presence of carbamate groups in the chain’s end that favors the 

formation of hydrogen bonding interactions. These interactions can make the micelles 

more stable, decreasing the minimum concentration above which the block copolymer 

starts to self-aggregate. 

3.2.2. Photopolymerization of self-assembled micelles. 

CLPMs were prepared by means of UV photopolymerization of the reactive acrylate 

groups in distilled water solution containing the block copolymer F127-A-2 and the 

commercial photoinitiator Irgacure 2959. After polymerization, these micelles in 

solution provided crosslinked nanoparticles that contain lipophilic and hydrophilic 

domains. 

In order to study the relationship between the copolymer concentration on the size and 

on the load capacity of the obtained crosslinked nanoparticles, solutions of 1.4% (w/v), 

0.77% (w/v) and 0.50% (w/v) of the copolymer were used to perform the 

photopolymerization process. All these concentrations are above the CMC, so that they 

ensure the self-assembly forming micelles that are necessary for the subsequent 

formation of the crosslinked nanoparticles. Hereinafter, photopolymerized CLPMs at 

the different concentrations will be named as F127-A-2-05, F127-A-2-077 and F127-A-

2-140. 

The photopolymerization process was performed by irradiating the corresponding 

solution with UV light (λ=365 nm) at 25⁰C (The photopolymerization system is 

depicted in the Annexes). Then, the solutions were dialyzed (MWCO 300,000 

membrane) at 4⁰C in order to disaggregate the non-photopolymerized micelles and 
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remove them as the free monomer. In addition, aggregates of sizes smaller than 30 nm 

were removed too. Finally, the solutions were filtered through a 0.2 µm filter to 

eliminate the aggregates of sizes bigger than 200 nm. 

After the photopolymerization, the yield of the process, as well as the final 

concentration of F127-A-2-05, F127-A-2-077 and F127-A-2-140 samples were 

determined by lyophilizing a small aliquot. The yield of the photopolymerization was 

33.7%, 34.5% and 32.7% respectively. The final concentration was 1.87 mg/mL, 2.33 

mg/mL and 4.20 mg/mL, respectively. 

 

3.3. Morphological characterization of the CLPMs 

3.3.1. Dynamic Light Scattering. 

In order to determine the particle size of the CLPMs, DLS experiments were performed. 

These measurements were made at two temperatures in order to observe whether F127-

A-2-077 and F127-A-2-140 presented thermoresponsive properties. The experimental 

data is detailed in Table 1. 

Table 1. Average size and size range of F127-A-2 photopolymerized at different concentrations. 

Sample Average Size (nm) 

(25°C) 

Size Range (nm) 

(25°C) 

Average Size (nm) 

(37°C) 

Size Range (nm) 

(37°C) 

F127-A-2-05 328.7 24.3-712.4 277.5 18.17-615.1 

F127-A-2-077 128.5 24.4-255.0 105.0 21.04-220.2 

F127-A-2-140 160.1 37.8-295.3 149.0 18.17-255.0 

 

Regarding the results, several conclusions can be drawn. Firstly, micelles from the 

lowest concentration, F127-A-2-05, presented a much larger average size than F127-A-

2-077 and F127-A-2-140, and, surprisingly, also particles of sizes up to 700 nm. In fact, 

these sizes do not correspond to those expected for this sample because they were 

filtered through a 0,2 µm filter before the characterization by DLS. Thus, particles 

higher than 200 nm should not be observed. The explanation to this phenomenon may 

be that F127-A-2-05 samples did not form highly crosslinked aggregates, due to the low 

concentration of the reactive polymer. Therefore, aggregates were present in a dynamic 

equilibrium, so that the particles can be disaggregated to pass through the filter and then 
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form again the bigger aggregates observed by DLS. On the other hand, F127-A-2-077 

(128 nm) and F127-A-2-140 (160 nm) do not present that high particle sizes, 

confirming that the photopolymerization process was successfully accomplished and 

bigger aggregates were removed by means of filtration through the 0.2 µm filter. 

Accordingly, only F127-A-2-077 and F127-A-2-140 samples were used for further 

studies. 

Secondly, an increase of the average size was observed when increasing the 

concentration of the polymer during the photopolymerization process from 0.77 % 

(w/v) to 1.40 % (w/v). 

In addition, both types of CLPMs presented a contraction of their volume when the 

temperature was increased to 37°C for F127-A-2-077 (105 nm) and F127-A-2-140 (149 

nm). The size decrease was higher for F127-A-2-12-077 than for F127-A-2-140. One 

reason for this effect may be that the higher amount of polymer in F127-A-2-140 favors 

more compact structures during photopolymerization, and the obtained CLPMs are less 

susceptible of undergoing shrinkage when increasing the temperature. 

