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Abstract

Adherent cells normally apply forces as a generic means of sensing and responding to the

mechanical nature of their surrounding environment. How these forces vary as a function of the

extracellular rigidity is critical to understanding the regulatory functions that drive important

phenomena such as wound healing or muscle contraction. In recognition of this fact, experiments

have been conducted to understand cell rigidity-sensing properties under known conditions of the

extracellular environment, opening new possibilities for modeling this active behaviour. In this

work, we provide a physics-based constitutive model taking into account the main structural

components of the cell to reproduce its most significant contractile properties such as the traction

forces exerted as a function of time and the extracellular stiffness. This model shows how the

interplay between the time-dependent response of the acto-myosin contractile system and the

elastic response of the cell components determine the mechano-sensing behaviour of single cells.
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1. INTRODUCTION

Currently, there exists much interest in characterizing the mechanical properties of living

cells as a material (Kasza et al. 2007). In particular, cells behave completely different when

supporting loads (passive) than when exerting forces (active) (Kollmannsberger and Fabry

2011; Ronan et al. 2012; Ujihara et al. 2012). In fact, cells are constantly pulling on the

extracellular matrix (ECM) in order to evaluate the mechanical environment and accordingly

respond, adjusting their properties. This mechanism that cells use to sense rigidity has been

attributed to two main contributions: cytoskeleton contractility and adhesion complexes

(Discher et al. 2005). However, recent experimental works have shown the predominant role

of cell contractility. In fact, some of these experiments (Fouchard et al. 2011; Mitrossilis et

al. 2010; Mitrossilis et al. 2009) suggest that contractility at cell scale due to acto-myosin

Correspondence to: Carlos Borau, cborau@unizar.es.

NIH Public Access
Author Manuscript
Biomech Model Mechanobiol. Author manuscript; available in PMC 2015 April 01.

Published in final edited form as:
Biomech Model Mechanobiol. 2014 April ; 13(2): 451–462. doi:10.1007/s10237-013-0508-x.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/289980052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


response to load is the main hypothesis to understand rigidity sensing mechanism. Others,

however, have presented strong evidences that the rigidity-sensing mechanism in cell

migration is not only locally driven by focal adhesion growth, but also mediated by a larger-

scale mechanism originating in the cytoskeleton (Trichet et al. 2012).

Many different experimental (Kobayashi and Sokabe 2010; Trichet et al. 2012; Ghassemi et

al. 2012) and computational works (McGarry et al. 2009; Zemel et al. 2010; Vernerey and

Farsad 2011) have been developed in order to characterize the mechanical active response of

cells under different rigidity conditions of the extracellular environment. In particular, novel

experiments using uni-axial loading conditions with a precise control of the mechanical

properties of the extracellular environment have been rising. In this sense, Mitrossilis et al

(Mitrossilis et al. 2009) have recently developed a single cell traction force experiment with

a custom-made parallel microplate setup. In this study, the authors adhere single cells to two

parallel glass microplates coated with bronectin. One plate was rigid, whereas the other was

flexible and used as a nano-Newton force sensor (i.e., a spring of calibrated stiffness). A

computer-controlled detection of the flexible plate deflection allowed quantifying real-time

single cell traction forces. Therefore, using this setup they were able to measure the cell

response as a function of the plate rigidity. In a first phase, the forces increased at different

rates, depending on the plate stiffness. After approximately 10 minutes, the forces saturated

reaching a plateau. This plateau force was observed to depend upon the stiffness of the

flexible plate as long as the stiffness is less than 60nN/μm. However, at higher stiffness

values, the plateau force achieved a maximum value of ≈ 300 nN that was independent of

the stiffness.

Moreover, using this measurement system is facile to induce a step change in the

extracellular stiffness in order to evaluate the viscoelastic response of cell contraction to this

change. In fact, recently, several authors carried out this experiment, concluding that

contracting cells are able to adapt to the stiffness step change on a short timescale of 10’s of

seconds, showing practically an instantaneous response (Crow et al. 2012; Mitrossilis et al.

2010).

Collectively, these experiments constitute a set of benchmark data that can be used to

validate the predictive potential of models to simulate mechanosensing. The first

computational model developed to simulate the mechanosensory role of cells was proposed

by Schwarz et al (Schwarz et al. 2006) and was based on a two-spring approach (Fig. 1a).

This model is able to predict saturation force phenomena, although the plateau force is

independent of extracellular stiffness. Different “three-spring” approaches have been also

proposed to model mechanosensing phenomenon (Fig. 1b). In particular, Moreo et al.

