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Abstract

The identification of protein binding sites in promoter sequences is a key problem to understand and control regulation in
biochemistry and biotechnological processes. We use a computational method to analyze promoters from a given genome.
Our approach is based on a physical model at the mesoscopic level of protein-DNA interaction based on the influence of
DNA local conformation on the dynamics of a general particle along the chain. Following the proposed model, the joined
dynamics of the protein particle and the DNA portion of interest, only characterized by its base pair sequence, is simulated.
The simulation output is analyzed by generating and analyzing the Free Energy Landscape of the system. In order to prove
the capacity of prediction of our computational method we have analyzed nine promoters of Anabaena PCC 7120. We are
able to identify the transcription starting site of each of the promoters as the most populated macrostate in the dynamics.
The developed procedure allows also to characterize promoter macrostates in terms of thermo-statistical magnitudes (free
energy and entropy), with valuable biological implications. Our results agree with independent previous experimental
results. Thus, our methods appear as a powerful complementary tool for identifying protein binding sites in promoter
sequences.
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Introduction

Transcriptional regulation is the main mechanism for gene

control in prokaryotes. In order to adapt optimal protein

expression to nutritional and environmental conditions, a cascade

of transcriptional regulators works as signal transducers determin-

ing the accessibility of RNA polymerase to bacterial promoters. In

the last years, high throughput approaches have been confirmed as

powerful tools for a better understanding of the regulatory

networks that govern key aspects of cell physiology, such as the

mechanisms leading to pathogenesis or the acclimation to

xenobiotics and hostile environments, among others [1–4].

However, successful transcriptome sequencing requires the

generation of comprehensive transcriptome profiles that rely on

the isolation of a sufficiently large number of reads to detect those

biologically relevant transcripts, that represent a relatively small

proportion of the cDNA library [5]. Moreover, those procedures

are time consuming and, in many cases, the budget for sequencing

costs constrains the total number of reads that can be obtained

[6,7].

Therefore, computational methods emerge as valuable comple-

mentary approaches for prediction or further validation of high

throughput results [8,9]. Mostly, a statistical approach to the study

of sequences is adopted, leading to a general lack of methods based

on the physical mechanism of protein-DNA interactions. A

possibility to tackle the problem is the microscopic study of

protein-DNA interaction [10–12], but this approach demands

huge computer facilities and it is restricted to few base pairs up to

the date. In this sense, coarse-grained models arise as powerful

tools to model biological systems, speeding up the computation

and allowing to get a deeper insight in the physical interactions

[13,14]. Adopting this strategy, we develop a coarse-grained model

that allows for the analysis of promoter sequences and the

identification and characterization of protein binding sites, likely

related to transcriptional activity in the genome of the nitrogen-

fixing cyanobacterium Anabaena PCC 7120.

Cyanobacteria are the only prokaryotes able to perform

oxygenic photosynthesis, being key contributors to CO2 fixation.

The ability of some cyanobacterial strains to fix atmospheric

nitrogen or the formation of harmful blooms by toxigenic species,
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among other properties, evidence their ecological relevance [15].

Besides, cyanobacteria are an excellent model for the study of

multicellularity in prokaryotes [16] and potential sources for novel

drugs derived from their secondary metabolites [17].

The genome of Anabaena PCC 7120 contains 7,211,789 base

pairs (bp) and 6,223 genes organized in a 6,413,771 bp

chromosome and 6 plasmids [18]. Anabaena PCC 7120 has been

used for long time as a model for the study of prokaryotic cell

differentiation and nitrogen fixation [19]. More recently, the

experimental definition of a genome wide map of transcriptional

start sites (TSSs) of Anabaena together with the analysis of

transcriptome variations resulting from the adaptation to nitrogen

stress have provided a holistic picture of this complex process [20].