3.3.2. Scanning Electron Microscopy and Transmission Electron Microscopy 

In order to analyze the morphology and size of F127-A-2-077 and F127-A-2-140 

CLPMs, SEM and TEM experiments were carried out.  

In both cases, SEM images (Figures 4a and 4b) showed spherical and ovoid 

nanoparticles ranging from 35 to 130 nm. Particles of every size within this range were 

observed, although 70 to 110 nm were the predominant sizes. This wide size 

distribution corresponds to that observed in DLS experiments. The smaller sizes 

observed by this technique in comparison with those obtained by DLS can be explained 

because in the latter, the device detects the hydrodynamic radius of the particles, which 

includes the molecules of water surrounding the polymeric aggregate. In addition, the 

intensity method magnifies the signal corresponding to the biggest particles, and this 

effect may distort the average size of the population. Besides, SEM images were 

acquired under high vacuum conditions, and during the evacuation of the SEM chamber 

water molecules entrapped within the hydrophilic shell of the CLPMs were evaporated, 

causing a contraction that may decrease the observed size of the nanoparticles. 
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Figure 4a. SEM image of F127-A-2-12-077 

CLPMs. 

Figure 4b. SEM image of F127-A-2-140 CLPMs. 

 

TEM images (Figures 5a and 5b) showed spherical nanoparticles ranging from 22 to 

150 nm for F127-A-2-077 and from 26 to 141 nm for F127-A-2-140. These results are 

very similar to those observed in SEM experiments. Sizes observed by TEM were also 

smaller than DLS sizes, since this type of experiments are carried out at ultra-high 

vacuum too, evaporating the water surrounding the polymeric nanoparticles and 

producing the contraction of the hydrophilic shell before the acquisition of the images.  

  

Figure 5a. TEM image of F127-A-2-077 CLPMs. Figure 5b. TEM image of F127-A-2-140 CLPMs. 
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3.4. Drug encapsulation experiments 

In order to study the properties of the CLPMs as nanocarriers for drug delivery 

applications, two different compounds were encapsulated: Camptothecin (CPT), a 

liposoluble drug, and Chloroquine (CQ), a hydrosoluble one. The chemical structure of 

both drugs is depicted in Figures 6a and 6b. 

 
 

Figure 6a. Chemical structure of CPT. Figure 6b. Chemical structure of CQ. 

 

3.4.1. Encapsulation of Camptothecin. 

Camptothecin is a poorly water-soluble drug that exhibits remarkable activity against 

different types of cancer[18]. In addition, it has been recently described as a potent 

antiviral agent for HCV[19]. However, CPT presents some drawbacks that limit its 

application in medicine, i.e. very low water solubility and chemical instability due to 

hydrolysis of its lactone ring under physiological conditions. 

F127-A-2-077 and F127-A-2-140 CLPMs were tested as nanocarriers for the 

encapsulation of CPT. The solvent diffusion method[20] was used in order to 

encapsulate CPT. Commercial CPT was dissolved in DMSO and added to a 1mg/mL 

solution of CLPMs in distilled water. The mixtures were mechanically stirred at room 

temperature to ensure the correct encapsulation of CPT within the CLPMs. Then, the 

mixtures were dialyzed against water in order to remove the DMSO, causing 

precipitation of non-encapsulated CPT. The samples were filtered through a 0.45 µm 

PVDF filter, removing non-encapsulated CPT. Two aliquots were lyophilized, 

redissolved in DMSO and encapsulated CPT was quantified by fluorescence emission 

spectrum (λmax=436 nm in DMSO, λexc=368 nm). The fluorescence calibration curve is 

depicted in the Annexes. The load capacities and encapsulation efficiencies are detailed 

in Table 2. As it can be seen, load capacity of F127-A-2-077 and F127-A-2-140 

CLPMs was very similar (around 0.46 µg/mg).  
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Table 2. Camptothecin load capacity and encapsulation efficiency of F127-A-2 CLPMs. 

Sample Load capacity (µg CPT / mg CLPM) Encapsulation efficiency (% w) 

F127-A-2-077 0.475 0.36 

F127-A-2-140 0.444 0.34 

 

Additionally, preliminary studies of drug release for these materials were performed. 

When loaded CLPMs were dialyzed for a week, encapsulated CPT was completely 

released, not observing any emission in the fluorescence spectrum.  

3.4.2. Encapsulation of Chloroquine. 

Chloroquine is a water-soluble drug mainly used to prevent and to treat malaria, as well 

as in cancer therapy[21],[22],[23].  

F127-A-2-077 and F127-A-2-140 CLPMs were tested for the encapsulation of CQ. In 

this case, due to the good solubility of CQ in water, the solvent/oil water emulsion 

method was employed[20]. A 0.75 mg/mL solutions of CLPMs in distilled water were 

extracted with dichloromethane by means of mechanical stirring. Then, commercial CQ 

disphosphate salt in distilled water was added to the CLPMs solution in 

dichloromethane, and the mixture was mechanically stirred until the organic phase was 

completely evaporated, causing the encapsulation. The final concentration of the 

CLMPs and the CQ was 0.50 mg/mL. 

