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Abstract	

Cell migration in 3D is a fundamental process in many physiological and 

pathological phenomena. Indeed, migration through interstitial tissue is a multi-

step process that turns out from the cell-ECM interaction.  It is a dynamic and 

complex mechanism that depends on the physic-chemical balance between the 

cell and its surrounding. Early stage of deep dermal wound healing process is a 

relevant migratory example, in which the fibroblast is the epicenter: the 

recruitment of the fibroblasts -by chemotaxis of PDGF-BB- to the clotted wound 

occurs. Likewise, this work focuses on studying the major underlying 

mechanisms of 3D fibroblast migration and the main microenvironmental cues 

involved within. To do so, we have confined two physiologically relevant 

hydrogels, made of collagen and fibrin, within microfluidic platforms. 

 Firstly, an integral comparative study of biophysical and biomechanical 

properties of both gels is presented. In these results, we have overcome the wide 

diversity of the existing data and special stress has been done in order to compare 

the microstructural arrangement, resistance to flow and elasticity. On the other 

hand, controlled chemical gradients have been generated and characterized 

within the microfluidic devices. Since biomolecules interact as purely diffusive 

factors or bound to the matrix proteins, in this work, distribution of PDGF-BB 

and TGF-β1 across collagen and fibrin gels has been quantified. Finally, by 

taking advantage of the biophysico-chemical definition, we have characterized 

the migratory responses of human fibroblasts within the microsystems in the 

presence of a chemoattractant (PDGF-BB). Our results demonstrate that the local 

microarchitecture of the hydrogels determines the migratory properties of human 

fibroblasts in response to controlled chemotactic and haptotactic gradients, in a 

myosin II-dependent manner. 
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Resumen	

La migración celular en 3D es fundamental en muchos fenómenos fisiológicos 

y patológicos. La migración, la cual resulta  de la interacción célula-matriz, es un 

mecanismo dinámico y complejo que depende del equilibrio entre la célula y su 

entorno físico-químico. Concretamente, la etapa temprana del proceso de 

cicatrización de heridas profundas es un proceso migratorio ejemplar, en el cual 

el fibroblasto es el epicentro: se produce el reclutamiento de los fibroblastos -por 

quimiotaxis de PDGF-BB- del tejido circundante al coágulo. Este trabajo se 

centra en el estudio de los principales mecanismos subyacentes de la migración 

de fibroblastos en 3D y las principales señales microambientales involucradas en 

ella. Para ello, se han empleado modelos in vitro haciendo uso de plataformas 

microfluídicas para confinar dos hidrogeles fisiológicamente relevantes, 

compuestos por colágeno y fibrina. 

En primer lugar, se presenta un estudio comparativo integral de las 

propiedades biofísicas y biomecánicas de los hidrogeles. En estos resultados, se 

ha hecho especial hincapié en comparar la conformación microestructural, la 

resistencia al flujo de fluido y la elasticidad. Por otro lado, se han generado y 

caracterizado gradientes químicos dentro de los dispositivos. Puesto que las 

biomoléculas interactúan como factores puramente difusivos o adheridos a las 

proteínas de la matriz, en este trabajo se ha cuantificado la distribución de 

PDGF-BB y TGF-β1, en colágeno y fibrina. Finalmente, mediante esta definición 

físico-química, se ha caracterizado la respuesta migratoria de fibroblastos 

humanos dentro de los microdispositivos en presencia de un factor químico 

(PDGF-BB). Los resultados aquí mostrados demuestran que la microarquitectura 

local de los hidrogeles determina las propiedades migratorias de fibroblastos 

humanos en respuesta a gradientes quimiotácticos y haptotácticos, de manera 

dependiente de la miosina II. 
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Chapter 1 
1Introduction	

In this introductory chapter the global scenario of the Thesis is presented. A 

general overview, along with the state of the art, describes the framework and 

motivation of the Thesis. Additionally, its objectives are listed and, finally, the 

structure of the Thesis in chapters is summarized. 

1.1 Background 

Cell migration is an elemental mechanism in physiological and pathological 

processes such as morphogenesis, cancer metastasis or tissue regeneration. It 

depends on a physicochemical balance between the cell and its surrounding. The 

non-cellular part of the tissue that gives structural support to the cells is known as 

the extracellular matrix (ECM) and it is comprised by a three-dimensional 
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fibrillar network along with biochemical signaling. Indeed, a complex and 

dynamic context-dependent cellular response drives migration, and the 

contractile actin cytoskeleton is known to play a key role involved in such  

mutual exchange [1].  

1.1.1 Actin cytoskeleton and cell migration 

Despite some old beliefs, cells are not only comprised of an elastic membrane 

that encloses a viscous cytoplasm along with a nucleus in the center, but they are 

also built by numerous components with distinct mechanical purposes. All cells 

contain a system of filaments that extend from the nucleus to the surface 

membrane known as the cytoskeleton. Its functions are diverse and essential in 

basic cellular events: it confers cell shape and compliance, participates in the 

intracellular transport and enables cells to move [2]. 

As shown in Fig. 1.1, the cytoskeleton comprises three main families of 

proteins and each one builds its own kind of filaments: microtubules, 

intermediate filaments and actin filaments [2]. Actually, each filament has 

different mechanical and biological missions. On the one hand, microtubules -the 

most robust filament network- have a major role regulating the intracellular 

transport, helped by kinesin and dynein molecular motors. As to the main duty of 

the intermediate filaments, it is protective by rendering architectural mechanical 

resistance to the cell. Finally, the actin filaments are responsible for contributing 

in the intracellular transport as well as for controlling cell motility by means of 

mechanotransduction.  
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Fig.	1.1. Major	 components	 of	 the	 cytoskeleton.	 Schematic	 distribution	 of	
actin	 filaments,	 microtubules	 and	 intermediate	 filaments	 within	 the	 cell	
body.	Adapted	image	from	Alberts	et	al.	[2].	

Mechanotransduction is defined as the process by which cells sense 

mechanical inputs and transduce them into a cascade of biochemical signals 

leading to biological responses, e.g., cell movement [3]. The way cells feel and 

respond to environmental cues is mediated by a set of cellular receptors called 

integrins, which physically couple the cellular membrane to specific extracellular 

matrix protein-binding domains. The activation of the integrins is followed by a 

set of intracellular events that control the conformation of the actin-cytoskeleton 

during cell movement. 

The main actin-based actors are shown in Fig. 1.2. When integrin 

transmembrane receptors are activated, they are recruited to form tethering sites 

called focal adhesions (FAs). Hence, through these supramolecular complexes 

located in the cell periphery, the actin-cytoskeleton is anchored to the ECM [4]. 

Next, actin stuck into long and aligned bundles, stress fibers (SFs), which are 

characterized by their contractile capability provided by the non-muscle myosin 

II (NMII) units that incorporates. NMII motor proteins slide over the actin 

filament generating contraction of the SFs [5]. Likewise, cells are able to exert 
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traction forces in the FAs as a response to the cell-ECM force balance, leading to 

cell movement. 

 

Fig.	1.2. The	actin‐based	structures	 in	 the	cell	body.	The	main	components	
responsible	for	cell	movement	are	represented	in	the	schematic	picture	(a).	
Schematic	 model	 of	 focal	 adhesion	 molecular	 architecture	 is	 shown	 in	
picture	(b),	which	is	from	Kanchanawong	et	al.	[6].		

Indeed, migration for two-dimensional crawling cells is characterized by the 

subsequent execution of three main actions that occur by polymerization and 

depolymerization of actin [7], as shown in Fig. 1.3. Firstly, the protrusion of the 

leading edge by formation of lamellipodia and filopodia -structures highly rich in 

actin- takes place. Then, following the formation and force generation of new 

FAs, retraction of the trailing edge through NMII-contracting stress fibers occurs. 
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Fig.	1.3. Cell	 crawling	 in	 2D.	 It	 comprises	 protrusion	 of	 the	 leading	 edge,	
adhesion	formation	and	force	generation,	and	retraction	of	the	trailing	edge.	
Image	modified	from	Ananthakrishnan	et	al.	[8].		

Although two-dimensional (2D) migration assays have been extensively 

studied and have brought valuable knowledge on the molecular regulation of the 

basic processes of cell migration, physiological cell migration is generally better 

addressed by three-dimensional (3D) conditions. Moreover, a vast amount of 

work has cleared up that cellular mechanics [9, 10], as well as migratory 

mechanisms [11, 12], diverge profoundly when dimensionality is switched from 

2D to 3D. Indeed, cells are displayed in a very distinct arrangement: they turn to 

be within confined networks -which resemble biomimeticly the ECM- instead of 

over unconfined planar substrates. Therefore, currently, complex 3D migration 
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bases are being studied by elucidating the environmental cues that impact on the 

process. 

1.1.2 Extracellular matrix 

The ECM is a complex network composed of numerous types of assembled 

proteins that hold cells together within specialized tissues [13]. The ECM renders 

architectural scaffolding and orchestrates the biochemical and biomechanical 

cues (see Fig. 1.4). Hence, it means a heterogeneous multi-cue microenvironment 

in the cellular surrounding [14], by which cell behavior is modulated. 

 Cell migration through interstitial tissue is a multi-step process that turns out 

from the cell-ECM interaction [15]. The way in which cells sense and respond to 

the environmental cues is complex and dynamic.  Cells sense the mechanical 

properties and convert them into biological responses through the cytoskeleton 

by exerting traction forces, modifying the cell tension state and initiating 

signaling cascades [16–20]. Simultaneously, biochemical signals are able to 

influence sensing capabilities [21]. Integrated, both inputs together, have drastic 

effects on the cell-phenotype and, thus, on basic cellular events. Therefore, since 

the ECM is key to modulating mechanotransduction, and hence cell migration, it 

has an integral ubiquitous role in physiological and pathological processes [16, 

17, 22–28]. Actually, its pathological compliance can lead to severe diseases 

such as metastasis or impaired wound healing [25, 29].  

 

 

 



 

Chapter	1:	Introduction	
 
 

 
 

7 
 
 
 

 
Fig.	1.4. Cellular	microenvironment.	 The	 cell	 is	 surrounded	 by	 the	 fibrillar	
network	(grey	 lines)	and	biomolecules	(green	circles).	 Image	based	on	that	
published	by	Griffith	and	Swartz	[23].	

Currently, diverse natural ECM-protein monomers are used at the benches 

since they self-assemble easily upon physiological conditions and are biomimetic 

hydrogel approaches for applying to 3D in vitro studies [30, 31]. Their 

biophysicochemical properties act as competing mechanisms [32–34], making 

entangled and delicate while decoupling the specific effect of each property on 

the cellular response.  

3D cell migration depends on the physicochemical balance between cell 

deformability and physical tissue constraints [35]. The matrix composition 

compromises the ligand density, cross-linking level and architecture [28]. 

Actually, ligand density correlates with anchorage-sites for integrins. Cross-

linking concentration arbitrates the degradability of the network by proteolytic 

enzymes and the fibrillar 3D arrangement -porosity, pore size and fiber diameter- 

[36] and raise dramatically the stiffness of the gel [30, 37]. Meanwhile, the 

microstructure determines the permeability of the matrix, which directs the 

transport of biomolecules and local hydraulic asymmetries in the cell 

surrounding [23]. In fact, the ligand density [38, 39], stiffness [32, 40], 
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microstructure [12, 34, 41–44], local permeability gradients [45, 46] and external 

loading [18, 47] have been demonstrated to have a direct impact on cell 

migration.  

The biochemical environment results from the synergy of autocrine and 

paracrine signaling [23]. Imposed or unintentionally, growth factors (GFs), 

chemokines and other biomolecules are carried throughout the pore-mesh 

originating chemical gradients. While transporting, the matrix may act as factor-

reservoir by offering available binding sites to the biomolecules. Therefore, they 

may get bound or remain as soluble factors. Moreover, transport nature is 

influenced by the interstitial-flow, which meanwhile acts as an external-load 

[18]. Hence, during molecular transport, convective and diffuse processes occur; 

the ratio between both phenomena is defined by the Peclet number, which is 

proportional to the molecular size. Therefore, the caused chemical gradients at 

the microscopic level and in the local pericellular vicinity yield heterogeneous in 

a context-dependent manner [23]. 

All this together, points to the bearing role of the ECM in the cell migration 

development. In fact, it regulates mechanotransduction by controlling the 

biophysical arrangement of the matrix as well as the availability of the chemical 

factors. As mentioned before, cell migration is a major mechanism in 

pathophysiology. In this regard, wound healing is one exemplary regenerative 

process, in which the display of both the fibrillar layout and the biomolecules is 

crucial delimiting the boundary between the acute and impaired evolution. 

1.1.3 Wound healing physiology and mechanotransduction 

The main protector of our body against external aggressions is the skin. A 

cross section of its structure is shown in Fig. 1.5. It is formed by three main 
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layers. The epidermis consists mostly of stratified epithelium tissue. The dermis 

provides support and nutrients to the epidermis. Although the dermis is rich in 

fibroblasts, mast cells, blood vessels, nerves, etc., its main constituent is the 

connective tissue, which avoids damage from everyday stretching and other 

mechanical insults. Beneath the epidermis is the hypodermis, composed mainly 

by adipose tissue to protect the internal structures. 

 
Fig.	1.5. Skin	 cross	 section.	 It	 is	 formed	 by	 epidermis	 (epithelium	 tissue),	
dermis	 (fibroblasts,	 connective	 tissue	 and	 blood	 vessels)	 and	 hypodermis	
(adipose	tissue)	[48].	

Skin is exposed regularly to injuries. Superficial wounds are repaired by the 

closure of the epithelial sheet. Conversely, full-thickness dermal wounds, not 

only require the repair of the epithelial sheet, but also the injured connective 

tissue requires its biosynthesis and remodeling. In this regard, acute wound repair 

is orchestrated in a standardized manner (see Fig. 1.6), in which the extracellular 

matrix and growth factors play a crucial role.  
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Fig.	1.6. Wound	healing	physiology	and	mechanotransduction.	When	a	 full‐
thickness	 dermal	 wound	 is	 filled	 by	 a	 fibrin	 clot,	 local	 growth	 factors	
stimulate	 fibroblasts	 from	 the	 adjacent	 intact	 dermis	 to	 invade	 this	
provisional	 matrix	 (a).	 These	 migrating	 fibroblasts,	 along	 with	 vessels,	 fill	
the	 wound,	 which	 results	 in	 the	 formation	 of	 granulation	 tissue	 (b).	
Migrating	 fibroblasts	 exert	 traction	 forces	 on	 the	 collagen	 matrix,	 which	
results	 in	 its	 reorganization	 along	 lines	 of	 stress.	 The	 development	 of	
mechanical	 stress	 stimulates	 fibroblasts	 to	 develop	 stress	 fibers	 and	 to	
produce	 collagen,	 so	 they	 acquire	 the	 proto‐myofibroblast	 phenotype	 (b).	
Then,	 proto‐myofibroblasts	 become	 differentiated	 myofibroblasts	 by	
synthesizing	 α‐smooth	 muscle	 actin	 and	 generating	 increased	 contractile	
force.	 This	 complex	 process	 of	 remodeling	 results	 in	 shortening	 of	 the	
collagen	matrix	with	 the	corresponding	wound	closure	 (c).	When	a	normal	
healing	wound	 closes,	myofibroblasts	 disappear	 by	 apoptosis	 and	 a	 scar	 is	
formed	(d).	However,	in	many	pathological	situations,	such	as	hypertrophic	
scar	 formation,	 myofibroblasts	 persist	 and	 continue	 to	 remodel	 the	 ECM,	
which	 results	 in	 connective‐tissue	 contracture	 (e).	 Modified	 image	 and	
caption	from	Tomasek	et	al.	[29].	
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In order to stop the bleeding -homeostasis-, platelets stick along with collagen, 

initiate the clotting cascade [49] and release numerous factors, such as 

transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-BB 

(PDGF-BB). The PDGF-BB chemoattractant recruits the macrophages and 

fibroblasts into the fibrin clot, which carry out the cleansing of the area -

inflammation-. Meanwhile, macrophages release vascular endothelial growth 

factor (VEGF), so new blood vessels are formed in order to nourish the wound 

site. To migrate, fibroblasts are activated from the quiescent state, into the 

migratory phenotype -known as proto-myofibroblasts-. So fibroblasts repopulate 

the damaged tissue, proliferate and synthesize collagen, leading to the 

granulation tissue. Then, by TGF-β1 (along with the increased rigidity in the 

ECM) fibroblasts differentiate into myofibroblasts -their contractile phenotype- 

and remodel and contract the wound edges. At this point, the re-ephitelization 

also occurs [50].  

In physiological wounds, as the wound is repaired, the myofibroblasts 

disappear by apoptosis. However, their persisting activity leads to pathological 

tissue deformation such as in hypertrophic scars, fibrosis and during stromal 

reaction to tumors [51], which have major implications while sustaining regular 

function or tissues. In fact, non-healing wounds can turn on a major disability or 

even death [49, 52]; e.g., about 3 to 6 million people in the United States of 

America are affected by these disorders [53]. In consequence, gaining knowledge 

with regards to wound healing-concerning mechanisms has become necessary.  

Thus, in the last years, a lot of effort has been directed towards a thorough 

study of wound healing processes by developing diverse means to perform in 

silico [54], in vitro [55] and in vivo [56] models. Particularly, fibroblast-centered 

studies have increased [57–59], since they are one of the critical actors in healing 

full-thickness dermal wounds.  
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1.1.4 Fibroblast mechanics and 3D in vitro studies 

Collagen biosynthesis and remodeling are key to not only pathophysiological 

repair processes, but also are implicated in controlling the interstitial fluid 

pressure, aging and tumorigenesis. Fibroblast is the major cell type seeking such 

functions and, therefore, fibroblast-matrix interaction research is a pivotal factor 

for the design in tissue engineering [22, 51, 60–62]. This relationship is an 

adaptive response exhibited by dual-mode of cell signaling: GF context and 

biomechanical environment [62].  

In fact, these studies have been distributed into a four-quadrants diagram 

displayed by Rhee et al. [62]. As shown in Fig. 1.7, fibroblast behavior has been 

studied using 2D models -referred as high tension- as well as 3D hydrogel-

systems -cited as low tension-. Moreover, pro-migratory or pro-contractile 

environments have been generated within those substrates using PDGF-BB and 

lysophosphatidic acid (LPA) or serum, respectively.  

Actually, very distinct structural and behavioral responses have been identified 

depending of the dimensionality of the assay. Fibrillar-confinement models have 

shown to be more tissue-like environments. In 3D, fibroblasts interact with 

collagen through dendritic extensions to detect changes in tissue mechanics and, 

hence, exhibit distinct patterns of migration and remodeling in a context-

dependent manner [60, 63, 64]. In planar substrates, they can modulate their 

cytoskeletal function in response to surface mechanics by acto-myosin activity, 

but they have little capacity to modulate the overall molecular organization and 

mechanical properties of the ECM-coated surfaces [62]. In 2D, since fibroblasts 

are not able to form the dendritic structures, they generate lamellipodia and 

robust SFs and FAs [65]. However, in in vivo-like conditions SFs and FAs are 
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observed only in activated conditions such as in differentiated myofibroblasts 

[66, 67]. 

Furthermore, akin the cell phenotype, pro-migratory and pro-contractile 

environments raise important differences in physiology.  Actually, it is an 

adaptive response between the fibroblast state and the biophysical environment. 

During repair, fibroblast migration is an early event; whereas expression of α-

smooth muscle actin (α-SMA), differentiation and, hence, wound contraction 

occur later. In fact, in physiological wound healing, as fibroblasts repopulate and 

renew the matrix, TGF-β1 and the increased ECM stress -yielding from their own 

remodeling activity- hallmark wound closure by myofibroblast differentiation 

and their mechanoregulatory functions [68].  

 
Fig.	1.7. Four	 quadrants	 of	 fibroblast	 mechanics	 research.	 Fluorescence	
images	of	cells	stained	for	actin	cytoskeleton	are	shown	in	the	corresponding	
quadrant.	Image	from	Rhee	and	Grinnell	[62].		

In this regard, fibroblasts-concerning wound healing phenomena have been 

widely studied employing 3D models. On the one hand, Grinnell et al. [69] 
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compared scaffold contractility and remodeling behavior of 3D floating and 

restrained collagen lattices (refer to Fig. 1.8). Floating matrices remodeling was 

stimulated by serum, LPA or PDGF-BB, whereas restrained matrices required 

serum or LPA to contract. Briefly, they concluded that whether cells are or not 

under tension changes the mechanism by which they remodel collagen networks. 

In this regard, what Liu et al. [57] recently published has added new insights into 

the contraction mechanism of the hydrogels, demonstrating that 3D collagen 

contraction differs depending on cell tension and GF stimuli in a myosin II-

dependent manner. 

 
Fig.	1.8. Models	for	collagen	contraction	studies.	Floating	as	well	as	stressed	
matrices	are	employed	for	that	purpose.	Image	from	Grinnell	[68].	

Moreover, human fibroblast has been comparatively studied in 3D vs. 2D 

within four distinct substrates with respect to its morphology, cell adhesion, actin 

cytoskeleton and migration by Hakkinen et al. [70]. Cell-derived matrix (CDM), 

basement membrane extract (BME), collagen I and fibrin were chosen for that 

purpose. While fibroblast failed to spread in BME, they did spread well in CDM, 

collagen I and fibrin, presenting more elongated and less spread than in 2D. In 

addition to this, they saw distributed focal adhesions over the cell body and 

fewer, thinner and more peripherally-located stress fibers in comparison to the 
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typical 2D layout. Besides, surprisingly, 3D cell migration was determined to be 

mesenchymal-mode and cell speed was measured to occur more rapidly in 3D 

than in 2D. In this quantification, due to the molecular composition, cells 

migrated -from fastest to slowest- as follows: CDM, collagen I, fibrin and BME, 

successively. 

Fibroblast transmigration has also been assessed employing several gel-

systems. Grinnell et al. [71] proposed nested collagen matrices to study fibroblast 

transmigration and GF specificity (see Fig. 1.9). Contracted cell-containing 

collagen matrices -also called dermal equivalents- were embedded within another 

cell-free collagen gel; hence, migration occurred outwards. In these experiments, 

they found that cells would migrate upon PDGF-BB stimulation, whereas LPA 

and serum promoted matrix remodeling and contraction. Besides, migrating 

fibroblasts were bipolar with leading dendritic extensions. Additionally, Miron-

Mendoza et al. [64] applied the nested collagen matrices in order to study fibril 

flow and tissue translocation. In these results, collagen fibril flow was produced 

in the outer matrix toward the interface with the dermal equivalent by the traction 

forces exerted by the cells. Actually, up to 1 mm gap -between the two gels- 

closure was visualized achieved by such process.  
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Fig.	1.9. Migrating	 dendritic	 fibroblasts.	 H&E‐stained	 migrating	 fibroblasts	
in	nested	collagen	matrices.	Image	from	Grinnell	et	al.	[71].	