(Moreo et al. 2008) presented a three-spring model with a linear stiffness-dependent

actuator, which was capable of predicting cell contractility in response to changes in

extracellular matrix stiffness (Fig. 1c). Their mechanical approach, however was static,

whereas real cell contractility is time-dependent as has been extensively exhibited

experimentally (Mitrossilis et al. 2009). To overcome this limitation several authors have

proposed a different theoretical model based on active matter theory (Zemel et al. 2010;

Marcq et al. 2011). Indeed, Zemel et al (Zemel et al. 2010) established a new model in order

to understand the stiffness-dependent orientation of stress fibers in adherent cells. Marcq et
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al (Marcq et al. 2011) focused their modeling work on the analysis of the temporal cell

response to substrate rigidity, but, they did not study the response of their model to sudden

changes in substrate rigidity. Recently, Foucard and Vernerey (Foucard and Vernerey 2012)

investigated the viscoelastic behavior of stress fibers, but their primarily addressed the

dependence of stress fiber elasticity on stretching frequency. Deshpande et al. combined

mechanics with time-dependent chemical signaling (Deshpande et al. 2006) in order to

predict the role of focal adhesions and stress fiber concentration in the development of force

by cells. Finally, Crow and co-workers (Crow et al. 2012) proposed a three-spring model

including a dashpot and an independent actuator contracting at a constant velocity (Fig. 1d),

although their approach was focused on capturing the instantaneous cell response rather than

the long term behavior. Notably, with this scheme the authors were able to adjust a

mechanical law to successfully simulate step changes induced in the extracellular rigidity;

however, their model is not able to predict temporal saturation of forces under different

stiffness. Therefore, to fully predict this benchmark of experiments, we propose a novel one-

dimensional constitutive law for cell contractility and force generation, capable of

reproducing some important features of cell response to extracellular stiffness.

2. CONSTITUTIVE LAW

In this work, we extend the model proposed by Moreo et al (Moreo et al. 2008) to include

rate-dependent effects. The system is similar as in the previous work, consisting on two

parallel springs representing the stiffness of the passive mechanical components of the cell

and the actin filaments which are, furthermore, in series with the myosin motor contractile

system (Fig. 2). This approach was purely mechanical and static, so that the contractile

system exerted a specific force depending on the cell strain, and thus depending on the

substrate stiffness. However, the time-force evolution, which plays a critical role in cell

mechano-sensing, was not taken into account. These rate-dependent or viscous effects have

already been included into other models by means of the addition of dashpots, e.g. in the

three-spring approach, however, they are not able to simulate all cell responses associated

with changes in the extracellular rigidity. Hence, a different approach is here presented

incorporating an internal variable that takes into account the kinetics associated to cell

molecular motors, in particular, the force saturation due to motor stalling.

2.1 Definition of internal variables

To simulate the cell we consider a one-dimensional mechanical device consisting of two

springs and a linear stiffness-dependent actuator fc (δc) (Fig. 2b). The active force of the

contractile actuator simulates the force provided by the actin and myosin cross-bridges at the

sarcomere level when shortening. In this scheme, the series element Kact corresponds to the

stiffness of the actin components and the parallel element Kpas to the stiffness of different

mechanical components of the cells, such as, the membrane, microtubules, cytoplasm and

others. In addition, Ksubs corresponds to the extracellular or substrate stiffness that describes

the rigidity associated to the deformed plate used in the mechanosensing experiments

(Mitrossilis et al. 2009) presented above.

The temporal response of the cell is characterized by using an internal variable as follows:

let [0,T] be the time interval of interest. We consider the internal variable
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and interpret α(t) as the level of motor stalling, that is to say, the ratio of myosin molecules

that are stalled, with α =1 meaning that the cell has reached equilibrium (Borau et al. 2012).

Therefore, this ratio takes on various values corresponding to the range 0 ≤ α (t) ≤ 1.

From a phenomenological point of view we regard motor activation as an internal variable,

which is characterized in terms of the history of the cell contraction displacements δcell (t).

2.2 Additive decomposition of the displacement field

The basic assumptions underlying the formulation of this phenomenological model of cell

mechanosensing, lead to a set of local governing equations that can be summarized as

follows.

From the model depicted in Fig. 2, the compatibility equation in the displacement field can

be derived:

(eq.1)

It is assumed that the cell displacement or cell stretching can be decomposed into a

contractile and an elastic part. In other words, the total displacement is the sum of the

contraction of the acto-myosin system (δc) and the extension of the actin filaments (δa):

(eq.2)

2.3 Cell forces

The force that a cell exerts on the plate or the extracellular substrate (fcell) is defined through

the stiffness of the substrate Ksubs and the variation of the cell height (δcell)

(eq.3)

Now the governing equations for the model depicted in Fig. 2 are derived from equilibrium,

where the force that the cell exerts can be decomposed into the force exerted by the

contractile system and the force borne by the passive matrix of the cell:

(eq.4)

where fm depends on the cell passive stiffness

(eq.5)

Cell tension is generated by the myosin II molecular motors walking along the actin

filaments. The force generated by the activity of myosin causes oppositely orientated actin
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filaments to slide relative to one another if they are free to move, or to experience tension if

they are not. For simplicity, Moreo et al. (Moreo et al. 2008) assumed the following linear

constitutive relationship connecting the contractile acto-myosin force fc and the relative

slippage distance between the actin filaments δc, according to the classical Huxley’s law:

(eq.6)

where fmax describes the zero-slippage force and δ1 is the maximum slippage distance. In the

same way that Huxley (Huxley 1957) defined a maximum cross-bridge extension to limit the

number of attached motors, we establish a range where the dependence of acto-myosin force

on slippage is valid. Hence, for slippages higher than this maximum distance (δc ≥ δ1), the

acto-myosin force (fc) drops to 0. At zero slippage (δc = 0), fc is maximum. With no further

assumptions, in this model (Moreo et al. 2008), the mechanical equilibrium is independent

of time, and fc takes a unique value for a given δc, which in turn depends on the substrate

stiffness, as will be shown below. To account for time-dependent phenomena, Huxley used

cross-bridge attachment and detachment rates, as well as transport effects due to relative

fiber motion. Here we assume that this time-dependent response is based on the stalling of

myosin motors with time. Hence, eq. 6 should be equivalent to the real constitutive equation

when the system has reached steady state (α = 1); that is to say, when all the motors are

actively walking along the actin filaments exerting maximum force. Therefore eq.7 is

naturally updated from the previous expression by introducing the fraction of active motors

(α(t)). In this way, although the linear relationship between fc and δc remains, the force that

the acto-myosin actuator is able to exert increases with time, and accordingly with α, as

shown in Fig. 3a. The force exerted by the motors and transmitted to the actin filaments can

be then expressed as:

(eq.7)

Note that this expression renormalizes both the maximum contraction and maximum force

that the AM system is able to do at each time instant (Fig 3.a) and ensures the continuity of

the time dependent response as discussed in the next section. This eq. 7 aims to model the

contractile activity due to the acto-myosin machinery, nevertheless, the expression could be

generalized to incorporate also negative forces (cell pushing the matrix) due to other

different mechanisms such as actin polymerization (Mogilner 2009).

By equilibrium of forces, and combining equations 3,4,5 and 6 we can find a direct

relationship between the relative displacement of the actin filaments of the acto-myosin

contractile system δc(t) and the ratio of active motors α(t) being dependent on extracellular

rigidity:

(eq.8)
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Using the same procedure, the force that a cell transmits to the substrate can be derived as a

function of α(t) and Ksubs:

(eq.9)

2.4 Time-dependent response

As described in previous works, motors can walk, bind and unbind depending on the forces

supported (Guo and Guilford 2006), and during this process, they are able to generate

increasing contraction forces in the cell network. Eventually, a mechanical equilibrium is

reached due to generalized stalling of the motors. These stalling events may occur for

several reasons such as high forces, arrival at barbed ends or blocking due to lack of binding

sites. These phenomena and their role in cell mechanosensing were previously explored in

(Borau et al. 2012). In that work, using a Brownian dynamics computational model, we

found that although the cause for motor stalling depends on the extracellular matrix (ECM)

compliance, the number of stalled motors and the stalling evolution with time is practically

independent of ECM stiffness. Other previous phenomenological models assumed the

relaxation time to be a decreasing function of substrate rigidity (Marcq et al. 2011; Crow et

al. 2012). However, this dependency was found to be significant only at very short times. In

fact, Crow et al (Crow et al. 2012) showed experimentally that relaxation time ranges

between 6.53 s (for null substrate stiffness) and 2.64 s (for infinity rigid substrates). Hence,

for the long term response (~1000 s as used in Mitrossilis’s experiments), a constant

relaxation time gives similar results.

In this work, we propose a general and simplified regulatory rule to define the temporal

evolution of motor stalling depending on the force transmitted through the actin filaments

(fc) and independent of substrate rigidity, with the following explicit form:

(eq.10)

where μ [nN.s] is a viscosity coefficient and g (fc) is the regulatory function that controls this

time evolution, defining the system approach to its maximum force§:

(eq.11)

§Different functions may have been use to define g (fc), always fulfilling the experimental evidences. Here, we chose this function of
g (fc) for simplicity, so that the terms depending on substrate stiffness (δc) are cancelled in equation 11. This ensures the continuity
when integrating equation 12, even when the substrate stiffness is time-dependent. Furthermore, the resulting exponential function
α(t) can be physically interpreted as the motor stalling evolution found in previous studies. Certainly g (fc) could be revised if fc was
differently defined. In fact, its current definition (equation 7) permits to renormalize both the slippage and the force exerted by the AM
system so that its contraction varies in time even for a fixed value of substrate stiffness. In addition, the selection of the current g (fc)
implies a relaxation time independent of substrate stiffness. This assumption is adequate for the long-term response, which is the
principal aim of our model (end of footnote).
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Combining equations 10 and 11, and defining τ = fmax/μ as the relaxation time, we obtain

the evolution of motor stalling:

(eq.12)

On physical grounds, we assume as initial condition (t = 0) that α(t) = α0 and integrating this

equation, we obtain the expression that defines the evolution of α(t)

(eq.13)

Using the specific values of the different parameters indicated in Table 1, we compute the

temporal evolution of α and the forces generated by the contractile system (fc) and those

transmitted to the substrate (fcell) as a function of the relative slide and time, respectively

(Fig. 3a–d). Note that although the relaxation time (τ) is substrate stiffness-independent, the

rate of force build-up (dF/dt) is not, capturing the stiffness-dependent instantaneous cell

response as shown in next section.

(eq.14)

3. RESULTS

3.1 Problem description

A single cell fixed between a rigid and a flexible plate is simulated in order to reproduce the

experimental setup designed by Mitrossilis et al.(Mitrossilis et al. 2009) and used by

different authors (Webster et al. 2011; Crow et al. 2012) to evaluate cell mechano-sensing

properties (Fig. 2a). In this setup, the cell pulls on the two parallel plates while the plate

deflection is measured. By using a double feedback loop which independently regulates

spring and cell lengths to maintain cell-spring contact in a fixed position, they obtain the

temporal cell response for different external rigidities.

