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Stereo Parallel Tracking and Mapping for robot localization
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Abstract— This paper describes a visual SLAM system based
on stereo cameras and focused on real-time localization for
mobile robots. To achieve this, it heavily exploits the parallel
nature of the SLAM problem, separating the time-constrained
pose estimation from less pressing matters such as map building
and refinement tasks. On the other hand, the stereo setting
allows to reconstruct a metric 3D map for each frame of
stereo images, improving the accuracy of the mapping process
with respect to monocular SLAM and avoiding the well-known
bootstrapping problem. Also, the real scale of the environment
is an essential feature for robots which have to interact with
their surrounding workspace. A series of experiments, on-line
on a robot as well as off-line with public datasets, are performed
to validate the accuracy and real-time performance of the
developed method.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM)), is a key
skill for any truly autonomous mobile system. The goal of
SLAM is the joint estimation of both the robot’s pose and
a model of its surrounding environment (i.e. the map). This
information is essential for the robot to safely interact within
its workspace. A vast number of SLAM implementations
have appeared over the last decade. Most of the early works
use a laser rangefinder as the main sensor [1]. More recently,
visual sensors have become the dominant choice, either pas-
sive [2] or active [3]. Presently, affordable, small and light,
now-a-day cameras can provide high resolution data in real-
time and virtually unlimited measurement ranges in contrast
to laser rangefinders. Moreover, cameras are passive sensors
and therefore do not interfere with each other when deployed
in the same environment, and unlike Structured light range
sensors (SLRS), they can be used in both indoor and outdoor
environments. These characteristics make cameras an ideal
choice for multi-purpose mobile robotic platforms.

In this work we present a SLAM system using a stereo
camera as the main sensor for robot localization. Stereo
cameras allow to detect the same visual point-landmarks
on a pair of synchronized images, which can be used to
recover their depth information and incrementally build a
sparse point-cloud representation of the environment. They
also allow to compute the real scale of the map, which is
essential for many mobile robot applications. As the robot
moves trough the environment it is possible to track the
visual landmarks frame after frame, and estimate the current
pose within it.
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Following the approach of Parallel Tracking and Mapping
(PTAM) [4], our stereo SLAM system, henceforth referred to
as S-PTAM, also divides the problem into two main parallel
tasks: camera tracking and map optimization. These tasks
are executed in two different threads, only sharing the map
between them. The tracking thread matches features, creates
new points and estimates the camera pose for every new
frame, and the mapping thread iteratively refines the nearby
point-landmarks that compose the map.

S-PTAM was developed from scratch to achieve a Stereo
SLAM system that overcomes the limitations of PTAM when
it comes to robot navigation. The main characteristics of the
system can be described as follows:

o The parallel nature of the SLAM problem is exploited
achieving real-time performance, whilst minimizing
inter-thread dependency.

o A stereo camera is used, avoiding the monocular boot-
strapping problem [5] and allowing to compute the
metric scale of the mapped environment without any
prior information.

« A maintenance process executed in a independent thread
iteratively runs map refinement (Bundle Adjustment)
operations in a local covisible area, which improves
global consistency.

o Although the method may work exclusively on camera
sensors, if odometry is available, it can be used for early
pose prediction and more effective feature matching.

¢ Stereo constraints are enforced on the pose- and map-
refinement algorithms, improving robustness.

o Binary features are used to describe visual point-
landmarks, thus reducing storage requirements and in-
creasing matching speed.

The implementation of S-PTAM is open source and pub-

lically available!. It is built upon the ROS (Robot Operating
System) framework to ease distribution and integration.

II. RELATED WORK

Early stereo works in SLAM were based on probabilistic
approaches like Extended Kalman Filters [6], and Particle
Filters [7]. However, in recent work [8], filter-based ap-
proaches were compared to keyframe-based methods which
used global optimization techniques like Bundle Adjustment,
and the latter ones were found to achieve the best balance
between precision and computational cost.

One of the most actively developed keyframe-based ap-
proaches is PTAM [4]. This method has been widely used to
solve the pose estimation problem in unknown environments
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in several scenarios [9], [10]. While PTAM was originally
presented for monocular systems and Virtual Reality appli-
cations, stereo variants have since been developed. An early
example is FrameSLAM [11], which introduces the idea of
selecting only a subset of frames (skelefon) for mapping,
thus reducing the complexity of map related operations such
as loop closure. However, features are used only for local
visual odometry and discarded afterwards, losing any chance
of performing navigation.

