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CHAPTER 1. BACKGROUND AND RESEARCH 

DEVELOPMENT 
 

This chapter presents the research framework, 

describing the study area an introducing the conceptual 

approaches used to conduct the research. 
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1.1. Fire as a disturbance hazard and landscape transformation factor 

Fire is a natural factor that has shaped Earth’s vegetation throughout its 

natural history. The control of fire by persons has extended the influence of 

fire beyond its ecological limits, offering human beings a powerful tool for 

land cleaning and soil alteration (Chuvieco, 2009). Forest fires are thus a 

major factor of environmental transformation in a wide variety of ecosystems, 

affecting forested areas and having an important share in greenhouse gas 

emissions (van der Werf et al., 2010), and vegetation dynamics (Thonicke et 

al., 2010). However, although fire was in origin a natural process –as it may be 

caused by natural factors such as lightning, or volcanic eruptions– nowadays 

fire has acquired an anthropogenic dimension being mainly controlled by 

human activities (Chuvieco, 2009).  

Fire effects are commonly associated to fire frequency and intensity, 

implying loss of lives and damages on infrastructures, soil degradation, and 

biodiversity losses. The main trends of environmental degradation induced by 

fire in the medium and long term may include permanent changes in the 

floristic composition of the plant community, reduction of vegetation cover, 

biomass loss, and alteration of landscape patterns. Forest fires can also induce 

long-term changes in floristic and physiognomic parameters of vegetation 

through their impact on the physical and chemical properties and nutrient 

availability of soil (Vallejo et al., 2009; Pérez-Cabello et al., 2009). In 

addition, the loss of vegetation cover after fire increases surface erosion 

because the bare soil is exposed to raindrop impact and surface runoff, 

especially in the first months after burning (Giovannini et al., 2001; Inbar et 

al., 1998). On the other hand, in several developed countries, growing 

industrialization has led to a severe reduction of rural population and an 

abandonment of traditional rural practices (Martínez et al., 2009). This 

phenomenon has implied a remarkable increase of fuel accumulation, 

conducing to more severe and intense fires and consequently to higher 

impacts. In developing countries, the reverse is true, and continuous 

movement of the agricultural frontier threats tropical forest. Fire is used in this 

context as a clearing tool for land use transformation. 

Noticeably, fire effects on both society and environment largely 

depend on fire regime (density, frequency, severity, intensity, seasonality, size, 

etc.). Fire is beneficial for vegetation when it is well adapted to natural 

conditions, but harmful when natural cycles or fire regimes are altered 

(Chuvieco, 2009). Recent changes in socioeconomic models and climatic 

patterns have significantly affected the historical fire regime (González et al., 

2010; San-Miguel-Ayanz et al., 2012a), with potential damage far greater than 

traditionally experienced (Bowman and Boggs, 2006; Meyn et al., 2007; 
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Pausas and Vallejo, 1999). In addition there appears to be increased chances of 

having an especially dramatic season, similar to those that several countries 

suffered in the last decade as a result of extreme heat waves (Spain 2000 and 

2005; Portugal 2003 and 2005; Greece 2007). This increase in wildfire 

frequency, with its associated risks to the environment and society (Moreno et 

al., 2011), and the potential undesired effects on environment and society calls 

for a better understanding of the wildfire phenomenon. 

During the last decades, the Spanish forest fire authorities have 

encouraged the investigation of fire causes, which is decisive to better 

understand patterns of fire occurrence and improve fire prevention measures 

(Martínez et al., 2009). However, the 29% of the fire causes remain 

unidentified. According to Lovreglio et al. (2006), little is known about 

wildfire causes, which often are more diverse than what is assumed by the 

traditional classifications employed for statistical purposes. In face of the 

arising uncertainties, a better knowledge on spatial patterns of fire occurrence 

and their relationships with its underlying causes becomes a necessity to locate 

and make prevention efforts more efficient. 

1.2. Study area 

Forest fires have traditionally been linked to the Mediterranean climate 

due to the coexistence, in some months of the year, of high temperatures and 

low rainfall (Camia and Amatulli, 2009). The indigenous vegetation has lived 

with fire for millennia, and thus it is not an extraneous factor to the 

Mediterranean environment or, more specifically, to peninsular Spain (Pausas 

and Vallejo, 1999; Pyne, 2009; Wagtendonk, 2009). In Spain, the total area 

burned –with an annual average of over 125 000 hectares from 2000 to 2010, 

but almost 250 000 hectares per year from 1980 to 1989 (Schmuck, 2011)– 

has decreased in recent years, while the number of fires has increased –18 150 

compared to 15 300 in the corresponding periods (San-Miguel-Ayanz et al., 

2012a; Schmuck, 2011)–. The current climate change trend in the 

Mediterranean is provoking longer summer droughts and intensification of 

these droughts even out of season. Also, extreme weather events, such as 

periods of high temperatures, strong air dryness and very strong winds, as well 

as sudden storms with heavy rainfall in only few hours (an amount similar to 

the annual average rainfall in some areas), are becoming frequent. Thus, the 

chances of suffering an especially dramatic fire season (Rebetez et al., 2006), 

as in several countries in the last decade as a result of extreme heat waves 

(Spain, 2000 and 2005; Portugal, 2003 and 2005; Greece, 2007; Australia, 

2009; Russia, 2010) appear to be increased (Camia and Amatulli, 2009; San-

Miguel-Ayanz et al., 2012b) and are likely to occur more frequently in the 

coming decades (Seidl et al., 2011). 
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The Mediterranean has been identified by WWF as one of the most 

important regions in the world for its outstanding biodiversity features. 

Mediterranean forests, situated in a transitional zone between the European, 

African and Asian continents, are one of the planet’s centres of plant diversity, 

with 25,000 floral species representing 10% of the world’s flowering plants on 

just over 1.6% of the Earth’s surface. They also play host to an amazing faunal 

diversity. But the Mediterranean forests are also under serious threat, with 

forest fires, in most cases deliberately set, playing a major role in their 

degradation and bringing about huge social, economic and environmental 

effects. There is a strong need to put in place an effective policy of prevention 

to address the root causes of this phenomenon. 

The study area covers the whole of peninsular Spain excluding the 

Balearic and Canary Islands and the autonomous cities of Ceuta and Melilla 

except in the case of Chapter 5 which is developed at European level to 

establish an initial framework to contextualize wildfire impact in Spain within 

the EUMed Region. Further, the study region was restricted to wildland areas; 

consequently, urban areas and agricultural and inland water zones were 

excluded from the assessment and no data are detailed or shown on the maps. 

Spain is very biophysically diverse, presenting a wide variety of 

climatic, topographic, and environmental conditions. This diversity also 

appears when discussing socioeconomic conditions, in terms of population 

systems and population structure, productive sector, or territory structure. The 

complexity of the socioeconomic conditions thus plays a determinant role, 

which is especially important when modeling human factors, since this 

complexity is transferred to the relationships between socioeconomic variables 

and a natural phenomenon such as wildfires, making assessment less 

straightforward. 

1.3. Forest Fire Risk assessment Systems 

1.1.1. Fire risk conceptual approaches: fire danger and vulnerability 

The conceptual definition of a Forest Fire Risk assessment System 

(FFRS) should include the most relevant components associated with the fire 

process. Terminology used in fire prevention planning has a long tradition, 

especially in the US and Canada, but is still quite controversial, especially 

when comparing its terms with those used in other natural hazards 

(earthquakes, volcanic eruptions, floods, etc.). Following the most common 

terminology used by fire managers, ‘fire hazard’ refers to the potential fire 

behavior associated with the ‘static’ properties of fuel, regardless of the 

particular moisture conditions on a given day.  
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The term ‘fire risk’ refers to the ‘chance of fire starting, as determined 

by the presence and activity of causative agents’ (mainly lightning and human 

factors). The concept of ‘fire danger’ is broader and describes the ‘factors 

affecting the inception, spread and resistance to control, and subsequent fire 

damage; often expressed as an index’ (NWCG, 2014). Following this 

approach, fire danger includes various factors: weather conditions, causative 

agents and even potential damage, but most commonly the latter are not 

considered in operational fire danger assessment systems (San Miguel-Ayanz 

et al., 2003). Some authors are critical of the term ‘danger’, as its meaning is 

vague, and suggest fire hazard or fire probability be used instead (Bachmann 

and Allgöwer, 2001).  

In other natural hazards, the term ‘risk’ commonly describes the 

convergence of the physical probability that a natural event occurs, and its 

potential damage to people and the environment (UNISDR, 2009). Following 

this approach, fire risk mapping should include the assessment of values 

potentially affected by fire. In fact, those values are critical to guide fire 

suppression efforts (a clear example is when fire occurs in the proximity of 

urbanized areas). Therefore, the consideration of fire vulnerability (potential 

effects of fire on social and ecological values) should always be part of fire 

risk evaluations and would help to align them with other natural hazard 

assessments. 

Several authors have adapted this risk approach to wildland fires 

(Allgöwer et al., 2003; Bachmann and Allgöwer, 2001; Chuvieco et al., 2003), 

which implies that fire risk assessment should both include the probability that 

a wildfire ignites or propagates (which we will name as fire danger throughout 

this paper), and the expected damages caused by fire behavior (termed as fire 

vulnerability). Recent papers on fire risk assessment have incorporated this 

double evaluation to propose a comprehensive analysis of fire risk conditions 

(Calkin et al., 2010; Chuvieco et al., 2010; Thompson et al., 2011; Tutsch et 

al., 2010), but still much more research exists on fire danger than on fire 

vulnerability. In recent years, several methods for wildfire risk assessment 

have been developed using different methodological schemes, variables, and 

scales (Martínez-Vega, 2012). Without being exhaustive, some of the more 

recent efforts have included those by Amatulli et al. (2006), Chuvieco et al. 

(2014; 2010), Cooke et al. (2007), Loboda (2009), Martínez et al. (2011; 

2009), Martinez and Koutsias (2013), Padilla and Vega-García (2011), and 

Romero-Calcerrada et al. (2010). Similar efforts have been invested in 

modeling fire occurrence (see Plucinsky (2011) for an exhaustive review) and, 

particularly, to human-caused ignition (Martínez-Fernández and Koutsias, 

2011; Martínez et al., 2013; Martínez et al., 2009; Padilla and Vega-García, 

2011).   
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Figure 1. Framework for an integrated fire risk assessment system (Chuvieco et al., 2014). 

The conceptual framework, in which this PhD research work has been 

developed in is based on Chuvieco et al. (2012), which considers the risk as a 

product of the physical probability of a fire occurs or propagates, and the 

potential damages that it may cause (Figure 1; see Appendix A for deeper 

insights). The former, fire danger, considers the probability that a fire starts as 

a result of any causative agent or propagates throughout space. The latter 

includes damages related to socio-economic and ecological values, and will be 

named as fire vulnerability in this document. This conceptual framework was 

initially proposed under the European project Spread (Allgöwer et al., 2003; 

Calkin et al., 2010; Chuvieco et al., 2003), and further refined in the Spanish 

projects Firemap and Fireglobe (Chuvieco et al., 2014; Chuvieco et al., 2010), 

funded under the CICyT calls. 

1.1.2. The human component in fire risk modeling 

Human beings have a great impact on fire regimes because they alter 

ignition frequency, fuel fragmentation and suppress fires (Guyette, 2002). The 

dynamics of fire regimes in southern Europe are related mainly to human 

factors, which are the cause of more than 95% of fires in this region (San-

Miguel Ayanz and Camia, 2009). Traditional usage of fire in agricultural and 

cattle raising practices in the region is one of the main causes of forest fires. 
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Demographic changes related to the abandonment of rural areas are also 

related to increased fire hazard, favoring fuel accumulation due to the lack of 

forest management practices in the region finally leading to uncontrolled forest 

fires. In addition, although overall the rural population in Southern Europe has 

decreased, peaks of high population density in recreational wildland areas 

during holiday periods increased fire ignition in summer months. This is 

further enhanced by the expansion of urban areas into wildland areas. This 

effect, which is due to either the expansion of cities or the construction of 

secondary houses in rural areas, has led to an extended Wildland Urban 

Interface (WUI) in the region. The difficult fire management of the extensive 

WUI in Southern Europe has been the cause of catastrophic fires such as those 

in Portugal in 2003 or Greece in 2007. 

The analysis of human factors in forest fires is widely recognized as 

critical for fire risk estimation (Kalabokidis et al., 2002; Martínez, 2004). In 

most countries human activities are in one way or the other, the main 

responsible source of fire ignition. In spite of the importance of these human 

aspects, little work has been devoted to this issue and the literature on this 

topic is scarce and mainly site-specific (Krawchuk, 2009; Le Page et al., 2010; 

Martínez et al., 2009), maybe because of the complexity of predicting human 

behavior, both in space and time. Most frequently, the studies have focused on 

variables related to land use or land cover-change –rural abandonment, 

agricultural-forest interface or urban-forest interface–, population trends, rural 

activities, potential conflicts that may lead to vengeances or arson –

unemployment, enforcement of conservation areas, reforestation in traditional 

pastured areas, etc.–.  

The influence of human factors on fires can be considered as both a 

cause and an effect. Studies pertaining to the former aspect are more abundant 

because human activities are the most common cause of fires –95% of Spanish 

fires are human-caused according to national statistics (Martínez et al., 2009)–

. Identifying the most important factors involved in fire occurrence has been 

the main goal of a wide range of studies, commonly based on statistical 

approaches, which try to explain historical human caused fire occurrence based on 

a set of independent variables (Chuvieco and Justice, 2010; Martínez et al., 2009; 

Padilla and Vega-García, 2011; Syphard et al., 2007). The consideration of 

human values in fire risk assessment is more recent and only a few regional 

studies have identified that the main socioeconomic damages potentially 

caused by wildland fires are associated with lives, property and environmental 

services –wood products, hunting, fungi, carbon stocks, recreational, etc. 

(Loomis, 2004; Venn and Calkin, 2009). Previous studies in several Spanish 

regions (Chuvieco et al., 2010) demonstrated the importance of taking into 

account regional variation in human factors when explaining fire occurrence. 
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Currently, most fire risk models in use are based on physical 

parameters such as weather data or fuel moisture content –there is no global 

forest fire risk system that includes the human factors operationally, although 

some consider it in their components (San-Miguel Ayanz and Camia, 2009). 

However, over recent years, the role of human factors in fire behavior 

modeling has been increasing, and several models now include an 

anthropogenic component in their assessments (Chuvieco et al., 2014; 

Chuvieco et al., 2010; Loepfe et al., 2011).  

1.1.3. The ecological vulnerability 

Assessment of vegetation response after fire can support governments' 

forestry policies, forest service activities, and fire-risk modeling. This point is 

particularly acute because the lack of spatial data on this subject has to some 

extent hindered natural resources management agencies from identifying 

priority areas for adaptation measures (Brooks et al., 2006; Hannah et al., 

2002)Brooks et al., 2006; Hannah et al., 2002). This hindrance is especially 

true in Mediterranean-type ecosystems where fire is considered the main 

natural disturbance, exerting a decisive influence on the structure and 

dynamics of plant and animal communities (Arianoutsou et al., 2011; Bajocco 

et al., 2011; Di Castri and Mooney, 1973; Gill et al., 1981; Naveh, 1975; 

Trabaud and Lepart, 1980) 

The term vulnerability has many different definitions. Based on the one 

proposed by IPCC, it is understood as the extent to which a system is 

susceptible to, and unable to cope with, adverse effects of any driver of change 

or hazard (fire, in this case). Thus, ecological vulnerability to fire can be 

defined as the susceptibility of the ecosystem to be changed as a consequence 

of fire. Environmental features, as well as vegetation structure are key factors 

to estimate that vulnerability (Duguy et al., 2012). Although vulnerability 

aspects (relating to the potential damage of a given hazard) are frequently 

considered in assessment systems for most natural hazards (Bachmann and 

Allgöwer, 2001), they are not generally included in the operational fire danger 

indices used in European Mediterranean countries, which mostly rely on 

meteorological indices (Chuvieco et al., 2010). Ecological vulnerability can be 

used at several hierarchical levels, but is applied here as synonym for 

ecosystem vulnerability, defined as the inability of an ecosystem (biological 

community and habitat combined) to restore by itself, recovering its pre-

impact (pre-fire) status. 

Ideal ecosystem vulnerability assessments should involve the abiotic 

environment, the system’s different organization levels and several temporal 

and spatial scales (Ippolito et al., 2010). A comprehensive vulnerability 
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analysis is, thus, unrealistic and, in practice, ‘reduced’ assessments are 

conducted (Turner et al., 2003). Effects of fire on soils and post-fire vegetation 

dynamics have been studied in Mediterranean basin ecosystems (Duguy et al., 

2007; Duguy and Vallejo, 2008; Kazanis and Arianoutsou, 2004). In addition, 

several methodologies for assessing vegetation response to forest fires in 

Mediterranean-type ecosystems have already been designed. Bisson et al. 

(2008) presented an index of plant community resilience to fire. Arianoutsou 

et al. (2011) evaluated the post-fire resilience of Pinus halepensis in Cape 

Sounion National Park, Greece, using GIS and multi-criteria analysis. De la 

Riva et al. (2008), Alloza et al. (2006), and Duguy et al. (2012) produced a 

qualitative index of ecological vulnerability to forest fire in Mediterranean 

environments. In any case, these methods provide qualitative results; however, 

while they may be useful in some areas for territorial management, they are 

inadequate for other kinds of analyses such as quantitative assessment of fire-

induced economic losses due to interruption of environmental services (e.g. 

timber, hunting, and mushroom gathering). For these, it is essential to know 

the period during which that service was lost (Román et al. 2013, see 

Appendix B). 

  



 

 

 

 

 

 

 

CHAPTER 2. OBJECTIVES AND STRUCTURE 
  

This chapter summarizes the objectives of the thesis 

and puts them in connection with the publications and 

supplementary materials that compose the thesis. 
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The main objective of this thesis is to explore new methods for 

modeling anthropogenic causality in forest fires and fire effects on burnt plant 

communities. Achieving this objective requires taking into account several 

components or dimensions relating the wildfire phenomena and spatial 

modeling, which every fire risk approach or method have to address properly. 

On the one hand, fire is a spatial hazard and consequently it depends on 

parameters that have a spatial explicit basis. For instance, fire ignition drivers 

or explanatory factors are spatially distributed parameters that could show 

spatially varying relationships with forest fires, also being scale-dependent. 

These issues should be adequately considered when exploring new 

approaches, thus analyzing in depth their ability to properly reflect the spatial 

behavior of wildfires.  

Fire is not only a spatial phenomenon but also has a strong temporal 

component. Forest fires are a dynamic hazard which shows high temporal 

variability both inter- and intra-annual (fire regimes, seasonality, trends…).  

The temporal scale or dimension of wildfires is an essential component and 

therefore it has to be accurately incorporated into any fire risk assessment. For 

example, new approaches should deal with temporal evolution of fires (trend 

analysis) or identify its structural components (historic models). 

A third component of wildfires and in fact always present when dealing 

with environmental processes and inherent to statistical models, is uncertainty. 

Uncertainty is basically a lack of information that propagates through models 

and therefore influences the results. It is present at any stage of analysis, 

staring from inputs, being present in models and methods, and finally in the 

results. From a scientific perspective, improving decision quality in natural 

resource management begins with uncertainty management. Consequently, 

new methodological approaches are unreliable unless they are self-critical and 

thus address the uncertainty of its outputs. 

Finally, although not a specific component of forest fires modeling but 

a requirement for statistical and spatial hazard modeling, developing and 

exploring new methods entails appropriate tools for its proper development. In 

this sense, this thesis has deeply explored the use of several tools, combining 

traditional GIS approaches with statistical and programming languages, either 

open source or proprietary. Developing adequate methods usually require the 

design and implementation of complex workflows to which scripting tools are 

a necessity. This is even truer when working at wide scales or with a huge 

amount of information as is the case. 

All these four components or requirements have been addressed in this 

work thorough the different publications that compose the PhD thesis. Each of 

the documents covers in higher or lesser degree one or more of the 
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requirements, allowing not only achieving the main objective but doing it 

guarantying its consistency and rigor.  

The global objective has been broke down into several specific sub-

objectives summarized as follows. These objectives, and consequently this 

PhD research work, have been addressed as a compendium of publications. 

Table 1 presents the relationship between specific objectives and publications. 

i. Provide insights into the temporal evolution of the wildfire 

phenomenon. 

ii. Review existing methodological approaches in the field of human 

factors modeling of ignition and ecological vulnerability. 

iii. Explore the applicability of new regression methods for modeling 

of human causality. 

iv. Estimate the spatial variation of the explanatory factors of human 

causality.  

v. Analyze the reliability of the original data of fire occurrence and 

potential associated uncertainty. 

vi. Estimate the ecological vulnerability of plant communities affected 

by fire. 

The contents of the PhD document are structured as follows. Chapter 1 

has introduced and contextualized the conceptual framework of the research 

work. Chapter 3 summarizes the material used to develop the research, 

extending the contents that are already included in the publications and 

describing them more in depth in order to enhance the comprehension of the 

proposed methods. Chapter 4 presents and extends the methods and techniques 

employed to develop the research. Jointly with chapter 3, it aims to 

significantly improve the comprehension of the proposed methods. Chapters 5 

to 8 present the original version of the accepted and published papers. Finally, 

a summary of the main findings is presented in chapter 9. 

Additionally, a section with supplementary materials is also included. 

This section introduces additional publications whose I have coauthored and 

are strongly related with the objectives of my PhD. These publications have 

been developed as a result of the research conducted in the framework of the 

FIREGLOBE project (CGL2008-01083/CLI) –Analysis of fire risk scenarios 

at the national and global scales–, and the research stays made during the FPI 

grant period (ref. BES-2009-023728). 

 Appendix A introduces the work Integrating geospatial 

information into fire risk assessment which summarizes the main 

outputs from project FIREGLOBE as well as contextualizes the 

framework of research.  
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Table 1. Summary of PhD’s objectives and its contributing papers and/or communications 

Objective Publication 

i. Provide insights into the temporal 

evolution of the wildfire 

phenomenon. 

Rodrigues M, San Miguel J, Oliveira S, Moreira F, Camia 

A. (2013) An insight into Spatial-Temporal Trends 

of Fire Ignitions and Burned Areas in the European 

Mediterranean Countries. Journal of Earth Science 

and Engineering 3:497-505. 
ii. Review existing methodological 

approaches in the field of human 

factors modeling of ignition and 

ecological vulnerability. 

Rodrigues M, de la Riva J, Fotheringham S. (2014) 

Modeling the spatial variation of the explanatory 

factors of human-caused wildfires in Spain using 

geographically weighted logistic regression. 

Applied Geography 48:52-63. 

doi:10.1016/j.apgeog.2014.01.011 

Rodrigues M and de la Riva J. (2014) An insight into 

machine-learning algorithms to model human-

caused wildfire occurrence. Environmental 

Modelling & Software, 57:192.201. 

doi:10.1016/j.envsoft.2014.03.003 

Rodrigues M, Ibarra P, Echeverría M, Pérez-Cabello F, de 

la Riva J. (2014) A method for regional scale 

assessment of vegetation recovery time after high 

severity wildfires: case study of Spain. Progress in 

Physical Geography 38, 556-575. doi: 

10.1177/0309133314542956. 

iii. Explore the applicability of new 

regression methods for modeling 

of human causality. 

Rodrigues M, de la Riva J, Fotheringham S. (2014) 

Modeling the spatial variation of the explanatory 

factors of human-caused wildfires in Spain using 

geographically weighted logistic regression. 

Applied Geography 48:52-63. 

doi:10.1016/j.apgeog.2014.01.011 

Rodrigues M and de la Riva J. (2014) An insight into 

machine-learning algorithms to model human-

caused wildfire occurrence. Environmental 

Modelling & Software, 57:192.201. 

doi:10.1016/j.envsoft.2014.03.003 

iv. Estimate the spatial variation of 

the explanatory factors of human 

causality. 

Rodrigues M, de la Riva J, Fotheringham S. (2014) 

Modeling the spatial variation of the explanatory 

factors of human-caused wildfires in Spain using 

geographically weighted logistic regression. 

Applied Geography 48:52-63. 

doi:10.1016/j.apgeog.2014.01.011 

v. Analyze the reliability of the 

original data of fire occurrence 

and potential associated 

uncertainty. 

Rodrigues M and de la Riva J (2014) Assessing the effect 

on fire risk modeling of the uncertainty in the 

location and cause of forest fires. In Viegas DX 

(ed.) Advances in Forest Fire Research. Coimbra, 

Imprensa da Universidade de Coimbra, 1061-1072. 

http://dx.doi.org/10.14195/978-989-26-0884-

6_116. 

vi. Estimate the ecological 

vulnerability of plant 

communities affected by fire. 

Rodrigues M, Ibarra P, Echeverría M, Pérez-Cabello F, de 

la Riva J. (2014) A method for regional scale 

assessment of vegetation recovery time after high 

severity wildfires: case study of Spain. Progress in 

Physical Geography 38, 556-575. doi: 

10.1177/0309133314542956. 
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 Appendix B, Methodological approach to assess the socio-

economic vulnerability to wildfires, presents an application 

example of the proposed method for quantitative assessment of 

ecological vulnerability, being an input to calculate the economic 

value of fire-affected assets. 

 Appendix C, Land Cover Change and Fire Regime in the 

European Mediterranean Region, extends the results for fire trends 

in number of fires and burnt area size. 

 Finally, appendix D and E introduce the first steps of the methods 

to estimate the spatial variation of the explanatory factors of 

human causality and the ecological vulnerability of plant 

communities affected by fire. 



  

 

 

 

 

 

 

CHAPTER 3. MATERIALS 
  

This chapter describes in deep detail the data 

employed to conduct this PhD research work. As noticeable, the 

research work has been developed using different spatial scales. 

Although most of the analyses have been carried out at national 

(Spain) level, some parts refer to the European level. 

Accordingly, section 3.1 presents data at European scale while in 

sections 3.2 and 3.3 data at national is described. On the other 

hand, this work follows a double-sided approach to deal with fire 

risk (fire danger and vulnerability to fire); therefore data on fire 

occurrence is firstly presented (sections 3.1 and 3.2) later 

introducing the materials utilized to develop the vulnerability 

assessment.
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3.1. European Forest Fire Information System 

Data on number fire events and burned area were retrieved from the 

EFFIS Database. European countries have collected information on forest fires 

since 1970s. However, the lack of harmonized information at the European 

level has prevented a holistic approach for forest fire prevention in the Region. 

The European Forest Fire Information System (EFFIS, Appendix C) has been 

developed jointly by the European Commission services (Directorate General 

Environment and the Joint Research Centre) and the relevant fires services in 

the countries (forest fires and civil protection services) in response to the needs 

of European bodies such as the Monitoring and Information Centre of Civil 

Protection, the European Commission Services and the European Parliament 

(San-Miguel-Ayanz et al., 2013). EFFIS is a comprehensive system covering 

the full cycle of forest fire management, from forest fire prevention and 

preparedness to post-fire damage analysis. The system provides information to 

over 37 countries in the European and Mediterranean regions, and receives 

detailed information of forest fire events from 25 countries in the European 

and Mediterranean regions. It supports forest fire prevention and forest fire 

fighting in Europe through the provision of timely and reliable information on 

forest fires (San-Miguel-Ayanz et al., 2012b). 

The European Fire Database is the largest repository of information on 

individual fire events in Europe and an EFFIS’ core component. It is the end 

product of a long collaboration between European countries and the European 

Commission on forest fires.  

Since 1989 several regulations have supported the creation of forest 

fire information systems in the countries to monitor and evaluate the 

effectiveness of the measures taken at the European level. To this end the 

countries had to make available to the EC a minimum common set of data on 

forest fires. Thus a first fire database was established with information on 

forest fires, their size and causes. The systematic collection of a core set of 

data on each fire event started covering at that time six Member States of the 

Union: Germany, Portugal, Spain, France, Italy and Greece. 

Since 2000, the forest fire data provided each year by individual EU 

Member States and other European countries have been checked, stored and 

managed by JRC within EFFIS. The database is now known as the European 

Fire Database, and the number of Member States and other participating 

European countries that contribute to it has been gradually increasing. 

Today the database reflects the efforts of the 22 contributing countries 

that have been regularly supplying fire data: Bulgaria, Croatia, Cyprus, Czech, 

Estonia, Finland, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, 

Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland 
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and Turkey, and contains over 2 million individual wildfire event records, of 

which about 1.66 million are classified as forest fires. 

Each country has its own internal rules of reporting on individual fire 

events. Some store very detailed information and have complex databases for 

this purpose; others record only minimal and basic information. The European 

Fire Database therefore contains a number of commonly gathered 

characteristics of each fire, all of which can be supplied by all countries. The 

four main types of information collected are: time of fire, location of fire, size 

of fire, and cause of fire. 

Time of fire 

“Date and time of first alert” reflect the local date and time at which 

the official forest fire protection services were informed of the outbreak of the 

fire. The “Date and time of first intervention” are the local date and time on 

which the first fire-fighting units arrived on the scene of the forest fire. And, 

the “Date and time of fire extinction” are the local date and time on which the 

fire was completely extinguished (i.e. when the last fire-fighting units left the 

scene of the forest fire). 

Location of fire 

Wildland fires in Europe are traditionally geo-located by recording the 

administrative unit where they started. Two different administrative levels are 

requested to be specified in order to allow the maximum detail to be recorded 

for each fire event in the country. 

A first administrative level is the province. The Nomenclature of 

Territorial Units for Statistics (NUTS) is a breakdown of territorial units 

established by the European Office for Statistics (EuroStat) for the production 

of regional statistics for the European Union. NUTS-3 level corresponds in 

most EU countries to the administrative level of provinces. The country 

provincial code and NUTS-3 code are requested. A second administrative 

level of information requested is that of the commune, corresponding to the 

Eurostat NUTS-5 level. 

This level is much more detailed than the province and is requested 

also in the Country nomenclature to facilitate the correct attribution of codes 

and the cross checking of codes with names. 

With the widespread use of GPS devices, the location of the ignition 

point given as geographical coordinates (latitude, longitude) is becoming more 

widely applied on a routine basis in many countries. When the coordinates provided 

are projected, the projection parameters are also requested. The geographical 

coordinates do not replace the specification of the administrative units. 
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Size of fire 

Fire size is broken down into burnt land cover categories whose 

definition can be found in the Forest Focus Regulation§, which is compliant 

with FAO definitions. Where possible, the burnt area is subdivided into the 4 

land cover categories “Forest”, “Other Wooded Land”, “Other Non-wooded 

Natural land” and “Agricultural and Other Artificial land.” If this is not 

possible a hybrid category may be used. 

The category “agriculture and other artificial land” should be excluded 

in the reported burnt area statistics. It was introduced to enable its separation 

from the other categories to produce comparable statistics. Thus, since a fire 

may cover more than one type of land, the reported “total area burnt” is 

calculated as the sum of the burnt areas of forest, other wooded land and other 

non-wooded natural land. The burnt area of agricultural and other artificial 

land burned is not included in the numbers reflecting the burnt area. 

Cause of fire 

The 4 EU categories for the presumed cause are the following: 1-

Unknown; 2-Natural cause (e.g. lightening, volcano); 3-Accidental cause or 

negligence, meaning connection to a human activity but without any intention 

of causing the fire (e.g. accidents caused by power lines, railways, works, 

bonfires, etc.); and 4-Deliberate cause or arson. 

Since the currently available information on fire causes in individual 

countries is much more detailed than simply the 4 classes given above, cause 

categories following the scheme adopted by the country are also requested in 

addition to the 4 EU cause codes, together with a full list of local cause codes 

and descriptions. Based on this, a new scheme to be eventually adopted as a 

common fire causes classification system in Europe has been proposed (San-

Miguel-Ayanz, 2012). 

3.2. Fire history data in Spain:  the EGIF database 

In Spain, historic fire events are recorded in the General Statistics of 

Wildfires database (EGIF). The EGIF database is one of the oldest ‘complete’ 

wildfire databases in Europe, beginning in 1968 (Vélez, 2001), though its data 

is not considered as completely reliable until 1988 (Martínez et al., 2009). The 

database is compiled by the Ministry responsible for forest management, 

currently the Ministry of Environment, Rural and Marine affairs (MARM) 

using forest fire reports of the autonomous regions (Moreno et al., 2011).  

Throughout his nearly forty years of existence, the form for data 

collection has experienced successive modifications to adapt to changes in 

information technology both hardware and software, the evolution of the 
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phenomenon of forest fires, the equipment used for extinction and the changes 

in administrative structure and organization of the Spanish State. All these 

changes have enriched the number of fire data contained on the form. 

EGIF is a shared database among the Autonomous Communities. Since 

1990 the definition of the form and the computer application for data recording 

and data mining has been agreed with the autonomous responsible, 

guarantying that a single form and a single software application for recording 

and exploitation of data wildfires exists all over the State. However, a certain 

degree of discrepancy still exists in data collection, and information in the 

database differs from one region to another. 

The current wildfire form includes 216 data fields for each wildfire 

event. Fire information is divided in two sub-forms: (i) general information of 

the fire and; (ii) forest specific information. In turn, each fire event is codified 

using a ten digit code. The first four corresponds to the year, next two are the 

province code, and the last four correspond to the rank of the fire (position 

according to year and province). Following, a detailed description of the form 

is presented: 

General information of the fire 

This sub-form contains information regarding the fire as a whole, 

including: 

 Location data: Autonomous region, province, county, municipality, 

other small scale administrative divisions and UTM coordinates of the 

ignition point. 

 Time data: fire detection time, terrestrial extinction service arrival 

time, airborne extinction service arrival time, helicopter extinction 

service arrival time, time until the fire is controlled, and fire 

suppression time. 

 Detection: detection procedure and origin place. 

 Ignition causes: differences between known and supposed cause and 

then into the most likely ignition source according to 40 categories of 

causes, which are also aggregated into six categories: natural 

(lightning), human (negligence, accident or arson), restarted fires and 

unknown or unidentified fires. 

 Danger circumstances at fire start time: meteorological data, fuel 

model, danger rating index. 

 Fire suppression methods: firefighting personal and equipment used for 

fire extinction. 

 Fire suppression techniques. 
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 Losses: number harm and deceased persons, affected forest area 

(differentiating between with or without tree species), affected non-

forest area, qualitative evaluation of environmental losses and 

infrastructures. 

 Impact on Natural Protected Areas: area’s ID and affected Surface. 

Forest specific information 

This sub-form provides detailed information, collect for each affected 

municipality and property for each single fire event in the General Information 

sub-form: 

 Location data: municipality, forest legal condition and forest ID. 

 Tree-forest affected area: affected tree species, silvicultural status, 

average tree area, affected area and affected canopy cover. 

 Shrubland-forest affected area. 

 Grassland affected area. 

 Factors to calculate losses in timber products and repopulation. 

Includes the affected timber volumes, prices of standing timber before 

and after the fire and the price for each burnt mature tree species 

affected. 

 Factors for the calculation of losses such as cork, resins, fruits, 

mushrooms, firewood, grazing and hunting. 

 Assessment of income losses and extinction expenses. 

3.1.1. Human-caused fire ignition: dependent variable for wildfire modeling 

The dependent variable –high/low wildfire occurrence– was built from 

the Spanish EGIF (General Statistics of Wildfires) database from 1988 to 

2007. The spatial distribution of fire occurrence (308,893 fires in the period 

from 1988 to 2007) was developed through a combination of the 10x10 km 

grid, a digital map of Spanish municipalities and the boundaries of the forest 

area. More specifically the ignition location procedure is based in the method 

developed by de la Riva et al. (2004). This method is widely recognized and 

has been used in many wildfire assessment research works in the Spanish 

territory such as Amatulli et al. (2007), Chuvieco et al. (2012; 2010). The 

method proposes a multi-step procedure which successively refines and 

decreases the potential location area of the ignition points by ruling out areas 

where the fire could not have occurred. Firstly it starts in the 10x10 grid with a 

potential location area of 100 km2. Then this area is decreased by intersecting 

with the boundaries of the municipality origin of the fire. Finally, the location 

area is restricted to the forest perimeter –since the ignition location of every 

wildfire is expected to be in the forest area– to determine the final potential 
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location area. This process leads to a significantly smaller area where the 

ignition points are then randomly distributed. This allowed us to calculate fire 

density maps with a spatial resolution of 1x1 km by overlapping the final 

ignition points cloud and a 1x1km UTM grid (which perfectly fits the 10x10 -

grid). Figure 2 illustrates this procedure. Recent studies have commented that 

predictions from fire simulations based on random ignitions may produce 

unrealistic results because the spatial distribution of ignition locations, 

whether human-caused or natural, is non-random (Bar Massada et al., 2011). 

However, the lack of explicit location data for wildfire events, especially in the 

first years of the EGIF dataset, made it impossible to generate a realistic set of 

locations. On the other hand, in many cases where coordinates have been 

assigned, the final location seems to be unreliable because it corresponds with 

unexpected sites such as the corner of the UTM grid or outside the forest area, 

which are more likely to be false.   

 
Figure 2. Procedure for ignition points location. Potential location area is grey-colored. a) 

10x10 km ICONA grid; b) municipality intersection; c) forest area intersection; d) random 

point location and intersection with 1x1 km grid 

The final dependent variable was created on a conceptual framework 

which assumed that there were no true cases of fire absence. In ignition data, 

most or all of the fire occurrences are accounted for, which may make it seem 

as if all other locations in the landscape have no fires. In this context, most 

previous attempts at fire occurrence modeling had used background subsets of 

“no occurrence” during the analyzed time span, considering them to be true 

cases of fire absence (e.g., Chuvieco et al., 2010; Padilla et al., 2011). 

However, the fact that these areas did not experience an ignition event during 

the temporal span of the data set does not mean that they could not feasibly 

support an ignition event in the future, or that they never ignited in the past 

(Bar Massada et al., 2012). In line with this reasoning, the dependent variable 

was developed by classifying the occurrence values into two categories: high 



Chapter 3: Materials 

25 

occurrence (presence; 27956 points) in locations with two or more fires, and 

low occurrence (pseudo-absence or background; 28188 points) in locations 

with only one fire. The authors thought that the consideration of low-

occurrence locations as pseudo-absences was more realistic than the creation 

of random background subsets. The fact that these areas have experienced only 

experienced one fire event in a long time span (20 years), means that their 

characteristics are strongly related with low fire frequencies. 

It should be noted that the dependent variable used to calibrate the 

GWR models (see Section 4.2) was constructed using human-caused fires over 

5 ha in size were selected (8727 fires). This is mainly due to the high 

computation power demanded by current GWR software and statistical 

packages. 

3.1.2. Anthropogenic factors in fire ignition: explanatory variables for wildfire 

modeling 

It is common, both in literature on this topic and fire history statistics, 

to deal with the classification of anthropogenic fire ignition factors by 

grouping them in two groups, depending on the existence of intentionality. The 

first would include all those factors directly or indirectly related to fire start in 

which no intentionality is found but rather ignition is associated to negligence. 

These fires are usually linked to traditional activities in rural areas as well as to 

socio-economic transformations in the last decades. The second group is 

directly related to factors that generate certain sort of conflict which, in turn, 

can lead to the intended start of a fire (Leone et al., 2003; Martínez et al., 

2004).  

The explanatory variables for wildfire modeling were selected on the basis 

of experience in models at regional and national scale (Chuvieco et al., 2010; 

Martínez et al., 2009; Vilar del Hoyo et al., 2008) and classified according to 

this typology of the affecting factor, as follows: 

1. Factors related to socioeconomic transformation.  

1.1. Abandonment of traditional activities in wildland/rural areas. 

Accumulation of forest fuel. 

1.1.1. People employed in the primary sector. Obtained at the 

municipal level from the Agricultural Census 1999 of the Spanish 

Statistics Institute (INE). 

1.2. Abandonment of traditional activities in wildland/rural areas 

especially in privately owned forests with no prospect of economic 

profit. Little or no interest in forest conservation. 
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1.2.1. Forestry area in public utility. Delimitation of the area 

occupied by forestry areas included in the public utility catalog. 

1.3. Increasing use of forest as a recreational resource. More frequent visits 

to forests. 

1.3.1. Tracks. Area occupied by the buffer 200 meters either side of 

the forestry track network. Obtained from BCN200. 

1.4. Human presence, population increase and urban growth. Increased 

pressure on wildlands 

1.4.1. Wildland-Urban Interface (WUI). Area occupied by the buffer 

200 meters from the line of contact to the forest area. Constructed 

from the Spanish Forestry Map 1:200000 (MFE200).  

1.4.2. Changes in demographic potential, 1991-2006 (Calvo and 

Pueyo, 2008). Variation rate between the demographic potential 

in 1991 and 2006. 

2. Factors related to traditional economic activities in rural areas. 

2.1. Aged rural population. Traditional management methods. 

2.1.1. Percentage of owners of holdings aged over 55 years. 
Obtained at the municipal level from the Agricultural Census 

1999 of the Spanish Statistics Institute (INE). 

2.2. Agriculture. Use of fire to clear harvesting waste, cleaning along 

borders of cropland. 

2.2.1. Wildland-agricultural interface (WAI). Area occupied by the 

buffer 200 meters from the line of contact to the forest area. 

Constructed from the Spanish Forestry Map 1:200000 (MFE200).  

2.3. Cattle grazing. Possible fire to maintain herbaceous vegetation. 

2.3.1. Extensive livestock. Obtained at municipal level from the 

Agricultural Census 1999 of the Spanish Statistics Institute (INE). 

2.3.2. Wildland-grassland interface (WGI). Area occupied by the 

buffer 200 meters from the line of contact to the forest area. 

Constructed from the Spanish Forestry Map 1:200000 (MFE200).  

3. Factors that could cause fire mainly by accident or negligence. 

3.1. Electric lines. Possible cause of ignition by accident. 

3.1.1. Power lines. Area occupied by the buffer 50 meters either side 

of the high, medium, and low voltage power network. Obtained 

from BCN200. 

3.2. Engines and machines working in or close to forested areas Possible 

cause of ignition by accident or negligence. 
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3.2.1. Density of agricultural machinery (DAM). Obtained at 

municipal level from the Agricultural Census 1999 of the Spanish 

Statistics Institute (INE). 

3.3. Existence of roads, railroads, tracks, and accessibility. Greater human 

pressure on wildland. 

3.3.1. Railroads. Area occupied by the buffer 200 meters either side 

of the railroad network (excluding the high-speed network). 

Obtained from a digital cartographic database (BCN200). 

3.3.2. Tracks.  

3.3.3. Changes in demographic potential 1991-2006  

4. Factors that could help prevent fires. 

4.1. Protected area. Increasing concern about forest protection. 

4.1.1. Protected areas. Delimitation of the area occupied by protected 

natural areas and the Natura 2000 network. 

5. Factors that generate conflicts, and which could lead to intentional starting 

of fire and/or facilitating its spread. 

5.1. Changes from forest use. Possible cause of arson. 

5.1.1. Changes in land cover. Loss or increase of area covered by 

forest or semi-natural regions. Obtained from the Corine Land 

Cover 1990 and 2006 maps. 

5.2. Fire industry. Fire started to gain income, work, payment or subsidies 

from fire prevention or fighting and in restoration of land affected by 

fire. 

5.2.1. Unemployment rate. Obtained for municipal level in 2007 from 

the population and housing census 2001 (updated to 2007) of the 

Spanish Statistics Institute (INE). 

3.3. Ecological vulnerability 

3.1.3. Characterization of fire-affected plant communities 

Some plant species are better adapted to fire than others and either 

better resist the impacts of fire or recuperate more quickly, depending on the 

regeneration strategies and horizontal and vertical continuity (Baeza and Roy, 

2008). Plant characterization is made in terms of pre-fire structure of the 

dominant plant community (grassland, shrubland, or trees), and post-fire 

regeneration strategy of the dominant plant community (obligate resprouter or 

seeder). Initially, the assessment affected plant communities is made from lists 

of dominant plant species in the Forest Map of Spain (obtained from the 
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Biodiversity Data Bank of the Spanish Ministry of Agriculture, Food and 

Environment), giving an individual characterization, in terms of their structure 

and regeneration strategy, of more than 500 species. Plant characterization is 

based on the experience of the authors (de la Riva et al., 2008; Duguy et al., 

2012) and several studies of post-fire vegetation and response (e.g. Baeza and 

Roy, 2008; Barbéro et al., 1998; Buhk et al., 2007; Martinez, 2005; Pausas et 

al., 2004; Tárrega and Luis-Calabuig, 1989; Trabaud, 1990, 1998, 2002; Vera 

de la Fuente, 1994). It should be noted that we did not find all the information 

required for the characterization of all species in Spain; as a result, several 

species are classified according to the authors’ criteria alone.  

3.1.4. Factors influencing vegetation’s post-fire dynamics 

The main trends of degradation induced by fire may include permanent 

changes in the floristic composition of the plant community, reduction of 

vegetation cover, biomass loss, and alteration of landscape patterns. Forest 

fires can also produce changes in floristic and physiognomic parameters of 

vegetation through their impact on the physical and chemical properties and 

nutrient availability of soil (Vallejo et al., 2009). After the burning of 

vegetation, the contribution of ash to the soil temporarily increases the 

availability of some nutrients (P, Mg, K, Ca, Na). This initial fertilization 

depends on the severity of the fire and the amount of biomass (fuel) prior to 

the fire. However, other nutrients such as nitrogen may volatilize or be washed 

away as a result of wind or water erosion post-fire (Neary et al., 2009; 

Shakesby and Doerr, 2006). In addition, the loss of vegetation cover after fire 

increases surface erosion because the bare soil is exposed to raindrop impact 

and surface runoff, especially in the first months after burning (Giovannini et 

al., 2001; Inbar et al., 1998). However, the post-fire dynamic of plant 

communities is conditioned by the environmental conditions such as the 

amount of water available for plant development, the rainfall regime, the site-

specific conditions (slope, aspect…) among others. 

The influence of the environmental conditions on the ability to recover 

from fire that plant communities have is addressed here by taking into account 

the amount of water after the fire, also considering soil conditions. Water 

availability for vegetation development (from rainfall), and soil loss as a 

consequence of loss of canopy cover are parameters that mainly depend on the 

characteristics and temporal evolution of the climatic conditions (Certini, 

2005), influencing plants by modifying the amount of available nutrients and 

water or soil chemical composition (Shakesby and Doerr, 2006). Therefore, 

climatic conditions and soil loss are considered key parameters when modeling 

relationships between wildfire and vegetation (Daly et al., 2000; Lenihan et 

al., 2008). 
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We derived water availability from the precipitation data reported in 

the Vegetation Series map of Spain (Rivas Martínez, 1987). This map was 

initially developed to delineate areas of recognized vegetation units (also 

referred to as “series”) to determine the great diversity of forest ecosystems in 

Spain. However, each of the different series was also assigned a typical 

rainfall category (arid, semiarid, dry sub-humid, humid, and hyper-humid) 

based on annual local precipitation, which enables the assessment of water 

availability on that basis. 

Soil erosion is another major negative outcome of forest fires, 

particularly in the Mediterranean region (San-Miguel-Ayanz et al., 2012b). 

Within Europe, the risk of water-driven soil erosion is particularly high in the 

Mediterranean region where autumn rain storms often follow summer wild 

fires (Pausas and Vallejo, 1999). The susceptibility of a burnt area to soil 

erosion depends on the intensity of the fire and the degree to which the 

vegetation cover is removed (San-Miguel-Ayanz et al., 2012b). The Pan-

European Soil Erosion Risk Assessment model (PESERA, Kirkby et al., 2004) 

was used in order to include the influence of soil erosion. PESERA is a 

spatially distributed model at 1x1 km resolution for quantification of water soil 

erosion.  

However, data from PESERA models only accounts for pre-fire erosion 

rates, which means that it has to be adapted to proper reflect post-fire erosion 

losses. To this end we selected the ERMiT model (Robichaud, 2006). The 

ERMiT (http://forest.moscowfsl.wsu.edu/cgi-bin/fswepp/ermit/ermit.pl) model 

integrates information on climate indicators, soil (texture), topography (slope 

and slope length), plus the type of vegetation affected and the severity level of 

the fire, thus allowing simulations to assess fire-caused increases in erosion 

rates. The model uses a probabilistic approach that incorporates temporal and 

spatial variability in weather, soil properties, and burn severity for forests, 

rangeland, and chaparral hill slopes. ERMiT allows calculation of the 

percentage increase in the pre-fire erosion rate (PESERA) in several 

vegetation communities, which are characterized in terms of climate, soil, and 

topography indicators, given a specific fire severity (high severity in our case). 

On the other hand, climate trends are a key factor in vulnerability 

assessment (González et al., 2010). Most climate change predictions imply 

increased air temperatures and less summer rainfall for the Mediterranean 

basin (Hertig, 2008; Schröter et al., 2005). Adverse climatic conditions (i.e., 

dryer conditions) in many of the areas affected by fires may have caused lower 

rates of post-fire vegetation recovery (San-Miguel-Ayanz et al., 2012a). 

Hence, the observed changes in temperature and precipitation provide 

indicators of the potential change of the biome of an ecosystem (González et 

http://forest.moscowfsl.wsu.edu/cgi-bin/fswepp/ermit/ermit.pl
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al., 2010). Data about rainfall trends is obtained from de Luis et al. (2010). In 

that study, the spatial variability of seasonal precipitation regimes in the 

Iberian Peninsula were calculated for a temporal period of observations of 50 

years from 1946 to 2005, using the Mann–Kendall test. The spatial variability 

of the seasonal trends is characterized according to the sign and significance 

level of the observed trends. As the rainfall trends were calculated only at 

seasonal level, we used winter trends to weight water availability, considering 

this to be the most effective season for plants to capture water, due to low 

potential evapotranspiration. We used autumn trends for soil erosion 

weighting, as this is the most critical season due to the dryness of the soil 

following summer (Pausas and Vallejo, 1999), the decreased vegetation cover 

from the loss of leaves in deciduous communities, and torrential rains (de Luis 

et al., 2010).  



  

 

 

 

 

 

 

CHAPTER 4. METHODS 
  

This chapter presents and describes in depth the 

methods applied to develop this PhD research work. Firstly, the 

trend detection procedures used in the European scale trend 

analysis are introduced (section 4.1). Then, the regression 

methods are presented, starting with classical regression 

techniques for probabilistic wildfire modeling, followed by a local 

regression approach, later introducing the machine learning 

algorithms (sections 4.2, 4.3 and 4.4). After that, cluster and 

outlier techniques are explained (section 4.5). Finally, the method 

for quantitative assessment of ecological vulnerability is 

described (section 4.6). 



  

  



Chapter 4: Methods 

33 

4.1. Trend detection tests 

4.4.1. Mann-Kendall test 

Temporal trends were analyzed for the study period 1985-2009. The 

observed trends were assessed with the Mann-Kendall test, which is a non-

parametric statistical test appropriate to identify trends in time series data 

(Kendall, 1975; Mann, 1945) and commonly used in environmental research 

(e.g. Río et al., 2011 or Todeschini 2012). Mann-Kendall is a rank non-

parametric test that was developed by Mann (1945) and Kendall (1975), and it 

is suited for detecting linear or non-linear trends (Hisdal et al., 2001; Wu et 

al., 2008). In this test, the null (H0) and alternative hypotheses (H1) are equal 

to the nonexistence and existence of a trend in the time series of the 

observational data, respectively. The magnitude of the change was 

subsequently assessed by means of the Sen’s slope (Sen, 1968), a 

nonparametric alternative for estimating the median slope joining all possible 

pairs of observations, which allows the comparison of the magnitude of the 

detected trends. 

The computational procedure for the Mann Kendall test considers the 

time series of n data points and Ti and Tj as two subsets of data where i = 

1,2,3,…, n-1 and j = i+1, i+2, i+3, …, n. The data values are evaluated as a 

sorted time series. Each data value is compared with all subsequent data 

values. If a data value from a later time period is higher than a data value from 

an earlier time period, the statistic S is incremented by 1. On the other hand, if 

the data value from a later time period is lower than a data value sampled 

earlier, S is decremented by 1. The net result of all such increments and 

decrements yields the final value of S (Drapela and Drapelova, 2011). 

The Mann-Kendall S Statistic is computed as follows: 

 

𝑆 =  ∑ ∑ 𝑠𝑖𝑔𝑛 (𝑇𝑗 − 𝑇𝑖)
𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1
 

 

𝑠𝑖𝑔𝑛 (𝑇𝑗 − 𝑇𝑖) =  {

1 𝑖𝑓 𝑇𝑗 − 𝑇1 > 0

0 𝑖𝑓 𝑇𝑗 − 𝑇𝑖 = 0

−1 𝑖𝑓 𝑇𝑗 − 𝑇1 < 0

 

 

where Tj and Ti are the annual values in years j and i, j > i, respectively 

(Motiee and McBean, 2009). 
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4.4.2. Alternative trend detection procedures 

Temporal trends were also assessed using alternative tests for trend 

detection to determine the variability in the results depending on the trend 

detection procedure and the robustness of the results obtained with the 

proposed Mann-Kendall test. As alternative procedures we used two 

nonparametric tests –Spearman’s Rho and Cox-Stuart test– and one parametric 

test –t-test–. The comparison between the results obtained with the Mann-

Kendall test and the alternative procedures was carried out by comparing the 

resulting positive, negative and non-significant trends through the Cohen’s 

Kappa agreement values.  