In addition, transmigration through collagen-fibrin interfaces has also been 

pursued. Greiling et al. [72] embedded fibroblast-containing contracted collagen 

hydrogels into fibrin. Since the number of migrating cells decreased upon 

removal of fibronectin (FN) from either gels, they demonstrated that FN is 

required within both gels for fibroblast transmigration from the collagenous 

stromal into the fibrin clots. Likewise, as shown in Fig. 1.10, Shreiber et al. [47] 

performed a chemotaxis experiment by inducing rat dermal fibroblast migration 

with PDGF-BB. In their set-up, a GF-containing fibrin gel was placed next to the 

cell-containing collagen gel. Besides, the gels were mechanically stressed or not. 

In short, they suggested that a complex response of the fibroblasts may exist 

since traction forces of the cells appeared to be dependent on gel type and stress-

state. In this regard, Rouillard and Holmes [73] have underlined the applied 

uniaxial mechanical restraint to increase the efficiency of the transmigrating 

fibroblasts. To do so, they designed a fibrin-filled slit within fibroblast-populated 

collagen gel, as a wound representation. 
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Fig.	1.10. Collagen	 to	 fibrin	 transmigration	 by	 PDGF‐BB.	 Scheme	 of	 the	
experimental	set‐up	employed	by	Shreiber	et	al.	[47].	

Multiple modes govern 3D migration and a great range of protrusive structures 

have been proposed [26, 74]. This variability has been pointed out to be context-

dependent, by adapting dynamically the migration mode to local architecture, 

proteolytic and mechanical properties [44, 75–77]. Actually, distinct signaling 

pathways and molecular mechanisms are required for its regulation [78]. As said 

beforehand, cell migration of slow-moving mesenchymal cells -such as 

fibroblasts- is directed by multi-spatial cues or taxis phenomena [78].  

Although mesenchymal movement has been considered mainly lamellipodial 

and has not yet been associated with blebbing, 3D environments allow motility 

under minimal adhesion forces [74, 79]. Actually, employing collagen lattices, 

Jiang and Grinnell [61] suggested that the entanglement of the fibroblast 

dendritic extensions to the matrix represents a novel integrin-independent 

mechanism of cell anchorage that uniquely depends on the three-dimensional 

character of the matrix, which is shown in Fig. 1.11. Additionally, Petrie et al. 

[75] showed that fibroblasts in 3D were able to change between lamellipodial 

and lobopodial (with more cylindrical protrusions) migration in function on the 

elasticity of the substrate. The non-linear elastic collagen hydrogels drove the 

cells to express a lamellipodial-based motility, whereas those within linear-

elastic dermal explants and cell-derived matrix (CDM) substrates behaved with a 
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lobopodial-based migration. This finding pointed out that fibroblasts use at least 

two distinct modes of 3D cell migration.  

 
Fig.	1.11. Entanglement	 of	 collagen	 fibrils	 with	 fibroblast	 dendritic	
extensions.	 The	 white	 arrows	 marked	 in	 the	 SEM	 image	 denote	
entanglement	points.	Scale	bar	corresponds	to	10	µm.	Image	from	Jiang	and	
Grinnell	[61].	

In this regard, as  to the interpretation that biophysical microenvironment has a 

direct impact on fibroblast response, Miron-Mendoza et al. [80] considered the 

specific role of matrix stiffness and pore-size. Indeed, they designed collagen 

lattices with varied pore-sizes by raging the collagen concentration between 1-4 

mg·ml-1. Moreover, they employed cross-linked and uncross-linked matrices to 

perform the experiments. Hence, by characterizing the stiffness and pore-size of 

the gels, and assessing the migratory trend of the fibroblasts in nested collagen 

matrices, they demonstrated that migration was stiffness-independent, but 

influenced by the pore-size. In these results, they measured a maximal cell 

migration at 2 mg·ml-1 for constrained matrices. 

Relevant progress has been done approaching the 3D fibroblast mechanics. 

However, since it is a very complex phenomenon in which multiple 

environmental cues are involved, there are still a lot of biological questions 
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opened. Indeed, mimicking the in vivo cellular-niche, by means of assays that 

allow greater control and versatility during the studies, could help addressing 

those unclear issues stemming from the microenvironmental complexity. 

1.1.5 Microfluidics as a novel technology for wound healing 

The incorporation of microfluidics to in vitro assays directed to study basic 

cellular processes has overtaken several difficulties that large-scale in vitro 

experiments have implied, such as the limited control of the many potentially 

important physiological factors. Microfluidics presents unique opportunities for 

the rational design of novel physiologically-relevant in vitro models, leading to a 

transformation of the mechanotransduction studies. Actually, microfluidic 

systems allow greater control and versatility while designing and performing 

experiments by combining multiple stimuli and, hence, creating more in vivo-like 

environments. Additionally, real time monitorization is also facilitated, so 

qualitative and quantitative studies in 3D environments can be performed. 

Due to all these advantages, microfluidic platforms have risen and been 

applied for studying 3D migration events [81, 82], addressing multiple biological 

questions involved in cell migration. Numerous works have been directed to 

approach pathophysiological 3D processes comprehending key perspectives on 

angiogenesis [83, 84], metastasis [85, 86] and neuroscience [87, 88], among 

others. As an example, fibrosarcoma cells invading the endothelium sheet are 

shown in Fig. 1.12. 
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Fig.	1.12. Fibrosarcoma	 invasion	 into	 the	 endothelium.	 Fibrosarcoma	 cells	
(HT1080,	 red)	 invade	 through	 the	 ECM	 (gray)	 toward	 the	 endothelium	
(MVEC,	green).	 Scale	bar:	300	μm.	 Image	published	by	Zervantonakis	et	 al.	
[86].	

Wound healing approaches have also been studied by means of these 

microdevices, focusing on 2D epithelial closure, since epithelial sheet migratory 

dynamics in physiology also corresponds to a 2D-manner. As shown in Fig. 1.13, 

Murrell et al. [89] employed multiple laminar flows to selectively cleave cells 

enzymatically, allowing to generate a damage-free denudation. They concluded 

that free space alone is sufficient to induce movement of the epithelial sheet; 

hence, decoupling the contribution of free space and cell damage, typical of 

conventional wound healing scratch assays. Likewise, in another microfluidic-

based enzymatically generated wound model, Felder et al. [90] tested the effect 

of hepatocyte growth factor (HGF) in wounded epithelium. 
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Fig.	1.13. Enzymatic	 denudation	 of	 epithelial	 sheet.	 (A)	 Schematic	 of	 the	
experimental	 set‐up.	 Three	 inlets	 supply	 cell	 media	 to	 an	 epithelial	 sheet	
cultured	 in	 the	500mm	wide,	100mm	high	channels.	This	 is	done	under	no	
flow.	 (B)	 After	 cells	 have	 reached	 confluence,	 15	ml·min‐1	 flow	 is	 applied,	
leading	 to	 three	 separated	 laminar	 streams.	 One	 stream	 contains	 0.05%	
trypsin,	while	 the	other	 two	contain	cell	media.	This	 cleaves	 cells	 from	 the	
channel	 as	 shown	 in	 (C).	 On	 average,	 cleavage	 takes	 5	 min.	 Images	 are	
acquired	in	brightfield.	The	figure	and	caption	are	from	Murrell	et	al.	[89].		

As far as we know, 3D fibroblast migration has not been studied by using 

microfluidic devices. However, microfluidic platforms are a useful tool for 

adding new insight into the underlying mechanisms by controlling the 

microenvironmental complexity and, hence, the taxis phenomena that determine 

3D fibroblast migration. 
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1.2 Objectives 

The Thesis focuses on studying the major underlying mechanisms of 3D 

fibroblast migration and the principal microenvironmental cues involved during 

the early stage of wound healing, when recruitment of the fibroblasts -by 

chemotaxis of PDGF-BB- to the clotted wound occurs. To do so, two 

physiologically-relevant matrices, collagen I and fibrin, have been chosen and 

confined within microfluidic platforms in order to quantify fibroblast migration 

in 3D. In addition, by means of comparative analysis, we characterize integrally 

both matrices from a biophysical and biochemical point of view. 

Hence, the research contains a wide range of material techniques for the 

development of hydrogel characterization, as well as microfluidic approaches for 

the 3D cell culture and migration assays. Seeking to achieve the beforehand 

mentioned main goal, the research has been divided into partial objectives in 

order to be fulfilled during the Thesis.  

1. To carry out the fine-tuning of the general and microfluidic techniques. 

Among them, the main transversal procedures are cited below: 

 Design and fabrication of microfluidic platforms for 3D cellular 

studies. A device made by combining soft lithography and 

replica molding techniques. Akin the geometry, the central 

micropillars allow confining the hydrogels within them to 

perform versatile experiments. 

 Hydrogel preparation and cell seeding. Physiological recipes for 

collagen I and fibrin hydrogel preparations are designed. Their 

composition, as well as the yielding properties influence the 

cellular response during the assays. 
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 Cell tracking and staining. Microfluidic platforms allow for 

direct visualization of cells within it. In fact, live as well as fixed 

imaging is set-up taking advantage of it. 

2. To fulfill an integral and comparative biophysical and biomechanical 

characterization of collagen and fibrin gel-scaffolds. In order to define 

these sorts of microenvironmental cues that would impact on fibroblast 

migration, the microstructure is analyzed by Scanning Electron 

Microscopy and Confocal Reflectance, the resistance to flow is measured 

by permeability experiments and rheology is employed for the 

biomechanical response evaluation. 

3. To stablish and quantify the chemical conditioning in collagen and 

fibrin networks. It is required for the induced physiologically-relevant 

biochemical signaling, in which cells will be embedded during the 3D in 

vitro assays. In this regard, chemical gradients are generated and Enzyme-

Linked ImmunoSorbent Assays (ELISAs) as well as computational 

modelling are carried out for determining their spatial distribution through 

the microdevices. 

4. To elucidate the 3D migratory mechanisms of fibroblasts. Adopting the 

hydrogel-containing microsystems, diverse in vitro migration assays are 

performed employing collagen and fibrin gels. A chemical gradient of a 

chemoattractant (PDGF-BB) is generated through the hydrogels. In this 

way, and taking advantage of the biophysical and biochemical 

characterization accomplished beforehand, new insights are added to the 

fibroblast migration knowledge by analyzing the role of non-muscle 

myosin II. 
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Finally, we find it important to highlight that, within the Thesis period, not 

only did the author of the present work achieve the listed objectives, but also co-

managed the creation and set-up of the new Mechanobiology Laboratory of the 

University of Zaragoza. Although, traditionally, the M2BE Group expertise has 

been simulation-based, currently our group incorporates an experimental research 

line as well. In this context, this Thesis has been the leading outcome of this 

novel laboratory.   

1.3 Outline 

In order to introduce the above mentioned aims in an organized manner, the 

content of the Thesis is divided into seven chapters and an appendix. Therefore, 

although each part is treated as a whole, all of them are required to be considered 

within the overall picture. The content of each chapter is summarized in this 

section. 

 Chapter 1. Being the current introductory chapter, the global 

framework of this Thesis is provided. The background describes the 

state of the art and motivation of the Thesis, to proceed outlining its 

objectives and chapter structure. 

 Chapter 2. The main transversal methods used during this work are 

described in this chapter. The microfluidic device fabrication as well as 

hydrogel preparation and cell seeding, among others, are detailed. 

 Chapter 3. An integral and comparative characterization of the 

biophysical and biomechanical properties of the hydrogels is 

presented. In this chapter, the specific motivation of such 



 

Chapter	1:	Introduction	
 
 

 
 

25 
 
 
 

characterization, the required materials and methods, the obtained 

results and a final discussion are included. 

 Chapter 4. The transport phenomena arising from the establishment of 

chemical gradients -including diffusion and binding- through the 

hydrogel-containing microfluidic platforms is studied. In these results, 

the chemotactic as well as haptotactic cues that are induced, within 

collagen and fibrin networks, in such heterogeneous chemical 

environments are elucidated. Hence, and introductory background of 

the topic, the employed materials and methods, the outcomes and a 

concluding discussion are detailed within this chapter. 

 Chapter 5. The migration experiments performed using the 

microfluidic platforms are presented. Varied chemical conditions have 

been employed in order to quantify and compare the fibroblast 

migratory response in collagen and fibrin lattices. In order to detail the 

implemented in vitro experiments, in this chapter, an introductory 

overview, descriptive section for the applied materials and methods 

and the final discussion are incorporated. 

 Chapter 6. A summary of the concluding remarks of the Thesis and 

brief suggestions with respect to the future research lines are 

combined. The yielded publications are also cited within the chapter. 

 Chapter 7. The main conclusions, as well as the beforehand proposed 

future work, written in Spanish are included. 

 Appendix A. It comprises detailed protocols cited throughout the 

document. 
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Chapter 2 
2Development	of	microfluidic	

systems	for	3D	cellular	studies	

Microfluidics is a means able to control the microenvironmental complexity. 

Actually, it offers versatility for a rational design of the experiments and real-time 

visualization allowing quantification. As said beforehand, in this work we have 

applied these platforms in order to study fibroblast migration in 3D. Previously, and 

framed within this Thesis, the laboratory was set-up by equipment purchase and 

installation. During its management, several procedures were also fine-tuned during 

this period in order to stablish the microfluidic techniques within the newly-built 

laboratory. Hence, in this chapter the major transversal procedures are detailed, i.e., 

the fabrication of the devices and the hydrogel preparation. 
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2.1 The microfluidic platform 

The microdevice yields from the combination of soft lithography and replica 

molding techniques; this synergy provides versatility. The SU8 mold obtained by 

photolithography is reused to replica mold against the polydimethylsiloxane (PDMS) 

multiple times. Besides, the photolithography allows for flexibility while designing 

the desired geometry -along with time and cost minimization-, so modifications of the 

motives are easily overtaken. 

2.1.1 Microdevice design and fabrication 

The design of the microfluidic platform, shown in Fig. 2.1, comprises in the central 

region of the geometry a gel-cage, in which the hydrogel is pipetted using the 

auxiliary channels. The micropillars that enclose the area are responsible, by 

hydrophobic surface tension, to retain the gel solution while being injected and to 

keep it confined once the network is polymerized, without further spreading to the 

subsequent compartments. Additionally, at both sides of the gel, two main channels 

are in direct contact to it, through which condition media is inserted. Likewise, cells 

could also be included along with the media or embedded within the hydrogel 

solution, depending on the experimental design. 

 

Fig.	2.1. The	microfluidic	 device.	 A	 central	 hydrogel‐cavity	 (pink)	 is	 comprised	
between	 the	 two	main	media‐channels,	 addition	 and	 opposite	 ones	 (green	 and	
blue).	The	inlet	ports	are	numbered.	
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With regard to the fabrication process of the device, the schematic steps are shown 

in Fig. 2.2. Briefly, the microfluidic device is formed by bonding a geometry-

containing polymeric PDMS-layer to a glass coverslip. To do so, a positive-relief SU8 

stamp is patterned with the desired geometry by soft lithography, which detailed 

protocol is included in Appendix A Protocol A.1. The stamp serves as mold to pour 

and cure the polymer onto it (see Fig. 2.3), so the PDMS-side contains etched the 

desired geometry within. The “open geometry” is closed and brought to a channel-

layout by irreversibly bonding it against a coverslip by using plasma treatment. The 

detailed protocol of the replica molding and bonding methods are detailed below. 

 
Fig.	2.2. Scheme	 of	 the	 fabrication	 process	 of	 the	 device.	 Soft	 photolithography	
and	replica	molding	are	required	for	the	procedure	[91].	

Reagents and materials: 

 SU8-mold wafer with the desired geometry and depth. 

 35 mm glass-bottom petri dishes from Ibidi (81158). 
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 Polydimethylsiloxane (PDMS) from Dow Corning GmbH (Sylgard 184): store 

at RT. 

 Perfluorinated trichlorosilane from UCT Specialties (T2492-KG): store at RT.  

 Poly-D-lysine hydrobromide (PDL) from Sigma (P7886): store at -20ºC. 

 Cell culture grade water from LONZA (17-724): store at RT. 

Reagent preparation: 

 PDL:  

 Mix 100 mg of PDL with 100 ml of cell culture grade water with a 

stirring bar for 30 mins. 

 Then filter and aliquot it. 

 Aliquots should be stored at -20ºC and defrost at 37ºC before their use. 

Procedure: 

 The SU8-mold should be silanized* by placing the wafer inside a desiccator for 

2 hours with 10 ul of perfluorinated trichlorosilane; in this manner, the 

irreversible bonding of PDMS to wafer is avoided. 

 Then, PDMS should be mixed by 10:1 base to curing agent ratio.  

 After degassing the liquid polymer, it is poured onto the silicon wafer (see Fig. 

2.3). 

 It should be degassed again and placed into the oven at 80ºC overnight. 

 In order to extract the replica molded-layer of PDMS, it is required to allow the 

wafer to cool down and relax. 

 The first PDMS replica after the silanization should be removed and discarded 

since its residues are cytotoxic.  

 The subsequent layers are made analogously. 
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 Once the PDMS layer is extracted, it is trimmed with an 18 mm diameter 

punch and perforated the gel and the main channel inlet-ports with 1.5 and 4 

mm biopsy punches, respectively. 

 Afterwards, the polymeric layers are cleaned by a residue-free tape and 

autoclaved with a humid cycle.  

 Next, the PDMS layers are placed into a closed box and autoclaved again with 

a dry cycle. 

 They are put into the oven at 80ºC overnight in order to dry them. 

 Once they have reached the room temperature, the PDMS layers along with 35 

mm-glass bottom petri dishes are plasma treated and bonded irreversibly. 

 Right after, 40 ul of PDL solution is added into each device in sterile 

conditions and kept in the incubator for at least 4 hours. This step will enhance 

the hydrogel-PDMS surface attachment. 

 Then, they should be thoroughly washed with cell culture grade water and 

maintained in the oven at 80 ºC for 36 hours approximately. 

 Finally, the devices are ready for their use once they are allowed to cool down. 

It is recommended to use them within the following 10 days. 

 

 

Note: The washing process should ensure to profoundly clean all the walls of the 

devices. If not, cytotoxic effects arise from the remaining PDL. 

*Silanization should be performed after 40 uses of the mold, approximately. 
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Fig.	2.3. PDMS	pouring.	The	liquid	polymer	is	spilled	onto	the	SU8	mold	in	order	
to	let	it	cast	patterned,	after	degassing	it.	

2.1.2 Hydrogel preparation and cell seeding 

Collagen I and fibrin gels were chosen as natural gel-scaffolds in order to perform 

comparative analyses while studying diverse aspects, e.g., biophysico-chemical 

properties and 3D fibroblast migration. In order to achieve in vivo-like 

microenvironments, physiological polymerization conditions were adopted in order to 

ensure the closest biomimetic self-assembly of the matrices and optimal cellular 

conditioning. In these specifications, the fine-tuned procedures for the hydrogels have 

derived as follows.  

Collagen gels and cell seeding. Hydrogel made of collagen I was chosen to model 

the connective tissue. The protein content was set at 2 mg·ml-1 and the pH at 7.4, 

while polymerization temperature was held at 37 ºC. In this procedure, we followed 

the methodology proposed by Shin et al. [92], as specified in the following protocol. 
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Reagents: 

 Collagen type I from Becton Dickinson (BDAA354236): store at 4ºC. 

 DPBS 10x +Ca +Mg from Gibco (14080-048): store at 4ºC. 

 Phenol red sodium salt from Sigma (114537): store at RT. 

 NaOH from Sigma (655104): store at RT. 

 Cell culture grade water from LONZA (17-724): store at RT. 

 Medium of interest depending on the cells in use. 

Reagent preparation: 

 Collagen type I:  

 It is critical to store the collagen always at 4ºC, in order to keep the 

quality of the product. Due to this, minimize the time in which the 

collagen will be out of the fridge. During the manipulation time it 

should be kept on ice.  

 PBS10x with phenol:  

 The concentration of the phenol red chosen is the one used for 

DMEM 10x from Sigma (D2429): 0.159 g/l. 

 Warm the DPBS 10x in a water bath for several hours and shake it in 

order to avoid any precipitation. 

 Pour 0.0636 g into 400 ml of DPBS 10x and mix it thoroughly. 

 Filter and aliquot it. 

 The dissolution could be kept at RT for 6 months tightly closed. 

 0.5 N NaOH dissolution: 

 Little by little, put 5g of NaOH into 250 ml of cell culture grade water. 

It is important to do it gradually since the reaction is exothermic.  

 Mix it with a stirring bar until the dissolution appears to be clear. 

 Filter and aliquot it.  
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 The dissolution could be kept at RT for 6 months tightly closed.  

Procedure: 

 A humidity box is required. For example, it is appropriate to use a pipette tip 

box (without tips, including the rack) with deionized water; then autoclave it 

and keep it overnight in the incubator; so the humid box reaches 37ºC in sterile 

conditions. 

 Vortex slightly all the reagents before each use and keep them over ice for the 

whole procedure. They should be put on ice 5 minutes before the beginning of 

their manipulation. 

 Include a 500 ul eppendorf tube on ice in advance of the procedure. 

 A final volume of 200ul of collagen gel is prepared at pH 7.4. 

 Within the total volume these proportions should be kept:  

 10% of DPBS 10x w phenol 

 30% of media* 

 collagen type I at 2 mg/ml 

 the amount of NaOH to bring the mixture up to pH 7.4 

 the rest of the volume should be cell culture grade water 

 Iterations should be done until the desired pH** is reached for the gel. 

 As an example, a possible reagent quantity is shown below. Notice that the 

order of the components while adding into the tube should be maintained. 

 First, these portions are added: 

 20 ul of DPBS 10x w phenol 

 8.2 ul of NaOH dissolution 

 12 ul of cell culture grade water 
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 Then, the collagen –which is in the fridge- is placed over ice and the 

corresponding amount is added. As soon as it is mixed gently, the tube should 

be brought back to ice: 

 99.8 ul of collagen type I at 4.01 mg/ml 

 Right after, the chilled media* is added to the mixture carefully and the tube is 

placed again over ice: 

 60 ul of media* (the media volume can be varied conveniently; so the 

water amount should be adjusted accordingly) 

 Bring the humidity box into the hood quickly. 

 At this point, as the samples are ready by injecting the gel solution into the 

devices (see Fig. 2.4), they should be placed into the humidity box.  

 Once, all the samples are ready, the humidity box should be kept in the 

incubator for 20 mins***. The time is set-up for a maximum gel volume of 20 

ul; for bigger gels the time should be increased. For example, gels of 300 ul 

(employed for other purposes) are maintained for 1 hour approximately. 

 Finally, the samples are hydrated with media at 37ºC and placed in sterile 

dishes to keep them in the incubator. The gel should be kept for 12-24 

hours**** in the incubator to allow the stabilization of the gel. 

Note1: It has been probed that all kind of DMEM generate a sort of precipitates 

which can be identified as black spots throughout the gel while looking with the 

microscope. Thus, and due to the suitability of the cells in use (NHDF), FGM-2 

has been used to grow the cells and make the gels. 

Note2: If serum is required for supplementing the media, the serum is centrifuged 

at 3000 rpm for 20 mins in order to avoid some precipitates to be seen while 

carrying out the experiments. However, it is usual to still have a few small spots 

when serum or other reagents are added. 
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Note3: Depending on the cell type and experimental design, they may be adjusted 

some features of the gel such as the pH or/and collagen concentration or/and cell 

concentration. It is important to remark that by changing those biochemical 

conditions, the microstructural and biomechanical properties of the gel will also be 

affected. 