Large-scale environments are tackled in more recent ap-
proaches [12], [13] by proposing strategies based on varia-
tions of the relative Bundle Adjustment [14] method, which
allows for constant-time estimation in terms of map size.
Other recent stereo SLAM works focus on improving the
tracking aspect instead. One example [15] consists in an
improved strategy for selection of points, based on the optical
flow, to be used during tracking which reduces the uncer-
tainty of the camera motion. Finally, [16] presents a modified
version of PTAM, which includes depth information, and is
similar to the approach proposed in this work. However, just
as in the original version of PTAM, the mapper thread creates
new map points after performing a global Bundle Adjustment
on each incoming keyframe. If the map grows large enough,
this causes the tracking to loose any reference to the map,
thus making it unsuitable for large scale environments.

III. METHOD OVERVIEW

S-PTAM starts with the canonical pose that defines the
world reference frame for the system and an empty map
that is initialized by triangulating matching features in the
first pair of stereo images. From then on, the tracking
thread estimates the current robot pose for each new in-
coming stereo frame, minimizing the re-projection error
between features on the images and their corresponding map
points. Occasionally, some frames are strategically selected
(keyframes), which incorporate new points triangulated from
stereo features, thus augmenting the map. They also add
new spatial constraints to the map points, which potentially
improves the accuracy of the model. Simultaneously, the map
refinement thread is constantly trying to minimize the re-
projection error by adjusting all points and keyframes in
a bundle. The map is the only shared resource between
both threads. By increasing the accuracy of the map, future
localization will also be improved. The main tasks of the
method are detailed below.

A. Tracking

Here we describe the sequential four steps taken by the
tracking process on arrival of each new pair of stereo images.

1) Feature extraction: Our visual SLAM method relies on
local image features. These features are matched to existing
map-points and tracked for each frame, or failing that, used
to create new ones by matching stereo correspondences.
As features should be detected and matched from different
viewpoints, descriptors robust to pose changes are required.

Computational cost is also an important factor in the selec-
tion of a particular extractor/descriptor combination.

For the present work, the BRIEF [17] descriptor was
selected for its performance. The lack of rotational invariance
was not considered an issue based on the assumption that the
mobile (ground) robot moves on a locally planar terrain.

The Shi-Tomasi [18] detection algorithm was selected for
extraction. Although the method performs slower than other
state-of-the-art detection algorithms such as FAST [19], it
enforces a “good” spatial distribution of the selected points
over the image by means of non-maximum suppression,
which significantly increases the robustness of the pose
refinement during tracking.

2) Matching: Next, we want to define a set of spatial con-
straints that relate the existing map points {X1,..., X, } to
the newly extracted image features. For each point inside the
viewing frustum of the predicted stereo cameras, matching is
performed on the descriptors found in a close neighborhood
of the points projection on the image. A prediction of the
current camera pose is necessary in order to perform said
projection. In our case, dead-reckoning based on wheel
odometry is used, since it is available in most ground based
robotic vehicles. If it were not, a decaying velocity model or
even the camera pose computed at the previous frame can
be used instead.

3) Pose refinement: The preliminary pose prediction p =
(tz,ty,tz,0r,0,,6,) of the current stereo camera system
needs to be adjusted. This is done by using the well known
Levenberg Marquardt algorithm, which iteratively minimizes
the re-projection errors through the non-linear least squares
equation

u = argminz () — :ik)2 (1)
K k

where p/ is the adjusted camera pose, and &), and x, are the
projection and measurement, respectively, of the map point
X in one or both cameras. If X is matched to features
(ur,vr) in the left camera and (ug,vg) in the right camera,
then we call it a stereo match, and xy, = (ur, vy, ur). Since
the images are rectified, this enforces the constraint vy, = vg.
On the other hand, if it matches a feature in a single camera,
x; = (u,v). Analogous coordinates are also used for the
projections &y. Let (Gr,0r) = Pr(p) Xy and (iR, 0g) =
Pr(p) Xy, where Pr(p) and Pr(p) are the left and right
projection matrices for the left and right camera respectively.
If x;, is a stereo measurement then &y = (4, 0r,0g). If it
is a left or right monocular measurement then &), = (4., 0r,)
or & = (lig,¥Rr) respectively.

