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Abstract The class of B-Nekrasov matrices is a subclass of P-matrices that contains Nekrasov
Z-matrices with positive diagonal entries as well as B-matrices. Error bounds for the linear
complementarity problem when the involved matrix is a B-Nekrasov matrix are presented.
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1 Introduction

The linear complementarity problem (LCP) has a crucial importance in many applications,
as shown in [1]. It looks for vectors x ∈ Rn such that

Ax+q≥ 0, x≥ 0, xT (Ax+q) = 0 (1)

where A is an n×n real matrix and q ∈ Rn. This problem will be denoted by LCP(A,q) and
its solutions by x∗. It presents nice properties when the matrix A belongs to some special
classes of matrices. If A is a P-matrix, then the LCP problem has a unique solution and for-
mulae for the error bound can be provided (see [3], [4], [12] and Section 3). If A satisfies the
stronger property of being an H-matrix with positive diagonal entries, then the error bound
becomes simpler (see formula (2.4) of [3]). In the particular case that A belongs to certain
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subclasses of H-matrices, more formulae for error bounds can be provided (see [9], and [11]
for Nekrasov matrices). When the matrix A of (1) is not an H-matrix we cannot use for-
mula (2.4) of [3]. However, for some subclasses of P-matrices that are not H-matrices, error
bounds for the LCP problem have also been obtained. For instance, for B-matrices ([8]), for
DB-matrices ([6]), for SB-matrices ([7]), for BS-matrices ([10]) and for MB-matrices ([2]).

In this paper we present an error bound for a class of P-matrices containing as subclasses
both B-matrices and Nekrasov Z-matrices. We call these matrices as B-Nekrasov matrices.

In Section 2, we define the classes of matrices mentioned in this paper and we analyze
the B-Nekrasov matrices. We prove that they are P-matrices and we present a character-
ization of the B-Nekrasov matrices. In Section 3, we obtain error bounds for linear com-
plementarity problems corresponding to B-Nekrasov matrices. We also include numerical
experiments that show the sharpness and applicability of the bounds.

2 B-Nekrasov matrices

We start by introducing some classes of matrices. A square real matrix with nonpositive
off-diagonal entries is called a Z-matrix. The unisolvence of the LCP(A,q) problem given
in (1) holds if and only if A is a P-matrix (see [4]), concept that will be recalled now. A
submatrix of a square matrix involving the same rows and columns is called a principal sub-
matrix. A real square matrix is a P-matrix if all its principal minors are positive. A complex
matrix A = (ai j)1≤i, j≤n is strictly diagonally dominant (by rows) if |aii|> ∑ j 6=i |ai j|, for all
i = 1, . . . ,n. A Z-matrix is a nonsingular M-matrix if it has nonnegative inverse. A square
complex matrix A is an H-matrix if there exists a diagonal matrix X such that AX is strictly
diagonally dominant. It is well known that nonsingular M-matrices and H-matrices with pos-
itive diagonal entries are P-matrices. In order to define Nekrasov matrices, let us introduce
some notations. Given a complex matrix A = (ai j)1≤i, j≤n with aii 6= 0 for all i = 1, . . . ,n, we
define

h1(A) := ∑
j 6=1
|a1 j|, hi(A) :=

i−1

∑
j=1
|ai j|

h j(A)
|a j j|

+
n

∑
j=i+1

|ai j|, i = 2, . . . ,n. (2)

Then we say that A is a Nekrasov matrix if |aii|> hi(A) for all i= 1, . . . ,n (cf. [5], [11], [15]).
It is known that a Nekrasov matrix is an H-matrix (see page 5021 of [5] and [15]). From
now on whenever a reference to H-matrices (resp., Nekrasov matrices) is made it will mean
real matrices as the LCP requires. We finish this list of known definitions with the concept of
B-matrix (see [13]). We say that a square real matrix A = (ai j)1≤i, j≤n with positive row sums
is a B-matrix if all its off-diagonal entries are (strictly) bounded above by the corresponding
row means, that is, for each i = 1, . . . ,n,

n

∑
k=1

aik > 0,
1
n

n

∑
k=1

aik > ai j, ∀ j 6= i.

In contrast to Nekrasov matrices, B-matrices are not necessarily H-matrices.
Let us now define a class of matrices that will contain Nekrasov Z-matrices with positive

diagonal entries as well as B-matrices. First we recall a decomposition of square matrices
that will be useful for our purposes.