Spearman’s Rho 

The Spearman’s Rho (SR) test is a simple method, similar to the Mann-

Kendall method, with uniform power for linear and non-linear trends. The SR 

is commonly used to verify the absence of trends (Dahmen and Hall, 1990; 

Tonkaz et al., 2007). In this test, the null hypothesis (H0) is that all the data in 

the time series are independent and identically distributed, while the 

alternative hypothesis (H1) is that increasing or decreasing trends exist (Cox 

and Stuart, 1955; Yue et al., 2002).  

Cox-Stuart test 

Cox-Stuart test (CS, Cox and Stuart, 1955) is a sign test based on 

specific paired comparisons. The CS test is useful for detecting positively or 

negatively sloping gradual trends in a sequence of independent measurements 

on a single random variable. The null hypothesis is that no trend exists. If the 

null hypothesis is accepted, the result indicates that the measurements within 

the ordered sequence are identically distributed (McCuen, 2003). 

T-test 

The t-test for trend detection is a parametric method based in the 

comparison of the means for two different samples (periods) through an 

ANOVA procedure. The magnitude of change is measured by the difference in 

sample means between the two periods. Parametric tests assume that the 

random variable is normally distributed and homogeneous variance. The t-test 

for trend detection is based on linear regression, and therefore checks only for 

a linear trend. 

4.2. Binary logit regression 

Binary logit Regression (LR) models are statistical models which 

provide insights into the relationship between a qualitative dichotomous 
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dependent variable, and one or more independent explanatory variables, 

whether qualitative or quantitative. More specifically LR allows computing the 

probability that each individual belongs to one of the groups that defines the 

dependent variable. Thus, LR are either explicative and predictive models as 

they enable both the calculation of the relationship between the dependent and 

explanatory variables as well as calculate the probability of having a particular 

value of the dependent variable given a set of explanatory factors. The LR 

model has a number of assumptions, such as assuming no linear relationship 

between the dependent and independent variables. Moreover, the dependent 

variable need not follow a normal distribution and be homoscedastic 

(homogeneity of variance). This technique also assumes that the error terms 

are independent and does not take into account the effects of interaction 

between the variables; given no collinearity among the explanatory variables. 

When the independent variables have a great the LR model is not able to 

distinguish which part of the dependent variable is explained by either 

variable. For increasing the correlation between the variables, the standard 

error of coefficients increases. Multicollinearity does not change the estimated 

coefficients, but their safety. 

LR is a commonly used technique for probabilistic explanation of 

human-caused occurrences (Chuvieco et al., 2010; Martínez, 2004; Martínez 

et al., 2009; Vasconcelos et al., 2001; Vega-Garcia, 1996). 

The mathematical expression of LR models is:  
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In this PhD thesis, the LR model was developed using a forward 

stepwise procedure in which the explanatory variables were introduced into the 

model one by one according to the resulting improvement in the model, as 

measured by the Akaike Information Criterion (AIC). 

4.3. Geographically weighted regression 

GWR is a statistical technique for exploratory spatial data analysis 

developed within the framework of Local Spatial Models or Statistics. Local 

models could be inferred as the spatial disaggregation of global statistics 

whose main characteristic is the fact of being calibrated from a set of spatially 

limited samples and hence yielding local regression parameters estimates 

(Fotheringham et al., 2002). Therefore, GWR techniques extend the traditional 

use of global regression models, allowing calculation of local regression 
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parameters. From a mathematical standpoint a conventional GWR is described 

by the following equation: 

𝑦𝑖 = ∑ 𝛽𝑘 (𝑢𝑖, 𝑣𝑖) 
𝑘

𝑥𝑘.𝑖 + 𝜀𝑖 

where yi , xk,i and εi are, respectively, dependent variable, kth independent 

variable, and the Gaussian error at location i; (ui,vi) is the x-y coordinate of the 

ith location; and coefficients β (ui,vi) are varying conditionals on the location.  

Such modelling is likely to attain higher performance than traditional 

regression models, and reading the coefficients can lead to a new interpretation 

of the phenomena under study. However, GWR models are not just a simple 

local regression model like i.e. moving window regressions. In a moving 

window example, a region is described around a regression point and all the 

data points within this region (neighborhood) or window are then used to 

calibrate a model. This process is repeated over all the regression points 

obtaining as result a set of local regression statistics. However, in this example 

each point within the neighborhood is equally considered for regression 

purposes, no matter its distance to the target regression point. GWR 

overcomes this limitation by applying a distance weight pattern; hence, data 

points closer to the regression point are weighted more heavily in the local 

regression than data points farther away are (Figure 3). 

 
Figure 3. GWR distance weight pattern (Fotheringam et al., 2002). 

Determining the size of the neighborhood region (bandwidth 

calibration) is a crucial step since regression output will vary significantly 

according to this parameter’s value. In this regard, two different approaches 

for bandwidth calibration are available in any GWR model: (i) fixed kernel, 

which specifies a distance threshold equally for each regression point; and (ii) 

adaptive kernel, which specifies the number of neighbor (data points) to be 

considered for each regression points. In the first case, number of neighbors 

will probably vary from one regression point to another according to the 

spatial point pattern. In the case of adaptive kernel it is just the opposite, 
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changing the distance threshold to fit the number of data points. In general 

lines, fixed kernels should is appropriate in a scenario where the point cloud is 

regularly distributed over the space and adaptive approach in the case of 

spatially clustered patterns. Finally, the optimum distance bandwidth value or 

the optimum number of neighbors could be determined in two ways: by 

minimizing the square of the residuals (Cross-Validation, Cleveland, 1979) or 

by minimizing the Akaike Information Criterion (AIC, adapted for GWR by 

Hurvich et al. 1998). 

On the other hand, it should be noted that basic GWR is based on a 

linear regression model. Accordingly it assumes a Gaussian distribution for the 

dependent variable. This implies that the dependent variable is symmetrical 

around some mean value and it admits values anywhere in the interval (-∞,∞). 

However, there are situations where these properties are not good models of 

reality. This issue was firstly addressed in the early 1970s by Generalised 

Linear Models (GLM, McCullagh, 1992; Nelder and Wedderburn, 1972). 

GLM extend the basic regression model allowing other probability 

distributions for the dependent variable (i.e. logit or Poisson distributions) and 

consequently different properties. GLM have been also incorporated to GWR 

to extend its functionality, leading to GWGLM like Geographically Weighted 

Logistic Regression (GWLR) and Geographically Weighted Poisson 

Regression (GWPR) approaches. 

The methodology for modeling human causality in forest fires is based 

on GWLR techniques. Logistic regression has been traditionally used to model 

presence/absence phenomena as is the case of wildfire occurrence. 

Accordingly, it is appropriate to explore its GWR variety. Like global logistic 

regression models (GLR), GWLR are statistical models that provide insights 

into the relationship between a qualitative dependent variable, dichotomous in 

our case, and one or more independent explanatory variables, whether 

qualitative or quantitative. Therefore, its development requires on the one hand 

a binary dependent variable, in this case the high/low occurrence of fires, and 

secondly a set of predictor variables. Taking as a starting point the typical 

equation of the logistic regression: 
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The mathematical expression of its geographically weighted version is 

reconstructed as follows: 
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where (ui,vi) are the location coordinates in space of point i. 

As in the case of basic GWR, the use of GWLR models allows 

obtaining regression coefficients whose values vary spatially, thus obtaining a 

different set of regression coefficients for each location in the study area. In 

addition to the regression coefficients, the GWLR model calculates several 

useful statistical parameters to analyze each of the explanatory variables, such 

as the value of the Student t test (used to determine the level of significance) 

and the local R
2
 value (i.e., the R

2
 value of the resulting model at the point 

where the value is referenced and its neighbors), among others. However, 

GWLR does not allow estimation of regression coefficients in locations where 

there is no observation. In order to overcome this limitation and apply the 

model to the entire area of study, the regression coefficients are interpolated 

using the Local Polynomial Interpolation method in ArcGIS 10.1 (1st order 

polynomial and exponential kernel function), thus preserving the original 

values of locations with observations and hence the internal consistency of the 

model. 

4.4. Machine learning algorithms 

Machine learning (ML) models have shown their predictive accuracy 

in data mining and other fields. Prior studies have also proposed ML 

algorithms to model the spatial distribution of wildfire occurrence or ignition 

(Regression Trees, Artificial Neural Networks and Random Forest. However, 

these methods have not been widely used to model human-caused wildfire 

occurrence at a regional scale or for large occurrence datasets; this is therefore 

the main goal of this work. This topic will be addressed in greater depth by 

exploring other stochastic (tree-based) and deterministic ML algorithms and 

their application to the Spanish territory. Specifically, the performance of 

Random Forest (RF), Boosted Regression Trees (BRT), and Support Vector 

Machines (SVM) has been explored, and their outcomes have been compared 

with those from binary logistic regression (LR). 

4.4.1. Random Forest 

The Random Forest (RF) is an ensemble classifier using decision trees 

as base classifier. The main drawback of traditional tree-based algorithms 

(such as Regression Trees) is that models are that this approach is not entirely 



Chapter 4: Methods 

39 

robust because each division can involve a set of variables with similar 

discriminatory power. Therefore, small changes in the data can generate very 

different models. To avoid such problems, researchers have recently shown 

interest in ensemble learning methods. These methods generate many 

classifiers (trees) and enable grouping of the results in a final classification. 

Two examples of well-known ensemble methods are bagging and boosting 

(Breiman, 1996; Hastie, 2009; Hernández, 2004; Sierra, 2006). Bagging is a 

technique designed to create training data sets resampled randomly with 

replacement of original data, i.e., without removing the selected data set before 

selecting the next subset. Thus, data may be used more than once to train 

individual classifiers. This property makes bagging methods less sensitive to 

slight variations in the input data (training changes, outliers, noise ...) and at 

the same time increases the accuracy of classifications (Breiman, 2001). 

The RF algorithm consists of a collection of simple tree predictors, 

each capable of producing a response when presented with a set of predictor 

values. For classification problems, this response takes the form of a class 

membership, which associates, or classifies, a set of independent predictor 

values with one of the categories present in the dependent variable. 

Alternatively, for regression problems, the tree response is an estimate of the 

dependent variable given the predictors. The RF algorithm was proposed by 

Breiman (2001) and adds an element of randomness to bagging, increasing the 

diversity of decision trees by growing them from different subsets.  

Besides generating each decision tree using a subset of different 

training elements in each iteration, RF changes the way that the decision tree is 

generate. In the creation of a decision tree in the CART algorithm, each node 

is split using the best threshold for all predictors, while in RF, the nodes are 

divided using the best variables from a random sample. This modification, 

although somewhat counterintuitive, has proven to be a strategy that gives 

very good results compared to other classifiers with completely different 

approaches or to other tree-based algorithms (Liaw and Wiener, 2002). For the 

final classification of each element, each generated random tree provides a 

simple vote, and the algorithm assigns the response that received the most 

votes (Liaw and Wiener, 2002).  

From an operational point of view RF can be parameterized (R package 

randomForest) according to the number of trees averaged in the ensemble 

forest (ntrees), the number of predictor variables randomly selected at each 

iteration (mtry), and the minimum number of observations at end nodes 

(nodesize), which can decrease the length of nodes in tree branches and 

simplify trees. The random forests algorithm (for both classification and 

regression) works as follows (Liaw and Wiener, 2002): 
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1. Draw ntree bootstrap samples from the original data. 

2. For each of the bootstrap samples, grow an unpruned classification or 

regression tree, with the following modification: at each node, rather 

than choosing the best split among all predictors, randomly sample 

mtry of the predictors and choose the best split from among those 

variables (Bagging can be thought of as the special case of random 

forests obtained when mtry = p, the number of predictors). 

3. Predict new data by aggregating the predictions of the ntree trees (i.e., 

majority votes for classification, average for regression). 

 

 An estimate of the error rate can be obtained, based on the training 

data, by the following:  

1. At each bootstrap iteration, predict the data not in the bootstrap sample 

(what Breiman calls “out-of-bag”, or OOB, data) using the tree grown 

with the bootstrap sample. 

2. Aggregate the OOB predictions. (On the average, each data point 

would be out-of-bag around 36% of the times, to aggregate these 

predictions). Calculate the error rate, and call it the OOB estimate of 

error rate. 

4.4.2. Boosted Regression Trees 

Boosted Regression Trees (BRT) is a technique, which draws on 

insights and techniques from both statistical and ML traditions. The BRT 

approach differs fundamentally from traditional regression methods that 

produce a single best model. Instead, BRT uses boosting to combine large 

numbers of relatively simple tree models to optimize predictive performance 

(Elith, 2008; Leathwick, 2006; Leathwick et al., 2008). The boosting approach 

used in BRT places its origins within ML (Schapire, 2003), but subsequent 

developments in the statistical community have reinterpreted it as an advanced 

form of regression (Friedman et al., 2000). 

BRT uses two algorithms: regression trees for classification and 

regression (same as RF), and boosting for combining a collection of models 

(Elith, 2008). The main difference between BRT and RF is found in the way 

they ensemble the regression trees to produce the final model. While RF is 

based on bagging methods, BRT uses the boosting approach. 

Boosting is a method for improving model accuracy, based on the idea 

that it is easier to find and average many rough rules of thumb, than to find a 

single, highly accurate prediction rule (Schapire, 2003). Related techniques – 

including bagging, stacking and model averaging – also build, then merge 
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results from multiple models, but boosting is unique because it is sequential: it 

is a forward, stagewise procedure. In boosting, models (e.g. decision trees) are 

fitted iteratively to the training data, using appropriate methods gradually to 

increase emphasis on observations modelled poorly by the existing collection 

of trees. Boosting algorithms vary in how they quantify lack of fit and select 

settings for the next iteration. 

The original boosting algorithms such as AdaBoost (Freund and 

Schapire, 1996) were developed for two-class classification problems. They 

apply weights to the observations, emphasizing poorly modelled ones, so the 

ML literature tends to discuss boosting in terms of changing weights. 

Here, though, we focus on regression and the intuition is different. For 

regression problems, boosting is a form of ‘functional gradient descent’. 

Consider a loss function – in this case, a measure (such as deviance) that 

represents the loss in predictive performance due to a suboptimal model. 

Boosting is a numerical optimization technique for minimizing the loss 

function by adding, at each step, a new tree that best reduces (steps down the 

gradient of) the loss function. For BRT, the first regression tree is the one that, 

for the selected tree size, maximally reduces the loss function. For each 

following step, the focus is on the residuals: on variation in the response that is 

not so far explained by the model. For example, at the second step, a tree is 

fitted to the residuals of the first tree, and that second tree could contain quite 

different variables and split points compared with the first. The model is then 

updated to contain two trees (two terms), and the residuals from this two-term 

model are calculated, and so on. The process is stagewise (not stepwise), 

meaning that existing trees are left unchanged as the model is enlarged. Only 

the fitted value for each observation is re-estimated at each step to reflect the 

contribution of the newly added tree. The final BRT model is a linear 

combination of many trees that can be thought of as a regression model where 

each term is a tree (Elith, 2008). 

The calibration of a BRT model can be tuned using several parameters 

(R package dismo) such as the number of nodes in a tree (tree complexity), the 

contribution to the model of each tree (learning rate), the proportion of data to 

be selected at each step (bag fraction), and the average number of trees in the 

ensemble forest (ntrees). According to Elith et al. (2008) a decreasing 

(slowing) learning rate increases the value of ntrees required, and in general, a 

smaller value of learning rate (and a larger value of ntrees) is preferable, 

conditional on the number of observations and the time available for 

computation.  
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4.4.3. Support Vector Machines 

Support Vector Machines (SVM) is a supervised learning model with 

associated learning algorithms that analyze data and recognize patterns, used 

for classification and regression analysis. SVM are a very specific class of 

algorithms, characterized by usage of kernels, absence of local minima, 

sparseness of the solution and capacity control obtained by acting on the 

margin, or on number of support vectors. The SVM algorithm is based on 

making highly reliable predictions, even at the risk of making some mistakes. 

To this end, SVM tries to find the optimal hyperplane of separation between 

the classes, i.e. the plane in which the separability between classes is a 

maximum (see Figure 4). The examples located on this hyperplane are called 

support vectors. These examples are the most difficult to classify since they 

have lower separability. In the simplest case, two classes in a two-dimensional 

space in which the data are linearly separable, the optimal hyperplane would 

be defined by a straight line. For a more detailed description of SVM 

operation, see (Vapnik, 1995, 1998). 

 
Figure 4. SVM example (source: http://en.wikipedia.org/). 

A SVM model requires a large number of parameters (R package 

kernlab) to be optimized: kernel functions (linear, polynomial, sigma, or radial 

basis), cost, the gamma of the kernel function (except the linear kernel), the 

bias of the kernel function (applicable only to the polynomial sigmoid kernel), 

and finally the polynomial degree (applicable only to the polynomial kernel). 

For this reason, the optimization of an SVM model is more complicated than 

optimization of RF or BRT. 
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4.5. Spatial cluster and outlier analysis 

Indicators of spatial association are statistics that evaluate the existence 

of clusters in the spatial arrangement of a given variable. Cluster and Outlier 

Analysis, and more specifically the Anselin’s Local Moran’s (Anselin, 1995) is 

a spatial association technique which also enables identifying and allocating 

Hot Spot areas as well as characterizes its typology of cluster.  

In the analysis of spatial association, it has long been recognized that 

the assumption of stationarity or structural stability over space may be highly 

unrealistic, especially when a large number of spatial observations are used. 

Spatial structural instability or spatial drift has been incorporated in a number 

of modeling approaches. Upon this general idea, local indicators of spatial 

association allow for the decomposition of global indicators, such as Moran's 

I, into the contribution of each individual observation. From an operational 

standpoint, the Anselin’s Local Moran`s identifies clusters of features with 

values similar in magnitude given a set of weighted features. The index also 

identifies spatial outliers, calculating a Local Moran's I value, a Z score, a p-

value, and a code representing the cluster type for each feature. The Local I 

Moran’s is calculated as follows: 

𝐼𝑖 =  
𝑥𝑖 −  𝑋̅

𝑆𝑖
2 ∑ 𝑤𝑖,𝑗(𝑥𝑖 −  𝑋̅) 

𝑛

𝑗=1 𝑗 ≠1

 

where 𝑥𝑖 is an attribute of the feature, 𝑋̅ is the mean of the corresponding 

attribute, 𝑤𝑖,𝑗 is the spatial weight between feature i and j, and: 

𝑆𝑖
2 =  

∑ 𝑤𝑖,𝑗(𝑥𝑖 −  𝑋̅)2 𝑛
𝑗=1 𝑗 ≠1

𝑛 − 1
− 𝑋̅2 

with n equating to the total number of features. 

4.6. Quantitative assessment of ecological vulnerability 

The methodology for estimating the post-fire vegetation recovery time 

(RT) is based on calculating the regeneration time of plant communities. The 

method is based on a map algebra procedure which allows overlying 

information relating the different parameters that control the process on a 

spatial basis. Specifically, the proposed method is an inductive model, based 

on the necessity of an easy-to-use approach which allows informing forest 

management authorities. 



Chapter 4: Methods 

44 

To do this, an initial RT (recovery time under optimum conditions, 

RTOC, see Section 3.1.3) is assigned according to the dominant plant 

communities’ structure (grassland, shrubland, or trees) and regeneration 

strategy (resprouter or seeder). The increase in time is then calculated by 

introducing the influence of plant species growth constraints (PSGC, see 

Section 3.1.4): water availability from annual rainfall, soil erosion due to loss 

of protective vegetation cover, and seasonal rainfall trends, which influence 

both water availability and soil loss mainly after the fire. The influence of 

water availability and soil erosion is introduced as a weight factor of RTOC. In 

turn, seasonal rainfall trends, specifically winter and summer trends, are 

introduced by weighting water availability and soil loss. RTOC is assigned 

based on experts’ criteria supported by a literature review (detailed later), in a 

scenario of optimal conditions for vegetation development. This means that we 

consider that the recovery process takes place with no constraining factors for 

vegetation development, such as water and/or nutrient availability, chemical 

alteration of the soil, or fire recurrence.  

To apply the map algebra approach, the variables of the model were 

recoded into RT increase ratios and later transformed into a raster grid. The RT 

was calculated as the sum of RTOC and the time increase from the PSGC: 

𝑅𝑇 = 𝑅𝑇𝑂𝐶 +  𝑇𝐹𝑤𝑇𝑤 + 𝑇𝐹𝑒𝑇𝑎 

where 𝑇𝐹𝑤 is the time increase from water availability, 𝑇𝑤 is the winter rainfall 

trend weight, 𝑇𝐹𝑒 the time increase from soil loss, and 𝑇𝑎 is the autumn rainfall 

trend weight. 

Once again, it should be emphasized that this RT is not a categorical 

value, rather an indication of the period needed to return to pre-fire conditions, 

since the main objective of this work is to develop a methodological 

framework to assess recovery time. 

 

  



 

 

 

 

 

 

 

CHAPTER 5. TEMPORAL EVOLUTION OF 

NUMBER OF FIRES AND BURNT 

AREA 
  

This chapter presents the results, discussion and 

main conclusions obtained from the temporal analysis of wildfires 

in the EUMed region. Several trend detection procedures have 

been applied to fire count and burnt area data in order to 

determine the temporal evolution of wildfires and, therefore, 

provide information about wildfires as a dynamic hazard. 
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Abstract 

This paper presents an analysis of the fire trends in Southern European countries, 

where forest fires are a major hazard. Data on number of fires and burned area size 

from 1985 until 2009 were retrieved from the European Fire Database in the 

European Forest Fire Information System and used to study the temporal and spatial 

variability of fire occurrence at three different spatial scales: the whole European 

Mediterranean region, country level and province level (NUTS3). The temporal 

trends were assessed with the Mann-Kendall test and Sen’s slope in the period 1985-

2009. At regional (supranational) level, our results suggest a significant decreasing 

trend in the burned area for the whole study period. At country level, the trends vary 

by country, although there is a general increase in number of fires, mainly in 

Portugal, and a decrease in burned areas, as is the case of Spain. A similar behavior 

was found at NUTS3 level, with an increase of number of fires in the Spanish and 

Portuguese provinces and a generalized decrease of the burned area in most 

provinces of the region. These results provide an important insight into the spatial 

distribution and temporal evolution of fires, a crucial step to investigate the 

underlying causes and impacts of fire occurrence in this region. 

 

Keywords: fire ignition; burned area; wildfire; trend test; Mann-Kendall. 

 

1. Introduction 

Fires are an integral component of ecosystem dynamics in European 

landscapes. However, uncontrolled fires cause large environmental and 

economic damages, especially in the Mediterranean region (San-Miguel-

Ayanz et al., 2012). Particularly the area covered by Portugal, Spain, Italy, 

Greece and southern France is, by far, the most affected by wildfires. 

mailto:rmarcos@unizar.es
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According to European statistics (Schmuck et al., 2011), from 1980 until 2009 

fires have burned an average of circa 480,000 hectares of land per year in this 

region alone, with an annual average of 50,000 occurrences. Recent changes in 

socio-economic models and climatic patterns have significantly affected the 

historical fire regime in Southern Europe (González et al., 2010) involving a 

potential damage far greater than that traditionally experienced (Pausas and 

Vallejo, 1999). In addition there appears to be increased chances of having an 

especially dramatic season, similar to those that several countries suffered in 

the last decade as a result of extreme heat waves (Spain 2000 and 2005; 

Portugal 2003 and 2005; Greece 2007). This increase in wildfire frequency, 

with its associated risks to the environment and society (Moreno et al., 2011), 

calls for a better understanding of the processes that control wildfire activity 

(Bar Massada et al., 2012). Similarly, the concern about wildfires is increasing 

worldwide due to its significant impacts on human life and property, 

ecosystems, and other valuable resources (Thompson et al., 2011). 

Data on the number of fires and burned area in the European region has 

been collected since the 70’s by each country, and compiled in the Fire 

Database of the European Forest Fire Information System (EFFIS). The EFFIS 

Fire Database (Camia et al., 2010) is a comprehensive system with data on fire 

events from over 25 countries in the European and Mediterranean regions. The 

analysis of the spatial and temporal trends of fires is crucial to understand the 

underlying causes of the fires and their environmental and socio-economic 

impacts, assuming a key role in fire prevention and management (Jesús San-

Miguel-Ayanz et al., 2012). Moreover, a better knowledge on spatial patterns 

of fire occurrence and their relationships with its underlying causes becomes a 

necessity to make prevention efforts more efficient (Martínez et al., 2009). 

Thus, the purpose of this work is to analyze the spatial and temporal trends of 

fire frequency (number of fires) and burned area size, two essential 

components of the fire regimes. The temporal trends were assessed with the 

Mann-Kendall test and Sen’s slope in the period 1985-2009 at three different 

spatial scales: regional, country level, and province level. 

2. Materials and methods 

The analysis was carried out at three different spatial scales: (i) at 

regional (supranational) level, considering the Euro-Mediterranean region as a 

whole, with the purpose of characterizing its fire regimes, known to be 

markedly different from the rest of Europe. The region under study, shortly 

referred to as EUMed in what follows, comprises Portugal, Spain, France, 

Italy and Greece; (ii) at country level, by analyzing the data of each country 

individually in order to assess differences between countries that may depend 

on national settings and policies; and (iii) at province level (NUTS3), to 
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investigate the potential influence of local environmental and socio-economic 

conditions. Trends were analyzed using the R statistical software, an open-

source statistical programming language developed as a large collaborative 

project by statisticians from different countries and disciplines (R 

Development Team Core, 2008). Data on number fire events and burned area 

were retrieved from the EFFIS Database. 

2.1. An overview to the EFFIS Database 

European countries have collected information on forest fires since 

1970s. However, the lack of harmonized information at the European level has 

prevented a holistic approach for forest fire prevention in the Region. The 

European Forest Fire Information System (EFFIS) has been developed jointly 

by the European Commission services (Directorate General Environment and 

the Joint Research Centre) and the relevant fires services in the countries 

(forest fires and civil protection services) in response to the needs of European 

bodies such as the Monitoring and Information Centre of Civil Protection, the 

European Commission Services and the European Parliament (San-Miguel-

Ayanz et al., 2013b). EFFIS is a comprehensive system covering the full cycle 

of forest fire management, from forest fire prevention and preparedness to 

post-fire damage analysis. The system provides information to over 37 

countries in the European and Mediterranean regions, and receives detailed 

information of forest fire events from 25 countries in the European and 

Mediterranean regions. It supports forest fire prevention and forest fire 

fighting in Europe through the provision of timely and reliable information on 

forest fires (J San-Miguel-Ayanz et al., 2012). 

2.2. Trend detection procedure  

Temporal trends were analyzed for the study period 1985-2009. The 

observed trends were assessed with the Mann-Kendall test, which is a non-

parametric statistical test appropriated to identify trends in time series data 

(Kendall, 1975; Mann, 1945) and commonly used in environmental research 

(e.g. Río et al., 2011; Todeschini, 2012). Mann-Kendall is a rank non-

parametric test that was developed by Mann (1945) and Kendall (1975), and it 

is suited for detecting linear or non-linear trends (Hisdal et al., 2001; Wu et 

al., 2008). In this test, the null (H0) and alternative hypotheses (H1) are equal 

to the nonexistence and existence of a trend in the time series of the 

observational data, respectively. The magnitude of the change was 

subsequently assessed by means of the Sen’s slope (Sen, 1968), a 

nonparametric alternative for estimating the median slope joining all possible 

pairs of observations, which allows the comparison of the magnitude of the 

detected trends. 
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The analysis of the number of fires, total burned area and average fire 

size was carried out at different spatial levels:  

 At regional (supranational) level, considering the Euro-Mediterranean 

region as a whole with the purpose to characterize its fire regimes, 

known to be markedly different from the rest of Europe. The region 

under, study shortly referred to as EUMed in what follows, comprises 

Portugal, Spain, France, Italy and Greece.   

 At country level, by analyzing the data of each country individually in 

order to assess differences between countries that may depend on 

national settings and policies; 

 At province level (NUTS3), to investigate the potential influence of 

local environmental and socio-economic conditions. 

2.3. Uncertainty in trend detection 

Temporal trends in number of fires and burned area were assessed 

using alternative tests for trend detection to determine the variability in the 

results depending on the trend detection procedure and the robustness of the 

results obtained with the proposed Mann-Kendall test. As alternative 

procedures we used two nonparametric tests –Spearman’s Rho and Cox-Stuart 

test– and one parametric test –t-test–. The comparison between the results 

obtained with the Mann-Kendall test and the alternative procedures was 

carried out by comparing the resulting positive, negative and non-significant 

trends through the Cohen’s Kappa agreement values.  

2.3.1. Spearman’s Rho 

The Spearman’s Rho (SR) test is a simple method, similar to the Mann-

Kendall method, with uniform power for linear and non-linear trends. The SR 

is commonly used to verify the absence of trends (Dahmen and Hall, 1990; 

Tonkaz et al., 2007). In this test, the null hypothesis (H0) is that all the data in 

the time series are independent and identically distributed, while the 

alternative hypothesis (H1) is that increasing or decreasing trends exist (Yue et 

al., 2002).  

2.3.2. Cox-Stuart test 

Cox-Stuart test (CS Cox and Stuart, 1955) is a sign test based on 

specific paired comparisons. The CS test is useful for detecting positively or 

negatively sloping gradual trends in a sequence of independent measurements 

on a single random variable. The null hypothesis is that no trend exists. If the 

null hypothesis is accepted, the result indicates that the measurements within 

the ordered sequence are identically distributed (McCuen, 2003). 
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2.3.3. T-test 

The t-test for trend detection is a parametric method based in the 

comparison of the means for two different samples (periods). The magnitude 

of change is measured by the difference in sample means between the two 

periods. Parametric tests assume that the random variable is normally 

distributed and homogeneous variance. The t-test for trend detection is based 

on linear regression, and therefore checks only for a linear trend. 

3. Results 

3.1. Trends in number of fires 

The general trend for the whole study area (EUMed) is an increase in 

the number of fires, even though annual fluctuations are evident along the 

period (Figure1). In the 90’s a substantial increase was observed, partly due to 

the changes in the reporting systems in the countries that occurred during this 

time, mostly driven by EC regulations. Other reasons for the rise in the 

number of fires during this period may be associated with fuel accumulation 

related to land cover changes such as expansion of shrublands or abandonment 

of agricultural lands (Carmo et al., 2011; Lloret et al., 2002; Romero-

Calcerrada et al., 2008). 

The results of the Mann-Kendall test show that, for the entire study 

period, the general trend is an increase, although not significant (S=64, p=0.14).  

However, the downscaling of the analysis at national and province 

(NUTS3) levels reveals the existence of certain spatial variation in the trends 

concerning the number of fires. At country level, Portugal, Spain and Greece 

show an increasing trend in the number of fires for the whole study period, 

while France and Italy present a general decrease (Table 1). It is noticeable 

that the increasing trend observed for Portugal and the decreasing trend of 

Italy, are significant. 

 

Table 1. Results of the Mann-Kendall test and Sen’s slope for the number of fires by country 

(grey-shaded, significant trends). 

 
Portugal Spain France Italy Greece EUMed 

Mann-Kendall score (S) 110 82 -28 -164 22 64 

p value 0.01 0.06 0.53 0.01 0.62 0.14 

Sen’s slope 801.9 396.9 -33.04 -346.2 5.969 713.4 
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Figure 1. Total annual number of fires in the EUMed region from 1985 until 2009. 

 

Although not significant, the increasing trend in the number of fires for 

the whole EUMed region is highly correlated with the observed trends in 

Portugal and Spain (Table 2) according to the MIC correlation index (Reshef 

et al., 2011). 

Table 2. EUMed-Country correlation values for number of fires. 

 
Portugal Spain France Italy Greece 

MIC 0.85 0.99 0.46 0.48 0.28 

At NUTS3 level (Figure 2), the trend in the number of fires shows 

large variability, although general patterns for most provinces can be observed 

by country. Portugal and Spain have the majority of provinces with a 
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significant increasing trend, while Italy and Greece have more provinces with 

a significant decreasing trend. In the case of Italy, an exception occurs in 

Sicily, which shows a significant increasing trend, while all the other 

provinces show a decreasing trend or no trend. In France, most of the 

provinces with available data indicate no trend or a decreasing trend. However 

it should be noted that, after 1998, the data in Greece at NUTS3 level are not 

complete, because of changes in the reporting system in the country. 

 

Figure 2. Trend in number of fires by province in the EUMed region between 1985-2009, 

obtained from the Mann-Kendall test. 

 

Table 3. Results of the Mann-Kendall test and Sen’s slope for the burned area by country 

(grey-shaded, significant trends). 

 

Portugal Spain France Italy Greece EUMed 

Mann-Kendall score (S) -6 -100 -52 -96 -68 -25 

p value 0.90 0.02 0.23 0.03 0.12 0.03 

Sen’s slope -101.6 -5175 -473.5 -3243 -1703 -3197 

3.2. Trends in burned area 

As opposed to the number of fires, the burned area in the EUMed 

region shows a decreasing trend since 1980 with strong annual fluctuations 

(Figure 3). The results of the Mann-Kendall test show that the general trend is 

a decrease of the burned area at both national and supranational levels (Table 
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3). However, the decreasing trend was only significant for the whole EUMed 

region, Spain and Italy. They show a higher score and a median annual 

decrease in area burned of 5175 ha for Spain and 3243 ha for Italy, according 

to the Sen slope. 

 
Figure 3. Total annual burned area in the EUMed region from 1985 until 2009. 

 

This decrease in total burnt area is likely related to the improvement in 

fire detection and fire-fighting techniques verified in the last years. It must be 

noted that, for the whole EUMed region there are contradictory tendencies, 

with an increasing number of fires that is accompanied by a decreasing area 

burnt by these fires. However, unlike with the number of fires, trends in 

burned area at supranational scale do not seem to be correlated with country 

values (Table 4). 
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Table 4. EUMed-Country correlation values for burned area. 

 
Portugal Spain France Italy Greece 

MIC 0.39 0.50 0.58 0.50 0.30 

 

 
Figure 4. Trend in the burned area by province in the EUMed region between 1985-2009, 

obtained from the Mann-Kendall test. 

At NUTS3 level, the burned area evidences a general significant 

decreasing trend for the provinces of all countries, except Portugal and the 

region of Sicily in Italy, between 1985 and 2009. 

3.3. Trend detection uncertainty 

According to the results summarized in Tables 5 and 6, there is more 

uncertainty in trend detection for burned area than for number of fires. 

According to these results, the trend analysis of burned area should be 

carefully analyzed.  

Table 5. Cohen’s Kappa agreement values between Mann-Kendall test and the alternative 

trend detection procedures. 

    SP CS T-test 

 N. Fires 0.9 0.7 0.7 

 B. Area 0.9 0.2 0.5  
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Table 6. Trend detection comparison by cross-tabulation. 

N. Fires   SR 

 

N.Fires   CS 

Kendall 
Dec. 

Trend 

No 

trend 

Inc. 

Trend 

 

Kendall 
Dec. 

Trend 

No 

trend 

Inc. 

Trend 

Dec. 

Trend 
96 6 0 

 

Dec. 

Trend 
77 25 0 

No 

trend 
8 169 4 

 

No 

trend 
20 161 0 

Inc. 

Trend 
0 0 44 

 

Inc. 

Trend 
0 17 27 

         N.Fires   T-test 

 

B. Area   SR 

Kendall 
Dec. 

Trend 

No 

trend 

Inc. 

Trend 

 

Kendall 
Dec. 

Trend 

No 

trend 

Inc. 

Trend 

Dec. 

Trend 
80 22 0 

 

Dec. 

Trend 
112 3 0 

No 

trend 
14 166 0 

 

No 

trend 
8 188 3 

Inc. 

Trend 
0 13 31 

 

Inc. 

Trend 
0 1 10 

         B. Area   CS 

 

B. Area   T-test 

Kendall 
Dec. 

Trend 

No 

trend 

Inc. 

Trend 

 

Kendall 
Dec. 

Trend 

No 

trend 

Inc. 

Trend 

Dec. 

Trend 
38 77 0 

 

Dec. 

Trend 
53 62 0 

No 

trend 
43 155 1 

 

No 

trend 
5 193 1 

Inc. 

Trend 
0 6 5 

 

Inc. 

Trend 
0 7 4 

 

When looking into the comparison between the proposed tests, the 

highest agreement is found among Mann-Kendall and SR, for both the number 

of fires and the burned area. On the other hand, the CS test shows the lowest 

agreement, although, in the case of the number of fires, it presents a moderate 

Kappa value of 0.7. 

4. Discussion 

According to our results, forest fires have increased significantly in the 

EUMed Region during the last 25 years, especially in Portugal, Spain and the 

region of Sicilia in the south of Italy. This increase in fire outbreaks may be 

related to several reasons such as the traditional usage of fire in agricultural 

and cattle raising practices in the region (Bowman et al., 2011), to 

demographic changes related to the abandonment of rural areas, and to fuel 
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accumulation due to the lack of forest management practices in the region, as 

these practices are often non-profitable (Jesús San-Miguel-Ayanz et al., 2012). 

As in most human-dominated landscapes where anthropogenic ignitions 

surpass natural ignitions (San-Miguel Ayanz and Camia, 2009), in the EUMed 

Region, population density is strongly related to fire ignition (Bar Massada et 

al., 2012). Although, overall, the rural population in Southern Europe has 

decreased, peaks of high population density in recreational wildland areas 

during holiday periods lead to increased fire ignition due to the increase of 

human pressure on wildlands (Jesús San-Miguel-Ayanz et al., 2012). This 

effect is further exacerbated by the expansion of urban areas into wildland 

areas, due to either the expansion of cities or the construction of secondary 

houses in rural areas, leading to an extended Wildland Urban Interface (WUI) 

in the region (Galiana-Martin et al., 2011). Furthermore, the difficult fire 

management of the extensive WUI in Southern Europe contributes to fire 

incidence and can lead to catastrophic fires (San-Miguel-Ayanz et al., 2013a). 

On the other hand, despite the generalized increase observed in number 

of fires, a decreasing trend in the annual burned area has been detected at all 

the analysis scales. This implies that the average fire size is decreasing 

possibly due to the efforts made to achieve a better management of wildfires 

during the last decades. However, according to the results obtained in section 

3.3, certain uncertainty exists regarding the trend detection for burned area and 

thus, further analysis should be carried out to ascertain this phenomenon. 

5. Conclusions 

Forest fire events have significantly increased in the EUMed Region 

during the last 25 years, whereas the annual burned area presents a reverse 

behavior, with a generalized decrease in the period 1980-2009. Particularly, 

Portugal, Spain and the area of Sicilia in the south of Italy, appear as the 

regions with the highest fire impact, since they present both increasing number 

of fires and burned areas. However, there is a significant spatial variation in 

the detected trends. The provinces with a high increase in both number of fires 

and burned area were located in Portugal and Southern Sicily, while 

decreasing trends in both variables were found mostly in the northern 

provinces of Spain and Central Greece. The majority of the provinces of Italy 

and Greece showed no trend. The variation in the number of fires and burned 

areas between countries and provinces is potentially related to the influence of 

physical parameters like topography, fuel amount and condition and weather, 

which vary spatially and/or seasonally. Additionally, the number of fires is 

also related to the diversity of the environmental and socio-economic 
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conditions found throughout the study area, which set the availability of 

ignition agents. 

However, the fire recording process, which is different in each country, 

and in some cases even in each NUTS2 region (Spain) and which has been 

improved through time, can also have influence in the fire datasets, especially 

in the number of fires, and in consequence in the results. Despite some level of 

uncertainty, our results show conclusively that the general behavior of the 

detected trends in the EUMed region is a decrease in the total burned area and 

an increase in the total number of fires the region. 
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CHAPTER 6. NEW METHODOLOGICAL 

APPROACHES TO MODEL HUMAN 

CAUSALITY IN FOREST FIRES 
  

This chapter presents the results, discussion and 

main conclusions obtained from the application of different 

spatial explicit methods, techniques and algorithms for modeling 

historical human-caused forest fires at national scale. 

On one hand, machine learning and GWR methods 

have been explored and compared to traditional regression 

methods in order to test their performance as a tool for spatial 

modeling of human-caused fire occurrence. 

On the other hand, GWR techniques have also 

provided deep insights into wildfires and its driving factors, not 

only as a stationary phenomenon but also as a spatial-varying 

process. 

 

 

 



 

 

 

 

 

  



Chapter 6: New methodological approaches to model human causality in forest fires 

63 

Modeling the spatial variation of the explanatory factors of human-caused 

wildfires in spain using geographically weighted logistic regression 

(Appendix D) 

 
Marcos Rodrigues

1*
, Juan de la Riva

1
, Stewart Fotheringham

2
 

 
1. GEOFOREST Group, IUCA, Department of Geography and Land Management, University of 

Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain 
2. School of Geography and Geosciences, Irvine Building, University of St. Andrews, St. Andrews, Fife 

KY16 9AL, Scotland, UK 

* Corresponding author. Tel (+34) 876 554 058, Fax (+34) 976 761 506, email: rmarcos@unizar.es 

 

Abstract 

Forest fires are one of the main factors transforming landscapes and natural 

environments in a wide variety of ecosystems. The impacts of fire occur both on a 

global scale, with increasing emissions of greenhouse gases, and on a local scale, 

with land degradation, biodiversity loss, property damage, and loss of human lives. 

Improvements and innovations in fire risk assessment contribute to reducing these 

impacts. This study analyzes the spatial variation in the explanatory factors of 

human-caused wildfires in continental Spain using logistic regression techniques 

within the framework of geographically weighted regression models (GWR). GWR 

methods are used to model the varying spatial relationships between human-caused 

wildfires and their explanatory variables. Our results suggest that high fire 

occurrence rates are mainly linked to wildland-agricultural interfaces and wildland-

urban interfaces. The mapping of explanatory factors also evidences the importance 

of other variables of linear deployment such as power lines, railroads, and forestry 

tracks. Finally, the GWLR model gives an improved calculation of the probabilities of 

wildfire occurrence, both in terms of accuracy and goodness of fit, compared to 

global regression models. 
 

Keywords: fire risk; human causality; forest fires; GWR; logistic regression; 

GIS modeling. 

 

1. Introduction 

Forest fires are an important factor in landscape transformation, 

vegetation succession, land degradation, and air quality. Although fire has 

been traditionally used as a land management tool, and many ecosystems are 

well adapted to fire cycles, recent changes in weather and social factors 

relating to wildfire could be modifying the historical fire regimes (González et 

al., 2010; San-Miguel-Ayanz et al., 2012), possibly resulting in undesired 

effects. Indeed, the influence of climate change on an increase in fire 

frequency and intensity has been reported in several ecosystems (Kasischke 
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and Turetsky, 2006; Westerling et al., 2006). Climatic projections suggest 

worse conditions in future decades in tropical and boreal regions (Flannigan et 

al., 2005). In addition to these global effects, wildfires also have relevant local 

effects which are commonly associated with the frequency and intensity of 

fires, often implying soil loss and land degradation, loss of lives or 

biodiversity, and damage to property and infrastructure (Omi, 2005). On the 

other hand, human beings have a great impact on fire regimes because they 

alter ignition frequency and fuel fragmentation and suppress fires (Guyette et 

al., 2002). The dynamics of fire regimes in southern Europe are mainly related 

to human factors. In fact, humans are responsible for more than 95% of the 

fires in this region (San-Miguel Ayanz and Camia, 2009). In the case of Spain, 

nearly 90% of wildfires are related to an anthropogenic source (Chuvieco et 

al., 2014; Martínez et al., 2009). It is thus clear that human factors play an 

important role in fire ignition. Furthermore, determining the explanatory 

factors facilitates the development of future wildfire scenarios in the context of 

climate change. Therefore, a better comprehension of the local driving forces 

of fire ignition and of predicting where fires are likely to start are core 

elements in designing strategies to mitigate wildfire initiation and to identify 

areas at risk (Finney, 2005). In recent years, several methods for wildfire risk 

assessment have been developed using different methodological schemes, 

variables, and scales (Martínez-Vega et al., 2012). Without being exhaustive, 

some of the more recent efforts have included those by Amatulli et al. (2006), 

Chuvieco et al. (2012, 2010), Cooke et al. (2007), Loboda (2009), Martínez et 

al. (2009,2011), Martínez and Koutsias (2013), Padilla and Vega-García 

(2011), and Romero-Calcerrada et al. (2010). Similar efforts have been 

invested in modeling fire occurrence (see Plucinsky (2011) for an exhaustive 

review) and, particularly, to human-caused ignition (Martínez et al. 

2009,2011,2013; Padilla and Vega-García, 2011). The analysis of human 

factors in forest fires is widely recognized as critical for fire risk estimation 

(Kalabokidis et al., 2002; Martínez et al., 2004b), however the literature on 

this topic is scarce and mainly site-specific (Le Page et al., 2010; Martínez et 

al., 2009) perhaps due to the complexity of predicting human behavior, both in 

space and time. Currently, most fire risk models in use are based on physical 

parameters such as weather data or fuel moisture content – there is no global 

forest fire risk system that includes the human factors operationally, although 

some consider it in their components (San-Miguel Ayanz and Camia, 2009). 

However, over recent years, the role of human factors in fire behavior 

modeling has been increasing, and several models now include an 

anthropogenic component in their assessments (Chuvieco et al., 2014, 2010; 

Loepfe et al., 2011).  
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Additionally, the fit of statistical models of risk estimation, previously 

discussed for different regions of the Iberian Peninsula by Chuvieco et al. 

(2010), shows that the explanatory factors vary spatially in their significance 

and contribution. This finding is also supported by Padilla and Vega-Garcia 

(2011), who reported the existence of high spatial variation in the relationships 

between explanatory variables and historical human-caused fire occurrences. 

Accordingly, the use of global regression methods over wide areas, such as 

here, could be inappropriate due to the application of stationary coefficients 

over the whole study area, possibly masking local interactions with the 

explanatory factors. Hence, to better understand the causes of wildfires, the 

spatial variation of the human factors associated with wildfires must be 

properly analyzed. To overcome this limitation, in the present paper we use 

geographically weighted regression techniques (GWR (Fotheringham et al., 

2002), which allow us to incorporate in the models the spatial variation of the 

explanatory variables, in a way similar to Martínez and Koutsias (2013) but 

focusing exclusively in the human influence on wildfire ignitions. Examples of 

the application of GWR to a number of subjects are found in Cardozo et al. 

(2012), Chalkias et al. (2013), Chi et al. (2013), Li et al. (2011), Lu et al. 

(2011), Tu (2011), Su and Zhang (2012), Wang et al. (2013) and Xiao et al. 

(2013); GWR is applied specifically to the occurrence of forest fires in 

Chuvieco et al. (2012), Koutsias et al. (2005), Martínez and Koutsias (2011), 

Martínez et al. (2013), and Rodrigues and de la Riva (2012). In this context, 

we apply binary logistic regression, commonly used for probabilistic 

explanation of human-caused occurrence (Chuvieco et al., 2010; Martínez et 

al., 2004b; Vasconcelos et al., 2001; Vega-Garcia et al., 1995), but within the 

framework of GWR models.  

Therefore, the aim of this paper was to model and analyze, using 

GWLR techniques, the spatial variation in the human factors associated with 

forest fires. Our hypothesis is that the explanatory factors for human wildfires 

are not-stationary, rather their relationship with fires changes significantly 

over the space. The fit of GWLR models (geographically weighted logistic 

regression) required the statistical analysis and spatialization both of the 

historical occurrence (in the period 1988-2007) and of a large number of 

explanatory variables, selected based on experience of models at regional and 

national scales (Chuvieco et al., 2010; Martínez et al., 2009; Vilar del Hoyo et 

al., 2008). Ignition data was retrieved from the General Statistics of Wildfires 

database (EGIF), one of the oldest ‘complete’ wildfire databases in Europe, 

beginning in 1968 (Vélez, 2001). The EGIF database registers information 

about several parameters related with fire ignition such as location, cause, 

date, size or affected vegetation. The explanatory variables were derived from 

spatial datasets and statistical data obtained from official data sources of the 



Chapter 6: New methodological approaches to model human causality in forest fires 

66 

Spanish Government, later explained in detail. Model adjustment was carried 

out using a random sample of 60% of the ignition data, reserving the 

remaining 40% for the validation process. Additionally, an alternative 

validation sample constructed from the occurrence in the period 2008-2011 

was used in the validation process to test the predictive capacity of the model. 

This work was developed within the framework of the FIREGLOBE project 

(www.fireglobe.es, Chuvieco et al., 2014, 2011). In following sections, we 

describe the method used for modeling the spatial variation of the explanatory 

factors, the main results of the application of the methodology to peninsular 

Spain, the degree of fit of the model, and the results of the validation process. 

A comparison of the performance of GWR and global models, and of our work 

and similar studies is also conducted. Finally, we present our conclusions and 

suggestions for further research.  

 
Figure 1. Workflow followed for human causality modeling. 

 

2. Materials and methods 

The methodology for modeling human causality in forest fires is based 

on GWLR techniques. Specifically, we used the GWR 3.0 software developed 

by the NCG (Fotheringham et al., 2002). Like global logistic regression 

http://www.fireglobe.es/
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models (GLR), GWLR are statistical models that provide insights into the 

relationship between a qualitative dependent variable, dichotomous in our 

case, and one or more independent explanatory variables, whether qualitative 

or quantitative. Therefore, its development requires on the one hand a binary 

dependent variable, in this case the high/low occurrence of fires, and secondly 

a set of predictor variables, which are listed below. Figure 1 shows a 

schematic of the workflow followed for modeling human causality. 

2.1. Overview of GWLR 

GWR techniques extend the traditional use of global regression 

models, allowing calculation of local regression parameters. Taking as a 

starting point the typical equation of the logistic regression: 
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(2) 

where (ui,vi) are the location coordinates in space of point i. 

Accordingly, the use of GWLR models allows one to obtain regression 

coefficients whose values vary spatially, thus obtaining a different set of 

regression coefficients for each location in the study area. To do this, a 

regression model is adjusted for each point and its nearest neighbors. The 

influence of the points in this neighborhood varies according to the distance to 

the central point (Fotheringham et al., 2002). The optimum distance threshold 

(also known as the bandwidth) or the optimum number of neighbors is 

determined in two ways: by minimizing the square of the residuals (Cross-

Validation, Cleveland, 1979) or by minimizing the Akaike Information 

Criterion (AIC, adapted for GWR by Hurvich et al., 1998). 

In addition to the regression coefficients, the GWLR model calculates 

several useful statistical parameters to analyze each of the explanatory 

variables, such as the value of the Student t test (used to determine the level of 

significance) and the local R
2
 value (i.e., the R

2
 value of the resulting model at 

the point where the value is referenced and its neighbors), among others. 

However, GWLR does not allow estimation of regression coefficients in 

locations where there is no observation. In order to overcome this limitation 
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and apply the model to the entire area of study, the regression coefficients are 

interpolated using the Local Polynomial Interpolation method in ArcGIS 10.1 

(1st order polynomial and exponential kernel function), thus preserving the 

original values of locations with observations and hence the internal 

consistency of the model. 

In this work, a GWLR model was adjusted using a random sample of 

60% (3582 points) of the total sample, reserving the remaining 40% (2408 

points) for the validation process. Model calibration was carried out using 

Adaptive Kernel to select the bandwidth, optimized according to the value of 

AIC. In this case, the optimum number of neighbors was 914. 

 
Figure 2. Study area and land use distribution. 

2.2 Study area 

The study area covers the whole of peninsular Spain excluding the 

Balearic and Canary Islands and the autonomous cities of Ceuta and Melilla, 

as some parameters needed to develop the methodology were not available in 

those areas. Thus the total area of the study region was around 498 000 km
2
. 

Further, the study region was restricted to forested areas; consequently, urban 

areas and agricultural and inland water zones were excluded from the 

assessment and no data are detailed or shown on the maps (Figure 2). Spain is 

very biophysically diverse, presenting a wide variety of climatic, topographic, 
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and environmental conditions. This diversity also appears when discussing 

socioeconomic conditions, in terms of population systems and population 

structure, productive sector, or territory structure. The complexity of the 

socioeconomic conditions thus plays a determinant role, which is especially 

important when modeling human factors, since this complexity is transferred 

to the relationships between socioeconomic variables and a natural 

phenomenon such as wildfires, making assessment less straightforward. 

2.3 Dependent variable 

The dependent variable was created on a conceptual framework which 

assumed that there were no true cases of fire absence. In ignition data, most or 

all of the fire occurrences are accounted for, which may make it seem as if all 

other locations in the landscape have no fires. In this context, most previous 

attempts at fire occurrence modeling had used background subsets of “no 

occurrence” during the analyzed time span, considering them to be true cases 

of fire absence (e.g., Chuvieco et al., 2010; Padilla and Vega-García, 2011). 

However, the fact that these areas did not experience an ignition event during 

the temporal span of the data set does not mean that they could not feasibly 

support an ignition event in the future, or that they never ignited in the past 

(Bar Massada et al., 2012). In line with this reasoning, the dependent variable 

– high/low wildfire occurrence – is constructed from the EGIF database, 1988-

2007, compiled by the Ministry of Environment, Rural, and Marine Affairs 

(MARM) using forest fire reports from the various autonomous regions 

(Moreno et al., 2011). Among other useful information relating to fire events, 

these reports include data regarding the starting location point of each fire. 

This position is recorded on the basis of a reference 10x10km grid, used by 

firefighting services for approximate location of fire events, and the 

municipality origin of the ignition. The ignition location procedure is based in 

the method developed by de la Riva et al. (2004). This method is widely 

recognized and has been used in many wildfire assessment research works in 

the Spanish territory such as Amatulli et al. (2007) or Chuvieco et al. (2010). 