Solutions were dialyzed against distilled water overnight in order to remove the non-

encapsulated CQ. Encapsulated CQ was indirectly quantified by measuring the UV-vis 

absorbance of the dialysis waters. The UV-vis calibration curve is depicted in the 

Annexes. The load capacities and encapsulation efficiencies are detailed in Table 3. 

Table 3. Chloroquine load capacity and encapsulation efficiency of F127-A-2 CLPMs. 

Sample Load capacity (µg CQ / mg CLPM) Encapsulation efficiency (% w) 

F127-A-2-077 135.8 23.9 

F127-A-2-140 293.5 45.4 

 

In addition, the load capacity of F127-A-2-140 CLPMs (293.5 µg/mg) was more than 

two times higher than the load capacity of F127-A-2-077 CLPMs. This significant 
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increase in the load capacity may be produced by the higher size of the F127-A-2-140 

CLPMs, since larger particles will have a larger hydrophilic shell, being able to 

encapsulate more drug amount. 

 

CLPMs of F127-A-2 were proved to have a good load capacity for the encapsulation 

of hydrosoluble compounds, like CQ. On the other hand, liposoluble compounds, e.g. 

CPT, were poorly encapsulated. This effect may be due to the higher availability of 

the hydrophilic shell in comparison with the lipophilic core. Thus, the encapsulation of 

hydrosoluble drugs is easier since they do not have to penetrate to the core.  

Moreover, it is known that Pluronic® F-127 derivatives can form hydrogels at high 

polymer concentrations[24]. Thus, CLPMs could behave as nanostructured hydrogels, i.e. 

nanogels, entrapping a large amount of water within the polymeric network. Since CQ 

is a hydrosoluble compound, the presence of water in the interior of the CLPMs could 

increase the load capacity whereas this effect will not occur for a liposoluble compound 

like CPT. 

 

3.5. In-vitro anti-HCV studies 

In order to study the possibility of the CLPMs to act as nanocarriers for anti-HCV 

drugs, cytotoxicity and anti-HCV effectiveness experiments were carried out with 

camptothecin encapsulated in F127-A-2-077 CLPMs[25]. These experiments were made 

in collaboration with researchers from the Institute for Biocomputation and Physics of 

Complex Systems (BIFI). 

Cytotoxicity of free CPT, encapsulated CPT and CLPMs was determined by cell 

metabolism assays, adding increasing amounts of free CPT, encapsulated CPT and 

CLPMs to HuH52 cells. 

To determine the anti-HCV effectiveness of encapsulated CPT, HCV replicon inhibition 

was monitored. The HCV replicon incorporated a DNA fragment responsible for 

producing a luciferase protein. Therefore, inhibition of the HCV virus replication can be 

observed by means of the decrease in luminescence of the cell culture. 
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Experimental conditions were conditioned by the low CPT encapsulation level in the 

CLPMs, so that the amount of water solution containing the CLPMs which was added 

to the cell culture was very high, diluting culture medium. As a consequence cells did 

not have a sufficient amount of nourishment, decreasing the cell viability. 

Cytotoxicity of free CPT and encapsulated CPT is detailed in Figure 7 As it can be 

observed, encapsulated CPT presented higher cell viabilities in comparison with free 

CPT at low CPT concentrations, whereas cytotoxicity of both samples was almost the 

same at high CPT concentrations. In addition, CLPMs always presented cell viabilities 

above 80%. 

Anti-HCV effectiveness experiments were also performed. Unfortunately, due to the 

high amount of encapsulated CPT-containing solution that was added to the cell culture, 

these experiments did not offered conclusive results. New experiments have to be 

carried out in order to determine whether encapsulated CPT has anti-viral effects or not. 

 

Figure 7. Cell titter experiment for CPT and F127-A-2-077 CLPMs. 
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4. EXPERIMENTAL SECTION 

4.1. Synthesis of the linear Pluronic derivative 

·Synthesis of F127-NP-2 

 

Pluronic® F127 (5 g, 0.40 mmol, 1.00 eq.) was dried at 100⁰C for 2h and dissolved in 

15 mL of dry dichloromethane. 4-nitrophenyl chloroformate (640 mg, 3.18 mmol, 7.95 

eq.) was dissolved in 5 mL of dry dichloromethane and slowly added. Finally, pyridine 

(0.4 mL, 4.96 mmol, 12.50 eq.) was added dropwise, forming a white precipitate. The 

reaction mixture was stirred at room temperature under Ar atmosphere overnight. The 

crude was dissolved in 100 mL of dichloromethane and it was washed twice with 150 

mL of NaHSO4 1M and with 150 mL of brine. The organic phase was dried over 

MgSO4 and concentrated at reduced pressure. The product was precipitated in 300 mL 

of cold diethyl ether and stored in the refrigerator overnight, filtered and washed with 

cold diethyl ether to obtain a white powder. Yield: 78%. Mass: 3.91 g. 