*In the case that cells are wanted to be embedded within the gel, the pellet that 

turns out from the regular passage is reconstituted (refer to Appendix A Protocol 

A.2); to do so, media is added up to the desired concentration. Thus, while adding 

60 ul of this resuspension to the gel mixture, a concentration of approximately 

0.45-0.5·106 cells/ml within the final gel should result. The suspension should be 

kept on ice for few minutes before its addition to the gel volume in order to avoid 

prepolymerization.  

**For this purpose, a pocket pH-meter is used (from HACH, H138). However, any 

other appropriate pH-meter could be used. Moreover, as a reference, the color code 

shown below could also be used:   

 

***For those gels injected within 300 um-deep microfluidic devices, in order to 

ensure the three-dimensionality of the cellular arrangement all over the z-axis, they 

should be flipped several times as follows: 3.5 mins, 8.5 mins, 13.5 mins, 18.5 

mins. Each time point is determined with respect to 0 mins point, which is the 

moment in which the device is placed regularly within the humid box. At time 

point 20 mins the gel should be hydrated. 

pH 11.0pH 7.4pH 5.5  pH 9.0
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**** If the cells are going to be placed on top of the gel, they could be spread 

before the full stabilization of the gel so it could stabilizes the whole set-up 

together. 

 

 
Fig.	2.4. Hydrogel	injection.	Once	the	gel	solution	is	readily	mixed	and	placed	on	
ice,	the	necessary	amount	is	pipetted	into	the	microfluidic	device.	

Fibrin gels and cell seeding. Since fibrin is the major component of the clot, 

hydrogels made of such protein have been used in order to mimic it. In this 

representation, as indicated in Chapter 3, physiological concentration values of each 

constituent have been applied. Hence, out of the final volume, fibrinogen was 

included at 3.3 mg·ml-1, along with 1 U·ml-1 of FXIII, 1 U·ml-1 of thrombin and 5 mM 

of CaCl2. In addition, during the preparation of the gels, a pH of 7.4 and a temperature 

of 37ºC were maintained as detailed in the protocol below. 
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Reagents: 

 Human Fibrinogen (plasminogen, fibronectin, factor XIII depleted) from 

American Diagnostica (Product Nº ADG448/1 or ADG448): store at 4ºC. 

 Human Alpha-Thrombin  from American Diagnostica (Product Nº 470HT): 

store at -20ºC. 

 Human factor XIII from American Diagnostica (Product Nº 413): store at -

20ºC. 

 Calcium chloride from Sigma (ref. C1016): store at RT. 

 Cell culture grade water from Lonza (ref. 17-724F): store at RT. 

 Medium of interest depending on the cells in use. 

Reagent preparation: 

 Fibrinogen reconstitution: 

 Add 2 ml of water to the vial 

 Keep it in a water bath at 37ºC for 30 mins -each 10 mins mix it by hand 

carefully-. It should be transparent and homogeneous by the end. 

 Centrifuge the viscous solution at 4ºC and 3000rpm for 10 mins 

 Aliquot it as convenient and freeze it at -80ºC. Notice that each aliquot 

should be thawed not more than once 

 Thrombin: 

 It should be kept always at -20ºC; while manipulating should be kept 

over ice. It will not freeze because of the solvent of the dilution (50% 

(v/v) glycerol/water). 

  For a vial at 21459.23 U/ml: since a lower concentration is required for 

the solution, it should be diluted within the same solvent to 60 U/ml (by 

mixing 1 ul from the vial with 356.6 ul of solvent, for example). It is 

important to prepare fresh dilution for each set of gels. 
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 Factor XIII: 

 It should be kept always at -20ºC; and manipulating should be kept on 

ice. It will not freeze because of the solvent of the dilution (50% (v/v) 

glycerol/water and 0.5 mM EDTA added). 

 For a vial at 2000 ug/ml: since a lower concentration is required for the 

solution, it should be diluted within the same solvent to 660 ug/ml (by 

mixing 2 ul from the vial with 4.06 ul of solvent, for example). It is 

important to use fresh dilutions for correct polymerization. 

 Calcium chloride: 

 It is dissolved in cell culture grade water at 0.009 g/ml. 

 In order to complete the dissolution, vortex and filter it. 

Procedure: 

 A humidity box will be required. For example, it is appropriate to use a pipette 

tip box (without tips, including the rack) with deionized water; then autoclave 

it and keep it overnight in the incubator; so the humid box reaches 37ºC in 

sterile conditions. 

 Keep all the reagents until the end of the procedure on ice. 

 Put in the water bath the fibrinogen aliquot to defrost it. 

 Meanwhile, FXIII, thromin, CaCl2 and media should be put on ice.  

 Two transparent eppendorf (500ml) tubes (a and b) are needed per gel. Place 

all the eppendorf tubes that will be necessary over ice. As an example, this 

protocol will be detailed for the preparation of 8 gels; so 8 tubes from each type 

(a and b) are required. 

 In addition, another two Eppendorf (500ml) tubes (t1 and t2) are also required 

to prepare the gel solutions 1 and 2. 
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 Once the fibrinogen has been gently thawed (it should be transparent) place it 

over ice too. 

 Add 4.5 ul FXIII to tube t1. 

 Add 4 ul of thrombin to tube t2.  

 Then, include to tube t2 15.2 ul of CaCl2 and mix it carefully.  

 Add 44.55 ul of fibrinogen to tube t1, mixing it carefully to avoid bubbles. 

 Next, supplement the tube t2 with 133.6 ul of media*. 

 Once solution 1 (tube t1) and solution 2 (tube t2) are ready, pipette them as 

below: 

 5.45 ul of solution 1 into each a tube 

 9.55 ul of solution 2 into each b tube 

 Soon after, for each gel-sample the following steps should be followed:  

 Fix a 20 ul pipette at 15 ul** and take all the content from tube b. 

 All at once, and as close to the ice as possible, mix carefully this content 

with the one within the corresponding tube a and inject de gel where 

desired as soon as possible. 

 In order to allow the gel to polymerize, keep it for 10 minutes*** inside 

the humid box placed in the hood at RT. 

 At this point, take the gel out of the humidity box and place it within a 

convenient container. Hydrate the gel with media at 37ºC and keep it 

within the incubator for 12-24 hours**** to allow for the stabilization of 

the gel. 

 

Note1: notice that the indicated volumes are subjected to the initial 

concentrations of the reagents. If they are modified, the volumes should be 

adapted too. Finally, the individual concentration of the components has been 
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selected to be a physiologically-relevant representation, so the following final 

concentrations should be comprised within the gel as below:  

 3.3 mg/ml of fibrinogen 

 22 ug/ml of FXIII 

 1 U/ml of thrombin 

 5 mM of CaCl2 

 55.67 % (v/v) of media  

Note2: For the fine-tuning of this protocol, fibroblasts (NHDF) has been used 

(refer to protocol A.2 in Appendix A). To do so, FGM2 Bullet-Kit as cell 

culture media has been used. If another type of media is required, it has to be 

noted that the content of serum could affect the polymerization process of the 

gels due to the amount of plasma constituents. 

Note3: If serum is required for supplementing the media, the serum is 

centrifuged at 3000 rpm for 20 mins in order to avoid some precipitates to be 

seen while carrying out the experiments. However, it is usual to still have a few 

small spots when serum or other reagents are added. 

Note4: Depending on the cell type and experimental design, they may be 

adjusted some features of the gel such as reagent concentration or/and cell 

concentration. It is important to remark that by changing those biochemical 

conditions, the microstructural and biomechanical properties of the gel will also 

be affected. 

*In case the cells are wanted to be embedded within the gel, the harvested 

pellet that turns out from the regular passage is reconstituted; to do so, media is 

added up to the desired concentration. Thus, by adding 133.6 ul of this 
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resuspension to the solution t2, a concentration of 0.45-0.5·106 cells/ml within 

the each final gel should result. 

**This value will determine the final volume of the final gel. If a bigger gel is 

needed, the pipette could be fixed to another volume and the content of the b 

tube taken carefully to the mix it with the a tube up to the total volume of the 

fixed volume. Since the polymerization is so fast, the last step should be done 

as soon as possible.  

*** For those gels injected within 300 um-deep microfluidic devices, in order 

to ensure the three-dimensionality of the cellular arrangement all over the z-

axis, the devices should be flipped several times as follows: 5 secs, 15 secs, 35 

secs, 1 min, 2 mins, 4 mins, 7 mins. Each time point is determined with respect 

to 0 secs point, which is the moment in which the device is placed regularly 

within the humid box. At time point 10 mins the gel should be hydrated (see 

Fig. 2.5). 

**** If the cells are going to be placed on the top of the gel, they could be 

spread before the full stabilization of the gel so it could stabilizes the whole set-

up together. 
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Fig.	2.5. Microfluidic	devices	ready	to	run	the	experiments.	Once	hydrated,	 they	
are	kept	within	a	petri	dish	in	the	incubator	to	allow	for	stabilization.	

2.2 Microenvironmental design 

The biological machines allow for the simultaneous control of multiple 

environmental properties. A biomimetic definition of the biophysical and biochemical 

properties has been crucial to the development of this work, since they are potentially 

important factors impacting on the mechanotransduction. Hence, fibroblasts were 

allowed to migrate through collagen and fibrin matrices with known 

microenvironmental cues, as shown in next sections. 

2.2.1 Biophysical and biomechanical characterization of hydrogels 

In order to elucidate the biophysical and biomechanical factors affecting in the 

migration experiments, an integral characterization of such properties of collagen and 

fibrin hydrogels was carried out. On the one hand, Scanning Electron Microscopy 

(SEM) and Confocal Reflection Imaging have been employed in order to determine 

the fibrillar arrangement. Additionally, pressure gradient generation has allowed for 

permeability measurements. Likewise, rheological experiments have revealed the 
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mechanical response of the networks. The required methodology for these tests is 

described in this section. 

Scanning Electron Microscopy (SEM). In order to gain microstructural 

information of the networks, Scanning Electron Microscopy (SEM) has been used. 

This technique has large depth of field and uses electrons instead of light to form 

images. Hence, provides topographical high-resolution rich information of the 

samples. The protocol detailed below has been followed in order to visualize the 

hydrogels (also summarized in Chapter 3 Section 3.2). 

 

Reagents: 

 Glutaraldehyde from Sigma. 

 Osmium tetroxide EM grade from Ted Pella, Inc. 

Procedure: 

 The hydrogels should be polymerized within tube-rings fabricated by PDMS 

and the rings should be pretreated with 5% BSA/PBS overnight. 

 Once the hydrogels are allowed to stabilize for 24 hours within the incubator, 

they are ready for their processing. 

 They are fixed with 2.5% glutaraldehyde overnight at 4ºC, followed by 1% 

osmium tetroxide EM grade for 1 hour at room temperature. 

  Dehydration in 30%, 50%, 70%, 80%, and 95% ethanol solutions for 10 mins 

are performed.  

 Gels were freeze-fractured in liquid nitrogen before a final dehydration step in 

100% ethanol. 
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  Next, they are critical point-dried.  

 The samples should be sputter-coated with gold-palladium for 4 minutes and 

visualized afterwards. 

 

 

Pressure gradient generation: permeability quantification. The resistance to 

flow that collagen and fibrin hydrogels exert was measured. Darcy’s Law determines 

the relation between the pressure difference and the permeability (as demonstrated in 

Chapter 3 Section 3.2). Therefore, the hydrogels within the microdevices were 

exposed to a pressure gradient and the permeability was quantified by applying the 

experimental set-up detailed within this subsection.  

 

Procedure: 

 The hydrogels are allowed to polymerize within the microfluidic devices. 

 After stabilized for 24 hours in the incubator, the samples are ready for the 

experimental set-up. 

 Medium-tubes are inserted into the channel reservoirs (refer to Fig. 2.6): 

 First, tube 1 and 4 should be inserted carefully.  

 Once they are tightly sealed, tubes 2 and 3 are inserted. 

 In order to properly seal the tube-reservoir joints, it is also helpful to add 

a little bit of silicone on it. 

 Then, the tubes should be filled thoroughly pipetting in order to stablish the 

desired pressure difference among both sides of the gel. Note that 1 cm-H2O 

difference would be equivalent, rounded, to 100 Pa. 
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 The pressure drop is traced by measuring over time (e.g., each 15 minutes) the 

media column high difference. 

 By fitting the experimental points to Darcy’s law, the permeability value (ܭ) is 

obtained, as detailed in Chapter 3 Section 3.2. 

 

 

Fig.	2.6. Application	 of	 pressure	 gradient.	 It	 is	 employed	 for	 measuring	 the	
permeability	of	the	scaffold	hydrogels.	

Rheological experiments. The objective of the rheological tests was to determine 

the mechanical response of the hydrogels. Hence, we quantified strain sweeps and 

observed how the shear moduli changed with varying strain. A general procedure is 

shown below and additional specific features of the assays are included in Chapter 3 

Section 3.2. 
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Procedure: 

 The samples are mixed on ice and pipetted on the rheometer plate by filling its 

gap, as shown in Fig. 2.7.  

 To avoid any evaporation, the shear gap should be covered with oil.  

 The curing reaction is allowed to perform and stabilize for 24 hours, prior to 

experimental procedures are begun. 

 The experimental conditions should be maintained constant all over the 

measurements. 

 

 

Fig.	2.7. Picture‐sequence	 of	 the	 experimental	 set‐up	 in	 the	 rheometer.	 The	
sample	was	 pipetted	 on	 the	 rheometer	 plate	 (a)	 and	 after	 adjusting	 the	 gap,	 it	
was	covered	with	the	oil	(b).	

2.2.2 Chemical conditioning of hydrogels within microfluidic platforms 

The genuine design of the microdevice allows for the modification and control of 

the chemical environment to which cells are exposed. Sometimes, it is necessary a 

simple media replacement for an actual cell culture or to generate an inhibition 

environment. Additionally, the generation of linear chemical gradients between both 

main channels is supported by such platforms. Indeed, distinct chemical factors have 

been applied to establish controlled heterogeneous distributions. In this manner, we 

have also quantified the nature of the spatio-temporal distribution of the compound 
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transport -diffusion or binding- by combination of Enzyme-Linked ImmunoSorbent 

Assay (ELISA, detailed in Chapter 4 Section 4.2) and computational predictive 

simulations. 

Media replacement. Media (or other liquids) requires to be renewed or replaced 

for numerous procedures. The necessity for such elementary and crucial action ranges 

culture maintenance of the cells in 3D or media change for washing or additional 

intent. The following methodology indicates the recommended steps. 

 

Reagents: 

 Cell culture media (containing/not chemical factors) or any other required 

replacement aqueous fluid. 

Procedure: 

 Aspirate media from the reservoirs. 

 Pipet the new media or any other desired aqueous fluid in one reservoir inlet of 

each side of the device: 1 and 2, for instance (refer to Fig. 2.2). 

 Let the liquid to stabilize: it will first stabilize between both reservoirs of the same 

side of the device (between 1-3 and 2-4) and, then, it will equilibrate the pressure 

differences between the both main channels of the device (green and blue 

channels). 

 While equilibrium is achieved, convective transport of the biomolecules occurs (as 

well as diffusive); afterwards, diffusion transport still occurs. So replacement of 

the nutrients and other factors is performed. 
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Note: in each channel a final volume of 100-140 ul is required.  

Chemical gradients: dextran, PDGF-BB and TGF-β1. In case of the media 

replacement, a homogeneous chemical environment within the networks is achieved. 

However, if an asymmetric chemical distribution is needed, the procedure should be 

distinct from the previous one. Hereby method describes examples of several chemical 

gradients generated in this work.  

 
Reagents: 

 Diluent: cell culture media FGM-2 (for GFs) or PBS (for dextran). 

 Chemical factor:  

 Platelet-derived growth factor-BB (PDGF-BB) from Abcam. 

 Transforming growth factor-β1 (TGF-β1) from BD Biosciences. 

 20 kDa-fluorescein isothiocyanate-dextran from Sigma-Aldrich. 

Reagent preparation: 

 At the desired concentration, dilute the chemical factor within the corresponding 

diluent. 

Procedure: 

 Aspirate media from the reservoirs. 

 As fast as possible or simultaneously -with a multichannel pipette- the following 

should be done (refer to Fig. 2.2): 

 The required chemical factor is added to one reservoir of the addition 

channel of the device (green). 

 No-factor-containing media is added to one reservoir of the opposite 

channel of the device (blue). 
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 Wait for 30 minutes before starting any experiment in order to let for thermal 

equilibrium. 

2.3 Cell imaging within microdevices 

One of the upgrades that microfluidic-based assays have brought is the capability 

for direct visualization of cells within it, since a coverslip #1.5 acts as device bottom. 

In fact, live as well as fixed imaging was performed taking advantage of it. 

Particularly, time-lapse images were taken in order to track cells in phase contrast and 

by wide-field fluorescence, when stained with cell-tracker (refer to Appendix A 

Protocol A.4). In addition, for quick viability tests, the Live/Dead Kit was employed 

in order to stain the cells (see Appendix A Protocol A.5): it discriminates live from 

dead cells by simultaneously staining with green-fluorescent calcein-AM to indicate 

intracellular esterase activity and red-fluorescent ethidium homodimer-1 to indicate 

loss of plasma membrane integrity.  

Immunofluorescence. Cells arranged within both fibrillar networks, collagen and 

fibrin, were fixed and inmunostained for vinculin and phalloidin in order to assess the 

focal adhesion formation and the cytoskeleton layout. The protocol is shown below.  

 

Reagents: 

 Mouse monoclonal [hVIN-1] to Vinculin antibody from Abcam (ab11194): 

aliquot and store it at -20ºC. 

 Alexa Fluor® 488 Goat Anti-Mouse IgG (H+L) antibody from Molecular 

Probes (A11029): aliquot and store at -20ºC. 
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 Alexa Fluor® 594 Phalloidin from Molecular Probes (A12381): aliquot and 

store at -20ºC. 

 4% paraformaldehyde (PFA) from Affymetrix: store at 4ºC. 

 Triton X-100  from Calbiochem: store at 4ºC. 

 Goat serum from Sigma: aliquot and store at -20ºC. 

Procedure: 

 Fixation with 4% PFA  

 Aspirate the media. 

 Fix cells with 4% PFA for 18 min. 

 Wash cells 5 times with PBS for 5 min. 

 Permeabilization  

 Permeabilize cells for 10 min with 0.1% Triton X-100 in PBS at room 

temperature. 

 Wash cells 3 times with PBS for 5 min. 

 Blocking with BSA 

 Block with 5% BSA/PBS and 3% goat serum for 4 hours. 

 Labeling 

 Add primary antibody anti-vinculin (1:100) in 0.5% BSA/PBS and 

incubate overnight at 4ºC. 

 Wash cells 5 times with PBS for 20 min with 0.5 BSA/PBS. 

 Add secondary antibody Alexa Fluor 488 (1:200) and phalloidin 

conjugated with TRITC (1:100) in 0.5% BSA/PBS for 3 hours at room 

temperature in the dark. 

  Wash cells 3 times with 0.5 BSA/PBS and 2 times with PBS. 

 Image the samples as soon as possible (see Fig. 2.8). Meanwhile, store them at 

4ºC in the dark hydrated with PBS. 
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Fig.	2.8. Visualization	of	stained	samples	by	confocal	microscopy.	
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Chapter 3 
3A	comparative	biophysical	

characterization	of	collagen	and	
fibrin	hydrogels	

Fibrin and collagen gels have been widely employed for in vitro assays as well as 

tissue engineering and regeneration purposes. Actually, a large amount of work has 

been done in order to characterize these physiologically-relevant scaffolds, mostly 

focusing on their microstructure and stiffness. However, the diverse preparation and 

testing techniques make it difficult to correlate data among all these works. Moreover, 

additional stress has to be done yet in order to determine permeability capabilities of 

the 3D networks, since it regulates diffusion of nutrients and other growth factors 

through the scaffolds. Therefore, in this chapter, an integral comparative study of 

biophysical and biomechanical properties of fibrin and collagen gels is presented. In 
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this manner, analogies and differences may imply major effects on the cellular 

behavior by inducing distinct microenvironmental cues. 

3.1 Introduction 

As indicated in the introductory chapter, the skin acts as the main protector against 

external aggressions [50]. However, it is exposed regularly to injuries. Although acute 

wounds are repaired systematically -hemostasis, inflammation, proliferation and 

remodeling-, pathological development can turn on major disabilities -fibrosis and 

chronic ulcers- or even death [49, 52]. Actually, non-healing wounds affect about 3 to 

6 million people in the United States [53]. This makes an upper-impact initiative 

having a better insight into the wound healing process. Therefore, in the last years a 

lot of effort has been undertaken towards a thorough knowledge of such processes by 

means of in vitro assays.  

Particularly, the construction of these physiologically-relevant in vitro models 

requires a profound analysis of the extracellular matrix (ECM). Actually, the ECM 

plays a key role modulating the mechanotransduction and cellular behavior in wound 

healing [93, 94]. However, sufficient stress has not been done yet for a profound 

analysis of the fundamental regulatory role of it. 

The ECM is a complex three dimensional network that provides architectural 

scaffolding for cellular adhesion and migration, as well as initiates crucial biochemical 

and biophysicomechanical cues that are required for physiological functions such as 

tissue morphogenesis, differentiation and homeostasis [95–97]. In fact, multiple 

syndromes are caused due to pathologic compliance of the matrix, such as fibrosis or 

cancer development [25, 29], which show the inherent relevance of the ECM. 
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Indeed, while recreating the wound healing process, the most employed biomimetic 

scaffolds are collagen and fibrin hydrogels [60, 64, 66, 71–73]. Both proteins, 

collagen I and fibrinogen, have major impact during the healing process [49]. The 

main constituent of the clot and granulation tissue is the fibrin, while collagen I plays 

a dominant role within the surrounding healthy connective tissue [50]. Therefore, to 

understand the main physiological differences and analogies between both matrices is 

crucial for a better knowledge of their behavior and interaction, as well as for their use 

on in vitro assays. 

Collagen I is the most abundant fibrous protein within the interstitial ECM, 

accounting for up to 30% of the total protein in the human body [25, 52]. Upon 

physiologic conditions -such as temperature, pH and ionic strength-, triple-stranded 

helix arrays of collagen molecules build up to form fibrils. Then, they bundle to form 

collagen fibers that later on self-assemble into the 3D interconnected fibrillar network 

[25, 98]. Actually, it is the outstanding structural element of the ECM, since collagen 

supplies tensile strength, regulates cell adhesion, supports taxis phenomena and 

migration, and directs tissue development [98].  

In hemostasis, clotting cascade is activated. The formed thrombin cleavages the 

fibrinopeptides from the middle of the fibrinogen molecule to produce fibrin 

monomers [99]. Their assembly became into oligomers that lengthen to form 

protofibrils, which, twisted, aggregate into fibers by lateral weak interactions. The 

three-dimensional (3D) network is constructed as the fibers branch. Under 

physiological ionic conditions, factor XIII (FXIII) is activated by thrombin in 

presence of calcium ions. Then, the clot is stabilized by the formation of covalent 

bonds introduced by the activated FXIII, leading to a rigid and elastic structure [99–

103]. Its mechanical properties will determine the clot’s response: it has to be able to 
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plug to stop bleeding, whereas its structure must be strong enough to withstand the 

pressure of arterial blood flow [104]. 