The method proposes a multi-step procedure which successively refines and 

decreases the potential location area of the ignition points. Firstly it starts in 

the 10x10 grid with a potential location area of 100 km2. Then this area is 

decreased by intersecting with the municipality boundaries. Finally, the 

location area is restricted to the forest perimeter – since the ignition location of 

every wildfire is expected to be in the forest area – to determine the final 

potential location area. This process leads to a significantly smaller area where 

the ignition points are then randomly distributed. After cleaning and treatment 

of the database, human-caused fires over 5 ha in size were selected (8727 

fires) and spatialized by the random assignment of each fire to its respective 
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combination of grid/municipality, restricted to forested areas. This allowed us 

to calculate fire density maps with a spatial resolution of 1x1 km by 

overlapping the ignition points cloud and a 1x1km UTM grid (which perfectly 

fits the 10x10 grid). It should be noted that in this study density values were 

calculated only in locations where at least one fire event was recorded (7873 

cells). These density values were divided into high (1) and low occurrence (0) 

by separating the sample into tertiles. We considered the third tertile (sample 

above the 66th percentile or 1.83 fires/km
2
) as high occurrence, and the first 

tertile (sample below the 33th percentile or 1.00 fires/km
2
) as low occurrence, 

discarding the second tertile from the analysis.  

2.4 Independent variables 

As stated previously, the explanatory variables were selected on the 

basis of experience of models at regional and national scale (Chuvieco et al., 

2010; Martínez et al., 2009; Vilar del Hoyo et al., 2008). Thus, the 

explanatory variables were classified according to the typology of the affecting 

factor (Leone et al., 2003; Martínez et al., 2004a), as follows: 

1. Factors related to socioeconomic transformation.  

1.1. Abandonment of traditional activities in wildland/rural areas. 

Accumulation of forest fuel. 

1.1.1. People employed in the primary sector. Obtained at the 

municipal level from the Agricultural Census 1999 of the Spanish 

Statistics Institute (INE). 

1.2. Abandonment of traditional activities in wildland/rural areas 

especially in privately owned forests with no prospect of economic 

profit. Little or no interest in forest conservation. 

1.2.1. Forestry area in public utility. Delimitation of the area 

occupied by forestry areas included in the public utility catalog. 

1.3. Increasing use of forest as a recreational resource. More frequent visits 

to forests. 

1.3.1. Tracks. Area occupied by the buffer 200 meters either side of 

the forestry track network. Obtained from BCN200. 

1.4. Human presence, population increase and urban growth. Increased 

pressure on wildlands 

1.4.1. Wildland-Urban Interface (WUI). Area occupied by the buffer 

200 meters from the line of contact to the forest area. Constructed 

from the Spanish Forestry Map 1:200000 (MFE200).  
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1.4.2. Changes in demographic potential, 1991-2006 (Calvo and 

Pueyo, 2008). Variation rate between the demographic potential 

in 1991 and 2006. 

2. Factors related to traditional economic activities in rural areas. 

2.1. Aged rural population. Traditional management methods. 

2.1.1. Percentage of owners of holdings aged over 55 years. 
Obtained at the municipal level from the Agricultural Census 

1999 of the Spanish Statistics Institute (INE). 

2.2. Agriculture. Use of fire to clear harvesting waste, cleaning along 

borders of cropland. 

2.2.1. Wildland-agricultural interface (WAI). Area occupied by the 

buffer 200 meters from the line of contact to the forest area. 

Constructed from the Spanish Forestry Map 1:200000 (MFE200).  

2.3. Cattle grazing. Possible fire to maintain herbaceous vegetation. 

2.3.1. Extensive livestock. Obtained at municipal level from the 

Agricultural Census 1999 of the Spanish Statistics Institute (INE). 

2.3.2. Wildland-grassland interface (WGI). Area occupied by the 

buffer 200 meters from the line of contact to the forest area. 

Constructed from the Spanish Forestry Map 1:200000 (MFE200).  

3. Factors that could cause fire mainly by accident or negligence. 

3.1. Electric lines. Possible cause of ignition by accident. 

3.1.1. Power lines. Area occupied by the buffer 50 meters either side 

of the high, medium, and low voltage power network. Obtained 

from BCN200. 

3.2. Engines and machines working in or close to forested areas Possible 

cause of ignition by accident or negligence. 

3.2.1. Density of agricultural machinery (DAM). Obtained at 

municipal level from the Agricultural Census 1999 of the Spanish 

Statistics Institute (INE). 

3.3. Existence of roads, railroads, tracks, and accessibility. Greater human 

pressure on wildland. 

3.3.1. Railroads. Area occupied by the buffer 200 meters either side 

of the railroad network (excluding the high-speed network). 

Obtained from a digital cartographic database (BCN200). 

3.3.2. Tracks.  

3.3.3. Changes in demographic potential 1991-2006  
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4. Factors that could help prevent fires. 

4.1. Protected area. Increasing concern about forest protection. 

4.1.1. Protected areas. Delimitation of the area occupied by protected 

natural areas and the Natura 2000 network. 

5. Factors that generate conflicts, and which could lead to intentional starting 

of fire and/or facilitating its spread. 

5.1. Changes from forest use. Possible cause of arson. 

5.1.1. Changes in land cover. Loss or increase of area covered by 

forest or semi-natural regions. Obtained from the Corine Land 

Cover 1990 and 2006 maps. 

5.2. Fire industry. Fire started to gain income, work, payment or subsidies 

from fire prevention or fighting and in restoration of land affected by 

fire. 

5.2.1. Unemployment rate. Obtained for municipal level in 2007 from 

the population and housing census 2001 (updated to 2007) of the 

Spanish Statistics Institute (INE). 

All the predictive variables, as well as the dependent variable, were 

spatialized at a resolution of 1x1 km (see Figure 3). To ensure consistency of 

results, we conducted an analysis of collinearity in the explanatory variables 

using the non-parametric Spearman’s Rho correlation index. No collinear 

variables were found (Table 1). To determine the variables that would 

eventually be included in the model, we set a preliminary GWLR model 

including all the considered variables. From this first model, we discarded those 

variables that were not significant by Student's t test (p<0.05), or its explanatory 

sense was not consistent with what would be expected based on experience and 

expert opinion. The variables used for adjustment of the final model were WAI, 

WUI, protected areas, power lines, railroads, tracks, and DAM. 

2.5 Model validation 

The model validation procedure was conducted using firstly the local 

R
2
 values obtained during the calibration of the model. The local R

2
 values 

allow a first assessment of the degree of fit of the GWLR model. Secondly, we 

present the percentage of success in the classification of the points and the 

calculation of the degree of agreement using Cohen’s Kappa. The Kappa value 

is calculated for two different validation samples: the first with 40% of the 

total sample for 1988-2007 and the second constructed from the fire events 

recorded for 2008-2011, to test the predictive capacity of the model. The latter 

was spatialized using the same process and thresholds for the classification of 

the occurrence as for the period 1988-2007. 
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3.  Results and discussion 

The main results obtained from modeling human causality in forest 

fires were the regression coefficients of the explanatory variables, the spatial 

variation in the significance level of these variables, and the probability of 

wildfire occurrence. The results of the validation are also presented in this 

section. 

3.1 Spatial variation of probability of ignition and its driving factors 

Figure 4 shows the map of interpolated regression coefficients 

associated with the explanatory variables. As can be seen, the values of these 

coefficients vary spatially as a result of the adjustment by GWLR. At this 

point, it should be noted that these values are not directly related to a greater or 

lesser weight in the model but to the units of measurement of the predictive 

variables. However, the maps of regression coefficients are a first 

approximation to the measurement of the spatial variation of the explanatory 

factors. To determine the degree of participation of the variables in the model, 

the significance thresholds should be taken as reference, mapped in Figure 5. 

These thresholds are not only linked to the degree of participation of the 

independent variables in the model, but also provide information about their 

explanatory sense. Accordingly, the higher the significance threshold (and 

therefore the higher the value of the Student t test, regardless of its sign), the 

greater the participation of the variable in the model. On the other hand, 

positive values of significance imply a direct relationship between the 

explanatory variable and human causality or, which is the same, the higher the 

value of the variable the higher the probability of occurrence, and vice versa. 

In the opposite case, i.e., Student t values below 0, we find an inverse 

relationship between the values of the explanatory variables and the 

occurrence, the probability being lower the greater the value of the variable. 

For a correct interpretation of these results, it is important to recall that the 

mapped values of significance thresholds represent a value obtained locally 

with a sample composed of the point where the value is assigned and 

represented on the map, plus its 914 closest neighbors, and not only at the 

represented point. 

A more detailed analysis of the cartography, shown in Figure 6, reveals 

that the greatest burden in the model falls on the explanatory variable WAI. 

Contrary to the other variables, which do not exceed the threshold of p<0.25 in 

some parts of the study region, WAI is significant with p<0.05 in almost all 

locations which means that it has a relevant contribution in the whole Spanish 

territory. To this must be added the fact that the explanatory sense of the WAI 

is always positive. This outstanding contribution could be related to the large-
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scale socioeconomic changes in recent decades which have driven shifts in the 

structure of Spanish rural landscape, increasing the complexity of the spatial 

distribution of the WAI and, accordingly, increasing wildfire frequency. It 

should also be noted that the WAI is an area of intense competition between 

agricultural and forestry activities. In some cases this competence may turn 

into conflicts of interest that result in aggressive practices such as the use of 

fire for clearing forests and pasture establishment. This, jointly with the 

scarcity of forestry works, makes WAI areas an important source of forest fire 

occurrence (Ortega et al., 2012). Also noteworthy is the contribution to the 

explanation of the occurrence of the WUI, which plays an important role in the 

sites located in the imaginary triangle formed by the center of the Iberian 

Peninsula (Madrid) and the Mediterranean coast (especially the stretch 

Valencia–Barcelona). The intense growth of urban areas can be considered a 

general trend nationwide, but it has been particularly intense in this area, 

leading to an increased human pressure on wildlands. In addition, the WUI are 

regions marked by their highly scattered system of settlements, a situation that 

is a potential source of wildfire ignition particularly in those areas with the 

highest levels of urbanization. That is the case of the metropolitan rings of 

Madrid, Barcelona and, to a lesser extent, Valencia and the rest of 

Mediterranean coast, due to the higher intensity of touristic uses (Galiana-

Martín, 2012). Then, in order of highest significance, the linear variables 

appear corresponding to the communication network and accessibility 

(railroads, power lines, and forest tracks). The railroads, like the WAI, have a 

positive explanatory sense in all locations though the regression coefficients 

seem not to vary over the study area. In the case of power lines and forest 

tracks, although most of their locations are not significant (with p<0.25), they 

also have a positive explanatory sense. DAM is expected to have a positive 

explanatory sense in all locations of the sample, but appears with a negative 

sign in the northwest area corresponding to Cantabria and Galicia. Finally, the 

protected areas participate in the model as a deterrent agent, lowering the fire 

occurrence in most of the country, and occurring with a positive sign only in 

some locations of the northwestern peninsula. In addition to the significance 

thresholds, Figure 4 also shows the mapping of the number of significant 

variables with p<0.05. As can be seen, there is always at least one significant 

variable in the threshold, and it is most common to find two or more 

significant variables. 

Finally, we present the probability map of occurrence relating to 

human causality (Figure 6). Based on this figure, the highest values of 

probability are associated with the WAI, especially in the northwest and on the 

borders of mountain areas. In the central area and along the Mediterranean 

coast there are also high probability values mainly associated with the WUI. 
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These two variables, as already seen above, have the highest explanatory load 

in the model according to Student's t values, both being interfaces significant 

to more than p<0.05, in some locations reaching more than 99%. The mapping 

also evidences the importance of the explanatory variables with linear 

deployment, such as power lines, railroads, and forest tracks. 

Table 2. Successfully classified points. Top, period 1988-2007. Bottom, period 2008-2011. 

1988-2007 % Predicted 

% Observed High Low % Marginal 

High 31.4 11.5 42.9 

Low 1.5 55.5 57.1 

% Marginal 33.0 67.0 100.0 

 

2008-2011 % Predicted 

% Observed High Low % Marginal 

High 17.8 21.0 38.8 

Low 0.1 61.1 61.2 

% Marginal 17.9 82.1 100.0 

3.2. Model performance 

The average local R
2
 obtained from the calibration sample yielded a 

value of 0.7, ranging between 0.19 and 0.85. As seen in Figure 7, the 

minimum values of R
2
 were located on the Cantabrian coast, mainly in the 

principality of Asturias. The presence of such low values is due mainly to the 

absence of WAI and WUI, which have virtually no spatial representation in 

this region. To try to correct these values, we considered different predictive 

variables that could explain the occurrence in this area. Specifically, several 

models were adjusted to include variables such as extensive livestock and 

WGI.  

In the case of extensive livestock, the contribution in the models was 

not significant, so it was eventually rejected. In the case of WGI, despite it 

being significant at p<0.05, its explanatory sense was negative, so this was 

considered inconsistent and the variable was also rejected. Regarding the 

percentage of correctly classified points, Table 2 shows the classification for 

the two periods examined. In the period 1988-2007, the overall percentage of 

success was 87% with a Kappa value of 0.73. In turn, the overall success 

obtained using the 2008-2011 sample was 78% with a Kappa value of 0.49. 

The reason for the lower success rate in the second validation sample is that 

the model underestimates the actual occurrence of the period, possibly because 
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the shortest period of data collection distorts the classification of the density of 

high or low occurrence due to a lower number of registered fire events. 

On the other hand, the GWLR model shows a little performance 

improvement when compared to its GLR version in terms of accuracy 

(Kappa), relative goodness of fit (AIC), and residuals. The GLR was adjusted 

and validated with the same sample as in GWLR but using two different sets 

of explanatory variables. A first GLR model was developed using the same 

variables, which resulted significant according to the GWLR model, and a 

second model was calibrated following a step-forward procedure to select the 

explanatory variables. This gave the significant variables WAI, WUI, 

railroads, forest tracks, and the percentage of owners of holdings aged over 55 

years. Table 3 summarizes the comparison of the models. 

As has been stated before, the GWLR model shows a small 

improvement compared to the global models in terms of accuracy and AIC. 

However, analysis of the residuals through the overall value of the sum and 

mean of residuals in mismatching locations reveals that the GWLR has lower 

residual values and, accordingly, a better model adjustment. In any case, GWR 

techniques are not design just for improve model performance; rather it is 

focused on exploring significant spatial varying relationships among the 

explanatory factors (Fotheringham et al., 2002). 

Table 3. Comparison of GWRL and GLR models. 

 GWLR GLR with GWLR variables GLR step forward 

AIC 2426 2623 2611 

Kappa value 0.726 0.715 0.714 

Sum of Res 248.2 268.0 268.3 

Mean of Res 0.79 0.82 0.82 

Stdev of Res 0.11 0.10 0.10 

3.3 Comparison with other studies 

This section compares the results of the current paper with similar 

studies, specifically Martínez et al. (2013) and Chuvieco et al. (2010). These 

works were selected for comparison as they were used as background 

references for our study. 

Martínez et al. (2013) calculated the probability of human-caused 

wildfire occurrence for the entire Spanish territory (excluding the Autonomous 

Region of Navarra due to a lack of data) at municipality level. The probability 

model was developed using GWR techniques for the period 1983-2007. 

Chuvieco et al. (2010) presented a framework for wildfire risk estimation by 

integrating several parameters, one of which was the probability of human-

caused forest fires occurrence. 
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Figure 3. Variables considered in the GWLR model (cont.). 
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Figure 3. Variables considered in the GWLR model. 

 

The calculation was also conducted using logistic regression, though in this 

case with a spatial resolution of 1x1 km and for the period 1990-2004. In 

contrast to Martinez et al. (2013) and our study, in Chuvieco et al. (2010) the 

model was restricted to four Spanish regions considered representative of 

wildfires in Spanish Mediterranean environments (the Community of Madrid, 

the Community of Valencia, the Province of Huelva, and Aragon). The 

comparison is summarized in Table 4. 

The method followed in Chuvieco et al. (2010) is similar to that of the 

current study, except for our use of geographically weighted regression 

techniques. In consequence, the results are also similar in terms of explanatory 

variables (WUI, WAI, protected areas, power lines, and forest tracks). In 

contrast, however, the overall percentage of agreement of the model is 

considerably higher in the current study. On the other hand, despite the fact 

that the results in Martinez et al. (2013) refer to municipalities, there are some 

commonalities, such as the use of GWLR or the high explanatory power of 

WAI. Regarding the percentage of success, the overall performance in this 

paper is higher (87% and 78.4% for the current study and Martinez et al. 

(2013), respectively), possibly due to the way in which the regression 

variables have been constructed. Martinez et al. (2013) proposes the 

municipality as reference spatial unit and therefore both method and results are 

developed on this basis, which may lead to potential inaccuracies. We believe 

that our result can be considered a relative improvement, since it provides a 

better spatial representation of the probability of ignition and better accuracy 

in the prediction. 
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Figure 4. Regression coefficients for the explanatory variables in the GWLR model (cont.). 
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Figure 4. Regression coefficients for the explanatory variables in the GWLR model. 

 

Table 4. Comparison with other studies. Light gray represents explanatory variables 

common to the current study and Chuvieco et al. (2010) and dark gray the current 

study and Martinez et al. (2013). 

  

Martinez et al. 

(2013) 

Chuvieco et al. (2010)  

Current 

study 
Madrid Valencia Huelva Aragón 

Model accuracy 78.4% 70.6% 68.4% 84.4% 86.8% 87.0% 

Period 1983-2007 1990-2004 1988-2007 

WAI X - - - X X 

WUI - X - - - X 

Protected areas - X - - - X 

Railroads - - - - - X 

Tracks - - - X - X 

DAM  - - - - - X 

Power lines - - - - X X 

Land use change - - - X X - 

% Forest area X - - - - - 

Rural exodus 1950-

1991 

X - - - - - 

Forest area with less 

management 

X - - - - - 

Mean annual 

precipitation 

X - - - - - 

Mean summer 

temperature 

X - - - - - 

Decrease in 

agricultural area 

X - - - - - 

CORINE 243 category X - - - - - 

Demographic potential X - X X - - 



 

 

 

 

Table 1. Results from the colinearity analysis. Spearman's Rho rank correlation index.  

 WUI WAI WGI MUP PA VARPOT LUC UR PS OWN55 DAM EXTLIVS PWL RAIL TRACKS 

WUI 1.00 0.05 0.03 -0.06 -0.04 0.12 0.01 -0.03 -0.16 0.01 0.06 0.00 0.14 0.15 0.07 

WAI 0.05 1.00 -0.31 -0.29 -0.18 0.26 -0.04 -0.09 -0.09 0.13 0.06 -0.30 0.03 -0.02 0.01 

WGI 0.03 -0.31 1.00 0.16 0.04 -0.20 -0.02 0.00 0.12 -0.14 0.06 0.25 0.03 0.05 0.07 

MUP -0.06 -0.29 0.16 1.00 0.14 -0.15 0.02 -0.08 0.11 -0.15 -0.04 0.09 -0.03 -0.05 -0.08 

PA -0.04 -0.18 0.04 0.14 1.00 0.02 0.02 0.07 0.06 -0.05 -0.18 -0.05 -0.05 0.00 -0.05 

VARPOT 0.12 0.26 -0.20 -0.15 0.02 1.00 -0.03 -0.08 -0.40 0.02 -0.21 -0.29 0.05 0.01 -0.02 

LUC 0.01 -0.04 -0.02 0.02 0.02 -0.03 1.00 -0.07 0.03 0.04 0.04 0.02 0.02 -0.01 -0.03 

UR -0.03 -0.09 0.00 -0.08 0.07 -0.08 -0.07 1.00 -0.26 0.09 -0.26 0.04 -0.05 0.02 -0.02 

PS -0.16 -0.09 0.12 0.11 0.06 -0.40 0.03 -0.26 1.00 -0.26 0.12 0.15 -0.12 -0.15 -0.06 

OWN55 0.01 0.13 -0.14 -0.15 -0.05 0.02 0.04 0.09 -0.26 1.00 -0.18 -0.34 0.05 0.02 -0.03 

DAM 0.06 0.06 0.06 -0.04 -0.18 -0.21 0.04 -0.26 0.12 -0.18 1.00 0.38 0.10 0.03 0.15 

EXTLIVS 0.00 -0.30 0.25 0.09 -0.05 -0.29 0.02 0.04 0.15 -0.34 0.38 1.00 0.03 0.03 0.12 

PWL 0.14 0.03 0.03 -0.03 -0.05 0.05 0.02 -0.05 -0.12 0.05 0.10 0.03 1.00 0.15 0.07 

RAIL 0.15 -0.02 0.05 -0.05 0.00 0.01 -0.01 0.02 -0.15 0.02 0.03 0.03 0.15 1.00 0.09 

TRACKS 0.07 0.01 0.07 -0.08 -0.05 -0.02 -0.03 -0.02 -0.06 -0.03 0.15 0.12 0.07 0.09 1.00 
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Figure 5. Significance thresholds of the explanatory variables according to Student’s t in the 

GWLR model (cont.). 
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Figure 5. Significance thresholds of the explanatory variables according to Student’s t in the 

GWLR model. 

 

 
Figure 6. Probability of wildfire occurrence related to human causality. 

4. Conclusions and further research 

Determining which model type to use for occurrence-distribution 

modeling is important because the outcomes may have direct management 

implications. GWLR techniques have showed a high predictive potential for 

human-caused wildfire occurrence modeling, surpassing classical regression 
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techniques like global logistic regression and allowing the detection of non-

stationary relationships between dependent and predictive variables.  

The use of GWR techniques applied to LR models has also 

corroborated the existence of spatial variation in the explanatory factors 

associated with human causality in wildfires. In addition, the validation of the 

results confirms that both the method used and the products obtained are 

consistent and sufficiently robust. However, the model still can be improved in 

some ways. As an example, in some areas – especially the northwest of Spain 

(Asturias) – there are certain mismatches, making it necessary to introduce 

additional independent variables for a better explanation of wildfire 

occurrence, specifically in relation to fires in grass and bush from February to 

March. On the other hand, comparison of the GWR and GLR models shows a 

small improvement in the accuracy, possibly due to the use of GWR 

techniques. This improvement is also supported by the comparison with 

Chuvieco et al. (2010). 

 

 
Figure 7. Local R

2
 values. 

Regarding the explanatory factors, as in most human-dominated 

landscapes where anthropogenic ignitions surpass natural ignitions, in 

peninsular Spain, both human accessibility (forestry tracks) and population 

density (WUI) are likely to be strong predictors of ignition risk(Bar Massada 
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et al., 2012; Galiana-Martin et al., 2011). However, although these factors 

make an important contribution in the study, other explanatory factors more 

related to agricultural activities and forest management also influence wildfire 

occurrence. More specifically, these involve the use of fire in cleanup of 

harvest wastes and crop boundaries (WAI), negligence and accidents due to 

engines and machines working close to the forest areas (DAM), and forestry 

protection policies (protected areas). Nonetheless, whereas DAM, CDP, WAI, 

and WUI are factors related to an increased ignition probability, the presence 

of protected intervenes in the opposite way, i.e., by decreasing ignition 

likelihood, because it is directly linked with the protection and conservation of 

landscape. However, the WAI appears to be the most important factor related 

to fire ignition in Spain, its participation in the model surpassing even the 

WUI, and being strongly related over the whole study area. We believe this to 

be especially relevant, considering that the existence of areas of WUI is 

usually the main factor related to increased fire risk, and is traditionally 

considered the main human ignition factor in the literature (Galiana-Martin et 

al., 2011; Martínez et al., 2009; Romero-Calcerrada et al., 2010; Syphard et 

al., 2007; Vilar del Hoyo et al., 2008). 

In future research, we will explore new predictors as well as new 

methods for spatialization (distance to the interface, density maps and so on). 

In addition, we will consider the temporal dimension in fire risk assessment 

with the aim of developing dynamic models. 
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Abstract 

This paper provides insight into the use of Machine Learning (ML) models for the 

assessment of human-caused wildfire occurrence. It proposes the use of ML within 

the context of fire risk prediction, and more specifically, in the evaluation of human-

induced wildfires in Spain. In this context, three ML algorithms—Random Forest 

(RF), Boosting Regression Trees (BRT), and Support Vector Machines (SVM)—are 

implemented and compared with traditional methods like Logistic Regression (LR). 

Results suggest that the use of any of these ML algorithms leads to an improvement in 

the accuracy—in terms of the AUC (area under the curve)—of the model when 

compared to LR outputs. According to the AUC values, RF and BRT seem to be the 

most adequate methods, reaching AUC values of 0.746 and 0.730 respectively. On the 

other hand, despite the fact that the SVM yields an AUC value higher than that from 

LR, the authors consider it inadequate for classifying wildfire occurrences because its 

calibration is extremely time-consuming. 
 

Keywords: Machine learning; model; wildfire; Random Forest; Boosted 

Regression Tree; Support Vector Machine. 

1. Introduction 

Concern about wildfires and their impacts is an increasing 

phenomenon. In Mediterranean Europe, increasing trends in the number of 

fires have been detected in some countries such as Portugal and Spain (San-

Miguel-Ayanz et al., 2012). This increase in wildfire frequency, with its 

associated risks to the environment and society (Moreno et al., 2011), calls for 

better understanding of the processes that control wildfire activity(Bar 

Massada et al., 2012). Therefore, a better comprehension of the driving forces 

of fire ignition and of predicting where fires are likely to start are core 

elements in designing strategies to mitigate wildfire initiation and to identify 

areas at risk (Finney, 2005). Consequently, efforts to achieve a better 

understanding of wildfires have been increasing in recent years, and several 

methods for wildfire risk assessment have been developed using different 

methodological schemes, variables, and scales (Martínez-Vega et al., 2012). 

Without being exhaustive, some of the more recent efforts have included those 
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by Amatulli et al. (2006), Chuvieco et al. (2012, 2010), Cooke et al. (2007), 

Loboda (2009), Martínez et al. (2009,2011), Martinez and Koutsias (2013), 

Padilla and Vega-Garcia (2011), and Romero-Calcerrada et al. (2010). Within 

the same context, similar efforts have been invested in modeling fire 

occurrence (see Plucinsky (2011) for an exhaustive review), one of the main 

input parameters when modeling wildfire risk (Chuvieco et al., 2012).  

On the other hand, human beings have a great impact on fire regimes 

because they alter ignition frequency and fuel fragmentation and suppress fires 

(Guyette et al., 2002). The dynamics of fire regimes in southern Europe are 

related mainly to human factors, which are the cause of more than 95% of fires 

in this region (San-Miguel Ayanz and Camia, 2009). The analysis of human 

factors in forest fires is widely recognized as of critical importance for fire 

danger estimation (Kalabokidis et al., 2002; Martínez et al., 2004b), but the 

literature on this topic is scarce and mainly site-specific (Krawchuk et al., 

2009; Le Page et al., 2010; Martínez et al., 2009). However, in recent years, 

the role of human factors in fire behavior modeling has been increasing, and 

several models now include an anthropogenic component in their assessments 

(Chuvieco et al., 2012, 2010; Loepfe et al., 2011). Machine learning (ML) 

models have shown their predictive accuracy in data mining and other 

disciplines (Casalegno et al., 2011; Cutler et al., 2007; Diaz-Uriarte and 

Alvarez de Andres, 2006; Drake et al., 2006; Li et al., 2011; Marmion et al., 

2009; Pino-Mejías et al., 2010; Shan et al., 2006). Previous studies have also 

proposed ML algorithms to model the spatial distribution of wildfire 

occurrence or ignition. These algorithms include Regression Trees (RT; 

Amatulli et al., 2006), Artificial Neural Networks (Vasconcelos et al., 2001; 

Vega-Garcia et al., 1996), and more recently, Random Forest (RF; Bar 

Massada et al., 2012). However, these methods have not been widely used to 

model human-caused wildfire occurrence at a regional scale or for large 

occurrence datasets; this is therefore the main goal of this work. This topic will 

be addressed in greater depth by exploring other stochastic and deterministic 

ML algorithms and their application to the Spanish territory. Specifically, the 

performance of Random Forest (RF), Boosted Regression Trees (BRT), and 

Support Vector Machines (SVM) has been explored, and their outcomes have 

been compared with those from binary logistic regression (LR), a commonly 

used technique for probabilistic explanation of human-caused occurrences 

(Chuvieco et al., 2010; Martínez et al., 2009, 2004a; Vasconcelos et al., 2001; 

Vega-Garcia et al., 1995).  

The main drawback of modeling with only one RT is that this approach 

is not entirely robust because each division can involve a set of variables with 

similar discriminatory power. Therefore, small changes in the data can 

generate very different models. To avoid such problems, researchers have 
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recently shown interest in ensemble learning methods. These methods generate 

many classifiers and enable grouping of the results in a final classification. 

Two examples of well-known ensemble methods are boosting and bagging 

(Breiman, 2001; Hastie  et al., 2009; Hernández Ramírez and Ferri, 2004; 

Sierra, 2006). Boosting is a method for improving model accuracy, based on 

the idea that it is easier to find and average many rough empirical rules than to 

find a single, highly accurate prediction rule (Schapire, 2003). Related 

techniques—including bagging, stacking and model averaging—also build, 

then merge results from multiple models, but boosting is unique because it is 

sequential (Elith et al., 2008). On the other hand, bagging is a technique 

designed to create training data sets resampled randomly with replacement of 

original data, i.e., without removing the selected data set before selecting the 

next subset. Thus, data may be used more than once to train individual 

classifiers. This property makes bagging methods less sensitive to slight 

variations in the input data (training changes, outliers, noise ...) and at the 

same time increases the accuracy of classifications (Breiman, 2001). 

RF is an ensemble classifier using decision trees as base classifiers. 

The RF algorithm was proposed by Breiman (2001) and adds an element of 

randomness to bagging, increasing the diversity of decision trees by growing 

them from different subsets. Besides generating each decision tree using a 

subset of different training elements in each iteration, RF changes the way that 

the decision tree is generated by the classification. In the creation of decision 

trees in the CART algorithm, each node is split using the best threshold for all 

variables introduced, while in RF, the nodes are divided using the best 

variables from a random sample. This modification, although somewhat 

counterintuitive, has proven to be a strategy that gives very good results 

compared to other classifiers with completely different approaches or to other 

decision-tree algorithms (Liaw and Wiener, 2002). For the final classification 

of each element, each generated random tree provides a simple vote, and the 

algorithm finally assigns the class that received the most votes (Liaw and 

Wiener, 2002). 

The BRT model uses two algorithms: regression trees for classification 

and regression, and boosting for combining a collection of models (Elith et al., 

2008). The BRT approach differs fundamentally from traditional regression 

methods that produce a single best model. Instead, BRT uses boosting to 

combine large numbers of relatively simple tree models to optimize predictive 

performance (Elith et al., 2006; Leathwick et al., 2008, 2006). The boosting 

approach used in BRT places its origins within ML (Schapire, 2003), but 

subsequent developments in the statistical community have reinterpreted it as 

an advanced form of regression (Friedman et al., 2000). 
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On the other hand, the SVM algorithm is based on making highly 

reliable predictions, even at the risk of making some mistakes. To this end, 

SVM tries to find the optimal hyperplane of separation between the classes, 

i.e., the plane in which the separability between classes is a maximum. The 

examples located on this hyperplane are called support vectors. These 

examples are the most difficult to classify since they have lower separability. 

In the simplest case, two classes in a two-dimensional space in which the data 

are linearly separable, the optimal hyperplane would be defined by a straight 

line. For a more detailed description of SVM operation, see Vapnik (1998, 

1995). 

In this work, several models using these three ML algorithms were 

investigated in the Spanish territory. Spain is one of the countries more 

affected by forest fires in Europe (Rodrigues et al., 2013; San-Miguel-Ayanz 

et al., 2012), thus it could be considered a key area for testing and improving 

wildfire risk models at European scale. The results from the ML models were 

compared to LR outcomes, also calculated in this paper, to test their 

performance. All models were fitted using the same explanatory and 

dependent variables. The explanatory variables (later introduced and 

described) were selected on the basis of the authors’ previous experience with 

models at regional and national scales (Amatulli et al., 2007; Chuvieco et al., 

2012, 2010; Martínez et al., 2004b; Vilar del Hoyo et al., 2008), while the 

dependent binary variable (high/low fire occurrence) was constructed from 

wildfire observations from 1988 to 2007 in Spain. Results suggest that ML 

models improve LR both in terms of prediction accuracy and of the spatial 

pattern of the probability of occurrence. However, SVM requires a more in-

depth exploration and optimization to be properly calibrated for wildfire 

occurrence prediction. 

2. Materials and methods 

2.1 Study area 

The study area covered the whole of peninsular Spain, excluding the 

Balearic and Canary Islands, as well as the autonomous cities of Ceuta and 

Melilla, because some parameters needed to develop the methodology were 

not available in those areas. Therefore, the total area of the study region was 

approximately 498,000 km
2
. Moreover, the study region was restricted to 

forested areas. Consequently, urban areas, agricultural areas, and inland water 

zones were excluded from the assessment, and no data for them are detailed or 

displayed in the maps. Spain is a territory of wide contrasts which presents a 

great variety of climatic, topographic, environmental, and other biophysical 

conditions. These dissimilar conditions also appear when talking about 
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socioeconomic conditions in terms of population systems and population 

structure, productive sectors, or geographic structure. Therefore, the 

complexity of the socioeconomic conditions play a determining role and are 

especially important when modeling human factors because this complexity is 

transferred to the relationships between socioeconomic variables and to natural 

phenomenon like wildfires, making their assessment more difficult. 

2.2 Dependent variable 

The dependent variable—high/low wildfire occurrence—was built 

from the Spanish EGIF (General Statistics of Wildfires) database from 1988 to 

2007. The EGIF database is one of the oldest “complete” wildfire databases in 

Europe, beginning in 1968 (Vélez, 2001). It has been compiled by the Ministry 

of Environment, Rural, and Marine Affairs (MARM) using forest fire reports 

from the various autonomous regions (Moreno et al., 2011). Among other 

useful information relating fire events, these reports include data regarding the 

starting location point of each fire. This position is recorded on the basis of a 

reference 10x10 km ICONA grid (used by the firefighting services for 

approximate location of fire events) and the municipality origin of the ignition. 

The spatial distribution of fire occurrence (308,893 fires in the period from 

1988 to 2007, as shown in Figure 1) was developed through a combination of 

the 10x10 km grid, a digital map of Spanish municipalities and the boundaries 

of the forest area. More specifically the ignition location procedure is based in 

the method developed by de la Riva et al. (2004). This method is widely 

recognized and has been used in many wildfire assessment research works in 

the Spanish territory such as Amatulli et al. (2007), Chuvieco et al. (2012, 

2010) and most recently in Rodrigues et al. (2014). The method proposes a 

multi-step procedure which successively refines and decreases the potential 

location area of the ignition points by ruling out areas where the fire could not 

have occurred. Firstly it starts in the 10x10 grid with a potential location area 

of 100 km
2
. Then this area is decreased by intersecting with the boundaries of 

the municipality origin of the fire. Finally, the location area is restricted to the 

forest perimeter (MARM, 1997) – since the ignition location of every wildfire 

is expected to be in the forest area – to determine the final potential location 

area. This process leads to a significantly smaller area where the ignition 

points are then randomly distributed. This allowed us to calculate fire density 

maps with a spatial resolution of 1x1 km by overlapping the final ignition 

points cloud and a 1x1km UTM grid (which perfectly fits the 10x10 grid). 

Figure 2 illustrates this procedure. Recent studies have commented that 

predictions from fire simulations based on random ignitions may produce 

unrealistic results because the spatial distribution of ignition locations, 

whether human-caused or natural, is non-random (Bar Massada et al., 2011). 
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However, the lack of explicit location data for wildfire events, especially in the 

first years of the EGIF dataset, made it impossible to generate a realistic set of 

locations. On the other hand, in many cases where coordinates have been 

assigned, the final location seems to be unreliable because it corresponds with 

unexpected sites such as the corner of the UTM grid or outside the forest area, 

which are more likely to be false.   

 
Figure 1. Spatial distribution of ignition points (left) and the dependent variable (right). 

The final dependent variable was created on a conceptual framework 

which assumed that there were no true cases of fire absence. In ignition data, 

most or all of the fire occurrences are accounted for, which may make it seem 

as if all other locations in the landscape have no fires. In this context, most 

previous attempts at fire occurrence modeling had used background subsets of 

“no occurrence” during the analyzed time span, considering them to be true 

cases of fire absence (e.g., Chuvieco et al., 2010; Padilla and Vega-García, 

2011). However, the fact that these areas did not experience an ignition event 

during the temporal span of the data set does not mean that they could not 

feasibly support an ignition event in the future, or that they never ignited in the 

past (Bar Massada et al., 2012). In line with this reasoning, the dependent 

variable was developed by classifying the occurrence values into two 

categories: high occurrence (presence; 27956 points) in locations with two or 

more fires, and low occurrence (pseudo-absence or background; 28188 points) 

in locations with only one fire (Figure 1). The authors thought that the 

consideration of low-occurrence locations as pseudo-absences was more 

realistic than the creation of random background subsets. The fact that these 

areas have experienced only one fire event in a long time span (20 years), 

means that their characteristics are strongly related with low fire frequencies. 
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Figure 2. Procedure for ignition points location. Potential location area is grey-colored. a) 

10x10 km ICONA grid; b) municipality intersection; c) forest area intersection; d) random 

point location and intersection with 1x1 km grid. 

2.3. Explanatory variables 

The explanatory variables were selected and spatialized on the basis of 

the authors’ experience with models at regional and national scales (Amatulli 

et al., 2007; Chuvieco et al., 2012, 2010; Martínez et al., 2004a; Vilar del 

Hoyo et al., 2008). According to this, the explanatory variables were classified 

in relation to the typology of the affecting factor (Leone et al., 2009; Martínez 

et al., 2004b), as follows: 

1. Factors related to socio-economic transformations.  

1.1. Abandonment of traditional activities in wildland and rural areas, 

especially in privately owned forests with no prospect of economic 

profit. Little or no interest in forest conservation. 

 Forestry area in public utilities. Delimitation of the area 

occupied by forestry areas included in the public utility catalog. 

1.2. Human presence, population increase, and urban growth. More 

pressure on wildlands. 

 Wildland-Urban Interface (WUI). Area occupied by the 200-

meter buffer from the line of contact to the forest area. 

Constructed from the Spanish Forestry Map 1:200000 (MFE200).  

 Changes in demographic potential 1991-2006 (Calvo  and 

Pueyo, 2008). Variation rate between the demographic potential 

in 1991 and in 2006. Demographic potential is an aggregate index 
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related to the ultimate future potential of the population. It reflects 

the demographic power of the nation and its ability to provide 

future population growth (Ediev, 2001). 

2. Factors related to traditional economic activities in rural areas. 

2.1. Agriculture. Fire use to eliminate harvesting wastes and to clean 

cropland borders. 

 Wildland-Agricultural Interface (WAI). Area occupied by the 

200-meter buffer from the line of contact to the forest area. 

Constructed from the Spanish Forestry Map 1:200000 (MFE200).  

3. Factors which could cause fire mainly by accident or negligence. 

3.1. Electric lines. Possible cause of ignition by accident. 

 Power lines. Area occupied by the 50-meter buffer around the 

high-, medium-, and low-voltage transport network. Obtained 

from BCN200. 

3.2. Engines and machines working in or close to forest areas. Possible 

cause of ignition by accident or negligence. 

 Density of agricultural machinery. Obtained at the municipal 

level from the Agricultural Census 1999 of the Spanish Statistics 

Institute (INE). 

3.3. Presence of roads, railways, and tracks and their accessibility. More 

human pressure on wildland. 

 Railways. Area occupied by the 200-meter buffer around the 

railroad network (excluding the high-speed network). Obtained 

from a digital cartographic database (BCN200). 

4. Factors which could hamper fires. 

4.1. Protected areas. Increasing concern about forest protection. 

 Protected areas. Delimitation of the area occupied by natural 

protected areas and the Natura 2000 network. 

All the predictive variables, as well as the dependent variable, were 

distributed in space at a resolution of 1x1 km. To ensure consistency of results, 

a collinearity analysis of the explanatory variables was carried out. No 

collinear variables were found. 
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2.4 Model calibration and software 

The models were fitted using the R statistical software (packages 

randomForest, gbm, and kernlab). R is an open-source statistical programming 

language developed as a large collaborative project by statisticians from 

different countries and disciplines (R Development Core Team, 2008). The 

total sample obtained from the spatial distribution of the fire reports compiled 

in the EGIF database (93573 locations with fire) was separated into a training 

sample (60% of the population) and a testing sample (40% of the population). 

Consequently, the calibration sample was made up of 56144 fire records and 

the validation sample of 37429. The explanatory variables were considered or 

not considered, depending on the model, according to the value of the area 

under the receiver operating characteristic curve (AUC) of the trained model 

(see Section 2.5); variables were introduced when they improved the AUC 

value and dropped when the AUC remained at the same or a lesser value.  

2.4.1 RF 

RF can be parameterized according to the number of trees averaged in 

the ensemble forest (ntrees), the number of predictor variables randomly 

selected at each iteration (mtry), and the minimum number of observations at 

end nodes (nodesize), which can decrease the length of nodes in tree branches 

and simplify trees. All combinations of five ntrees levels (1000, 2000, 3000, 

4000, and 5000) and three mtry levels (from 1 to 3) were tested. The nodesize 

parameter was left at its default value. The values of the parameters in the final 

model were mtry=2 and ntrees=3000. Models with higher values of these 

parameters did not improve accuracy. 

2.4.2 BRT 

A BRT model can be tuned using several parameters such as the 

number of nodes in a tree (tree complexity), the contribution to the model of 

each tree (learning rate), the proportion of data to be selected at each step (bag 

fraction), and the average number of trees in the ensemble forest (ntrees). 

According to Elith et al. (2008), a decreasing (slowing) learning rate increases 

the value of ntrees required, and in general, a smaller value of learning rate 

(and a larger value of ntrees) is preferable, conditional on the number of 

observations and the time available for computation. All combinations of five 

ntrees levels (1000, 2000, 3000, 4000, and 5000) and five values of learning 

rate (0.05, 0.01, 0.005, and 0.001) were tested, resulting in optimum values of 

3000 for ntrees and a learning rate of 0.005. The values corresponding to tree 

complexity and bag fraction were set at 5 and 0.5 respectively for each 

combination of ntrees and learning rate. 
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2.4.3 SVM 

An SVM model requires a large number of parameters to be optimized: 

kernel functions (linear, polynomial, sigma, or radial basis), cost, the gamma 

of the kernel function (except the linear kernel), the bias of the kernel function 

(applicable only to the polynomial sigmoid kernel), and finally the polynomial 

degree (applicable only to the polynomial kernel). For this reason, the 

optimization of an SVM model is more complicated than optimization of RF 

or BRT. The SVM model was calibrated using the R package kernlab. The 

parametrization of the model was done as follows: type = C-bsvc, kernel = 

rbfdot with kpar = sigma(0.1). The cost was set to a range of values from 1 to 

10 and was finally left at 1. The authors were aware that further testing of the 

parameters involved in SVM calibration was needed, but the lack of available 

computing power and the resulting long run times did not permit proper 

exploration of these issues. 

2.4.4 LR 

LR models are statistical models which provide insights into the 

relationship between a qualitative dependent variable, dichotomous in the 

present case, and one or more independent explanatory variables, whether 

qualitative or quantitative. The mathematical expression of LR models is:  
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In this work, the LR model was developed using a forward stepwise 

procedure in which the explanatory variables were introduced into the model 

one by one according to the resulting improvement in the model, as measured 

by the Akaike Information Criterion (AIC). 

2.5 Model evaluation and comparison 

To calculate and compare the classification accuracy of the four 

models, the area under the receiver operating characteristic (ROC) curve 

(AUC, Hanley and McNeil, 1982) was calculated. The ROC curve is a 

graphical representation of the false-positive error (1 – specificity, where 

specificity is the proportion of incorrect predictions) versus the true positive 

rate (also referred as sensitivity or the proportion of correct predictions) for a 

binary classifier system and for different values of the discrimination threshold 

(Zhou et al., 2011). The AUC is a threshold-independent metric because it 

evaluates the performance of a model at all possible threshold values 

(Franklin, 2010). AUC values ranged from 0.5 to 1, where 0.5 is analogous to 
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a completely random prediction and 1 implies perfect prediction. AUC values 

between 0.5 and 0.7 denote poor performance, values between 0.7 and 0.9 

denote moderately good performance, and values larger than 0.9 denote 

excellent model performance (McCune et al., 2002). 

2.6 Evaluating variable importance  

The evaluation of variable importance in the models was carried out 

using two different approaches. The first involves use of model-specific 

procedures, i.e., the increase in node purity for RF, the relative influence of the 

variables for BRT, and Z values for LR. The increase in node purity is 

measured by the gini criterion from all the splits in the forest based on a 

particular variable (Breiman, 2001). Relative influence measures the number 

of times that a variable is selected for splitting, weighted by the squared 

improvement to the model as a result of each split, and averaged over all trees 

(Friedman and Meulman, 2003). The relative influence (or contribution) of 

each variable is scaled so that the sum is 100. The second method for variable 

importance measurement is based on an AUC procedure as a jackknife 

estimator of variable importance, as described by Bar Massada et al. (2012). 

This procedure is based on the fact that a binary classification system can be 

used to calculate receiver operating characteristic curves (ROC) and to 

determine the precision of a diagnostic test (Ordóñez et al., 2012) . Therefore, 

the method was based on measuring the change in AUC using the test data, a 

method which yields directly comparable results across the three ML models 

and the LR. The approach consists on removing predictor variables from the 

full model one at a time, training the model, and calculating the AUC using 

the test data. The difference between the full- and partial-model (without the 

variable) AUC indicates the contribution of each variable to the model. 

Therefore, it represents the information provided by a given variable that is not 

present in other variables. In addition, the AUC of the model was quantified 

using one variable at a time, the AUC values of single-variable models were 

compared, and the variables were ranked accordingly. This procedure enabled 

both a comparison of the accuracy of the models and a significance analysis of 

the explanatory variables within each model and compared to the other 

algorithms. Because there is no variable importance method implemented for 

SVM, this approach will be evaluated only using the AUC. 

3. Results  

3.1 Model performance 

RF and BRT achieved the highest accuracy, reaching AUC values of 

0.746 and 0.730 respectively. The SVM model yielded an AUC value of 
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0.709. The worst model accuracy was associated with the LR model, with a 

value of 0.686. According to the accuracy threshold proposed in McCune and 

Grace (2002), the ML models achieved moderate performance, while the LR 

had rather poor performance. Note also that RF, despite being the model with 

the fewest predictive variables (as reported in Table 1), reached the highest 

accuracy of classification (Figure 3). Table 1 shows a brief summary of model 

accuracy and the explanatory variables considered in each model. 

3.2 Variable importance 

According both to model-specific procedures and to AUC jackknife 

estimation, negligence and accidents due to engines and machines working in 

or close to forest areas, the use of fire to clean up harvest wastes and crop 

boundaries, the increase in human presence and pressure near wildlands, and 

increasing concern for forest protection are the main factors related to human-

induced wildfire occurrence in Spain (Figure 3). The four explanatory 

variables linked to each typology of causes, i.e., density of agricultural 

machinery (DAM), changes in demographic potential (CDP), wildland-

agricultural interface (WAI), and protected areas (PA), make a significant 

contribution to all models (Table 1) and therefore are included in all of them. 

DAM and CDP are the main variables in each variable importance method, 

although WAI reduces its contribution while that of PA increases in the AUC 

procedure.  

Table 1. Model accuracy and explanatory variables. +: Variable in the model, -: variable not 

considered in the model. Dark grey shading indicates the predictor variables that are 

considered in all models. 

 RF BRT SVM LR 

AUC 0.746 0.730 0.709 0.686 

Wildland-Agricultural interface + + + + 

Wildland-Urban interface - + + + 

Protected areas + + + + 

Railroads - - - + 

Density of machinery + + + + 

Power lines - - - + 

Changes in demographic potential + + + + 

Forestry area in public utilitiy + + + - 

 

When considering each variable individually (univariate models), 

DAM and CDP are the two predictive variables with the highest explanatory 

power, with AUC values ranging from 0.669 to 0.687 and 0.630 to 0.659 

respectively. This predictive power is supported by examining the models 

without these variables, where the losses in AUC are also the greatest. In the 
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background, with modest AUC values, appear the rest of the variables, ordered 

from more to less contribution as follows: PA, WAI, FAPU, Wildland-Urban 

interface, power lines, and railroads (Table 2). 

 

 

 

 

Figure 3. Increment in node purity (RF; top), relative importance (BRT; middle) and absolute 

Z value (LR; bottom). 
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 3.3 Spatial distribution of occurrence probability 

The mapping of the spatial pattern of predicted wildfire occurrence is 

significantly different from one model to another (Figure 5). A visual analysis 

reveals that RF has the highest spatial variability in predicted values. Despite 

having the same independent variables (Table 2), BRT and SVM present a 

very different spatial pattern. In the case of SVM, the pattern seems to be 

dichotomized, with probability values concentrated in two ranges close to the 

maximum and minimum values. On the other hand, the spatial distribution is 

more heterogeneous in BRT and closer to the RF distribution. Finally, the LR 

map shows a spatial distribution similar to BRT, but the fact that it contains 

almost no low probability values (in the range from 0 to 0.2) has hindered both 

its accuracy and its predictive power. 

 

Figure 5. Spatial pattern of the probability of wildfire occurrence for each model. Top left is 

RF, top right BRT, bottom left SVM, and bottom right LR. 
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4. Discussion 

Determining which model type to use for occurrence-distribution modeling is 

important because the outcomes may have direct management implications. 

Previous findings from species-distribution modeling (SDM; Franklin, 2010) 

for wildlife have suggested that ML algorithms may be more suitable than 

statistical models (Elith et al., 2006).  

 
Table 2. Summary of results from the jackknife AUC estimator. 

 RF BRT SVM LR AUC Times in model 

Wildland-Agricultural interface 0.68 0.67 0.65 0.67 0.67 4 

Wildland-Urban interface 0.65 0.64 0.63 0.63 0.64 4 

Protected areas 0.53 0.53 0.54 0.55 0.54 4 

Railroads 0.51 0.53 0.54 0.53 0.53 4 

Density of machinery 0.50 0.51 0.52 - 0.51 3 

Power lines - 0.51 0.50 0.51 0.51 3 

Changes in demographic potential - - - 0.51 0.51 2 

Forestry area in public utility - - - 0.51 0.51 2 

 

 

Figure 4. AUC values. In black, the final model; in dark grey, the model without the 

corresponding variable; and in light grey, the AUC value for a model with only the 

corresponding variable. Top left is RF, top right BRT, bottom left SVM, and bottom right LR. 

ML models, and more specifically RF, enhance prediction accuracy 

compared with traditional statistical methods like LR. This improvement is 
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reflected not only in the higher accuracy of the RF model, but also in the fact 

that fewer predictive variables are required to achieve this performance. In 

fact, the use of fewer variables is another point in its favor because it is 

preferable to use models which are as simple as possible, thereby facilitating 

interpretation of the results. In addition, RF cartographic outputs (Figure 5) 

seem to be more realistic because this method has increased spatial variability 

and therefore higher discriminatory power in neighboring areas with different 

occurrence values. Moreover, BRT, SVM, and LR present high area 

concentrations in some of the classification intervals (low-mid values in BRT, 

low-high in SVM, and midrange values in LR), while RF seems to be more 

equally distributed, although most of the probability values are located in the 

first interval (Figure 4, Table 3). On the other hand, although the BRT model 

has similar performance to RF, its calibration and optimization involves more 

parameters, and therefore it is more difficult and time-consuming to compute. 

Finally, the authors consider that SVM is a less adequate method for 

predicting wildfire occurrences compared to the other proposed methods. This 

is mainly because its calibration is significantly more difficult, its optimization 

is too time-consuming, and its accuracy does not reach RF or BRT levels, 

remaining closer to LR. These findings are supported by the results reported in 

(Bar Massada et al., 2012), where the RF algorithm is proposed as the most 

adequate compared to logit GLM and Maxent models. 

As for the explanatory variables, as in most human-dominated 

landscapes where anthropogenic ignitions surpass natural ignitions, in 

peninsular Spain, both human accessibility and population density are likely to 

be strong predictors of ignition risk (Bar Massada et al., 2012). However, 

although these factors make an important contribution in the study area –CDP 

or WUI (Galiana-Martin et al., 2011)–, other explanatory factors more related 

to agricultural activities and forest management also influence wildfire 

occurrence. More specifically, these involve negligence and accidents due to 

engines and machines working close to the forest areas (DAM), the use of fire 

in cleanup of harvest wastes and crop boundaries (WAI), and forestry 

protection policies (PA). Nonetheless, whereas DAM, CDP, WAI, and WUI 

are factors related to an increased ignition probability, PA intervenes in the 

opposite way, i.e., by decreasing ignition likelihood, because it is directly 

linked with the protection and conservation of landscape (Figs. 6 and 7). 