Given a real matrix A = (ai j)1≤i, j≤n, we can write it as

A = B++C (3)
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where

B+ =


a11− r+1 . . . a1n− r+1

...
...

...
...

an1− r+n . . . ann− r+n

and C =


r+1 . . . r+1

...
...

...
...

r+n . . . r+n

 (4)

with
r+i := max{0,ai j| j 6= i}. (5)

Observe that B+ is a Z-matrix and C is a nonnegative matrix of rank 1.

Definition 1 We say that A is a B-Nekrasov matrix if it can be written in form (3) with B+ a
Nekrasov Z-matrix whose diagonal entries are all positive. For this to happen, the maximum
of the positive off-diagonal elements of each row must be strictly less than the corresponding
positive diagonal element of the original matrix.

Remark 1 Let us observe that a Nekrasov Z-matrix with positive diagonal entries is trivially
a B-Nekrasov matrix (with C = 0 in (3)) and that a B-matrix is also a B-Nekrasov matrix.
This last property is a consequence from the fact that a strictly diagonally dominant ma-
trix is a Nekrasov matrix and from Proposition 2.1 of [8], which characterizes B-matrices
through (3), with the condition that B+ is a strictly diagonally dominant (by rows) matrix
with positive diagonal entries.

The following family of matrices belongs to the class of B-Nekrasov matrices although
they are not Nekrasov matrices nor B-matrices:

Ak =


4 3 3 3
−k 3 1 1
−k 1 5 0
−k 1 0 4

 , k ≥ 2.

Observe that matrices Ak are not Nekrasov because the first row is not strictly diagonally
dominant. The decomposition (3) for these matrices becomes

Ak = B+
k +Ck =


1 0 0 0

−k−1 2 0 0
−k−1 0 4 −1
−k−1 0 −1 3

+


3 3 3 3
1 1 1 1
1 1 1 1
1 1 1 1


and satisfies Definition 1. Finally, matrices Ak, for k≥ 2, are not B-matrices because matrices
B+

k are not strictly diagonally dominant matrices. Let us see now that B-Nekrasov matrices
are P-matrices.

Proposition 1 If A is a B-Nekrasov matrix, then A is a P-matrix.

Proof By Definition 1, A=B++C, where B+ is a Nekrasov Z-matrix and C is a nonnegative
matrix of rank 1. It is well-known that a Nekrasov matrix is a nonsingular H-matrix (cf. [5])
and so B+ is a nonsingular M-matrix. Then the result follows from Corollary 2.4 of [14],
which guarantees that A is a P-matrix because it is the sum of a nonsingular M-matrix and a
nonnegative matrix of rank 1

Let us provide a characterization of B-Nekrasov matrices.
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Theorem 1 Let A = (ai j)1≤i, j≤n be a real matrix. Then A is B-Nekrasov if and only if the
following conditions hold:
(i) ∑

n
j=1 a1 j > 0 and 1

n (∑
n
j=1 a1 j)> a1k, for all k 6= 1.

(ii) r+i <min
{

∑
i−1
j=1 ai jα j+∑

n
j=i ai j

∑
i−1
j=1 α j+(n−i+1)

,aii

}
, i= 2, . . . ,n, where r+i is given in (5), α1 :=

∑
n
j=2 |a1 j−r+1 |
|a11−r+1 |

and αi :=
∑

i−1
j=1 |ai j−r+i |α j+∑

n
j=i+1 |ai j−r+i |

|aii−r+i |
, for i = 2, . . . ,n.

Proof Let us assume that (i) and (ii) hold, and let us see that the matrix B+ of (3) is a
Nekrasov matrix. Given a matrix A, let hi(A) given by (2). Taking into account the definition
of r+1 and (i), we have: h1(B+) =∑

n
j=2 |a1 j−r+1 |=∑

n
j=2(r

+
1 −a1 j) = (n−1)r+1 −∑

n
j=2 a1 j =

(nr+1 −∑
n
j=1 a1 j)+ (a11− r+1 ) < a11− r+1 = |a11− r+1 | and the first row of B+ satisfies the