Given the relevance of collagen and fibrin as natural components of the ECMs, 

multiple studies have analyzed the biomechanical properties of both hydrogels [104–

111]. Actually, all these works have extensively studied Scanning Electron 

Microscopy (SEM) [112] and Confocal Reflection imaging micrographs [113–115] in 

order to elucidate microstructural features, such as fiber arrangement and diameter. 

Likewise, rheological [108, 109, 116–119], axial tensile tests [106, 107] and other 

techniques [120, 121], as well as assays at individual fiber level [108, 122–126], have 

been performed.   

Most of these works have focused their studies on the global stiffness of these gels 

due to its crucial role on regulating many cellular processes in 2D [1, 127–130]. 

Nevertheless, there are several works investigating the impact on cell events of the 

interstitial flow [18, 33, 131–134] and the confinement level of the networks [34, 41, 

43, 45]. Furthermore, the hydraulic resistance to fluid flow of the gel-scaffolds has 

also been started to be analyzed for improving nutrient diffusion in scaffolds for tissue 

engineering applications [135, 136] or to study the 3D cell migration on in vitro 

experiments [33, 57, 131, 137], although some regards remain not fully understood 

yet. 

The wide range of scaffold composition and measurement methods make difficult 

to compare and extrapolate the biophysical and biomechanical characterizations [138]. 

Therefore, in this work we aim to carry out an integral quantitative comparison of the 

bio-mechano-physical properties of both hydrogels, under similar conditions, for 

different bioapplications of in vitro 3D studies. 
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3.2 Materials and methods 

3.2.1 Preparation of fibrin and collagen gels 

Fibrin gels. As detailed in Chapter 2 Section 2.1, regarding fibrin hydrogels, 

Human Fibrinogen -plasminogen, fibronectin, factor XIII depleted- (American 

Diagnostica GmbH) was diluted in its buffer (50 mM Tris, 100 mM NaCl and 5 mM 

EDTA) as indicated from the provider. After mixing it with Human FXIII (American 

Diagnostica GmbH), the mixture was allowed to polymerize in presence of Human 

Alpha-Thrombin (American Diagnostica GmbH) along with CaCl2 (Sigma) and cell 

culture media FGM-2 BulletKit (Lonza). While mixing, all the reagents were kept on 

ice. Once the samples were prepared, they were maintained in a humidity chamber in 

order to allow the mixture to polymerize. Finally, the hydrogels were hydrated and 

stored in the incubator for 24 hours before initiating any experiment. The gels reached 

a pH of 7.4, being the concentrations of each constituent -out of the final volume- set 

at 3.3 mg·ml-1 for fibrinogen, 1 U·ml-1 for FXIII, 1 U·ml-1 for thrombin and 5 mM for 

CaCl2, respectively. 

Collagen gels. The procedure for collagen gels was adapted from a previous work 

of Shin et al. [92], as specified in Chapter 2 Section 2.1. Collagen type I (BD 

Biosciences) was buffered to a final concentration of 2 mg·ml-1 with 10x DPBS –

calcium, magnesium- (Gibco), cell culture media FGM-2 BulletKit (Lonza) and cell 

culture grade water (Lonza). The dilution was brought to pH 7.4 adding NaOH. 

Manipulation of reagents and mixture was maintained on ice. As soon as the mixture 

was ready, they were allowed to polymerize inside humid chambers, in the incubator. 

Next, the gels were hydrated and stored in the incubator for 24 hours before 

experimentation. 
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3.2.2 Scanning electron microscopy (SEM) 

This procedure was performed in collaboration with the Microscopy Service of the 

Universitat Autònoma de Barcelona and the methodology is detailed in Chapter 2 

Section 2.2. Thus, hydrogels were fixed with 2.5% glutaraldehyde (Sigma-Aldrich), 

followed by 1% osmium tetroxide EM grade (Ted Pella, Inc.). Then, dehydration in 

30%, 50%, 70%, 80%, and 95% ethanol solutions, respectively, was performed. Gels 

were freeze-fractured in liquid nitrogen, before a final dehydration step in 100% 

ethanol was done. Using the Baltec CPD030 critical point dryer, the samples were 

sputter-coated with gold-palladium for 4 minutes employing an Emitech K550. 

Afterwards, visualization was carried out using high resolution imaging with a Merlin 

Field Emission Scanning Electron Microscope (FESEM) from Zeiss working at 1kV 

beam voltage and magnifications of 80-120 kX. 

3.2.3 Confocal reflection imaging 

Performance of the acquisition by confocal reflection was obtained by using a 

Leica SP2 equipped with a 63x/1.4 N.A. oil immersion lens. The samples were 

excited with 488 nm using an Argon laser and detected within 479-498 nm.  

3.2.4 Microstructural analysis 

In order to elucidate and compare the microstructural features of both 3D networks, 

fibrin and collagen, confocal reflection and SEM images were acquired as detailed 

beforehand. Actually, for the parameterization of the study, the void ratio and fiber 

radius were evaluated by means of the free software ImageJ (http://rsb.info.nih.gov/ij). 

As for the fiber radius measurements, three independent sets of each hydrogel and 

several fiber measurements were employed. These data are shown as mean ± SEM. 
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Regarding the void ratio calculi, confocal reflection images were used. Firstly, the 

raw images were made binary. Later on, the fiber to pore ratio was calculated by 

means of areas comprised by white (pores) or black (fibers) pixels of the binary 

images. This measurement was carried out for three independent hydrogels out of 

each type of gel, so data are shown as mean ± SEM.  

3.2.5 Permeability experiments 

Regarding the experimental set-up employed to measure Darcy’s permeability (K) 

of the hydrogels, they were allowed to polymerize within microfluidic devices, which 

were fabricated following a previous work of Shin et al. [92]. Then, medium reservoir 

tubes were inserted into the channel outlets (shown in Fig. 3.1 and detailed in Chapter 

2 Section 2.2), following a previous work of Sudo et al. [139]. The media columns’ 

high difference in both sides of the gel caused a pressure gradient, being the initial one 

of 500 and 13 mm H2O for fibrin and collagen gels, respectively.  

 

Fig.	3.1. Scheme	 of	 the	 experimental	 set‐up	 for	 permeability	 measurements.	
Pressure	 gradient	 generated	 by	 media	 columns’	 high	 difference	 through	 the	
microfluidic	device	comprising	a	central	gel	 cage	 (fuchsia)	and	 two	main	media	
channels	(pink).	
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From Darcy’s law, it is established the relation between the pressure difference and 

the permeability as:  

∆Pሺtሻ ൌ 	∆Pሺ0ሻ ൉ 	eିୡ୲																																																		(3.1) 

where ݐ is the time,  ∆ܲሺݐሻ is the pressure difference for each time point, ∆ܲሺ0ሻ is the 

initial pressure difference and the constant ܿ is related to the permeability ܭ as shown 

below [139]: 

Kሺmଶሻ ൌ	   ୡ൉ஜ൉୐൉୅౨
஡൉୥൉୅

                                               (3.2) 

being ߤ and ߩ the viscosity and the density of the fluid respectively, ܮ the length of 

the gel through which the pressure drop is established, ܣ௥ the area of the media 

reservoirs, ݃ the gravitational acceleration and ܣ the cross sectional area to flow. 

Therefore, by monitoring and measuring the pressure difference drop and fitting the 

equation (3.1) into the measured data points (pressure difference vs. time), the 

exponent coefficient ܿ was obtained for each hydrogel. Subsequently, by solving the 

equation (3.2) for			ܭ	, the Darcy’s permeability values were determined, to 

characterize the interstitial resistance to flow. 

3.2.6 Rheology 

The rheological experiments were carried out in collaboration with the Materials 

and Components Section of the Instituto Tecnológico de Aragón (ITAINNOVA). The 

current methodology is summarized in Chapter 2 Section 2.2. For these measurements 

a Bohlin Gemini 200 HR Nano rheometer was used. The lower torque limit of the 

instrument was of 3 nNm in oscillation. We performed all tests using a cone-plate 

geometry with diameter 40 mm, a cone angle of 1º gap and a truncation height of 30 
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µm. The temperature was set and held at 37°C, controlled with a Peltier plate to 

±0.1°C.  

The samples were mixed on ice and pipetted on the rheometer plate by filling its 

gap, as demonstrated in Fig. 3.2. To avoid any evaporation, the shear gap was covered 

with a 0.1 Pas oil, the same one used for the calibration. Then, we started the 

measurements. 

The curing reaction was traced measuring the evolution of the shear modulus over 

time at a constant temperature of 37°C, oscillation frequency of 1 rad·s-1 and applied 

strain amplitude of 0.005.  

The dependence of the sample moduli on the oscillatory strain amplitude was 

measured at constant temperature of 37°C for excitation frequencies of 0.1 Hz and 

0.01 Hz. The strain amplitude was varied in a logarithmically equidistant interval of 

ten measurement points per decade, from 0.001 to 1. For each point, six periods were 

accumulated. 

 

Fig.	3.2. Sequenced	pictures	of	the	gel	filling	process	on	the	rheometer.	Once	the	
sample	was	mixed,	 it	was	pipetted	on	the	rheometer	plate	(a),	adjusted	the	gap	
(b),	covered	with	the	oil	(c)	and	got	ready	to	run	the	experiment	(d).	
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3.3 Results 

Hereby work a complete biomechanical and architectural characterization of 

hydrogels was carried out. Actually, the set of experiments that we proposed allowed 

understanding diverse key aspects of the gel comprehending its microstructure, 

resistance to flow and mechanical response. Although the approach could be applied 

to study any kind of scaffold, a systematic comparison of two physiologically-relevant 

and widely used hydrogels, fibrin and collagen, was analyzed. 

3.3.1 Microstructural study 

The void ratio of the hydrogels was chosen to assess the porosity of both fibrin and 

collagen gels. For the quantification, confocal reflection images were employed, 

which are shown in Fig. 3.3. Fibrin networks presented a higher fiber density than 

collagen matrices, leading to a void ratio of approximately 70% and 80% respectively, 

as indicated in Table 3.1. 

Table 3.1. Microstructural characteristics of the hydrogels. 

 Collagen Fibrin 

Fiber radius (nm) 79.51±33.16 66.53±13.57 

Pore size (μm) 2.84±0.94 1.69±0.33 

Void ratio (%) 80.15±1.82 71.46±1.00 

 

 

In order to evaluate the fiber radius, SEM images were also acquired. As shown in 

Fig. 3.4, during collagen hydrogel assembly, fibers tended to form bundles leading to 

thicker fibers, which explained the wide variability presented in the radii 

measurements, being nearly 80 nm for the collagen fiber radius (see Table 3.1). In 
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addition, fibrin fibers showed up mainly individually and their radii were measured to 

be around 70 nm, as collected in Table 3.1. 

 

Fig.	3.3. 3D	 network	 of	 hydrogels.	 Confocal	 reflection	 images	 show	 the	
arrangement	 of	 the	 fibrillar	 networks	 for	 (a‐b)	 fibrin	 and	 (c‐d)	 collagen	 gels.	
Images	(a)	and	(c)	show	a	general	view;	while	(b)	and	(d)	are	zoomed	images	of	
the	 right‐bottom	 corner	 of	 the	 previous	 images,	 respectively.	 Scale	 bars	
correspond	to	10	μm.		
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Fig.	3.4. Fiber	 layout	within	 the	hydrogels.	SEM	 images	of	 (a‐b)	 fibrin	and	(c‐d)	
collagen	gels	acquired	at	magnifications	comprehended	between	80‐120	Kx	show	
the	morphological	features	of	the	fibers.	Scale	bars	correspond	to	200	nm.	

3.3.2 Permeability quantification 

Concerning the resistance to flow of the hydrogels, it was quantified the pressure 

difference drop over time (see Fig. 3.5). It was done by means of measuring the media 

columns’ high difference each 10 or 15 minutes for fibrin or collagen, respectively. As 

shown in Fig. 3.5, the obtained data curves were then fitted within an exponential 

function formatted as in equation (3.1) achieving a R2-value of 0.96 and 0.98, 

respectively, for fibrin and collagen. As gathered in Table 3.2, the exponent 

coefficient values	ሺܿሻ were of 0.13 h-1 or 4.00·10-05 s-1 for fibrin, and of 0.24 h-1 or 

7.00·10-05 s-1 for collagen.  
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Table 3.2. Resistance to fluid flow. 

 Collagen Fibrin 

 Exponent coefficient, c (s-1) 4.00·10-05 7.00·10-05 

 Darcy’s permeability, K (m2) 5.73·10-13 1.00·10-12 
 

 

Particularizing for each 3D network and solving the equation (3.2) for	ܭ, it was 

obtained the Darcy’s permeability for fibrin and collagen to be of 5.73·10-13 m2 and 

1.00·10-12 m2, accordingly (see Table 3.2). Hence, as represented in Fig. 3.6, these 

values denote the velocity with which the pressure difference drops towards the 

equilibrium in the case of each gel, departing with an equal pressure difference. This 

points out the resistance that a particular 3D network exerts to the fluid transport.  

 

Fig.	3.5. Pressure	difference	drop	over	time	in	hydrogels.	The	experimental	data	
points	 of	 the	 pressure	 difference	 vs.	 time	 are	 plotted	 and	 fitted	 into	 the	
exponential	 function	 for	 fibrin	 (left)	 and	 collagen	 (right)	 gels.	 The	 exponent	
coefficient	turns	out	the	value	of	the	permeability	(K).	
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Fig.	3.6. Normalized	exponential	functions	of	the	hydrogels.	The	quantification	of	
the	permeability	(K)	allows	interpreting	the	resistance	to	flow	of	each	hydrogel.	

3.3.3 Mechanical response  

As soon as the gel solution was pipetted and set within the rheometer plate, the 

polymerization was traced for 3 hours. Fig. 3.7 shows the evolution of the complex 

shear modulus (G*) over time, at a constant temperature of 37ºC. The sample was 

kept at rest in situ for 24 hours since curing reaction initiation, in order to finish the 

polymerization and stabilize the sample before any subsequent rheological 

experiment. 

Afterwards, strain sweep assays were performed for excitation frequencies of 0.1 

and 0.01 Hz. Fig. 3.8 outlines the measured elastic (G’) and viscous (G’’) shear 

modulus of fibrin and collagen gels, in function of the applied strain amplitude. Both 

materials were characterized by a substantial strain hardening, which is characteristic 

of these biopolymer hydrogels. It occurred within the strain range of 10-100% and 50-

100%, for fibrin and collagen, respectively. For the measured excitation frequencies, 

the registered moduli were similar within the experimental error. The measured value 

of the shear modulus (G’) of fibrin was of 300 Pa. This value was twenty times higher 

than the one quantified for collagen gels, which was of 15 Pa.  
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Fig.	3.7. Time	 evolution	 of	 the	 complex	 shear	 modulus	 (G*)	 of	 hydrogels.	 The	
temperature	 was	 set	 and	 held	 at	 37ºC,	 excitation	 frequency	 was	 1	 rad/s	 and	
strain	amplitude	0.005.	Note	that	polymerization	in	case	of	the	fibrin	gel	was	not	
yet	completed.	
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Fig.	3.8. Strain	sweeps	of	hydrogels.	Elastic	(G’)	and	viscous	(G’’)	shear	modulus	
are	shown	in	function	of	the	strain	amplitude	(γ),	presented	in	parts	per	unit,	at	
frequencies	of	0.1	Hz	and	0.01	Hz.	The	 temperature	during	 the	experiment	was	
kept	at	37°C.		
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3.4 Discussion 

Lately, many works have been directed towards the characterization of hydrogels. 

In fact, their bioapplication in tissue engineering or in vitro experiments raised 

remarkably [105–108], due to the biomimetic features of these materials while 

recreating natural ECMs. These extensive studies are essential to understand the 

mechanics and architectural characteristics underling the biopolymers. Nevertheless, 

the broad diversification of the mixture and measuring techniques makes difficult 

while cross widely correlating the data [138]. Hence, the purpose of the current study 

was to perform an integral biophysical and biomechanical study of two hydrogels 

highly relevant in biological processes and widely used for in vitro assays: fibrin and 

collagen. Moreover, the preparation and measuring methods were maintained all over 

the study, which allowed for a systematic comparison of all the properties.  

As a starting point, physiologically-relevant concentrations and experimental 

conditions were chosen to perform the study for both gels. As to the collagen gels, it 

has been noted the physiological concentration to be 1-4.5% [140]. Actually, we 

followed the detailed protocol of Shin et al. [92], which has been fully detailed in 

Chapter 2 Section 2.1. Hence, 2 mg·ml-1 of collagen I protein, pH of 7.4 and a 

polymerization temperature of 37ºC were chosen, similarly to other published works 

[33, 44, 70, 86]. 

Regarding the fibrin gels, several publications have noted the physiological 

amounts to be ranged as indicated below: fibrinogen between 2-4 mg·ml-1 [102, 104, 

141], FXIII at 22ug·ml-1 [101], thrombin between 1-3 U·ml-1  [113, 122, 141, 142], 

CaCl2 from 1.4 mM on [141, 143, 144], and pH at 7.4 [143]. Thus, the concentrations 

of each constituent out of the final volume were set at 3.3 mg·ml-1 for fibrinogen, 1 

U·ml-1 for FXIII, 1 U·ml-1 for thrombin and 5 mM for CaCl2. In addition, a pH of 7.4 
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and a temperature of 37ºC were maintained for the preparation and performance of the 

experiments. 

Actually, previous works focused mainly on microstructure and bulk stiffness 

analysis, due to their key role in basic cellular events in 2D [128]. Nevertheless, there 

are accumulating evidences that confinement of cells in 3D migration has a crucial 

role [34, 41, 45, 46, 77]. Furthermore, the resistance to flow of the ECM biopolymers 

also controls the transport of the biomolecules in diffusive and convective processes, 

which regulate the access of nutrients and other factors, as well as the shear stress 

exerted to the cells. All this together yielded to be a key aspect including not only 

microstructural and mechanical analysis, but also permeability measurements within 

the quantitative comparison between hydrogels.  

Regarding the tested mechanical response of the hydrogels, it was measured by 

means of oscillatory strain amplitude sweeps. The network characterization of the 

repeated straining was done since the ECM in vivo is exposed to such deformations 

due to cellular contractile mechanosensing, cellular motility, beating of blood stream 

or interstitial flow [108]. Curing reaction was traced for 3 hours by monitoring the 

elastic and viscous shear modulus. It was visualized the collagen gel to polymerize 

linearly and the fibrin polymerization evolution to be logarithmic-like, as seen in Fig. 

3.7. Although, apparently, fibrin gels cured faster than collagen gels, the network 

remained to be further cross-linked and stabilized by FXIII for the next hours. The 

complete cross-linking of a blood clot during coagulation takes longer than the 

formation of its fibrillar backbone [108], which could explain why confocal scanning 

micrographs do not show much differences with or without ligation [122]. 

Besides, FXIII introduced dramatic effects on the viscoelastic properties of fibrin 

by increasing its stiffness, as it happens in accurate clots to prevent bleeding problems 

[104]. For fibrin networks, we measured an elastic shear modulus of 300 Pa, which 
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matched with other published values [105, 108, 116, 141]. However, akin the collagen 

gels, a 20-fold lower shear modulus than that quantified for fibrin was achieved, being 

of 15 Pa, which agreed with measurements from other works in which analogous gel 

preparations were employed [109, 118]. 

In addition, both gels presented non-linear elasticity. Fibrin showed strain-

hardening from 10% of strain on, while in collagen this effect occurred for strains 

larger than 50%. It was expected, since it is generic to any network composed of 

semiflexible filamentous proteins, where the main molecular mechanisms are being 

extendedly studied [27, 108, 109, 122]. Indeed, many soft tissues, such as blood clots, 

stiffen as they are strained, preventing large deformations that could threaten tissue 

integrity [109, 117, 145]. Likewise, at cellular level, cells embedded in 3D exert 

forces that cause deformations ranged within 10-50% in the cell surroundings (20 

microns far from the cell margin) and 10% away from the cell [146].  

These gel-scaffolds were arranged into branched fibrillar 3D networks, as shown in 

Fig. 3.3 and 3.4. In the same way that Lai et al. indicated in their works [106, 107], 

collagen fibers tended to form bundles while the fibers formed in fibrin assembly were 

straighter, as corresponds to physiological clot structures [104] . As gathered in Table 

3.1, the fibrin network was formed tighter than the collagen mesh. It was 

demonstrated by the measured pore size of fibrin ECM, which was lower than that 

quantified for collagen structures. Actually, the pore size was quantified 

approximately 1.7-fold lower for fibrin than for collagen hydrogels. Moreover, it 

correlated directly with the measured permeabilities, maintaining a similar proportion. 

In addition, these values are in agreement with other previous measurements [33, 

136]. 

It has been extensively studied the impact that biomechanical and geometrical 

properties of the ECM exert on cellular behavior. Moreover, it is currently accepted 
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within the literature that distinct biophysical and biomechanical properties regulate, 

indeed differently, the migration in 2D and 3D [12]. Although 2D system mechanisms 

are mostly cleared up, different biomechanical and biophysical properties are being 

elucidated in order to understand its impact on different 3D migration patterns, such as 

matrix stiffness [37], microarchitecture [44] or confinement [34]. Thus, all the 

presented mechanical and biophysical characterization of the fibrin and collagen gels 

intended to determine these cues, in order to allow for a rational design and 

interpretation of the cellular 3D in vitro studies. 

3.5 Summary 

Biophysical and biomechanical characterization of physiologically-relevant 

hydrogels is required in order to rationally use them for in vitro models, as well as in 

tissue engineering applications. In this work, an integral comparative characterization 

of collagen and fibrin scaffolds has been carried out by analyzing their microstructural 

architecture, resistance to fluid flow and rheological measurements. On the one hand, 

the pore size and permeability appear to be proportional features, by presenting 

approximately 2-fold decrease in fibrin with respect to collagen. Likewise, the 

stiffness of fibrin gels is 20 times higher, although both gels showed strain-hardening 

behavior. Indeed, these significant analogies and differences found could induce to 

cells distinct mechanoregulatory cues while applying them to in vitro experiments. 
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Chapter 4 
4Application	of	chemotactic	and	

haptotactic	cues		

Microfluidic devices allow for the production of physiologically relevant cellular 

microenvironments by including biomimetic hydrogels and generating controlled 

chemical gradients. During transport, the biomolecules interact in distinct ways with 

the fibrillar networks: as purely diffusive factors in the soluble fluid or bound to the 

matrix proteins. These two main mechanisms may regulate distinct cell responses in 

order to guide their directional migration: caused by the substrate-bound 

chemoattractant gradient (haptotaxis) or by the gradient stablished within the soluble 

fluid (chemotaxis). As shown within this chapter, in this work, 3D diffusion 

experiments, in combination with ELISAs, are performed using microfluidic 

platforms in order to quantify the distribution of PDGF-BB and TGF-β1 across 

collagen and fibrin gels. Furthermore, to gain a deeper understanding of the 
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fundamental processes, the experiments are reproduced by computer simulations 

based on a reaction-diffusion transport model.  