1H-RMN (400 MHz, CDCl3) δ (ppm): 1.10-1.14 (m, 201 H), 3.33-3.70 (m, ~1100H), 

3.78-3.82 (m, 8H), 4-40-4.44 (m, 4H), 7.38 (d, J=9.2 Hz, 4H), 8.27 (d, J=9.2 Hz, 4H). 

FT-IR (neat on NaCl, cm-1): 2864 (ν C-H), 1770 (ν C=O carbonate), 1454 (δ C-H), 1100 

(ν C-O-C). 

 

·Synthesis of F127-C-2 

 

F127-NP-2 (4.26 g, 0.34 mmol, 1.00 eq.) was dried at 100⁰C for 2h and dissolved in 15 

mL dry dichloromethane. Ethanolamine (80 mg, 1.31 mmol, 3.85 eq.) was solved in 10 

mL and slowly added, turning the solution yellow. The reaction mixture was stirred at 

room temperature under Ar atmosphere overnight. The product is precipitated in 200 
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mL of cold diethyl ether, stored in the refrigerator overnight, filtered and washed with 

cold diethyl ether to obtain a white powder. Yield: 78%. Mass: 3.30 g. 

1H-RMN (400 MHz, CDCl3) δ (ppm): 1.11-1.15 (m, 201 H), 3.30-3.82 (m, ~1100H), 

4.20-4.25 (m, 4H), 5.42-5.60 (bs, 2H). 

FT-IR (neat on NaCl, cm-1): 3670-3250 (ν O-H), 2870 (ν C-H), 1722 (ν C=O), 1454 (δ 

C-H), 1107 (ν C-O-C). 

 

·Synthesis of F127-A-2 

 

F127-C-2 (1g, 0.079 mmol, 1.00 eq.) was dried at 150⁰C with vacuum and dissolved in 

8 mL of dry dichloromethane. 4-methoxyphenol (130 mg) was added. Triethylamine 

(0.115 mL, 0.83 mmol, 10.50 eq.) was slowly added and the reaction mixture was 

cooled down at 0⁰C and protected from light. After 15 minutes, acryloyl chloride (0.06 

mL, 0.74 mmol, 9.40 eq.) was very slowly added, and the reaction mixture was stirred 

under Ar atmosphere for 48h. The crude is passed through a neutral alumina column, it 

was precipitated in 10 mL of cold diethyl ether, stored in the refrigerator overnight, 

filtered and washed with cold diethyl ether to obtain a white powder. Yield: 49%. Mass: 

485 mg. 

1H-RMN (400 MHz, CDCl3) δ (ppm): 1.11-1.14 (m, 201 H), 3.32-3.82 (m, ~1100H), 

4.19-4.25 (m, 8H), 5.12-5.21 (bs, 2H), 5.86 (dd, Jcis=10.4 Hz, Jgem= 1.4 Hz, 2H), 6.11 

(dd, Jtrans=17.2 Hz, Jcis= 10.4 Hz, 2H), 6.42 (dd, Jtrans=17.2 Hz, Jgem= 1.4 Hz, 2H). 

FT-IR (neat on NaCl, cm-1): 2882 (ν C-H), 1722 (ν C=O), 1467 (δ C-H), 1107 (ν C-O-

C). 
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4.2. Synthesis of the hybrid dendritic-linear-dendritic Pluronic derivative 

·Synthesis of Benzylidene-2,2-bis(oxymethyl)propionic acid 

 

2,2-Bis(hydroxymethyl)-propionic acid (20 g, 149 mmol, 1.00 eq.), benzaldehyde 

dimethyl acetal (33.6 mL, 224 mmol, 1.50 eq.) and p-toluenesulfonic acid monohydrate 

(1.42 g, 7.45 mmol, 0.05 eq.) were dissolved in 150 mL of dry acetone. The reaction 

mixture was stirred at room temperature under Ar atmosphere for 4h and then it was 

stored in the refrigerator overnight. The precipitate was filtered and washed with cold 

acetone to obtain a white powder. Yield: 59%. Mass: 19.55 g. 

1H-RMN (400 MHz, CDCl3) δ (ppm): 1.11 (s, 3H), 3.70 (d, J=11.6 Hz, 2H), 4.64 (d, 

J=11.6 Hz, 2H), 5.49 (s, 1H), 7.33-7.38 (m, 3H), 7.45-7.50 (m, 2H). 