definition of a Nekrasov matrix. We continue with any row i≥ 2. Then

(0 ≤)hi(B+) = ∑
i−1
j=1 |ai j− r+i |α j +∑

n
j=i+1 |ai j− r+i |= ∑

i−1
j=1(r

+
i −ai j)α j +∑

n
j=i+1(r

+
i −ai j) =

= r+i
(

∑
i−1
j=1 α j +n− i+1

)
−∑

i−1
j=1 ai jα j− r+i −∑

n
j=i ai j +aii =

=
[
r+i (∑

i−1
j=1 α j +n− i+1)−∑

i−1
j=1 ai jα j−∑

n
j=i ai j

]
+(aii− r+i )< aii− r+i = |aii− r+i |

and B+ is a Nekrasov matrix.
Conversely, let us now assume that A is a B-Nekrasov matrix and let us prove that (i)

and (ii) hold. Since B+ is a Nekrasov matrix with positive diagonal entries, we have

a11− r+1 = |a11− r+1 |>
n

∑
j=2
|a1 j− r+1 |=

n

∑
j=2

(r+1 −a1 j) = (n−1)r+1 −
n

∑
j=2

a1 j

and so, nr+1 < ∑
n
j=1 a1 j. In particular, ∑

n
j=1 a1 j > 0 and, in addition, r+1 < 1

n ∑
n
j=1 a1 j then

condition (i) holds. Since B+ is a Nekrasov matrix with positive diagonal entries, |aii−r+i |=
aii− r+i and we also have

aii− r+i = |aii− r+i |> hi(B+) =
i−1

∑
j=1
|ai j− r+i |α j +

n

∑
j=i+1

|ai j− r+i |=

=
i−1

∑
j=1

(r+i −ai j)α j +
n

∑
j=i+1

(r+i −ai j) =
i−1

∑
j=1

r+i α j−
i−1

∑
j=1

ai jα j +(n− i)r+i −
n

∑
j=i+1

ai j.

Then

aii > r+i

(
i−1

∑
j=1

α j +(n− i+1)

)
−

i−1

∑
j=1

ai jα j−
n

∑
j=i+1

ai j

and so

r+i

(
i−1

∑
j=1

α j +(n− i+1)

)
<

i−1

∑
j=1

ai jα j +
n

∑
j=i

ai j.

Therefore,

r+i <
∑

i−1
j=1 ai jα j +∑

n
j=i ai j

∑
i−1
j=1 α j +(n− i+1)

and so (ii) holds.
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3 Error bounds for linear complementarity problems

In previous papers, we have obtained error bounds for linear complementarity problems
when the matrix is a B-matrix (see [8]) and when the matrix is a Nekrasov matrix satis-
fying an additional property (see [11]). Since B-Nekrasov matrices contain B-matrices and
Nekrasov Z-matrices, we consider in this section B-Nekrasov matrices such that B+ in (3)
satisfies the mentioned additional property. We start with an auxiliary result for these matri-
ces.

Lemma 1 Let A=(ai j)1≤i, j≤n,n≥ 2, be a B-Nekrasov matrix such that for each i= 1, . . . ,n−
1, there exists m > i with aim < max{0,ai j| j 6= i}= r+i . Let B+ be the matrix of (3). Then the

matrix W = diag(w1, . . . ,wn) with wi := hi(B+)

aii−r+i
, for i= 1, . . . ,n−1 and wn := hn(B+)

ann−r+n
+ε,ε ∈(

0,1− hn(B+)

ann−r+n

)
, has positive diagonal entries less than 1 and it satisfies that B+W is a

strictly diagonally dominant Z-matrix.

Proof Observe that B+ is a Nekrasov matrix. Since aim < r+i , we have that B+ satisfies the
hypotheses of Theorem 1 of [11] and, applying this theorem to B+, the result follows.

The next lemma provides a typical bound for the inverse of certain matrices, and it will
be used later.

Lemma 2 If P := (p1, . . . , pn)
T e, where e = (1, . . . ,1) and p1, . . . , pn ≥ 0, then

‖(I +P)−1‖∞ ≤ n−1,

where I is the n×n identity matrix.

Proof Observe that

(I +P)−1 =



1− p1

1+∑
n
i=1 pi

− p1

1+∑
n
i=1 pi

. . . − p1

1+∑
n
i=1 pi

− p2

1+∑
n
i=1 pi

1− p2

1+∑
n
i=1 pi

. . . − p2

1+∑
n
i=1 pi

...
...

...
...

...
...