4.1 Introduction 

Viability of organisms is sustained by the contribution of diverse constituents that 

compose tissues and organs. Particularly, the extracellular matrix (ECM) performs 

major functions such as tissue morphogenesis, differentiation and homeostasis, by 

rendering architectural scaffolding and establishing biomechanical and biochemical 

cues [25, 147, 148]. Indeed, cells require complex signaling frameworks comprised of 

specialized molecules, such as growth factors (GFs), for intercellular communication 

and to carry out physiological processes [25, 147]. 

During biomolecule transport across the ECM, diverse processes take place leading 

to a heterogeneous and varied biochemical scenario by means of paracrine and 

autocrine signaling; actually, the yielding biochemical environment has great effect on 

major cell responses, such as proliferation, differentiation and migration [21, 149–

154]. While diffusion through the matrix pores in form of soluble molecules occurs, 

the ECM also serves as reservoir by offering binding sites to the GFs and, therefore, 

leading to a solid-state availability of them [155–158]. In addition, GFs also interact 

with other molecules resulting in their degradation [159].  

Particularly, distinct directional single cell migrations (comprised of chemosensing, 

polarization and locomotion) are distinguished in function of their specific cause 

[160]. Migration towards a soluble chemoattractant is usually defined as chemotaxis; 

otherwise,  when the bound GF influence cell motility, by guiding cell adhesion, is 

denominated haptotaxis [153, 161, 162]. Both mechanisms are crucial to cell 

migration and, therefore, strongly impact on developmental and regenerative 
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processes. Thus, a deeper knowledge of the diffusion behavior of GFs within the 

ECM, and the related adhesion and degradation processes, is critical in order to 

elucidate and predict the different chemotactic and haptotactic gradients of the 

biomolecules, which directly affect cellular behavior. 

Numerous studies have identified several GFs to play an important role by 

mediating a wide range of biological processes [163–166]. These studies have been 

performed using two-dimensional (2D) substrates. However, the in vivo 

microenvironment mostly corresponds to a three-dimensional (3D) structure. Actually, 

significant differences in the behavior and effect of GFs have been identified by 

comparing 2D and 3D models, with 3D models mimicking more closely the in vivo 

behavior [167–169].  

Furthermore, in the last years, microfluidic approaches have emerged to recreate 

cellular niches [170–175]. These platforms allow for a controlled 3D 

microenvironment by including hydrogels (mimicking the ECM of tissues) and the 

generation of chemical gradients of diverse factors in a systematic way [86, 171, 176–

182]. Such microenvironment gives rise to more reliable information about the effect 

of GFs during in vitro assays in order to address biological questions. 

Among the many different GFs, Platelet-Derived Growth Factor-BB (PDGF-BB) 

and Transforming Growth Factor-β1 (TGF-β1) have received increasing attention due 

to their diverse biological effects. PDGF-BB is a pro-migratory factor that plays a key 

role in the early stage of wound healing by enhancing proliferation and the 

recruitment of the fibroblasts to the wound site for ECM deposition [29, 68]. On the 

other hand, TGF-β1 stimulates fibroblasts differentiation into contractile 

myofibroblasts, which are mainly responsible for matrix remodeling [29]. 

Furthermore, it has also been reported the capability of these GFs to bind to different 

extracellular components exerting their biological activity [147, 155, 157, 181, 183–
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185]. This fact points to an important regulatory mechanism in physiological and 

pathological processes. In fact, their interaction with collagen and fibrin ECM-

proteins is of high physiological relevance.  

Collagen I is one of the major components of the connective tissue, accounting for 

up to 30% of the total protein in the human body [25, 50, 52]. Fibrin is an essential 

constituent of healing or angiogenic processes [102, 104, 186]. Under physiological 

conditions, both can also be assembled in vitro leading to the conformation of 

hydrogels in which cells are cultured and grown, thereby recreating biomimetic 3D 

physicochemical environments.  

In order to design physiologically-relevant in vitro models, gradients of GFs are 

established across the hydrogels, which are installed into the microfluidic devices. The 

ability to control cell behavior, by regulating the availability of GFs, provides a 

powerful tool to study and manipulate a wide array of developmental and regenerative 

processes that are important in biology, biomedicine and bioengineering [187]. 

Therefore, knowing the actual character of the distribution and gradients of GFs, 

becomes essential in order to interpret and quantify cell response of in vitro assays. In 

this work, we present a characterization of the transport of PDGF-BB and TGF-β1 

through two different hydrogels, collagen and fibrin, included in a microfluidic 

platform. The spatio-temporal distribution of each GF, together with their degradation 

process, are determined by combining experimental and computational approaches. 

Moreover, this versatile tool is applied to further quantify the nature of GF-hydrogel 

interaction allowing for a deep insight into in vitro conditions.  
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4.2 Materials and methods 

4.2.1 Microfluidic device fabrication 

The geometry of the microfluidic devices is shown in Fig. 4.1: it contained a central 

channel, in which the hydrogel was located, and two media channels (addition and 

opposite channels) at both sides of the central channel in direct connection with the 

gel in order to ensure diffusion and hydration. As shown in Chapter 2 Section 2.1, the 

microfluidic devices were made of polydimethylsiloxane (PDMS - Dow Corning 

GmbH Sylgard 184, Dow Chemical, Germany) at a ratio of 10:1 polymer to cross-

linker, using SU8-silicon wafers (Stanford University, CA) obtained by soft 

lithography as previously described [92]. PDMS microdevices were autoclaved and 

dried at 80 ºC overnight. Finally, they were plasma-bonded and treated with poly-D-

lysine (PDL) solution (Sigma-Aldrich, Germany).  

 

Fig.	4.1. Geometry	of	the	microfluidic	device.	A	general	view	of	the	microdevice	is	
shown	 in	picture	 (a).	The	central	area	 is	demonstrated	as	a	 top	view	 in	picture	
(b),	 in	which	the	geometry	and	nomenclature	of	the	compartments	are	detailed:	
the	channel	(1)	and	the	hydrogel	(2)	compartments.	The	hydrogel	is	injected	into	
the	central	cavity	(pink),	whose	dimensions	are	2.5	x	1.3	mm;	the	main	channels	
(green	and	blue)	are	 filled	with	 culture	media	or	PBS.	When	a	GF	or	dextran	 is	
added	 in	 order	 to	 establish	 a	 chemical	 gradient,	 it	 is	 included	 in	 the	 addition	
channel	(green)	and	diffuses	through	the	hydrogel	towards	the	opposite	channel	
(blue).		
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4.2.2 Hydrogel preparation 

Two types of physiologically relevant hydrogels were tested in this study, collagen 

and fibrin, in order to evaluate two different biomimetic scaffolds with respect to their 

chemical composition and physical properties. The corresponding procedures are 

specified in Chapter 2 Section 2.1. 

Briefly, collagen I gel solution (BD Biosciences, Spain) was prepared at 2 mg·ml-1 

and pH 7.4 [92], while for fibrin hydrogel, human fibrinogen (American Diagnostica 

GmbH, Germany) was diluted in the buffer indicated by the manufacturer (50 mM 

Tris, 100 mM NaCl and 5 mM EDTA) at pH 7.4, and mixed with human factor XIII 

(American Diagnostica GmbH, Germany), human α-thrombin (American Diagnostica 

GmbH, Germany), CaCl2 (Sigma-Aldrich, Germany) and cell culture media FGM-2 

BulletKit (Lonza, Belgium). 

Hydrogels were then pipetted into the devices followed by gelation for 20 minutes 

in the incubator and hydrated right afterwards. The gels were kept in the incubator for 

24 hours prior to any subsequent experiment. The media channels were then filled 

with PBS containing 20 kDa-dextran or FGM-2 media with the GFs, PDFG-BB or 

TGF-β1, as described in the following sections.  

4.2.3 Characterization of dextran diffusion 

To characterize the transport of biomolecules in both hydrogels and determine the 

chemical gradients generated through the device, 20 kDa-fluorescein isothiocyanate-

dextran (Sigma-Aldrich, Germany) was prepared in PBS at 15 µg·ml-1 (Lonza, 

Belgium) and added in one of the media channels (addition channel), while PBS was 

added in the opposite media channel (see schematic in Fig. 4.1 and detailed protocol 

in Chapter 2 Section 2.3). The diffusion phenomenon was imaged by confocal 
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imaging using a Nikon D-Eclipse C1 Confocal Microscope employing a CFI Plan 

Apo Lambda 2X objective.  

4.2.4 Experimental quantification of GF concentration 

The study of degradation and transport processes in microfluidic platforms was 

performed by the addition of 50 ng·ml-1 PDGF-BB (Abcam, UK) or 10 ng·ml-1 TGF-

β1 (BD Biosciences, Spain) in the addition channel and the determination of their 

concentrations by ELISA in both, addition and opposite, channels (see Fig. 4.1). 

Detailed methodology for chemical gradient generation and sample obtaining for 

ELISAs are included in Chapter 2 Section 2.3 and Appendix A Protocol A.3, 

respectively. 

The degradation assays were performed without any hydrogel in the central 

chamber of the device, in order to evaluate the GF concentration reduction without the 

influence of the gel; hence, avoiding the interference of diffusion and binding 

mechanisms. Control samples (without GFs) were also assayed. In spite of this, for the 

experimental quantification of the GFs concentration pattern, the hydrogels were 

included within the microfluidic platforms. 

To determine the PDGF-BB concentration, the PDGF-BB Human ELISA Kit 

(Abcam, UK) was used according to manufacturer instructions. Standards (0-50 

pg·ml-1) were prepared from the stock solution. All standards and samples (1:1000) 

were run in triplicate. After immobilization and antibody binding, and following 

streptavidin-HRP solution addition, incubation for 30 min with the TMB One-Step 

Substrate Reagent was performed. Afterwards, the stop solution was added and the 

absorbance of the reaction was read at 450 nm in a Synergy HT Multi-Mode 

Microplate Reader (BioTek Instruments, VT). 
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TGF-β1 concentration was quantified by the TGF-β1 ELISA Kit (Invitrogen, UK). 

First, samples were centrifuged (1000g for 10 minutes). Similarly, standards (0-75 

pg·ml-1) were obtained from the stock solution added to the microfluidic devices and 

quantified in triplicate as well as samples (1:100). Then, the immunoassay was carried 

out by the immobilization of TGF-β1 and further antibody reaction, followed by the 

addition of streptavidin-HRP and the stabilized chromogen. After incubation of 20 

minutes at room temperature in the dark, the stop solution was added and the 

absorbance was read at 450 nm in a Synergy HT Multi-Mode Microplate Reader 

(BioTek Instruments, VT). 

4.2.5 Modeling the GF transport within the hydrogels 

In order to simulate the transport of factors through the hydrogels, as shown in Fig. 

4.1, two compartments of the device were distinguished in the model: the channel 

compartment (1), where the factor is mixed with the media fluid; and the hydrogel 

compartment (2), that is the cavity in which the hydrogel is installed into the 

microdevice. Although the same equation was used for both compartments, the 

parameters varied depending on them, since different phenomena occurred in these 

domains.  

We proposed a reaction-diffusion transport model, where the transport equation is 

derived from the law of conservation of mass and a suitable constitutive equation for 

the flux of the chemical factor (Fick’s law): 

డ௖ሺ࢞,௧ሻ

డ௧
ൌ ,࢞ଶܿሺߘ௜ܦ ሻݐ ൅ ܴ௜		                                      (4.1) 

where index ݅ refers to the compartment, ܿ is the concentration of the factor, ܦ௜ is the 

effective diffusion coefficient and ܴ௜ represents the mass reduction due to both 

phenomena, the degradation in the channel compartment or the binding to the matrix 
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in the hydrogel compartment. The reaction term ܴ௜	can be written as a function of the 

specific compartment: 

ܴ௜ ൌ ቊ
െ݇ௗܿሺ࢞, 		1	ݐ݊݁݉ݐݎܽ݌݉݋ܿ	݄݁ݐ	݋ݐ	ݏ݃݊݋݈ܾ݁	࢞	݂݅																	ሻݐ

െ݇௕ܿሺ࢞, 		2	ݐ݊݁݉ݐݎܽ݌݉݋ܿ	݄݁ݐ	݋ݐ	ݏ݃݊݋݈ܾ݁	࢞	݂݅																		ሻݐ
		     (4.2) 

where ݇ௗ and ݇௕ are the degradation and binding rates, respectively.  

The reaction-diffusion process in the domain, as depicted in Fig. 4.1, is essentially 

planar. Therefore, we employed a 2D Finite Element simulation based on linear 

triangle elements and an Euler backward time integration scheme [188]. The mesh 

contained approximately 3000 elements with characteristic element sizes between 0.1 

and 0.4 µm. The total time of 24 hours was subdivided into 864 steps, with a step size 

of 100 seconds each. On all boundaries of the domain, zero flux boundary conditions 

were applied. 

4.2.6 Diffusion coefficient estimation 

The standard diffusion coefficient of an element of radius ݎ within a continuous 

fluid, can be calculated by the Stokes-Einstein equation as [189]:  

ஶଵܦ ൌ ௞ಳ்	

଺గఎ௥
                                                   (4.3) 

where ݇஻ is the Boltzmann constant, ܶ the absolute temperature and ߟ the viscosity of 

the fluid. The values of the standard diffusion coefficient obtained for each chemical 

factor, together with their radius, are shown in Table 4.1. 
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Table 4.1. Parameters of the chemical factors.a 

 Dextran PDGF-BB TGF-β1 

 3.24 4.50 3.80 (m·9-10) ݎ	

ஶଵܦ  (10-11·m2·s-1) 1.75 1.26 1.49 

௖௢௟௟௔௚௘௡ܦ
ଶ  (10-11·m2·s-1)  1.09 0.77 0.92 

௙௜௕௥௜௡ܦ
ଶ  (10-11·m2·s-1)  1.17 0.83 0.99 

aThe standard and specific diffusion coefficients particularized for each chemical factor, 
together with the corresponding assumed radius, are shown. For dextran, its radius has been 
indicated from the provider; the value for PDGF-BB has been estimated from the Protein 
Data Bank; and the one of TGF-β1 has been taken from a previous work [190].  

 

However, the diffusivity is altered when these molecules diffuse through a fibrous 

matrix (for instance, the hydrogel) instead of in a continuous fluid medium. Therefore, 

an effective diffusion coefficient was defined, which does not depend only on the 

molecular size but also depends on the void ratio of the porous medium in which the 

factor is moving. Ogston et al. [191] and Kim and Tarbell [192] defined an effective 

diffusion coefficient as follows:  

ଶܦ ൌ ஶଵܦ ൉ ݌ݔ݁	 ൬െ ൤ඥ߮		 ∙ ൬1 ൅
௥

௥೑
	൰൨൰                          (4.4) 

where ߮ is the void ratio of the matrix, ݎ the radius of the molecule and ݎ௙ is the fiber 

radius.  

These parameters, which are gathered in Table 4.2, were quantified for both 

collagen and fibrin gels by means of measurements implemented on Scanning 

Electron Microscope and Confocal Reflection images. Hence, in function on the 

matrix through which molecule transport occurred, the assumed effective diffusion 

coefficients in the hydrogel compartment are shown in Table 4.1. 
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Table 4.2. Geometrical features of the hydrogels.b 

 Collagen Fibrin 

 ௙ (10-9·m) 79.51±33.16 66.53±13.57ݎ

߮ (%) 80.15±1.82 71.46±1.00 

bThe parameters of the model related to the microstructure of both collagen and fibrin 
hydrogels: fiber radius and void ratio. The data in this table are reported as mean ± SEM. 

4.3 Results 

In order to characterize the spatio-temporal distribution of the GFs, experimental 

assays were performed as well as computational simulations. All the studies were 

carried out using PDGF-BB and TGF-β1 as GFs, and establishing chemical gradients 

across collagen and fibrin hydrogels. 

At first, the computational model was validated by characterizing the transport of 

dextran. Afterwards, in order to elucidate the events occurring during GF transport in 

the porous-gel media, different aspects were considered: degradation measurements 

and assessment of the distribution of GF concentration. Next, finite element 

simulations of GF transport were carried out in order to replicate the in vitro 

experiments, allowing to improve the understanding of the biochemical environmental 

cues that are induced. 

4.3.1 Characterization of dextran transport dynamics 

The distribution of the diffusing 20 kDa-fluorescein isothiocyanate-dextran was 

imaged 4 hours after addition in both collagen and fibrin gels. As demonstrated in Fig. 

4.2 (a and b), the diffusive pattern was spread all over the microfluidic device [139].  
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Fig.	4.2. Diffusive	gradient	of	dextran.	 In	vitro	and	 in‐silico	 images,	respectively,	
resulting	 from	 dextran	 diffusion	 in	 collagen	 (a,c)	 and	 fibrin	 (b,d)	 hydrogels	 4	
hours	after	addition.		

Furthermore, the computational simulation of the experiment for a diffusion 

coefficient of 1.75·10-11 m2·s-1, as indicated by the provider, based on the Fick's Law 

was able to predict the transport of dextran through the scaffold. Hence, as shown in 

Fig. 4.2, it confirmed the suitability of our model to predict such processes since the 

dye concentration profile deriving from both methods matched.  

4.3.2 Experimental measurements of GF degradation 

For the assessment of GF degradation in the devices, the concentration of PDGF-

BB and TGF-β1 were evaluated 24 hours after factor addition. Employing the devices 

without any hydrogel allowed for an accurate quantification of the decrease in their 

concentrations by degradation. The samples collected from the media channels were 

evaluated by Enzyme-Linked ImmunoSorbent Assays (ELISAs) and the concentration 
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values obtained were plotted with respect to the initial concentrations, 100% being 50 

ng·ml-1 of PDGF-BB or 10 ng·ml-1 of TGF-β1. 

After 24 hours, the concentration values for PDGF-BB and TGF-β1 were 45% and 

70%, respectively, as shown in Fig. 4.3. Hence, the reductions in the concentration of 

the factors were approximately 55% and 30%, yielding a lower decrease in the 

concentration of TGF-β1 than exhibited by PDGF-BB. These results highlighted the 

differences in the degradation processes of PDGF-BB and TGF-β1 in the devices, and 

showed TGF-β1 to be significantly more stable in our experimental analysis. 

 

Fig.	4.3. Degradation	of	the	GFs	within	the	microfluidic	device.	Experimental	data	
as	percentage	of	 initial	PDGF‐BB	and	TGF‐β1	 concentrations	 (50	ng·ml‐1	 and	10	
ng·ml‐1	 are	 100%,	 respectively)	 obtained	 from	 media	 channels	 of	 the	 device	
without	any	hydrogel,	24	hours	after	addition.		

4.3.3 Experimental quantification of GF concentration 

ELISAs were performed to quantify the transport of the studied GFs across the 

hydrogels held in the microfluidic devices. 50 ng·ml-1 of PDGF-BB or 10 ng·ml-1 of 

TGF-β1 were added to one media channel (the addition channel) and the samples were 
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obtained, after 24 hours, from both media channels (the addition channel and the 

opposite one). 

The GFs, PDGF-BB and TGF-β1, showed a similar distribution for both hydrogels 

as displayed in Fig. 4.4 and 4.5. Regarding PDGF-BB, for collagen hydrogels, the GF 

concentration detected in the addition channel compared to the initial state (50 ng·ml-1 

= 100%) decreased down to 40%, while the concentration obtained in the opposite 

channel reached 4%. In fibrin hydrogels, percentages of approximately 45% and 8% 

were obtained in the addition channel and in the opposite one, respectively, when 

PDGF-BB was added.  

 

Fig.	4.4. PDGF‐BB	 concentration	 pattern	 within	 collagen	 and	 fibrin	 hydrogels.	
Experimental	 and	 computational	 data	 as	 percentage	 of	 the	 initial	 PDGF‐BB	
concentration	(50	ng·ml‐1	=	100%)	obtained	from	both	media	channels,	24	hours	
after	addition.		

For the other GF, TGF-β1, transported through collagen gels, the concentration 

percentage obtained from the addition channel was 30%, whereas the concentration in 

the opposite channel was 5%. For fibrin gels, the percentages of TGF-β1 from the 

addition and opposite channels were 30% and 4%, respectively. In summary, the 

results of this subsection precisely show the chemical gradients across the hydrogel in 

each considered GF-ECM combination. 
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Fig.	4.5. TGF‐β1	 concentration	 pattern	 within	 collagen	 and	 fibrin	 hydrogels.	
Experimental	 and	 computational	 data	 as	 percentage	 of	 the	 initial	 TGF‐β1	
concentration	(10	ng·ml‐1	=	100%)	obtained	from	both	media	channels,	24	hours	
after	addition.	

4.3.4 Numerical predictions of GF transport 

The model detailed in Subsection 4.2.5 allowed to describe the transport of GFs 

through hydrogels by means of three main parameters: the effective diffusion 

coefficient, which strongly depends on the molecular size of the factor and the 

geometry of the porous scaffold; the degradation rate of each specific element; and the 

binding factor, which quantifies the ability of the molecule to bind to the matrix. 

As a main assumption, we considered that the theoretical estimation of the effective 

diffusion coefficients in a porous matrix (presented in Subsection 4.2.6) was an 

accurate approach to model diffusion; indeed, other works also use a similar approach 

[193, 194]. Here, the degradation and binding rates were obtained by minimizing the 

difference with respect to the GF concentrations that were observed experimentally. 

To this end, four distinct cases were studied in order to assess these parameters: (Case 

1) the values obtained in the degradation experiments were assumed as degradation 

rates and binding was omitted; (Case 2) the degradation rates were taken from the 

degradation experiments and binding rates were fitted to reduce the average difference 
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in both channels; (Case 3) binding was omitted and the degradation rates were fitted to 

reduce the average difference in both channels; (Case 4) both degradation and binding 

rates were fitted to reduce the average difference in both channels.  

The parameters estimated for each type of gel and GF are detailed in Table 4.3 and 

4.4. The degradation and binding rates, as well as the corresponding differences with 

respect to the experimental values are shown. These differences are displayed as 

separated differences for the addition and opposite channels, and also as the average 

of both differences, which was minimized by the parameter adjustment. Indeed, the 

average difference was reduced when both binding and degradation rates were 

adjusted, which corresponded to the denominated Case 4. Fig. 4.4 and 4.5 compare 

and visualize those optimized differences between the experimental data and the 

numerical predictions for PDGF-BB and TGF-β1 in both hydrogels.  
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Table 4.3. Computational characterization of PDGF-BB transport.c 

 Collagen Fibrin 

 Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4 

Degradation  rate, kୢ (10-6·s-1) 9.97 9.97 4.00 3.00 9.97 9.97 1.00 3.00 

Binding   rate, kୠ  (10-6·s-1) 0.00 0.00 0.00 10.00 0.00 0.00 0.00 0.10 

Addition channel difference (%) 14.40 14.40 0.61 1.89 17.90 17.90 6.52 0.54 

Opposite channel difference (%) 1.49 1.49 2.97 0.95 3.00 3.00 0.92 1.49 

Average difference (%)  7.96 7.96 1.79 1.42 10.40 10.40 3.72 1.02 

cParameter estimation and difference computation with regard to experimental values 
considering four different conditions: (Case 1) the values obtained in the degradation 
experiments are assumed as degradation rates and binding is neglected; (Case 2) the 
degradation rates are accepted from the degradation experiments and binding ratios are fitted 
to reduce the average difference in both channels; (Case 3) binding is neglected and the 
degradation rates are fitted to reduce the average difference in both channels; (Case 4) both 
degradation and binding rates are fitted to reduce the average difference in both channels. 