13C-RMN (100 MHz, CDCl3): δ (ppm): 17.7, 42.2, 73.4, 101.9, 126.1, 128.3, 129.1, 

137.5, 178.8. 

FT-IR (ATR, cm-1): 3005 (ν OH), 2875 (ν C-H), 1696 (ν C=O). 

 

·Synthesis of Benzylidene-2,2-bis(oxymethyl)propionic anhydride 

 

Benzylidene-2,2-bis(oxymethyl)propionic acid (6 g, 27 mmol, 1.00 eq.) was dissolved 

in 80 mL of dry dichloromethane. N,N´-Dicyclohexylcarbodiimide (3.06 g, 14.85 

mmol, 0.55 eq.) dissolved in 10 mL of dry dichloromethane was slowly added. The 

reaction mixture was stirred at room temperature under Ar atmosphere overnight. A 

white precipitate appeared and it was filtered off and washed with a small amount of 

dichloromethane. The organic phase was concentrated at reduced pressure and the 

product was precipitated into 700 mL of cold hexane. The precipitate was stored at the 
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refrigerator overnight and it was filtered and washed with cold hexane to obtain a white 

powder. Yield: 95%. 

1H-RMN (400 MHz, CDCl3) δ (ppm): 1.12 (s, 6H), 3.69 (d, J=11.6 Hz, 4H), 4.66 (d, 

J=11.6 Hz, 4H), 5.47 (s, 2H), 7.31-7.35 (m, 6H), 7.43-7.48 (m, 4H). 

13C-RMN (100 MHz, CDCl3): δ (ppm): 16.8, 44.2, 73.2, 102.1, 126.3, 128.2, 129.3, 

137.6, 169.1. 

FT-IR (ATR, cm-1): 2875 (ν C-H), 1816 (ν C=O symmetric), 1746 (ν C=O asymmetric). 

 

·Synthesis of F127-Bn-2 

 

Pluronic® F127 (10 g, 0.79 mmol, 1.00 eq.) was dried at 100⁰C for 2h and dissolved in 

20 mL of dry dichloromethane. 4-Dimethylaminopyridine (320 mg, 2.54 mmol, 3.22 

eq.) and 2,2-bis(oxymethyl)propionic anhydride (2.71 g, 6.35 mmol, 8.00 eq.) were 

added and the reaction mixture was stirred at room temperature under Ar atmosphere 

overnight. 4 mL of methanol were added and the reaction mixture was stirred for 6h in 

order to quench the reaction. Then, it was precipitated in 1 L of cold diethyl ether and 

stored in the refrigerator overnight, filtered and washed with cold diethyl ether to obtain 

a white powder. Yield: 92%. Mass: 9.45 g.  

1H-RMN (400 MHz, CDCl3) δ (ppm): 1.03 (s, 6H), 1.10-1.14 (m, 201H), 3.37-3.80 (m, 

~1100H), 4.34 (t, J=6.0 Hz, 4H), 4.66 (d, J=11.6 Hz, 4H), 5.43 (s, 2H), 7.29-7.33 (m, 

6H), 7.39-7.44 (m, 4H). 

FT-IR (neat on NaCl, cm-1): 2882 (ν C-H), 1742 (ν C=O, ester), 1107 (ν O-C-O).  
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·Synthesis of F127-OH-4 

 

F127-Bn-2 (6 g, 0.48 mmol, 1.00 eq.) was dried at 100⁰C for 2h and dissolved in 150 

mL of ethyl acetate and three vacuum-argon cycles were made. Pd/C (300 mg, 10% 

(w/w)) was added and another three vacuum-argon cycles were made. Finally, three 

vacuum-hydrogen cycles were made and the reaction mixture was stirred at room 

temperature under hydrogen atmosphere overnight. Pd/C was filtered with Celite® and 

the filtrate was evaporated to obtain a white powder. Yield: 95%. Mass: 5.68 mg. 

1H-RMN (400 MHz, CDCl3) δ (ppm): 1.11 (s, 6H), 1.11-1.15 (m, 201 H), 3.34-3.75 (m, 

~1100H), 4.31-4.34 (m, 4H). 

FT-IR (neat on NaCl, cm-1): 3750-3400 (ν O-H), 2877 (ν C-H), 1739 (ν C=O), 1466 (δ 

C-H), 1107 (ν C-O-C). 