The effect of outliers on the refined pose can be reduced
by modifying the error function in (1) using a robust M-
estimator (in our case the Huber weight function) and a
weighted least squares approach, as proposed in [4]. The
Levenberg Marquardt algorithm requires the symbolic Ja-
cobian of this error function with respect to p, but as in
[4], the much simpler Jacobian of the residual function
Ty, = X — & may be used instead. The derivation of

Jp = %’;f is presented in appendix I.



4) Keyframes selection: Finally, the current frame is se-
lected to be a keyframe when the number of tracked points
is less than 90% of the points tracked in the last keyframe.
If so, the remaining unmatched features from the stereo pair
are triangulated to create new map points. Since the camera
images are stereo-rectified, potential matches for a feature are
found using a row-based search on the other image, greatly
lowering the computational cost with respect to a brute force
approach.

B. Mapping

The multiview and stereo constraints are used to adjust
the map of sparse salient point features and keyframes. Our
approach follows the monocular system presented in [4] and
extends it by enforcing the stereo constraints.

Bundle Adjustment refers to the simultaneous refinement
of a set of camera poses (keyframes) and 3D points (the
map) reducing the re-projection error of every point in every
image. It can be seen as a particular case of least squares
estimation, which again can be solved with the approach
proposed in section III-A.3.

Given a set of m camera poses {f,...,H,,}, a set of
n 3D points {X1,...,X,} and set of measurements S =
{z;;}, where each x;; is the position of the detected feature
for point X; on the image plane of the j-th keyframe, the
method can be seen as minimizing the equation

{M;,X;} = argmin Z (mij — .’f}ij)Q .
Hj1Xi}:l:ij€S

It is important to note that the camera pose p; is con-
sidered fixed during Bundle Adjustment refinement. This
is because the first keyframe is considered to have zero
uncertainty, as it defines the world reference frame for the
method.

Given the sparse block nature of the Jacobian, a sparse
Levenberg-Marquardt implementation is used, which heavily
exploits this kind of structure to improve computational cost.
Each block of the Jacobian can decomposed as

al.l.j 6X1

JijZ[ Gris | Sris }
for r;; = x;; — &;;. The symbolic derivation of each term
of J;; for left and right cameras is presented in appendices

I and II respectively.

IV. IMPLEMENTATION DETAILS

In this section we detail some relevant implementation
decisions that were taken to allow the system to execute
in real-time on a mobile robotic platform, minimizing the
impact on robot pose estimation accuracy.

Since keypoint detection and descriptor extraction is heav-
ily time consuming, this process is separated from the
tracking on another thread. A pipeline is used under the
assumption that the tracking process is considerably faster
than the image analysis. This allows to process an incoming
stereo frame while still tracking the previous one. Feature

computation for each image of the stereo pair is also split
into two parallel threads.

Another bottleneck of the tracking phase is matching map
points to recently extracted features. Since the map size
scales linearly with the traveled distance, checking all points
becomes infeasible on the long run. Because of this, map
points are initially filtered by camera frustum culling. Points
whose descriptors were detected from a radically different
angle of view (e.g. 45 degrees) are also discarded.

Then, the remaining map points are projected onto the
image plane to check for matches against the detected
features. To speed up this process, detected features are
grouped by spatial hashing into grid cells. The matching
of a map point is then restricted to the features inside a
neighborhood around its projection.

If a frame is selected to act as a keyframe, it is queued
into the map refinement thread to be processed as soon as
possible. Unlike PTAM, where new map points are created
once the keyframe is processed by the mapping thread,
which may not be immediate depending on the level of
congestion, S-PTAM immediately creates and incorporates
the new points after the tracking step and before queuing, to
avoid the loss of potential map matches on upcoming frames.