A simplified one-dimensional problem is defined to understand contractility and force

generation due to cell response under different extracellular rigidities (Fig. 2b). Two main

conditions are simulated. Firstly, we evaluate the temporal evolution of cell contractility and

force generation under a wide range of extracellular rigidity values. Secondly, we compute

the cellular time-response under step-changes of the extracellular stiffness.

3.2 Cell contraction and force generation under different extracellular stiffnesses

The temporal evolution of force generation, which depends on the extracellular rigidity, is

shown in Fig. 3d and Fig. 4a. In the former, and according to eq. 9, force develops following

the evolution of motor activation. The maximum value achieved (the plateau force, fp)

depends on the substrate stiffness (Ksubs)(Fig. 4b). Actually, the model predictions are

similar to experimental data from (Mitrossilis et al. 2009). At a given time, the force
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increases with stiffness, abruptly for low stiffness and smoothly for higher ones (Fig. 4a).

Qualitatively similar results were found experimentally, measuring the cell stress exerted on

micropillars of different stiffness. (Trichet et al. 2012). Taking the force at t=1200 seconds

as the plateau force and plotting it against substrate stiffness, we find that for Ksubs < 100

nN/μm, fp rapidly increases with stiffness, saturating for higher rigidities, in good agreement

with experiments (Mitrossilis et al. 2009). In fact, both in the model and experiments, fp is

proportional to Ksubs in compliant substrates (~ Ksubs
0.87 and ~ K subs

0.94 respectively). In

addition, other authors found this initial linear relationship (~ Ksubs
0.93) (Trichet et al. 2012),

although their study only took into account substrate stiffness up to 80 nN/ μm (Fig. 4b).

The rate of force build-up (dF/dt, slope of the force curve) increases quickly and

proportionally to the stiffness at first, and slows down as the force approaches the maximum

plateau (~300 nN (Mitrossilis et al. 2009)). In relation with the substrate stiffness and

measuring dF/dt in the first phase of contraction (t<100 s), the rate of force build-up

strongly increases for compliant substrates and presents slight changes for stiffer ones (Fig.

5a), similarly to recent experimental findings (Mitrossilis et al. 2009; Mitrossilis et al. 2010;

Trichet et al. 2012). Note that in this last work (Trichet et al. 2012), as in the measurement

of the plateau force, only the initial linear regime was observed since their study was

focused on compliant substrates.

The speed of shortening (vcell) is easily derived from the rate of force build-up as

. The cell shortening is faster for compliant substrates, whereas stiffer

substrates, which resist the contraction, lead to very low velocities for Ksubs >1000 nN/μm.

Fig. 5b shows 1/vcell as a function of Ksubs, both for the model and experiments (Mitrossilis

et al. 2009). Mechanical power (P = fcell vcell) is also computed, presenting a bi-phasic

behaviour with the load and showing a peak at ~40% of the maximum generated force,

following the classical behavior observed in muscles and recently found in myoblasts

(Mitrossilis et al. 2009) due to acto-myosin contraction (Fig. 5c).

3.3 Simulating step changes in extracellular stiffness

In these simulations we evaluate the cell response to step-changes in substrate stiffness with

a period of 20 seconds (Fig. 6a top plot), following the experiments carried out by Crow et

al. and Webster et al. (Crow et al. 2012; Webster et al. 2011) and of 100 seconds (Fig. 6b

top plot), to study the long-term response and compare the results with Mitrossilis et al. data

(Mitrossilis et al. 2010). Specifically, Ksubs is first varied from 10 to 100 nN/μm in a first

case, and then from an extremely low value (~0) to an extremely high one (∞) with a period

of 20 seconds (Fig. 6a,b) reproducing the experiments of the aforementioned authors (Crow

et al. 2012; Webster et al. 2011; Mitrossilis et al. 2010). In both cases, the force generated

increases faster (higher slope) when the stiffness is higher (since dF/dt increases with Ksubs)

(Fig. 6a,b middle plots) in good agreement with the simulated experiments (Crow et al.

2012; Webster et al. 2011; Mitrossilis et al. 2010). The cell height, however, decreases faster

for compliant substrates (Fig. 6a,b bottom plots). The general trend is clearly seen in the

cases with extreme values of substrate stiffness. When Ksubs ~ ∞ the force increases very

fast (Fig. 6a middle plot), especially during the first seconds when the activation of motors is

in its early phase, whereas the cell height remains constant (Fig. 6b bottom plot). In contrast,
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when Ksubs ~ 0, the rate of force build-up is near zero but cell height rapidly decreases (Fig.