In particular, DAM and CDP have proved to be the variables most 

closely related to fire occurrence in Spain. However, this high predictive 

power is also linked to the fact that these variables are continuous in nature, 

i.e., they have values in all the locations throughout the study area. Therefore, 

DAM and CDP can function as discriminatory variables in all cases, while the 

other predictors cannot. Note also that the continuous nature of DAM does not 
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arise from there being machinery in all locations, but from the fact that it is 

obtained as a statistical value reported at the municipal level. Moreover, the 

influence of DAM should ideally be restricted to mechanized WAI because the 

focus is on ignitions in forest areas, and therefore the agricultural machinery 

must be in crop areas close to forest surfaces, i.e., being used for WAI. This 

fact is supported by the (non-collinear) interaction between DAM and WAI 

(Figs. 6 and 7), in which high values of probabilities are related to high values 

both of DAM and of WAI. On the other hand, CDP seem to have an inverse 

relationship with wildfire probabilities (Figs. 6 and 7), which means that a 

decrease in the demographic potential involves an increase in the predicted 

probability. This may appear strange or hard to understand, but might be 

related to the fact that in certain locations where nowadays the potential is 

lower than the initial potential, this initial potential has been almost 

completely overwhelmed. This indicates that the anthropic pressure in these 

areas has been significantly strong during the CDP time span (1991–2006), 

leading to an increased occurrence probability. 

 

Table 3. Summary of area (km
2
) distribution for each interval and model. 

  RF BRT SVM LR 

Very low 0.0 – 0.2 91540 31798 172777 1435 

Low 0.2 – 0.4 81069 139375 22401 136896 

Medium 0.4 – 0.6 40375 51327 15054 98911 

High 0.6 – 0.8 24438 29779 12088 15655 

Very high 0.8 – 1.0 19437 4580 34539 3962 

 

 

 

Figure 6. Response curves (top) and variable interactions (bottom) for predictive variables 

with RF. 
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Figure 7. Response curves (top) and relevant variable interactions (bottom) for predictive 

variables with BRT. 

5. Conclusions 

ML models improve the prediction accuracy of traditional regression 

methods. Either RF or BRT models yield an improvement in accuracy over LR 

methods for wildfire occurrence assessment, according to AUC values. More 

specifically, the RF algorithm seems to be the best choice due not only to its 

higher accuracy, but also to the fact that fewer predictive variables are 

required to achieve this accuracy. In addition, its calibration is easier because 

it involves few parameters. Another advantage of RF is its cartographic 

outputs, which seem to be more realistic than those from other models due to 

RF’s higher spatial variability and therefore greater spatial discriminatory 

power. This enables RF to provide a better reflection of variability in wildfire 

occurrence linked to heterogeneity of landscapes and human activities. SVM 

appears to be a less adequate method for predicting wildfire occurrences, 

mainly because its calibration is significantly more difficult, its optimization is 

too time-consuming, and its accuracy does not reach the levels of RF or BRT, 

remaining closer to LR. However, despite the similar predictive power of the 

proposed models, the resulting predictive maps were very different. This was 

especially noteworthy in the case of SVM, where the spatial patterns seem to 

be dichotomized, with probability values concentrated in two ranges close to 

the maximum and minimum values. Nevertheless, no single model or method 

can be considered as the perfect modeling tool (Elith et al., 2006), and 

prediction of wildfire occurrences may benefit from using multiple 

approaches, yielding a range of predictions rather than a single map (Bar 

Massada et al., 2012). 

Regardless of the method considered, DAM and CDP have proved to 

be the variables most closely related to fire occurrence, although this result is 

partially due to the continuous nature of these variables and, in the case of 

DAM, to interaction with other predictive variables like WAI. In any case, fire 

occurrence in Spain is mainly related to the increase of human pressure on 
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wildlands and to accidents or negligence in the course of agricultural work 

(Chuvieco et al., 2012). 

Acknowledgements 

This work was financed by the National I+D Plan of the Spanish 

Ministry of Science and Innovation: FPI grant BES-2009-023728. The 

research was conducted within the framework of the following projects: 

FIREGLOBE: Analysis of fire risk scenarios at the national and global scales 

(CGL2008-01083/CLI); and PYRORAMA Modeling future scenarios of fire 

risk and land use changes at national scale (CGL2011-29619-C03-01), 

subproject 1 of the PYROSKENE project (CGL2011-29619-C03). 

References

Amatulli, G., Peréz-Cabello, F., de la Riva, 

J., 2007. Mapping lightning/human-

caused wildfires occurrence under 

ignition point location uncertainty. 

Ecol. Modell. 200, 321–333. 

doi:10.1016/j.ecolmodel.2006.08.001 

Amatulli, G., Rodrigues, M.J., Trombetti, 

M., Lovreglio, R., 2006. Assessing 

long-term fire risk at local scale by 

means of decision tree technique. J. 

Geophys. Res. 111, G04S05. 

doi:10.1029/2005jg000133 

Bar Massada, A., Syphard, A.D., Hawbaker, 

T.J., Stewart, S.I., Radeloff, V.C., 

2011. Effects of ignition location 

models on the burn patterns of 

simulated wildfires. Environ. Model. & 

Softw. 26, 583–592. 

doi:10.1016/j.envsoft.2010.11.016 

Bar Massada, A., Syphard, A.D., Stewart, 

S.I., Radeloff, V.C., 2012. Wildfire 

ignition-distribution modelling: a 

comparative study in the Huron–

Manistee National Forest, Michigan, 

USA. Int. J. Wildl. Fire -. 

doi:http://dx.doi.org/10.1071/WF11178 

Breiman, L., 2001. Random forests. Mach 

Learn 45, 5–32. 

Calvo  A., J.L. and P., 2008. Atlas Nacional 

de España: Demografía. Centro 

Nacional de Información Geográfica , 

Madrid. 

Casalegno, S., Amatulli, G., Bastrup-Birk, 

A., Durrant, T., Pekkarinen, A., 2011. 

Modelling and mapping the suitability 

of European forest formations at 1-km 

resolution. Eur. J. For. Res. 130, 971–

981. doi:10.1007/s10342-011-0480-x 

Chuvieco, E., Aguado, I., Jurdao, S., 

Pettinari, M.L., Yebra, M., Salas, J., 

Hantson, S., de la Riva, J., Ibarra, P., 

Rodrigues, M., Echeverría, M., 

Azqueta, D., Román, M. V, Bastarrika, 

A., Martínez, S., Recondo, C., Zapico, 

E., Martínez-Vega, F.J., 2012. 

Integrating geospatial information into 

fire risk assessment. Int. J. Wildl. Fire -

. 

doi:http://dx.doi.org/10.1071/WF12052 

Chuvieco, E., Aguado, I., Yebra, M., Nieto, 

H., Salas, J., Martín, M.P., Vilar, L., 

Martínez, J., Martín, S., Ibarra, P., de la 

Riva, J., Baeza, J., Rodríguez, F., 

Molina, J.R., Herrera, M.A., Zamora, 

R., 2010. Development of a framework 

for fire risk assessment using remote 

sensing and geographic information 

system technologies. Ecol. Modell. 

221, 46–58. 

doi:10.1016/j.ecolmodel.2008.11.017 



Chapter 6: New methodological approaches to model human causality in forest fires 

110 

Cooke  Anantharaj, V., Wax, C., Choi, J., 

Grala, K., Jolly, M., Dixon, G.P., Dyer, 

J., Evans, D.L., Goodrich, G.B., W., 

2007. Integrating Climatic and Fuels 

Information into National Fire Risk 

Decision Support Tools. USDA Forest 

Service Proceedings RMRS-P-46. 

Cutler, D.R., Edwards, T.C., Beard, K.H., 

Cutler, A., Hess, K.T., Gibson, J., 

Lawler, J.J., 2007. Random forests for 

classification in ecology. Ecology 88, 

2783–2792. doi:10.1890/07-0539.1 

De la Riva, J., Pérez-Cabello, F., Lana-

Renault, N., Koutsias, N., 2004. 

Mapping wildfire occurrence at 

regional scale. Remote Sens. Environ. 

92, 363–369. 

doi:10.1016/j.rse.2004.06.022 

Diaz-Uriarte, R., Alvarez de Andres, S., 

2006. Gene selection and classification 

of microarray data using random forest. 

BMC Bioinformatics 7, 3. 

Drake, J.M., Randin, C., Guisan, A., 2006. 

Modelling ecological niches with 

support vector machines. J. Appl. Ecol. 

43, 424–432. doi:10.1111/j.1365-

2664.2006.01141.x 

Ediev, D., 2001. Application of the 

Demographic Potential Concept to 

Understanding the Russian Population 

History and Prospects: 1897-2100. 

Demogr Res 4, 289–336. 

Elith, J., Graham, C.H., Anderson, R.P., 

2006. Novel methods improve 

prediction of species’ distributions 

from occurrence data. Ecography 

(Cop.). 29, 129–151. 

Elith, J.., Leathwick, J.R., Hastie, T., 2008. A 

working guide to boosted regression 

trees. J. Anim. Ecol. 77, 1365–2656. 

Finney, M.A., 2005. The challenge of 

quantitative risk analysis for wildland 

fire. For. Ecol. Manage. 211, 97–108. 

doi:10.1016/j.foreco.2005.02.010 

Franklin, J., 2010. Mapping Species 

Distributions. Cambridge University 

Press, New York. 

Friedman, J.H., Hastie, T., Tibshirani, R., 

2000. Additive logistic regression: a 

stastistical view of boosting 28, 337–

407. 

Friedman, J.H., Meulman, J.J., 2003. 

Multiple additive regression trees with 

application in epidemiology. Stat. Med. 

22, 1365–1381. doi:10.1002/sim.1501 

Galiana-Martin, L., Herrero, G., Solana, J., 

2011. A Wildland–Urban Interface 

Typology for Forest Fire Risk 

Management in Mediterranean Areas. 

Landsc. Res. 36, 151–171. 

doi:10.1080/01426397.2010.549218 

Guyette, R.P., Muzika, R.M., Dey, D.C., 

2002. Dynamics of an Anthropogenic 

Fire Regime. Ecosystems 5, 472–486. 

doi:10.1007/s10021-002-0115-7 

Hanley, J.A., McNeil, B.J., 1982. The 

meaning and use of the area under a 

receiver operating characteristic (ROC) 

curve. Radiology 143, 29–36. 

Hastie, T., Tibshirani, R., Friedman, J.H., 

2009. The Elements of Statistical 

Learning: Data Mining, Inference, and 

Prediction, Second edi. ed. Springer-

Verlag, New York. 

Hernández Ramírez, M., Ferri, C., 2004. 

Introducción a la minería de datos. 

Pearson Prentice Hall, Madrid. 

Kalabokidis, K.D., Gatzojannis, S., 

Galatsidas, S., 2002. Introducing 

wildfire into forest management 

planning: towards a conceptual 

approach. For. Ecol. Manage. 158, 41–

50. doi:10.1016/s0378-1127(00)00715-

5 

Krawchuk, M.A., Moritz, M.A., Parisien, 

M.-A., Van Dorn, J., Hayhoe, K., 

2009. Global pyrogeography: the 

current and future distribution of 



Chapter 6: New methodological approaches to model human causality in forest fires 

111 

wildfire. PLoS One 4, e5102. 

doi:10.1371/journal.pone.0005102 

Le Page, Y., Oom, D., Silva, J.M.N., 

Jönsson, P., Pereira, J.M.C., 2010. 

Seasonality of vegetation fires as 

modified by human action: observing 

the deviation from eco-climatic fire 

regimes. Glob. Ecol. Biogeogr. 19, 

575–588. doi:10.1111/j.1466-

8238.2010.00525.x 

Leathwick, J.R., Elith, J., Chadderton, W.L., 

Rowe, D., Hastie, T., 2008. Dispersal, 

disturbance and the contrasting 

biogeographies of New Zealand’s 

diadromous and non-diadromous fish 

species. J. Biogeogr. 35, 1481–1497. 

Leathwick, J.R., Elith, J., Francis, M.P., 

Hastie, T., Taylor, P., 2006. Variation 

in demersal fish species richness in the 

oceans surrounding New Zealand: an 

analysis using boosted regression trees. 

Mar Ecol-Prog Ser 321, 267–281. 

Leone, V., Lovreglio, R., Martín, M.P., 

Martínez, J., Vilar, L., 2009. Human 

Factors of Fire Occurrence in the 

Mediterranean, in: Chuvieco, E. (Ed.), 

Earth Observation of Wildland Fires in 

Mediterranean Ecosystems. Springer 

Berlin Heidelberg, pp. 149–170. 

doi:10.1007/978-3-642-01754-4_11 

Li, J., Heap, A.D., Potter, A., Daniell, J.J., 

2011. Application of machine learning 

methods to spatial interpolation of 

environmental variables. Environ. 

Model. &amp; Softw. 26, 1647–1659. 

doi:10.1016/j.envsoft.2011.07.004 

Liaw, A., Wiener, M., 2002. Classification 

and Regression by randomForest. R 

News 2, 18–22. doi:citeulike-article-

id:1121494 

Loboda, T. V, 2009. Modeling fire danger in 

data-poor regions: a case study from 

the Russian Far East. Int. J. Wildl. Fire 

18, 19–35. 

doi:http://dx.doi.org/10.1071/WF07094 

Loepfe, L., Martinez-Vilalta, J., Piñol, J., 

2011. An integrative model of human-

influenced fire regimes and landscape 

dynamics. Environ. Model. &amp; 

Softw. 26, 1028–1040. 

doi:10.1016/j.envsoft.2011.02.015 

Marmion, M., Parviainen, M., Luoto, M., 

Heikkinen, R.K., Thuiller, W., 2009. 

Evaluation of consensus methods in 

predictive species distribution 

modelling. Divers. Distrib. 15, 59–69. 

doi:10.1111/j.1472-4642.2008.00491.x 

Martínez, J., Chuvieco, E., Koutsias, N., 

2013. Modelling long-term fire 

occurrence factors in Spain by 

accounting for local variations with 

geographically weighted regression. 

Nat Hazard Earth Sys 13, 311–327. 

Martínez, J., Chuvieco, E., Martín, M.P., 

2004a. Estimating human risk factors 

in wildland fires in Spain using logistic 

regression, in: II International 

Symposium on Fire Economics, 

Planning and Policy: A Global Vision. 

Cordoba. 

Martínez, J., Martínez-Vega, J., Martín, P., 

2004b. El factor humano en los 

incendios forestales: análisis de los 

factores socio-económicos 

relacionados con la incidencia de 

incendios forestales en España, in: 

Chuevico, E., Martín, P. (Eds.), 

Nuevas Tecnologías Para La 

Estimación Del Riesgo de Incendios 

Forestales. Madrid, pp. 101–142. 

Martínez, J., Vega-Garcia, C., Chuvieco, E., 

2009. Human-caused wildfire risk 

rating for prevention planning in Spain. 

J. Environ. Manage. 90, 1241–1252. 

doi:10.1016/j.jenvman.2008.07.005 

Martínez-Fernández, J., Koutsias, N., 2011. 

Modelling fire occurrence factors in 

Spain. National trends and local 

variations, in: San-Miguel Ayanz 

J  Camia A, Oliveira S, G.I. (Ed.), 

Advances in Remote Sensing and GIS 



Chapter 6: New methodological approaches to model human causality in forest fires 

112 

Applications in Forest Fire 

Management From Local to Global 

Assessments. JRC66634 Scientific and 

Technical Reports, Luxemburg, pp. 

203–208. 

Martínez-Vega, J., Echevarría, P., Ibarra, P., 

Echeverría, M., Rodrigues, M., 2012. 

Valoración del paisaje de España 

peninsular en el contexto de la 

generación de un índice sintético de 

riesgo de incendios forestales, in: M.P, 

M.V.J.. M. (Ed.), Tecnologías de La 

Información Geográfica En El 

Contexto Del Cambio Global. XV 

Congreso Nacional de Tecnologías de 

La Información Geográfica. IEGD-

CCSH CSIC, Madrid, pp. 133–142. 

McCune, B., Grace, J.B., Urban, D.L., 2002. 

Analysis of ecological communities. 

MJM Software Design, Glenden 

Beach. 

Moreno, M. V, Malamud, B.D., Chuvieco, 

E.A., 2011. Wildfire Frequency-Area 

Statistics in Spain. Procedia Environ. 

Sci. 7, 182–187. 

doi:10.1016/j.proenv.2011.07.032 

Ordóñez, C., Saavedra, A., Rodríguez-Pérez, 

J.R., Castedo-Dorado, F., Covián, E., 

2012. Using model-based geostatistics 

to predict lightning-caused wildfires. 

Environ. Model. &amp; Softw. 29, 44–

50. doi:10.1016/j.envsoft.2011.10.004 

Padilla, M., Vega-García, C., 2011. On the 

comparative importance of fire danger 

rating indices and their integration with 

spatial and temporal variables for 

predicting daily human-caused fire 

occurrences in Spain. Int. J. Wildl. Fire 

20, 46–58. 

doi:http://dx.doi.org/10.1071/WF09139 

Pino-Mejías, R., Cubiles-de-la-Vega, M.D., 

Anaya-Romero, M., Pascual-Acosta, 

A., Jordán-López, A., Bellinfante-

Crocci, N., 2010. Predicting the 

potential habitat of oaks with data 

mining models and the R system. 

Environ. Model. Softw. 25, 826–836. 

doi:10.1016/j.envsoft.2010.01.004 

Plucinski, M.P., 2011. A Review of Wildfire 

Occurrence Research. CSIRO. 

Rodrigues, M., de la Riva, J., Fotheringham, 

S., 2014. Modeling the spatial variation 

of the explanatory factors of human-

caused wildfires in Spain using 

geographically weighted logistic 

regression. Appl. Geogr. 48, 52–63. 

doi:10.1016/j.apgeog.2014.01.011 

Rodrigues, M., San Miguel, J., Oliveira, S., 

Moreira, F., Camia, A., 2013. An 

insight into spatial-temporal trends of 

fire ignitions and burned área in the 

European Mediterranean countries. J. 

Earth Sci. Eng. 3, 497–505. 

Romero-Calcerrada, R., Barrio-Parra, F., 

Millington, J.D.A., Novillo, C.J., 2010. 

Spatial modelling of socioeconomic 

data to understand patterns of human-

caused wildfire ignition risk in the SW 

of Madrid (central Spain). Ecol. 

Modell. 221, 34–45. 

doi:10.1016/j.ecolmodel.2009.08.008 

San-Miguel Ayanz, J., Camia, A., 2009. 

Forest fires at a glance: facts, figures 

and trends in the EU, in: Birot, Y. 

(Ed.), Living with Wildfires: What 

Science Can Tell Us. A Contribution to 

the Science-Policy Dialogue. . 

European Forest Institute, pp. 11–18. 

San-Miguel-Ayanz, J., Rodrigues, M., 

Oliveira, S., Pacheco, C., Moreira, F., 

Duguy, B., Camia, A., 2012. Land 

Cover Change and Fire Regime in the 

European Mediterranean Region, in: 

Moreira, F., Arianoutsou, M., Corona, 

P., De las Heras, J. (Eds.), Post-Fire 

Management and Restoration of 

Southern European Forests. Springer 

Netherlands, pp. 21–43. 

doi:10.1007/978-94-007-2208-8_2 

Schapire, R., 2003. The boosting approach to 

machine learning: An overview, in: 

Denison  Hansen, M.H., Holmes, C., 



Chapter 6: New methodological approaches to model human causality in forest fires 

113 

Mallick B., Yu, B., D.D. (Ed.), MSRI 

Workshop on Nonlinear Estimation 

and Classification. Springer, New 

York. doi:citeulike-article-id:411634 

Shan, Y., Paull, D., Mckay, R.I., Bob, M., 

2006. Machine Learning of Poorly 

Predictable Ecological Data. 

Sierra, B., 2006. Aprendizaje automático: 

conceptos básicos y avanzados. 

Pearson Prentice Hall, Madrid. 

Vapnik, V.N., 1995. The nature of statistical 

learning theory. Springer-Verlag New 

York, Inc. 

Vapnik, V.N., 1998. Statistical Learning 

Theory. Wiley, New York. 

Vasconcelos, M.J.P., Silva, S., Tomé, M., 

Alvim, M., Pereira, J.M.C., 2001. 

Spatial prediction of fire ignition 

probabilities: comparing logistic 

regression and neural networks. 

Photogramm Eng Rem S 5, 101–111. 

Vega-Garcia, C., Woodard, P.M., Titus, S.J., 

1996. Applying neural network 

technology to human-caused wildfire 

occurrence prediction. AI Appl. 9–18. 

Vega-Garcia, C. V, Woodard, P.M., Titus, 

S.J., Adamowicz, W.L., Lee, B.S., 

1995. A Logit Model for Predicting the 

Daily Occurrence of Human Caused 

Forest-Fires. Int. J. Wildl. Fire 5, 101–

111. 

doi:http://dx.doi.org/10.1071/WF99501

01 

Vélez, R., 2001. Fire Situation in Spain, in: 

Goldammer, J.G., Mutch, R.W., 

Pugliese, P. (Eds.), Global Forest Fire 

Assessment 1990-2001. FAO, Roma. 

Vilar del Hoyo, L., Martínez Vega, J., Martín 

Isabel, M.P., 2008. Empleo de técnicas 

de regresión logística para la obtención 

de modelos de riesgo humano de 

incendio forestal a escala regional. 

Zhou, X.-H., Obuchowski, N.A., McClish, 

D.K., 2011. Front Matter, in: Statistical 

Methods in Diagnostic Medicine. John 

Wiley & Sons, Inc., pp. i–xxx. 

doi:10.1002/9780470906514.fmatter 

 



 

 

 

  



 

 

 

 

 

 

 

 

CHAPTER 7. UNCERTAINTY IN MODELING 

HUMAN-CAUSED WILDFIRE 

OCCURRENCE 
  

This chapter presents the results of the uncertainty 

analysis of human-caused ignition data. The proposed method 

deals with the potential uncertainty that the inconsistences found 

in either location or source of fire history records may have in 

wildfire occurrence models. 

The main goal is to determine which fire records 

should be accounted for when fitting historic wildfire occurrence 

models, and address its influence on both the predicted spatial 

patterns of ignition probability and the explanatory sense of 

wildfire driving factors. 
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Abstract 

Wildfire risk assessments in Spain usually make little or no reference to the 

uncertainty of the results due to ignition data quality, or the implications that this 

potential uncertainty may have on wildfire management decisions. In Spain the 

autonomous regions have been the competent authorities in forest management and 

environmental protection since 1978 and, therefore, responsible on defining the 

framework and criteria for wildfire classification and location. However, the lack of a 

common (national) standard has led to the establishment of different criteria for 

wildfire classification among the different autonomous regions, arising potential 

uncertainty on wildfire assessments and fire risk models based on this data. This work 

explores six scenarios based on the classification of fire ignition causes and location 

data, reported in the General Statistics of Wildfires database (EGIF), to address the 

potential uncertainty from the point of view of the variability in predicted ignition 

probability and the changes in its spatial patterns. The analysis is focused on 

analyzing the effects on human-caused wildfires by using Random Forest algorithms 

to predict the ignition likelihood and cluster and outlier analysis (hot and cold spot) 

to detect changes in the spatial pattern of probability. Results suggest that there is 

significant uncertainty both in predicted human-caused ignition and spatial pattern 

related to the ignition source and location of fire events compiled in the EGIF 

database. The accuracy of the predictions ranges from AUC values of 0.90, when 

considering most of the records of the database, to around 0.76 in scenarios 

characterized by using only known-caused allocated fire events. 

 

Keywords: Uncertainty; wildfire; point location; ignition cause 

 

1. Introduction  

During the last decades, the Spanish forest fire authorities have 

encouraged the investigation of fire causes, which is decisive to better 

understand patterns of fire occurrence and improve fire prevention measures 

(Martinez et al., 2009). However, the 29% of the fire causes remain 

unidentified. According to Lovreglio et al. (2006), little is known about 

wildfire causes, which often are more diverse than what is assumed by the 

traditional classifications employed for statistical purposes. In face of the 

arising uncertainties, a better knowledge on spatial patterns of fire occurrence 
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and their relationships with its underlying causes becomes a necessity to locate 

and make prevention efforts more efficient (Martinez et al., 2009). From a 

scientific perspective, improving decision quality in natural resource 

management begins with uncertainty management (Borchers, 2005). 

Uncertainty is essentially a lack of information; complete ignorance represents 

one end of the spectrum and perfect information (i.e., certainty) the other 

(Thompson and Calkin, 2011). However, viewing uncertainty as ‘information 

about information’ may be the first step in transforming a problem into 

knowledge (Bradshaw and Borchers, 2000). 

The aim of this paper is to deal with the potential uncertainty linked to 

location and ignition cause of wildfires, with special attention to the human-

caused fires in the Spanish peninsula. The analysis of human factors in forest 

fire is widely recognized as very critical for fire danger estimation 

(Kalabokidis et al., 2002; Martínez, 2009), especially in human-dominated 

landscapes where anthropogenic ignitions widely surpass natural ignitions, 

like the peninsular Spain (Amatulli et al., 2007; Chuvieco et al., 2012; 

Chuvieco et al., 2010). In Spain, fire events are recorded in the General 

Statistics of Wildfires database (EGIF). The EGIF database is one of the oldest 

‘complete’ wildfire databases in Europe, beginning in 1968 (Vélez, 2001), 

though its data is not considered as completely reliable until 1988 (Martinez et 

al., 2009). The database is compiled by the Ministry of Environment, Rural 

and Marine affairs (MARM) using forest fire reports of the autonomous 

regions (Moreno et al., 2011). The autonomous regions have been the 

competent authorities in forest management and environmental protection 

since 1978 (article 148 of the Spanish Constitution, 1978), and therefore are 

responsible on defining the framework and criteria for wildfire classification 

and location. However, the fact that there is no common (national) directive on 

this topic has led to the establishment of different criteria among the different 

autonomous regions. A quick overview on the data collected in the database 

arises some inconsistences in the reported information. For instance, the 

proportion of unknown causes or the proportion of correctly located fire events 

(located with coordinates) differs from one region to another, becoming a 

potential source of uncertainty. This is especially important since research on 

forest fires in Spain is made from data collected in the EGIF database 

(Amatulli et al., 2007; Chuvieco et al., 2010; Chuvieco et al., 2012; de la Riva 

et al., 2004; Martinez et al., 2009; Padilla and Vega-García, 2011; Rodrigues 

et al., 2014; Rodrigues and de la Riva, 2014). Notwithstanding, the influence 

of uncertainty in historical fire data is scarcely considered (or at least not 

specifically addressed) and is mainly focused on location precision rather than 

ignition cause (Amatulli et al., 2006; Amatulli et al., 2007. Assessing the 

effects of uncertainty of Spanish ignition data is particularly interesting since it 
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is a component of the wildfire information compiled European Forest Fires 

System Database (EFFIS), thus analyzing the effects of uncertainty at the 

Spanish level could be very helpful to understand wildfire patterns in the 

European scale, even more since Spain is the more fire-affected country within 

the European Union (Rodrigues et al., 2013). 

In this work, we will explore six scenarios based on the classification 

of ignition causes and location data reported in the EGIF database to assess the 

potential uncertainty from the point of view of the variability in predicted 

ignition probability and changes in the spatial pattern of probability. The 

occurrence probability will be calculated using Random Forest (RF) 

algorithms (Breiman, 2001) whereas the changes in the spatial probability 

patterns will be addresses through local Hot Spot analysis. RF algorithms have 

proved to be a useful tool for wildfire modeling (Bar Massada et al., 2012; 

Rodrigues and de la Riva, 2014), improving the performance of traditional 

regression techniques (e.g. logit Generalised Linear Models). The comparison 

of the proposed occurrence scenarios is conducted from the point of view of 

the accuracy in the classification based on a k-fold procedure (Fielding and 

Bell, 1997) and according to the variation in variable importance (Breiman, 

2001). On the other hand, Hot Spot methods are one of the most adequate for 

the analysis of large-scale fire occurrence patterns (Allgöwer et al., 2005). The 

analysis of the changes in the predicted ignition probability patterns in each 

scenario is carried out by cluster and outlier analysis through the Anselin’s 

Local Moran's I (Anselin, 1995). Results suggest that there is substantial 

uncertainty both in predicted human-caused ignition and spatial pattern related 

to the classification and location of the fire events compiled in the EGIF 

database. The accuracy of the predictions ranges from AUC values of 0.90, 

when considering most of the records of the database, to around 0.76 in 

scenarios characterized by using only known-caused allocated fire events. The 

influence of the predictive variables is also variable. Regarding to the changes 

in the probability patterns, the mapping of cluster typology evidences high 

heterogeneity among the scenarios. However, the overall probability pattern 

seems to be similar from one scenario to another. 

2. Materials and methods 

2.1 Study area and fire data 

The study area covered the whole peninsular Spain excluding the 

Balearic and Canary Islands as well as the autonomous cities of Ceuta and 

Melilla, due to the lack of data in those areas. Thus the total area of the study 

region was around 498 000 km
2
. The fire events considered in this work are 

those occurred during the period 1988-2007. The year 1988 is considered as 
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the beginning of the most reliable data recording for the EGIF database, 

whereas 2007 is the last year with complete information. 

2.2 An overview to the EGIF database 

The EGIF database is compiled by the Ministry of Environment, Rural 

and Marine affairs (MARM) using the forest fire reports from the autonomous 

regions. The database classifies each fire event following a hierarchy of 

criteria which first differences between known (K) and supposed (S) cause and 

then into the most likely ignition source (natural or human). In turn, the 

ignition source is classified according to six categories: natural (lightning; L), 

human (negligence, accident or arson; H), restarted fires (R) and unknown or 

unidentified fires (U). Ideally, only K fires should be considered when 

developing any kind of fire analysis as they appear to be the most reliable. 

However, an insight into the classification of fire events in terms of number of 

fires in each category (Table 1) reveals that the proportion of fires with a S 

cause is more than 73 % of the total number of fires in the period 1988-2007. 

Hence, by excluding S fires the majority of fire events are being discarded 

(Figure 1). 

Table 1. Classification of fire events according to its ignition causes (number of fires). 

 Lightning Human Unknown Restarted All 

Known 6775 35443 30952 1957 75127 

Supposed 7931 228694 44706 2420 283751 

Total 14706 264137 75658 4377 358878 

This classification system also influences the proportion of fires 

according to its ignition source. Attending to K source, L fires represent the 

9% of the occurrence whereas H fires are only the 47%. The remaining fires 

mostly correspond to U sources. This proportion changes drastically when S 

cause fires are accounted for, decreasing the proportion of L fires to 4% and 

raising H fires to a 73%. However, this 73 % of H fires is still far from the 

90% value usually reported for Mediterranean European Countries (San-

Miguel-Ayanz et al., 2012a; San-Miguel Ayanz, 2009) and, particularly, for 

Spain (Martínez et al., 2009). This fact suggests that there is great amount of 

U fires potentially related to H ignition factors and thus, when excluding 

unknown fires in human-caused wildfire assessments, a significant part of the 

human occurrence is not taken into account. However, while U fires are quite 

important attending to national overall values, mapping the spatial distribution 

of these proportions uncovers the existence of high spatial heterogeneity, 

increasing the uncertainty on the data (Figure 1).  
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On the other hand, a second source of uncertainty is related to the 

location of fire events. In the EGIF database wildfires are located following to 

different procedures: (i) geocoding the location on the basis of a reference 

10x10 km ICONA grid (used by the firefighting services for approximate 

location of fire events) and the municipality origin of the ignition; and (ii) 

georeferencing fire events using spatial coordinates. Again, the existence of 

coordinates should imply a precise allocation of the ignition points, however 

not all the fire events are georeferenced –only the 11% (Table 2)– and, as in 

the case of the ignition source, the proportion of fire events with coordinates 

varies from one region to another (Figure 2). This situation usually led to face 

the spatialization of the fire occurrence using geocoded location information 

(Amatulli et al., 2007; Chuvieco et al., 2012; Chuvieco et al., 2010; de la Riva 

et al., 2004; Martínez, 2009). On top of this, sometimes the assigned 

coordinates are incorrect. For instance, 2267 fires are located outside Spain, 23 

are assigned a wrong UTM zone and 757 are located in the exact intersection 

of the ICONA grid (Table 2). This means that the 7.6% of the forest fires with 

spatial coordinates are mistakenly allocated. 

 

Table 2. Number of fires with coordinates and wrong located wildfires. 

 Located Outside Wrong zone Intersects Grid Total incorrect 

Known 16435 962 18 347 1327 

Supposed 23581 1305 5 410 1720 

Total 40016 2267 23 757 3047 

 
 
 

 
Figure 1. Spatial distribution of wildfires. Left total number of fires, right K fires. 
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Figure 2. Spatial distribution of the proportion of points with coordinates. Total number of 

fires (left), fires with known cause (right). 

2.3 EGIF scenarios 

In this work, we explored six scenarios based on the classification of 

ignition causes and location data reported in the EGIF database. The proposed 

scenarios were constructed to simulate the most probable assumptions to select 

an occurrence sample for wildfire modeling purposes. The criteria followed to 

design the scenarios were based mainly in three parameters: certainty of the 

cause (known or supposed), certainty of the source (human or unknown) and 

presence of coordinates. Thus, the proposed scenarios are: 

 Scenario 1: this scenario considers all human-caused fires, including 

both known and supposed cause, and a proportion of unknown fires 

according to the observed proportion of human-caused fires in the 

corresponding autonomous region. 

 Scenario 2: this scenario considers all human-caused fire, including 

both known and supposed cause, excluding those fires with an 

unknown source. 

 Scenario 3: this scenario considers all human-caused fire, but only 

those with known cause, excluding fires with a supposed cause, but 

including a proportion of unknown fires according to the observed 

proportion of human-caused fires in the corresponding autonomous 

region. 

 Scenario 4: this scenario considers all human-caused fire, but only 

those with known cause, excluding fires with a supposed cause or an 

unknown source. 

 Scenario 5: this scenario considers all human-caused fire, including 

both known and supposed cause located using coordinates, excluding 
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fires with an unknown source or those which are wrongly located 

according to Table 2. 

 Scenario 6: this scenario considers all human-caused fire, but only 

those with known cause and located using coordinates, excluding fires 

with a supposed cause, an unknown source or those which are wrongly 

located according to Table 2. 

2.4. Wildfire modelling 

The assessment of human-caused wildfire occurrence was carried out 

using RF algorithms an ensemble classifier which uses decision trees as base 

classifiers (Breiman, 2001).  

The dependent variable for each scenario was constructed by selecting 

human-caused fires (e.g. negligence, accident or arson). Then wildfires were 

spatialized through the assignment of each fire to its respective combination of 

ICONA grid, municipality and forest perimeter (Amatulli et al. 2007; Chuvieco 

et al. 2010,2012; de la Riva et al., 2004; Rodrigues et al., 2014;Rodrigues and 

de la Riva, 2014). This allowed the calculation of fire density maps at a spatial 

resolution of 1x1 km by overlaying the random point cloud with the Spanish 

1x1 km UTM grid. The dependent variable was developed for each scenario 

by classifying the occurrence values into two categories: high occurrence 

(presence) in locations with two or more fires, and low occurrence (pseudo-

absence or background) in locations with only one fire.  

The explanatory variables were selected based on the experience of the 

authors in models at regional and national scales (Amatulli et al., 2007; 

Chuvieco et al., 2010,2012; de la Riva et al., 2004; Martínez, 2009; Rodrigues 

et al., 2014; Rodrigues and de la Riva, 2014. The predictive variables 

considered were: Wildland-agricultural interface (WAI), Wildland-urban 

interface (WUI), density of agricultural machinery (DAM), changes in 

demographic potential 1991-2006 (CDP; Calvo and Pueyo, 2008), protected 

areas (PA), forestry area in public utility (FAPU), forestry tracks (TRCK), 

railroads (RRDS) , power lines (PWR) and land use change 1991-2006 (LUC). 

The comparison of the outputs (predicted probability of occurrence) 

from each proposed scenario was conducted from the point of view of the 

accuracy in the classification based on a k-fold cross-validation procedure 

(Fielding and Bell, 1997) and according to the variation in the variable 

importance (Breiman, 2001). In k-fold cross-validation, the original sample is 

randomly partitioned into k equal size subsamples (k=5 in this work). Each 

time, one of the k subsets is used as the test set and the other k-1 subsets are 

putted together to conform the training set. The cross-validation process is 

then repeated k times (the folds), with each of the k subsamples used exactly 
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once as the validation data. The k results from the folds then can be averaged 

to produce single error estimation (Bas Massada et al., 2012).  

Variable importance assessment was carried out by summarizing the 

influence of the explanatory variables according to the increase in mean square 

error (IncMSE) and the increase in node purity (IncNP). IncSME is defined as 

the increase in the mean of the error of a tree in the forest when the observed 

values of this variable are randomly permuted in the out-of-bag samples. 

IncNP is measured using the Gini criterion, from all the splits in the forest 

based on a particular variable (Breiman, 2001). The variability in variable 

importance was addressed through the fluctuations in the ranks obtained by 

ordering the explanatory variables from more to less importance according to 

IncSME and IncNP. 

2.5. Spatial variation in the ignition probability patterns 

Changes in the spatial probability patterns were addressed through 

local Hot Spot analysis, one of the most adequate for this purpose (Allgöwer et 

al., 2005). The assessment of changes in the spatial pattern of predicted 

probability was based on the assumption that one of the key factors in wildfire 

management was guiding governments or responsible authorities through 

prioritization across fires and resources at risk. We considered that the 

identification of areas with high values of occurrence probability (Hot Spot) is 

linked to the identification of priority intervention areas. 

The assessment of the changes in the predicted spatial pattern at each 

scenario is carried out by cluster and outlier analysis through the Anselin’s 

Local Moran's I (Cluster and Outlier Analysis). This kind of analysis allows 

identifying and allocating Hot Spot areas as well as characterizes its typology 

of cluster. Given a set of weighted features, the Cluster and Outlier Analysis 

tool identifies clusters of features with values similar in magnitude. The tool 

also identifies spatial outliers. To do this, the tool calculates a Local Moran's I 

value, a Z score, a p-value, and a code representing the cluster type for each 

feature. The Distance Band or Threshold established for the cluster detection 

was 10 km. The results were mapped according to the significant detected 

cluster typology: Hot Spot (HH), Hot Spot surrounded by Cold Spot (HL), 

Cold Spot (LL) and Cold Spot surrounded by Hot Spot (LH). 

3. Results  

3.1. Predicted probability of occurrence 

There is high variability (and therefore uncertainty) in predicted 

probability values among the six scenarios (Figure 3). In general terms, 
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scenarios characterized by the use of both K and S causes, mainly scenarios 1 

and 2, show high performance with AUC values stand above 0.9 (McCune et 

al., 2002). Scenarios 2 and 3, where the occurrence used to construct the 

dependent variable only consider K causes are less accurate (AUC near 0.83) 

and values in the high probability interval (0.8 to 1) are almost inexistent. 

Scenarios where the ignition points are georeferenced using coordinates show 

the poorest accuracy and probability values are grouped in the first interval (0 

to 0.2). In addition, the range of AUC values (difference between minimum 

and maximum value) shows a similar behavior, with lower values in scenarios 

1 and 2, and increasing until scenarios 5 and 6. This means that the models 

fitted using a dependent variable constructed with both K and S causes are 

more stable and therefore more reliable. Table 3 summarizes the obtained 

AUC values. On the other hand, the same comportment is observed when 

considering the values of Max TPR+TNR. This parameter represents the best 

threshold to distinguish between presence/absence according to the maximum 

value of the kappa index i.e. the highest values of true positive rate (TPR) and 

true negative rate (TNR). In general terms, the higher the threshold the higher 

the accuracy of the model since it means that the model distinguish more 

efficiently between presence and background values. 

The uncertainty observed in the probability values is also detected in 

the contribution of the explanatory variables for each scenario. Although the 

variability is higher in the importance ranks for IncSME than in IncNP (Table 

4) there is a general tendency to promote always the same variables: DAM, 

CDP, WAI, PA and TRCK (the later only is observed in the IncNP). The rest 

of the variables are swapping ranks among the different scenarios. 

Table 3. Summary of k-fold validation with k=5. 

 S 1 S 2 S 3 S 4 S 5 S 6 

Max AUC 0.908 0.904 0.838 0.844 0.845 0.784 

Min AUC 0.906 0.899 0.827 0.829 0.821 0.746 

Max TPR+TNR 0.341 0.324 0.125 0.146 0.123 0.062 

3.2. Variation in spatial patterns of probability 

Figure 4 shows the spatial distribution of the cluster characterization of 

the predicted probabilities. In the same way that occurs in the predicted 

probability of occurrence, there is high heterogeneity in the spatial pattern at 

each scenario. However, in this case a similar spatial pattern of cluster is 

observable among the six scenarios, with HH clusters in the northwest of the 

peninsula and the Mediterranean coast, HL clusters in Pyrenees and the central 

area of the peninsula and LH in the Cantabrian coast. However, the scenarios 

using known causes (scenarios 4 and 6) are presenting LL clusters in some 
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regions of the Northwest of the peninsula which is not that would be 

expectable since this area presents the highest occurrence values (Figure 1). 

Table 4. Importance ranks for the explanatory variables. Top IncSME, bottom IncNP. 

 S 1 S 2 S 3 S 4 S 5 S 6 ranks 

DAM 1 1 1 1 1 1 0 

CDP 2 2 2 2 2 3 1 

WAI 3 3 4 5 6 5 4 

PA 4 4 3 3 3 4 3 

FAPM 5 5 6 7 4 2 5 

WUI 6 6 5 4 5 6 3 

RAIL 7 8 7 6 7 9 4 

PWL 8 9 9 8 9 8 2 

LUC 9 10 10 10 10 10 2 

TRCK 10 7 8 9 8 7 4 

        

DAM 1 1 1 1 1 1 0 

CDP 2 2 2 2 2 2 0 

WAI 3 3 3 3 3 3 0 

PA 5 5 5 5 5 5 0 

FAPM 6 6 7 7 8 7 3 

WUI 10 10 10 10 10 10 3 

RAIL 9 9 9 9 7 8 3 

PWL 7 7 6 6 6 6 2 

LUC 8 8 8 8 9 9 2 

TRCK 4 4 4 4 4 4 0 

4. Discussion 

Multiple sources of uncertainty remain with regard to modelling 

wildfire occurrence (Thompson and Calkin, 2011). Therefore there is a need to 

better understand how uncertainty and errors propagate through models 

(Sullivan, 2009). As little is known about wildfire causes (Lovreglio et al., 

2006) many authors have chosen to deal globally with human-caused fires, 

avoiding uncertain specifications of causes, and have been able to derive 

useful recommendations for management (Stephens, 2005). Nevertheless, 

using a coherent framework informs management authorities by facilitating 

the identification of potential sources of uncertainty and the quantification of 

their impact. 

In Spain, near a 29% of the fire events have an unidentified cause and 

the remaining 71% are not fully reliable because the existence of certain 

degree of uncertainty regarding ignition source and location. This uncertainty 

is firstly detected while analyzing and mapping fire data; and secondly when 

occurrence data is used for wildfire modeling. Uncertainty is affecting both to 

the predicted probability values as well as the spatial pattern of probability.  



Chapter 7: uncertainty in modeling human-caused wildfire occurrence 

127 

 

 

 
Figure 3. Spatial distribution of the predicted probability values. Scenarios are ordered 

consecutively left-right-top-bottom 
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Figure 4. Spatial distribution of the cluster type. Scenarios are ordered consecutively left-

right-top-bottom. 

  



Chapter 7: uncertainty in modeling human-caused wildfire occurrence 

129 

According to the results may vary greatly depending on to the 

assumptions made when constructing the dependent variable. Results suggest 

that the scenarios based on the consideration of all causes (K and S) as well as 

a proportion of the fires with a U source are more accurate, with AUC values 

above 0.9.We believe that this is mainly because when considering the whole 

occurrence, the dependent variable is less ‘spatially biased’ since there is no 

partial criterion to leave out a particular set of fire events and, thereby, the 

spatial pattern should be closer to reality. It is expectable that the scenario with 

the less uncertainty in its occurrence data, i.e. a scenario with known causes 

and (scenario 6), would be the most accurate. However, the fact that there are 

differences in the proportions of unidentified and allocated fires within the 

Spanish peninsula is harming the quality of the data.  

In addition, there is also uncertainty in the contribution/importance of 

the predictive variables. This might be a big issue in research works aiming to 

determine the factors that are explaining wildfire occurrence because the 

assumptions made when constructing the dependent variable are influencing 

the contribution of the explanatory variables. 

 Regarding to the predicted probability spatial pattern, although the 

variability is lower than the detected in the case of the predicted probability, it 

is still great. As in the case of the probability of occurrence, scenarios based on 

the consideration of all causes (K and S) including a proportion of the fires 

with an unidentified source seem to be the most realistic approach. 

5. Conclusions 

The lack of homogeneous criteria among the autonomous regions on 

forest fire management is a potential source of uncertainty for wildfire risk 

assessment which is affecting both the predicted probability values as well as 

the spatial pattern of probability. This is especially significant since research 

on forest fires in Spain is made from data collected in the EGIF database 

(Amatulli et al., 2007; Chuvieco et al., 2010, 2012; de la Riva et al., 2004; 

Martinez et al., 2009; Padilla and Vega-García, 2011). Although some studies 

have been able to derive useful recommendations for management avoiding 

uncertain specifications of causes (Stephens, 2005), addressing arising 

uncertainty in occurrence data can help improve assessments. 

The spatial distribution of wildfire ignition greatly varies depending on 

the assumptions made when considering the ignition cause and source, leading 

to different predictions. However, it is possible to determine the best scenarios 

for modeling wildfire occurrence or risk. According with our results the best 

choice is consider both K and S causes with a proportion of forest fires with 

unknown source. There is a big amount of unidentified fires potentially related 
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to a human ignition source and thus, when excluding unknown fires in human-

caused wildfire assessments, a significant portion of the occurrence is not 

accounted for. Considering this supposedly human-caused occurrence reduces 

the spatial biased conducting to more robust and reliable predictions. 

Uncertainty is also affecting the contribution of the explanatory variables. 

Results suggest that DAM, CDP, WAI and PA are the least sensitive variables 

to variations in the spatial distribution of the occurrence. 
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CHAPTER 8. QUANTITATIVE ASSESSMENT OF 

ECOLOGICAL VULNERABILITY 
  

This chapter summarizes the results, discussion and 

conclusions of the application of the proposed method for 

quantitative assessment of ecological vulnerability to the case 

study of mainland Spain. The method is based on an inductive 

map algebra procedure that integrates geospatial information 

regarding plant species characteristics and environmental 

conditions into a spatial explicit recovery time value. 
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Abstract 

This study aims to develop a method to estimate the recovery time of plant 

communities after high severity wildfires. The designed methodology is based on map 

algebra and a geographical information system, which enabled calculation of the 

approximate time required to restore vegetation to conditions similar to pre-fire 

regarding plant height and canopy cover. The methodology considered firstly the 

vegetation in the territory, characterized by the structure of the dominant plant 

community (tree, shrub, or grassland) and its regeneration strategy (resprouter or 

seeder); and secondly two of the main factors determining recovery time, water 

availability and soil loss. We also considered the influence of observed rainfall trends 

over the past 50 years on these latter two factors. The methodology was applied to 

Spain to test its performance. The results suggest a period of 2 and approximately 

100 years for grassland communities and tree communities with low germination, 

respectively. There are significant differences in plant communities between the two 

biogeographic regions (Euro-Siberian and Mediterranean) as well as within each 

community, directly linked to variability in terrain and climatic conditions. 

 

Keywords: GIS; plant communities; recovery time; wildfire. 

 

1. Introduction  

Forest fires have traditionally been linked to the Mediterranean climate 

due to the coexistence, in some months of the year, of high temperatures and 

low rainfall (Camia and Amatulli, 2009). The indigenous vegetation has lived 

with fire for millennia, and thus it is not an extraneous factor to the 

Mediterranean environment or, more specifically, to peninsular Spain (Pausas 

and Vallejo, 1999; Pyne, 2009; Wagtendonk, 2009). However, recent changes 

in socioeconomic models and climatic patterns have significantly affected the 

historical fire regime in Southern Europe (San-Miguel et al., 2012a; González 

et al., 2010), with potential damage far greater than traditionally experienced 

(Bodí et al., 2012; Bowman and Boggs, 2006; Meyn et al., 2007; Pausas and 

Vallejo, 1999). In Spain, the total area burned (with an annual average of over 

125 000 hectares from 2000 to 2008, but almost 250 000 hectares per year 
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from 1980 to 1989; Schmuck et al., 2009) has decreased in recent years, while 

the number of fires has increased (18 150 compared to 15 300 in the 

corresponding periods; San-Miguel et al., 2012a; Schmuck et al., 2009). 

Furthermore, the chances of suffering an especially dramatic fire season, as in 

several countries in the last decade as a result of extreme heat waves (Rebetez 

et al., 2006) (Spain, 2000 and 2005; Portugal, 2003 and 2005; Greece, 2007; 

Australia, 2009; Russia, 2010) appear to be increased (Allen et al., 2010; 

Camia and Amatulli, 2009; San-Miguel et al., 2012b; van Mantgem et al., 

2009) and are likely to occur more frequently in the coming decades (Seidl et 

al., 2011). The main trends of degradation induced by fire in the medium and 

long term may include permanent changes in the floristic composition of the 

plant community, reduction of vegetation cover, biomass loss, and alteration of 

landscape patterns. Forest fires can also induce long-term changes in floristic 

and physiognomic parameters of vegetation through their impact on the 

physical and chemical properties and nutrient availability of soil (MMA, 2006; 

Vallejo et al., 2009). After the burning of vegetation, the contribution of ash to 

the soil temporarily increases the availability of some nutrients (P, Mg, K, Ca, 

Na). This initial fertilization depends on the severity of the fire and the amount 

of biomass (fuel) prior to the fire. However, other nutrients such as nitrogen 

may volatilize or be washed away as a result of wind or water erosion post-fire 

(Neary et al., 2009; Shakesby and Doerr, 2006). In addition, the loss of 

vegetation cover after fire increases surface erosion because the bare soil is 

exposed to raindrop impact and surface runoff, especially in the first months 

after burning (Giovannini et al., 2001; Inbar et al., 1998).  

Therefore, it is necessary both to improve our early warning systems 

and to encourage the assessment of potential environmental damage (Chuvieco 

et al., 2010, 2012), as such natural and semi-natural ecosystems provide many 

important functions (or ‘services’) of economic, cultural and aesthetic value to 

human societies (Costanza et al., 1997). In this sense, assessment of vegetation 

response after fire can support governments' forestry policies, forest service 

activities, and fire-risk modeling. This is particularly so since the lack of 

spatial data on this subject has to some extent hindered natural resources 

management agencies from identifying priority areas for adaptation measures 

(Brooks et al., 2006; Hannah et al., 2002). This is especially true in 

Mediterranean ecosystems where fire is the main natural disturbance, exerting 

a decisive role on the structure and dynamics of plant and animal communities 

(Arianoutsou et al., 2011; Bajocco et al., 2011; Cerdà and Doerr. 2010; di 

Castri and Mooney, 1973; Gill et al., 1981; Naveh 1975; Trabaud and Lepart, 

1980). 

This study focuses on the development of a method to assess the time 

required for vegetation to reach a state approximating pre-fire with similar 
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levels of vegetation cover, restoring its physiognomic properties on regional 

scales, assuming that the dominant community species remain the same after 

fire (Broncano et al., 2005). Here vegetation means more specifically the 

dominant plant community. Other methodologies for assessing vegetation 

response to forest fires in Mediterranean-type ecosystems have already been 

designed. Bisson et al. (2008) presented an index of plant community 

resilience to fire. Arianoutsou et al. (2011) evaluated the post-fire resilience of 

Pinus halepensis in Cape Sounion National Park, Greece, using GIS and multi-

criteria analysis. De la Riva et al. (2008), Alloza et al. (2006), and Duguy et 

al. (2012) produced a qualitative index of ecological vulnerability to forest fire 

in Mediterranean environments. In any case, these methods provide qualitative 

results; however, while they may be useful in some areas for territorial 

management, they are inadequate for other kinds of analyses such as 

quantitative assessment of fire-induced economic losses due to interruption of 

environmental services (e.g. timber, hunting, and mushroom gathering). For 

these, it is essential to know the period during which that service was lost 

(Román et al., 2013).  

To overcome this limitation our methodology follows a different 

approach, estimating the post-fire recovery time of vegetation by integrating 

some of the major factors and processes influencing vegetation development 

after fire: the pre-fire structure of the dominant plant community (grassland, 

shrubland, or trees), the post-fire regeneration strategy of the dominant plant 

community (resprouter or seeder) (Baeza and Roy, 2008), water availability 

for vegetation development (from rainfall), and soil loss as a consequence of 

loss of canopy cover. The first two (vegetation structure and regeneration 

strategy) are intrinsic characteristics of the plant species, and are used to 

define the post-fire response capacity of plants (Alloza et al., 2006; de la Riva 

et al., 2008). The dichotomy of resprouters versus seeders is an important 

factor when analyzing the consequences of fire for vegetation (Pausas et al., 

2008). The latter two (water availability and soil loss) are parameters that 

mainly depend on the characteristics and temporal evolution of the climatic 

conditions (Certini, 2005), influencing plants by modifying the amount of 

available nutrients and water or soil chemical composition (Shakesby and 

Doerr, 2006). Climatic conditions and soil loss are considered key parameters 

when modeling relationships between wildfire and vegetation (Daly et al., 

2000; Lenihan et al., 2008). To include the influence of possible changes in the 

climatic conditions, the temporal evolution of seasonal rainfalls is considered. 