Table 4.4. Computational characterization of TGF-β1 transport.d 

 Collagen Fibrin 

 Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4 

Degradation  rate, kୢ (10-6·s-1) 4.68 4.68 7.00 5.00 4.68 4.68 8.00 4.50 

Binding   rate, kୠ  (10-6·s-1) 0.00 10.00 0.00 10.00 0.00 20.00 0.00 20.00

Addition channel difference (%) 4.98 0.72 0.38 0.06 6.78 0.42 0.89 0.02 

Opposite channel difference (%) 3.59 0.91 2.78 0.83 3.87 0.13 2.87 0.10 

Average difference (%)  4.29 0.82 1.58 0.42 5.32 0.28 1.88 0.06 

dRefer to caption of Table 4.3. 
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The transport mechanisms predicted by the numerical simulations led to a deeper 

insight of the chemotactic and haptotactic gradients that are generated across the gels 

during GF transport. Therefore, the chemotactic and haptotactic gradients, that were 

established due to matrix binding or fluid diffusion processes for PDGF-BB and TGF-

β1 (corresponding to Case 4), were demonstrated. The distributions of both GFs are 

plotted and illustrated in Fig. 4.6 and 4.7, which show the concentration pattern 

established across the collagen and fibrin hydrogels. 

	
Fig.	4.6. PDGF‐BB	 gradient	 simulations.	 The	 computational	 model	 predicts	 the	
spatio‐temporal	distribution	of	PDGF‐BB	in	collagen	(a)	and	fibrin	(b)	hydrogels,	
with	 respect	 to	 Case	 4.	 	 The	 simulation	 figures	 show	 diffusion	 and	 binding	
patterns	 resulting	 after	 24	 hours	 since	 factor	 addition,	 being	 the	 added	 initial	
concentration	 of	 50	 ng•ml‐1	 (source	 in	 the	 left	 side	 of	 the	 device).	 The	 graphs	
depict	 the	evolution	 ‐over	 the	gel	width‐	of	diffusion	and	binding	concentration	
profiles,	 denoted	 as	 C	 and	 R,	 respectively.	 	 In	 collagen	 gels,	 both	 diffusion	 and	
binding	 processes	 occur	 simultaneously.	 Conversely,	 binding	 is	 not	 relevant	 in	
the	case	of	fibrin.	
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Fig.	4.7. TGF‐β1	 gradient	 simulations.	 The	 computational	 model	 predicts	 the	
spatio‐temporal	 distribution	 of	 TGF‐β1	 in	 collagen	 (a)	 and	 fibrin	 (b)	 hydrogels,	
with	 respect	 to	 Case	 4.	 	 The	 simulation	 figures	 show	 diffusion	 and	 binding	
patterns	 resulting	 after	 24	 hours	 since	 factor	 addition,	 being	 the	 added	 initial	
concentration	 of	 10	 ng•ml‐1	 (source	 in	 the	 left	 side	 of	 the	 device).	 	 The	 graphs	
depict	 the	evolution	 ‐over	 the	gel	width‐	of	diffusion	and	binding	concentration	
profiles,	denoted	as	C	and	R,	 respectively.	Diffusion	 in	both	hydrogels	 follows	a	
similar	 fashion.	 	However,	 the	bound	 factor	presents	enhanced	activity	 in	 fibrin	
comparing	to	collagen.	

4.4 Discussion 

Directional cell migration is key to several pathological and physiological 

processes such as metastasis, morphogenesis and wound healing [195–197]. 

Particularly, the application of controlled chemical gradients of in vitro assays is 

fundamental to interpret and quantify the cellular response to different biochemical 

conditions. Microfluidic devices show the unique feature of mimicking real cellular 
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niches together with well-controlled chemical gradients. For this reason, a huge effort 

has been dedicated to their development by the scientific community [82, 92, 170, 

171, 195, 198].  

In 2D, chemical gradients are employed for a wide range of different applications 

[175, 178, 179, 199, 200]. Nevertheless, 3D systems allow for stable chemical 

gradients across chips containing hydrogel scaffolds, which better recreate the real 

ECM, and provide physiologically more relevant models. Indeed, several works are 

directed to the characterization and application of chemical gradients in 3D 

microsystems in order to address distinct biological issues [83, 86, 149, 180, 182, 

198].  

Most of these works consider diffusion and degradation of GFs as the main 

mechanisms during biomolecule transport. However, there are accumulating data 

showing the specific binding of GFs to the ECM-proteins in vivo as well as in vitro 

[147, 155, 157, 181, 184, 185]. This leads to a heterogeneous spatial distribution of 

matrix-bound (or solid state) chemical factors that regulates the transport of GFs 

inside the ECM. Therefore, it is fundamental to distinguish chemotactic (soluble 

factors regulated by diffusion within the interstitial soluble fluid) from haptotactic 

(solid state factors determined by binding to the ECM) gradients. Indeed, the high 

physiological relevance of haptotaxis has been pointed out. For example, Martino et 

al. [157] have proposed the nature to act as a GF reservoir as the main physiological 

function of fibrin, highlighting its direct and important role during wound healing.  

In addition, several works indicate the distinct impact exerted by both taxis 

phenomena on the cellular migration patterns, in contrast to those that consider 

chemotaxis as a process including haptotaxis [152, 162, 201]. Therefore, our work 

suggests diffusion, binding and degradation mechanisms as main phenomena arising 

from the 3D transport of biomolecules when chemical gradients are established in 
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microfluidic platforms that contain hydrogels. To this end, our aim was to combine 

microfluidic experiments with ELISAs and numerical simulations. This approach was 

applied to two different GFs, PDGF-BB and TGF-β1, whose chemical gradients were 

established in microdevices that hold two different hydrogels, collagen or fibrin. 

Therefore, the chemical response of the physiologically relevant biomimetic 

interactions between the studied GF and ECM were elucidated.  

The combination of both methodologies allowed for the characterization of the 

chemical cues (chemotactic and haptotactic) induced within the microfluidic 

platforms. So, on the one hand, the microfluidic experiments, combined with ELISAs, 

led to the quantification of the temporal evolution of GF concentration in each 

compartment. On the other hand, the numerical simulations provided estimations of 

the spatio-temporal distribution of each GF within the scaffold gel. The quantitative 

comparison of both experimental and numerical results allowed for calibrating the 

parameters of the numerical model, as well as to validate the main assumptions in 

which the mathematical model is based on. Therefore, it was fundamental to set the 

main simplifications of our model and their implications on our results. The 

mathematical model here proposed assumed that three phenomena regulate the 

transport and conservation of GF within the scaffold gel: diffusion within the soluble 

fluid, temporal degradation and binding to the gel-scaffold.  

Firstly, we assumed that the diffusion coefficient of the GF in the interstitial soluble 

fluid is dominated by the equation of Stokes-Einstein [202], corrected by means of the 

Ogston  approximation [191], that takes into account the complex pore space between 

the fibers defining the scaffold hydrogel microstructure. Actually, the Ogston 

approximation is one of the most used techniques to quantify the effective diffusive 

transport properties of molecules within collagen hydrogels [203]. Then, we supposed 

the degradation rate of the GFs to be a linear function of the concentration. For each 
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specific experiment we estimated the degradation rate parameter in order to minimize 

the differences between in vitro and in silico experiments. Finally, we accepted that 

the GF not diffusing within the fluid and not degrading was going to be bound to the 

matrix. Although we were not able to measure it, this assumption is not new and many 

different authors have considered a similar hypothesis; for example, Zhang et al. [185] 

analyzed the role of diffusible binding patterns in modulating the transport and 

concentration of proteins in cartilage. In addition, there are also other experimental 

works that report the binding of PDGF-BB and TGF-β1 to fibrinogen and collagen I as 

a crucial phenomenon in their transport [157, 158, 184]. Moreover, since GF 

concentrations are very low, it is considered that enough binding points in the 

hydrogel are always available and these are never saturated.  

Despite these simplifications, this work clearly showed the ability of the model to 

predict all the results obtained from the in vitro experiments by incorporating the 

effective diffusion, binding and degradation phenomena, as shown in Table 4.3 and 

4.4. Among all analyzed conditions the smallest average differences were achieved for 

Case 4, obtaining a degradation rate very similar to those experimentally measured. 

Nevertheless, there are significant differences depending on the hydrogel and the GF 

of interest. Regarding the transport of PDGF-BB in the hydrogels, the binding rate is 

much more significant for collagen than in the case of fibrin gels, where the effects of 

degradation and diffusion processes are more relevant. Indeed, Somasundaram and 

Schuppan [184] confirm the specific binding between PDGF-BB and collagen I: 

approximately 40% of the added factor was the bound portion in their experiments. In 

contrast, the promiscuity of PDGF-BB to bind fibrin is published to be of very short 

term, since Martino et al. [157] measured that in 24 hours 75% of the fibrin-bound 

PDGF-BB was released to the ECM. This fact explains the insignificant binding 

activity measured in this case. However, it could not explain whether the factor 



	
Chapter	4:	Application	of	chemotactic	and	haptotactic	cues	

 
 
 

 
 

95 
 
 
 
 
 
 

continues to be active or inactive once it is released, which could elucidate the 

possible existence of a shift among the bound and soluble factor proportions. 

Concerning the transport behavior of TGF-β1, although the binding phenomenon is 

significant for both collagen and fibrin gels, it is 2-fold higher in the case of fibrin. 

Regarding the binding capability of TGF-β1, it is known to bind fibronectin and 

collagen type IV; however, to our knowledge, there is no evidence to bind collagen I. 

Hence, although our predictions are consistent with the experimental approach, 

conscious by the existence of bound TGF-β1 in collagen hydrogels, this event should 

be further cleared up. In contrast, the data obtained for fibrin hydrogels are compatible 

with those demonstrated by Martino et al. [157], since 24 hours after addition they still 

found 55% of the initial amount of bound TGF-β1. 

4.5 Summary 

Microfluidic platforms are potential means to create 3D in vitro models, since this 

versatile technology allows for biomimetic microenvironments by including hydrogels 

and generating chemical gradients that direct cellular processes such as single cell 

migration. In this work, it is demonstrated that establishing chemical gradients in 

microdevices with biomimetic hydrogels is not straightforward, but different 

phenomena have to be considered, such as, effective diffusion, degradation and 

binding to the matrix. For such in vitro assays, therefore, two main regulatory 

mechanisms determine the cues that cells may sense in these physiological 

microenvironments: the chemotactic and haptotactic stimuli.  
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Chapter 5 
5Quantification	of	fibroblast	3D	

migration		

Cell migration in 3D is a key process in many physiological and pathological 

processes. Although valuable knowledge has been accumulated through analysis of 

various 2D models, some of these insights are not directly applicable to migration in 

3D. In this chapter, we have confined two physiologically relevant hydrogels, made of 

collagen and fibrin, within microfluidic platforms in the presence of a chemoattractant 

(PDGF-BB). By taking advantage of the biophysical and biochemical characterization 

shown in Chapter 3 and 4, respectively, we studied the migratory responses of human 

fibroblasts within these hydrogels, particularly the role of non-muscle myosin II 

(NMII).   
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5.1 Introduction 

Cellular migration is a central event in physiological and pathological processes 

[77]. Individual cell migration has been extensively characterized in two-dimensional 

(2D) models, and these approaches have yielded most of our current knowledge on the 

molecular regulation of the component processes of cell migration, i.e., polarization, 

protrusion, adhesion, displacement of the cell body and retraction. However, cell 

migration in vivo is seldom 2D. Hence, cell migration is better addressed in three-

dimensional (3D) conditions to resemble the real cellular microenvironment. Several 

studies have shown that the cellular mechanics and migratory mechanisms of the same 

cells are quite different in 2D and 3D [9–12]. 

Cell migration through 3D interstitial tissues is a multi-step process [15]. The ECM 

constitutes a heterogeneous multi-cue microenvironment [14] that directly affects cell 

behavior. It provides architectural scaffolding and orchestrates biochemical and 

biomechanical cues. Therefore, the ECM has a central role in physiological and 

pathological processes such as metastasis or wound healing [28]. Cells sense the 

mechanical properties -stiffness as well as external loading- and convert them into 

biological responses through the cytoskeleton by initiating signaling cascades that, 

among other responses, exert traction forces [16–20]. In this process, biochemical 

signals are also able to influence the mechanical sensing capability of the cell [21]. 

The integration of mechanical sensing and biochemical activation determines the 

ability of the cell to migrate, its phenotype and its ability to remodel the matrix as it 

migrates. 

The ability of cells to sense and respond to the environmental cues is complex and 

dynamic [16, 17, 22–27], and alterations in this balance participate in the onset of 

several pathologies [25, 29]. For instance, in acute wound healing, the contraction 
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level is regulated by the cells through rigidity-sensing mechanisms, coordinating the 

healing process [204]. Furthermore, fibroblast differentiation into myofibroblasts -the 

contractile phenotype-, enables the final closure of the wound and drives locally 

continuous stiffening, leading to the assembly of fibrotic tissue [29, 51, 205].  

Currently, various natural self-assembling ECM proteins are used to construct 

biomimetic hydrogels to perform in vitro studies [30, 31]. However, the combination 

of mechanical and biochemical properties of these gels drastically determine the 

migratory ability of the embedded cells [32–34], making it essential to thoroughly 

characterize these properties if we are going to decouple their individual contributions 

to the cellular migratory response.  

3D cell migration depends on the physicochemical balance between cell 

deformability and physical tissue constraints [35]. These depend on ligand density, 

cross-linking level and architecture [28]. Ligand density correlates with binding sites 

for integrin receptors. Cross-linking concentration determines the susceptibility of the 

network to degradation by proteolytic enzymes and the fibrillar 3D arrangement -

porosity, pore size and fiber diameter- [36], thus critically controlling the stiffness of 

the gel [30, 37]. The microstructure determines the permeability of the matrix, which 

directs the transport of biomolecules and local hydraulic asymmetries in the cell 

surrounding [23]. Together, all these parameters critically control cell migration: the 

ligand density [38, 39], stiffness [32, 40, 80], microstructure [12, 34, 41–44], local 

permeability gradients [45, 46] and external loading [18, 47].  

In 3D, some of the biochemical cues that enable cell migration are immobilized in 

the matrix, whereas others diffuse through the meshwork. For example, growth factors 

(GFs), chemokines and other biomolecules diffuse through the pores of the network 

forming chemical gradients. The matrix may act not only as a diffusion controller 

through pore size and connectivity, but also as a factor-reservoir, by providing 
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available binding sites to the biomolecules. Therefore, they may get bound or remain 

as soluble factors. Based on this, chemical gradients at the microscopic level are 

heterogeneous in a context-dependent manner [23]. 

Microfluidics enables precise control of this microenvironmental complexity. It 

also offers versatility for a rational design of the experiments -by defining biochemical 

and biomechanical cues- and real-time visualization -allowing in vivo quantification-. 

Due to all these advantages, the use of microfluidic platforms is on the rise for 

studying 3D migration [81, 82], including angiogenesis [83, 84], metastasis [85, 86] 

and neuronal migration [87, 88]. 

Another key example of relevant migratory phenomenon is wound healing. 

Different aspects have been analyzed, including fibroblast mechanics, growth factor 

signaling and matrix remodeling [22, 47, 51, 60–62, 64, 66, 68, 70–73, 206]. These 

approaches have also addressed the role of multiple spatial cues, requirement for 

integrin-dependent adhesion and the assembly of actin-based structures [26, 74, 78, 

79]. Responses have turned out to be context-dependent, by adapting dynamically the 

migration mode to local architecture, proteolytic and mechanical properties [44, 75–

77].  

To the best of our knowledge, 3D fibroblast migration has not been studied by 

using microfluidic devices. In this work, two physiologically relevant matrices have 

been characterized, and their ability to support fibroblast migration analyzed in a 

highly quantitative manner. We have used collagen I and fibrin matrices due to their 

crucial role in different phases of wound healing. Fibrin is the main constituent of the 

matrix during clotting, whereas collagen I is synthesized and remodeled by migrating 

fibroblasts to form the scar.  The hydrogels were injected and confined into the 

microdevices to mimic confined processes such as granulation [16] and connective 

tissue remodeling [29].  
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Initially, we have characterized the biophysical properties of each matrix, followed 

by quantification of fibroblast migration in the two matrices in response to 

chemotactic stimulation with Platelet-Derived Growth Factor-BB (PDGF-BB). 

Finally, we have addressed the role of non-muscle myosin II (NMII) in fibroblast 

migration under these conditions. Our results indicate that fibroblast migration is 

critically controlled by the biophysical properties of the matrix in a NMII-dependent 

manner. Our results also indicate that, although chemotactic and haptotactic signals 

enhance directional migration, they are not sufficient by themselves, to overcome the 

restrictions imposed by the microarchitecture of the microenvironment or the lack of 

functional myosin II in live cells. 

5.2 Materials and methods  

5.2.1 Microfluidic platform 

As mentioned in Chapter 2 Section 2.1, microdevices were carried out following 

the methodology proposed by Shin et al. [92]. Hence, soft lithography was employed 

to achieve positive SU8 300 μm-relief patterns of the desired geometry onto a silicon 

wafer (Stanford University). Polydimethylsiloxane (PDMS, Sylgard 184, Dow 

Corning GmbH), mixed at a 10:1 ratio of base to curing agent, was then poured and 

cured onto the SU8 master. The replica-molded layer was trimmed, perforated and 

autoclaved. Finally, the PDMS devices and 35 mm glass-bottom petri dishes (Ibidi) 

were plasma bonded and treated with poly-D-lysine (PDL) solution at 1 mg·ml-1 

(Sigma-Aldrich) for an enhanced surface-matrix attachment (see Fig. 5.1a). 

The geometry of the device was based on that used by Farahat et al. [83], as shown 

in Fig. 5.1b. It comprised a central cage which contained the hydrogel with the 

embedded cells. In direct contact to the gel, it also had two media channels in order to 
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ensure hydration and transport of nutrients and other chemical factors throughout the 

hydrogel. 

 

Fig.	5.1. Microfluidic	platform	for	migration	experiments.	 It	 fits	within	a	35	mm	
glass‐bottom	petri	dish,	as	 shown	 in	detail	 in	picture	 (a).	 It	 comprises	a	 central	
channel	(pink)	‐in	which	the	hydrogel	is	injected‐	and	two	media	channels	(green	
and	blue)	in	direct	contact	to	the	gel.	

5.2.2 Hydrogel preparation and cell seeding 

Cell culture. Normal Human Dermal Fibroblasts (NHDF, Lonza) were cultured up 

to passage 10 using Fibroblast Growth Medium-2 (FGM-2, Lonza) (see detailed 

procedure in Appendix A Protocol A.2). The cells were passaged or used for 

experiments when they reached 80% of confluence. Hydrogels were loaded with cells 

harvested by sequential trypsinization and centrifugation, and mixed with the gel 

solutions at a final concentration of 0.5·106 cells·ml-1, approximately. 

Collagen solution. As indicated in Chapter 2 Section 2.1, we followed the 

procedure described in Shin et al. [92]. Briefly, collagen type I (BD Biosciences) was 

buffered to a final concentration of 2 mg·ml-1 with 10x DPBS -calcium, magnesium- 

(Gibco), cell culture grade water (Lonza) and the cell solution. The dilution was 

brought to pH 7.4 with NaOH. 
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Fibrin solution. Summarizing the method detailed in Chapter 2 Section 2.1, 

Human Fibrinogen -plasminogen, fibronectin, factor XIII depleted- (American 

Diagnostica GmbH) was diluted in buffer (50 mM Tris, 100 mM NaCl and 5 mM 

EDTA at a pH 7.4) as indicated by the provider. After mixing it with Human Factor 

XIII (American Diagnostica GmbH), the mixture was allowed to polymerize in 

presence of Human Alpha-Thrombin (American Diagnostica GmbH) along with 

CaCl2 (Sigma) and the cell solution, at a final pH of 7.4.  

Hydrogel polymerization. Throughout the manipulation, the reagents and mixture 

were maintained on ice for both preparations. As soon as the gel solution was ready, it 

was pipetted into the gel cavity using the auxiliary channels (see Fig. 5.1). Upon 

insertion, the samples were allowed to polymerize inside humid chambers. The gels 

were then hydrated with FGM-2 and stored in the incubator for 24 hours before 

initiating the experiments, to ensure stabilization of the matrix and cell adhesion and 

conditioning.  

5.2.3 Microstructural and rheology studies  

An integral biophysical and biomechanical characterization of the hydrogels was 

performed in order to elucidate the microenvironmental cues. The methodology is 

detailed in Chapter 3 Section 3.2. In brief, microstructural analysis was carried out 

using Scanning Electron Microscopy and Confocal Reflection Imaging analysis. The 

resistance to flow of the gels was also assessed quantifying their permeability or 

hydraulic conductivity. Finally, oscillatory strain amplitude sweeps were performed 

using a rheometer and the elastic and viscous shear moduli were measured. 
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5.2.4 Chemical conditioning 

After 24 hours of incubation since polymerization, the 3D systems were ready to 

use. As controls, culture media was renewed in both media channels. In inhibition 

experiments, medium in both channels contained 30 μM (+/-) blebbistatin (EMD 

Millipore) or vehicle control (DMSO, Amresco), respectively. Detailed procedure for 

media replacement is shown in Chatper 2 Section 2.3.  

The establishment of PDGF-BB (Abcam) gradient across the gel was achieved by 

adding the growth factor (GF) containing culture media (5 ng·ml-1) to only one 

channel -green-, while new medium alone was added to the other channel -blue- (refer 

to Fig. 5.1b). For more specified procedure information see Chapter 2 Section 2.3. 

The spatial distribution of PDGF-BB chemical gradient in both collagen and fibrin 

hydrogels was predicted by numerical simulations. As detailed in Chapter 4 Section 

4.2, a computer framework was developed based on a reaction-diffusion transport 

model, which was validated with experimental results. This mathematical approach is 

able to estimate diffusion and binding mechanism patterns yielded from an established 

chemical gradient through fibrous matrices.  