6b bottom plot). For higher periods of stiffness step change (Fig. 6c), the system behaves

similarly but the effect of substrate stiffness on the cell force variation is less relevant as

time increases due to the saturation of α. The motor stalling determines the time at which the

system reaches equilibrium, however, the force attained at that point depends on the load-

history. For this reason, in the case with stiffness step variations from ~0 to ~∞ (Fig. 6c),

the plateau force after 500 seconds is below 200 nN, much lower than the value that would

correspond to an infinitely rigid substrate (~ 300 nN). Logically the cell contraction is higher

than in previous cases due to the long periods of low stiffness. Certainly, the motor stalling

could also depend on substrate stiffness due, for instance, to morphology changes of the

intracellular network. This could affect the force evolution after each step change, however,

it has been reported that although the reasons for motor stalling depend on external stiffness

(higher percentage of motors get stalled by forces for stiffer substrates whereas higher

percentage of motors get stalled by blocking phenomena if softer substrates), the temporal

evolution of stalling remains practically unchanged (Borau et al. 2012).

4. PARAMETER SENSITIVITY ANALYSIS

In order to find which parameters most strongly influence cell rigidity-sensing, a sensitivity

analysis is performed. For this analysis, the substrate stiffness is held constant (Ksubs =100

nN/μm).

The definition of the internal variable that describes the motor stalling evolution (α) is the

key for all the time-dependent processes simulated in this model. Thus, a proper

understanding of the effects of the involved parameters is needed. The global parameter

controlling the time evolution of α is the relaxation time (τ), which determines how fast the

stalling events reach saturation and specifically the rising of force with time (dF/dt). Fig. 7a

shows how α plateaus faster for lower values of τ. However, τ is not a free parameter, since

it depends on μ and fmax (eq.12). While μ only affects α, fmax affects the mechanical

equilibrium, therefore altering the magnitude of the exerted forces (fcell). Fig. 7b shows how

the plateau force adjusts due to variations of fmax, while the time-evolution remains

unchanged. This happens because μ is varied in the same proportion as fmax thus leading to a

constant relaxation time. If however, fmax is varied alone (Fig. 7c), both the plateu force and

the relaxation time are affected. High values of fmax lead to higher forces, which are,

furthermore, attained faster. On the other hand, μ is a parameter only affecting time

evolution (Fig. 7d). Hence, changes in μ are equivalent to changes in τ (Fig. 7a).

The purely mechanical components of the cell (Kpas, Kact) do play an important role in the

mechanical equilibrium. The actin stiffness (Kact) appears to be the more relevant

component in the mechanical system. Therefore, changing its value, leads to substantial

changes in the plateau force (Fig. 8a). As shown in Fig. 2, this component is in series with

the AM system. Thus, increasing the actin stiffness leads to lower values of δc, which in turn

increases the cell force (eqs.4 and 6). However, bigger changes of Kpas are needed to be

reflected in fcell (Fig. 8b). Actually, these changes in the plateau force are only noticeable

when Kpas has similar or greater values than Kact. This is confirmed in Fig. 8c, where both

parameters are varied together obtaining similar results to Fig. 8a, where only Kact changes.
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Moreover, we explore the effects of the slippage distance parameter δ1. It is important to

note that this parameter is independent of the cell length (Lc). Hence, Lc does not affect the

results as long as remains constant. However, higher values of slippage, lead to δ1 higher

forces and higher deformability of the cell as shown in Fig. 9. Other authors have taken this

value as infinity (Marcq et al. 2011), which is equivalent to consider a constant force of the

AM system, independent of substrate stiffness and other parameters. This allows capturing

the force-stiffness linearity only for very compliant substrates, whereas our approach is able

to extend the linear regime to experimental ranges, as will be discussed subsequently.

5. DISCUSSION

To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to

the surrounding matrix. The ways that cells exert these forces are dependent on the

properties of the surrounding extracellular matrix, being rigidity one of the most studied

features due to its implications in numerous aspects of cell behavior and function (Zemel et

al. 2011). Indeed, Zemel et al. have reviewed theoretical and experimental studies of the

physical consequences of cellular forces, generated by acto-myosin contractility, including

its role in cell morphology, stress-fiber formation and alignment and the elastic properties of

cells. Apart from the various specific force generating or responsive functions that cells

perform (e.g., wound healing, remodeling of the extracellular matrix or muscle contraction),

cells also apply forces as a generic means of sensing and responding to the mechanical

nature of their environment. This mechanosensing mechanism has been hypothesized in

theoretical and computational models to explain cell organization (Bischofs and Schwarz

2003), collective (Moreo et al. 2008), and individual 2D (Trichet et al. 2012) cell migration

and 3D cell migration (Borau et al. 2011). These and other mechanisms have been proposed

from a molecular point of view, as a portion of one cell (Yamaoka et al. 2012; Borau et al.

2012; Wang and Wolynes 2012; Soares e Silva et al. 2011), to macroscopic constitutive

laws of the whole cell (Crow et al. 2012; Moreo et al. 2008) or from purely mechanical

models to multiphysics models (Besser and Schwarz 2010; Taber et al. 2011). In this work,

we propose a macroscopic phenomenological one-dimensional constitutive law to model

cell rigidity sensing based on a purely mechanistic approach. Despite its simplicity, the

model is able to successfully simulate multiple rigidity-sensing conditions and its results are

in good correspondence with experiments. Three main features distinguish the present

model from previous ones: macroscopic force generation, time dependent response and a

one-dimensional structure approach.