The problem of protein-DNA recognition is a widely debated

issue, yet far to be fully understood. In this sense, it has been

widely reported how the physical properties of the DNA chain

result in key functional consequences in this process. DNA local

structure highly influences some transcription factors (TFs) binding

[21–23]. Thermal stability and bubble formation (i.e. local long-

lived transient openings in the DNA strands) has also been

extensively reported to correlate with several DNA functions, such

as the recombination rate, single nucleotide polymorphism, DNA

replication or gene transcription [24–27]. In this regard, the

relation between bubble formation and the location of protein

binding sites, is a lengthly, controversial debate, greatly nourished

by the study of Peyrard-Bishop-Daxouis (PBD) model [28,29].

This mesoscopic model was initially intended to reproduce the

DNA melting transition, though it has been widely used afterwards

for studying bubble formation on DNA promoters, likely

correlated with biological relevant sites in the sequence, such as

the TSS or the TATA box [30–35].

Despite the lack of consensus on whether PBD model is suitable

for predicting protein binding sites [36–39], strong evidence

supports this idea, showing clear correlation between regions with

high propensity to form bubbles, and the presence of binding sites

of DNA-interacting proteins such as RNA polymerase, [30–32,40]

or some TFs [33,34,41,42]. Even more, succeeding revisions of

this model showed clear relation between flexibility profiles and

location of TSSs [43]. Grounded on these evidences, we propose a

physical model for protein-DNA interaction in promoters [44],

based on the coupling of a generic particle with the sequence-

dependent bubble formation. This simple model is combined with

a suitable analysis method [45] allowing the detection of

biologically relevant sites, namely TSSs, on promoters of a

prokaryote genome.

In order to prove the capacity of prediction of the computa-

tional methods developed in [44] and [45] for identifying the TSSs

of a promoter, we have analyzed the result of simulating the

dynamics of nine promoters of Anabaena PCC 7120. We have

analyzed the simulations outputs and built systematically the

relevant macrostates of the system. In every case, our analysis

algorithm finds the TSS as one of these states, yielding in addition

thermodynamic parameters (e.g. free energy, entropy) that allow

their physical characterization and thus further biological discus-

sion. In this regard, our method arises as a complementary tool

that, from physical principles, finds protein binding sites (we focus

on TSSs) and characterizes them, allowing to discuss the strength -

in terms of RNA production- of such sites, something not

achievable by statistical methods. Remarkably, in this case the

base pair sequence is the only previous information required.

Thus, our numerical outcomes are independent numerical

predictions to be confronted with previous or future experimental

results.

Methods

Model
We base our model on a modification of the PBD model [28–

31,35] to include the interaction with a generic particle as a sliding

protein coupled with the sequence. PBD model reduces the

complexity of DNA to a set of N units that represent the N base

pairs of the chain (see Fig. 1). The only degrees of freedom are the

coordinates fyng which stand for the opening of each base pair.

The total Hamiltonian of the model accounts for two phenom-

enological interactions, the intra-base ½W (yi,yi{1)� and the inter-

base ½V (yi)� potentials, H~
PN

i~1

p2
i

2m
zV (yi)zW (yi,yi{1)

� �
,

where pi~m
dyi

dt
is the linear momentum of the i{th base pair

and m its reduced mass.

The potential W (yi,yi{1) describes the inter-base pair or

stacking interactions. The election is the anharmonic potential

[28] W (yi,yi{1)~
1

2
K 1zre{d(yizyi{1)
� �

(yi{yi{1)2 whose elas-

Figure 1. Simplified illustration of the DNA-particle interaction
model. The one-dimensional chain (solid spheres) models the DNA
chain considering a single relevant degree of freedom yn per base pair,
and two phenomenological potentials [V (yn) and W (yn,yn{1]. The
brownian particle, with coordinate Xp (dim ellipse), diffuses along the
chain interacting with open regions through the potential Vp(Xp,fyng).
doi:10.1371/journal.pcbi.1003835.g001

Author Summary

Binding of specific proteins to particular sites in the DNA
sequence is a fundamental issue for gene regulation in
molecular biology and genetic engineering. A deep
understanding of cell physiology requires the analysis of
a plethora of genes involving characterization of their
promoter architectures that determine their regulation
and gene transcription. In order to locate the promoter
elements of a given gene, experimental determination of
its transcription start site (TSS) is required. This is an
expensive, time-consuming task that, depending on our
requirements, could be simplified using computational
analysis as a first approach. Nevertheless, most computa-
tional methods lack a physical basis on the protein-DNA
interaction mechanism. We adopt here this strategy, by
using a simple model for protein-DNA interaction to find
TSS in a bunch of cyanobacteria promoters. We make use
of physical tools to characterize these TSS and to relate
them with biological properties as the relative strength of
the promoter. Our study shows how a model based on a
coarse-grained description of a biomolecule can give
valuable insight on its biological function.