5.2.5 Immunofluorescence staining and imaging 

The samples were stained for both vinculin and phalloidin and imaged using a 

Nikon D-Eclipse C1 Confocal Microscope -equipped with a Plan Apo VC 60XH 

objective- and an Olympus Fluoview FV10i Confocal Microscope -with an 

UPLSAPO 60XW objective-. As specified in Chapter 2 Section 2.4, once the cells 

were fixed in 4% paraformaldehyde (Affymetrix) in PBS for 20 min at room 

temperature, samples were washed in PBS three times and permeabilized with 0.1% 

Triton X-100 (Calbiochem) in PBS at room temperature. Cells were washed another 
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three times and blocked with 3% goat serum (Sigma) in 5% BSA/PBS solution for 4 

hours at room temperature. Afterwards, the devices were incubated overnight at 4ºC 

with mouse anti-human hVin-1 antibody (ab11194, Abcam) at 1:100 in 0.5% 

BSA/PBS. Then, after washing the samples five times with 0.5% BSA/PBS, 

incubation with Alexa Fluor® 488 goat anti-mouse antibody (A11029, Molecular 

Probes) at 1:100 and the conjugated Alexa Fluor® 594 phalloidin (A12381, Molecular 

Probes) at 1:200 was done for 3 hours at room temperature in the dark. Finally, cells 

were washed three times with 0.5% BSA/PBS, two more times with PBS, and 

subsequently imaged.  

5.2.6 Cell tracking 

Once the chemical arrangement for each device was done, all the samples were 

allowed to warm up for 30 min. Then, time-lapse imaging was carried out by 

acquiring phase contrast images every 20 minutes for 24 hours. The focal plane was 

chosen to be in the middle along the z-axis of the device. It intended to minimize the 

edge effects resulting from the glass and PDMS surfaces by ensuring that the tracked 

cells were fully embedded within the 3D network. During the whole experiment, the 

incubation conditions were controlled and held at 37ºC, 5% of CO2 and 95% of 

humidity. 

Approximately 150 cells were tracked out of each set of experimental samples. Cell 

trajectory acquisition was performed using a hand coded semi-automatic Matlab 

script. By comparison of pixel intensities and using matrix convolution techniques, the 

software was able to find and track cell centroids, requesting the user for visual 

correction, and finally post-processing the migration results. As to the measurements, 

the whole trajectories of each individual cell were outlined in red, green and blue for 

zone 1, 2 and 3, respectively. In addition, the polar histograms were employed to 
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display the directionality of the migratory cell, with respect to the final point. 

Likewise, the mean -referring to the instantaneous- and effective -as to the euclidean- 

cell speed were quantified. By demonstrating different boxplots, these values were 

gathered averaged or discerning the zone to which cells corresponded. 

5.3 Results 

5.3.1 Biophysical and biomechanical cues 

We initially characterized the biophysical features of collagen I and fibrin gels 

(refer to Chapter 3 for details). As summarized in Table 5.1, our results showed that, 

on average, pore size and permeability are 2-fold higher in collagen than in fibrin gels. 

Stiffness of the collagen scaffolds is approximately 20-fold higher than those made of 

fibrin; elastic shear moduli of 15 and 300 Pa were measured, respectively. We have 

used these experimental parameters to interpret the migration of human dermal 

fibroblasts (next sections). 

Table 5.1. Biophysical and biomechanical properties of collagen and fibrin hydrogels.a 

 Collagen Fibrin 

Pore size (μm) 2.84±0.94 1.69±0.33 

Darcy’s permeability (m2) 1.00·10-12 5.73·10-13 

Elastic shear modulus (Pa) 15 300 

aThe data for pore size are presented as mean ± SEM. Detailed characterization is shown in 
Chapter 3. 
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5.3.2 Cell morphology 

Fibroblasts seeded in collagen I and fibrin matrices exhibited important differences 

in terms of cell shape and morphology. As shown in Fig. 5.2, fibroblasts in collagen 

gels were stretched out and displayed multiple, branched, long, protruding structures 

with actin. Conversely, cells in fibrin hydrogels presented frayed spindle-like 

protrusions and fewer actin patches in the projections.  

 

Fig.	5.2. Fibroblasts	morphology	in	3D.	It	is	shown	by	distribution	of	actin	(red)	
and	vinculin	(green).	The	image	in	collagen	was	taken	by	the	Nikon	D‐Eclipse	C1	
Confocal	Microscope	(a)	and	 the	one	 in	 fibrin	employing	 the	Olympus	Fluoview	
FV10i	 Confocal	 Microscope	 (b).	 The	 white	 arrows	 point	 to	 some	 of	 the	
varicosities.	

5.3.3 Quantitative comparison of migration in collagen and fibrin  

When we compared the migratory behavior of dermal fibroblasts in both control 

gels, we observed important differences. Cells were less motile in fibrin. In the 

absence of a chemoattractant, cells were not persistently migratory in either matrix 

(Fig. 5.3a-b, e-f) and migratory speed was low in collagen (Fig. 5.3c-d), but even 
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lower in fibrin (Fig. 5.3g-h).  This was not due to an intrinsic inability of the cells to 

polarize or extend projections (Fig. 5.4). Interestingly, fibroblasts in collagen 

displayed robust “contractile shaking”, which was not observed in cells in fibrin gels. 
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Fig.	5.3. Migration	 quantification	 in	 control	 collagen	 (a‐d)	 and	 fibrin	 (e‐h)	 gels.	
The	 polar	 histograms	 (a,e)	 show	 the	 directionality	 of	 the	 migratory	 cell.	 The	
trajectories	of	 individual	cells	are	outlined	in	(b,f).	The	boxplots	show	the	mean	
and	effective	 speed	of	 cells	 considering	 the	whole	device	 (c,g)	or	distinguishing	
the	zone	they	belong	to.	The	median	values	are	gathered	in	Table	5.2.	
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Fig.	5.4. Sample	 time‐lapse	 images	 of	 cells	 migrating	 in	 control	 samples	 (a,	 b),	
under	 PDGF‐BB	 gradient	 (c,d)	 and	 under	 PDGF‐BB	 gradient	 including	
blebbistatin	(e,f).	Samples	correspond	to	fibroblasts	3D	migration	in	collagen	(a,	
d,	e)	and	fibrin	(b,	d,	f)	gels.	

5.3.4 Characterization of PDGF-BB gradients in microfluidic hydrogels 

PDGF-BB is secreted by platelets during clotting and acts as a natural 

chemoattractant for dermal fibroblasts during wound healing. We took advantage of 

the intrinsic polarity of the microfluidic device to generate gradients of PDGF-BB and 

quantify the migratory properties of dermal fibroblasts as they navigate the hydrogels 

in its presence.  

As shown in Chapter 4, we have validated a computational tool to assess transport 

and distribution of soluble growth factors in 3D hydrogels. This tool determines 

diffusion and binding processes that regulate the distribution and transport of chemical 

gradients. This is quite relevant to estimate cell migration as it accounts for possible 

binding events that trigger haptotaxis (migration in response to immobilized factors) 

in addition to chemotaxis.  
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The predicted spatio-temporal distribution of the GF inside the both collagen and 

fibrin hydrogels is shown in Fig. 5.5a. In collagen gels, diffusion and binding events 

dominated the distribution of PDGF-BB inside the hydrogel. On the contrary, fibrin 

matrices display non-significant binding; hence diffusion is the leading factor during 

its distribution in the hydrogel. 

Based on this information, we defined three zones in the hydrogels, depicted in Fig. 

5.5b. In zone 1, effects are characterized by the strong effect of bound PDGF-BB, 

which decreases in zone 2 and 3. Soluble PDGF-BB would follow a linear-like 

distribution from the PDGF-BB-loaded channel. Conversely, binding is negligible in 

fibrin gels, hence the distribution of PDGF-BB is solely determined by a linear 

gradient stemming from the PDGF-BB-containing channel.  
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Fig.	5.5. Spatial	 distribution	 of	 PDGF‐BB	 in	 collagen	 and	 fibrin	 hydrogels	 (a).	
Three	zones	are	traced	by	the	white	dashed‐lines	within	the	devices	for	migration	
quantification	(b).	The	dark	arrow	indicates	the	direction	in	which	the	chemical	
gradient	is	set;	its	origin	would	denote	the	maximum	concentration.	Trajectories	
corresponding	 to	 zone	 1,	 2	 and	 3	 will	 be	 drawn	 in	 red,	 green	 and	 blue,	
respectively.	
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5.3.5 Differential effect of PDGF-BB on migration in collagen and fibrin 

We then sought to determine the effect of PDGF-BB on fibroblast migration in 

collagen and fibrin hydrogels. Embedded fibroblasts were exposed to PDGF-BB 

gradients and observed in collagen and fibrin gels (Fig. 5.4c and 5.4d, respectively). In 

both cases, cells exhibited an increased number of dendritic protrusions towards the 

source of PDGF-BB, as previously reported [62, 66, 207]. However, protrusions were 

longer and more stable in cells within collagen. Increased protrusiveness correlated 

with increased motility (Fig. 5.6). The effect was much more significant in cells in 

collagen (compare Fig. 5.4b and 5.4f). Furthermore, cells within zone 1 displayed 

much higher speed than those in zone 2 (Fig. 5.6d). Comparatively, cells in zone 3 had 

no significant response to the gradient. Conversely, cells on fibrin displayed increased 

protrusiveness that resulted into a modest increase in cellular “wandering” (non-

directional migration), but that effect did not translate into increased effective speed in 

any of the zones (Fig. 5.6h). 
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Fig.	5.6. Migration	 quantification	 in	 PDGF‐BB	 gradient‐generated	 collagen	 (a‐d)	
and	 fibrin	 (e‐h)	 gels.	 The	 polar	 histograms	 (a,e)	 show	 the	 directionality	 of	 the	
migratory	 cell.	 The	 trajectories	 of	 individual	 cells	 are	 outlined	 in	 (b,f).	 The	
boxplots	show	the	mean	and	effective	speed	of	cells	considering	the	whole	device	
(c,g)	or	distinguishing	the	zone	they	belong	to.	The	median	values	are	gathered	in	
Table	5.2.	
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5.3.6 Non-muscle myosin II controls migratory speed in collagen 

Non-muscle myosin II (NMII) modulates spontaneous fibroblast migration in 3D 

[44]. To assess its role in directional 3D migration we infused the hydrogels with 

blebbistatin, which is a highly specific inhibitor of the ATPase activity of NMII, 

hence, blocking contractility [208]. We found that, in fibrin, blebbistatin increases 

protrusiveness, consistent with its effect in 2D [209], but this effect does not translate 

into increased migration (Fig. 7e-h). In collagen, blebbistatin did not affect the 

orientation of the cells towards the gradient (Fig. 7a), or the emission of protrusions in 

the direction of the higher concentration of PDGF-BB (Fig. 4e). However, it 

attenuated migration towards PDGF-BB, particularly that of cells in zone 1 (Fig. 7b-

d). Together, these results suggest that NMII does not control the orientation of 

fibroblasts towards a chemotactic gradient in collagen hydrogels, but it does control 

the ability of cells to migrate efficiently. 
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Fig.	5.7. Migration	 quantification	 in	 PDGF‐BB	 gradient‐generated	 collagen	 (a‐d)	
and	 fibrin	 (e‐h)	 gels,	 including	 30	 µM	 blebbistatin.	 The	 polar	 histograms	 (a,e)	
show	 the	directionality	of	 the	migratory	cell.	The	 trajectories	of	 individual	 cells	
are	 outlined	 in	 (b,f).	 The	 boxplots	 show	 the	 mean	 and	 effective	 speed	 of	 cells	
considering	the	whole	device	(c,g)	or	distinguishing	the	zone	they	belong	to.	The	
median	values	are	gathered	in	Table	5.2.	
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Fig.	5.8. Migration	 quantification	 in	 PDGF‐BB	 gradient‐generated	 collagen	 (a‐d)	
and	 fibrin	 (e‐h)	gels,	 including	vehicle‐control.	The	polar	histograms	(a,e)	 show	
the	 directionality	 of	 the	 migratory	 cell.	 The	 trajectories	 of	 individual	 cells	 are	
outlined	 in	 (b,f).	 The	 boxplots	 show	 the	 mean	 and	 effective	 speed	 of	 cells	
considering	the	whole	device	(c,g)	or	distinguishing	the	zone	they	belong	to.	The	
median	values	are	gathered	in	Table	5.2.	
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Table 5.2. Median values obtained from the migration quantificationb. 

   
  Collagen 

  Control PDGF-BB 
Vehicle-
control 

Blebbistatin 

All speeds 
Mean 0.023 0.030 0.033 0.024 
Effective 0.007 0.031 0.036 0.015 

Mean speed per zone 

Zone 1 0.024 0.044 0.054 0.029 
Zone 2 0.023 0.024 0.031 0.024 
Zone 3 0.024 0.030 0.027 0.023 

Effective speed per 
zone 

Zone 1 0.008 0.066 0.073 0.038 
Zone 2 0.007 0.013 0.020 0.015 
Zone 3 0.007 0.009 0.012 0.008 

   
  Fibrin 

  Control PDGF-BB 
Vehicle-
control 

Blebbistatin 

All speeds 
Mean 0.016 0.024 0.026 0.020 
Effective 0.002 0.005 0.006 0.003 

Mean speed per zone 

Zone 1 0.018 0.023 0.026 0.021 
Zone 2 0.015 0.024 0.025 0.020 
Zone 3 0.016 0.025 0.026 0.019 

Effective speed per 
zone 

Zone 1 0.005 0.005 0.005 0.003 
Zone 2 0.003 0.004 0.005 0.002 
Zone 3 0.001 0.003 0.005 0.002 

bThis values refer to Fig. 5.3, 5.6, 5.7 and 5.8 and are expressed in μm·min-1. 

5.4 Discussion 

In this work, we have combined microfluidics with hydrogels and gradients of 

soluble growth factors in order to gain a better insight into fibroblast sensing and 

migratory mechanisms. We have used two biomimetic hydrogels, collagen and fibrin, 
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characterized them and applied growth factors to form a gradient and study fibroblast 

migration.  

In general, our observations indicate that collagen gels promote fibroblast 

migration more efficiently. In collagen, fibroblasts showed “contractile shaking”, 

likely due to cycles of protrusion extension and retraction. This is accompanied by net 

translation of the cell body, particularly in response to a directional chemical cue, e.g. 

PDGF-BB in a gradient. In this interpretation, extension and retraction forces are 

coordinately transmitted to the cell body to support its forward motion. In fibrin, the 

cells display comparable extension and retraction of protrusions. However, the cell 

body does not move. This could be interpreted as lack of traction on fibrin, which 

would prevent transmission of the traction to the cell body for movement. This is a 

major difference that likely underlies the different biochemical response observed 

when cells are confronted with a gradient of PDGF-BB in collagen or fibrin. 

Additional reasons may relate to biophysical issues such as pore size, permeability, 

the degree of polymer cross-linking and stiffness. Stiffness in collagen is 20-fold 

lower than in fibrin. However, it has been demonstrated that fibroblast migration is 

independent of matrix stiffness [80]. Fibrin is more cross-linked than collagen, which 

decreases its susceptibility to degradation. Additionally, pore size and permeability in 

fibrin are approximately half the size of collagen gels. On the one hand, migration 

through small gaps has been shown to require proteolytic degradation of the matrix 

[12, 37]. In this context, the nucleus becomes a spatial hindrance for migration in the 

absence of degradation [32]. On the other hand, confined migration has been shown to 

prefer environments with lower hydraulic resistance, even in chemotaxis-competing 

contexts [46]. Actually, fibroblast migration has been pointed to be porosity-

dependent [80], which could be underlying permeability capabilities. As to this 

interpretation, the narrower pore, reduced degradation and increased hydraulic 

resistance of the fibrin gels would impede productive migration in 3D.  
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In general, cells are faster in collagen gels in response to PDGF-BB gradients, 

which is not surprising. However, segmentation of the migratory behavior of the cells 

with respect to the origin of the gradient revealed a non-linear response in terms of 

speed. Closer to the origin of the gradient (zone 1), cells displayed an 8-fold increase 

in effective speed, whereas it was only 2-fold in zone 2, i.e., more removed from the 

origin of the gradient. Cells in zone 3 (far from the origin) displayed no significant 

increase in speed. The most obvious interpretation relies on the difference of 

diffusion-based PDGF-BB concentration between zones 1 and 2 (zone 1 is closer to 

the source). However, this would likely imply an almost linear difference between 

zones, which is not the case. Hence, some factor contributes to amplify the difference 

between zones 1 and 2. We have noted that in collagen I zone 1, two populations of 

PDGF-BB appear: one follows the rules of diffusion, but the other appears immobile. 

We hypothesize that this second population is adsorbed or otherwise immobilized on 

collagen fibers, constituting a potent haptotactic signal. Several studies using EGF 

have demonstrated that immobilized growth factors modify their properties towards 

inducing cell migration [210]. This is likely due to increased signaling due to 

clustering of the receptor. An additional possibility is that PDGF-BB enhances 

integrin-mediated adhesion through a cross-talk mechanism [211]. 

The decrease in cell migration due to non-muscle myosin II (NMII) inhibition may 

owe to a number of reasons: one is that NMII controls nuclear repositioning in 

migrating cells [212]. In 3D, emerging evidence indicates that the nucleus is the main 

steric hindrance towards productive migration. It is feasible that NMII-inhibited cells 

get their nuclei “stuck” in the pores and are unable to migrate forward. In this 

interpretation, exaggerated protrusion results from inefficient attempts to compensate 

increased nuclear drag. Additional possibilities include deficient adhesion assembly. 

A recent study has shown that NMII inhibition prevents adhesion enlargement in 3D 

[44]. Even if adhesions assemble, they do not reach a threshold size to transmit 
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traction to the cell body, resulting in the same phenotype caused by nuclear drag. This 

possibility is further supported by the more dramatic effect of blebbistatin in zone 1 

cells compared to zone 2, which suggests that the inhibition mechanism is related to 

the haptotactic response to PDGF-BB in this region by a more active participation of 

NMII in the cellular response to immobilized than soluble growth factors in 3D, since 

immobilized PDGF-BB requires more of NMII participation in order to transactivate 

the integrins or/and produce traction.  

5.5 Summary 

Multiple 3D migration-modes have been proposed in several previous works. The 

context-dependent phenomenon is established by a dynamic and interrelated 

physicochemical balance, which makes complex elucidating the underlying 

mechanisms. In this work, employing collagen and fibrin -based microfluidic models, 

we quantified and compared migration in 3D. By analyzing the chemotactic and 

haptotactic response to PDGF-BB cues, as well as to NMII inhibition, it has been 

determined that local microarchitecture of the 3D networks, along with haptotactic 

cues, regulates migration in a NMII-dependent manner by controlling the 

physicochemical medium-nucleus deformability balance. 
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Chapter 6 
6Conclusions	and	future	work	

This chapter serves as the closure of the Thesis dissertation. It comprises the main 

conclusions yielded from the work, suggests some potentially interesting future 

research lines, and also cites the main outcome contributions. 

6.1 Conclusions 

Throughout the dissertation, three main keystones have pointed out to be the bases 

of this Thesis: the biophysical arrangement of the fibrillar networks, the biochemistry 

of the microenvironment and the cell mechanics as the epicenter. Indeed, in this work 

the interplay among the three bases has been studied. In this regard, we recreate the 

basic principles that regulate the wound healing progression, by elucidating the 

complex interaction between fibroblasts and the three-dimensional matrices and 
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growth factors. Hence, the main conclusions of the Thesis are summarized organized 

in a thematic manner below: 

1. With respect to the biophysical properties, an integral and physiologically-relevant 

characterization has been performed in order to overcome the diversification of the 

existing data. The most relevant features of the biophysical definition are cited below: 

 Physiological composition of the fibrin hydrogels has been settled. 

 Although fibers within both lattices are similar in diameter (70-80 nm), 

fibers within collagen networks tend to form bundles, whereas those in fibrin 

are formed mainly individually. 

 The collagen mesh has been determined to be looser than fibrin: the pore 

size and permeability are 2-fold higher in collagen than in fibrin gels.  

 Stiffness of the collagen scaffolds is approximately 20-fold higher than those 

made of fibrin, being the elastic shear moduli of 15 and 300 Pa, respectively. 

 Both gels have presented non-linear elasticity by means of strain-hardening. 

However, in fibrin it occurs at 10 % of strain, whereas for collagen starts at 

50% of strain. 

2. Akin established chemical gradients, the spatio-temporal distribution yielded from 

growth factor (GF) transport has been determined for TGF-β1 and PDGF-BB. The GF-

matrix interaction has been studied in collagen and fibrin hydrogels and has been 

determined to induce chemotactic as well as haptotactic cues, as follows: 

 The computational model here proposed is able to predict degradation, 

diffusion and binding phenomena of the biomolecules. 

 TGF-β1 is more stable than PDGF-BB when diluted in culture media. 
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 Both diffusion and binding processes regulate the transport of PDGF-BB in 

3D collagen scaffolds. Hence, the GF is distributed in a heterogeneous non-

linear manner. 

 During PDGF-BB transport through fibrin, diffusion prevails. Since the 

binding mechanism is negligible, the chemical compound is finally 

distributed linearly alongside, only inducing chemotactic cues. 

 TGF-β1 transport across collagen gels leads to a similar behavior of both 

diffusion and binding phenomena. Hence, the overall distribution responds 

to a parallel distribution of the biomolecules, although both distinct 

availability natures coexist. 

 Diffusion pattern of TGF-β1 in fibrin networks is similar to that in collagen. 

However, it binds significantly more in fibrin, which yields in a dissimilar 

overall distribution. 

3. In order to analyze the three-dimensional (3D) fibroblast migration, several tests 

have been performed by confining collagen and fibrin hydrogels within the 

microdevices. The major conclusions are listed below:  

 The cells display important differences in terms of cell shape and 

morphology: fibroblasts in collagen appear stretched out with multiple 

dendritic protruding structures with actin, whereas in fibrin gels present 

frayed spindle-like protrusions with a lower number of actin patches in the 

projections. 

 Collagen promotes fibroblast migration in 3D more effectively than fibrin. 
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 Biophysical factors such as degradability, pore size and the resistance to 

fluid flow have been pointed out to be main factors for limiting productive 

migration in fibrin. 

 Non-muscle myosin II is required for an efficient migratory response of the 

fibroblasts.  

 Haptotaxis mechanism has been proven to regulate fibroblast migration in 

3D, when exposed to PDGF-BB gradients in collagen hydrogels.   

6.2 Future lines 

Although the obtained conclusions add further insight into fibroblast mechanics 

within the early phase of wound healing, the obtained conclusions have opened other 

questions in that respect. Actually, suggestions of potentially interesting future 

research lines are mentioned within this section. 

Study of focal adhesion and stress fiber structures. In this  

Thesis, context-dependent cues have been studied to understand how they affect to the 

3D migration process. However, the formation of focal adhesions (FAs) and stress 

fibers (SFs) is essential to elucidate the structures that cells generate to effectively 

migrate. Hence, unraveling the linkage of these structures to the standpoints studied 

within this work could be of high relevance. To do so, the development of analytical 

tools that allow for both systematic and quantitative analysis of FAs and SFs is 

essential. In this regard, framed within this formation period, we have anticipated and 

collaborated in the development of an image-based analytical tool that allow 

extracting quantitative information departing from immunofluorescence images 

stained for phalloidin and actin (published work) [213]. An example of FA and SF 
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quantification is shown in Fig. 6.1. Hence, as future work, it would be interesting 

applying such tool to our experiments in order to complete our knowledge with regard 

to fibroblast mechanics in 3D. 