Our method focuses on obtaining a quantitative result, easily transformable 

into a qualitative one. However, it is not intended to provide a categorical 

recovery time, since our main goal is to develop a methodological approach 

for its assessment. We are fully aware that the vegetation recovery time may 
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vary to a greater or lesser degree depending on local characteristics, e.g., the 

type and characteristics of vegetation, climatic conditions or terrain (Baeza et 

al., 2007; Keeley, 2009). Consequently, in this study we intend to supply an 

indicative result, though a more accurate one than provided by qualitative 

analysis. A method for validation of the results, based on monitoring the post-

fire evolution of NDVI in fire-affected plant communities, is also proposed 

and discussed.  

2. Materials and methods 

The study area covered the whole of peninsular Spain, thus excluding 

the Balearic and Canary Islands as well as the autonomous cities of Ceuta and 

Melilla. The study region was further restricted to forested areas, meaning that 

urban, agricultural, and inland water zones were also excluded from the 

assessment. No data are reported for these areas or shown on the maps. 

The methodology for estimating the post-fire vegetation recovery time 

(RT) is based on calculating the regeneration time of plant communities. An 

initial RT (recovery time under optimum conditions, RTOC) is assigned 

according to the dominant plant communities’ structure (grassland, shrubland, 

or trees) and regeneration strategy (resprouter or seeder). The increase in time 

is then calculated by introducing the influence of plant species growth 

constraints (PSGC): water availability from annual rainfall, soil erosion due to 

loss of protective vegetation cover, and seasonal rainfall trends, which 

influence both water availability and soil loss mainly after the fire. The 

influence of water availability and soil erosion is introduced as a weight factor 

of RTOC. In turn, seasonal rainfall trends, specifically winter and summer 

trends, are introduced by weighting water availability and soil loss. RTOC is 

assigned based on experts’ criteria supported by a literature review (detailed 

later), in a scenario of optimal conditions for vegetation development. This 

means that we consider that the recovery process takes place with no 

constraining factors for vegetation development, such as water and/or nutrient 

availability, chemical alteration of the soil, or fire recurrence. Figure 1 shows 

the process followed for calculation of the recovery time. 

The following subsections describe in detail each stage of this 

methodology, beginning with the assignment of the RTOC, and then the 

PSGC. Finally, we present the method for calculating the vegetation RT and a 

validation procedure to test the performance of the method. The methodology 

was implemented in a GIS environment using map algebra and spatial analysis 

tools to calculate and map the recovery time. The spatial resolution of the 

input parameters was 1 km × 1 km, except for the rainfall trend maps which 

were 15 km × 15 km. 
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Figure 1. Methodology for RT calculation. 

1.1. RTOC 

Some plant species are better adapted to fire than others and either 

better resist the impacts of fire or recuperate more quickly, depending on the 

regeneration strategies and horizontal and vertical continuity (Baeza and Roy, 

2008). Initially, the RTOC assessment is made from lists of dominant plant 

species in the Forest Map of Spain (MARM 1997), giving an individual 

characterization, in terms of their structure and regeneration strategy, of more 

than 500 species. As stated above, the characterization is carried out assuming 

that the vegetation recovery process occurs under optimal conditions. Plant 

characterization is based on the experience of the authors (de la Riva et al., 

2008; Duguy et al., 2012) and several studies of post-fire vegetation and 

response (e.g. Baeza and Roy, 2008; Barbéro et al., 1998; Buhk et al., 2007; 

Martinez, 2005; Pausas et al., 2004; Tárrega and Luis-Calabuig, 1989; 

Trabaud, 1990, 1998, 2002; Vera de la Fuente, 1994). It should be noted that 

we did not find all the information required for the characterization of all 

species in Spain; as a result, several species are classified according to the 

authors’ criteria alone. Accordingly, the initial time assigned is not intended to 

be a categorical value, since this could vary significantly depending on the 

local characteristics of each site and the influence of some parameters, as is the 

case for local topography (slope or aspect), climatic conditions, steppe 

vegetation or open scrub, climatic aggressiveness from heavy rainfall and 

steep slopes (Baeza et al., 2007; Keeley, 2009). Table 1 shows the resulting 

combinations of structure and regeneration strategy, the RTOC assigned to 

each as well as representative plant species for each vegetation structure and 

regeneration strategy category. Figure 2 shows RTOC spatial distribution in 

Spain. 
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Figure 2. Spatial distribution of RTOC. 

1.2. PSGC 

This section describes the process followed to obtain the values of 

PSGC due to both water availability and soil loss. 

Table 1. Approximate RTOC depending on vegetation structure and regeneration strategy and 

representative examples of plant species. 

 Time (years) Representative species 

Grassland 2 - 

Resprouter shrubland 6 Buxus sempervivens, Quercus coccifera 

Seeder shrubland 10 Juniperus thurifera, Ulex parvilflorus 

Resprouter tree 20 Quercus robur, Quercus ilex, Quercus faginea 

High seeding tree 15 Pinus halepensis, Pinus pinaster 

Low seeding tree 45 Pinus sylvestris, Pinus nigra 

2.2.1 Water availability 

The increase in RTOC depending on water availability in the area (Fw) 

is derived from the precipitation data reported in the Vegetation Series map of 

Spain (Rivas and Gandullo, 1987). This map was initially developed to 

delineate areas of recognized vegetation units (also referred to as series) to 

determine the great diversity of forest ecosystems in Spain. However, each of 

the different series was also assigned a typical rainfall category (arid, semiarid, 

dry subhumid, humid, and hyper-humid) based on annual local precipitation. 

This allows the assessment of water availability by grouping these rainfall 

categories, subsequently recoding them to a numeric value of the increase ratio 
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(Fw) of the RTOC. This map is particularly suitable for achieving the 

objectives of this research, since orographic parameters and bioclimatic 

characteristics were considered in the process of mapping the vegetation 

series. Table 2 and Figure 3 show the correspondence between typical rainfall 

intervals and the ratio of increase (assigned following the criteria of the 

present study) and rainfall distribution. 

Table 2. Water availability, post-fire erosion rates, and corresponding RT increase ratios.  

Rainfall category Precipitation 

(mm) 

 Fw Post-fire erosion rate (Ef) 

(ton ha
-1

 year
-1

) 

Fe 

 

Hyper-humid  > 1600 0.000 < 0.04 0.000 

Humid 1000–1600 0.075 0.04–0.13 0.075 

Sub-humid 600–1000 0.150 0.13–0.36 0.150 

Dry  350–600 0.600 0.36–0.86 0.225 

Arid-Semiarid < 350 1.200 > 0.86 0.325 

 

 
Figure 3. Spatial distribution of annual rainfall and water availability increase ratio. 

2.2.2. Post-fire soil erosion 

 Soil erosion is another major negative outcome of forest fires, 

particularly in the Mediterranean region (San-Miguel et al., 2012b). Within 

Europe, the risk of water-driven soil erosion is particularly high in the 

Mediterranean region where autumn rain storms often follow summer wild 

fires (Pausas and Vallejo, 1999). The susceptibility of a burnt area to soil 

erosion depends on the intensity of the fire and the degree to which the 

vegetation cover is removed (San-Miguel et al., 2012b). The evaluation of the 
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RT increment as a function of soil loss (Fe) was carried out using a spatial 

analysis of the distribution of soil erosion in post-fire conditions. To this end, 

the Pan-European Soil Erosion Risk Assessment model (PESERA, Kirkby et 

al. 2004) was used. PESERA is a spatially distributed model at 1x1 km 

resolution for quantification of water soil erosion. A model of erosion at 

regional level is necessary to serve as a starting point for modifications to the 

RTOC. PESERA, which is more detailed than models such as USLE 

(Wischmeier and Smith, 1960), includes information on several soil 

parameters, such as soil erodibility, readily available soil water capacity, and 

crustability in order to define soil water storage capacity. The PESERA model 

was developed to provide spatial information on erosion risks at European 

level using a simple conservative erosion model, which is broken down into 

components that depend on climate, vegetation, soil factors, and topography. 

The physical model is based on a one-dimensional soil–vegetation–

atmosphere transfer type scheme for surface hydrology, coupled where 

appropriate to a dynamic model for generic vegetation growth and/or remotely 

sensed land-use data (Kirkby et al., 2004). This model can be used as a tool at 

regional level, comparable to others such as the USLE (Wischmeier and 

Smith, 1960). Model results are validated at a basin scale and compared with 

data obtained using different methods of erosion measurement. More 

specifically, PESERA validation is based on comparison with erosion plot (40 

m
2
), small catchment (0.01-1 km

2
), and reservoir (1-100 km

2
) data (Cerdan, 

2003; Tsara et al., 2005; Van Rompaey et al., 2003). These data have been 

used primarily to modify the pedo-transfer functions, particularly for soil 

erodibility. 

In the current study, the Spanish subset of the European-scale PESERA 

map was used, although modifications have been made relating to the erosion 

processes that follow severe wildfires. An extensive literature review indicated 

great variability in the effect on erosion of plant cover loss resulting from fire. 

The erosion rate (tons ha
-1

 year
-1

) increments range from an increase of 18.6 

(Soto et al., 1994; Soto and Diaz-Fierros, 1998) to 5200 (Shakesby et al., 

1994, 2002; Shakesby, 2011) times the initial erosion rate. Given the very 

considerable heterogeneity of these values, due to differences both in 

ecological conditions where the experiments were carried out and in the design 

and techniques used (erosion traps, rainfall simulations, erosion plots, etc.), we 

selected the ERMiT model (Robichaud et al., 2006) to modify the PESERA 

pre-fire erosion rates. The ERMiT model integrates information on climate 

indicators, soil (texture), topography (slope and slope length), plus the type of 

vegetation affected and the severity level of the fire, thus allowing simulations 

to assess fire-caused increases in erosion rates. The model uses a probabilistic 

approach that incorporates temporal and spatial variability in weather, soil 
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properties, and burn severity for forests, rangeland, and chaparral hill slopes. 

ERMiT allows calculation of the percentage increase in the pre-fire erosion 

rate (PESERA) in several vegetation communities, which are characterized in 

terms of climate, soil, and topography indicators, given a specific fire severity 

(high severity in our case). The ERMiT model simulations were carried out in 

several locations considered representative of each Spanish bioclimatic region 

(derived from Rivas and Gandullo, 1987) and where climatic data were 

available (four locations in the Euro-Siberian region – A Coruña, Oviedo, 

Santander, and Bilbao – and five in the Mediterranean – Madrid, Barcelona, 

Valencia, Seville, and Zaragoza). This enabled us to develop different 

scenarios covering several combinations of vegetation structure, slope, and fire 

severity. The increase factor was calculated for each location, dividing the 

erosion rate obtained for a high severity fire by the pre-fire erosion rate. These 

quotients were calculated for each combination of vegetation structure, slope, 

and bioclimatic region and expressed as an average value. This process was 

carried out using the results provided by ERMiT for the first two years after a 

fire. Experimental data and measurements demonstrated that soil losses are 

significantly higher after a forest fire, being quickly reduced after 2 to 4 years 

(Cerdà and Doerr, 2005). The average increase factors obtained for the two 

years after burning were summarized into a single value to calculate the 

amount of erosion increment as consequence of wildfires. Table 3 summarizes 

the average increase factors. 

Table 3. Increase factor of soil erosion by bioclimatic region, vegetation structure, and slope. 

Structure Slope (%) Mediterranean Region Euro-Siberian Region 

 < 15 1.80 1.95 

Forest  15–45 1.70 1.75 

 > 45 1.70 1.75 

 < 15 1.80 1.75 

Shrubland 15–45 1.80 1.75 

 > 45 1.80 1.80 

 < 15 1.80 1.70 

Grassland 15–45 1.75 1.75 

 > 45 1.70 1.75 

Once the erosion rates were corrected to take account of the effect of 

losing the protection of the vegetation cover as a result of fire, the obtained 

values were reclassified into five intervals (by quantiles) to assign the RTOC 

increase ratio (assigned following the criteria of the present study). Table 3 and 

Figure 4 show the soil erosion increment factor and its spatial distribution. 

The soil erosion rates reported in the PESERA model were then 

modified, including the factor of erosion increase obtained from the simulation 
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with ERMIT, using the following equation: 

𝐸𝑓 = ∑ 𝐸𝑃𝑟𝑒𝐹𝑟𝑒𝑠𝑦  

where Ef 
is the corrected erosion rate (Mg ha

-1
 year

-1
), EPre is the original 

erosion rate reported in the PESERA model, r is the bioclimatic region, e is the 

vegetation structure, s is the slope interval, and Fre is the soil erosion increase 

factor in bioclimatic region r and year y.  

 
Figure 4. Spatial distribution of post-fire erosion rates and increase ratio. 

 

2.2.3. Rainfall trends 

 Climate trends are a key factor in vulnerability assessment (González 

et al., 2010). Most climate change predictions imply increased air 

temperatures and less summer rainfall for the Mediterranean basin (Hertig and 

Jacobeit, 2008; Schröter et al., 2005). Adverse climatic conditions (i.e., dryer 

conditions) in many of the areas affected by fires may have caused lower rates 

of post-fire vegetation recovery (San-Miguel et al., 2012a). Hence, the 

observed changes in temperature and precipitation provide indicators of the 

potential change of the biome of an ecosystem (González et al., 2010). In this 

context, using observed climate data accounts for the impact of climate change 

that has already occurred (González et al., 2010). 

Rainfall trends were included in the RT calculation as a weighting 
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factor of the PSGC. In this sense and in general terms, we consider that a 

decrease in precipitation (negative rainfall trends) should imply a decrease in 

water availability; thus, the influence of a lack of water increases (San-Miguel 

et al., 2012a). A similar behavior is expected in the case of soil erosion, 

though in the opposite direction: here an increase in precipitation (positive 

rainfall trends) should increase its effect on the RT (Pausas and Vallejo, 1999), 

if water erosion is considered the main erosion mechanism. To include this in 

the recovery time model, we used the reported rainfall trends in de Luis et al. 

(2010). In that study, the spatial variability of seasonal precipitation regimes in 

the Iberian Peninsula were calculated for a temporal period of observations of 

50 years from 1946 to 2005, using the Mann–Kendall test. The spatial 

variability of the seasonal trends is characterized according to the sign and 

significance level of the observed trends. As the rainfall trends were calculated 

only at seasonal level, we used winter trends to weight water availability, 

considering this to be the most effective season for plants to capture water, due 

to low potential evapotranspiration. We used autumn trends for soil erosion 

weighting, as this is the most critical season due to the dryness of the soil 

following summer (Pausas and Vallejo, 1999), the decreased vegetation cover 

from the loss of leaves in deciduous communities, and torrential rains (de Luis 

et al., 2010). It should be noted that when considering seasonal trends instead 

of annual trends we are including in the analysis of intra-annual variability of 

the precipitations. Rainfall trend weights ranged from 1 in locations where 

there was no significant trend (p-value < 0.70) to 2 in locations with 

significant with p-value > 0.99. Figure 5 shows the spatial distribution of 

winter (Tw) and autumn (Ta) trends, respectively, the significance levels, and 

their corresponding PSGC weights. 

 
Figure 5. Spatial distribution of seasonal rainfall trends and their increase ratio. Negative 

winter trends (left) and positive autumn trend (right). 
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3. RT 

The RT was calculated as the sum of RTOC and the time increase from 

the PSGC: 

𝑅𝑇 = 𝑅𝑇𝑂𝐶 +  𝑇𝐹𝑤𝑇𝑤 + 𝑇𝐹𝑒𝑇𝑎  

where TFw 
is the time increase from water availability, Tw is the winter rainfall 

trend weight, TFe 
the time increase from soil loss, and Ta is the autumn rainfall 

trend weight. 

Once again, it should be emphasized that this RT is not a categorical 

value, rather an indication of the period needed to return to pre-fire conditions, 

since the main objective of this work is to develop a methodological 

framework to assess recovery time. 

4. Model validation 

Validation is often a complex issue in ecological models (Rykiel, 

1996). Here we suggest a validation procedure based on the previous work by 

Perez-Cabello (2002) and Pérez-Cabello and Ibarra (2004). These works 

proposed the multi-temporal monitoring of changes in NDVI (Normalized 

Difference Vegetation Index) in burned plots as a tool for assessing the 

reconstruction process of various forest communities. In the present work we 

applied the same method to determine an approximate time span for the 

validation of the RT values. The NDVI has been the most frequently used tool 

for monitoring, analyzing, and mapping temporal and spatial post-fire 

variations (Díaz-Delgado et al., 2002, 2003; Riaño et al., 2002; Viedma et al., 

1997). NDVI is also used as a validation instrument in analyses similar to that 

in this paper (Bisson et al., 2008).  

The NDVI is related to changes in the amount of green biomass, 

pigment contents and concentrations, and leaf water stress (Gong et al., 2003), 

that is why it emphasizes the regeneration process of burnt areas more clearly 

than the respective spectral signatures (Viedma et al., 1997; Riaño et al., 

2002). However, NDVI responds more to changes in leaf area than to changes 

in the overall biomass (Henry and Hope 1998), reaching saturation levels at 

high LAI (leaf area index) values (Wang et al., 2005). Therefore, tracking 

post-fire vegetation recovery using NDVI should be limited to the most recent 

development stages – 10 to 20 years after fire – as it registers information 

related to the vegetation cover (Tanase et al., 2011).  

The validation methodology was based on monitoring the temporal 

evolution of the recovery process in burned plots by measuring the NDVI 

values for several plant communities affected by severe wildfires during 
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several years after burning. NDVI values were calculated from Landsat TM 

images, previously corrected geometrically and radiometrically to ensure the 

consistency of the results. Cloud spots were deleted from each image to avoid 

undesired radiometric effects. The calculated NDVI values were compared 

with the pre-fire conditions (also characterized in terms of NDVI) to determine 

an approximate time for plant recovery. The method has been applied to seven 

plant communities (Pinus sylvestris, Pinus nigra, Pinus halepensis, Quercus 

ilex, Quercus faginea, Quercus coccifera and Buxus sempervirens) affected by 

high severity (dNBR > 660; normalized burn ratio; Cocke et al., 2005) 

wildfires in 1985 and 1986 in the Huesca Pyrenees region (see supplementary 

material). These plant communities are considered as representative examples 

of vegetation structure and regeneration strategy categories (see Table 1). 

Moreover, the analysis region is particularly suitable for validation since it is 

located in a transition area from Mediterranean to Euro-Siberian regions and, 

therefore, plant communities in this area are a representative example for our 

purposes. Ten examples of affected plant communities, four in 1985 and six in 

1986, compose the validation sample. The NDVI data for 1985 was obtained 

from Perez-Cabello (2002) who calculated the NDVI for burned communities 

of Pinus sylvestris, Quercus ilex, Quercus faginea, and Buxus sempervirens 

since 1984 (pre-fire) until 1997. NDVI values for 1986 fire-affected 

communities were calculated from fifteen Landsat TM images during the 

period 1984 to 2007 in Pinus sylvestris, Pinus nigra, Quercus ilex, Quercus 

faginea, Quercus coccifera, and Buxus sempervirens communities. The 

recovery time span was determined by comparing post-fire and pre-fire NDVI 

values, considering the affected community as recovered from the fire 

disturbance when the post-fire NDVI is higher than the pre-fire one. However, 

in those cases where the affected communities did not reach pre-fire NDVI 

values during the analysis period, a logarithmic profile evolution curve was 

projected from the observed NDVI data to establish a recovery time span. To 

complete the validation procedure, predicted RT values were compared with 

the outputs from the NDVI monitoring.  

5. Results 

Here we present the results obtained from applying the proposed 

methodology to the mainland Spain, as well as the main outputs from the 

model validation. 

5.1. Recovery time 

The main results obtained from applying the proposed methodology in 

mainland Spain is the RT map (Figure 6). A statistical summary of the results 

is also given in Table 4. This statistical summary is constructed by using a 
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zonal statistics algorithm, with RT values, using as zonal layer the categories 

from Figure 2. 

 
Figure 6. Spatial distribution of the post-fire vegetation recovery time. 

Results suggest a RT range from 2 to approximately 100 years for 

grassland communities and tree communities with low germination (mainly 

Pinus nigra and Pinus sylvestris), respectively. However, there were 

significant differences in the geographical distributions of times, mainly 

between Euro-Siberian and Mediterranean biogeographical regions. The 

higher RTs were obtained for low seeding tree communities, located mainly on 

the Mediterranean coast, ranging from 45 to 100 years. We also found both 

high seeding and resprouter tree communities, with average RTs around 21 and 

25 years, respectively. It should be noted that despite having similar average 

RT values, there is great difference between the maximum RTs, with values 

near 40 years in the case of high seeding trees and 50 years for resprouter trees 

in the Mediterranean region. Shurbland communities showed a RT span 

around 8 and 13 years in resprouter and seeder communities. Finally, grassland 

areas presented the lower RT, at an average of 2.5 years. 

Regarding the PSGC influence, although they contributed significantly 

to the recovery time, this contribution was around an average of 22%, 

exceeding 60% of RT in some areas. The highest values of PSGC contribution 

were found in the Mediterranean region in areas with low water availability 

influenced by significant negative winter rainfall trends. This means that the 

RTOC, which reflects the structure and regeneration of the dominant plants, 
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has the higher contribution to the RT (around 78% of the final RT).  

Table 4. Statistical summary of the post-fire recovery time for each vegetation category. 

Plant community Min time Max time Avg time Stdev 

Grassland 2 5.3 2.6 0.40 

Resprouter shrubland 6 15.8 8.1 1.95 

Seeder shrubland 10 26.4 13.5 2.80 

Resprouter tree 20 51.1 25.5 4.37 

High seeding tree 15 39.6 21.5 4.64 

Low seeding tree 45 100.7 52.9 7.62 

Table 5. Statistical summary of validation results. The results are characterized in terms of 

year of burning (Year), number of pixels of RT (N), maximum value of RT (RT Max), 

minimum value of RT (RT Min), average value of RT (RT Avg), recovery threshold according 

to the NDVI evolution (NDVIt), pre-fire NDVI value (NDVI 84), and accuracy of the 

projected NDVI evolution curve (R
2
 Regr) 

Specie Year N RT Max RT Min RT Avg NDVIt NDVI84 R
2
 

Pinus sylvestris 1985 4 53 83 61 46 0.69 0.79 

Pinus sylvestris 1986 5 49 51 50 39 0.69 0.82 

Pinus nigra 1986 6 50 98 68 51 0.67 0.72 

Pinus halepensis 1986 4 26 29 27 21 0.62 - 

Quercus ilex 1985 1 29 29 29 29 0.60 0.70 

Quercus faginea 1985 5 21 29 24 15 0.61 0.71 

Quercus faginea 1986 4 22 26 24 21 0.68 - 

Quercus coccifera 1986 6 7 13 9 13 0.68 - 

Buxus sempervirens 1985 2 7 10 8 12 0.57 - 

Buxus sempervirens 1986 1 6 10 8 13 0.59 - 

5.2. Model validation 

According to the validation results (Figure 7 and Table 5), the observed 

NDVI recovery span is reasonably similar (R
2
 = 0.94) to the RT prediction, 

although shorter. The overall observed behavior is an overestimation of the RT 

in tree communities whereas in shrubland communities RT seems to be 

underestimated. The best performance is achieved in resprouter shrubland 

(Quercus coccifera and Buxus sempervirens), and resprouter tree (Quercus ilex 

and Quercus faginea) communities, with differences between RTs and NDVI 

under 5 years. Seeding tree communities, both high and low seeding (Pinus 

halepensis, Pinus sylvestris and Pinus nigra), showed the poorest agreement 

with differences of 6 years in high seeding tree communities and more than 15 

years in low seeding trees (Pinus nigra). 
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Figure 7. Validation results in burned plots. Scatterplot RT-NDVIt (left). RT range (dotted 

line), average RT (black square), and NDVI recovery time values (filled bars) (right). 

6. Discussion 

Some plant species are better adapted to fire than others, depending on 

the regeneration strategies and horizontal and vertical continuity (Baeza and 

Roy, 2008). Particularly, plant communities in the Euro-Siberian region 

present lower RT values due to both the presence of resprouter communities, 

considered as highly resilient (Rodrigo et al., 2005), and the higher water 

availability due to Atlantic climate conditions. On the other hand, in the 

Mediterranean region, predominantly on the Mediterranean coast, higher RTs 

were reported. This occurs as a consequence of, among other factors 

(ecological, edaphic, topographic, land use, etc.), low water availability due to 

low rainfall, as well as to the frequent torrential rainfall events in autumn 

(Baeza et al., 2007; Bisson et al., 2008) thus increasing soil loss. Rainfall 

during the first autumn after a fire is particularly crucial for the germination of 

most seeders (Moreno and Oechel, 1992) since dry conditions likely delays 

post-fire regeneration in seeding communities (Rodrigo et al., 2004). 

However, the site-level soil water availability is the result of the interaction of 

precipitation inputs with various factors such as soil depth, type and 

degradation, and topography. Besides, the temporal distribution of rainfall and 

factors such as the history of disturbances also influences the recovery time. In 

any case, it seems that the type and characteristics of the vegetation are the 

most important parameters influencing the post-fire regeneration process 

(Alloza et al., 2006; de la Riva et al., 2008). Accordingly, the post-fire 

vegetation dynamics seem to differ substantially between the studied seeding 

and resprouting communities as the latter are highly fire-resilient with a much 

faster vegetation recovery rate (Brocano et al., 2005; Duguy et al., 2012; 

Pérez-Cabello and Ibarra, 2004). However, differences in RT are not restricted 

to average values. Resprouter communities, mostly resprouter tree 

communites, show less variability in the RT values than the seeding ones 

according to the standard deviation values reported in Table 4 (4.37 in 
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resprouter tree communities, 4.64 in high seeding tree, and 7.62 in low seeding 

tree). This might occur because in ecosystems characterised by highly resilient 

plant communities (resprouter Mediterranean species), site-level abiotic 

limitations are often overcome by the resprouter’s ability to quickly 

recolognize the open space created by fire with its undamaged below-ground 

organs (Duguy et al., 2012).  

On the other hand, the results from the validation procedure, have 

confirmed that the overall performance of the proposed methodology 

(R
2
=0.94) is sufficient to consider the method a useful tool for supporting 

regional forest management and planning. According to the validation results, 

the best performance is observed in resprouter shrubland (Quercus coccifera 

and Buxus sempervirens), and resprouter tree (Quercus ilex and Quercus 

faginea) communities, whereas seeding tree communities (Pinus halepensis, 

Pinus sylvestris and Pinus nigra) showed the poorest agreement. In tree 

communities, RT values appear to be overestimated, compared to the NDVI 

recovery time span. This is most likely related to the fact that a similar spectral 

response of the plant does not always implicate a complete physiognomic 

recovery, mainly because the NDVI is more related to vegetation cover 

(Tanase et al., 2011). In addition, it should be noted that in some cases (Pinus 

halepensis for instance) the NDVI evolution could be strongly influenced by 

the presence of other associated plant communities, such as shrublands or 

grasslands (Pérez-Cabello, 2002; Pérez-Cabello and Ibarra, 2004).  

Despite the promising overall results, the validation sample should be 

increased to cover the high variety of plant communities in the mainland 

Spain. Consequently, the results reported for the validation should be 

considered as a pilot validation that mainly aims to exemplify the procedure. 

Developing a validation sample sufficiently wide to be used for full validation 

would be very time consuming, involving the characterization of numerous 

burned plots, and gathering and correcting a great amount of remote sensing 

images. Nevertheless, RT values obtained for the different communities 

analyzed are reasonably similar to the expected periods in accordance with the 

existing literature. In the case of resprouter communities Rodrigo et al. (2005) 

indicate that they reach similar pre-fire cover about 30 years after the fire, a 

time span close to the average 25.5 years obtained following the method 

proposed in this work (RT values are showed in table 4). Brocano et al. (2005) 

and Perez-Cabello and Ibarra (2004) indicated similar recovery time intervals. 

In high seeding tree communities (Pinus halepensis) Brocano et al. (2005), 

Kazanis and Arianoutsou (2004), Ruano et al. (2012), and Trabaud (1998) 

suggest recovery times starting from 15 years, reasonably similar to the 21.5 

years obtained in this study. Finally, the high RT values calculated in the case 

of low seeding tree (Pinus nigra and Pinus sylverstris) are consistent with 
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Rodrigo et al. (2004) who indicated that there is little chance of recovery of 

the original pre-fire situation which supports the existence of a very long RT. 

However, it should be noted that RT values are not equally reliable since the 

validation sample does not cover the whole RT range. Accordingly, the most 

reliable recovery times are the values below 21 years, since this is the time 

period for which NDVI recovery is directly measured in the calibration data. 

The next most reliable period extends to 51 years, the time period for which 

NDVI recovery has been indirectly measured. Beyond 51 years is the least 

reliable period which should be carefully considerate.  

We can conclude that the recovery time calculated from the RT method 

is reasonably similar to the recovery threshold obtained from the NDVI 

evolution, particularly in resprouter communities. However, there is a certain 

degree of uncertainty insofar as we are providing a regional scale assessment. 

This uncertainty is mainly linked to the quality of the input data and to the 

capacity of the NDVI for monitoring vegetation recovery. The first source of 

uncertainty, quality of the input data, is inherent to the geographical 

information, since it is not possible to find a data source that perfectly 

represents real conditions, especially when working at regional scales. For 

instance, errors in the spatial distribution of plant communities in the Spanish 

Forestry Map are influencing the whole RT calculation process because all the 

assumptions are made on its basis. On the other hand, the uncertainty related 

to the NDVI as a tool for monitoring post-fire vegetation recovery comes from 

the fact that the NDVI takes into account the vegetation cover rather than the 

physiognomy of the plants, which can lead to misinterpretation of the 

observed recovery time span. However, the comprehension of its limitations 

allows the use of the NDVI as a reference for validation purposes. 

Furthermore, note that the proposed method for RT assessment also has some 

limitations and drawbacks, although it may be considered as a relative 

improvement compared to similar methods designed to evaluate post-fire 

dynamic processes like Duguy et al. (2012) or Bisson et al. (2008), since our 

methodology offers a framework for its implementation at regional scale as 

well as quantitative results. The main drawback arises from the fact that, 

although we conducted an extensive literature review to support our choices, 

there is still some subjectivity in the values of RTOC or PSGC increase ratios. 

This fact is particularly important when applying the method to a different 

region, as it is very likely that either plant species and/or environmental 

conditions differ significantly from those described herein. So, a deep 

comprehension of the mechanisms and factors that lead the post-fire dynamics 

is necessary to properly apply the method to a different area. Nonetheless, it is 

difficult to establish a direct comparison of our work and the one developed by 

Duguy et al. (2012) or Bisson et al. (2008) mainly because both outputs and 
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analysis scale are different. 

7. Conclusions 

This paper presents a methodological approach for assessment on a 

regional scale of the recovery time of plant communities after high severity 

wildfires. The method is based on map algebra calculations and a few 

representative variables, which could ensure the applicability of the method to 

other study areas. In addition, a validation procedure based on multi-temporal 

monitoring of the evolution of the NDVI is also described and exemplified in a 

pilot area (Huesca Pyrenees). 

Our results indicate a high heterogeneity in RT values, both between 

the examined plant communities and the various regions of peninsular Spain. 

This is not surprising, given that peninsular Spain has a wide range of physical 

and environmental conditions. This is mainly due to the coexistence of two 

contrasting biogeographic regions (Euro-Siberian and Mediterranean), which 

also show a high internal variability in conditions, directly linked to variability 

in terrain and the resulting different climatic conditions. This fact increases the 

complexity of the analysis of any environmental parameter or process, 

especially at regional scales. 

The PSGC contributed significantly to the reconstruction time, 

however, type and characteristics (structure and regeneration strategy) of the 

dominant plant community seem to be the most important parameter 

influencing the post-fire regeneration process. 

On the other hand, although the validation results are restricted to ten 

fire events that occurred in 1985 and 1986, and extending the validation to the 

whole peninsular Spain will be a very time-consuming process, involving the 

gathering and correction of a great amount of remote sensing images; in 

general lines we consider that the RT values obtained are reasonably well 

adjusted to the expected evolution of plant communities after fire disturbance.  

In any case, we believe that the proposed method is sufficiently strong 

to be valuable in several fields, such as land management, forest fires, 

assessment of socioeconomic vulnerability, and environmental services. This 

applicability is mainly due to the simplicity of the method, which requires few 

variables. Additionally, the methodology is integrated and developed within a 

GIS that allows one not only to map the results but also to perform different 

kinds of spatial analyses and mapping. Additionally, we are working on 

extending the validation procedure in the framework of another project 

focusing on the development of predictive models of ecological vulnerability 

to fire. 
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CHAPTER 9. CONCLUSIONS AND FURTHER 

WORK 
  

This chapter summarizes the main conclusions of 

this PhD thesis as well as introduces some of the possible future 

developments of an ongoing research. 
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9.1. Main conclusions 

Exploring new methods for wildfire modeling requires taking into 

account several dimensions of the wildfire phenomena. Forest fires hazard 

significantly varies in space and time. Therefore components have to be 

adequately considered regardless the model or method used. In addition, 

addressing the potential uncertainty arising from either data or methods is also 

mandatory since it allows establishing the limitations of the results as well as 

informs about its reliability and usefulness. 

The methodologies proposed in this work have all been developed and 

employed considering these dimensions. All methods are spatial explicit 

methods that reflect in greater or lesser extent the spatial variability of forest 

fires and their potential impacts. In this regard, although overall every method 

deals with the spatial dimension, two statistical methods stand above the rest 

due to its ability for modeling the space component.  

 On the one hand, GWR, being a technique specifically devoted to 

include the spatial component into regression procedures, allows 

capturing not only the spatial variability of wildfire driving factors but 

also determine and quantify their contribution and errors.  

 On the other hand, RF algorithms have proved to be a useful tool, 

overcoming traditional regression and other ML methods both in terms 

of improving their prediction accuracy and capturing the spatial 

variability of wildfires. 

The temporal dimension of fires has also been deeply explored. 

Temporal trends have been identified both in number of fires and burnt area 

size, confirming that fire is neither a temporal stationary hazard and granting 

to detect areas where wildfires are increasing and with higher danger. 

Furthermore, the fit of statistical models of wildfire occurrence provides 

insights into the temporal variability of forest fires. This behavior is analyzed 

from historical fire occurrence and synthetized into prospective models which 

aim to foresee –in a probabilistic way– the most likely evolution of human-

caused wildfires. This temporal dimension is even more evident when talking 

about the methodology developed for quantitative analysis of ecological 

vulnerability whose outputs are expressed in temporal terms (recovery time) 

and includes climate trends as one of its main calculation parameters. 

A certain degree of uncertainty is always present when dealing with 

environmental processes, a fact that is also inherent to statistical models. In 

this regard, uncertainty has been addressed in all the works that integrate this 

thesis. Overall, all methods are validated in one way or another, whether we 

refer to predictive accuracy, comparison with previous works or exploring and 
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comparing similar methods or procedures. However, the major shortcoming 

detected while developing most of the proposed methods is the quality of the 

input data, particularly occurrence data. This issue is affecting all the analysis 

devoted to explore new methods for modeling anthropogenic causality in 

forest fires (GWR and ML) since ignition location and cause is the main input 

and consequently influences model outputs. The spatial distribution of wildfire 

occurrence greatly varies from one region to another depending on the 

assumptions made when considering the ignition cause and source, leading to 

different predictions. This is mainly due to the lack of homogeneous criteria in 

fire event recording and classification. 

Developing and exploring the applicability new methods entails the use 

of appropriate tools for its proper implementation. In this sense, this thesis has 

deeply explored the use of several tools, combining conventional GIS 

approaches with statistical and programming languages, either open source or 

proprietary. Scripting languages either applied to GIS analyses or statistical 

methods are essential tools when implementing some of the proposed methods 

since they allow designing complex analysis workflows over big data.  

Specific findings 

Following the specific findings according to the sub-objectives 

presented in chapter 2 are summarized. 

i. Provide insights into the temporal evolution of wildfires: 

 Forest fire events have significantly increased in the EUMed Region 

during the last 25 years, whereas the annual burned area presents a 

reverse behavior, with a generalized decrease in the period 1980-2009. 

Particularly, Portugal, Spain and the area of Sicilia in the south of Italy, 

appear as the regions with the highest fire impact, since they present 

both increasing number of fires and burned areas. However, there is a 

significant spatial variation in the detected trends.  

iii. Explore the applicability of new regression methods for modeling of human 

causality: 

 ML models improve the prediction accuracy of traditional regression 

methods. Either RF or BRT models yield an improvement in accuracy 

over LR methods for wildfire occurrence assessment, according to 

AUC values.  

 RF seems to be the best choice due not only to its higher accuracy, but 

also to the fact that fewer predictive variables are required to achieve 
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this accuracy. In addition, its calibration is easier because it involves 

few parameters.  

 Regardless of the method considered, density of agricultural machinery 

(DAM) and change in demographic potential (CDP) have proved to be 

the variables most closely related to fire occurrence, although this 

result is partially due to the continuous nature of these variables and, in 

the case of DAM, to interaction with other predictive variables like 

wildland-agricultural interface (WAI). In any case, fire occurrence in 

Spain is mainly related to the increase of human pressure on wildlands 

and to accidents or negligence in the course of agricultural work. 

iv. Estimate the spatial variation of the explanatory factors of human causality: 

 The use of GWR techniques applied to logistic regression (LR) models 

has corroborated the existence of spatial variation in the explanatory 

factors associated with human causality in wildfires. 

 GWR improves the predictive performance of LR by considering 

regression as a non-stationary process. However, GWR techniques are 

quite computational demanding and time consuming. 

v. Analyze the reliability of the original data of fire occurrence and potential 

associated uncertainty: 

 The lack of homogeneous criteria among the autonomous regions on 

forest fire management is a potential source of uncertainty for wildfire 

risk assessment which is affecting both the predicted probability values 

as well as the spatial pattern of probability.  

 The spatial distribution of wildfire ignition greatly varies depending on 

the assumptions made when selecting the ignition cause and source, 

leading to different predictions. However, it is possible to determine 

the best scenarios for modeling wildfire occurrence or risk. According 

with our results the best choice is consider both known and supposed 

causes with a proportion of forest fires with unknown source.  

 Uncertainty is also affecting the contribution of the explanatory 

variables. Results suggest that DAM, CDP, WAI and protected areas 

(PA) are the least sensitive variables to variations in the spatial 

distribution of the occurrence. 

vi. Estimate the ecological vulnerability of plant communities affected by fire: 
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 There is high heterogeneity in recovery time values, both between the 

examined plant communities and the various regions of peninsular 

Spain due to the coexistence of two contrasting biogeographic regions 

(Euro-Siberian and Mediterranean), which also show a high internal 

variability in conditions, directly linked to variability in terrain and the 

resulting different climatic conditions.  

 Plant species growth constraints (PSGC) contributed significantly to 

the reconstruction time, however, type and characteristics (structure 

and regeneration strategy) of the dominant plant community seem to be 

the most important parameter influencing the post-fire regeneration 

process. 

9.2. Future development proposals 

Although this work provides deep insights into the application of 

relatively new approaches for wildfire modeling, evidently there are still 

several ways to improve it, which may lead to further research. Overall the 

spatial dimension of wildfire occurrence modeling has been addressed in 

detail. Nevertheless, it would be appropriate explore new possibilities for 

spatializing both dependent and explicative variables, leading to multi-scale 

developments or enhancing the spatial accuracy of the models. 

The research field that, in my opinion, is more promising for future 

developments is the analysis of the temporal dimension of forest fires models. 

Specifically, dynamic models –in the sense of varying over time- should be 

explored to produce daily estimations of human-caused fires. In the same way, 

assessing the temporal evolution of the driving factor of human causality may 

be an interesting research subject. Following, several specific proposals for 

further research are presented: 

i. New predictors as well as new methods for spatialization (distance to 

interfaces, density maps and so on) could be explored and tested.  

ii. The temporal dimension in fire risk could be included in aiming to 

develop dynamic models. 

iii. The calibration of SVM methods should be explored more in depth in 

order to properly address its predictive performance. 

iv. The use of different probability distributions such as Poisson combined 

with the GWR approach could provide new insights into human-caused 

wildfire modeling. 
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v. Combining ensemble model methods and local regression methods 

(boosting moving window regression) might improve its standalone 

versions. 

vi. Change scenarios (land cover/climate change) should be considered for 

future developments of ecological vulnerability assessments.
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9.1. Conclusiones principales 

Explorar nuevos métodos para el modelado de incendios forestales 

implica la consideración de sus diferentes dimensiones. El riesgo de incendio 

varía significativamente espacial y temporalmente. Por lo tanto, estos dos 

componentes deben ser debidamente considerados con independencia del 

modelo o método utilizado. Además, hacer frente a la posible incertidumbre 

derivada de datos o métodos es también es un requerimiento en tanto en 

cuanto permite establecer las limitaciones de los resultados, así como informar 

su fiabilidad y utilidad. 

Todas las metodologías propuestas en este trabajo han sido 

desarrolladas tomando en consideración estos dimensiones. Todos los métodos 

tienen una base espacialmente explicita que refleja en mayor o menor medida 

la variabilidad espacial de los incendios y sus potenciales impactos. En este 

sentido, aunque en general todos métodos incluyen la dimensión espacial, dos 

de ellos destacan dada su particular idoneidad para modelar fenómenos 

espaciales: 

 Por una parte, la GWR, siendo una técnica especialmente diseñada para 

considerar el componente espacial, permite capturar no sólo la 

variabilidad espacial de los factores explicativos de los incendios sino 

también determinar y cuantifica su contribución y error. 

 Por otra parte, el algoritmo RF ha probado sobradamente su utilidad, 

superando tanto a los métodos de regresión tradicionales como a otros 

métodos ML, tanto en términos de precisión en la predicción como en 

su capacidad para capturar la variabilidad espacial de los incendios 

forestales. 

La dimensión temporal de los incendios ha sido también abordada y 

analizada en profundidad. Se han identificado tendencias temporales tanto en 

el número de incendios como en la superficie quemada, confirmando que los 

incendios no son un fenómeno estático, permitiendo además detectar zonas 

donde la ocurrencia de incendios se ha visto incrementada, aumentando por 

tanto el peligro asociado. Además, el ajuste de modelos estadísticos de 

ocurrencia permite profundizar en su variabilidad temporal. Se analiza este 

comportamiento gracias al estudio de  la ocurrencia histórica y se sintetiza en 

modelos prospectivos con objeto de predecir –en términos probabilísticos– la 

evolución más probable de los incendios de origen antrópico. Esta dimensión 

temporal se pone aún más de manifiesto si nos centramos en la metodología 

desarrollada para el análisis cuantitativo de la vulnerabilidad ecológica, cuyos 

resultados se expresan en términos de temporales (tiempo de recuperación), 

incluyendo además tendencias climáticas como uno de los parámetros 

principales para su cálculo. 
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Tratar con procesos ambientales siempre conlleva cierto grado de 

incertidumbre, aspecto que es además inherente al uso de modelos estadísticos. 

En este sentido, todos los trabajos que componen esta tesis doctoral incluyen 

la incertidumbre en sus análisis. En general, todos los métodos han sido 

sometidos a validación de un modo u otro, ya sea al hacer referencia a la 

capacidad predictiva, a su comparación con otros trabajos o explorando 

métodos o procedimientos alternativos. Sin embargo, el mayor inconveniente 

detectado al desarrollar la mayoría de métodos ha sido la calidad de los datos 

de entrada, concretamente en la información sobre ocurrencia. Este problema 

afecta a todos y cada uno de los métodos utilizados para modelar la causalidad 

humana (GWR y ML) en incendios forestales ya que la información referente 

a la localización y causa de la ignición es su principal fuente de información e 

influye por lo tanto en los resultados. La distribución espacial de la ocurrencia 

de incendios varía enormemente entre las diferentes regiones en función de los 

supuestos hechos al considerar la causa de la fuente ignición, dando lugar a 

diferentes predicciones. Esto es debido principalmente a la falta de criterios 

homogéneos en el registro y clasificación de los partes de incendio. 

Desarrollar y explorar la aplicación de nuevos métodos supone el uso 

de herramientas apropiadas para su correcta implementación. En este sentido, 

la presente tesis ha explorado en profundidad diversas herramientas, 

combinado aproximaciones SIG convencionales con lenguajes de 

programación y estadísticos, tanto de código abierto como propietarios. Los 

lenguajes de scripting, ya sean aplicados a análisis SIG como a métodos 

estadísticos, son herramientas indispensables para implementar algunos de los 

métodos propuestos ya que permiten diseñar flujos de análisis complejos 

utilizando grandes conjuntos de datos. 

Conclusiones específicas 

A continuación se recogen las conclusiones específicas para los sub-

objetivos presentados en el capítulo 2: 

i. Proporcionar perspectivas sobre la evolución temporal de los incendios 

forestales: 

 El número de incendios forestales en la Europa mediterránea se ha 

incrementado significativamente durante los últimos 25 años, mientras 

que el área total quemada presenta un comportamiento opuesto, con un 

descenso generalizado en el periodo 1980-2009. Concretamente 

Portugal, España y la zona de Sicilia en el sur de Italia parecen ser las 

regiones más afectadas ya que presentan un incremento tanto en 

número de incendios como en área quemada.  
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iii. Estudiar la aplicabilidad de nuevos métodos de regresión para modelar la 

causalidad humana: 

 Los modelos ML mejoran la precisión en la predicción de los métodos 

clásicos  de regresión. Tanto RF como BRT mejoran los resultados 

obtenidos utilizando LR según los valores de AUC obtenidos. 

 RF se presenta como la mejor elección no solo por su mayor precisión 

sino porque requiere menos variables explicativas para alcanzar dicha 

precisión. Además, su calibración es más sencilla al utilizar menos 

parámetros. 

 Con independencia del método seleccionado, la densidad de 

maquinaria agrícola (DAM) y el cambio en el potencial demográfico 

(CDP) se conforman como las variables relacionadas más 

estrechamente con la ocurrencia de incendios, aunque ello está 

motivado en parte por la naturaleza continua de dichas variables y, en 

el caso de DAM, con la interacción con otras variables como la 

interfase agrícola-forestal (WAI). En cualquier caso, la ocurrencia de 

incendios forestales en España está principalmente relacionada con el 

incremento de la presión humana sobre zonas forestales y con 

accidentes o negligencias derivados de la actividad agrícola. 

iv. Estimar la variabilidad espacial de los factores explicativos de la causalidad 

humana: 

 El uso de técnicas GWR aplicadas a modelos de regresión logística 

(LR) ha corroborado la existencia de variación espacial en los factores 

asociados con la causalidad humana en incendios forestales. 

 GWR mejora la capacidad predictiva de LR al considerar la regresión 

como un proceso no estacionario. Sin embargo, las técnicas GWR son 

computacionalmente exigentes y requieren largo tiempo de ejecución. 

v. Analizar la fiabilidad de los datos originales de ocurrencia de incendios y 

su potencial incertidumbre asociada: 

 La inexistencia de un criterio homogéneo entre las CCAA en materia 

de gestión de incendios forestales es una fuente potencial de 

incertidumbre para la estimación del riesgo de incendio, que afecta 

tanto a las predicciones realizadas como a sus patrones espaciales. 

 La distribución espacial de la ignición depende en gran medida de las 

asunciones realizadas al seleccionar el origen y causa de la ignición, lo 

que conduce a predicciones diferentes; sin embargo, es posible 

determinar cuál es el mejor escenario para modelar la ocurrencia de 
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incendios. De acuerdo con esto, los resultados sugieren que la mejor 

elección es considerar incendios con causa conocida y supuesta, 

incluyendo una proporción de aquellos incendios con causa 

desconocida. 

 La incertidumbre afecta también a la carga explicativa de las variables 

explicativas. Los resultados sugieren que DAM, CDP, WAI y espacios 

protegidos (PA) son las variables menos sensibles a la variación 

espacial de la ocurrencia. 

vi. Estimar la vulnerabilidad ecológica de las comunidades vegetales afectadas 

por el fuego: 

 Existe una elevada heterogeneidad en los valores de tiempo de 

recuperación tanto entre las comunidades vegetales analizadas como 

entre las diferentes regiones de la España peninsular debido a la 

coexistencia de dos regiones biográficas con condiciones ambientales 

muy contrastadas (Eurosiberiana y Mediterránea), que a su vez 

presentan una importante variación interna es su condiciones, debido a 

la variabilidad y complejidad del relieve, lo que conduce a condiciones 

climáticas distintas.  

 Los factores limitantes del desarrollo de las especies vegetales (PSGC)  

tienen una contribución significativa en el tiempo de reconstrucción; 

sin embargo, el parámetro determinante en la regeneración post-fuego 

parece ser el tipo y características (estructura y estrategia reproductiva) 

de las comunidades vegetales dominantes. 

9.2. Líneas de trabajo futuras 

Aunque este trabajo profundiza en la aplicación de aproximaciones 

relativamente novedosas para el modelado de incendios forestales, 

evidentemente existen algunas posibles líneas de mejora a considerar en 

futuros desarrollos. En líneas generales, la dimensión espacial en el modelado 

de la ocurrencia se ha estudiado detalladamente, pero, en cualquier caso, sería 

apropiado explorar nuevas posibilidades en la espacialización de las variables 

dependientes y explicativas, de cara a desarrollos multi-escala o con mayor 

precisión espacial en los modelos. 

El ámbito de investigación que, en mi opinión, es más prometedor para 

desarrollos futuros es el análisis de la dimensión temporal en el modelado de 

incendios forestales. Específicamente, se deberían explorar modelos dinámicos 

–en el sentido de variabilidad temporal– para desarrollar estimaciones diarias 

en la causalidad humana. De un modo similar, analizar la evolución temporal 
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de los factores causales podría ser otra interesante línea de trabajo. A 

continuación se presentan diferentes propuestas de futuros desarrollos de la 

investigación: 

i. Podrían considerarse nuevos factores predictivos, así como nuevos 

métodos de espacialización (distancia a las interfaces, mapas de 

densidad, etc.). 

ii. La dimensión temporal en el riesgo de incendio podría ser  incluida con 

objeto de desarrollar modelos dinámicos. 

iii. La calibración de los métodos SVM debería ser estudiada con mayor 

detalle para estimar adecuadamente su capacidad predictiva. 

iv. Explorar la aplicación de otras distribuciones de probabilidad aplicadas 

sobre GWR podría conducir a nuevas aproximaciones en el modelado 

de incendios con causa humana. 

v. Combinar métodos de ensamblado (bagging or boosting) con métodos 

locales de regresión (boosting moving window regression) podría 

mejorar su aplicación por separado. 

vi. El análisis de escenarios de cambio –cobertura del suelo, cambio 

climático–  debería incluirse en futuras versiones de estimación de 

vulnerabilidad ecológica. 
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geospatial information into fire risk assessment” which 
summarizes the main outputs from project FIREGLOBE as well 
as contextualizes the framework of research.  



�

�

� �



Integrating geospatial information into fire risk assessment

E. ChuviecoA,I,J, I. AguadoA,I, S. JurdaoA,I, M. L. PettinariA, M. YebraA,H,
J. SalasA,I, S. HantsonA, J. de la RivaB, P. IbarraB, M. RodriguesB,
M. Echeverrı́aB, D. AzquetaC, M. V. RománC, A. BastarrikaD, S. Martı́nezE,
C. RecondoF, E. ZapicoF and F. J. Martı́nez-VegaG,I

ADepartamento de Geografı́a, Universidad de Alcalá, Colegios 2, E-28801 Alcalá de Henares,
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Abstract. Fire risk assessment should take into account the most relevant components associated to fire occurrence. To
estimate when and where the fire will produce undesired effects, we need to model both (a) fire ignition and propagation

potential and (b) fire vulnerability. Following these ideas, a comprehensive fire risk assessment system is proposed in this
paper, whichmakes extensive use of geographic information technologies to offer a spatially explicit evaluation of fire risk
conditions. The paper first describes the conceptual model, then the methods to generate the different input variables, the

approaches tomerge those variables into synthetic risk indices and finally the validation of the outputs. Themodel has been
applied at a national level for the whole Spanish Iberian territory at 1-km2 spatial resolution. Fire danger included human
factors, lightning probability, fuel moisture content of both dead and live fuels and propagation potential. Fire

vulnerability was assessed by analysing values-at-risk and landscape resilience. Each input variable included a particular
accuracy assessment, whereas the synthetic indices were validated using the most recent fire statistics available.
Significant relations (P, 0.001) with fire occurrence were found for the main synthetic danger indices, particularly for

those associated to fuel moisture content conditions.
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Introduction

Biomass burning is widely recognised as one of the critical
factors affecting vegetation succession and carbon budgets
worldwide (Chuvieco 2008; Thonicke et al. 2010). At a global

scale, the effects of fire on the atmospheric chemistry are very
significant as recent studies estimate that the amount of CO2

released by biomass burning is approximately half (3–4 PgC) of

that released by fossil fuels consumption (Bowman et al. 2009;
van der Werf et al. 2010). At regional and local scale, fires also
have important socioeconomic implications, affecting both lives
and structures (Chuvieco et al. 2010).