 

·Synthesis of F127-NP-4 

 

F127-OH-4 (2.3 g, 0.18 mmol, 1.00 eq.) was dried at 100⁰C for 2h and dissolved in 20 

mL of dry dichloromethane. 4-nitrophenyl chloroformate (600 mg, 2.98 mmol, 16.2 eq.)  

was dissolved in 5 mL of dry dichloromethane and slowly added. Finally, pyridine 

(0.805 mL, 9.98 mmol, 32.81 eq.) was added dropwise, forming a white precipitate. The 

reaction mixture was stirred at room temperature under Ar atmosphere overnight. The 

crude was dissolved in 40 mL of dichloromethane and it was washed twice with 30 mL 

of NaHSO4 1M and with 30 mL of brine. The organic phase was dried over MgSO4 and 

concentrated at reduced pressure. The product was precipitated in 300 mL of cold 

diethyl ether and stored in the refrigerator overnight, filtered and washed with cold 

diethyl ether to obtain a white powder. Yield: 78%. Mass: 1.80 g. 
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1H-RMN (400 MHz, CDCl3) δ (ppm): 1.06-1.21 (m, 201H), 1.38 (s, 6H), 3.32-3.80 (m, 

~1100H), 4.34 (t, J=4.4 Hz, 4H), 4.46 (d, J=10.8 Hz, 4H), 4.57 (d, J=11.2 Hz, 4H), 7.36 

(d, J=9.2 Hz, 8H), 8.25 (d, J=8.8 Hz, 8H). 

FT-IR (neat on NaCl, cm-1): 2881 (ν C-H), 1770 (ν C=O carbonate), 1465 (δ C-H). 

 

·Synthesis of F127-C-4 

 

F127-NP-4 (1.75g, 0.13 mmol, 1.00 eq.) was dried at 100⁰C for 2h and dissolved in 12 

mL dry dichloromethane. Ethanolamine (47 mg, 0.77 mmol, 5.92 eq.) was solved in 3 

mL of dry dichlorometane and slowly added, turning the solution yellow. The reaction 

mixture was stirred at room temperature under Ar atmosphere overnight. The product 

was precipitated in 150 mL of cold diethyl ether, stored in the refrigerator overnight, 

filtered and washed with cold diethyl ether to obtain a white powder. Yield: 72%. Mass: 

1.26 g. 

1H-RMN (400 MHz, CDCl3) δ (ppm): 1.06-1.17 (m, 201H), 1.22 (s, 6H), 3.24-3.31 (m, 

8H), 3.36-3.81 (m, ~1100H), 4.16-4.31 (m, 12H), 5.62-5.77 (bs, 4H) 

FT-IR (neat on NaCl, cm-1): 3594-3220 (ν O-H), 2874 (ν C-H), 1726 (ν C=O), 1465 (δ 

C-H). 
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·Synthesis of F127-A-4 

 

F127-C-4 (1.20 g, 0.091 mmol, 1.00 eq.) was dried at 160⁰C with vacuum and 

dissolved in 10 mL of dry dichloromethane. 4-methoxyphenol (250 mg) was added. 

Triethylamine (0.162 g, 1.60 mmol, 17.60 eq.) was slowly added and the reaction 

mixture was cooled down at 0⁰C and protected from light. After 15 minutes, acryloyl 

chloride (0.132 g, 1.46 mmol, 16.00eq.) was very slowly added, and the reaction 

mixture was stirred under Ar atmosphere for 48h. The crude is passed through a neutral 

alumina column, it was precipitated in 10 mL of cold diethyl ether, stored in the 

refrigerator overnight, filtered and washed with cold diethyl ether to obtain a white 

powder.  

The 1H-NMR spectrum of the partially functionalized compound is depicted in the 

Annexes. 

 

4.3. Critical Micelle Concentration determination 

Solutions of 1.00% (w/v), 0.50% (w/v), 0.30% (w/v), 0.10% (w/v), 0.05% (w/v), 0.01% 

(w/v), 0.001% (w/v) and 0.0001% (w/v) of the block copolymer in distilled water were 

prepared in order to carry out the CMC determination. Solutions from 1% (w/v) to 0.1% 

(w/v) were obtained by direct dissolution of the material in distilled water, whereas 

solutions from 0.05% (w/v) to 0.0001% (w/v) were obtained by dilution from solutions 

of higher concentration. All the solutions were kept at 4°C for 4h. 

A 1.2·10-5 M pyrene solution was prepared by dissolving 0.485 mg of pyrene in 200 mL 

of distilled water. Due to the low solubility of pyrene in water, it was previously 

dissolved in 2 mL of acetone and added to 200 mL of distilled water. Finally, acetone 

was removed at reduced pressure for 4 hours. 
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10 µL of the pyrene solution were added to the block copolymer solutions, so that the 

final pyrene concentration within the water solutions was 6·10-8 M. The solutions were 

incubated at 25°C and protected from light for one hour. 

The fluorescence spectra of the solutions were recorded from 300 to 350 nm and 

λemission=390 nm. In order to study the self-aggregation of the materials, intensities at 

λ=332 nm and λ=335 nm for all the solutions were measured. A representation of the 

intensities ratio versus the block copolymer concentration was depicted to determine the 

CMC. 