Mesoscopic Model for Protein-DNA: Analysis of Cyanobacterial Promoters
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tic constant is K(1zr) for small openings but drops to K for large

yi. The parameter d sets the length scale for this behavior.

The original PBD model uses Morse potential for the intra-base

pair interaction. Nevertheless, a successful modification includes

an entropic barrier which accounts for solvent interactions with

open base pairs [35,46,47]. This modification sharpens the

thermal denaturation and stabilizes the bubbles, reproducing in

a more realistic way the experiments [35,46,47]. We include this

effect adding a gaussian barrier [35], thus V (yi)~

Di(e
{aiyi {1)2zGie

{(yi{yi,0)2=bi . Sequence dependence is intro-

duced only in this potential term as the interaction is stronger if the

base pair is C-G than if it is A-T (see Text S1 for the complete set

of parameters). Sequence-dependence can be also introduced in

the stacking potential parameters, a modification that accounts for

flexibility properties of the DNA chain [40,43,48].

Inspired on the one-dimensional diffusion stage of DNA-

interacting proteins [49], we include a new degree of freedom to

the traditional PBD model. This new degree of freedom consists

on a brownian particle that moves along the DNA chain (see

Fig. 1 for a schematic representation of the total system)

interacting with it through a phenomenological potential which

depends on Xp, the coordinate of the Brownian particle along the

DNA molecule, and the DNA instantaneous configuration fyigN
i~1

Vint(Xp,fyig)~{
Bffiffiffiffiffiffiffiffi
ps2
p

X
i

tanh (cyi)e
{(Xp{ia)2=s2

: ð1Þ

This potential creates a classical field composed by a sum of

gaussian wells centered at each base (ia) and whose amplitude

depends on the opening of the base pair. The tanh term allows a

linear dependence for low yi saturating the interaction for large yi

in order to avoid self-trapping. In this sense, the particle interacts

more intensely with open regions of the sequence. In addition, the

base pairs are also affected by the particle, so that they will be

more likely to be opened if the particle is within its range of

interaction. The model introduces only three new parameters, as

the longitudinal scale over which the particle slides is adimensional

(a~1). The interaction intensity B~0:52eV and width s~3 are

set so that bubbles span around 10{20 base pairs, an adequate

value for the kind of processes studied here [50]. The parameter

c~0:8
{1

saturates the interaction around y~1:25 , typical

value for open base-pairs [50–52].

Langevin dynamics simulations
The model is simulated by integrating numerically the Langevin

equations for the chain base pairs and the particle using the

stochastic Runge-Kutta algorithm of fourth order [53] (see Text

S1 for explicit formulation of the equations of motion). Each of the

DNA sequences we study is simulated in five different realizations,

each one covering 40ms, with a preheating time of 1ms. For

sequences up to 300 base pairs, these times are enough to ensure

equilibrium and ergodicity. In addition, since one-dimensional

diffusion times of binding proteins are in the range of milliseconds,

our simulation times are reasonable from a biological perspective.

The simulation temperature is T~290K . We use periodic

boundary conditions for the diffusing particle and fixed boundary

conditions for the sequence, adding 10 CG base pair clamps at the

end of each sequence to provide ‘‘hard-boundaries’’ and avoid

undesirable end effects. Relevant observables from the trajectories

can be obtained, mainly the base pairs mean position

SyiT~ 1
M

1
ttime

XM,ttime

i, t
yi(t), where M is the number of

realizations and ttime the simulation time of each realization,

and the particle’s trajectory histogram.

Principal Component Analysis (PCA)
The large dimensionality of the system requires a method to

reduce the number of coordinates while keeping the relevant

information of study. PCA [54] is one the most popular methods

to reduce systematically the dimensionality of a complex system.