Fire is very influential in vegetation succession and distribu-
tion. It is a natural factor, as it may be caused by lightning or
volcanic eruptions, but since humans have been able to produce
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fire for their ownmeans, they have extended the influence of fire
beyond its ecological limits, transforming ecosystems world-
wide (Bond et al. 2005). Fire has offered human beings a

powerful tool not only for their warming and cooking, but also
for protection, hunting, land clearing and soil fertilisation
(Bowman et al. 2011). However, fires can also have catastrophic

effects on human lives and resources, particularly when severe
fire seasons arise, as was the case recently in Greece (2007),
Australia (2009) and Russia (2010), where overall more than

300 people were killed and 7000 houses destroyed.
Within this context, the value of having better tools for fire

prevention and assessment should be emphasised. Fire risk
evaluation is a critical part of fire prevention, because pre-fire

resources planning requires the use of objective tools to
monitor when and where a fire is more likely to occur, or when
and where it will have more negative effects. A wide variety of

fire risk assessment studies have been published in the last few
years (Sebastián-López et al. 2002; Allgöwer et al. 2003; Riera
and Mogas 2004; Kaloudis et al. 2005; Amatulli et al. 2006;

Stratton 2006; Cooke et al. 2007; Prasad et al. 2008; Beverly
et al. 2009; Loboda 2009; Padilla andVega-Garcı́a 2011). They
include different spatial scales and variables, and diverse risk

schemes. Using a standardised approach would help risk
evaluation efforts, facilitating the integration of data and the
generation of regional and global assessments (Thompson and
Calkin 2011).

Concepts involved in fire prevention

The conceptual definition of a fire risk assessment system
should include the most relevant components associated with
the fire process. Terminology used in fire prevention planning

has a long tradition, especially in the US and Canada, but is still
quite controversial, especially when comparing its terms with
those used in other natural hazards (earthquakes, volcanic
eruptions, floods, etc.). Following the most common terminol-

ogy used by fire managers, ‘fire hazard’ refers to the potential
fire behaviour associated with the ‘static’ properties of fuel,
regardless of the particular moisture conditions on a given day.

The term ‘fire risk’ refers to the ‘chance of fire starting, as
determined by the presence and activity of causative agents’
(mainly lightning and human factors). The concept of ‘fire

danger’ is broader and describes the ‘factors affecting the
inception, spread and resistance to control, and subsequent
fire damage; often expressed as an index’ (NWCG 2003).

Following this approach, fire danger includes various factors:
weather conditions, causative agents and even potential damage,
but most commonly the latter are not considered in operational
fire danger assessment systems (SanMiguel-Ayanz et al. 2003).

Some authors are critical of the term ‘danger’, as its meaning is
vague, and suggest fire hazard or fire probability be used instead
(Bachmann and Allgöwer 2001).

In other natural hazards, the term ‘risk’ commonly describes
the convergence of the physical probability that a natural event
occurs, and its potential damage to people and the environment

(UNISDR 2009). Following this approach, fire risk mapping
should include the assessment of values potentially affected by
fire. In fact, those values are critical to guide fire suppression
efforts (a clear example is when fire occurs in the proximity of

urbanised areas). Therefore, the consideration of fire vulnera-
bility (potential effects of fire on social and ecological values)
should always be part of fire risk evaluations and would help to

align them with other natural hazard assessments.
Several authors have tried to adapt this risk approach to

wildland fires (Bachmann and Allgöwer 2001; Allgöwer et al.

2003; Chuvieco et al. 2003), which implies that fire risk
assessment should both include the probability that a wildfire
ignites or propagates (which we will name as fire danger

throughout this paper), and the expected damages caused by
fire behaviour (termed as fire vulnerability). Recent papers on
fire risk assessment have incorporated this double evaluation to
propose a comprehensive analysis of fire risk conditions (Calkin

et al. 2010; Chuvieco et al. 2010; Tutsch et al. 2010; Thompson
et al. 2011), but still much more research exists on fire danger
than on fire vulnerability.

This paper focuses on developing a method for assessing
fire risk conditions using a conceptual scheme that may be
applicable at different spatial scales. The paper summarises the

procedures to generate all required input variables in a spatially
consistent way, as geographical data layers. Finally, the paper
addresses the integration of the different input variables into

synthetic fire risk indices. This risk assessment system was
developed within the scope of a Spanish research project
(www.fireglobe.es, accessed March 2012) and includes both
fire danger and fire vulnerability (Fig. 1). It builds upon a

previous fire risk scheme proposed by Chuvieco et al. (2010)
but greatly extends the consideration of the vulnerability
components by integrating fire danger and fire vulnerability.

Estimation of danger includes the consideration of fuel
characteristics, human and natural causes, wind speed, wind
direction and slope gradient. Determination of vulnerability

includes the estimation of housing prices in the wildland–urban
interface (WUI), as well as some ecosystem services and
landscape values that may be affected by fire. Because fire
damage lasts until pre-fire conditions are restored, our vulner-

ability assessment includes an estimation of recovery time after
fire, based on vegetation and climate–soil properties, as well as
fire behaviour scenarios. Extensive use of geographic informa-

tion technologies (GIT) was made for this project, as all the
input variables and the final indices are spatially explicit. This
paper presents results of the fire risk index developed at a

national scale, with a spatial resolution of 1 km2, covering the
Peninsular territory of Spain (490 000 km2).

Methods

The development of an operational fire risk assessment system
requires three steps: generation of required input variables,
proposal of ways to integrate them into synthetic indices and

dissemination of indices to forest managers. These three steps
require different methodologies, which are summarised in the
next sections and in Table 1. Fire risk indices have many

potential uses, the main one being to reduce the negative effects
of fire by introducing risk reduction strategies.

Generation of input variables for fire danger

A wide variety of studies has been published in recent decades
on methods to generate relevant data for fire risk assessment. To
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explain them in detail would exceed the scope and appropriate
length of this paper. We will briefly review them in the context
of the choices made in the current study. All these methods
heavily rely on spatial information and therefore the sources of

input data are closely linked to GIT; mainly satellite remote
sensing and GIS. All variables were mapped at the target reso-
lution of 1 km2 and georeferenced in the UTM standard pro-

jection system (extended zone 30, using the WGS84 ellipsoid).
The influence of human factors on fires can be considered as

both a cause and an effect. Studies pertaining to the former

aspect are more abundant, because human activities are themost
common cause of fires (95% of Spanish fires are human-caused
according to national statistics, Martı́nez et al. 2009). Identify-
ing the most important factors involved in fire occurrence has

been the main goal of a wide range of studies, commonly based
on statistical approaches, which try to explain historical human-
caused fire occurrence based on a set of independent variables
(Syphard et al. 2007;Archibald et al. 2009;Martı́nez et al. 2009;

Chuvieco and Justice 2010; Padilla and Vega-Garcı́a 2011). The
consideration of human values in fire risk assessment is more
recent and only a few regional studies have identified that the

main socioeconomic damages potentially caused by wildland
fires are associated with lives, property and environmental
services (wood products, hunting, fungi, carbon stocks, recrea-

tional, etc.) (Loomis 2004; Venn and Calkin 2009).
Previous studies in several Spanish regions (Chuvieco et al.

2010) demonstrated the importance of taking into account
regional variation in human factors when explaining fire

Table 1. Sources for the main inputs of the fire risk assessment system

Factor Methods Input variables

Human factor Spatial modelling statistical approach, logistic

geographically weighted regression

Historical fire records (1988–2007); wildland–agricultural interface; wildland–urban

interface; natural protected areas; power lines; tracks in forest areas; railroads; density

of agricultural machinery

Lightning Statistical approach Meteorological data, lightning strikes, forest maps

Live FMC Field work simulation models Satellite images

Dead FMC Field work statistical approach Meteorological data

Propagation Modelling techniques Spanish fuel typemap, Spanish forestmap, canopy cover product, digital terrainmodels,

meteorological data

Socioeconomic

vulnerability

Economic analysis sample studies Wood and non-wood products statistics, forestry inventory and maps, hunting fishing

and recreational use of forests statistics, pastureland prices, CO2 stock estimations,

carbon prices, housing prices

Ecological

vulnerability

Field work, ecological and erosion models Soil, vegetation and land usemaps, protected areas, satellite images, digital terrain data,

ecoregions, climatic maps

Ignition Cause

Fuel moisture content

Fuel types

Slope and wind

Total value of
environmental
services

Socioeconomic
value

Ecological
value

Vulnerability

Risk

Danger

Propagation

Houses and
infrastructure

Human

Lightning

Live

Dead

Recovery
time

Actual value of
environmental
services

Fig. 1. Proposed framework for an integrated fire risk assessment system (adapted from (Chuvieco et al.

2010).
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occurrence. This spatial diversity may be approached either
by creating different models for specific types of region (more-
or-less urbanised, for instance) or using spatially explicit statis-

tical tools. We have chosen the latter approach by using
geographically weighted regression analysis (GWR) (Fother-
ingham et al. 2002) to model human patterns of fire occurrence

in the study area.We used the logistic regressionmodel of GWR
(LGWR), as logistic regressions have been previously used to
model human-caused fires (Martı́nez et al. 2009; Preisler et al.

2011). Modelling with LGWR methods required us to first
generate spatial distributions of both dependent (high or low
fire occurrence, defined by a threshold of fires km�2) and
independent (explanatory) variables at 1-km2 resolution. Fire

occurrence was computed from national fire statistics for
the 1988–2007 period, selecting those fires larger than 1 ha.
The LGWR model was built with 60% of the sample for

calibration and the remaining 40% for validation. The calibra-
tion was based on adaptive kernels to obtain the optimised
bandwidth through cross validation (Fotheringham et al.

2002). To determine the variables that would eventually be
included in the final model, an initial LGWR model including
all the considered variables was established, discarding in the

final model those variables that either were not significant
(P. 0.05), or whose explanatory sense was not consistent with
what would be expected based on prior experience and expert
opinion. The validation was based on local determination

coefficients (R2) obtained during the calibration of the model.
The local R2 values provided a first assessment of the degree of fit
of the LGWR model. The overall percentage of successfully

classified points and the degree of agreement according to the
value of Cohen’s kappa (Congalton and Green 1999) were also
calculated using the validation sample.

Even though fires caused by lightning are less frequent they
cannot be underestimated, particularly in some regions of the
world with low populated areas (i.e. where human-caused fires
are less likely, e.g..30%of fires in the boreal forest are caused

by lightning strikes) (Stocks et al. 2003; Krawchuk et al. 2009).
To include this variable in fire risk models, a good knowledge
of spatial distribution of lightning strikes is required, as well as

an understanding of why a strike becomes an ignition point
(Renkin and Despain 1992; Dissing and Verbyla 2003; Larja-
vaara et al. 2005). As with the human component, our approach

to estimating the probability of naturally caused fires was based
on empirical methods. Historical patterns of lightning ignitions
were related to potential explanatory factors such as the type

of lightning strike (whether or not it was associated with
rainfall, its polarity, etc.), the slope and elevation, the climate
of the affected area, the type of fuel receiving the strike and
its moisture content. Logistic regression analysis was used to

calibrate models. Climate type, dead fuel moisture content and
lightning strikes were found to be themost significant variables
in the model (Pacheco et al. 2009).

Fuel moisture content (FMC, commonly expressed as per-
centage of dry weight) is a critical variable for fire ignition and
propagation, as it regulates the ignition delay and the amount of

energy available for combustion. Consequently, all fire risk
assessment systems include, in one way or another, this compo-
nent. Most commonly, the estimation of FMC is based on
weather temporal trends, combined through moisture codes.

The best known are those that try to estimate FMC of dead fuels
(thematerials lying on the forest floor), which are drier andmore
prone to ignite. The Canadian Fire Weather Index (FWI) and

the US National Fire Danger Rating System (NFDRS) estimate
FMC of dead fuels using a combination of temperature, relative
humidity, rainfall and wind, and compute different indices

depending on fuel particle size (Viney 1991; Camia et al.

2003). The spatial estimation of these indices is commonly
based on interpolation techniques or on gridded, forecasted data.

For this project, we have relied on empirical fittings based on
field work and meteorological data, which show a good predic-
tion accuracy (RMSE ,4% of FMC) for the 10-h code of the
NFDRS (Aguado et al. 2007). The functions were calibrated and

validated for central Spain and then applied to the whole
country, based on daily forecasted data (forecasts were available
at 0600 hours and they predicted the situation at 1200 hours).

The FMC of live species is not commonly included in fire risk
assessment, as it ismore difficult to estimate frommeteorological
data than is dead fuels moisture. Live plants have their own

mechanisms to adapt to water shortage so the same meteorologi-
cal conditionsmay affect different species in a very differentway.
Although some studies have tried to estimate live FMC from

meteo codes (Viegas et al. 2001; Castro et al. 2003) the most
reliable approach nowadays relies on satellite images. As fuel
dries, reflectance increases in the water absorption bands
(between 1200 and 2400 nm) and temperature increases as a

result of reduced evapotranspiration. Both effects are evident
from satellite observation (Ceccato et al. 2003). Additionally,
many plants reduce chlorophyll activity when drying, which is

also observable in the red and near infrared bands (Paltridge and
Barber 1988). Estimations of live FMC from satellite data have
used both empirical and simulation methods (Zarco-Tejada et al.

2003; Garcı́a et al. 2008; Yebra and Chuvieco 2009). We
generated live FMC maps from the inversion of simulation
models, as this approach provided accurate results in previous
projects dealing with Mediterranean grasslands and shrublands

(Yebra and Chuvieco 2009). We have extended this approach to
Mediterranean woodlands, as well as to grasslands, shrublands
and woodlands of the more humid Eurosiberian ecosystems of

Northern Spain. Rainfall in the Spanish Mediterranean regions
ranges from 400 to 500mm and reaches 2000mm in the northern
part of the country. In both climate units, the input datawere from

the MCD43A4 product (http://modis-land.gsfc.nasa.gov/brdf.
html, accessed March 2012), obtained from Terra-Aqua MODIS
images received by the MODIS reception antenna installed at

University of Oviedo (http://www.indurot.uniovi.es, accessed
March 2012). This product is computed every 8 days from 16
daily images, has 500-m spatial resolution and includes the
correction of the off-nadir observations (Schaaf et al. 2002).

The estimation of FMC relied on comparing the actual reflec-
tances from the MCD43A4 product to the reflectances simulated
using the Prospect, Sailh and Geosail radiative transfer models

(Jacquemoud et al. 2009). Parameters for these models were
derived from field work and laboratory measurements, including
themain species of bothMediterranean andEurosiberianSpanish

territory (Jurdao et al. 2012). Two different simulations were
performed for these two regions considering the ecological
conditions of the region in order to avoid unrealistic simula-
tions that may introduce external noise (Yebra and Chuvieco
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2009). Estimation errors were assessed by comparing results
with FMCmeasurements taken during fieldwork undertaken in
both ecoregions.

Fire propagation modelling is a rather complex topic that
has been extensively covered in the forest fire literature
(Sullivan 2009). Propagation models typically consider specific

weather and fuel conditions,and are aimed to simulate dynamic
processes. To include the propagation potential in our fire risk
assessment, we approached propagation modelling in a more

structural way, by computing standard propagation conditions
for worst-case scenarios. Fireline intensity (FI) was calculated
for every pixel in the study site using the FlamMap model
(Finney 2006). The FI is the amount of heat released per unit of

fire front per second, and it can be related to the difficulty of
containment of the fire (Rothermel 1983, table 4-1). The input
variables for the model were: elevation, slope and aspect,

extracted from the Digital Elevation Model of Spain (25-m
pixel size); wind speed, taken from Spanish meteorological
databases assuming worst-case conditions (95 percentile of

daily wind speed series for the period 2002–06); upslope wind
direction; fuel models, based on the NFFL classification
(Rothermel 1983) and derived from the Spanish Fuel Models

Map; canopy cover, extracted from the Vegetation Continuous
Field product (MOD44B _C4_TREE.2005, Hansen et al. 2005);
stand height, canopy base height and canopy bulk density
estimated from expert opinion based on the Spanish Forest

Map (200-m pixel size); and standard FMC values for dry
conditions, based on fieldwork data (1-h fuels 5% FMC, 10 h
10%FMC, 100 h 12% FMC, live herbaceous 50%FMC and live

woody 100% FMC).

Generation of input variables for fire vulnerability

Fire vulnerability included the evaluation of both socioeco-
nomic and ecological potential damages. In previous projects
(Chuvieco et al. 2010) we used a qualitative method to integrate
different vulnerability factors, but further development makes it

now possible to provide quantitative estimates based on mone-
tary units (h km�2).

For this purpose we have calculated potential losses caused by

fires as the reduction of value (marginal loss) that would occur
when an area is burnt (Román et al. 2012). Because those losses
remain a feature of the landscape until pre-fire conditions are

restored, reduction of values was integrated throughout the
estimated recovery time. As the importance of present values is
higher than it is for future ones (future benefits tend to be

considered more elusive), the equivalent present value of mar-
ginal losses was estimated through the application of a social
discount rate. A discount rate value of 2% was selected as it is a
common value in the economic valuation literature (Azqueta

2007). In order to avoid long-term effects becoming irrelevant, a
hyperbolic factorwas introduced in themarginal loss equation, so
that the penalty applied to the future tends asymptotically to zero

(Azqueta 2007). This is done by introducing the Neperian
logarithm instead of the absolute number of years for recovery.
In this way the present marginal loss PML was computed as:

PML ¼ ML� 1� ð1þ rÞ�log nb
r

ð1Þ

where ML is the marginal loss, r is the discount rate (2%), and
nb is the estimated recovery time. Both ML and nb were
estimated at the same spatial resolution of our GIS fire risk

system (1 km2).
Obviously, the gravest effect of fires is the loss of human

lives, and therefore this aspect should be taken into account for

fire vulnerability assessment. However, because fire casualties
are not linked to particular areas of the territory, it is very
difficult to include this concept in spatial risk assessment,

especially when trying tomap spatial variations of vulnerability.
Therefore, the direct effects of fires on human lives and property
was focussed on the WUI, which is defined either as the contact
between urban and forested areas, or where both are intermixed

(Radeloff et al. 2005). WUI areas usually suffer the most severe
damages during a fire, as recent cases in Australia, Russia,
Greece and Southern California have shown. Additionally,WUI

increases fire ignition probability, as many fires are caused by
accidents or carelessness in these areas (Syphard et al. 2007).

We mapped WUI for the Spanish Peninsular territory based

on the Corine Land cover map (Büttner et al. 2000). Urban areas
were selected from Corine category 112: discontinuous urban
fabric, which includes ‘building, roads and artificially surfaced

areas with vegetated areas and bare soil, which occupy discon-
tinuous but significant surfaces’ (Bossard et al. 2000), at the
original spatial resolution of 1 ha. Neighbour analysis was
performed to select only those areas that were closer than

100m to trees or shrublands, which were considered a first
approximation to the WUI for the whole country. The value of
the WUI for each cell was computed from the house prices (h)
of each municipality, whenever available, or the closest munic-
ipality otherwise. The total value of each cell was computed by
aggregatingWUI values of all 1-ha cells to the target grid size of

1 km2. In this case, the marginal loss was not integrated through
time (Eqn 1), as it is a one-time loss of capital.

The productive function of forests included the provision of
wood, firewood, pine nuts, cork and pasture. The value of wood

and firewood was calculated for each tree species and region as
the product of its price and the production quantity. Pine nuts
and cork production value was calculated by region by multi-

plying the production volumes and prices. Average productiv-
ities were computed from forest and bioclimatic maps, taking
into account that potential production is constrained by techno-

logical, economic and ecological limits. A different market
price approach was used for the valuation of livestock produc-
tion. As the productivity of forests providing pasture decreases

with the presence of trees and the competition of hunting
population for food, the value was computed from rental price
of shrub–grass area dedicated to pasture and a function of the
canopy cover fraction (CCF), which varied regionally.

The recreational function of forest is quite complex to value
in monetary units. The benefit transfer method was based on
different published studies available for Spanish forested areas.

Functions were adjusted based on the recreational services
provided by a specific forest (h km�2), by finding relation-
ships with the forest size, vegetation density (CCF, %), landuse

class, observed demand (effective number of visitors) and self-
consumption possibilities (represented by the population around
the forest). Values provided by the literature are usually
expressed as willingness to pay (WTP) per visit. They were
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converted into final values with data on the number of visitors
and the area of each forest. Hunting and fishing values were
computed from market prices and capture statistics available by
autonomous regions.

The average accumulated biomass per species and region
was computed using estimates of carbon stocks and forest maps
(Montero et al. 2005). According to recent data, the price of an

emission permit is,35 hMg�1 (http://www.pointcarbon.com/
research/carbonmarketresearch/analyst/1.1414367 accessed
March 2012), which we took as a basis on which to compute

the value of carbon stock (h km�2). Table 2 summarises the
different valuation methods used for the socioeconomic vulner-
ability analysis.

The ecological vulnerability was assessed in terms of the

intrinsic value of the landscape and conservation areas. This
component of the fire risk assessment considers intangible values,
those that are not valued in market terms, but because of social

interest in protecting particular areas due to their beauty, unique-
ness or singularity. Conservation areas were extracted from the
Spanish Ministry of Environment’s database, which includes

national and regional parks, natural reserves,Nature2000network
sites, European conservation sites and public forests. The intrinsic
value of the landscape was based on five variables: geomorphol-

ogy and land cover factors which together determine visual
quality (Arriaza et al. 2004), singularity, representativeness and
diversity. To compute the synthetic value of the landscape, a
greaterweight (50%more)was assigned to the conservation areas

than to the intrinsic value.
Both the socioeconomic and landscape evaluation required

estimation of the time needed for any cell of the study area to

return to pre-fire conditions. Obviously, regeneration after fire is
closely linked to ecological conditions of the affected area, and
to fire propagation conditions, particularly fire intensity and

residence time. The former was assessed spatially by analysing
vegetation resilience, soil and climate conditions (Fig. 2). Resil-
ience was characterised by structure (forest, shrubland or
grassland) and reproductive strategy (resprouter or seeder). Both

were derived from the Spanish Forest map (MMA 1997).
Recovery time estimation was based on assigning an initial
recovery time, considering optimal conditions for vegetation

development. This base regeneration period was modified by

taking into account the influence of vegetation growth con-
straints, i.e. water availability, soil loss and rainfall trends. The

influence of water availability and soil erosion was introduced
as a weight factor of the initial recovery time. In turn, seasonal
rainfall trends, specifically winter and summer trends, were

introduced by weighting water availability and soil loss. The
overall procedure is summarised as:

RT ¼ RTOC þ TFwTw þ TFeTa

where RT is the recovery time, RTOC is the recovery time in
optimum conditions, TFw is the time increase from water

availability, Tw is the winter rainfall trend weight, TFe the time
increase from soil loss and Ta is the autumn rainfall trendweight.
Once again it should be emphasised that thisRT is not a category

value, but an estimate of the time required to return to pre-fire
conditions.

As stated above, in addition to vegetation characteristics, soil
and rainfall conditions constrain the recovery of pre-fire condi-

tions. We characterised structure and reproductive strategy of
more than 500 species, assuming the revegetation process would
occur under optimal conditions. This estimation was then

corrected depending on water availability and potential soil
erosion. The former was based on a biogeographical map (Rivas
and Gandullo 1987) that classifies the country according to

average rainfall conditions (arid, semiarid, dry sub-humid,
humid and hyper-humid). The soil erosion analysis was based
on the Pan European Soil Erosion Risk Assessment model
(PESERA (Kirkby et al. 2004). This model quantifies water

soil erosion at a European scale through a simple conservative
erosion model, which is broken down into components that

Table 2. Valuation method used in the socioeco-

nomic vulnerability analysis

Variable Valuation method

Property Market prices

Wood Market prices

Firewood Market prices

Pine nuts Market prices

Cork Market prices

Pasture Market prices

Recreational services Benefit transfer

Big-game hunting Market prices

Small-game hunting Market prices

Fishing Market prices

Carbon sinks Replacement cost

Reproductive
strategy

RESILIENCE TIME IN
OPTIMUM CONDITIONS

Vegetation
structure

Water
availability

Rainfall
trends

LIMITING FACTORS

Soil
erosion

RESILIENCE TIME

Fig. 2. Methodology for estimating resilience time.
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depend on climate, vegetation, soil factors and topography. The
PESERA estimations of pre-fire erosion rates were modified
using the ERMIT (Robichaud 2005) model, which integrates

information on climate indicators, soil, topography, vegetation
and fire severity, thus allowing simulations to assess the increase
in erosion rates. Rainfall trends were extracted from de Luis

et al. (2010), who computed the spatial variability of seasonal
precipitation regimes in the Iberian Peninsula from 1946 to
2005. The estimates of the different components of fire vulner-

ability were based on worst-case fire propagation scenarios,
considering maximum burn severity.

Integration methods

Once the input fire risk variables were generated, they were
combined into synthetic fire risk components, following the risk
scheme previously described. In order to do so, the input vari-
ables need to be converted to a common risk scale, and then be

properly weighed. The most common methods to obtain com-
mon scales for risk integration are normalisation, qualitative
categorisation and probabilistic approaches (Chuvieco et al.

2003). All fire danger input variables were converted to a
common probabilistic scale (0–1) following the statistical
logistic functions in the case of the human and lightning factors

(see Fig. 3a, b), and a physical model to convert FMC to ignition
probability (IP) based on the moisture of extinction (Chuvieco
et al. 2004) (Fig. 3f ). For the conversion of FI to propagation

probabilities (PP) (0–1) the threshold values for fire suppression
proposed by Rothermel (1983, table 4-1) were used. These FI
values suggest thresholds that indicate whether a fire can be
attacked with handtools alone, if mechanical equipment can be

effective in fire containment, or if the fireline intensity is high
enough that control efforts at the head of the fire are expected to
be ineffective. The FI values obtained from the map were line-

arly interpolated from a PP of 0 for FI of 0 kWm�1, increasing
linearly within the thresholds (with PP¼ 0.33 for FI¼
350 kWm�1 and PP¼ 0.66 for FI¼ 1700 kWm�1), and reach-
ing a PP of 1 for pixels where FI$ 3500 kWm�1 (Fig. 3h).

For the fire vulnerability components, the common scale for
integration was the use of monetary units, which are easily

interpreted by fire managers. The three components of our
vulnerability assessment (houses and infrastructure, ecosystem
services and landscape values), were computed in euros per
square kilometre (Fig. 3k–n). As previously stated, this evalua-

tion is simpler for those values with amarket appreciation, but is
more controversial when non-market aspects (cultural or eco-
logical values) are considered.

Once the risk variables had a common scale, integration of
the causative agents (human and lightning, Fig. 3c) was
achieved using the Kolmogorov probabilistic rule (Tarantola

2005), which indicates the joint probability of two independent
events. For instance, the IP derived from causative agents P(Ca)
was computed as:

P Cað Þ ¼ P Hð Þ þ P Lð Þ � P Hð Þ � P Lð Þ ð2Þ

where P(H) is the IP estimated for human factors and P(L) is the
IP estimated for lightning. The integration of IP of live and dead

FMC (Fig. 3f) was performed by a weighted average of both IPs
by the corresponding cover of dead and live fuels.

For the integration of IP related to causative agents and to

FMC (named ‘synthetic IP’), as well as for the combination of
ignition and propagation probability (the ‘integrated danger’),
we used a multicriteria evaluation technique following experi-

ences from previous projects (Chuvieco et al. 2010). Higher
weights were used for the most dynamic components (related to
FMC), as they changed daily or every 8 days, whereas human

and lightning IP and propagation potential were assigned lower
weights, as theywere considered constant during the fire season.

The final fire risk was obtained by combining the integrated
danger and the integrated vulnerability by means of a qualita-

tive cross-tabulation method. A final two-digit number repre-
sents the fire risk, where the first digit corresponds to the fire
danger, and the second to the vulnerability (see map legend in

Fig. 3q). A look-up table was developed to show graphically
the fire risk, with a green to yellow scale to represent danger
(from 0 to 9), and light to dark green representing vulnerability

(from 0 to 9). Red would imply high values of both danger and
vulnerability.

Validation approaches

The validation of the fire risk system includes two phases. The
first one focuses on the assessment of the input variables to

determine whether or not they are accurately estimated, by
comparing the results with actual measurements of each vari-
able. The second one concerns the integrated indices, and it

compares their estimated risk values with actual fire occurrence.
Both aspects should be clearly identified, as underperformance
of the risk indices may be caused either by inaccurate input

variables (for instance, errors related to fuel maps or fire
behaviour models) or inappropriate integration methods (giving
a higher weight to a less relevant factor).

For this project, each input variable was validated against

independent measurements (for instance FMC estimates were
compared with field measurements), whereas the integrated
indices were assessed against fire occurrence. Because some

indices were associated with fire ignition and some to fire
propagation, two indicators of fire occurrence were used: fire
ignition points for the former, and burnt land maps for the latter.

Ignition points were derived from Spanish fire statistics (com-
piled from fire reports), whereas burnt area perimeters were
obtained from the European Forest Fire Information System

(http://effis.jrc.ec.europa.eu/, accessed March 2012), using sat-
ellite images. Two different time series of validation data were
used; one for dynamic variables (FMC for dead and live fuels
and the integrated indices where FMC is included), which

covered the fire season of 2010 (the last one available) and
one for static variables (causative agent and propagation dan-
ger), which includes data from 2008 to 2010. Box plots and a

non-parametric test (Mann–Whitney U) were computed to test
significant differences between cells with and without fires.

Because fire vulnerability is an estimate of potential damages

to socioeconomic and ecological assets, it cannot be validated
either with ignition points or with fire perimeters. Estimates of
actual damage caused by fires are not yet routinely collected in
Spain, and therefore our estimates cannot be compared with
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(a) (b)

(c ) (d )

(e) (f )

Fig. 3. Example of fire risk variables and integrated indices for 12 July 2011: (a) human ignition probability (IP), (b) lightning IP, (c) live FMC values,

(d) dead FMC values, (e) IP from causative agents, (f) IP from FMC, (g) synthetic IP, (h) propagation probability, (i) integrated danger, (j) recovery time,

(k) actual value of environmental services, (l) total value of environmental services, (m) houses and infrastructure, (n) ecological value, (o) socioeconomic

value, (p) integrated vulnerability, (q) fire risk. Maps (a–i) represent the probabilities in percentages (values from 0 to 100). Blank cells refer to non-

evaluated areas (non-forest categories).
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Fig. 3. (Continued)
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Fig. 3. (Continued)
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other sources. However, the generation of the vulnerability
layers was based on well-structured methods of economic and
ecological analysis, as explained earlier.

Dissemination fire risk maps

Our project was designed tomaintain a fluent collaboration with
end users, who were mainly fire managers from the regional or

national administration. To facilitate their interaction with the
project outputs, a dedicatedwebmapping servicewas developed
(http://www.fireglobe.es/, accessed March 2012), and included

all the input risk variables and integrated indices. This service
was tested during the fire seasons of 2010 (June–September) and
2011 (July–November) and was successfully evaluated by the
end users. Furthermore, all the variables could be downloaded

by end users through FTP (file transfer protocol). Two dedicated
workshops were held with end users to analyse critically the
performance and structure of the preliminary versions of the fire

risk system.

Results

Validation of input variables

Fig. 3 shows an example for a single day during the summer of

2011 (12 July, which corresponded to medium–high danger
conditions) of all variables generated to obtain the fire risk
index, as well as the synthetic indices themselves. The model-

ling of the human-caused fires showed the importance of the
crop–forest interface, particularly in the north-west and the
borders of mountain areas. However, the WUI was found to be

highly relevant in the central area (in the surroundings of
Madrid) and the Mediterranean coast, where the urban sprawl is
more evident. Both WUIs and crop–forest interface interfaces
were the most explanatory according to the Student t-test

(P, 0.05). The average local R2 was 0.7, with a range between
0.19 and 0.85. The global agreement between estimated and
observed human-caused fires was 87% (Table 3) with a kappa

value of 0.73.
Regarding the 5198 lightning-caused fires, our model cor-

rectly predicted 63.5% of the calibration sample (60% of total

number of fires) and 64.2% of the remaining 40% used for
validating the model. The variables included in the model were
number of strikes, climate types, and the DMC moisture code.
Because the lightning strikes database covers only a brief period

(2002–04), the model may be considered a preliminary one.
The estimation of FMC provided low RMSE values for live

fuels (between 20 and 40%), higher values for grasslands

(particularly when grass had high values of FMC) and lower
for shrublands (Table 4). RMSE for woodlands had intermediate

values. It is important to emphasise that errors were lower for
drier fuels, which is very relevant for fire risk assessment, as
lower FMC values are more related to fire ignition and propa-

gation. The division between all samples and dry oneswas based
on the moisture of extinction (ME) for each fuel type, which is
considered as the moisture threshold above which fire cannot be

sustained (Rothermel 1972). In all cases, the systematic error
(RMSEs) was lower than the unsystematic one (RMSEu), which
implied that the error caused by the model performance and

the predictor was lower than the error caused by uncontrolled
factors.

Results from the fire vulnerability analysis suggested a
recovery time for the Spanish peninsular ecosystem ranging

from 2 years for grasslands to more than 67 years for tree-
covered communities with low germination (Fig. 3j). Howev-
er, there are significant contrasts in the geographical distribu-

tion of regeneration time, mainly among Eurosiberian and
Mediterranean biogeographical regions. With regard to the
economic valuation of the landscape, the lowest values were

found in the north-western and interior ranges, foothills,
coastal plains and some inland basins and depressions. The
highest values were found in the northern alpine rangelands

due to the presence of several natural protection areas and
also to its high visual quality.

In terms of socioeconomic vulnerability, the most critical
areas were found to be those at the WUI, because of the high

values of houses potentially affected by fires. The WUI areas
were mostly located in the vicinity of the largest cities (Madrid
and Barcelona) and along theMediterranean coast, a pattern that

reflects the spatial distribution of the capital invested in real
estate in continental Spain. The ecosystem function that will be
most relevant in terms of potential losses is reduction of carbon

sinks stored by forests. The next most relevant is loss of leisure
opportunities in the environment provided by forests. Aggregat-
ed losses of timber and non-timber goods are less relevant in
terms of economic values, but they have an important effect on

local economies, as they are spatially more concentrated.

Validation of synthetic indices

The static variables (those not changing daily) showed less

discrimination capacity than did dynamic variables. However,
the causative agent, which was computed from human- and

Table 3. Outputs of the LGWRmodel for human-caused fires for the

validation cases

Observed occurrence Expected occurrence

High Low Total

High 31.4 11.5 42.9

Low 1.5 55.5 57.1

Total 33.0 67.0 100

Table 4. RMS errors for the estimation of live FMC (source Jurdao

et al. 2012)

Region Vegetation

type

LFMC

(%)

RMSE

(%)

RMSEs

(%)

RMSEu

(%)

Eurosiberian 1.1

Grassland

All 41.9 12.6 39.9

,200 30.6 3.6 30.4

Shrubland All 19.3 10.6 16.1

,105 18.8 6.4 17.7

Woodland All 28.7 12.8 28.8

Mediterranean Grassland All 39.7 13.6 37.3

,200 25.7 6.3 24.9

Shrubland All 26.8 17.2 20.5

,105 22.8 11.3 19.8

Woodland All 27.3 15.4 22.6
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lightning-based ignition probability was found to be clearly
associated with fire occurrence, showing significant differences

between burnt and unburnt cells (P, 0.01). For propagation
danger, differences were also observed, but they were not sig-
nificant (P. 0.36).

For the dynamic variables, the ignition probability of the
FMC was found to be highly significantly related to fire
occurrence (P, 0.001), particularly for the dead fuels (Table 5).

The integrated fuel ignition probability (including both live and
dead fuels) was also found to be significantly related to ignition
points, as well as ignition danger (causative agent and FMC) and
integrated danger (ignition and propagation probability). It is

worth noting that integrated danger was also found to be
significantly related to burnt area perimeters (P, 0.001), which
is in agreement with expected results, because integrated danger

includes both ignition and propagation components.

Conclusions

This paper has presented a pre-operational fire risk assessment
system that includes a wide range of variables related to the
different components of fire risk. The system relies on GIT to

provide a spatial evaluation of fire risk conditions, and it
includes both danger and vulnerability components, offering a
quantitative approach to model spatial variations of fire risk

conditions. Conceptually, the system may be applicable at dif-
ferent spatial scales, from regional to global, depending on the
availability of input datasets. The main novelties of the system

are the integration of causative agents with moisture content of
fuels and propagation potential, the quantification of values at
stake, and the spatial assessment of fire risk conditions.

Preliminary validation of the integrated fire risk components
shows expected trends, as the danger indices provided signifi-
cant differences between the areas affected and non-affected by
fires. Further efforts are required to extend this validation period

to other fire seasons. Fire vulnerability components were not
quantitatively assessed, because Spanish fire reports do not
account for long-term damages. However, 10 fire managers

attending a dedicatedworkshopwhere thewhole fire risk system
was assessed greatly appreciated the vulnerability information,
as it helped them to better organise fire suppression resources.

Within this paper, two variables were modelled using a
temporal approach (FMC of dead and live fuels), whereas others
were considered static for the fire season. In future develop-
ments, we will try to model all variables in a dynamic way,

including human and propagation factors, which will also affect
the modelling of potential damages by providing more detailed
estimates of fire behaviour conditions.
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a b s t r a c t

The potential impacts of fire are spatially-dependent, according to the ecosystems, people and properties
at risk. This study aimed to develop a methodology for the assessment of the socio-economic vulnerabil-
ity to fire using Geographic Information Systems. We have conducted the vulnerability assessment by
estimating the potential losses fire might cause during the time required for the recovery of the pre-fire
environmental conditions.
We have considered that vegetation recovery time depends on the vegetation’s structure, the reproduc-

tive strategy and the influence of constraining factors such as water availability, soil loss, fire frequency
and fire intensity.
Regarding the socioeconomic values at risk, three categories of impact have been assessed. The impact

on properties consisting of the potential destruction of build-up structures situated in the wild land-
urban interface. The impact on people, i.e.: the probability of wildfires causing victims. The third category
of impact embraces losses of environmental services because of the potential interruption of the produc-
tive, ecologic and recreational function of the affected ecosystems. Conventional economic valuation
methodologies (revealed or declared preference techniques) were applied.
The application of the developed methodology to the case of continental Spain has resulted in several

cartographic products (at a 1 km2 resolution), thus presenting in a spatially explicit way the vulnerability
of the territory to fire in different socio-economic aspects. According to the results, the average benefits
derived from effective fire prevention measures because of avoided damages to properties, human life
and ecosystems are 376,584 TEUR km�2, 9.17 TEUR km�2 and 22.29 TEUR km�2, respectively
(TEUR = 1000 EUR).

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Mediterranean region of Europe is strongly affected by for-
est fires, particularly Portugal, Spain, Italy, Greece and southern
France. Although fires are an integral component of ecosystem
dynamics of landscapes, uncontrolled fires may cause large envi-
ronmental and economic damage. Recent changes in social and cli-
mate conditions, have significantly affected historical fire regimes,
involving a greater potential damage than were traditionally the
case. In Spain, the total area burned is decreasing, i.e. the annual
average between 2000 and 2008 was around 125,000 ha, while in
the period 1980–1989 it was almost 250,000; the number of fires
is increasing: 18,150 compared to 15,300; and the economic losses
do not present a clear trend: 271.43 compared to 267.96 million
EUR (MARM, 1961–2011; Schmuck et al., 2009). In this sense,

spatial assessments of fire risk aims to provide information helping
to optimize the use of resources that societies devote to prevent
and suppress fire, and to restore the affected areas, by determining
protection priority areas.

Following the approach proposed by recent papers tackling fire
risk assessment (Calkin et al., 2010; Chuvieco et al., 2010; Thomp-
son et al., 2011), we distinguish between the probability of ignition
and propagation, and the expected damages caused by fire. This
latter component, termed vulnerability, is the scope of the present
paper.

Several studies have evaluated the damages caused by fire after
this it is over (Kent et al., 2003; Morton et al., 2003; Barrio et al.,
2007). Ex-ante assessments are necessarily based on predictions
on fire effects on the threatened assets and on estimations on their
temporal extent. Once the resources at risk have been spatially
localized, potential damages can be quantified, for instance, as
the percentage net value change in terms of area depending on
the fire intensity and resources’ sensibility (Thompson et al.,
2011). Alternatively, qualitative values can be assigned to those
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resources, according to the size and shape of the exposed areas
(Kaloudis et al., 2005). Those options do not capture the willing-
ness to pay (WTP) for the conservation of resources at risk.

Papers which have tried to predict and quantify in monetary
terms changes in social welfare caused by wildfires have evidenced
the high complexity of social perception of fire effects (Loomis and
González-Cabán, 1998; Loomis et al., 2001; Kent et al., 2003;
Morton et al., 2003; Loomis, 2004; Riera and Mogas, 2004; Barrio
et al., 2007; Kaval et al., 2007). The tasks is further complicated
by the existence of scientific uncertainties (Calkin et al., 2011).

Despite the limitations of economic valuation methods (Venn
and Calkin, 2011), we adopted this approach to estimate the poten-
tial losses fire might cause, given that its results are easily under-
stood and communicated across stakeholders, and can integrate
multiple assets while keeping the overall coherence. Our estima-
tion of the potential damages is based on the assumption that fire
would affect the entire wildland surface and its interface with
urbanized areas.

The results of this study may constitute then a valuable input
for setting up priorities in protection areas, as well as showing evi-
dence about the potential contribution of Geographic Information
Systems to the decision making processes on forest management.

This paper is organized as follows. Section 2 describes the meth-
odology and details the materials employed for its application to
continental Spain. Section 3 shows the results and discusses their
relevance and limitations. Section 4 states the main conclusions.

2. Materials and methods

This section presents the basis of the methodology followed to
assess the socio-economic vulnerability of different ecosystems to
fire in pecuniary terms (i.e. 2005 EUR).

To deal with the uncertainties associated with the extent of fire
impacts, and adopting the precautionary approach, the worst-case
scenario regarding the consequences on threatened buildings, pop-
ulation and ecosystems is assumed. The temporal dimension of
damages to ecosystems was contemplated estimating the time
span required until their total recovery under the most adverse
conditions (n) and discounting the flow of services lost, which is
considered to be constant. In order to limit the social penalty to
the future (the ‘‘tyranny of the present’’) a hyperbolic discount fac-
tor (f) was applied, with a discount rate (r) of 2% (Pettenella et al.,
2008):

f ¼ 1� ð1þ rÞ� log n

r

The temporal integration of the carbon stock loss follows a different
logic. Taking into account that carbon is reabsorbed after fire during
those years while forests regenerate, the overall impact consists of
the difference between conserving the stock and losing it during a
period of time. The social preference for the present implies that
the present value of the recovered stock (obtained by applying
the discount factor, f’) is lower than the value of the stock lost
today.

f 0 ¼ 1

ð1þ rÞlogn

The estimation of the annual flow of forest goods that are sus-
ceptible to be lost is based on effective productivities. These are
computed as ratios of the annual production and the productive
area. Depending on the particular good, different criteria have been
employed to determine the productive area. This focus on the
effective use of forests is the main difference with previously
developed analytical assessment models, based on estimations on
measures of the annual biomass increment. These reflect the

potential use of forests instead (Mavsar et al., 2011a). In order to
capture the net contribution of forests to social welfare, harvesting
costs must be subtracted from prices (Mavsar et al., 2011b). When
no reliable and site specific data on costs are available, prices cor-
responding to the closest point to each ecosystem may serve as
approximation of the net value of forests productions.

The process comprised four consecutive steps: estimating the
vegetation recovery time span; assets valuation; loss estimation
and allocation. Finally, the results were aggregated at pixel level.

2.1. Estimating the vegetation recovery time span

To calculate the average time required for vegetation to recover
its pre-fire conditions, we propose an innovative methodology
which reflects the effect of fire on the recovery process. Due to
the lack of spatial information about the forest’s age, an initial
recovery time (under optimal conditions for vegetation develop-
ment) is assigned depending on the type of vegetation, and then in-
creased by introducing the influence of vegetation recovery
constraints: water availability, soil loss, fire frequency and fire
intensity.

Initially, the recovery time was assessed according to the char-
acteristics of the vegetal species appearing in the Forest Map of
Spain (DGCN, 1997–2007) in terms of structure and reproductive
strategy. As mentioned, it was considered that the re-vegetation
process occurs under optimal conditions, i.e. without limitation
factors such as lack of water or nutrients. The initial recovery time
assignment is based on previous studies on post-fire regeneration
and vegetation responses (Trabaud and Lepart, 1980; Tárrega and
Luis-Calabuig, 1989; Trabaud, 1990; Vera, 1994; Trabaud, 1998;
Trabaud, 2002; Pausas et al., 2004; Buhk et al., 2007; Baeza and
Roy, 2008; Barbéro et al., 2008).

The initial recovery time was modified according to the infor-
mation on water availability contained in the Vegetation Series
map (Rivas and Gandullo, 1987). This map outlines areas of recog-
nized vegetation units. Each of the different series presents a typ-
ical rainfall category (arid, semiarid, dry sub-humid, humid and
hyper-humid) based on its annual precipitation. We assessed
water availability by grouping those rainfall categories and assign-
ing to each rainfall category a recovery time weight (Table 1).

The recovery time increment as a function of soil loss was eval-
uated by analyzing the distribution of soil erosion in post-fire con-
ditions. The Pan European Soil Erosion Risk Assessment (PESERA)
model (Kirkby et al., 2003) was used with this purpose. However,
the erosion rates reported by PESERA model are calculated in
pre-fire conditions. To take into account the erosion processes
occurring after the high severity wildfires we developed different
simulations of fire events using the ERMIT model (Robichaud
et al., 2002) which led to the modification of the pre-fire erosion
rates into post-fire ones through the calculation of its relative
increment as a consequence of the loss of the vegetation protection
cover. Once the erosion rates were corrected, we reclassified its
values to assign the corresponding weights to the recovery time
(see Table 2).

We assessed fire frequency from the data reported in the Span-
ish Fire Database 1988–2007. This database contains historical

Table 1
Rainfall categories and recovery time increment weight. Source: Self-elaboration.

Rainfall category Precipitation (mm) Time weight

Hyper-humid >1600 1.00
Humid 1000–1600 1.05
Sub-humid 600–1000 1.10
Dry 350–600 1.25
Arid–semiarid <350 1.50

M.V. Román et al. / Forest Ecology and Management 294 (2013) 158–165 159



data about each fire event during the recorded period. These re-
cords were then spatialized, and a fire frequency map was devel-
oped. Next, they were recoded into weights values, and used as
the increase factors of the initial vegetation recovery time (see Ta-
ble 3).

Finally, we carried out the assessment of fire intensity by
assuming that this parameter depends mainly on the characteris-
tics of the available fuel. With this purpose in mind, we recoded
fuel categories reported in the Spanish Fuel Map (ICONA, 1991)
into vegetation recovery weights (Table 4).

This procedure provides a map of vegetation recovery time,
which is expressed in the number of years needed to restore

pre-fire conditions, and that will be used later in the assets
valuation process (Table 5).

2.2. Assets valuation

In order to discover the social value of a particular resource, dif-
ferent economic methods were applied to estimate the willingness
to pay (WTP) of citizens for environmental services. Table 6 shows
the level of aggregation and year of the Spanish data, together with
the unit of measurement, and the variables employed to calculate
average land productivities (expressed in EUR ha�1).

Market prices appropriately represent the use value of buildings
and forests products (food and raw material). For the case of Spain,
official records reflect housing prices at municipal level. However,
they do not contemplate centers of population having <25,000
inhabitants (http://www.fomento.gob.es/BE2/?nivel=2&orden=
35000000). Having into account that location is a major factor in
determining house prices, those in small municipalities, for which
specific data is not available, are assumed to be similar to the clos-
est municipality with data. The National Statistics Institute pro-
vided the municipal and province limits cartographic base
(http://www.ine.es/ss/Satellite?L=0&c=Page&cid=1254735116596
&p=1254735116596&pagename=ProductosYServicios%2FPYSLayout
#a1259925031852).

For timber products, the most recent price according to the tree
species was taken from official records (http://www.magrama.
es/es/biodiversidad/temas/montes-y-politica-forestal/estadisticas-
forestales/default.aspx and http://www.marm.es/es/estadistica/
temas/anuario-de-estadistica/default.aspx). The high variability of
non-timber products’ volumes and prices makes it convenient to
utilize interannual averages, in order to appropriately reflect the
average ecosystem’s performance. In the case of Spain, estimated
average productivities reflect real and sustainable extraction, be-
cause effective production does not undermine the ability of eco-
systems to continue to provide such volumes in the future. The
potential productivity of Spanish forests is underutilized as a result
of the low profitability of extractive activities (MMA, 2000). Carto-
graphic products provided the spatial information required to
determine productive areas for each product. The Spanish Forest
Map (MFE200) was used to compute potential productive areas
according to species occupation, i.e. areas occupied by the main
species in monospecific forests, and by the two main species in
mixed forests (DGCN, 1997–2007). From this data, we selected
the effective productive areas according to its Canopy Cover
Fraction (CCF, between 20% and 80% for cork production); its phe-
nological stage - at timber and pole-stage for timber products; at
pole-stage for non-timber products – (DGCN, 2004); its protection
status – outside National Parks, with the exception of Monfragüe
and Cabañeros for the production of pine nuts and cork -; and its
slope (IGN, 1992–1997), assuming that above 35% extractive
activities with commercial purpose (as it is the case of timber
and non-timber goods contemplated in this exercise) become
unfeasible (Pettenella et al., 2008).

Table 2
Post-fire erosion rates and recovery time
increment weight. Source: Self-elaboration.

Post-fire erosion rate Time weight

<0.04 1.00
0.04–0.13 1.05
0.13–0.36 1.10
0.36–0.86 1.15
>0.86 1.30

Table 3
Fire frequency categories and recovery time
increment weight. Source: Self-elaboration.

Fire frequency Time weight

No fire 1.00
Less than 2 fires 1.50
More than 2 fires 2.00

Table 4
Fuel availability and recovery time incre-
ment weight. Source: Self-elaboration.

Fuel amount (tonnes) Time weight

<2.00 1.00
2.00–6.00 1.05
6.01–8.00 1.10
8.01–13.00 1.15
13.00–33.00 1.20

Table 5
Initial and maximum recovery time. Source: Self-elaboration.

Initial recovery time Maximum time

Grassland 2 9.36
Resprouter shrubland 6 28.08
Seeder shrubland 8 37.44
Resprouter tree 30 140.4
High seeding tree 35 163.8
Low seeding tree 45 208.9

Table 6
Valuation methodology summary table. Source: Self elaboration.

Type of impact Valuation method Original unit Aggregation level Yeara Variables required for conversion into EUR ha�1

Buildings Market price EUR ha�1 Municipality 2009 –
Wood/firewood EUR m�3 Tree species 2006 Annual production and productive area (provincial)
Cork/pine nuts EUR kg�1 National 1985–2007 Annual production and productive area (national)
Hunting/fishing EUR Province 1996–2007 Productive area (provincial)
Recreational services Benefit transfer EUR visit Natural area 1996–2009 Annual visits and recreational area
Carbon stocks Replacement cost EUR ton�1 National 2010 Stock and occupied area (by species).
Population Hedonic salary EUR individual�1 National 2003 Annual victims and burned area

a We chose the last data available apart from those cases in which an interannual average is more representative.
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Market prices reflect only one part of the utility derived from
hunting and fishing: the (consumptive) value of bushmeat or fish,
but not that derived from the pleasure of practicing these activi-
ties. Because of the lack of studies estimating recreational values
of hunting and fishing in Spain, we assumed that the annual reve-
nues of hunting and fishing facilities represented the minimum
WTP for conserving the opportunity to practice these activities,
and used the already referenced official records. We identified pro-
ductive areas by establishing a correspondence between land use
classes (according to the MFE200) and habitats for wildlife popula-
tions: croplands and spaces with little or no vegetation for small-
game hunting species; forests and scrublands for big-game hunting
species; rivers for ichthyofauna.

Regarding the amenities provided by natural areas, previous
studies provided the basis to estimate the value of leisure opportu-
nities which are not traded in markets. In the particular case of
Spain, there were 41 estimates on the WTP for visiting protected
areas exposed to wildfire risk (Voces et al., 2010). They were con-
verted into spatial units by multiplying by the corresponding rate
of number of visitors/area using official statistics and maps of the
protected sites provided by EUROPARC España (http://www.redeu-
roparc.org/bases_datos.jsp), the Spanish National Parks Network
(http://reddeparquesnacionales.mma.es/parques/index.htm). When
no primary specific estimate was available, average values by land
use class from a previous work were directly transferred (Esteban,
2010). These values came from a meta-analysis aimed to find the
specific function explaining estimates on WTP with theoretically
explicative variables (i.e. forest size, number of visitors, vegetation
density and number of inhabitants in the surroundings).

As it is usually done in the literature (Alexandrian et al., 2005;
Pettenella et al., 2008; Mavsar et al., 2011b), we employed the
replacement cost method in order to value the carbon stock con-
tained in the biomass at risk. This method consists of estimating
the cost of neutralizing the release of one ton of carbon. Carbon
market price (35 EUR ton�1, according to Point Carbon, http://
www.pointcarbon.com/polopoly_fs/1.1420234!Carbon%202010.pdf)
indicates this cost, as it represents the compensation demanded by
companies investing in mitigation (e.g. through the Clean Develop-
ment Mechanism). To calculate average productivities (as value/
area ratios), the stock susceptible to be released received a differ-
ent treatment depending on its duration. The part of the stock
which is extracted and transformed into wood products, retains
carbon during a period of time that depends on the final use of
these products (Bateman and Lovett, 2000). We computed then
the present value of this temporal stock, to aggregate it to the value
of the stock remaining on the standing forest.

In the case of Spain, estimations on both standing and extracted
stock by tree species are available (Montero et al., 2005). The
weight of each timber product in relation with the total annual
production is calculated with data taken from the official statistics.
Interannual averages of these weights are used to apply the differ-
ent retention periods to their corresponding share of the extracted
carbon stock (Table 7). The occupation by species was computed
using the MFE200.