 

4.4. Photopolymerization of self-assembled micelles 

A 10% (w/v) solution of the block copolymer was prepared by dissolving the solid 

block copolymer in distilled water containing 0.10% (w/v) of the commercial 

photoinitiator Irgacure 2959. This solution was kept overnight at 4⁰C in order to ensure 

a complete and homogeneous dissolution of the material. 

The solution was filtered through a 0.2 µm filter of cellulose acetate to remove 

suspended particles. 

From this 10% (w/v) solution, solutions of 1.4% (w/v), 0.77% (w/v) and 0.50% (w/v) 

were prepared by diluting with an aqueous solution containing 0.1% (w/v) of Irgacure 

2959 previously filtered. 

These solutions were kept at room temperature for 1h to reach the equilibrium. 

5 mL of these block copolymer solutions were placed in a cylindrical 5 cm diameter 

glass vessel and photopolymerized by irradiating with UV light (λ=365 nm) for 10 

minutes with 8 cm distance between the glass vessel and the lamp. The 

photopolymerization was carried out at 25⁰C. The temperature was controlled by means 

of a hotplate, on which the glass vessel was placed. 

The photopolymerized solutions were dialyzed against distilled water at 4⁰C for 24h 

using a cellulose acetate membrane Spectra/Por® Biotech MWCO 300,000 (Spectrum) 

with a pore size of 30 nm. The dialysis was carried out to purify the CLPM by removing 

the unreacted remaining molecules of the block copolymer.  
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Finally, the dialyzed solutions were filtered again with a 0.2 µm cellulose acetate filter 

to remove aggregates of sizes bigger than 200 nm. 

 

4.5. Encapsulation of Camptothecin 

1mg/mL CPT solution in DMSO was prepared from commercial solid CPT. 

Solutions of F127-A-2-077 and F127-A-2-140 at 1 mg/mL were prepared by diluting 

the CLPMs solutions obtained after the polymerization process. 

To 2 mL of these solutions, 700 µL of DMSO and 300 µL of CPT 1 mg/mL in DMSO 

were added, so that the final solution presents a VDMSO:VH2O ratio of 0.5 and a 

mCPT:mF127-A-2 ratio of 0.15. Then, these solutions were incubated at room temperature 

for 24 hours. 

DMSO was eliminated by dialysis (Spectra/Por MWCO 2000, Spectrum) for 3 days.  

Dialyzed samples were filtered through 0.45 µm PVDF filters in order to eliminate non-

encapsulated CPT.  

Encapsulated CPT quantification was directly carried out by taking 100 µL the filtered 

solutions, lyophilizing them and re-dissolving them in a known DMSO volume. Then, 

CPT was quantified by fluorescence emission spectrum (λmax=436 nm in DMSO with 

λexc=368 nm) by using a calibration curve in the concentration range from 11.2 to 39.2 

µg/mL in DMSO. 

 

4.6. Encapsulation of Chloroquine 

Solutions of F127-A-2-077 and F127-A-2-140 at 0.75 mg/mL were prepared by 

diluting the CLPMs solutions obtained after the polymerization process. 

1.33 mL of these solutions were added to 2 mL of dichloromethane and the mixture was 

incubated for 15 minutes in order to extract the CLPMs from the aqueous phase and 

dissolve them in the CH2Cl2.  
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A 1.30 mg/mL CQ solution was prepared by dissolving commercial solid chloroquine 

diphosphate in distilled water. 

0.77 mL of the CQ solution were added to the water/CH2Cl2 solution containing the 

CLPMs. Then, in order to remove the CH2Cl2, the new mixtures containing both the 

CLPMs and the drug were mechanically stirred at room temperature until only the 

aqueous phase was observed, so that the final aqueous solution presented a CLPM and 

drug concentration of 0.5 mg/mL. 

These solutions were dialyzed (Slide-A-Lyzes® Dialysis Cassette G2 2000 MWCO, 

Thermo Scientific) for 16 hours in order to remove the non-encapsulated drug. 

Encapsulated CQ quantification was indirectly carried out by taking samples from the 

dialysis waters. Non-encapsulated CQ was determined by measuring the absorbance at 

λ=345 nm and using a calibration curve in the concentration range from 2.5 to 25 

µg/mL in distilled water. Encapsulated CQ was then calculated by subtracting the CQ 

amount present in the dialysis waters to the initial amount of CQ placed in the CLPM 

containing solution. 

 

5. CONCLUSIONS 

The work carried out in this Final Master Project has allowed the following conclusions: 

 The chemical modification of Pluronic® F127 with carbamate-based 

moieties to introduce terminal photopolymerizable acrylate group has 

enabled the preparation of Cross-Linked Polymeric Micelles, CLPMs. 

 The CLPMs present morphologies and sizes, thermosensitive properties, 

drug load capacities and cell viabilities that make them good candidates 

for their application as nanocarriers in drug delivery. 