PCA performs a linear transformation by diagonalizing the

covariance matrix Cij~SyiyjT{SyiTSyjT, and thus removing all

internal correlations. It has been proved that, by ordering the

eigenvalues decreasingly, the few first principal components

contain most of the fluctuations of the system, and thus can be

chosen as convenient reaction coordinates [35,55,56].

We project the N base pair trajectories into the first five

eigenspaces, describing thus the system in terms of the first five

principal components and the particle trajectory. With this choice

we keep over the 75% of the fluctuations.

Conformational Markov Network
The Conformational Markov Network has been proven to be a

useful and powerful tool to analyze trajectories from high

dimensional systems, such as those from Molecular Dynamics

simulations [45,57–59]. This representation is obtained by

discretizing the conformational space explored by the system in

order to build a complex network. Each node in the network

represents a discretized region of the conformational space, a

conformational microstate, weighted according to the fraction of

trajectory visiting such microstate. The links of the network

coincide with the observed transitions between microstates, and

are thus directed and weighted. We build the Conformational

Markov Network of our system by considering the N posible

positions of the particle along the chain, and binning each of the

five principal components into 20 bins.

Finding macrostates
Typically, the Conformational Markov Network is formed by a

large number of nodes which prevent a direct interpretation of the

results. In order to extract relevant information about the physical

states of the system and its relevance in the dynamics, we split the

network into its basins of attraction, i.e. regions in which the

probability fluxes (Pij ) converge to a common state (attractor) of

the network. To do so, we apply the stochastic steepest descent

algorithm, developed in [45], building a coarse grained represen-

tation of the former network. From this basin network, the Free

Energy Landscape (FEL) can be represented as a hierarchical tree

diagram (dendrogram or disconnectivity graph) [60,61], by

assigning to each node a free energy according to its weight

Fi~{ log Pi=PW where PW is the weight of the heaviest basin.

This magnitude is used as a control parameter, increasing it step

by step from the weightiest node, so that new nodes arise, together

with their links (see Text S1 for a more explicit exposition of the

algorithm). The disconnectivity graph represents each basin of

attraction hierarchically ordered according to its free energy, while

the connections among them stand for the barriers needed to jump

from to another (see below and Text S1 for plots of the

disconnectivity graphs or dendrograms).

We define now the macrostates M of the system by clustering

every basin separated by a free energy barrier lower than 1:5kT ,

as the system transits among them within short waiting times. In

fact, we can check how they represent qualitatively similar physical

configurations. Each macrostate M has an assigned weight

pi~
X

k[M Pk. We want to calculate free energy differences

Mesoscopic Model for Protein-DNA: Analysis of Cyanobacterial Promoters
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between specific and non-specific states. The basin network

contains a huge number of low populated states, see [35], that

constitute transitionary states between well defined attractors of

the system. Physically, they are short-lived transitionary states

where the particle diffuses until it binds to a target site. We

determine these non-specific states as every basin with a

population Piv10{3 and calculate free energy differences

between specific and non-specific states as DFi=kT~ log pi=pNS ,

where pNS~
X

Pkv10{3
Pk is the total weight of all non-specific

states. In addition, we define the entropy of a macrostate M as

Si=k~{
X

k[M Pk log Pk.

Results

We have analyzed nine promoter sequences from Anabaena
PCC 7120 which exhibit different features. Using our computa-

tional approach, we have to identify the TSSs in the promoter

sequences as sites where bubbles form with high probability.

Within the frame of our model, this is reflected in larger openings

of the chain at these sites and higher probability of the particle to

visit them. Next, we apply the analysis algorithm to define the

macrostates of the system and extract the FEL as a dendrogram or

disconnectivity graph [59,60]. This procedure allows us to

characterize these states in order to extract solid conclusions

about each sequence. The strength of each TSS can be

determined and, if the sequence presents more than one TSS,

their relative strength can be compared, obtaining useful biological

conclusions.