Firstly, we use a three-spring configuration with a length-actuator (linearly dependent on the

relative displacement). Further simplifications of this system produce similar mechanical

responses as in the work from (Marcq et al. 2011), but diminish the predictive potential of

the model in some aspects as discussed below. In fact, in the absence of external loads such

as localized forces or pre-stressed substrates, α(t) − δc/δ1 is always ≥ 0 in eq.7. Thus, the

second condition in equation 7 would not be required to reproduce the experiments here

presented, and the whole construct could be simplified to a single pre-stressed spring whose

equilibrium length is brought to zero through a decay clock (α). Nevertheless, this three-

spring configuration allows us to distinguish between active and passive responses of the

cell. For example, introducing eq. 13 in eq. 9 leads to a cell force evolution qualitatively
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similar to that proposed by Marcq et al. 2011, although important differences can be

identified. Mechanistically, the addition of the series spring (Kact) with the acto-myosin

actuator, as well as the dependence of fc with δc, captures the linearity of fcell with respect to

substrate stiffness (Ksubs) for compliant substrates, and its saturation for higher rigidities. In

Marcq’s model, where a constant contractile force is applied in parallel with the cell

stiffness, the linearity of the transmitted (traction) force is only obtained when substrate

stiffness is much lower than cell stiffness (kext≪kC using his notation). In our model,

however, this linearity extends up to 100 nN/μm as found in experiments (Mitrossilis et al.

2009). This occurs due to the combination of the Kact spring with a force indirectly

depending on stiffness (fc). If this force was considered constant (as in Marcq’s model and

equivalent to δ1 → ∞), the effect of the Kact spring would be cancelled and equation 9

would be simplified to fcell =α(t) fmax (Ksubs/(Ksubs + Kpas)), thus presenting the

aforementioned limitations. In addition, relative values of Kact and Kpas are not arbitrary

(Schafer and Radmacher 2005; Lim et al. 2006) and their independent role can be evaluated

as we have shown in Fig. 8. In fact, the relation between both values is really relevant,

regulating the cell response under different mechanical conditions. This approach may allow

us in the future to simulate more complex phenomena such as stress-fiber rigidization,

network disruption etc.

Secondly, time-dependent response has been normally considered due to the viscoelasticity

of the membrane or to some cytoskeleton components and have been modeled by means of

the addition of dashpots (Crow et al. 2012). However, these models are not able to predict

simultaneously two distinct experimental phenomena: immediate cell response to rigidity

step changes and cell saturation for high rigidities of the substrate. It is required then to

model additional effects, such as the dynamics of myosin motors which introduce,

furthermore, a physical meaning to the time-dependent response. This fact is in concordance

with the hypothesis of active matter theory proposed by several authors (Marcq et al. 2011;

Zemel et al. 2010) and has been also tested with a particle-based Brownian dynamics

computational model (Borau et al. 2012). In fact, in that model, molecular motors are

proposed as one possible mechanism of cell mechanosensing and their dynamics are found

to be crucial for the time-dependent force evolution. Other models, however, rather than a

mechanical phenomenon, attribute the temporal response to a chemical decaying signal (eg.

concentration of Ca2+) that triggers actin polymerization or myosin phosphorylation

(Deshpande et al. 2006), obtaining similar trends for force evolution and saturation

depending on substrate stiffness. The model here presented incorporates, through the

internal variable α, the motor stalling time-evolution, assuming a single decay law.

Saturation is achieved when most of the motors become stalled, not being able of exerting

higher forces. Similar relaxation laws have been proposed by other authors (Crow et al.

2012; Marcq et al. 2011), although these other works assume relaxation time to be a

decreasing function of substrate rigidity. However, this dependence was found to be not

significant for long term responses (e.g. only varied from 6.53 s. to 2.64 s for zero and

infinite substrate rigidities respectively τ (Crow et al. 2012)). Based on these experimental

results and our previous computational work (Borau et al. 2012), we assumed the relaxation

time to be independent of substrate stiffness, ensuring the continuity of the motor stalling

function (α). Despite this simplification, we are able to achieve good predictions of force
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evolution (fcell (t)) and saturation (fp), quantitatively similar to those found by (Mitrossilis et

al. 2009; Mitrossilis et al. 2010) and qualitatively comparable to those found by (Crow et al.

2012; Trichet et al. 2012), which used different time or substrate stiffness magnitude to

perform their experiments. In fact, although the relaxation time is independent of Ksubs, the

rate of force build-up (dF/dt) is not (equation 14), permitting to capture the stiffness-

dependent instantaneous cell response. As in these experiments, the force develops and

saturates at ~300 nN after 1200 seconds (Fig. 3d). In addition, plateau force barely changes

for substrate stiffness higher than 100 nN/μm (Fig. 4b) (Mitrossilis et al. 2009). In our model

force evolution is mainly exponential according to the motor stalling function (α) which is

in agreement with previous computational results (Borau et al. 2012), however, in

experiments (Mitrossilis et al. 2009) this evolution presents a biphasic behavior with a linear

initial regime of about 600 seconds, followed by a saturation phase. This difference suggests

that although myosin motor dynamics may be important, there likely exist other

mechanisms, such as bio-chemical signals, that may also regulate rigidity sensing.