− pn

1+∑
n
i=1 ai

− pn

1+∑
n
i=1 pi

. . . 1− pn

1+∑
n
i=1 pi


.

Then we obtain

‖(I +P)−1‖∞ = 1+
(n−2)maxi pi

1+∑
n
i=1 pi

≤ n−1

and equality in the second relation above holds if and only if n = 2.

The following result provides the announced error bounds for linear complementarity
problems. By Proposition 1 a B-Nekrasov matrix is a P-matrix. Given an n× n P-matrix A
and any x ∈ Rn, by Theorem 2.3 of [3] we know that the solution x∗ of the linear comple-
mentarity problem (1) satisfies

‖x− x∗‖∞ ≤maxd∈[0,1]n‖(I−D+DA)−1‖∞‖r(x)‖∞,
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where I is the n×n identity matrix, D is the diagonal matrix D= diag(di) with 0≤ di ≤ 1 for
all i = 1, . . . ,n, and r(x) := min(x,Ax+q), where the min operator denotes the componen-
twise minimum of two vectors. The next result gives an upper bound for maxd∈[0,1]n‖(I−
D+DA)−1‖∞.

Theorem 2 Let A = (ai j)1≤i, j≤n,n≥ 2, be a B-Nekrasov matrix satisfying the hypotheses of
Lemma 1, let B+ be the matrix of (3) and let W = diag(w1, . . . ,wn) be the diagonal matrix
of Lemma 1, such that B̄ := B+W = (b̄i j)1≤i, j≤n is a strictly diagonally dominant Z-matrix.
Let βi := b̄ii−∑ j 6=i |b̄i j| and δi := βi

wi
for i = 1, . . . ,n, and δ := mini∈{1,...,n}{δi}. Then

maxd∈[0,1]n‖(I−D+DA)−1‖∞ ≤
(n−1)maxi{wi}

min{δ ,1}mini{wi}
(6)

Proof Since A is a B-Nekrasov matrix, A = B+ +C as in (3), with B+ being a Nekrasov
Z-matrix with positive diagonal entries. Then AW = B̄ +CW , where B̄ is strictly diago-
nally dominant by Lemma 1 and has positive diagonal entries. Given a diagonal matrix
D= diag(di), with 0≤ di ≤ 1, we have AD := I−D+DA= (I−D+DB+)+DC =B+

D +CD,
where B+

D := I−D+DB+ and CD := DC. Besides, we can write

B+
D = I−D+D(B̄W−1) =W (I−D+D(W−1B̄))W−1. (7)

Observe by Lemma 1 that I −D + D(W−1B̄) is a strictly diagonally dominant Z-matrix
and has positive diagonal entries. Therefore, I−D+D(W−1B̄) is a nonsingular M-matrix
and so, by Theorem 2.3 of Chapter 6 of [1], has nonnegative inverse. Since we can write
AD = B+

D(I +(B+
D)
−1CD) , A−1

D = (I +(B+
D)
−1CD)

−1(B+
D)
−1 and then

‖A−1
D ‖∞ ≤ ‖(I +(B+

D)
−1CD)

−1‖∞‖(B+
D)
−1‖∞. (8)

Above, we have seen that I−D+D(W−1B̄) has nonnegative inverse since W is a positive
diagonal matrix and then (B+

D)
−1 = W (I −D + D(W−1B̄))−1W−1 ≥ 0. Observe that the

matrix C of (3) is nonnegative and with the form given in (4). Then CD is also nonnegative
and with the form CD = (d1r+1 , . . . ,dnr+n )

T e, where e = (1, . . . ,1). Therefore (B+
D)
−1CD can

be writen as (p1, . . . , pn)
T e, where pi ≥ 0 for all i = 1, . . . ,n. By Lemma 2 we get

‖(I +(B+
D)
−1CD)

−1‖∞ ≤ n−1. (9)

As for the matrix B+
D , we use (7) and, applying Theorem 1 of [16] to the strictly diagonally

dominant matrix I−D+D(W−1B̄), we obtain

‖(B+
D)
−1‖∞ ≤

‖W‖∞‖W−1‖∞

mini{ᾱD
i }

, (10)

where ᾱD
i := (1− di) +

di
wi
(b̄ii −∑ j 6=i |b̄i j|) = (1− di) +

di
wi

βi(> 0), for each i = 1, . . . ,n.
Observe that

‖W‖∞ = maxi{wi} and ‖W−1‖∞ =
1

mini{wi}
. (11)