PCA analysis of complete genes
Up to our knowledge, most works concerning PBD model limit

themselves to the study of short promoter sequences, without

justifying the study of this region alone, or how would the model

behave in coding regions. In order to cover this gap, we have

simulated the behavior of three complete genes from Anabaena
PCC 7120. We use here the PBD model without including the

interacting particle, as we wish just to check in which regions from

a whole gene bubbles form more easily. The results allow us to

compare the occurrence and intensities of the fluctuations detected

in the promoter and the coding regions, validating our further

analyses restricted to the promoter sequences.

Figure 2 shows the first four PCA eigenvectors for the analyzed

genes with the promoter and codifying regions highlighted. Very

localized eigenvectors indicate strong fluctuations in the region of

maximal amplitude. As we can see in Fig. 2, the first eigenvector is

delocalized, with small amplitude, accounting for the overall

fluctuations of the whole sequence. Nevertheless, the three next

eigenvectors are highly localized in specific spots of the sequence.

Remarkably, these sites appear in the promoter sequence. Thus,

when considering a complete gene within PBD model, most of the

system fluctuations occur in the promoter sequence; this is,

bubbles form with higher probability there, while the codifying

region remains on average closed. This reveals the role of the

DNA sequence in the DNA dynamics, and its influence on the

DNA-protein interaction problems, supporting strongly that some

binding sites in the promoter sequence can be characterized as

regions where bubbles form easily, enhancing protein interaction.

TSS finding and base pair opening
We have used the complete model (chain and particle) to

analyze nine promoter sequences comprising 100 to 300 base

pairs. In addition, we have chosen promoters with different

features, five with a single well characterized TSS (alr0750, argC,

conR, furA and nifB), while four of them exhibit multiple TSSs

(furB, ntcA, petF and petH) [62–69]. Figure 3 shows the base pair

opening profile for each promoter sequence with the TSSs

highlighted. The particle trajectory histograms are also plotted. In

any case, a peak appears close to the TSS, meaning that, on

Figure 2. First four PCA eigenvectors calculated for three
different complete genes. The promoter region -with the TSS
highlighted- and the codifying region are pointed out. Most of the
fluctuations appear localized in the promoter region, meaning that
bubbles tend to form mostly here. This feature manifests the different
mechanical behavior of the promoter and codifying regions, suggesting
its key role in the DNA-protein interaction.
doi:10.1371/journal.pcbi.1003835.g002
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average, bubbles form with high probability around it. In turn, the

particle is attracted by this site, as it dwells with high probability

around the TSS.

As it has been pointed out in several studies, the PBD model by

itself has been successfully used to analyze promoter sequences,

finding protein binding sites where bubbles form with high

probability, so allowing the identification of TSSs or the TATA-

box [30,32]. Nonetheless, introducing this additional degree of

freedom appears as a key feature for our purposes. We are

mimicking an hypothetical searching mechanism that indeed

affects the dynamics of the system. In the PBD model alone,

opening events appear as rare excitations of the unique ground

state, where the whole chain is closed. The particle enhances chain

opening, stabilizing the bubbles, that last for longer times (around

two orders of magnitude longer), enriching the free energy

landscape. In addition, bubbles span over a larger number of base

pairs, typically around 10{15, which is a consistent number if we

attend to those that form in transcriptional processes [51,52].

It is also remarkable that the opening probability is not strictly

related with the A-T content of the local sequence. Although it is

clear that long A-T stretches form ‘‘softer’’ regions in the sequence

that can open easier, this intuitive argument does not necessarily

applies always. The interplay between the sequence and the

dynamics is much more complex. The nonlinearity in the

Hamiltonian, the long-range cooperativity of the model and the

disorder of the sequence revealed in its heterogeneity affects

directly the equilibrium and dynamical behavior of the model,

being essential to understand the actual breathing dynamics of

DNA, as it has been pointed out in previous studies [30,31,40].

Interestingly, besides the peaks centered on the TSSs, other

regions exhibit high probability to form bubbles. Many of these

peaks correspond to typical regulation sites of bacteria, such as

those located at {10 or {35 from the TSS, also claimed to be

related with bubble formation [30,40]. These regions appear thus

as candidates for possible binding sites of other TFs that are known

to be influenced by the physical properties of the DNA chain.