Nevertheless, the model is able to capture some time-dependent cell responses such as the

rate of force build-up (dF/dt) and the contraction speed (vcell) observed in the experiments

developed by (Mitrossilis et al. 2009; Mitrossilis et al. 2010; Trichet et al. 2012). Due to the

distinct evolution pattern discussed above, the values of these variables differ from

experiments, although they are in the same order of magnitude: maximum dF/dt ~1 nN/s in

the model compared with ~0.4 nN/s in the experiments (Mitrossilis et al. 2009), and

maximum vcell ~0.045 μm/s (~22 s/μm) compared with ~0.014 μm/s (~70 s/μm) (Mitrossilis

et al. 2009) (Fig. 5a,b). Interestingly, in spite of these differences, mechanical power (P)

presents a biphasic behavior attaining a peak at ~40% of the maximum load, similar to

~30% found experimentally (Fig. 5c) (Mitrossilis et al. 2009). In addition, the model was

tested against periodic step changes in substrate stiffness. Specifically we changed stiffness

from 10 to 100 nN/μm and from ~0 to ~∞, and we used a period of 20 seconds in a total of

100 seconds (Fig. 6a,b top plot), following the experiments carried out by Crow et al. (Crow

et al. 2012; Webster et al. 2011) and a period of 100 seconds in a total of 500 seconds (Fig.

6c top plot), to study longer time response as Mitrossilis et al. (Mitrossilis et al. 2010). Due

to the evolution of motor stalling, for shorter times the response is mainly linear, and the

stiffness step changes lead to periodic stretches which switch the slope of force build-up. On

the other hand, for longer period and simulated time, the effect of substrate stiffness is less

relevant as time advances due to the saturation of α. The motor stalling determines the time

at which the force exerted by the cell reaches equilibrium, however, this force depends on

the load-history. For this reason, when periodically varying the substrate stiffness from ~0 to

~∞ (Fig. 6c) every 100 seconds during 500 seconds, the plateau force is below 200 nN,

much lower than the value that would correspond to an infinitely rigid substrate (~ 300 nN).

This, again, strengths the idea that there might exist additional mechanisms that permit to

keep cell response mainly linear even for the long-term, but reaching plateau afterwards.

Note that this could be reproduced in our model by using a high value of τ (to obtain linear-

like response for longer times) together with some kind of limiting mechanism that didn’t

allow the system to increase the force beyond a specific limit (the plateau force). Up to our

knowledge, the reasons for this cell behavior are still unknown, so further experiments

would be needed to investigate such mechanisms.
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Thirdly, the proposed model focuses only on a 1D approach, when the series of experiments

simulated are mainly 2D or even 3D (Mitrossilis et al. 2009; Crow et al. 2012; Mitrossilis et

al. 2010). Although the experiments focused on the vertical response, cells spread

horizontally during contraction, changing from a convex to a concave curvature in the

borders and increasing the contact area and changing the load distribution. Obviously, in

vivo cell response involves many other factors and complex mechanisms, however, the

accuracy obtained in the numerical results suggests that a one-dimensional approach is

adequate to model this problem, at least for the simple scheme proposed in the experiments.

Certainly, this model is a first and simple approximation to predict macroscopic active

behaviour of the cell as a whole and, although additional effects could be easily incorporated

(such as large strains, cytoskeletal remodeling or coupled mechano-chemical analysis), it

could serve as a potential guide for experiments which could furthermore be used to test the

model. In addition, this model can be suitable to simulate cell migration, since it is

hypothesized that cells tend to sense the rigidity of the ECM to regulate their migration

direction. In fact, a non-time dependent version of this model was previously used to

simulate cell migration in 3D (Borau et al. 2011). Hence, the implementation of this theory

in combination with models of cell migration would provide a strong impetus for the

development of future models with applications in wound healing, tissue engineering and

cancer metastasis.
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Fig. 1.
Constitutive mechanical models to describe the contractile cell response: (a) the two-spring

approach (Schwarz et al., 2006), (b) active matter theory (Marcq et al., 2011), (c) the three-

spring approach (Moreo et al., 2008) and (d) the three-spring and a dashpot approach (Crow

et al., 2012).
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Fig. 2.
System schemes for measuring cell mechanosensing properties. (a) Experimental setup used

by (Mitrossilis et al., 2009) to measure the effect of substrate rigidity on cell forces

(reproduced with permission from Mitrossilis et al.). They decouple probe elongation (i.e.,

force) from cell contraction using a double feedback loop which independently regulates

spring and cell lengths to maintain cell-spring contact in a fixed position. In this way, the

setup acts as if the cell was compressing a spring of stiffness K0 (dLspring /dLcell), permitting

the study of a wide range of rigidities with a single probe of stiffness K0. (b) Model scheme

used in this work to investigate stiffness-dependent cell response. In similar fashion to the

experimental setup, the substrate stiffness is represented by a single spring (Ksubs). The cell

body is modeled as two parallel springs, one of them in series with a contractile actuator.

Kpas represents the passive stiffness of different mechanical components of the cell (e.g.

microtubules, membrane, cytoplasm), whereas Kact stands for the rigidity of the actin

filaments. The acto-myosin system (AM) is then placed in series, contracting the cell body

by stretching the actin and compressing the passive components.
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Fig. 3.
(a) Force generated by the contractile system (fc) as a function of the relative slippage

distance between the actin filaments (δc) at different times. Longer δc leads to lower forces.