The Value of a Statistic Life (VSL) is meant to reflect the contri-
bution to social welfare derived from avoiding one mortal accident
and amounts to 2.35 million EUR2003 in the Spanish case (Riera
et al., 2007). We converted this figure into spatial terms by apply-
ing the accident rate, i.e. 0.0000502 victim ha�1, calculated from
the official statistics (http://www.mma.es/secciones/biodiversi-
dad/defensa_incendios/estadisticas_incendios/index.htm#3).

Following these steps, we could estimate the value of the ser-
vices provided by the assets at risk, together with the benefits
associated to preventing the loss of life in terms of monetary units
per hectare. The next step was to estimate how much of these val-
ues would be lost as a result of fire.

2.3. Estimation of the social loss

Experts estimate that under very high fire intensity conditions,
residential locations might lose approx. 80% of their value (Thomp-
son et al., 2011). However, in each particular case, the extent of the
damage depends on the exposure conditions and the landscape
fuel treatments, among other factors. In the worst case scenario,
fire would entail the loss of 100% of the value of built structures lo-
cated within the area at risk. However, fire would not affect to this
extent land value. Therefore, when housing prices include it (as it is
the case), damage estimation requires to subtract from the value of
the house the part corresponding to the land. We employed official
statistics on land prices with this purpose, which are aggregated by
municipality size and province (http://www.fomento.gob.es/BE2/
?nivel=2&orden=36000000). The extent of the loss depends also
on number of floors, levels, present at the house. We presumed
that a construction close to the wildland had an average of two
floors.

The overall response might, however, be less adverse than the
initial one, and potential losses do not always coincide with effec-
tive ones (Thompson et al., 2010). For instance, the affluence of
hunters may abruptly diminish after fire, even when fire has only
partially affected fauna’s ability to reproduce. For the case of Spain,
concrete estimates of loss coefficients for several environmental
services and fire intensity levels (Rodríguez et al., 2009) were avail-
able. In case of the higher level (VI) wood would depreciate a 90%,
fruits a 75% (i.e. pine nuts), fishing a 45%, and both cork and hunt-
ing a 100%. For the remaining services (firewood, recreational ser-
vices and CO2 sequestration), a 100% of loss was assumed.

The magnitude of the loss also depends on the ecosystems’ abil-
ity to naturally recover its pre-fire conditions. Therefore, the over-
all loss was computed as the capitalization of the estimated losses
occurring annually until the complete recovery. During the regen-
eration period, forests gradually recover carbon stocks. Social pref-
erence for the present implies that the value attributed to the stock
in the future is lower than the value of the stock lost because of the
fire. Therefore, the net loss is equal to the difference between both
values.

In some cases, society can recover one portion of the affected re-
sources’ value immediately after the fire. We did not find evidences
of residual values for the case of Spain, with the exception of
burned wood. This can be sold at the 42% of its ordinary price
(Barrio et al., 2007). Therefore, we subtracted this portion from
the loss associated to the first year.

The next step was to determine where those losses take place.
For this purpose, we used Geographic Information Systems (GIS)
to map results at 1 km2 spatial resolution.

2.4. Allocation to the territory

Damages to building occur in high exposed areas, usually re-
ferred to as the wildland-urban interface or WUI. We defined the
WUI as those built-up areas, i.e. category ‘‘112. Discontinuous

Table 7
Wood products’ weights. Source: Self-elaboration.

Wood products Weight (%)

Sawmill 35
Board 22
Wood pulp 32
Fuel 1
Fence posts/pole 3
Other 7
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urban fabric’’ in the CLC (EEA, 2010) situated within a radius of
100 m from woodlands and scrublands (DGCN, 1997-2007).

Because of the lack of evidences of the relationship between
mortal accidents occurrence and land features in the case of Spain,
we allocated this loss homogeneously to the forested area (DGCN,
1997-2007).

Losses of environmental services are allocated to those areas
providing them. Given that the estimated loss of non-timber prod-
ucts was homogeneous, we allocated it proportionally to vegeta-
tion density (Hansen et al., 2003).

After the computation process we examine the distribution of
resulting values and detected extreme values at the right side of
the density plot. These deviations, caused by topological errors in
the original layers, did not represent a significant share of the
aggregated value, but distortion the average marginal values. In or-
der to avoid this effect we corrected those pixels by giving them
the value of the percentile 99. Finally, a measure of the socioeco-
nomic vulnerability was obtained by adding the different types
of losses occurring within each pixel of the map.

3. Results and discussion

Fig. 1 shows the potential losses associated to damages to build-
ings. As expected, losses are highly concentrated around the most
economically relevant cities (Madrid and Barcelona) and along the
coast, something that reflects the spatial distribution of the capital
invested in real estate in continental Spain.

Fig. 2 shows the different recovery times expressed in years. Re-
sults show significant contrasts in the geographical distribution of
regeneration time (mainly among Euro-Siberian and Mediterra-
nean bio-geographical regions), ranging between 2 years for grass-
lands to around 200 years for tree-covered communities with low
germination. The higher recovery times are located in the Mediter-
ranean region, mainly related with low water availability due to
little rainfall, and also to the climatic aggressiveness of this area,
which produces relatively frequent torrential rainfall events thus
increasing soil loss. However, high recovery times are also found
in the Euro-Siberian region where the higher fire frequency has
been registered during the last 25 years in Spain.

Fig. 3 shows the potential loss associated to the disappearance of
services provided by ecosystems to society during the time their
functions are affected. This loss is made of the provision of products

(wood, firewood, cork and pine nuts), recreational services
(including hunting and fishing) and the temporal destruction of
the carbon stock contained in the forests’ biomass. Major losses of
environmental services are located in the North of the Peninsula.
The high value of CO2 stocks and wood production at risk explain
the losses in the provinces of Galicia, Asturias, Cantabria, País Vasco,
Navarra, the North of Aragón, Cataluña and Castilla. Losses in Almería
are associated with recreational services. Huelva houses also
relevant losses in concept of CO2 stocks. Values in the Mediterra-
nean region are influenced by long recovery periods.

There is no point in showing the map regarding the loss of hu-
man lives, because its spatial distribution is equal to the one of for-
ested areas, as a consequence of the allocation process. Fig. 4
shows the socio-economic loss, which consists of the integration
of the losses in concept of buildings, environmental services and

Fig. 2. Recovery time.

Fig. 1. Building loss.

Fig. 3. Environmental services loss.
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human lives. The spatial variability of the vulnerability is majorly
influenced by the threat to buildings and carbon stocks.

Table 8 summarizes the results for each category of impact.
According to them, the most vulnerable areas are WUI, where
wildfire would produce an average loss of approx. 377,000 TEUR
per hectare (or 188.29 EUR m2, as we assumed buildings in the
WUI to have two floors). This amount is the 20% of the average
housing price within the Spanish territory, once subtracted the
land price (Fundación_BBVA-Ivie, 2009).

Avoiding the risk of victims in areas exposed to wildfires would
be perceived as a gain of social welfare accounting, at least, for
3,457,950 TEUR in the whole territory.

The damage on ecosystem services that would entail the high-
est loss is the ecological function performed by the biomass retain-
ing carbon from the atmosphere (4,054,930 TEUR). Next in
relevance is the loss of leisure opportunities in the environment
provided by forest, including hunting and fishing (853,325 TEUR).
The damage on the productive function of forests accounts for
622,739 TEUR. Average losses by area reflect the concentration of
losses associated to forests’ goods as cork, wood and pine nuts.
When comparing these results with the ex-post estimation of eco-
nomic losses caused by fires in Galicia in 2006 (Barrio et al., 2007)
and in the whole Spanish territory in 2010 (MARM, 1961-2011),
several conclusions may be drawn. Due to the high productivity
of the forested areas in Galicia – they produce more than the 50%
of the total production of wood (MMA, 2007) – even though long

term effects were not contemplated in the losses assessment, these
account for approx. a 23% of the estimated damage on the produc-
tive function of the Spanish forests. According to the official esti-
mations, wildfires in 2010 caused a loss in this concept
equivalent to the 12% of the estimated damage. Regarding the rec-
reational function, the short term losses account for a 2% of the
estimated damage in both cases of reference (Galicia, 2006 and
Spain, 2010). In Galicia the impact derived from the loss of carbon
sequestration capacity represents an insignificant share of the esti-
mated damage due to the shorter period (five months) and the
lower carbon price (16.15 EUR ton�1) employed in the assessment.
Resources destined to the Wildfire Defense Area represent a lim-
ited share of the potential losses fire might cause in the worst case
scenario. For instance, in 2011 the budget accounted for the 1% of
the estimated losses.

Carrying out large spatial scale assessments, as the one pre-
sented in this paper, involves a series of assumptions which sim-
plify reality. Housing was treated as a quasi-homogeneous good,
assuming its market price depends on the size of the town and
the distance from centers of population. Apart from this simplifica-
tion, market prices may not appropriately reflect housing use va-
lue, as a result of the high complexity of this particular market.

We have also assumed that changes in the supply of different
commodities caused by fire would not be big enough to change
prices. However, for the particular case of wood, the flooding of
markets with salvaged timber can suppose an economic disequilib-
rium in the short run (Mavsar et al., 2011b).

Different improvements of this methodology can be identified.
Wood extraction costs may prevent extractive activities on remote
sites; therefore the economic feasibility is a factor to be taken into
account when identifying productive areas. This is possible in
those cases where a detailed cartography of roads and trails pro-
vides the basis to introduce the distance to roads as a value crite-
rion (Pettenella et al., 2008). Benefit transfer might not accurately
reflect social preferences. Experts recommend regional choice
modeling studies in order to overcome this limitation (Venn and
Calkin, 2011).

Future assessments might also contemplate additional impacts.
For instance, impacts on infrastructure, on further non-timber
products, on non-consumptive values derived from hunting and
fishing, on the ecological role of ecosystems and on the increase
of mortality rates because of particulate matter emissions. Alterna-
tive analytical assessment models provide procedures to evaluate
impacts associated to soil erosion and biodiversity loss (Mavsar
et al., 2011a; Mavsar et al., 2011b). The Uniform World Model
would provide the basis to measure this latter impact in monetary
units, by considering each forest as a fixed emission source
(Spadaro and Rabl, 2002).

4. Conclusions

In many countries, the public sector is responsible for wildfire
prevention and extinction. In order to ensure the efficient use of re-
sources, public managers need spatial information on the potential
consequences of fire.

This paper presents and applies a methodology designed to gen-
erate a spatially explicit index satisfying such needs. The main out-
put of its application is to present the benefits derived from
effective prevention strategies in monetary units, thus facilitating
the comparison of different alternatives to prevent fire and the
establishment of priority areas.

The precautionary approach adopted here allows coping with
the limited understanding of the natural resources’ response to
fire, and of the subsequent social perception. Results should be
interpreted as the social monetary benefits (losses) that, without

Fig. 4. Socio-economic loss.

Table 8
Losses by type of impact. Source: Self elaboration.

Type of impact Average (TEUR km�2) Aggregate (TEUR)

Buildings 376,584 2,400,346,504
Wood 6.28 345,001
Firewood 0.80 9779
Cork 48.36 241,822
Pine nuts 3.40 26,137
Big-game hunting 0.23 56,230
Small-game hunting 0.47 97,648
Fishing 1.81 11,851
Recreational services 3.71 687,596
CO2 stock 20.53 4,054,930
Human life 9.17 3,457,950
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consideration of non-use value of ecosystems, would entail the
effective (failed) prevention of high intensity wildfires.

Results reflect the relevance of ecosystem services provided by
forests other than the production of goods, which are those with an
existing market value. Besides, they also reflect the monetary rele-
vance of marketable assets as buildings.

The proposed methodology is portable to other regions while
the required variables are few and representative. Official statistics
usually provide time series on housing prices. Cartography on land
cover types (e.g. CORINE Land Cover 2006 raster) serves as basis for
the WUI localization. Time series of the annual number of victims
and the burned area, a regional specific estimation on the VSL (or,
alternatively, on the WTP to save one anonymous person’s life) and
cartography of the forested areas constitute the data requirements
for the estimation of the potential damage to population. The car-
tographic products required for the recovery time span would con-
tain data on the vegetation structure, the reproductive strategy, the
water availability, the erosion rates (e.g. PESERA), the fuel avail-
ability. The fire frequency calculation requires regional time series
of wildfires. Time series of prices (or incomes) for forests goods
(e.g. FAOSTAT trade statistic database), together with cartographic
products of the different factors influencing land ability to provide
each forest good (tree species occupation, CCF, phenological stage,
protected areas, slope) allow the calculation of spatial specific pro-
ductivities. Site specific values of the WTP for visiting protected
areas (together with site specific time series of the annual number
of visitors and protected sites’ maps), and estimates on the value
attributed to the recreational use of forested areas are required
for the inclusion of this environmental service in the vulnerability
assessment. The Cost of Policy Inaction initiative (COPI) provides
regional estimates susceptible to be used for value transfer pur-
poses (Braat et al., 2008). They also provide data on the carbon
sequestration capacity by forest type, which together with the
international price of carbon emission allowances (e.g.
www.pointcarbon.com or www.wndscarbonoffsets.com) consti-
tute the data requirements for the valuation of this environmental
service. The damage level for each category of impact can be pro-
vided by experts.
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APPENDIX C. LAND COVER CHANGE AND 
FIRE REGIME IN THE 
EUROPEAN MEDITERRANEAN 
REGION
  
This appendix extends the results for fire trends in 

number of fires and burnt area size, as well as presents a brief 
assessment of wilfires as a driving factor of land-cover change at 
European scale. 
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           2.1   Introduction    

 Although fi re is an integral component of Mediterranean ecosystems, the dynamics 
of fi re regimes in Southern Europe is driven mainly by human factors. In fact, 
humans are responsible for over 95% of the fi res taking place in this region 
(San-Miguel Ayanz and Camia  2009  ) . Traditional usage of fi re in agricultural and 
cattle raising practices in the region is one of the main causes of forest fi res. 
Demographic changes related to the abandonment of rural areas are also related to 
increased fi re hazard. Fuel accumulation due to the lack of forest management 
practices in the region leads to uncontrolled forest fi res. Although, overall, the rural 
population in Southern Europe has decreased, peaks of high population density 
in recreational wildland areas during holiday periods increased fi re ignition in 
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summer months. This is further enhanced by the expansion of urban areas into 
wildland areas. This effect, which is due to either the expansion of cities or the 
construction of secondary houses in rural areas, has lead to an extended Wildland 
Urban Interface (WUI) in the region. The diffi cult fi re management of the extensive 
WUI in Southern Europe has been the cause of catastrophic fi res such as those in 
Portugal in 2003 or Greece in 2007. 

 Land cover is a fundamental component of fi re dynamics. It infl uences all the 
phases of the fi re, from ignition to fi re behavior and post-fi re restoration. The analysis 
of land cover changes in the last decades is tackled in the fi rst section of this chapter. 
This is followed by the analysis of fi re regimes in the region, both in terms of number 
of fi res and burned areas. The last two sections of the chapter are dedicated to an in 
depth analysis of land cover changes in areas affected by fi res and the effects of fi re 
on land cover dynamics.  

    2.2   Overview of Land Cover Changes in Europe 

 Land cover changes are related to fi re hazard through changes in fuel load which, 
along with topography and weather, are the main drivers of fi re intensity and rate of 
spread (Fernandes  2009 ; Moreira et al.  2009 ; Rothermel  1983  ) . Thus, increased fi re 
hazard is expected where land cover changes promote an increase in plant biomass 
(fuel load) while decreased fi re hazard is linked to changes associated with the 
removal of biomass. The CORINE Land Cover database (  http://www.eea.europa.
eu/data-and-maps    ) was used to analyze the changes in land cover in southern Europe 
between 1990 and 2006. The analysis was carried out in 4 out of the 5 European 
Mediterranean countries that are most signifi cantly affected by forest fi res, 
i.e. Portugal, Spain, France and Italy. Greece was excluded from this analysis due to 
the lack of CORINE 2006 data for this country. 
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 CORINE provides a thematic legend of 44 land cover classes grouped in three 
hierarchical levels. These land cover classes were grouped into six general categories: 
Urban, Artifi cial, Agriculture, Forest, Shrubland, and No-vegetation. The analysis 
of transition of areas among these categories was carried out. 

 The largest land cover change observed was the transition from forests to 
shrublands (over three million hectares) (Table  2.1 ), which could be interpreted as 
forest degradation due to several causes (e.g. logging, fi re, drought). Forests have also 
been replaced by urban, agricultural, artifi cial areas and areas with no vegetation. 
There were also signifi cant areas of shrublands that have been replaced by agricultural 
areas (over one million hectares), areas with no vegetation, artifi cial and urban 
areas. All these changes contributed to decrease fi re hazard.  

 On the other hand, a signifi cant proportion of shrublands have become forests 
(over two million hectares) and the transition of former agricultural areas to for-
ests (over 800,000 ha) and shrublands (over one million hectares) has also been 
signifi cant. The transition of areas with no vegetation to shrublands was also 
relevant (over 450,000 ha). These changes are probably the consequence of sec-
ondary succession in shrublands and abandoned agricultural fi elds, along with 
afforestation programs promoted by EU agricultural and forest policies during 
the study period. 

 A large number of regional studies have also provided evidence of increased fi re 
hazard in the Mediterranean areas in the last decades, mainly due to the increased 
cover of forests and shrublands in areas with former lower fuel loads. For example, 
Van Doorn and Baker  (  2007  ) , in a region of southern Portugal, registered a 75% 
decline in the area of agricultural fi elds during the period 1985–2000, and an increase 
in shrublands and forest plantations. Similarly, Falcucci et al.  (  2007  )  measured a 
74% increase in forest cover in Italy during the period 1960–2000, and a 20% 
decrease in agricultural areas. 

 The balance between land cover changes promoting an increase in fi re hazard 
(summing 4.9 million hectares) and the ones decreasing it (5.4 million hectares) would 
suggest that southern Europe has become less fi re prone in the period 1990–2006. 
These results are in line with those presented in the analysis of land cover changes 
during the period 1990–2000 in 24 European countries by Feranec et al.  (  2010  ) . 
These authors also found that the establishment of forests by planting or natural 
regeneration provoked a signifi cant proportion of land cover transitions corresponding 
to an increased fi re hazard, as they result in an increase in fuel load at the landscape 
level. The authors concluded that afforestation was the most prominent land cover 
fl ow across all Europe, during this time period, particularly in Portugal, Spain and 
France. In contrast, three fl ow types – deforestation, intensifi cation of agriculture 
and urbanization/ industrialization – included several transitions associated to 
decreased fi re hazard. The greatest losses in forest have been observed in Spain, 
France and Portugal, mainly because of disturbances such as fi re and wind. In the 
countries of Southern Europe, intensifi cation of agriculture was more prevalent in 
Spain, whereas urbanization processes were more extensive in Spain, France, Italy 
and Portugal (Feranec et al.  2010  ) .  
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    2.3   Overview of Changes in Number of Fires and Burned 
Area in the European Mediterranean Countries 

 The Mediterranean region of Europe is strongly affected by forest fi res. According 
to European Statistics (EC  2010  ) , from 1980 until 2009 fi res have burned an average 
of circa 478,900 ha of land per year in the fi ve Southern European countries most 
affected by fi re (Portugal, Spain, France, Italy and Greece). Data on the number of 
fi res and burned area in this region have been collected since the 1980s by each 
country and compiled in the European Fire Database (Camia et al.  2010  ) . The analysis 
of the spatial and temporal trends of fi res is crucial to understand the underlying 
causes of the fi res and their environmental and socio-economic impacts, assuming a 
key role in fi re prevention and management. The purpose of this section is to analyze 
the spatial and temporal trends of fi re frequency (number of fi res) and burned area 
size, two essential components of the fi re regime of an area. 

 The analysis of the number of fi res, total burned area and average fi re size was 
carried out at different spatial levels:

   At regional (supranational) level, considering the Euro-Mediterranean region as • 
a whole, with the purpose of characterizing its fi re regimes, known to be 
markedly different from the rest of Europe. The region under study, shortly 
referred to as EUMed in what follows, comprises Portugal, Spain, France, Italy 
and Greece;  
  At country level, by analyzing the data of each country individually in order to • 
assess differences between countries that may depend on national settings and 
policies;  
  At province level (NUTS3), to investigate the potential infl uence of local • 
environmental and socio-economic conditions.    

 Temporal trends were analyzed separately for the whole study period (1980–2009) 
and for the last 10 years (2000–2009). These trends were compared using the 
Mann–Kendall test, a non-parametric statistical test used to identify trends in time 
series data (Kendall  1975  ) . In addition, seasonal trends were also characterized both 
at regional and country levels, by examining separately the months corresponding 
to the main fi re season (June to October) and the other months. 

    2.3.1   Overall Trends for the EUMed Region 

 The general trend for the whole study period was a slight increase in the number of 
fi res (Fig.  2.1 ), even though annual fl uctuations are evident. In the 1990s a substan-
tial increase was observed, while in the last 10 years (since 2000), the number of 
fi res decreased, except for the years 2003 and 2005. The increase observed in the 
1990s can be partly due to the changes in the reporting systems in the countries, 
mostly driven by EC regulations. Other reasons for the rise in the number of fi res 



26 J. San-Miguel-Ayanz    et al.

during this period may be associated with fuel accumulation related to land cover 
changes such as the expansion of shrublands and abandonment of agricultural lands 
(Carmo et al.  2011 ; Lloret et al.  2002 ;    Romero-Calcerrada et al.  2008 ). The results 
of the Mann–Kendall test showed that, for the entire study period, the general trend 
is an increase, but not signifi cant ( S  = 64,  P  = 0.14). For the last 10 years, on the 
contrary, a signifi cant decreasing trend was observed ( S  = −25,  P  = 0.032).  

 The burned area, on the other hand, showed a decreasing trend since 1980, with 
strong annual fl uctuations (Fig.  2.2 ). The results of the Mann–Kendall test show 
that, for both periods, the general trend was a decrease, but signifi cant only when 
considering the entire time series ( S  = −88,  P  = 0.042). Besides the infl uence of 
weather conditions in fi re spread and burned area annually, this decrease is likely 
related to the implementation of fi re prevention strategies and to the improvement 
in fi re detection and fi re-fi ghting techniques observed during the last years.   

    2.3.2   Overall Trends by Country 

 The countries of the EUMed region showed different trends concerning the number 
of fi res (Fig.  2.3 ).  

 Comparing the entire time series with the last 10 years, different trends can be observed 
depending on the country (Table  2.2 ). Portugal, Spain and Greece showed an increasing 
trend for the whole study period, while France and Italy had a general decrease. 
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  Fig. 2.1    Total annual number of fi res in the EUMed region from 1985 until 2009, and resulting 
trend line       
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  Fig. 2.2    Total annual burned area (ha) in the EUMed region from 1985 until 2009, and resulting 
trend line       
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  Fig. 2.3    Annual number of fi res in the countries of the EUMed region from 1985 until 2009       

 

 



28 J. San-Miguel-Ayanz    et al.

Both the increasing trend observed for Portugal and the decreasing trend of Italy 
are signifi cant. In the last decade, a decrease was observed for all the countries, 
signifi cant only for Portugal, which had a median decrease of over 1,500 fi res per 
year (Sen slope).  

 In relation to the total burned area, the differences among the countries were also 
evident (Fig.  2.4 ). Until the end of the 1990s, Spain usually had the highest burned 
area, but since 2001 Portugal recorded the highest values, particularly in 2003 and 
2005, decreasing considerably afterwards. France and Greece showed, in general, 
the lowest values of area burned for the whole period, but in Greece the years 2000 
and 2007 showed a substantial increase in area burned, in the latter case exceeding 
all the other countries.  

 Results of the Mann–Kendall test (Sen  1968 ) suggests a decreasing trend in all 
countries during both periods (Table  2.3 ), with the exception of Greece, where an 
increasing trend was observed for the last decade. However, a signifi cant trend was 
observed only for Spain and Italy, which showed a median annual decrease in area 
burned of 5,175 ha for Spain and 3,243 ha for Italy, for the whole period. The test was 
not signifi cant for Portugal and France. It must be noted that the Mann–Kendall test, as 
a non-parametric test, does not consider the absolute change in magnitude from year to 
year, but just the tendency in a rank ordering of the burnt areas for sequential years.  

 The average fi re size showed a dissimilar spatial trend in relation to the number 
of fi res and burned area, with Greece showing the highest values for nearly all 
the years, with particular incidence in 2007 (Fig.  2.5 ). For all the other countries, 
the average fi re size decreased continuously since the 1980s, with annual oscillations 
more evident in Spain in 1994, in Portugal in 2003 and in Italy in 2007.   

    2.3.3   Overall Trends by Province (NUTS3) 

 The overall trend in the number of fi res is very irregular depending on the province, 
although general patterns can be observed by country (Fig.  2.6 ). Portugal and Spain 

   Table 2.2    Results of the Mann–Kendall test ( S ), associated probabilities ( P ), and Sen slope for the 
number of fi res by country in both periods   

 Time period  Portugal  Spain  France  Italy  Greece 

 1985–2009 
   S    110   82  −28   −164   22 
   P   0.011  0.058  0.528  <0.001  0.623 
 Sen slope  801.9  396.9  −33.0  −346.2  5.97 
 2000–2009 
   S    −27   −21  −7  −7  −17 
   P   0.020  0.073  0.592  0.592  0.152 
 Sen slope  −1554.0  −1134.0  −157.5  −201.2  −118.0 

   Note : Negative values mean a decrease and positive values mean an increase. Signifi cant values are 
signaled in bold  
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have the majority of provinces with a signifi cant increasing trend, while Italy and 
Greece have more provinces with a signifi cant decreasing trend. However it should 
be noted that the Greek data at NUTS3 level after 1998 are incomplete, because of 
changes in the reporting system in the country. In the case of Italy, an exception 
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  Fig. 2.4    Annual burned area (ha) in the countries of the EUMed region from 1985 until 2009       

   Table 2.3    Results of the Mann–Kendall test ( S ), associated probabilities ( P ), and Sen slope for the 
burned area by country in both periods   

 Time period  Portugal  Spain  France  Italy  Greece 

 1985–2009 
   S   −6  − 100   −52  − 96   −68 
   P   0.907  0.020  0.233  0.026  0.117 
 Sen slope  −101.6  −5175.0  −473.5  −3243  −1703 
 2000–2009 
   S   −19  −9  −21  −5  11 
   P   0.107  0.474  0.074  0.720  0.371 
 Sen slope  −14016.0  −6232.0  −2215.0  −1443.0  2127.0 

   Note : Negative values mean a decrease and positive values mean an increase. Signifi cant values are 
signaled in bold  
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occurs in Sicily, where all provinces showed increasing trend or no trend, while in 
Sardinia almost all the provinces had a decreasing trend. In France, most of the 
provinces with available data indicated no trend or a decreasing trend. The situation 
changed when considering only the data between 2000 and 2009. There are just few 
provinces in the whole study area with a signifi cant trend, either increasing or 
decreasing, possibly because the time series is too short at this scale of analysis.  

 The burned area, on the other hand, evidenced a general signifi cant decreasing 
trend for most provinces both between 1985 and 2009 and in recent years (Fig.  2.7 ).   

    2.3.4   Seasonal Trends 

 Seasonal trends were analyzed at country and regional levels. The average number 
of fi res and average burned area per month between 1985 and 2009 for the EUMed 
region (Table  2.4 ) showed that the months with higher number of fi res and burned 
area were August, July and September, respectively. Nearly 73% of the number of 
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fi res and nearly 85% of the burned area occurred between June and October. March 
showed a higher number of fi res and burned area in comparison with the other 
spring months.  

 At country level, the average trend across months is similar for all countries, 
even though the absolute number of fi res and burned area is highly variable (Figs.  2.8  
and  2.9 ).   

  Fig. 2.6    Trend in the number of fi res by province in the EUMed region between 1985–2009 ( top ) 
and between 2000–2009 ( bottom ) obtained with the Mann–Kendall test       
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 Portugal showed the highest average number of fi res between June and November, 
while in the other months it is surpassed by Spain and in January and February also 
by Italy. Greece had the lowest average number of fi res recorded in the database in 
all months; however it must be noted that the detailed data by month for the last 
2 years is not yet available for this country. 

  Fig. 2.7    Trend in the burned area (ha) by province in the EUMed region between 1985 and 2009 
( top ) and between 2000 and 2009 ( bottom ), obtained from the Mann–Kendall test       

 



332 Land Cover Change and Fire Regime in the European Mediterranean Region

 The burned area had a different trend; Spain had the highest values for all months, 
followed by Portugal and Italy. France and Greece showed the lowest values 
(see Fig.  2.9 ). Between July and September the average burned area increased 
substantially in all the countries, refl ecting the general weather conditions of this 
period that promote fi re occurrence (hot and dry summer). 

 Based on these results, the data by country were divided in two different seasons: 
from June to October, corresponding to the season when most of the fi res occur, and 

   Table 2.4    Annual average (1985–2009) number of fi res and burned area per month in the fi ve 
countries of the EUMed region   

 Month 
 Number of 
fi res 

 % of total 
number of fi res 

 Burned 
area (ha) 

 % of total 
burned area 

 January  196  2.0  1,396  1.6 
 February  484  4.9  2,918  3.3 
 March  892  9.1  4,730  5.3 
 April  509  5.2  2,270  2.6 
 May  318  3.2  1,085  1.2 
 June  729  7.4  4,307  4.8 
 July  1,754  17.8  23,198  26.1 
 August  2,548  25.9  31,451  35.4 
 September  1,618  16.4  12,790  14.4 
 October  4,98  5.1  3,055  3.4 
 November  176  1.8  6,83  0.8 
 December  134  1.4  1,028  1.2 
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  Fig. 2.8    Average number of fi res per month in the EUMed countries       
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November to May. Comparing the whole time series with the last decade, the average 
number of fi res has increased in both seasons in Portugal and Spain (Fig.  2.10 ). In 
Italy it decreased in both periods. In France it increased in June-October but 
decreased in November-May, whereas the opposite trend was observed in Greece.  

 In relation to the burned area, Portugal showed an increase in the last decade in 
both seasons (although no signifi cant trend was found for the overall season in 
Table  2.3 , so this should be interpreted with caution) and Italy a slight increase in the 
June-October season (Fig.  2.11 ). In the season November-May, Spain and Italy have 
the highest average of burned area in both periods, while Portugal is in third position 
in spite of the observed increase.    
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  Fig. 2.9    Average burned area (ha) per month in the EUMed countries       
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    2.4   Land Cover Changes in Burned Areas 

 In this section we aimed to carry out a detailed analysis of land cover changes that 
occurred in areas affected by fi res during the period 2000–2006 in several Southern 
Europe countries. This was done using the CORINE land cover maps (CLC maps, 
hereafter) available for 2000 and 2006, and the European Fire Database (EFFIS) 
containing the annual forest fi re information compiled by EU Member States and 
other European countries (  http://effi s.jrc.ec.europa.eu    ). EFFIS database was used 
for the period 2000–2006. The countries studied included Portugal, Spain, France 
and Italy. Greece was excluded because the 2006 CLC map was not available for 
that country. 

 We worked with the second level of CORINE land cover data and when the 
results of the analysis indicated the occurrence of a major type of transition at a 
country level, the third level was used. The areas that were burned in each country 
and for each year throughout the studied period were obtained after the annual fi re 
maps of the EFFIS database. For each country, a set of seven masks was derived 
from these fi re maps; i.e. one mask for each year from 2000 to 2006. All fi res 
smaller than 50 ha were discarded for the creation of the mask. 

 Each year the mask was used for extracting two new layers from the two CLC 
maps of each country. The layer derived from the CLC 2000 map would represent 
the land cover pre-fi re situation in the areas burned that year, whereas the layer 
derived from the CLC 2006 map would represent the land cover post-fi re situation 
in those same areas. For each year, we combined the two corresponding layers, 
obtaining a fi nal fi le in which each polygon would correspond to a given transition 
of land covers between CLC2000 and CLC2006 and would refl ect this information 
in its attribute table. Based on these data, we generated seven transitional matrices 
for each country (one per year) and selected, in each case, the major transitional 
classes to be analyzed at the second CLC data level. An overall transition matrix was 
also calculated by pooling the data from all countries. Land cover transitions rep-
resenting less than 50 ha were excluded. 
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  Fig. 2.11    Comparison of the average burned area for 1985–2009 and 2000–2009 in both 
seasons       
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    2.4.1   Main Land Cover Types Affected by Wildfi res 

 During the study period (2000–2006), the total burned area in the four considered 
countries was 1,395,119 ha (only considering fi res larger than 50 ha). Half of 
this area (51%) consisted of CLC Level 2 class 32 (“Scrub and/or herbaceous 
associations”), followed by class 31 (“Forests”) (34%). At CLC Level 3 fi res 
affected mainly class 324 (“Transitional woodland-scrub”), corresponding to 23% 
of the total, class 312 (“Coniferous forest”) (15%), followed by classes 311 
(“Broad-leaved forest”) (12%) and classes 313 (“Mixed forest”), 321 (“Natural 
grassland”), 322 (“Moors and heathland”) and 323 (“Sclerophyllous vegetation”), 
representing each ca. 9% of the total burned area.  

    2.4.2   Land Cover Changes in Burned Areas 

 Overall, a total of 1,016,055 ha of burned areas (72.8% of the total) did not change 
their land cover after fi re. The land covers with less persistence in burned areas were 
Forests, Open spaces with little or no vegetation, and Inland wetlands (Table  2.5 ). 
Caution should be taken in interpreting the fi nding for the latter land cover, as the 
area with this land cover was very small (150 ha) and thus prone to signifi cant 
proportional changes even with small variations in polygon boundaries. From the 
remaining 379,064 ha in which changes occurred, 76.9% became class 32 (“Scrub 
and/or herbaceous associations”) and 19.6% became class 33 (“Open spaces with 
little or no vegetation”).  

 The transition matrix for the overall burned area (Table  2.5 ) showed that the 
main changes driven by fi re were the transition from forests to open spaces with 
little or no vegetation (over 50% of the forests in 2000 suffered this transition). The 
transition from Open spaces with little or no vegetation to Scrub and/or herbaceous 
vegetation was also relevant (45%), as well as Inland wetlands to Inland waters 
(46%) Other important transitions were from Arable land to Artifi cial, non-agricultural 
vegetated areas (15%). Of these transitions, only the former can be clearly attributed 
to fi re effects. 

 In Italy, the total area burned during the study period was 79,118 ha (5.7% of 
the total burned area in the four countries). Fires affected mainly class 211 
“Non-irrigated arable land” (22% of the total area burned in the country), class 321 
(“Natural grassland”) and class 323 (“Sclerophyllous vegetation”) representing 
each one ca. 19% of the total area burned, and class 311 (“Broad-leaved forest”) 
(15%). 68,621 ha of burned areas (86.7% of the total) did not change land cover 
after fi re. From the 10,497 ha that suffered land cover changes, 31% became class 
323 (“Sclerophyllous vegetation”), 19% became class 321 (“Natural grassland”), 
11% became class 333 (“Sparsely vegetated areas”), 10% became class 243 (“Land 
principally occupied by agriculture with signifi cant areas of natural vegetation”) 
and 8% became class 334 (“Burned areas”). 
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 In France, the total area burned during the study period was 67.727 ha (4.8% of 
the total area burned in the four countries). Fires affected mainly classes 323 
(“Sclerophyllous vegetation”) and 321 (“Natural grassland”), corresponding to 31% 
and 17%, respectively, of the total area burned in the country. In addition, fi res 
affected also classes 313 (“Mixed forest”) and 312 (“Coniferous forest”) represent-
ing each one ca. 10%. 41,740 ha of the burned areas (61.6% of the total) did not 
change land cover after fi re. From the 25,987 ha that changed land cover trype, 41% 
became class 334 (“Burned areas”), 30% became class 324 (“Transitional woodland 
scrub”) and 20% became class 323 (“Sclerophyllous vegetation”). 

 In Spain, the total area burned during the study period was 492,243 ha (35.3% of 
the total area burned in the four countries). Fires affected mainly class 324 
(“Transitional woodland scrub”), corresponding to 27% of the total area burned in 
the country, and class 323 (“Sclerophyllous vegetation”) (14%). Classes 321 
(“Natural grassland”), 312 (“Coniferous forest”) and 313 (“Mixed forest”) were 
also strongly subjected to fi res (12%, 11% and 10%, respectively, of the total burned 
area). 381,982 ha of the burned areas (77.6% of the total) did not change land 
cover after fi re, whereas 110,261 ha did. Among the latter, 47% became class 324 
(“Transitional woodland scrub”) and 29% became class 334 (“Burned areas”). 

 In Portugal, the total area burned during the study period was 756,031 ha. This 
country had, therefore, the largest proportion (54.2%) over the total area burned 

   Table 2.5    Transition matrix for the period 2000–2006 in the burned areas in Portugal, Spain, 
France and Italy   

 CLC2006 

 11  12  13  14  21  22  23  24  31  32  33  41  51 

 C
L

C
20

00
 

 11   1.00   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
 12  0.00   1.00   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
 13  0.00  0.00   1.00   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
 14  0.00  0.00  0.00   1.00   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
 21  0.00  0.00  0.00   0.15    0.82   0.00  0.00  0.01  0.00  0.01  0.00  0.00  0.00 
 22  0.00  0.00  0.00  0.00  0.00   0.87   0.01  0.05  0.00   0.07   0.01  0.00  0.00 
 23  0.00  0.00  0.00  0.00  0.00  0.00   1.00   0.00  0.00  0.00  0.00  0.00  0.00 
 24  0.00  0.00  0.00  0.00  0.01  0.00  0.00   0.96   0.00  0.02  0.01  0.00  0.00 
 31  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.41    0.51    0.07   0.00  0.00 
 32  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.94   0.05  0.00  0.00 
 33  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.45    0.54   0.00  0.00 
 41  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.54    0.46  
 51  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   1.00  

   Note : Each row provides the proportion of the initial land cover (in 2000) that persisted or changed 
to other land cover in 2006. Italic cells indicate the persistence values (diagonal) and Bold 
indicate the main transitions (over 5%). Codes for land cover are: Urban fabric (11); Industrial, 
commercial and transport units (12); Mine, dump and construction sites (13); Artifi cial, non-agricultural 
vegetated areas (14); Arable land (21); Permanent crops (22); Pastures (23); Heterogeneous 
agricultural areas (24); Forest (31); Scrub and/or herbaceous associations (32); Open spaces with 
little or no vegetation (33); Inland wetlands (41); Inland waters (51)  
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in the four countries. Fires affected mainly class 324 (“Transitional woodland 
scrub”), corresponding to 24% of the burned area, class 312 (“Coniferous forest”) 
(19%), class 311 (“Broad-leaved forest”) (15%) and class 322 (“Moors and heath-
land”) (11%). 469,533 ha of burned areas (62.1% of the total) did not change land 
cover after fi re, whereas 286,498 ha did, of which 81% became class 324 
(“Transitional woodland scrub”), 7% class 334 (“Burned areas”) and 3% class 
322 (“Moors and heathland”). 

 Classifying all the CLC transition classes into agradative (any transition result-
ing in an increase of the vegetation cover or leading to a more advanced succes-
sional stage), degradative or stable categories, we found clear differences among 
the considered countries in the distribution of the total burned area among these 
three types (Table  2.6 ). In Portugal, Spain and France, the post-fi re land cover 
changes occurred in areas burned between 2000 and 2006 mostly favoured degra-
dative transitions. This degradation trend was particularly strong in Portugal and 
Spain. In France, agradative transitions represented a slightly larger area than 
degradative ones.  

 These results suggest a slow post-fi re vegetation dynamics in most of the coun-
tries studied. In all of them, except France, degradative transitions accounted for the 
largest part of the land cover changes that occurred on burned areas. Moreover, a 
large part of the areas classifi ed as 33 (“Open spaces with little or no vegetation”) in 
CLC 2000 had remained in that same class in CLC 2006, not evolving to classes 
with increased vegetation cover or towards more mature successional stages. This 
slow dynamics may be due to various factors. First of all, in Spain and Portugal 
(the two countries with the smallest proportion of agradative transitions), more 
adverse climatic conditions (i.e. dryer conditions) in many of the areas affected by 
fi res may have caused lower rates of post-fi re vegetation recovery. Secondly, in 
those two countries, a large part of the fi res occurred in the last 2 years of the studied 
period (2005 and 2006). In Spain and Portugal, these fi res accounted for 38% and 
33%, respectively, of the total burned area in each case, whereas in Italy and France, 
these values were much lower (26% and 11%, respectively). In the two former 
countries, thus, a larger extent of burned areas had a very short time to recover, 
which, obviously, infl uenced the results. 

 In general, the length of the study period was short, as the maximum post-fi re 
period that could be monitored was 6 years. We have to highlight, therefore, that in 
most cases our results are documenting post-fi re land cover dynamics on the short 
(or sometimes medium) term.   

   Table 2.6    Distribution of the total burned area per country between agradative, degradative and 
stable land cover transitions   

 Italy  France  Spain  Portugal 

 ha  %  ha  %  ha  %  ha  % 

 Agradative transitions   4,187   5.3  13,331  19.7   36,736   7.5   42,717   5.7 
 Degradative transitions   6,308   8.0  12,667  18.7   73,524  14.9  243,774  32.2 
 Stable transitions  68,621  86.7  41,740  61.6  381,982  77.6  469,533  62.1 
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    2.5   Fire Effects on Land Cover Change Dynamics 
in the Period 2000–2006 

 In this section our aim was to evaluate the role of fi re in the observed landscape 
dynamics at European level. The land cover dynamics analysis consisted in the 
comparison of the observed land cover change and transitions in burned and 
unburned areas. This analysis was carried out using CORINE Land Cover (CLC) 
data for 2000 and 2006 and the fi re perimeters for fi res larger than 500 ha obtained 
from the EFFIS database. 

 The results obtained for land cover dynamics analysis are presented in this section 
as transition matrices. For each of a total of 702 fi re perimeters, we considered a 
paired unburned area with a similar shape, and surrounding the burned patch. To 
characterize land cover change, the thematic legend (third level) of the CLC layer 
has been aggregated into a new one composed by six main categories (urban, artifi -
cial, agricultural, forest, shrubland and no vegetation areas) in order to simplify the 
land cover dynamics analysis. This has been done both for CLC 2000 and 2006, and 
as result two new land use layers were obtained. A transition matrix was computed 
separately for each burned – unburned patch pair. The differences between these 
two matrices were then summarized in a new matrix called change-intensity matrix 
which represented the rates of land cover change in burned versus unburned areas. 

 In unburned areas (Table  2.7 ), persistence of the land covers (diagonal values of 
the matrix) were always larger than 90% with the exception of forests and areas 
with no vegetation, where it decreased to ca. 70%. The main transitions were from 
forests to shrublands (26%) and no vegetation to shrublands (30%). The latter tran-
sition seems to refl ect the process of secondary succession and scrub encroachment, 
probably in former burned areas, sparsely vegetation areas or even bare ground. The 
former is probably a consequence of forest logging. In burned areas, the persistence 
pattern of the different land cover types was similar to the one of unburned areas: 
also always larger than 90% with the exception of forests and areas with no vegeta-
tion, but is this case it was even lower, ca. 35–50% (Table  2.7 ). Here the main transi-
tions were also from forests to shrublands (57%) but also to areas with no vegetation 
(6%), from areas with no vegetation to shrublands (49%), and, to a lesser extent, 
from shrublands to areas with no vegetation (6%). The transition of forests to shru-
blands and areas with no vegetation could be explained mainly by wildfi res. After 
fi res, in a period of 6 years (from 2000 to 2006) areas may not be able to have a 
signifi cant vegetation development, or only shrublands are able to grow in the early 
stages of succession. Even if there is forest recovery it will be in an earlier stage of 
development and would have a shrubland-like physiognomy, or would consist of a 
transition category between forest and shrub which in this work is categorized as 
shrubland (see proposed legend). The same driver (fi re) can explain the transition 
from shrublands to areas with no vegetation. In contrast, the signifi cant transition 
from areas with no vegetation to shrublands may be an evidence of post-fi re vegeta-
tion recovery, mainly in situations where the areas were burned in the beginning of 
the study period (2000). It must be taken into account that this land cover class 
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includes also burned areas and sparsely vegetated areas, thus the succession to 
shrubland-type vegetation is a possible explanation. Alternatively, misclassifi cation 
of the land cover types in the two different time periods could explain this result, if 
many areas with no vegetation in 2000 had been classifi ed as shrublands in 2006 
(but if that is the case this mistake must have been made also in unburned areas).  

 The intensity change matrix shows that wildfi res have caused changes in land 
cover dynamics (Table  2.7 ). In terms of persistence, fi re decreased the persistence for 
all land cover types except shrublands. So, fi re promoted faster land cover changes. 

 The more notorious decrease in persistence was for forests and areas with no 
vegetation. It is logical that forests are the land cover more easily changed by fi re, 
and thus less persistent. The trend for areas with no vegetation might again be 
explained by different criteria in classifying the same land cover in the two time 
periods. The major land cover transitions promoted by fi re were the forest to both 
shrubland cover (+30%) and to areas with no vegetation (+5%). So, as expected, fi re 
causes a much faster change from forests to areas with shrublands or no vegetation 
in the short term, compared to unburned areas. A similar trend was observed by for 
specifi c regions of Portugal and Spain (Lloret et al.  2002 ; Viedma et al.  2006 ; Silva 
et al.  2011 ). The other signifi cant transition was from shrublands to areas with no 
vegetation (+19%), although this could be interpreted as a simple maintenance of 
the same land cover in case the hypothesis of misclassifi cation is confi rmed. Other 
land cover transitions favored by fi re included shrublands to no vegetation (+3%) 
and agricultural areas to shrublands (+1.5%), the latter either refl ecting a trend for 
the abandonment of agriculture in burned areas, as hypothesized by Silva et al. 
( 2011 ) for three regions in Portugal, or the assignment of different categories to the 
same land cover (e.g. pastures versus natural grasslands). 

 Land cover transitions promoted by the absence of fi re were less notorious. 
Larger differences were registered for the transition from shrublands to forest 
(−4%), refl ecting secondary succession in the vegetation, from areas with no vege-
tation to artifi cial and agricultural areas (−0.8%), and from agricultural to urban 
areas (−0.8%). The latter transitions suggest that urbanization processes are more 
common in unburned areas, compared to the burned ones.  

    2.6   Key Messages 

    Land cover changes in Southern Europe in the period 1990–2006 suggest a • 
decrease in fi re hazard in this region, as landscape changes corresponding to 
increased fi re hazard occur in a smaller geographic area (4.9 million hectares) 
than transitions corresponding to decreased fi re hazard (5.4 million hectares). 
This might be explained by disturbances such as logging, drought, wildfi res, as 
well as urbanization;  
  Compared with the overall period 1985–2009, changes in the fi re regime have • 
been observed in the last 10 years (2000–2009) in Southern Europe. The long-term 
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trend for the number of fi res was an increase, but in the last 10 years the trend 
was the opposite, a high decrease. In relation to the total burned area, the general 
trend is for a decrease, lower when considering the entire time series and more 
pronounced in the last 10 years. For the period 1980–2009, the provinces with a 
high increase in both number of fi res and burned area, were located in Portugal, 
Central Spain, Southern Sicily and Southeast France. The decreasing trends were 
found mostly in the Northern provinces of Spain and in Central Greece. The 
majority of the provinces of Italy and Greece showed no trend. For the period 
2000–2008, the majority of provinces in all the countries show a decreasing 
trend, with a few exceptions in France and Italy;  
  The average number of fi res has substantially increased in Portugal and Spain in • 
both the “fi re season” (June to October) and the rest of the year, while for the 
other countries the trend is more constant;  
  In the period 2000–2006, fi res burned mainly areas of forest and shrublands. The • 
main CORINE land cover categories affected were “Transitional woodland-
scrub” (23% of the total burned areas, “Coniferous forest” (15%), followed by 
“Broad-leaved forest”, “Mixed forest”, “Natural grassland”, “Moors and heath-
land” and “Sclerophyllous vegetation” (ca. 10% each). Almost 97% of the areas 
burned during 2000–2006 changed their land cover to “Scrub and/or herbaceous 
associations” or “Open spaces with little or no vegetation”;  
  Wildfi res affected landscape change dynamics. Fire decreased the persistence • 
for all land cover types except shrublands. The major land cover transitions 
promoted by fi re were the forest to both shrublands (+30%) and to areas with no 
vegetation (+5%). The other signifi cant transition was from shrublands to areas 
with no vegetation (+19%), although this could be interpreted as a simple 
maintenance of the same land cover that was classifi ed differently. Land cover 
transitions promoted by the absence of fi re were less obvious. Larger differences 
were registered for the transition from shrublands to forest (−4%), refl ecting 
secondary succession in the vegetation.         
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This appendix introduces the first steps in estimating 

the spatial variation of the explanatory factors of human 
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RESUMEN 

Este trabajo tiene como objetivo el análisis de la variación espacial de los factores explicativos de la 
causalidad humana en los incendios forestales en la España continental, utilizando técnicas de 
Regresión Logística dentro del contexto de los modelos de Regresión Ponderada Geográficamente. 
Para ello se ha realizado el análisis estadístico y la modelización espacial en entorno SIG, tanto de la 
ocurrencia histórica como de los principales factores explicativos. Los resultados indican que los 
valores más elevados de probabilidad de ocurrencia ligados a causalidad humana se asocian a zonas 
de interfase cultivo-forestal, especialmente en el sector noroeste y en los bordes de las zonas 
montañosas, y a zonas de interfase urbano-forestal, de gran importancia en la zona centro y el litoral 
mediterráneo. Estas dos variables son las de mayor carga explicativa en el modelo atendiendo a 
valores de t de Student, siendo significativas al 95%, llegando en algunas zonas a más del 99%. La 
cartografía evidencia además el carácter explicativo de algunas variables de implantación lineal como 
tendidos eléctricos, líneas de ferrocarril o pistas forestales. El grado de ajuste del modelo, calculado 
mediante R2 local de la muestra de calibración, se sitúa en un valor promedio de 0,7. El porcentaje de 
acierto en la clasificación de la ocurrencia es de 87% y 76%, con un acuerdo de 0,73 y 0,52 según la 
Kappa de Cohen, para los periodos 1988-2007 y 2008-2011 respectivamente. 

PALABRAS CLAVE

Riesgo de incendio, causalidad humana, incendios forestales, GWR, modelado SIG. 

ABSTRACT 

This work aimed to analyze the spatial variation in the explanatory factors of human-caused wildfires 
in the continental Spain using Logistic Regression techniques within the framework of Geographically 
Weighted Regression models. To this end, statistical analysis and spatial modeling in GIS environment 
of the historical occurrence and the main explanatory factors was carried out. Results suggest that 
high fire risk rates are related to Wildland-Agricultural interface, especially in the northwest and along 
the edges of the mountainous areas, and to Wildland-Urban interface, mainly in the central Spain and 
the Mediterranean coast. These two variables are the most explanatory burden on the model response 
to Student's t values, being significant at p<0.05, reaching in some areas over p<0.01. The mapping 
also evidences the importance of the explanatory variables with linear deployment as power lines, 
railroads or trails. The degree of fit, calculated using local R2 with the calibration sample, is at an 
average value of 0.7. The percentage of accurate classification of occurrence is 87% and 76%, with an 
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agreement of 0.73 and 0.52 by Cohen's kappa for the validation periods 1988-2007 and 2008-2011 
respectively.

KEY WORDS 

Fire risk, human causality, forest fires, GWR, GIS modeling. 

1 INTRODUCCIÓN
Los incendios forestales juegan un papel 

crítico en la transformación del paisaje, la 
sucesión de la vegetación, la degradación del 
suelo y la calidad del aire. Aunque el fuego ha 
sido utilizado históricamente como una 
herramienta para la gestión del uso del suelo y 
muchos ecosistemas están bien adaptados a los 
ciclos de incendios, los cambios recientes en 
cuanto al clima y los factores sociales 
relacionados con el fuego pueden transformar los 
regímenes tradicionales de incendio, 
incrementando sus efectos negativos. En este 
sentido, el papel del cambio climático en el 
aumento de la frecuencia de los incendios y la 
intensidad del fuego se ha documentado en 
varios ecosistemas (Kasischke y Turetsky, 2006; 
Westerling et al., 2006). Las actuales 
proyecciones climáticas apuntan hacia peores 
condiciones en las próximas décadas para la 
mayoría de las regiones tropicales y boreales 
(Flannigan et al., 2005). Además de los efectos 
globales, los incendios tienen efectos locales 
también importantes, comúnmente asociados a 
frecuencia e intensidad del fuego, lo que implica 
degradación y erosión del suelo, pérdida de vidas 
y biodiversidad y daños en propiedades e 
infraestructuras (Omi, 2005). 

Por otro lado, la dinámica de los regímenes 
de incendios en el sur de Europa se relaciona 
principalmente con factores humanos. De hecho, 
la causalidad humana es responsable de más del 
95% de los incendios que tienen lugar en esta 
región (San-Miguel y Camiá, 2009), si bien 
existen variaciones espaciales en su contribución 
al total de la ocurrencia. En este contexto, las 
mejoras e innovaciones en la estimación del 
riesgo de incendio son de vital importancia para 
reducir los impactos negativos, por cuanto 
además de facilitar la prevención ayudan a dirigir 
actuaciones tendentes a disminuir la gravedad o 
intensidad de la quema a través de la gestión del 
combustible, u orientar los tratamientos post-
incendio. Además, la determinación de los 
factores causales facilita la proyección a 
escenarios de riesgo futuro en condiciones 
climáticas de cambio. A pesar de la importancia 
de los aspectos humanos en la ocurrencia, poco 
trabajo se ha dedicado a este tema, tal vez 
debido a la complejidad de predecir el 
comportamiento humano, tanto en el espacio 
como en el tiempo.  