Nonetheless, we focus our discussion just on the TSS, as they have

been systematically identified in the genome of Anabaena PCC

1720.

FEL analysis
In order to analyze the sequences in a more systematic way we

apply the FEL analysis described in the methods section. This

algorithm allows us to define the most relevant states in the

Figure 3. DNA opening versus protein position. Base pair mean opening (upper panels) and particle histogram (lower panels) calculated for
each of the nine studied promoters. The horizontal axis represent the base pair positions counted from the coding starting point ATG (z1). We use
this criterion to label the binding sites of the simulated promoters. The experimentally identified TSSs are shaded and their exact location marked
with solid bars. In every case a peak appears close to each TSS, meaning this region is ‘‘softer’’ and thus likely to form bubbles, supporting their key
role in regulatory processes. The total A-T content of Anabaena PCC7120 genome is around 58% [18]. The A-T content of each analyzed sequence is:
alr0750 (61%); argC (64%); nifB (68%); conR (57%); furA (66%); furB (65%); petH (62%); petF (63%); ntcA (65%).
doi:10.1371/journal.pcbi.1003835.g003
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dynamics characterizing them from a quantitative point of view.

So far, we have shown which regions in the promoter sequences

exhibit a higher probability to form bubbles and to be visited by

the particle. Nonetheless, these magnitudes give just qualitative

information, as the average do not inform about the importance of

opening events in the system. The real interest of our model and

method is the possibility of giving quantitative measures about the

‘‘strength’’ of the different sites in the sequences, specially

interesting in those promoters with several TSSs. Each site can

be characterized by the thermodynamical magnitudes calculated

from the FEL landscape analysis.

We present together the data extracted from the simulation and

analysis methods in Table 1. For each of the nine analyzed

sequences we show the weight, free energy difference with respect

to the non-specific states and the entropy of the TSSs state, all

previously defined. We include also other non-identified states in

case they appear relevant in the dynamics. Most populated states

suppose most stable states, giving rise to high free energies

differences. The entropy is the multiplicity of such macro states.

Even if the free energy is high, a low entropy would indicate that

this macro state is made up of few, yet very populated, basins,

physically meaning that the state is very localized (narrow

bubbles). The opposite case would indicate that the algorithm

finds many, less populated basins that represent the same

macrostate. This duality could indicate different regulation

behaviors that are further addressed in the Discussion section.

To illustrate the FEL, Fig. 4 shows the free energy dendrograms

of three chosen promoters (see Text S1 for the six remaining

dendrograms). For the sake of clarity, we do not show the region

corresponding to non-specific basins (where Piv10{3, defined

above). The position of each basin on the vertical axis informs

about its stability, while their hierarchical arrangement about the

Table 1. Thermo-statistical properties of studied promoters.

Sequence State pi DF ½kT � S=k

alr0705 TSS (264) 0.219 1.42 0.77

+28 0.288 1.66 0.85

NS 0.054 – –

argC TSS (219) 0.220 2.10 0.70

+50 0.329 2.50 0.59

NS 0.027 - -

nifB TSS (2221) 0.315 3.47 0.39

2270 0.444 3.81 0.86

NS 0.010 - -

conR TSS (2101) 0.151 1.97 0.58

230 0.349 2.80 0.91

NS 0.021 - -

furA TSS (227) 0.449 3.45 1.35

287 0.390 3.32 1.16

NS 0.014 - -

furB TSS1 (283) 0.302 2.39 0.86

TSS2 (260) 0.276 2.30 0.79

210 0.149 1.68 0.28

NS 0.028 - -

petH TSS1 (2188) 0.199 3.01 0.74

TSS2 (263) 0.117 2.48 0.33

2220 0.166 2.83 0.40

NS 0.010 - -

petF TSS1 (293) 0.198 3.03 0.58

TSS2 (231) 0.268 3.33 0.67

+1 0.101 2.35 0.33

NS 0.010 - -

ntcA TSS1 (2180) 0.098 0.96 0.029

TSS2 (2136) 0.205 1.69 0.73

TSS3 (239) 0.292 2.05 0.85

NS 0.038 - -

Occupancy probabilities and thermo-statistical magnitudes of the TSS and other relevant sites of the promoter sequences. NS stands for nonspecific sites defined in the
discussion section. As already stated, each site is labelled starting from the ATG position on the gene (z1).
doi:10.1371/journal.pcbi.1003835.t001
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barrier needed to jump between each state. The dendrogram or

disconnectivity graphs provides thus valuable and intuitive

information about the thermodynamic and kinetic properties of

the FEL of each promoter.