At a given slippage, the force increases with time. (b) Force of the cell transmitted to the

ECM as a function of cell contraction (δcell) at different times. Longer δcell leads to lower

forces. At a given cell contraction, the force increases with time. (c) Fraction of active

motors vs. time. The activity of motors increases with time following an exponential law

until saturation. (d) Force evolution for different substrate stiffness. The force increases with

time until saturation, at a faster rate for stiffer substrates. The saturation magnitude depends

on substrate stiffness, reaching a maximum value of ~300 nN as found experimentally in

(Mitrossilis et al. 2009).
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Fig. 4.
(a) Cell force as a function of substrate stiffness for different times. The force increases

exponentially at low stiffness, and saturates (plateau force) for higher ones. The force

increases with time for all the stiffness due to the growing motor activation. (b) Saturation or

plateau force (fp) as a function of substrate stiffness in log-log scale. fp, in other words fcell

measured at t=1200 s, increases proportionally to Ksubs (fp ~ Ksubs
0.87) for softer substrates,

in similar fashion to the experimental findings from (Mitrossilis et al. 2009) (fp ~ Ksubs
0.94,

exp 1 in the legend), and (Trichet et al. 2012)(fp ~ Ksubs
0.93, exp 2), and saturates for stiffer

ones as in (Mitrossilis et al. 2009).
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Fig. 5.
(a) Initial rate of force build-up (dF/dt) as a function of substrate stiffness. In the first phase

of contraction (t <100 s), the rate of force build-up strongly increases for compliant

substrates, and presents slight changes for stiffer ones as found by (Mitrossilis et al. 2009)

(exp 1 in the legend). (b) Inverse of cell speed of shortening (vcell) as a function of substrate

stiffness. The cell contracts faster for softer substrates, vcell approaching zero for Ksubs

>1000 nN/μm. The curve behaves similarly to experiments (Mitrossilis et al. 2009) (c)

Normalized mechanical power vs. normalized force. P presents a bi-phasic behaviour with

the load, showing a peak at ~40% of the maximum generated force. These behaviors are

qualitatively similar to those found by (exp 1, Mitrossilis et al. 2009).
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Fig. 6.
Cell response to step-changes in substrate stiffness. (a) The stiffness switches from 10 to 100

nN/μm with a period of 20 seconds to simulate the experiments from (Webster et al. 2011,

Crow et al. 2012). The force generated increases faster (higher slope) when the stiffness is

higher. The cell height, however, decreases faster for low substrate stiffness. (b) The

stiffness switches from 0 to ∞ with periods of 20 seconds (Crow et al. 2012) and (c) 100

seconds (Mitrossilis et al. 2009). The force increases at maximum rate for a completely rigid

substrate, whereas the cell height remains invariable. Nevertheless, for a completely

compliant substrate, there is no force development and the cell body contracts at maximum

speed.
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Fig. 7.
Sensitivity analysis of parameters involved in motor stalling evolution (α).(a) Evolution of

stalling depending on the relaxation time (τ). For higher values of τ, α needs more time to

reach plateau. (b) If fmax and μ are varied together, the relaxation time (τ) remains constant,

whereas the magnitude of exerted forces changes. (c) fmax affects both the relaxation time

and the mechanical equilibrium. Higher values of fmax correspond with higher plateu forces

attained faster. (d) The viscosity coefficient only affects the time-evolution. Thus, changes

in μ are equivalent to changes in the relaxation time.
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Fig. 8.
Sensitivity analysis of the cell force evolution depending on actin (Kact) and passive stiffness

(Kpas). (a) Changes in Kact lead to important changes in the plateau force. High values of

actin stiffness decrease the contraction of the AM system, thus producing higher forces. (b)

Variations of the cell passive stiffness affect the force generation only when the values of

Kpas are similar or greater than the values of Kact. (c) By varying both Kact and Kpas at the

same time, the changes in force generation are similar to those obtained when varying only

Kact, confirming that the actin stiffness is the predominant mechanical parameter.
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Fig. 9.
Sensitivity analysis of the cell force evolution depending on slippage distance (δ1) for Ksubs

=100 nN/μm. Higher values of δ1 enhance system contractility, leading to higher exerted

forces.
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Table 1

Parameter list

Variable Symbol Value Units References

Actin stiffness Kact 28 [nN/μm] (Schafer and Radmacher 2005; Lim et al. 2006)

Passive CSK stiffness Kpas 5.6 [nN/μm] (Schafer and Radmacher 2005; Lim et al. 2006)

Substrate stiffness Ksubs 1–1000 [nN/μm] (Mitrossilis et al. 2009; Mitrossilis et al. 2010)

Maximum slippage distance δ1 −15 [μm] *

Zero-slippage force fmax 1000 [nN] (Mitrossilis et al. 2009; Mitrossilis et al. 2010)

Cell length Lc,0 30 [μm] (Crow et al. 2012)

Viscosity coefficient μ 2e5 [nN.s] *

Relaxation time τ 200 [s] *

*
Adjusted parameters
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