Let k ∈ {1, . . . ,n} be the index with ᾱD
k := mini{ᾱD

i }. Then

1
mini{ᾱD

i }
=

1
(1−dk)+dkδk

≤ 1
(1−dk)+dkδ

. (12)
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If δ ≥ 1, then
1

(1−dk)+dkδ
≤ 1. (13)

If δ < 1, then
1

(1−dk)+dkδ
=

1
1− (1−δ )dk

≤ 1
1− (1−δ )

=
1
δ
. (14)

By (12), (13) and (14) we have that

1
mini{ᾱD

i }
≤ 1

min{δ ,1}
, (15)

and the result follows from (8), (9), (10), (11) and (15).

Let us illustrate the previous bound with a B-Nekrasov matrix that does not belong to
classes of matrices for which error bounds are known.

Example 1 Let A be the matrix

A =


60 20 20 30
10 50 −20 10
−60 0 60 −10

30 30 20 40

 .

We can check that A is not an H-matrix, so that we cannot use the bounds valid for H-
matrices. Since Nekrasov matrices and S-Nekrasov matrices are H-matrices, we cannot use
the bounds of [11]. On the other hand, A can be written A = B++C as in (3), with

B+ =


30 −10 −10 0

0 40 −30 0
−60 0 60 −10

0 0 −10 10

 , C =


30 30 30 30
10 10 10 10
0 0 0 0

30 30 30 30

 .

Since B+ is not strictly diagonally dominant by rows, A is not a B-matrix and so we cannot
apply the bounds of [8]. By Lemma 2.5 of [10], A is not a BS-matrix and so we cannot
apply the bounds of [10]. However, B+ is a Nekrasov matrix and so A is B-Nekrasov. The
diagonal matrix W of Lemma 1 is given by W = diag( 2

3 ,
3
4 ,

5
6 ,

5
6 + ε), with ε ∈ (0, 1

6 ). If we
take ε = 1

12 , then δ = 10
11 and the bound (6) is 4.5375.

We now consider B-Nekrasov matrices that are also H-matrices in order to compare
our error bounds with formula (5) of [3]. Let us recall this last formula. Given a matrix
A = (ai j)1≤i, j≤n, we consider its comparison matrix Ã = (ãi j)1≤i, j≤n with ãii := |aii| for all
i = 1, . . . ,n, and ãi j :=−|ai j| when j 6= i. Then, by formula (5) of [3], the solution x∗ of the
LCP given by (1.1) for an H-matrix A with positive diagonal entries satisfies

maxd∈[0,1]n‖(I−D+DA)−1‖∞ ≤ ‖Ã−1max(Λ , I)‖∞ (16)

with Λ := diag(aii) and max(Λ , I) := diag(max{a11,1}, . . . ,max{ann,1}).
The following examples show two families of 2×2 and 3×3 H-matrices for which our

bound (6) is close to 1 and 8, respectively, in contrast to (16), which can be arbitrarily large.
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Example 2 Let Ak be the H-matrices given by Ak =

(
k −k+1

−k+1 k

)
,k ≥ 2. These ma-

trices are also B-Nekrasov matrices with Ak = B+
k +Ck as in (3), B+

k = Ak and Ck = 0. Then
we have that Ak = Ãk and

Ãk
−1

=

( k
2k−1

k−1
2k−1

k−1
2k−1

k
2k−1

)
.

Then the matrix Ãk
−1max(Λ , I) of (16) is

(
k2

2k−1
(k−1)k
2k−1

(k−1)k
2k−1

k2

2k−1

)
and ‖Ãk

−1max(Λ , I)‖∞ = k.

Therefore, the bound (16) can be arbitrarily large. Now we consider the bound (6). We have
that w1 =

k−1
k ,w2 = ( k−1

k )2 + ε , with ε ∈ (0, 2
k −

1
k2 ). The matrix W of Theorem 1 is here

W =

( k−1
k 0
0 ( k−1

k )2 + ε

)
and

B+
k W =

(
k−1 (−k+1)(( k−1

k )2 + ε)
(−k+1)(k−1)

k k(( k−1
k )2 + ε)

)
If we take ε = 1

k , we have that δ1 = k−1
k and δ2 = k2

k2−k+1 . Then δ = min{δ1,δ2} = k−1
k ,

max{w1,w2}= k2−k+1
k2 , min{w1,w2}= k−1

k and the corresponding bound of formula (6) is
1+ k

k2−k+1 , which converges to 1 when k→ ∞.