Groups of basins separated by barriers lower than 1:5kBT are

highlighted by a color circle, defining the macrostates of the system

according to the criterion detailed in Methods section. We plot

together the physical state associated with it, showing also the

fraction of trajectory they occupy. Such states correspond to a

large bubble located on the target site, with the particle centered

there.

In most cases, the most populated macrostate, and thus the most

stable one, coincides with an excitation in the TSS region. Other

non identified sites also suppose very populated macrostates,

suggesting the possibility of additional regulation sites as it is

discussed in next section. Our method arises thus as a powerful

tool to complement experimental results, providing additional

physical information about the relative importance of these sites in

regulation processes.

Discussion

In this work, we propose the use of a coarse-grained model for

protein-DNA interaction to analyze promoter sequences, allowing

the detection and characterization of protein-binding sites (we

focus on the TSS). The proposed model is based on physical

principles and inspired on a relatively simple idea: certain DNA-

interacting proteins (as RNA polymerase) couple their binding to

DNA bubble dynamics. Due to this, we base our model on a PDB

representation of the DNA chain -having been proven to

reproduce DNA bubble dynamics successfully- and couple it to

an additional degree of freedom representing the protein. In the

framework of this model and by using a free energy landscape

analysis, we have studied promoters of Anabaena PCC7120,

allowing the detection and characterization of the TSSs.

Upon genome analysis and TSSs detection, high-throughput

approaches, such as proteomics, are commonly used, resulting in

an enormous amount of data in a relatively short period of time.

However, analysis of raw data to end up in genome annotation or

TSSs mapping is a demanding, time-consuming task, necessary for

taking advantage of this information that may delay a more

detailed analysis of specific issues. Among the large variety of these

methods (see [70,71] for review of most existing methods) a great

amount of valuable information is obtained, resulting in highly

efficient analysis of genome that, nonetheless, generally lacks a

base on the physical mechanism of protein-DNA interaction. In

this sense, our model and analysis method adopt a different

strategy, not willing to compete in time performance with

statistical-based techniques, but allowing a deeper understanding

on the driving processes of protein binding. As a consequence of

that, we are able not only to identify the TSSs, but also to

characterize them in terms of physical magnitudes, allowing

discussions about the strength of each site.

The nine promoters of cyanobacterium Anabaena PCC7120

studied in this work have been chosen in order to make the most of

our model, without forgetting about its limitations. The genome of

Anabaena PCC 7120 is well-known and the positions of TSSs have

been defined under different metabolic conditions [72]. Firstly, it is

remarkable how the different TSSs in the analyzed genes coincide

with relevant states in the dynamics of the model, characterized as

the heavier basins. In order to relate the information obtained with

possible biological interpretation, we have analyzed a set of genes

exhibiting several TSSs and whose regulation has been well

characterized [67,68,73–77]. This choice allows us to assess

directly the potential relation between the binding free energy

values displayed in Table 1 for each of the located sites, and the

relative strength of different TSSs associated to the same gene.

Among them, it is worth to mention the case of the ntcA
promoter. The average opening shown in Fig. 3 reveals how the

three existing TSSs in this 230 base pairs sequence [78] are clearly

identified, agreeing also as sites which the particle visits with high

probability. As displayed in Table 1, the relative free energy (with

respect to the NS states) of the three TSSs is quite different. Indeed

Figure 4. Hierarchical free energy dendrogram for three
selected promoters. Basins of attraction separated by barriers lower
than 1:5kT are clustered to define macrostates of the system. Their
weight is indicated in the plot together with a representation of the
physical state they represent, typically the particle located in a certain
site where a bubble opens.
doi:10.1371/journal.pcbi.1003835.g004
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these values are in very good agreement with the occurrence and

behavior of the three TSSs experimentally determined [78,78–80].