  

6. REFERENCES 

[1] A. Bernkop-Schnürch, European Journal of Pharmaceutical Sciences 2013, 50, 2-7. 
[2] S. Stolnik, L. Illum, S. S. Davis, Advanced Drug Delivery Reviews 1995, 16, 195-214. 
[3] F. Masood, Materials Science and Engineering: C. 
[4] Y. Li, D. Maciel, J. Rodrigues, X. Shi, H. Tomás, Chemical Reviews 2015, 115, 8564-8608. 



 
 

30 
 

[5] K. Yoncheva, P. Calleja, M. Agüeros, P. Petrov, I. Miladinova, C. Tsvetanov, J. M. Irache, 
International Journal of Pharmaceutics 2012, 436, 258-264. 

[6] M. W. Grinstaff, Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, 383-
400. 

[7] W. I. Choi, G. Tae, Y. H. Kim, Journal of Materials Chemistry 2008, 18, 2769-2774. 
[8] A. Gulzar, S. Gai, P. Yang, C. Li, M. B. Ansari, J. Lin, Journal of Materials Chemistry B 

2015, 3, 8599-8622. 
[9] R. Pelton, Advances in Colloid and Interface Science 2000, 85, 1-33. 
[10] R. Basak, R. Bandyopadhyay, Langmuir 2013, 29, 4350-4356. 
[11] D. A. Chiappetta, A. Sosnik, European Journal of Pharmaceutics and Biopharmaceutics 

2007, 66, 303-317. 
[12] G. Whitton, E. R. Gillies, Journal of Polymer Science Part A: Polymer Chemistry 2015, 

53, 148-172. 
[13] N. Feliu, M. V. Walter, M. I. Montañez, A. Kunzmann, A. Hult, A. Nyström, M. Malkoch, 

B. Fadeel, Biomaterials 2012, 33, 1970-1981. 
[14] I. Jiménez-Pardo, R. González-Pastor, A. Lancelot, R. Claveria-Gimeno, A. Velázquez-

Campoy, O. Abian, M. B. Ros, T. Sierra, Macromolecular Bioscience 2015, 15, 1381-
1391. 

[15] I. Jimenez-Pardo, Doctoral Thesis thesis, University of Zaragoza 2014. 
[16] H. Ihre, O. L. Padilla De Jesús, J. M. J. Fréchet, Journal of the American Chemical Society 

2001, 123, 5908-5917. 
[17] M. Ashjari, S. Khoee, A. Mahdavian, R. Rahmatolahzadeh, J Mater Sci: Mater Med 

2012, 23, 943-953. 
[18] C. Khemtong, C. W. Kessinger, J. Gao, Chemical Communications 2009, 3497-3510. 
[19] X. Li, Q. Wu, Z. Chen, X. Gong, X. Lin, Polymer 2008, 49, 4769-4775. 
[20] C. Pinto Reis, R. J. Neufeld, A. J. Ribeiro, F. Veiga, Nanomedicine: Nanotechnology, 

Biology and Medicine 2006, 2, 8-21. 
[21] J. Movellan, P. Urbán, E. Moles, J. M. de la Fuente, T. Sierra, J. L. Serrano, X. Fernàndez-

Busquets, Biomaterials 2014, 35, 7940-7950. 
[22] P. Agrawal, U. Gupta, N. K. Jain, Biomaterials 2007, 28, 3349-3359. 
[23] P. Melnyk, V. Vingtdeux, S. Burlet, S. Eddarkaoui, M.-E. Grosjean, P.-E. Larchanché, G. 

Hochart, C. Sergheraert, C. Estrella, M. Barrier, V. Poix, P. Plancq, C. Lannoo, M. 
Hamdane, A. Delacourte, P. Verwaerde, L. Buée, N. Sergeant, ACS Chemical 
Neuroscience 2015, 6, 559-569. 

[24] L. Fan, M. Degen, N. Grupido, S. Bendle, P. Pennartz, Materials Science and 
Engineering: A 2010, 528, 127-136. 

[25] aK. J. Blight, J. A. McKeating, C. M. Rice, Journal of Virology 2002, 76, 13001-13014; bV. 
Lohmann, F. Körner, J.-O. Koch, U. Herian, L. Theilmann, R. Bartenschlager, Science 
1999, 285, 110-113; cS. Susser, J. Vermehren, N. Forestier, M. W. Welker, N. Grigorian, 
C. Füller, D. Perner, S. Zeuzem, C. Sarrazin, Journal of Clinical Virology 2011, 52, 321-
327; dA. Urbani, R. Bazzo, M. C. Nardi, D. O. Cicero, R. De Francesco, C. Steinkühler, G. 
Barbato, Journal of Biological Chemistry 1998, 273, 18760-18769. 

 