Global map optimization through Bundle Adjustment, as
proposed in [4], becomes prohibitive for large scale envi-
ronments. Consequently we perform only local optimization.
The Local Bundle Adjustment (LBA) only refines a fixed
number of queued keyframes, along a set of already refined
nearby keyframes, and the corresponding subset of visible
map points. Unlike PTAM, which runs LBA once for each
single keyframe, S-PTAM grabs up to ten queued keyframes
to avoid starvation. Experiments show that the queue size
never exceeds four keyframes.

The g2o (General Graph Optimization) library [20] was
used to perform Levenberg Marquardt minimization during
both tracking and Bundle Adjustment.

The source code was built upon the ROS framework,
in order to promote its usage by the robotics research
community.

V. EXPERIMENTS

To assess the accuracy, robustness and computational cost
of the S-PTAM method, various sequences from public
datasets such as MIT Stata Center Data Set [21] and the
Karlsruhe KITTI dataset [22] were used, since both of them
provide Ground-Truth measurements. They cover indoor
robotic as well as outdoor large driving scenarios respec-
tively. The latter, although not strictly robot localization,
provides a standard benchmarking framework which helps
to compare the performance of our method to other state-
of-the-art stereo vision based SLAM systems. Furthermore,
the S-PTAM method was also evaluated running on-line
on a wheeled robot in indoor environments. For all these
experiments, a standard laptop with an Intel Core i7 @ 2.20
GHz processor and 8 GB RAM was used. Below we present
results for the mentioned sequences.
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Fig. 1: Estimated trajectory performed by S-PTAM on MIT
sequence 2012-01-27-07-37-01 compared to the ground truth
as well as the generated map. Distances are given in meters.

A. MIT Stata Center dataset

This dataset is a collection of several indoor sequences
taken with a PR2 robot inside the MIT Stata Center building.
In particular we show the results for sequence 2012-01-
27-07-37-01, which includes some unconnected portions of
ground-truth data. Although S-PTAM was tested on the
whole sequence, we only show the results over one of these
sub-sequences where ground truth is available. During the
nearly 50 m trajectory followed by the robot the maximum
computed error was 0.6 m.

Fig. 2 and Fig. 3 illustrate the relative error (green), which
characterizes local consistency. It is computed by comparing
differences between subsequent poses in the estimated se-
quence as well as the ground truth. This allows to assess
the tracking performance independently of the incremental
errors associated with incremental methods. As expected,
the relative tracking error does not increase with traveled
distance and never exceeds 20 cm. The peaks in localization
errors indicates zones where it is difficult to perform tracking.
This is caused, for example, by lack of features or confusing
environments, such as those with heavy reflections.

In Fig. 3 at 14 seconds a peak shows an error of 80
degrees, after which the method immediately recovers by
tracking the previously constructed map. The peak is related
to an area which presents a high-speed turn with lack of
decent features causing difficulties for tracking. Nonetheless,
S-PTAM shows to be robust against this kind of outliers.

B. KITTI benchmark suite

The KITTI benchmark suite is a benchmarking framework
which provides multiple training and test sequences of a car
travelling through different urban environments. The stereo
camera mounted on the front has a ~60 cm baseline and a
resolution of 1344391 pixels at a frame rate of 10 Hz.

The results obtained by S-PTAM were commited to the
KITTI Benchmark website where its accuracy can be com-
pared to other state-of-the-art methods. At the moment of
this publication, S-PTAM was tenth on the ranking, and on
the seventh place among stereo-vision approaches.

Here we show results obtained using the training sequence
labeled 00. In Fig. 4 we see the performed trajectories as
estimated by S-PTAM and the ground truth. Fig. 5 and Fig. 6
show the achieved accuracy, where again the peaks denote
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Fig. 2: Euclidean distance of the trajectory computed for the
MIT sequence 1 with respect to the ground truth poses.
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Fig. 3: Angular deviation of the trajectory computed for the
MIT sequence 1 with respect to the ground truth poses.

areas with low texture or high-speed turns. Note that the
relative localization error does not increase as a function of
traveled distance. During the ~4 km trajectory followed by
the car, the maximum absolute localization error was of 16
m.