Por otra parte, el ajuste de modelos 
estadísticos de estimación del riesgo, 
previamente abordados para diferentes regiones 
dentro de la Península Ibérica (Chuvieco et al., 
2010), ha puesto en evidencia que los factores 
explicativos también varían espacialmente en su 
significación y contribución. Como consecuencia, 
la utilización de métodos globales de regresión 
para territorios extensos y variados, como el 
ahora analizado, resulta inadecuada al aplicar 
coeficientes constantes. Para superar esta 
limitación, en el presente trabajo se han utilizado 
técnicas de regresión ponderada 
geográficamente (GWR, Geographically Weighted 
Regression) (Fotheringham et al., 2002), que 
permiten incorporar en los modelos la variación 
espacial de la carga explicativa de las variables 
predictivas. Se pueden encontrar ejemplos de uso 
de GWR aplicada a diversos campos de estudio 
en Li et al. (2010), Lu et al. (2011), Tu (2011), 
Cardozo et al. (2012) o Su et al. (2012), y 
aplicada concretamente a la ocurrencia de 
incendios forestales en Koutsias et al. (2005) y 
Martínez y Koutsias (2011).  

En este contexto se ha aplicado la Regresión 
Logística (LR, Logistic Regression) binaria, 
comúnmente utilizada para la explicación 
probabilística de la ocurrencia de causa humana 
(Martínez et al., 2004; Vasconcelos et al., 2001; 
Vega-García et al., 1995; Chuvieco et al., 2010). 
El ajuste del modelo GWLR (Geographically 
Weighted Logistic Regression) ha requerido el 
análisis estadístico y espacialización tanto de la 
ocurrencia histórica 1988-2007 como de una 
amplia cantidad de variables explicativas, 
seleccionadas a partir de la experiencia previa en 
modelos regionales y nacionales (Vilar et al., 
2008; Martínez et al., 2009; Chuvieco et al., 
2010). Dicho ajuste se ha llevado a cabo 
utilizando una muestra aleatoria del 60%, 
reservando el 40% restante para el proceso de 
validación. Asimismo, se ha utilizado una 
segunda muestra de validación confeccionada a 
partir de la ocurrencia registrada durante el 
periodo 2008-2011. El objetivo de este trabajo es, 
por tanto, la modelización y análisis de la 
variación en el territorio de los factores antrópicos 
ligados a la ocurrencia de incendios forestales 
mediante el uso de técnicas GWLR. Este trabajo 
se ha desarrollado en el marco del proyecto 
FIREGLOBE (www.fireglobe.es, Chuvieco et al., 
2011). 
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En los siguientes apartados se detalla el 
método seguido para la modelización de la 
variación espacial de los factores explicativos. A 
continuación se presentan los principales 
resultados obtenidos. Seguidamente se muestra 
el grado de ajuste del modelo así como los 
resultados del proceso de validación. Finalmente 
se presenta por una parte la comparación de los 
resultados obtenidos con algunos estudios 
previos así como las principales conclusiones y el 
trabajo futuro a desarrollar. 

2 METODOLOGÍA
La metodología para el modelado de la 

causalidad humana en incendios forestales se 
basa en el uso de técnicas de GWLR. Al igual 
que los modelos de Regresión Logística Global 
(GLR, Global Logistic Regression), los modelos 
GWLR son de naturaleza estadística y permiten 
conocer la relación entre una variable 
dependiente cualitativa, dicotómica en nuestro 
caso, y una o más variables explicativas 
independientes, o covariables, ya sean 
cualitativas o cuantitativas. Por lo tanto, para su 
desarrollo se requiere por una parte una variable 
dependiente binaria, en este caso la alta/baja 
ocurrencia de incendios, y por otra una serie de 
variables explicativas que se enumerarán más 
adelante. En la figura 1 se muestra un esquema 
del flujo de trabajo seguido para la modelización 
de la causalidad humana. 

 
Figura 1. Flujo de trabajo para el modelado de la 
causalidad humana en incendios forestales. 

2.1 Variable dependiente
La variable dependiente binaria –alta/baja 

ocurrencia de incendios– está construida a partir 
de la base de datos de incendios en España en el 
periodo 1988-2007 (MARM), utilizando para su 
espacialización la retícula de 10x10 km utilizada 
por los servicios de extinción para la localización 
parcial de los fuegos y la cartografía digital de 
municipios en España. De este modo, tras la 
depuración de la base de datos, se han 

seleccionado y espacializado los incendios de 
causa humana de más de 1 ha a través de la 
asignación aleatoria de cada uno de ellos a su 
respectiva combinación de cuadrícula /municipio, 
acotado además a la zona forestal (de la Riva et 
al., 2004; Amatulli et al., 2007). Esto permite el 
cálculo de mapas de densidad de incendios con 
resolución de 1x1 km. Estos valores de densidad 
se han dicotomizado en alta (1) y baja ocurrencia 
(0) mediante la separación de la muestra en 
terciles, considerando alta ocurrencia el tercer 
tercil (muestra por encima del percentil 66 –1,83 
incendios/km2–) y baja ocurrencia el primer tercil 
(muestra por debajo del percentil 33 –1,00 
incendio/km2–), descartándose del análisis el 
segundo tercil. 

2.2 Variables independientes
Como ya se ha dicho anteriormente, las 

variables explicativas han sido seleccionadas a 
partir de la experiencia previa en modelos 
regionales y nacionales (Vilar et al., 2008; 
Martínez et al., 2009; Chuvieco et al., 2010). Las 
variables explicativas consideradas son: 

 Interfases. Superficie ocupada por el 
buffer de 200 metros desde la línea de 
contacto hacia la zona forestal: 

- Interfase urbano-forestal (ICF), 
derivada del Mapa Forestal de 
España 1:200000 (MFE200). 

- Interfase cultivo-forestal (IUF), 
obtenida del MFE200. 

- Interfase pasto-forestal (IPF), 
derivada del MFE200. 

 Montes de Utilidad Pública. Delimitación 
de la superficie ocupada por montes 
incluidos en el catálogo de Utilidad 
Pública. 

 Espacios protegidos. Delimitación de la 
superficie ocupada por espacios 
naturales protegidos (ENP) y Red Natura 
2000. 

 Variación en el potencial demográfico 
1991-2006 (Calvo y Pueyo, 2008).  

 Cambios en la ocupación del suelo. 
Pérdida o ganancia de superficie 
ocupada por suelo forestal. 

 Líneas eléctricas. Superficie ocupada 
por el buffer de 50 metros a cada lado 
de la red de transporte de alta, media y 
baja tensión, obtenida de la Base 
Cartográfica Numérica 1:200000 
(BCN200). 

 Líneas de ferrocarril. Superficie ocupada 
por el buffer de 200 metros a cada lado 
de la red de ferrocarril (excluyendo la red 
de alta velocidad), obtenida de la 
BCN200. 
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 Pistas forestales. Superficie ocupada por 
el buffer de 200 metros a cada lado de la 
red de pistas forestales, obtenida de la 
BCN200. 

 Tasa de paro. Obtenida, por municipios 
para 2007, del Censo de Población y 
Viviendas 2001 (resultados actualizados 
para 2007) del Instituto Nacional de 
Estadística (INE). 

 Porcentaje de jefes de explotación 
mayores de 55 años. Obtenido a nivel 
municipal del Censo Agrario de 1999 del 
INE. 

 Ganado no estabulado. Número de 
cabezas de bovino a nivel municipal, 
obtenido del Censo Agrario de 1999 del 
INE. 

 Ocupados en el sector primario. 
Obtenido por municipios del Censo 
Agrario de 1999 del INE. 

 Densidad de maquinaria agrícola. 
Calculada como el cociente entre el total 
de maquinaria agrícola disponible 
(obtenido del Censo Agrario de 1999 del 
INE) y la superficie municipal. 

Todas estas variables han sido espacializadas 
con una resolución de celda de 1x1 km, al igual 
que la variable dependiente (figura 2). Para 
asegurar la consistencia de los resultados se ha 
llevado a cabo el análisis de colinealidad de las 
variables explicativas. 

Para determinar la variables que finalmente 
serían incluidas en el modelo, se ha ajustado un 
modelo GWLR incluyendo la totalidad de las 
variables consideradas, descartando del modelo 
final las que, o bien no han resultado 
significativas según el valor de t de Student 
(p<0,05), o el sentido explicativo obtenido según 
el modelo no era coherente con lo que cabría 
esperar en función de la experiencia previa y la 
opinión de expertos. Las variables utilizadas para 
el ajuste del modelo definitivo son: Interfase 
Cultivo-Forestal, Interfase Urbano-Forestal, 
Espacios Naturales Protegidos, Líneas Eléctricas, 
Pistas Forestales, Líneas de Ferrocarril y 
Densidad de Maquinaria Agrícola.  

2.3 GWLR
Las técnicas GWR extienden el uso 

tradicional de los modelos de regresión globales 
permitiendo el cálculo de parámetros de regresión 
locales. Tomando como punto de partida la 
ecuación típica de la regresión logística: 
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siendo (ui,vi) las coordenadas de localización en 
el espacio del punto i. 

De acuerdo con esto, la utilización de 
modelos GWLR permite obtener coeficientes de 
regresión cuyo valor varía espacialmente, 
obteniendo así un conjunto de coeficientes 
distinto para cada una de las localizaciones que 
conforman la muestra de análisis. Para ello, se 
ajusta un modelo de regresión para cada punto, 
considerando en el proceso la influencia de sus 
vecinos más próximos, a los que se les asigna un 
peso inversamente proporcional al cuadrado de la 
distancia (Fotheringham et al., 2002). El umbral 
de distancia se puede establecer –optimizar– 
mediante la minimización del cuadrado de los 
residuales (Cross-Validation, Cleveland, 1979) o 
mediante la minimización del Akaike Information 
Criterion (adaptado a GWR según Hurvich et al., 
1998). 

Además de los coeficientes de regresión, el 
modelo GWLR permite calcular una serie de 
parámetros estadísticos útiles como el valor de la 
t de Student de cada una de las variables 
explicativas (utilizado para determinar su nivel de 
significancia) y el valor del R2 local (es decir, el 
valor del R2 del modelo resultante en el punto al 
que se refiere el valor y sus vecinos), entre otros.  

No obstante, la GWLR no permite la 
estimación de los coeficientes de regresión en 
localizaciones en las que no se tiene observación. 
Con el fin de superar esta limitación y poder 
aplicar el modelo a la totalidad de la superficie del 
área de estudio, los coeficientes de regresión han 
sido interpolados utilizando métodos locales 
conservando así los valores originales de las 
localizaciones con observación y, por lo tanto, la 
consistencia interna del modelo. 

En este trabajo el ajuste del modelo GWLR se ha 
llevado a cabo utilizando una muestra aleatoria 
del 60% de la muestra total, reservando el 40% 
restante para el proceso de validación. La 
calibración del modelo se ha llevado a cabo 
utilizando Adaptive Kernel para la selección del 
número de vecinos, optimizado mediante Cross-
Validation. El número de vecinos considerados es 
de 914. 

398



XV Congreso Nacional de Tecnologías de la Información Geográfica, Madrid, AGE-CSIC, 19-21 de Septiembre de 2012 
Modelado de la variación espacial de los factores explicativos de la causalidad humana en incendios forestales mediante  

Regresión Logística Ponderada Geográficamente 
M. Rodrigues y J. de la Riva 

  

  

  

  

Figura 2. Variables consideradas en el modelo GWLR. 
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2.4 Ajuste y validación
El proceso de validación se ha llevado a cabo 

utilizando los valores de R2 local obtenidos 
durante la calibración del modelo y que permiten 
realizar una primera valoración del grado de 
ajuste del modelo. Por otra parte, se ha llevado a 
cabo la clasificación del porcentaje de acierto y el 
cálculo del grado de acuerdo según el valor de la 
Kappa de Cohen. Para ello se ha utilizado, por 
una parte, el 40% reservado de la muestra 1988-
2007 y, por otra, una segunda muestra de 
validación construida a partir de los incendios 
registrados durante el periodo 2008-2011. Estos 
últimos se han espacializado siguiendo el mismo 
proceso y los mismos umbrales para su 
clasificación en alta y baja ocurrencia que los 
aplicados para el periodo 1988-2007. La 
motivación para utilizar dos muestras de 
validación tomando sendos periodos es la de 
testar en la medida de lo posible el carácter 
prospectivo del método propuesto a través de la 
clasificación de la ocurrencia en un periodo 
distinto (2008-2011) al utilizado para la 
calibración del modelo (1988-2007). 

3 RESULTADOS
Los principales resultados obtenidos en la 

modelización de la causalidad humana en 
incendios forestales son: los coeficientes de 
regresión de las variables explicativas, la 
variación espacial en la significación de dichas 
variables y la probabilidad de ocurrencia de 
incendio relacionada con la causalidad humana. 

En la figura 3 se presenta la cartografía de los 
coeficientes de regresión interpolados asociados 
a las variables predictivas. Como se puede 
observar, los valores de estos coeficientes varían 
espacialmente como resultado del ajuste 
mediante GWLR. En este punto, debe resaltarse 
que estos valores no están directamente 
relacionados con un mayor o menor peso en el 
modelo, sino con las unidades de medida de las 
variables predictivas. Para conocer el grado de 
participación de las variables en la modelización 
deben tomarse como referencia los umbrales de 
significación, cartografiados en la figura 4. Dichos 
umbrales, además de guardar relación con el 
grado de participación de las distintas variables 
en el modelo, también aportan información acerca 
del sentido explicativo que juega cada una de 
ellas. De este modo, a mayor umbral de 
significación y, por tanto, mayor valor de la t de 
Student (con independencia de su signo), mayor 
es el peso de la variable en el modelo. Por otro 
lado, valores positivos en el umbral de 
significación conllevan una relación directa entre 
la variable explicativa en cuestión y la causalidad 
humana o, lo que es lo mismo, cuanto mayor es 
el valor de la variable predictiva mayor es la 

probabilidad de ocurrencia, y viceversa. En el 
caso contrario, es decir, valores de t de Student 
por debajo de 0, encontramos una relación 
inversa entre los valores de las variables 
explicativas y la ocurrencia, siendo menor la 
probabilidad de ocurrencia cuanto mayor es el 
valor de la variable. Para una correcta 
interpretación de estos resultados es importante 
resaltar en este punto el hecho de que la 
cartografía de umbrales de significación 
representa en cada uno de los puntos un valor 
obtenido del modelo calibrado localmente con 
una muestra compuesta por el punto en cuestión 
y los 914 vecinos más próximos, y no únicamente 
el valor obtenido en el punto representado.  

Un análisis más detallado de la cartografía de 
umbrales de significación permite observar que la 
mayor carga explicativa recae sobre la variable 
ICF. Contrariamente a lo que sucede con el resto 
de variables, que no superan el umbral de p<0,25 
en algunos puntos del territorio, la ICF aparece 
como significativa con p<0,05 en prácticamente la 
totalidad de las localizaciones. A esto hay que 
sumarle el hecho de que el sentido explicativo de 
la ICF en la causalidad humana es siempre 
positivo. Reseñable es también la contribución a 
la explicación de la causalidad de la IUF, que 
juega un papel importante en las localizaciones 
situadas en el triángulo imaginario formado por la 
zona central de la península (Comunidad de 
Madrid) y la costa mediterránea (especialmente el 
tramo Valencia-Barcelona). A continuación, 
ordenadas según su umbral de significación 
máximo aparecen las variables correspondientes 
a infraestructuras de implantación lineal: líneas de 
ferrocarril, tendidos eléctricos y pistas forestales. 
Las líneas de ferrocarril, al igual que la ICF, 
presentan un sentido explicativo positivo en todas 
sus localizaciones. En el caso de los tendidos 
eléctricos y las pistas forestales, si bien la mayor 
parte de sus localizaciones significativas con 
p<0,25 tienen sentido explicativo positivo, existen 
algunos puntos con sentido negativo, si bien su 
umbral de significación es bastante bajo (p<0,25). 
Lo mismo sucede en el caso de la densidad de 
maquinaria agrícola, cuyo sentido explicativo se 
esperaría positivo en todas las localizaciones de 
la muestra, y aparece con signo negativo en la 
zona correspondiente a la Cornisa Cantábrica y 
Galicia. No obstante, este hecho puede ser 
debido en parte a que esta variable es de tipo 
estadístico y su valor se asigna a todas la 
superficie municipal, lo que ligado a la alta 
ocurrencia registrada en esas zonas puede llevar 
a esta situación. Por último, la variable espacios 
protegidos interviene en el modelo como agente 
disuasorio o atenuante de la causalidad humana 
en la mayor parte del territorio, apareciendo con 
sentido positivo tan solo en algunas 
localizaciones del noroeste peninsular. 
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Figura 3. Coeficientes de regresión de las variables explicativas en el modelo GWLR. 
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Figura 4. Umbrales de significación de las variables explicativas según la t de Student en el modelo 
GWLR.  
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Además de los umbrales de significación, en 
la figura 4 se presenta también la cartografía del 
número de variables significativas con p<0,05. 
Como se puede apreciar, siempre existe al 
menos una variable significativa en dicho umbral, 
siendo lo más habitual encontrar 2 o más 
variables. 

Finalmente se presenta la cartografía de 
probabilidad de ocurrencia ligada a causalidad 
humana (figura 5). Atendiendo a dicha figura, los 
valores más elevados de probabilidad de 
ocurrencia se asocian a zonas de ICF, 
especialmente en el sector noroeste y en los 
bordes de las zonas montañosas, y a zonas de 
IUF, de gran importancia en la zona centro y el 
litoral mediterráneo. Estas dos variables, como ya 
se ha visto anteriormente, son las de mayor carga 
explicativa en el modelo atendiendo a valores de t
de Student, siendo significativas a más del 95%, 
llegando en algunas zonas a más del 99%. La 
cartografía evidencia asimismo el carácter 
explicativo de algunas variables de implantación 
lineal como tendidos eléctricos, líneas de 
ferrocarril o pistas forestales. 

 
Figura 5. Probabilidad de ocurrencia de incendios 
forestales ligada a causalidad humana. 

4 AJUSTE Y VALIDACIÓN DEL 
MODELO

A continuación se presentan los resultados 
obtenidos durante el proceso de validación. El R2 
local promedio obtenido de la muestra de 
calibración arroja un valor de 0,7, y un rango 
entre 0,19 y 0,85. Como se puede apreciar en la 
figura 6, los valores mínimos de R2 se localizan 
en la Cornisa Cantábrica, principalmente en el 
Principado de Asturias. La presencia de valores 
tan bajos en esta zona se debe principalmente a 
que las variables ICF e IUF prácticamente no 
tienen representación espacial. Para tratar de 
corregir estos valores se han considerado 
diversas variables predictivas capaces de explicar 

la ocurrencia en esta área, concretamente se han 
ajustado varios modelos incluyendo las variables 
ganado no estabulado y la IPF. En el caso del 
ganado no estabulado, su contribución en los 
modelos ha resultado no significativa por lo que 
finalmente resultó descartada. En el caso de la 
IPF, pese a sí resultar significativa, su sentido 
explicativo según el valor de la t de Student era 
negativo, hecho que fue considerado incoherente 
y llevó a descartar también esta variable. 

 
Figura 6. R2 local. 

En cuanto al porcentaje de acierto, en la tabla 
1 se presenta su clasificación para los dos 
periodos de validación considerados. En el caso 
del periodo 1988-2007 el porcentaje de acierto 
global es de 87%, con un valor de Kappa de 0,73. 
A su vez, el acierto global obtenido utilizando la 
muestra 2008-2011 se sitúa en un 76%, con un 
valor de Kappa de 0,72. El menor porcentaje de 
acierto en la segunda muestra de validación se 
debe a que la predicción del modelo subestima la 
ocurrencia real del periodo, debido posiblemente 
a que el menor periodo de toma de datos 
distorsiona la clasificación de la densidad de 
ocurrencia como alta o baja al existir un número 
menor de registros.  

1988-2007 % Predicho

% Observado Alta Baja % Marginal 

Alta 31,4 11,5 42,9 

Baja 1,5 55,5 57,1 

% Marginal 33,0 67,0 100,0 

2008-2011 % Predicho

% Observado Alta Baja % Marginal 

Alta 27,7 22,7 50,4 

Baja 1,4 48,2 49,6 

% Marginal 29,2 70,8 100,0 

Tabla 1. Clasificación del porcentaje de acierto. 
Arriba, periodo 1988-2007. Abajo, periodo 2008-
2011.
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5 COMPARACIÓN CON 
OTROS ESTUDIOS

En esta sección se presenta la comparación 
de los resultados obtenidos en el presente trabajo 
con los estudios realizados por Martínez et al. 
(2004) y Chuvieco et al. (2010). 

En Martínez et al. (2004) se lleva a cabo la 
modelización de la probabilidad de ocurrencia de 
incendio por causa humana en todo el territorio 
español (excepto la Comunidad Foral de Navarra) 
a escala municipal utilizando técnicas de 
regresión logística binaria en el periodo 1988-
2000. Las variables explicativas obtenidas como 
significativas en este trabajo son: densidad de 
maquinaria agrícola, densidad de parcelas 
agrícolas, densidad de entidades singulares de 
población, densidad de ganado en régimen 
extensivo y tasa de paro. El porcentaje global de 
acierto en la clasificación de la ocurrencia de 
incendio es de 85,9%. 

En Chuvieco et al. (2010) se presenta un 
modelo de estimación del riesgo de incendio 
mediante la integración de distintas variables 
entre las que se encuentra la probabilidad de 
ocurrencia de incendio ligada a factores humanos 
en el periodo 1990-2004, utilizando técnicas de 
regresión logística. Dicha estimación se sirve, 
como unidad espacial de referencia, de una 
cuadrícula de 1x1 km2. A diferencia de nuestro 
trabajo y del desarrollado por Martínez et al. 
(2004) el área de estudio se restringe a cuatro 
espacios considerados como representativos de 
la realidad de los incendios forestales en 
ambientes mediterráneos en España (Comunidad 
de Madrid, Comunidad Valenciana, provincia de 
Huelva y Aragón). Las variables socio-
económicas obtenidas en las diferentes regiones 
de estudio consideradas así como el porcentaje 
de acierto en cada una de ellas son: 

 Comunidad de Madrid: interfase urbano-
forestal, espacios protegidos y tasa de 
paro. Porcentaje de acierto 70,6%. 

 Comunidad Valenciana: tasa de 
variación de la población y potencial 
demográfico. Porcentaje de acierto 68,4 
%. 

 Provincia de Huelva: potencial 
demográfico, tasa de variación de la 
población agraria y buffer entorno a 
pistas forestales. Porcentaje de acierto 
84,4 %. 

 Aragón: interfase cultivo-forestal, cambio 
de uso del suelo, repoblaciones y buffer 
entorno a las líneas eléctricas. 
Porcentaje de acierto 86,8 %. 

La metodología empleada en Chuvieco et al. 
(2010) es similar a la utilizada en este trabajo, 
exceptuando el uso de técnicas globales de 

regresión. En consecuencia, los resultados 
obtenidos son también similares en lo que refiere 
a las variables explicativas obtenidas en ambos 
modelos (IUF, ICF, espacios protegidos, líneas 
eléctricas y pistas forestales), si bien el 
porcentaje de acierto obtenido en este trabajo es 
superior, debido fundamentalmente a la 
utilización de GWLR. Por otra parte, a pesar de 
que Martínez  et al. (2004) operan con una escala 
municipal, existen también ciertas semejanzas 
entre los resultados de estos autores y los 
nuestros, como es el caso de la presencia de 
variables de naturaleza estadística como la 
densidad de maquinaria agrícola. No obstante, 
aunque los porcentajes de acierto en la 
clasificación de la ocurrencia obtenidos en 
Martínez et al. (2004) y en este trabajo son 
prácticamente equivalentes, consideramos que 
nuestro resultado puede considerarse una mejora 
comparativa, en tanto en cuanto provee una 
mejor representación espacial de la probabilidad 
de ocurrencia. 

6 CONCLUSIONES Y 
TRABAJO FUTURO

La utilización de técnicas GWR aplicadas a 
modelos LR ha permitido corroborar la elevada 
variación espacial existente en los factores 
explicativos asociados a la causalidad humana en 
incendios forestales. Asimismo, la validación de 
los resultados permite confirmar que tanto el 
método utilizado como los productos obtenidos 
son suficientemente consistentes, si bien el 
modelo todavía es mejorable en algunos 
aspectos ya que en algunas zonas –Asturias 
especialmente– se producen ciertos desajustes, 
debiéndose introducir aún alguna variable 
independiente que explique en mejor modo la 
ocurrencia, especialmente en relación con los 
incendios de pasto-matorral de febrero-marzo. 

Como trabajo futuro se prevé la exploración 
tanto de nuevas variables predictivas como de 
nuevos métodos de espacialización de las 
mismas (distancia hasta la interfase, cartografía 
de densidad…). Se desarrollarán además nuevos 
modelos temporalmente dinámicos a escala 
estacional, con el propósito de averiguar si 
existen diferencias significativas en los factores 
explicativos ligados a la ocurrencia en diferentes 
periodos del año, o incluso de mayor detalle.  
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APPENDIX E. PROPUESTA METODOLÓGICA PARA 

LA MODELIZACIÓN DE LA 

RESILIENCIA DE LA VEGETACIÓN 

AFECTADA POR INCENDIOS 

FORESTALES EN ESPAÑA 
  
This appendix introduces the first steps of the 

quantitative assessment of the ecological vulnerability of plant 
communities affected by fire. 
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RESUMEN

El presente trabajo tiene como objetivo modelar mediante técnicas SIG la resiliencia de las
comunidades vegetales frente a los efectos del fuego. Para ello se ha diseñado una metodología, 
basada en álgebra de mapas, que permite el cálculo del tiempo aproximado necesario para que la 
vegetación recupere un estado similar a las condiciones previas al impacto de un incendio. El método 
propuesto considera, por un lado, la vegetación presente en el territorio, caracterizada en términos de 
estructura (arbolado, matorral o pasto) y estrategia reproductiva (rebrotadoras o germinadoras); por 
otro, se consideran dos de los principales factores que condicionan el tiempo de recuperación: la 
disponibilidad hídrica y la pérdida de suelo. Asimismo, se ha tenido en cuenta la influencia en la 
disponibilidad hídrica y en la pérdida de suelo de posibles cambios a medio plazo en los regímenes 
de precipitación, a través de tendencias estacionales observadas y modelizadas espacialmente 
durante el periodo 1946-2005. La metodología se ha aplicado a la España continental, dentro del 
contexto del proyecto FIREGLOBE. Los resultados sugieren un tiempo de regeneración que oscila 
entre dos años en comunidades de pastizal, hasta alrededor de 100 años en comunidades de 
arbolado de baja germinación. Existen además contrastes significativos en la distribución geográfica 
del tiempo de regeneración, principalmente entre las regiones biogeográficas Eurosiberiana y 
Mediterránea. 

PALABRAS CLAVE

Resiliencia, incendios forestales, comunidades vegetales, modelado SIG, tendencias. 

 

ABSTRACT

This study aimed to estimate the resilience of plant communities after experiencing the effects of fire. 
For this we designed a methodology, based on map algebra and a Geographical Information System, 
which allowed the calculation of the approximate time required to restore vegetation to similar to pre-
fire conditions, from the point of view of plant characteristics: plant height and canopy cover. To this
end, the proposed methodology considered, on one hand, the vegetation present in the territory, 
characterized in terms of structure (tree, shrubland or grassland) and reproductive strategy (resprouter 
or seeder); and on the other hand, two of the main factors that determine resilience time: water 
availability and soil loss – also considering the influence on both of observed rainfall trends during the 
last 50 years. The methodology was applied to the continental Spain within the framework of the 
FIREGLOBE project. The results suggest an indicative resilience time from two to around 100 years in 
grassland communities and tree communities with low germination, respectively. There were 
significant contrasts in the geographical distribution of the vegetation regeneration time, mainly 
between Euro-Siberian and Mediterranean bio-geographical regions. 

215



XV Congreso Nacional de Tecnologías de la Información Geográfica, Madrid, AGE-CSIC, 19-21 de Septiembre de 2012 
Propuesta metodológica para la modelización de la resiliencia de la vegetación afectada por incendios forestales en España 
M. Rodrigues, P. Ibarra, M. Echeverría, F. Pérez-Cabello y J. de la Riva 

KEY WORDS

Resilience, wildfires, plant communities, GIS modeling, trends. 

1 INTRODUCCIÓN
La Europa mediterránea es uno de los 

territorios más afectados por incendios forestales 
de acuerdo a las estadísticas publicadas por la 
Comisión Europea (EC, 2010). En España, la 
superficie total quemada ha disminuido durante 
los últimos 25 años, mientras que el número de 
incendios ha aumentado (San-Miguel et al., 
2012). Además, resulta previsible que se 
sucedan, cada vez con mayor frecuencia, años 
con temporadas de incendio dramáticas, similares 
a las que varios países como Portugal, Grecia o 
Australia han sufrido en la última década, como 
consecuencia de olas de calor extremas debidas, 
entre otros motivos, a cambios en los patrones 
climáticos. Por lo tanto, es necesario tanto 
mejorar los sistemas de prevención de incendios, 
como fomentar la evaluación de los posibles 
daños potenciales en los ecosistemas naturales, 
promoviendo así la conservación de los servicios 
de valor económico, ambiental, cultural y estético 
que éstos proporcionan a la sociedad (Costanza 
et al., 1997). En este sentido la evaluación de la 
vulnerabilidad ecológica supone un interesante 
apoyo a los servicios de extinción y prevención, 
siendo especialmente relevante cuando la falta de 
información espacializada sobre vulnerabilidad 
supone un obstáculo en la identificación de áreas 
prioritarias para la implantación de medidas de 
protección y restauración (Hannah et al., 2002; 
Brooks et al., 2006). 

La estimación de la resiliencia de la 
vegetación frente a incendios forestales está 
justificada en tanto en cuanto el fuego es uno de 
los principales agentes transformadores en una 
amplia variedad de ecosistemas (FAO, 2007). 
Esto es particularmente cierto en el caso de los 
ecosistemas mediterráneos, donde el fuego es la 
principal perturbación de carácter natural, 
desempeñando además un papel decisivo en la 
dinámica y estructura de comunidades tanto 
vegetales como animales (di Castri y Mooney 
1973; Naveh 1975; Trabaud y Lepart 1980; Gill et 
al., 1981). La comprensión de la relación entre 
paisaje y fuego se encuentra, entre otros factores, 
en la estimación de la resiliencia post-fuego de 
los ecosistemas (Arianoutsou et al., 2011). 

Este trabajo se centra en la evaluación de la 
resiliencia de las comunidades vegetales tras el 
fuego, definida como una medida de la velocidad 
a la que la vegetación vuelve al equilibrio 
después de un incendio forestal (de Lange et al., 
2010). En este sentido, la vegetación, pese a ser 
el elemento más afectado por la incidencia de 

incendios (calcinación, defoliación…), es el factor, 
dentro de los de carácter estructural, con mayor 
influencia sobre las características de los 
procesos de reconstrucción del medio ambiente. 
Esta influencia se manifiesta en dos aspectos: en 
primer lugar, la vegetación desempeña un papel 
muy importante en la determinación de la 
cantidad de biomasa que se regenera después 
del fuego, aunque, obviamente, en el proceso de 
regeneración post-fuego intervienen otros 
factores ambientales, ya sea individualmente o en 
combinación; en segundo lugar, las comunidades 
existentes determinan las características del 
punto de partida en el proceso de reconstrucción 
tras el incendio. 

Para evaluar la resiliencia de la vegetación a 
escala regional se ha diseñado una metodología 
basada en álgebra de mapas y un Sistema de 
Información Geográfica (SIG) que permite la 
estimación del tiempo aproximado necesario para 
retornar a condiciones similares a las anteriores 
al impacto del fuego. No obstante, la respuesta 
de la vegetación al fuego es un proceso complejo 
y difícil de generalizar, ya que implica la 
consideración de un elevado número de variables 
de naturaleza diversa, como la composición 
florística, la intensidad de las precipitaciones, las 
características del suelo, la severidad del fuego o 
las condiciones climáticas post-incendio. 

Nuestra metodología permite estimar el 
tiempo de recuperación de la vegetación a través 
de la integración de algunos de los principales 
factores o procesos que influyen en el desarrollo 
de la vegetación después del fuego como la 
estructura de la vegetación, la estrategia 
reproductiva, la disponibilidad hídrica y la pérdida 
de suelo. Los dos primeros refieren a 
características intrínsecas de la vegetación, que 
definen su capacidad de crecimiento (Alloza, 
2006; de la Riva et al., 2008) y cuya valoración se 
basa en la dicotomía entre especies rebrotadoras 
y germinadoras (Pausas et al., 2008). Los dos 
últimos son parámetros que dependen de las 
características y la evolución temporal de los 
factores ambientales, que influyen en la 
regeneración vegetal mediante la modificación de 
la cantidad de agua o nutrientes disponibles, o 
alterando la composición química del suelo 
(Shakesby y Doerr 2006). Asimismo, se ha tenido 
en cuenta la influencia en la disponibilidad hídrica 
y en la pérdida de suelo de posibles cambios a 
medio plazo en los regímenes de precipitación, a 
través de tendencias estacionales observadas y 
modelizadas espacialmente durante el periodo 
1946-2005 por de Luis et al. (2010). El método 
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propuesto tiene como objetivo ser una 
herramienta útil para estimar la resiliencia de la 
vegetación después del fuego a escala regional, 
basado en la interacción de un número reducido 
de variables. Este método se centra en la 
obtención de un resultado cuantitativo, en un 
escenario de máxima severidad de incendios. No 
obstante, en ningún momento se pretende ofrecer 
valores de tiempo categóricos, sino proporcionar 
un resultado indicativo más preciso que el análisis 
cualitativo. Esta metodología ya ha sido 
implementada con éxito como parte de la 
evaluación del riesgo de incendio llevado a cabo 
por el equipo del proyecto FIREGLOBE 
(Chuvieco et al., 2011) durante la temporada de 
incendios en el verano de 2011. 

2 METODOLOGÍA 
La metodología para estimar la capacidad de 

recuperación de la vegetación post-incendio (RT, 
Resilience Time) se basa en el cálculo del tiempo 
de regeneración de las comunidades vegetales, 
es decir, el tiempo aproximado necesario para 
llegar a condiciones que pudieran garantizar el 
desarrollo de la vegetación hasta recuperar 
condiciones similares a las existentes 
previamente al impacto del fuego. Esta 
metodología se basa en la asignación de un 
tiempo de recuperación inicial (RTOC, Resilience 
Time in Optimum Conditions) en función de las 
características de la vegetación en términos de 
estructura y estrategia reproductiva, considerando 
que existen unas condiciones óptimas para el 
desarrollo de las comunidades vegetales. A 
continuación, se calcula el aumento del tiempo de 
regeneración introduciendo la influencia de los 
factores limitantes (VGC, Vegetation Growth 
Constraints): disponibilidad de agua y pérdida de 
suelo. Los VGC se modifican a su vez 
considerando el efecto de las tendencias 
observadas en la precipitación durante los últimos 
50 años. La figura 1 muestra un diagrama de flujo 
del proceso seguido para el cálculo del tiempo de 
recuperación. 

 
Figura 1. Flujo de trabajo para el cálculo del 
tiempo de recuperación.

La metodología ha sido implementada en un 
entorno SIG para calcular la  resiliencia mediante 
álgebra de mapas y herramientas de análisis 
espacial. La resolución espacial tanto de los datos 
de entrada como del producto final es de 1x1 km, 
excepto en el caso de las tendencias en la 
precipitación que han sido generadas a una 
resolución de 15x15 km. 

En las siguientes secciones se describe 
detalladamente el proceso seguido y las fuentes 
de datos utilizadas para el desarrollo del método 
propuesto, empezando por la asignación del 
RTOC, seguido de la descripción de los VGC y, 
finalmente, el cálculo de RT. 

2.1 RTOC
Inicialmente, la evaluación de RT se realiza a 

partir de la lista de especies vegetales del Mapa 
Forestal de España (MARM, 1997). Esto ha 
requerido la caracterización, en términos de su 
estructura y estrategia reproductiva, de más de 
500 especies. Esta caracterización se basa en 
estudios previos sobre regeneración y respuesta 
de la vegetación post-incendio, como Tárrega y 
Luis-Calabuig (1989), Trabaud (1990, 1998, 
2002), Vera de la Fuente (1994), Barbéro et al. 
(1998), Pausas et al. (2004), Buhk et al. (2007) y 
Baeza y Roy (2008). Una vez realizada la 
clasificación se asigna un tiempo inicial de 
regeneración, considerando que la recuperación 
de la vegetación se produce en ausencia de 
factores limitantes para su desarrollo. Cabe 
señalar que el tiempo inicial asignado no 
pretende ser un valor categórico ya que dicho 
tiempo puede variar significativamente 
dependiendo de las características locales y del 
papel jugado por factores circunstanciales. La 
tabla 1 muestra las combinaciones de estructura 
y estrategia reproductiva resultantes, así como el 
RTOC asignado a cada una de ellas. En la figura 
2 se presenta su cartografía. 

Estructura/estrategia 
reproductiva

RTOC 
(años)

Pasto 2 

Matorral rebrotador 6 

Matorral germinador 10 

Arbolado de alta germinación 25 

Arbolado rebrotador 30 

Arbolado de baja germinación 45 

Tabla 1. RTOC en función de la estructura de la 
vegetación y su estrategia reproductiva.
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Figura 2. RTOC en función de la estructura de la 
vegetación y su estrategia reproductiva.

En términos generales se ha considerado que 
las especies germinadoras tienen menor 
capacidad de recuperación que las rebrotadoras, 
debido principalmente a la potencial destrucción 
del banco de semillas como consecuencia del 
incendio. Asimismo, en el caso del arbolado se ha 
hecho distinción entre alta o baja capacidad de 
germinación en función de la tasa de generación 
de semillas. La vegetación que utiliza ambos 
mecanismos de reproducción (rebrotadoras 
facultativas según Naveh, 1975 y Buhk et al., 
2007) se ha clasificado como rebrotadora al 
considerar que es el mecanismo más ventajoso. 

2.2 VGC
En esta sección se describe el proceso 

seguido para obtener los VGC. 

2.2.1 Disponibilidad hídrica
El incremento en el RTOC, dependiendo de la 

disponibilidad de agua (Fw), ha sido calculado a 
partir del mapa de series de vegetación (Rivas y 
Gandullo, 1987). El concepto de serie de 
vegetación hace referencia al conjunto ordenado 
de las comunidades vegetales que pueden ser 
remplazadas en el tiempo en un lugar específico 
(Bolós, 1962). El mapa de series de vegetación 
delimita las unidades de vegetación reconocidas, 
con el fin de determinar la diversidad de 
ecosistemas forestales en España. Cada una de 
las diferentes series presenta una categoría típica 
de lluvias u ombroclima (árido, semiárido, seco, 
sub-húmedo, húmedo e hiper-húmedo), basada 
en la precipitación anual. La disponibilidad de 
agua se ha evaluado mediante la agrupación de 
estos ombroclimas, recodificados más tarde a un 
valor numérico representativo del factor de 
incremento (Fw) en el proceso de regeneración. 
El uso de este mapa es particularmente 
adecuado para la consecución de los objetivos de 
este trabajo, ya que en la delimitación de las 
series de vegetación potencial se consideraron 

parámetros tanto de carácter orográfico como 
bioclimático. La tabla 2 y la figura 3 muestran la 
correspondencia entre los intervalos de 
precipitación y la proporción de aumento del 
RTOC (asignado siguiendo el criterio de los 
autores del presente trabajo). 

Ombroclima Precipitación (mm) Fw

Hiper-húmedo >1600 0.000 

Húmedo 1000-1600 0.075 

Sub-húmedo 600-1000 0.150 

Seco 350-600 0.600 

Árido-semiárido <350 1.200 

Tabla 2. Ombroclimas, precipitación anual y Fw.

 
Figura 3. Fw en función de la precipitación anual.

2.2.2 Pérdida de suelo
La evaluación del incremento RT como 

función de la pérdida de suelo (Fe) se ha llevado 
a cabo mediante el análisis de la distribución 
espacial de la erosión del suelo en condiciones 
post-incendio. Para este fin se ha utilizado el Pan 
European Soil Erosion Risk Assessment model 
(PESERA), un modelo espacialmente distribuido 
para cuantificar la erosión hídrica del suelo; 
desarrollado para proporcionar información 
acerca del riesgo de erosión a nivel europeo, es 
un modelo conservador, que considera distintos 
componentes determinantes de la erosión, como 
los factores climáticos, la vegetación o la 
topografía (Kirkby et al., 2004). Este modelo 
puede ser utilizado como una herramienta a nivel 
regional, comparable a otras como la USLE 
(Wischmeier y Smith, 1960), pero con una mejor 
adaptación a la realidad del medio ambiente en 
Europa. Los resultados del modelo están 
validados a escala de cuenca y han sido 
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comparados con datos obtenidos mediante 
diferentes métodos de medición de la erosión. En 
el contexto de este trabajo, los indicadores de 
erosión del suelo no sólo proporcionan 
información acerca de este proceso, sino que 
permiten relacionar los distintos factores que 
causan la erosión mediante la simulación de 
diferentes escenarios climáticos y/o de uso del 
suelo. 

En este trabajo se ha utilizado el subconjunto 
español de la cartografía de PESERA, si bien se 
han realizado modificaciones en relación con los 
procesos de erosión que siguen los incendios 
forestales. Una extensa revisión bibliográfica 
revela una gran incertidumbre sobre el efecto en 
la erosión de la pérdida de cubierta vegetal como 
resultado de fuego. Los incrementos de tasa de 
erosión van desde un aumento de 18,6 (Soto et 
al., 1994; Soto y Díaz-Fierros, 1998) a 5200 
(Shakesby et al., 1994, 2002; Shakesby, 2011) 
veces la tasa de erosión inicial. Teniendo en 
cuenta la gran heterogeneidad de estos valores 
(posiblemente debido a diferencias tanto en las 
condiciones locales donde se llevaron a cabo los 
experimentos como a su diseño o a las técnicas 
de medición empleadas), se ha usado el modelo 
ERMiT (Robichaud et al., 2006) para modificar las 
tasas de erosión pre-incendio reportadas en 
PESERA. El modelo ERMiT integra información 
sobre indicadores de clima, suelo (textura), 
topografía (pendiente y longitud de la pendiente), 
además del tipo de vegetación afectada y el nivel 
de severidad del incendio, lo que permite realizar 
simulaciones para evaluar la variación en las 
tasas de erosión. El modelo utiliza un método 
probabilístico que incorpora la variabilidad 
temporal y espacial en el clima, las propiedades 
del suelo y la severidad de la quema según 
distintos tipos estructurales (bosque, pasto y 
matorral de montaña). Las simulaciones con el 
modelo ERMiT se llevaron a cabo en varios 
lugares considerados representativos de cada 
región bioclimática en España, desarrollando 
además escenarios con diferentes combinaciones 
de estructura de la vegetación y pendiente. En la 
tabla 3 se presentan los factores de incremento 
promedio sobre la tasa de erosión pre-fuego. 
Analizando en detalle los factores de incremento 
reportados en dicha tabla, resulta llamativo que 
en comunidades de arbolado los factores de 
incremento más elevados se han obtenido en 
zonas de baja pendiente, cuando lo esperable 
sería quizás lo contrario. No obstante, hay que 
tener en cuenta que este factor de incremento es 
un valor relativo siendo el valor de incremento 
bruto (tasa de erosión) es en todos los casos 
mayor cuanto más acusada es la pendiente. 

 

Región 
mediterránea

Estructura Pendiente 
(%) Año 1 Año 2

 < 15 1,60 1,20 

Arbolado 15-45 1,55 1,15 

 >45 1,55 1,15 

 < 15 1,60 1,20 

Matorral 15-45 1,60 1,20 

 >45 1,60 1,20 

 < 15 1,60 1,15 

Pasto 15-45 1,55 1,20 

 >45 1,55 1,15 

Región 
eurosiberiana

Estructura Pendiente 
(%) Año 1 Año 2

 < 15 1,80 1,15 

Arbolado 15-45 1,60 1,15 

 >45 1,60 1,15 

 < 15 1,55 1,20 

Matorral 15-45 1,55 1,20 

 >45 1,60 1,20 

 < 15 1,50 1,20 

Pasto 15-45 1,50 1,15 

 >45 1,50 1,15 

Tabla 3. Factor de incremento de las tasas de 
erosión pre-incendio, calculado por región 
bioclimática, estructura de la vegetación y 
pendiente del terreno. 
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De acuerdo con esto, las tasas de erosión de 
PESERA se modifican a través del factor de 
incremento obtenido de las simulaciones 
mediante ERMiT siguiendo la ecuación: 

reesyf FEE PrsEy  (1) 

Donde Ef es la tasa de erosión corregida, EP 
es la tasa de erosión pre-fuego, F es el factor de 
incremento post-fuego, r es la región bioclimática, 
e es la estructura de la vegetación, s es el 
intervalo de pendiente. 

Una vez corregidas las tasas de erosión, los 
valores obtenidos se agrupan en cinco intervalos 
que serán posteriormente reclasificados en 
factores de incremento de RTOC (siguiendo el 
criterio de los autores del presente trabajo). En la 
tabla 4 y la figura 4 se presenta los intervalos de 
erosión, su Fe asociado y su cartografía.  

Tasa de erosión post-fuego

(ton ha-1 año-1) Fe

<0,04 0.000 

0,05 – 0,13 0.075 

0,14 – 0,36 0.150 

0,37 – 0,86 0.225 

>0,86 0.325 

Tabla 4. Tasa de erosión post-fuego y Fe
asociado. 

 
Figura 4. Tasa de erosión post-fuego y Fe
asociado. 

2.2.3 Tendencias en la precipitación 
Las tendencias climáticas son un factor clave 

en la evaluación de la vulnerabilidad (González et 
al., 2010; Ruiz et al., 2011). Las tendencias 
detectadas en la precipitación se incluyen en el 
cálculo de RT como un factor de ponderación de 
los dos anteriores VGC. En este sentido, se 
considera que una disminución en la precipitación 
(tendencia negativa) debería implicar una 
disminución en la disponibilidad de agua y, por lo 
tanto, la influencia de la falta de agua aumenta. 
Un comportamiento similar se espera en el caso 
de la erosión del suelo, pero en sentido contrario. 
Un aumento en la precipitación (tendencia 
positiva) debería aumentar su influencia en RT, al 
aumentar la eficiencia de la erosión hídrica y por 
tanto la pérdida de suelo. Para incluir esto en el 
modelo de cálculo de RT se utilizan las 
tendencias observadas en la precipitación en el 
trabajo de Luis et al. (2010), donde se analiza la 
variabilidad espacial de los regímenes 
estacionales de precipitación en la Península 
Ibérica para un período temporal de 
observaciones de 50 años, desde 1946 hasta 
2005, utilizando el test de Mann-Kendall. La 
variabilidad espacial de las tendencias se ha 
caracterizado de acuerdo al signo y el nivel de 
significación de las tendencias observadas. 
Debido a que las tendencias de precipitación se 
calcularon sólo a nivel estacional, hemos utilizado 
las tendencias de invierno para la ponderación de 
la disponibilidad hídrica, teniendo en cuenta que 
es la estación más eficaz para la captación de 
agua por parte de la vegetación debido a la baja 
evapotranspiración potencial; y las tendencias de 
otoño para la ponderación de la erosión del suelo 
ya que ésta es la estación más crítica debido a la 
sequedad del suelo después del verano y la 
reducción de la cubierta vegetal consecuencia de 
la pérdida de hojas en las comunidades de hoja 
caduca. El valor de ponderación varía entre 1, 
cuando no se observa una tendencia significativa 
(p>0,30), y 2, cuando ésta lo es al 1% (p<0.01). 
Las figuras 5 y 6 muestran la distribución espacial 
de las tendencias en invierno y otoño, los niveles 
de significación y los factores de ponderación (Tw
invierno y Ta otoño) aplicados a los VGC 
correspondientes. 

2.3 RT
El RT se calcula como la suma de RTOC y los 

incrementos en el tiempo de recuperación debido 
a disponibilidad hídrica y pérdida de suelo, 
ponderados en función de las tendencias 
observadas en la precipitación. 

aFewFw TTTTRTOCRT TTR  (2) 
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Donde RT es el tiempo de recuperación, 
RTOC es el tiempo de recuperación en 
condiciones óptimas, TFw es el incremento de 
tiempo asociado a la disponibilidad hídrica, Tw es 
el factor de ponderación en función de las 
tendencias en la precipitación de invierno, TFe es 
el incremento de tiempo asociado a la pérdida de 
suelo y Ta es el factor de ponderación en función 
de las tendencias en la precipitación de otoño. 

 
Figura 5. Tendencias observadas en la 
precipitación de invierno durante el periodo 1946-
2005 y Tw. Fuente: de Luis et al. (2010). 

 
Figura 6. Tendencias observadas en la 
precipitación de otoño durante el periodo 1946-
2005 y Ta. Fuente: de Luis et al. (2010). 

3    RESULTADOS 
A continuación se presentan los resultados 

obtenidos de la aplicación de la metodología 
propuesta a la España peninsular. En las figuras. 
7 y 8 se presentan por una parte el RT obtenido y 
el porcentaje de contribución de los VGC. En la 
tabla 4 se presenta un resumen estadístico de los 
resultados en función de las categorías 
establecidas para la asignación del RTOC. 

Los resultados sugieren un RT que oscila 
entre los dos años en las comunidades de 

pastizal y alrededor de 100 años en las 
comunidades de arbolado de baja germinación. 
Sin embargo, existen contrastes significativos en 
la distribución geográfica de la resiliencia, 
principalmente entre las regiones bio-geográficas 
eurosiberiana y mediterránea. 

 
Figura 7. Cartografía de la resiliencia (RT). 

 
Figura 8. Contribución de los VGC en el RT. 

La región eurosiberiana presenta valores más 
bajos de RT debido a la mayor disponibilidad 
hídrica como resultado del clima Atlántico 
presente en esta región de España. Por otra 
parte, en la región mediterránea, sobre todo en la 
costa mediterránea, es donde se localizan los 
períodos más largos de recuperación. Esto se 
produce como consecuencia de la baja 
disponibilidad de agua debido a la escasa 
precipitación y también a la agresividad climática, 
que produce eventos torrenciales relativamente 
frecuentes, aumentando así la pérdida de suelo. 
Sin embargo, aunque los VGC tienen un peso 
importante en el tiempo de reconstrucción, su 
participación en el RT es de aproximadamente un 
22% del RT, si bien en zonas donde las 
tendencias en la precipitación son significativas 
con p<0,01 su contribución supera el 60% del RT. 
Así pues, el tipo y características de la vegetación 
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parecen ser el parámetro más importante en el 
proceso de recuperación post-incendio. 

Comunidad 
vegetal

Min Max Avg Std

Pasto 2 5,4 2,6 0,42 

Matorral 
rebrotador 

6 16,2 8,2 2,00 

Matorral 
germinador 

10 26,9 13,6 2,88 

Arbolado alta 
germ 

30 78,4 38,5 6,84 

Arbolado 
rebrotador 

25 67,4 35,9 7,87 

Arbolado baja 
germ. 

45 100,7 52,9 7,85 

Tabla 4. Resumen estadístico de los resultados. 

 4 CONCLUSIONES 
Nuestros resultados indican que existe una 

elevada heterogeneidad en los valores de RT, 
tanto entre las comunidades vegetales 
consideradas como entre las diferentes regiones 
de la España peninsular. Esto no es 
sorprendente, ya que este territorio presenta 
importantes contrastes desde un punto de vista 
físico o ambiental. Si bien las principales 
diferencias se encuentran entre las dos regiones 
biogeográficas (eurosiberiana y la mediterránea), 
también encontramos contrastes relevantes 
dentro de cada una de ellas, directamente 
vinculados a la variabilidad espacial en las 
características del terreno y las condiciones 
climáticas. Este hecho aumenta la complejidad de 
los análisis de parámetros ambientales o 
procesos, especialmente a escala regional. 

Sin embargo, consideramos que los valores 
obtenidos de RT se ajustan adecuadamente a la 
evolución esperada de las comunidades 
vegetales tras un incendio de alta severidad. En 
cualquier caso, el método propuesto es lo 
suficientemente robusto para ser de utilidad en 
varios campos de estudio, tales como la 
ordenación territorial, los incendios forestales o la 
evaluación de la vulnerabilidad socioeconómica o 
de servicios ambientales. Esto se debe 
principalmente a la simplicidad del método 
propuesto, que requiere pocas variables, pero 
representativas del fenómeno analizado. Además, 
el estar integrado dentro de un SIG permite no 
sólo la cartografía de los resultados, sino también 

el desempeño de diferentes tipos de análisis 
espacial y cartográfico. 

La metodología ya ha sido implementada con 
éxito como parte de la evaluación del riesgo de 
incendio llevado a cabo por el equipo del proyecto 
FIREGLOBE durante la temporada de incendios 
en el verano de 2011. 
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