TSS2, located at position {136, produces a constitutive transcript

regardless of the culture conditions, while TSS1 (position {180) is

only used in the absence of nitrogen. Finally TSS3 (position {49)

is also active under all conditions, but its use is highly induced

under nitrogen deprivation. Table 1 displays a remarkably low

free energy for TSS1, indicating that the presence of this

macrostate is low in the dynamics, suggesting that its expression

might be enhanced under more restrictive conditions. On the

other hand, TSS2 and TSS3 appear as strong binding sites,

covering both a large fraction of the total dynamics. These values

are in good agreement with the ntcA transcription level at these

sites under the correspondent conditions of nitrogen availability.

FurB, petF or petH show also consistent results. The TSSs of

the three promotores are clearly identified, coinciding with the

experimental positions [66,72,81]. Determination of TSSs for

FurB promoter using the primer extension technique unravels

revealing two TSSs at positions {83 and {60 from the ATG,

both with similar intensities ([66]). Our in silico analysis is in good

concordance with such conclusions, as we find two major

macrostates with very similar weight (0:28 and 0:30) with an

excitation just on these positions. The resulting profiles when the

promoters of petF and petH are analyzed also display several

preferred macrostates. Primer extension assays revealed a single

TSS for the petF gene located at 100 bp upstream the translation

start site [82]. More recently, high throughput analysis showed two

TSSs for petF, at {93 and {31, bp, in a better agreement with

our predictions. Transcription of petH, encoding ferredoxin-

NADP+ reductase takes place from a constitutive promoter at

{188 bp from the ATG and a NtcA activated promoter (TSS at

{63 bp). According to the proposed model, both TSSs are found

as relevant macrostates in the basin network, although not as high

peaks in Fig. 3. Indeed, the constitutive TSS ({188) exhibits a

higher probability (pi) than the non-constitutive one (Table 1),

indicating that the model is consistent with the experimental

observations.

Concerning the five remaining promoters, high peaks are found

around their single TSS, coinciding with the most (or one of the

most) populated macrostates as we have defined them (Table 1).

The case of conR is where our model works worse, as a

significantly more relevant state appears in the dynamics. It

should be noted that most experimentally determined TSSs have

been obtained under standard culture conditions or under

nitrogen deprivation, and the existence of additional TSSs under

different conditions -impossible to account explicitly in our model-

cannot be discarded. In addition, it must be noted that the model

is not considering exclusively DNA-RNA polymerase interaction,

but the influence of DNA breathing dynamics on protein binding.

In such sense, additional binding sites for other proteins which are

influenced by mechanical changes in the DNA conformation may

also be detected.

We have compared our numerical results to the existing

experimental ones on TSSs positions and intensities. None-

theless, it is important to note that our method identifies

additional relevant regions of the promoters that have not been

experimentally probed yet. We shall mention the cases of

promoters furA, conR or nifB where very populated macro-

states appear aside from the discussed TSSs. Although we do

not exclude the possibility of false positives, these macrostates

may be related with unknown regulatory regions. Thus, our

results suggest further experiments to search possible new

relevant activity regions. Moreover, additional TSSs might

appear if studied under different culture conditions, revealing

the complexity of transcriptome profiles even in the case of

simple organisms such as bacteria. To finish, we have already

mentioned studies discussing the influence of bubble formation

on certain DNA-binding proteins aside from RNA-polymerase

[33,34,41,42]. Being our model based on general physical

features, additional macrostates found through our method

might indicate the existence of binding sites for further

regulatory proteins which participate in transcriptome pro-

cesses of Anabaena PCC 7120.

Anabaena PCC 7120 has been shown to be an ideal

experimental system to probe our numerical method. As it has

been displayed, our results agree current experimental knowledge

and propose possible new relevant activity regions. However, the

model can be applied to the study of promoter sequences in many

other organisms. Being the identification of protein binding sites in

promoter sequences a key problem to understand and control

regulation in biochemical and biotechnological processes, our

methods appears as a powerful complementary tool in this

scientific endeavor.
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