C. Robot experiment

To test the computational performance of the S-PTAM
method running in real-time on a mobile robot, an experi-
ment was performed using a Pioneer-3AT mobile robot with
a stereo rig consisting of two Pointgrey Firefly MV cameras.
In this experiment, the cameras had a resolution of 640x480
pixels and they triggered at a rate of 12 Hz, the configuration
baseline was ~14.1 cm. The robot was driven ~320 meters
around university corridors running S-PTAM method in real-
time on a laptop computer. Wheel odometry was used for
early pose prediction. Fig. 7 shows the robot’s path along
as the map performed by S-PTAM. The reduced number
of map points is due to low texture walls of the corridor.
Given that no ground-truth was available for this experiment,
a round trip path was performed. For the return, the robot was
driven backward so as to localize itself within the previously
constructed map. The start and end poses were ensured to be
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Fig. 4: Estimated trajectory performed by S-PTAM on KITTI
dataset 00 compared to the ground truth as well as the
generated map. Distances are given in meters.
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Fig. 5: Euclidean distance of trajectory in Fig. 4 with respect

to the ground truth poses.

the same by manually matching markings on the floor. The
difference between start and end pose given by S-PTAM was
0.0086 m in translation and 0.18 deg in rotation.

Table I shows the average temporal performance measured
for the costliest subroutines of the tracking process. The
Tracking thread runs at ~17.98 Hz, which should be enough
to control most autonomous mobile ground robots in real-
time.

TABLE I: Tracking phase average processing time.

Tracking phase time in ms
Feature Extraction and description 20
Get Points (inside Frustum) 1
Matching 2
AddKeyFrame 0.1
Pose Update 32.5

Total 55.6
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Fig. 6: Angular deviation of the trajectory in Fig. 4 with
respect to the ground truth poses.
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Fig. 7: Estimated trajectory performed by S-PTAM as well
as the generated map. Distances are given in meters.

VI. CONCLUSIONS

A stereo SLAM system for robot localization called S-
PTAM was presented. This method incrementally builds a
point-based sparse map representation of the workspace,
using a stereo camera, and tracks the camera pose within it.
To allow S-PTAM to run in large scale environments and re-
spond in real-time, the parallel nature of the SLAM problem
is heavily exploited, separating tracking and map refinement
routines, while minimizing inter-thread dependency.

The accuracy of the method was tested in public outdoor
and indoor datasets, comparing results against the provided
ground truth where it was available. Furthermore, experi-
ments were performed on a real robot to test the on-line
real-time performance. Results indicate that the precision of
the system is comparable to state-of the art approaches for
mobile robot localization.

Although stereo SLAM is a well-studied topic in the
robotics community, there seems to be a lack of open-
source implementations, preventing experimentation and fur-
ther analysis of existing methods. In this spirit and as a part
of this work we release a software package for the presented
method built upon the ROS framework.

In future work, we hope to achieve autonomous robot
navigation and exploration using the constructed map.



APPENDIX I
CAMERA JACOBIAN DERIVATION

We want to take the derivative of the residual function
T;; = ®;; — &;; with respect to the camera pose parameters

K = (tzs by, tzs Orol, Opiteh, Oyaw). Since @;; does mnot
_8@”
op; -

depend on p; we are left with computing J;; =
Using the chain rule we rewrite
8ﬁ:ij _ aﬁ?” 8X,J

where X;; is the point X; in the coordinate frame of the
j-th camera. Using the classic pinhole camera model, the
projection is computed as

fuz
. +uo}
L = z ,
19 |:ny + g

where f, and f, are the focal lengths of the camera and z,
y and z are the coordinates of X;;. It follows easily that

0X; |0 L =

We can compute X;; as exp(p;) X, where exp denotes
the exponential map, and using the corresponding generator
matrices G'y—1. ¢ the remaining derivative becomes

0Xy _ (G1X| |G X ;]
op;
1 0 0 O z -y
=({0 1 0 —z O z |,
0 01 y —x O

where z, y and z are the coordinates of the point X; in the
reference frame.

APPENDIX II
POINT JACOBIAN DERIVATION

Following a reasoning analogous to that in appendix I, we
need to compute the derivative

0x;; 0Xj

0X,; 0X,;°

Since the first term was already derived in I, we focus
on the second one. X;; can be rewritten as T'; X;, where
T; = [R;|t;] is the transformation that takes a point from

the reference frame to the j-th camera frame. Then, it follows
that

Jij =

aXij
X, X, R;.
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