Example 3 Let Ak be the H-matrices given by

Ak =

 k+1 0 −k
0 2k −k
−k 0 k

 , k ≥ 4,

with Ak =B+
k +Ck as in (3), B+

k =Ak,Ck = 0. Then Ak = Ãk and ‖Ãk
−1max(Λ , I)‖∞ = 2k+2.

Therefore, the bound (16) can be arbitrarily large. Now we are going to obtain the bound
(6). We have that w1 = k

k+1 ,w2 = 1
2 ,w3 = k

k+1 + ε , where ε ∈ (0, 1
k+1 ). The matrix W of

Theorem 1 is W = diag( k
k+1 ,

1
2 ,

k
k+1 + ε) and

B+
k W =

 k 0 −k( k
k+1 + ε)

0 k −k( k
k+1 + ε)

−k2

k+1 0 k( k
k+1 + ε)

 .

If we take ε = 1
2k , we have that β1 = β2 =

k−1
2(k+1) and β3 =

1
2 . Then δ1 =

k−1
2k , δ2 =

k−1
k+1 and

δ3 =
k(k+1)

2k2+k+1 . Then δ =min{δ1,δ2,δ3}= k−1
2k , max{w1,w2,w3}= 2k2+k+1

2k(k+1) , min{w1,w2,w3}=
1
2 and the corresponding bound of (6) is 8k2+4k+4

k2−1 , which converges to 8 when k→ ∞.

We now provide an alternative bound to (6) without using mini{wi} and maxi{wi}.

Proposition 2 Let A = (ai j)1≤i, j≤n,n≥ 2, B+ and W = diag(w1, . . . ,wn) be the matrices of

Lemma 1 and let δ be the real number defined in Theorem 2. Let γ :=mini∈{1,...,n−1}
∑

n
j=i+1 |ai j−r+i |

aii−r+i
.

If either
n−1

∑
j=1

(an j− r+n ) = 0 (17)
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holds or
n−1

∑
j=1
|an j− r+n | ≥ ann− r+n (18)

holds, then

maxd∈[0,1]n‖(I−D+DA)−1‖∞ <
n−1

min{δ ,1}γ
. (19)

Otherwise, the following bound holds:

maxd∈[0,1]n‖(I−D+DA)−1‖∞ <
n−1

min{δ ,1}γ
ann− r+n

∑
n−1
j=1 |an j− r+n |

. (20)

Proof Observe that, by Lemma 1,

1 > wi ≥
∑

n
j=i+1 |ai j− r+i |

aii− r+i
≥ γ, i = 1, . . . ,n−1. (21)

If (17) holds, then we can choose by Lemma 1 any wn ∈ (0,1). Since γ < 1 by (21), we can
take wn > γ . So, by Lemma 1, (21) and Theorem 2, (19) holds. Now assume that (17) does

not hold. From Lemma 1 we also derive wn > ∑
n−1
j=1

|an j−r+n |
ann−r+n

w j. Using (21) in the previous

formula, we get wn > γ ∑
n−1
j=1

|an j−r+n |
ann−r+n

and so

mini{wi} ≥min

{
γ,γ

n−1

∑
j=1

|an j− r+n |
ann− r+n

}
(22)

By Lemma 1, Theorem 2 and (22) we have

maxd∈[0,1]n‖(I−D+DA)−1‖∞ <
n−1

min{δ ,1}min
{

γ,γ
∑

n−1
j=1 |an j−r+n |

ann−r+n

} . (23)

Observe that min
{

γ,γ
∑

n−1
j=1 |an j−r+n |

ann−r+n

}
= γ (respectively, γ

∑
n−1
j=1 |an j−r+n |

ann−r+n
) when (18) holds (resp.,

(18) does not hold). Now, (19) follows from (23) when (18) holds and (20) follows from (23)
when (18) does not hold.

Remark 2 Observe that condition (17) of the previous theorem holds if and only if either
the last row of the matrix B+ has zero entries up to the diagonal entry or r+n = ank for all
k ∈ {1,2, ...,n− 1}. Besides, condition (18) holds if and only if the last row of the matrix
B+ is not strictly diagonally dominant.
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