 

Fig.	6.1. FA	and	SF	quantification.	The	tool	discerns	that	the	effect	of	cytochalasin	
B	(Cyt	B)	is	more	pronounced	on	SFs	than	on	FAs.	(A)	Image	samples	of	vinculin	
in	DMSO	control	cells	and	Cyt	B‐treated	cells.	(B)	Quantification	of	the	number	of	
FAs	and	SFs	per	cell	(number	of	cells:	DMSO,	n	=	33;	Cy	B,	n	=	29).	Scale	bars	are	
20	μm.	***:p<0.001.	[213]	

Microstructural modifications. Since pore size in vivo undergoes a wide range of 

variety, it could add valuable information varying biophysical factors of both matrices 

in order to evaluate the impact on cell migration and transmigration. To do so, several 

techniques have been pointed in the literature. For example, as to the collagen, by 

modifying the polymerization temperature or pH, different ranges of pore and fiber 

sizes can be achieved [214]. It also can be cross-linked by glutaraldehyde or lysyl-

oxidase [108, 215]. With regard to fibrin, varying the constituents within the 

physiological range would also lead to distinct fibrillar layout [216]. It also would be 

interesting to assess the effect of the cross-linking within the clot, since it has been 

noted that its lack brings bleeding problems in patients [104]. 

Decoupling permeability from pore-size and degradability. We have interpreted 

the permeability differences as a potential factor to impact on the productive 

completion of 3D migration. Moreover, myofibroblast rigidity-sensing mechanism has 
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been proposed to be through the interstitial fluid-pressure that accompanies 

inflammation and tissue regeneration [66]. Hence, decoupling permeability, pore size 

and degradability of the networks would be meaningful. In this regard, although 

natural matrices bring valuable knowledge, it hardly would be possible to decouple 

effects such as permeability and pore size in order to assess their individual 

contribution to cell migration. Therefore, synthetic scaffolds that resemble in vivo-like 

environments could help in this interpretation.  

Interstitial fluid flow. Since interstitial fluid-pressure may play an important role 

regulating the fibroblast mechanics, it would be interesting to apply interstitial flow 

(IF) to the microsystems in order to assess its effect. As mentioned, IF determines the 

GF distribution through convective transport, which leads to a heterogeneous 

biochemical environment in the pericellular vicinity composed of both autocrine and 

paracrine signaling. In this interpretation, other works have pointed to the IF as a key 

modulator of migration processes through competing mechanisms with chemotaxis 

[33] and as a key regulator of  mechanotransduction in 3D [18]. 

Matrix biosynthesis and remodeling. Although the main goal of the Thesis has 

focused on cell migration quantification, it would also be pertinent to correlate these 

data with the matrix remodeling and degradation processes. By taking advantage of 

the matrix visualization techniques presented hereby, along with immunofluorescence 

of matrix-protein staining, the rate of collagen remodeling (for collagen gels) or 

deposition (in fibrin) could be assessed. 

Co-culture of fibroblasts. It has been proven that biophysical properties regulate 

fibroblast migration in 3D. However, in vivo not only the environmental 

physicochemical arrangement impact on the 3D migratory response, but other cells 

also contribute to the biochemical signaling by actively segregating paracrine factors. 

In this regard, co-culturing the fibroblasts with other cell types would yield in a closer 
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representation of in vivo-like conditions and could allow gaining added knowledge of 

the healing-concerning processes. 

Collagen to fibrin transmigration studies. As to the experimental set-up, since 

microfluidic platforms allow for versatility, not only migration but also transmigration 

assays could be of high relevance. We have seen that collagen promotes more 

efficiently migration than fibrin hydrogels. However, in physiology, transmigration 

from collagen to fibrin matrices occurs. Experiments mimicking such boundary would 

permit to study the phenomena. A hypothesis could be that cells in the wound-

surrounding connective tissue require migration in order to reach the clot, but once 

within, they require carrying out remodeling work rather that migration. Nevertheless, 

varying the set-up from the biophysical as well as biochemical standpoints, as 

suggested in the previous research lines, would add relevant information to this 

interpretation too.  

6.3 Publications in peer-reviewed journals 

1. Elosegui-Artola, A., Jorge-Peñas, A., Moreno-Arotzena, O., Oregi, A., Lasa, 

M., García-Aznar, J.M., de Juan-Pardo E.M., & Aldabe, R., Image analysis 

for the quantitative comparison of stress fibers and focal adhesions. PLoS One 

9, e107393 (2014). 

2. Moreno-Arotzena, O., Borau, C., Vicente-Manzanares, M., Movilla N. & 

García-Aznar, J.M. Local microarchitecture and haptotaxis determine 

fibroblast 3D migration in a non-muscle myosin II-dependent manner. Under 

review. 
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3. Moreno-Arotzena, O., Mendoza, G., Cóndor, M., Rüberg, T. & García-

Aznar, J. M. Inducing chemotactic and haptotatic cues in microfluidic devices 

for three-dimensional in vitro assays. Under review. 

4. Moreno-arotzena, O., Meier, J. G., del Amo, C. & García-aznar, J. M. Fibrin 

and collagen 3D networks : a comparative biophysical and biomechanical 

characterization. Under review. 



 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Chapter 7 
7Conclusiones	y	trabajo	futuro	

Este capítulo reúne las conclusiones principales extraídas de la presente Tesis. A su 

vez, también señala algunas futuras líneas de investigación, así como las 

publicaciones derivadas del trabajo. 

7.1 Conclusiones 

A lo largo de la Tesis se han destacado tres pilares fundamentales: la disposición 

biofísica de los andamiajes fibrilares, la bioquímica del microambiente y la mecánica 

celular como el epicentro del análisis que aquí se presenta. Concretamente, el trabajo 

se ha centrado en el estudio de la interacción entre estos tres pilares fundamentales. 

Para ello,  se han recreado los principios básicos que regulan la cicatrización de 
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heridas, estudiando la compleja interacción entre los fibroblastos con la matriz 

extracelular y los factores de crecimiento. En este sentido, a continuación se resumen 

de forma agrupada las principales conclusiones de la tesis: 

1. Con respecto a las propiedades biofísicas, se ha llevado a cabo una caracterización 

integral con objeto de unificar la diversificación existente entre los datos actuales. Los 

aspectos biofísicos más relevantes se citan a continuación: 

 Se ha determinado una composición fisiológica para los hidrogeles de 

fibrina. 

 Aunque las fibras de ambas redes son similares en diámetro (70-80 nm), las 

fibras de colágeno tienden a presentar una disposición empaquetada, 

mientras que las de fibrina se forman mayormente de manera individual. 

 La malla de colágeno ha resultado ser más holgada que la de la fibrina: las 

medidas de tamaño de poro y permeabilidad son el doble para el colágeno en 

comparación con la fibrina.  

 La rigidez del gel de colágeno es aproximadamente veinte veces mayor que 

el de la fibrina, siendo el modulo elástico de 15 y 300 Pa, respectivamente. 

 Ambos hidrogeles muestran elasticidad no-lineal, presentando 

endurecimiento por deformación. No obstante, en el caso de la fibrina este 

fenómeno ocurre a partir del 10 % de deformación, mientras que para el 

colágeno sucede a partir de deformaciones del 50%. 

4. En cuanto a los gradientes químicos de factores de crecimiento generados, se ha 

determinado la distribución espacio-temporal resultante del transporte de TGF-β1 y 

PDGF-BB. Tras analizar la interacción del factor de crecimiento con la matriz de 

colágeno y fibrina, se ha visto que, dependiendo de la naturaleza de la interacción, 
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surgen diversos patrones de señalización incluyendo gradientes quimiotácticos y 

haptotácticos: 

 El modelo computacional propuesto es capaz de predecir los fenómenos de 

degradación, difusión y pegado de las biomoléculas. 

 Una vez disueltos en medio de cultivo, el TGF-β1 es más estable que el 

PDGF-BB. 

 Los procesos de difusión y adhesión regulan el transporte de PDGF-BB en 

matrices de colágeno tridimensionales. Por tanto, el factor de crecimiento 

queda distribuido heterogéneamente con una disposición no-lineal. 

 Durante el transporte de PDGF-BB a través de la fibrina, prevalece la 

difusión. Puesto que el pegado es despreciable, el compuesto químico queda 

distribuido linealmente a lo largo del hidrogel, induciendo sólo señalización 

quimiotáctica. 

 El transporte de TGF-β1 a través de los geles de colágeno, presenta 

comportamientos similares de difusión y adhesión. Por tanto, la disposición 

final de las biomoléculas responde a una distribución paralela de las mimas. 

 El patrón de difusión de TGF-β1 en redes de fibrina es similar al del 

colágeno. De todas formas, el fenómeno de adhesión se acentúa 

notablemente en el caso de la fibrina, lo cual resulta en distribuciones netas 

dispares. 

5. A fin de analizar la migración de fibroblastos tridimensional, se han realizado 

diversos ensayos confinando los hidrogeles colágeno y fibrina dentro de los 

microdispositivos. Las conclusiones principales son las siguientes:  
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 Las células muestran diferencias importantes en términos de morfología 

celular: en colágeno, los fibroblastos se presentan estirados con múltiples 

protrusiones dendríticas de actina, mientras que en fibrina muestran 

protuberancias en forma de huso y con un menor número de cúmulos 

localizados de actina en las proyecciones. 

 Los geles de colágeno promueven la migración de fibroblastos en 3D de 

manera más efectiva que los de fibrina. 

 Los factores biofísicos así como la degradabilidad, el tamaño de poro y la 

resistencia al paso de fluido han sido destacados como principales factores 

en limitar la migración efectiva en la fibrina. 

 La miosina II es necesaria para una eficiente respuesta migratoria de los 

fibroblastos. 

 Se ha demostrado que, ante un gradiente de PDGF-BB en colágeno, la 

haptotaxis regula la migración en 3D de fibroblastos.  

7.2 Líneas futuras 

Las conclusiones obtenidas agregan mayor conocimiento en la mecánica de la 

migración de los fibroblastos implicada en la fase temprana de la cicatrización de 

heridas. Dichos resultados han abierto, a su vez, nuevas preguntas que pueden 

potencialmente mejorar el conocimiento del fenómeno de curación de heridas. Por 

consiguiente, en esta sección se mencionan brevemente diversas propuestas como 

futuras líneas de investigación. 
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Estudio de adhesiones focales y fibras de estrés. En la presente Tesis se ha 

estudiado la señalización del microentorno para entender cómo afecta al proceso de 

migración en 3D. Sin embargo, la formación de adhesiones focales  y fibras de estrés 

es esencial para interpretar las estructuras que generan las células para migrar con 

eficacia. Por lo tanto, incluir al trabajo realizado el estudio de la vinculación de estas 

estructuras podría ser de gran importancia. Para ello, es esencial el desarrollo de 

herramientas analíticas que permitan el análisis tanto sistemático como cuantitativo de 

adhesiones focales  y fibras de estrés. Ante dicha previsión, y enmarcado dentro de 

este período de formación, hemos colaborado en el desarrollo de una herramienta 

analítica que permite extraer información cuantitativa partiendo de imágenes de 

inmunofluorescencia teñidas para faloidina y vinculina (trabajo publicado) [213]. En 

la Fig. 7.1 se muestra un ejemplo de la cuantificación de adhesiones focales  y fibras 

de estrés. Por lo tanto, como trabajo futuro, sería interesante aplicar dicha herramienta 

a nuestros experimentos para complementar las conclusiones obtenidas en cuanto a la 

mecánica migratoria del fibroblasto en 3D. 

 

Fig.	7.1. Cuantificación	 de	 adhesiones	 focales	 	 y	 fibras	 de	 estrés.	 Este	 estudio	
muestra	que	el	efecto	de	Citocalasina	B	(Cit	B)	es	más	notable	en	fibras	de	estrés	
que	en	las	adhesiones	focales.	(A)	Ejemplos	de	imágenes	de	vinculina	en	células	
de	 control	 con	 DMSO	 y	 tratadas	 con	 Cit	 B.	 (B)	 Cuantificación	 del	 número	 de	
adhesiones	 focales	 	y	 fibras	de	estrés	por	célula	 (número	de	células:	DMSO,	n	=	
33;	Cit	B,	n	=	29).	Las	escalas	corresponden	a	20	µm.	***:p<0.001.	[213]	
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Modificaciones microestructurales. Puesto que el tamaño de poro in vivo está 

sometido a un amplio rango, variar la conformación biofísica de ambas matrices 

podría agregar información relevante acerca de la migración celular y transmigración. 

Con dicho fin, en la literatura se han señalado varias técnicas. En el caso del colágeno, 

se ha demostrado que pueden obtenerse diferentes rangos de tamaño de poro y 

diámetro de fibra modificando la temperatura de polimerización o pH [214]. El grado 

de cross-linking también ha sido variado añadiendo glutaraldehído o lisil-oxidase 

[108, 215]. Con respecto a la fibrina, variar la concentración de los componentes 

dentro de la gama fisiológica conlleva a distintas configuraciones fibrilares [216]. 

Además, también sería de gran interés evaluar el efecto del cross-linking del coágulo, 

puesto que se ha observado que su carencia produce problemas de hemorragia en 

pacientes [104]. 

Desacoplar la permeabilidad del tamaño de poro y la degradabilidad de la 

matriz extracellular. En las conclusiones obtenidas, la diferencia en permeabilidad 

de los hidrogeles se ha interpretado como un posible factor que influye en la 

migración celular en 3D. Además, en la bibliografía se ha propuesto que el 

mecanismo sensor de la rigidez de los miofibroblastos podría producirse a través de la 

presión del fluido intersticial que acompaña a la inflamación y la regeneración de 

tejidos [66]. Por lo tanto, desacoplar la permeabilidad, del tamaño de poro y la 

degradabilidad de las redes posibilitaría un mayor entendimiento del rol específico 

que ejerce la permeabilidad. En este sentido, aunque las matrices de proteína natural 

son esenciales para los estudios de esta índole, no es posible separar dichos efectos 

con el fin de evaluar su contribución individual a la migración celular. Por lo tanto, 

andamiajes sintéticos que representan las condiciones in vivo podrían aportar un valor 

añadido en este tipo de estudios. 
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Flujo de fluido intersticial. Puesto que la presión del fluido intersticial puede 

desempeñar un papel importante regulando la mecánica migratoria del fibroblasto, 

podría resultar de interés aplicar flujo intersticial a los microdispositivos para evaluar 

su efecto. Tal y como se ha señalado anteriormente, la distribución de la señalización 

autocrina y paracrina produce un ambiente bioquímico heterogéneo en la proximidad 

pericelular, debido al transporte convectivo producido por el flujo intersticial. En este 

sentido, otros trabajos han señalado que el flujo intersticial es un factor clave de los 

procesos de migración -que compite, a su vez, con mecanismos como la quimiotaxis- 

[33]. A su vez, a este artículo se le ha atribuido también la coordinación de la 

mecanotransducción en 3D [18]. 

Biosíntesis y remodelación de la matriz. Aunque el principal objetivo de la Tesis 

se ha centrado en la cuantificación de la migración celular, también sería pertinente 

correlacionar los datos obtenidos con procesos de remodelación y degradación de la 

matriz. Haciendo uso de las técnicas de visualización presentadas y de 

inmunofluorescencia de las matrices, podría estudiarse el proceso de remodelación del 

colágeno (en hidrogeles de colágeno) y deposición del mismo en los geles de fibrina. 

Co-cultivo de fibroblastos. Las propiedades biofísicas regulan la migración de 

fibroblastos en 3D. Sin embargo, in vivo no sólo contribuyen los parámetros 

fisicoquímicos en la respuesta migratoria en 3D, sino que otras células también están 

implicadas en la señalización secretando activamente factores paracrinos. En este 

sentido, el co-cultivo de fibroblastos con otros tipos celulares representaría más 

estrechamente las condiciones in vivo y permitiría avanzar más en el conocimiento de 

los procesos de curación. 

Transmigración colágeno-fibrina. Puesto que las plataformas microfluídicas 

ofrecen gran flexibilidad en el diseño experimental, además de los ensayos de 

migración, podrían realizarse estudios de transmigración. En las conclusiones 
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obtenidas se ha demostrado que el colágeno promueve más eficientemente la 

migración que los hidrogeles de fibrina. Sin embargo, fisiológicamente, se produce la 

transmigración de colágeno a fibrina. Por ello, experimentos que pudieran mimetizar 

dicha intercara permitirían estudiar este fenómeno. Una hipótesis podría ser que las 

células en el tejido conectivo circundante de la herida requieren de la migración con el 

fin de alcanzar el coágulo, pero una vez dentro, precisan de la  remodelación de la 

matriz más que de la migración. Por tanto, también podría añadir información 

relevante a este respecto variar la configuración biofísico-química, como se sugiere en 

las líneas de investigación anteriores. 

7.3 Publicaciones 

1. Elosegui-Artola, A., Jorge-Peñas, A., Moreno-Arotzena, O., Oregi, A., Lasa, 

M., García-Aznar, J.M., de Juan-Pardo, E.M. & Aldabe, R., Image analysis 

for the quantitative comparison of stress fibers and focal adhesions. PLoS One 

9, e107393 (2014). 

2. Moreno-Arotzena, O., Borau, C., Vicente-Manzanares, M., Movilla N. & 

García-Aznar, J.M. Local microarchitecture and haptotaxis determine 

fibroblast 3D migration in a non-muscle myosin II-dependent manner. En 

revisión. 

3. Moreno-Arotzena, O., Mendoza, G., Cóndor, M., Rüberg, T. & García-

Aznar, J. M. Inducing chemotactic and haptotatic cues in microfluidic devices 

for three-dimensional in vitro assays. En revisión. 
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Appendix A 
AProtocols	

 



 

Microfluidic‐based	3D	fibroblast	migration	studies	in	biomimetic	microenvironments	
 
 
 

 
 

142 
 
 
 
 
 
 

A.1 SU8 photolithography 

Reagents and materials: 

 Polished silicon wafer 

 Transparency photomask printed at 20,000 dpi 

 SU8 photoresist and appropriate developer 

Procedure: 

 It is a key point to ensure thorough wash of the silicon wafer. 

 Then, it is dehydrated at 200 ºC for 20 mins. Afterwards, the wafer should be 

allowed to relax at room temperature for 5 mins. 

 The corresponding SU8 photoresist is poured (1 ml per inch), avoiding bubbles.  

 It is spined onto the wafer conveniently. 

 Next, the wafer is placed in a hot plate raising its temperature progressively. 

Once it has reached 95 ºC, the photoresist is prebaked for 30 mins. Then, it 

should be allowed to relax at room temperature for 10 mins. 

  Afterwards, expose the wafer to an appropriate dose of UV light employing 

the photomask. Then, it should be allowed to relax at room temperature for 10 

mins. 

 Next, the wafer is ramped to 95ºC again and baked for 30 mins. Then, it should 

be allowed to relax at room temperature for 10 mins. 

 Develop the photoresist in the proper developer for 16 mins approximately*.  

 Neutralize the developer in IPA and rinse it with deionized water. Finally, dry 

it with pressurized nitrogen gas (see result in Fig. A.1). 

 



	
Appendix	A:	Protocols	

 
 
 

 
 

143 
 
 
 
 
 
 

Note1: keeping the level throughout the process is a key point. 

Note2: note that all these parameters should be adjusted in function of photoresist, 

desired depth and clean-room conditions. 

*The developer gets saturated easily. Hence, two different sets of 8 mins could be 

required. 

 

Fig.	A.1.	 Individual	SU8	geometry‐pattern.	The	SU8	positive‐relief	 is	adhered	 to	
silicon.
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A.2 Cell culture of NHDF 

Reagents: 

 Normal Human Dermal Fibroblasts (NHDF) from Lonza 

 Fibroblast Growth Medium-2 (FGM-2) from Lonza 

 PBS from Lonza 

 Trypsin from Biochrom  

 DMSO (Amresco) 

Procedure: 

 Trypsinization: 

 Aspirate de culture media. 

 Wash the cells with PBS. 

 Add 0.5 ml of trypsin and incubate the cells in the incubator for 1.5 

mins. 

 Once the cells are detached, add 1.5 ml of FGM-2. 

 Harvest the cells by centrifugation at 1200 rpm for 5 minutes at room 

temperature. 

 Dilute the pellet to the desired cellular concentration and the cells are 

ready to be seeded elsewhere or be frozen. 

Note: the cells were passaged once they were at 80% of confluence up to 

the tenth passage. 

 Freezing: 

 Pipet 50 ul of DMSO in each cryotube. 

 Add 450 ul of the cell suspension to the cryotubes.  
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 Bring the cryotubes to the -80ºC ultrafreezer within the froster and keep 

them for 24 hours. 

 Then, they should be kept in the nitrogen tank until they are required. 

 Thawing: 

 Place the cryotubes in the waterbath at 37ºC for roughly two minutes. 

 Mix the defrost cell solution (500 ul) with 4.5 ml of cell media.  

 Harvest the cells by centrifugation at 1200 rpm for 5 minutes at room 

temperature. 

 Dilute the pellet to the desired cellular concentration and seed them in 

corresponding flasks. 

 After 24 hours, the culture media should be changed in order to discard 

the dead cells.  

 In order to let them to get conditioned, thawed cells should be passaged 

at least once -at 80% of confluence- before using them for subsequent 

experiments. 
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A.3 Experimental quantification of GF concentration 

Reagents: 

 Corresponding ELISA kit: 

 PDGF-BB Human ELISA Kit from Abcam (ab100624)  

 TGF-β1 ELISA Kit from Invitrogen (KAC1688) 

Reagent preparation: 

 As indicated from the provider 

Procedure: 

 Sample obtaining: 

 After 24 hours since factor addition, the media from the reservoirs 

should be aspirated and discarded. 

 The medium from the channels is taken and used as our samples (5 ul). 

 As the volume obtained is very low, it is recommended to spin and 

dilute the samples before use. 

 Sample processing:  

 As indicated from the provider 
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A.4 Cell tracker 

Reagents: 

 CellTracker™ Green CMFDA from Molecular Probes: store at -20ºC 

 Uncomplemented and complemented media 

Reagent preparation: 

 CellTracker™ Green CMFDA: 

 Dissolve the dye as indicated by the supplier up to 10 mM in DMSO 

 Re-dissolve it in HBSS (or uncomplemented media) up to 1 mM 

 Aliquot and freeze at -20ºC 

 Thaw an aliquot before its use and then refreeze it 

Procedure: 

 Harvest the trypsinized cells by centrifugation and aspirate the supernatant. 

 Resuspend the pellet in 1 ml of uncomplemented prewarmed dye-containing 

media at 0.5 uM. 

 Incubate the tube for 15 mins.  

 Harvest the cells by centrifugation and aspirate the supernatant. 

 Resuspend the pellet in 1 ml of uncomplemented prewarmed media. 

 Incubate the tube for 30 mins.  

 Harvest the cells by centrifugation and aspirate the supernatant. 

 Resuspend the cells in prewarmed complemented media up to the desired 

concentration. 

 The stained cells are ready to be seeded in either 2D or 3D. 

Note: the dye and the stained cells should be protected from light. 
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A.5 Viability test 

Reagents: 

 Kit live/dead viability/cytotoxicity from Invitrogen (L3224): store at 4ºC: 

 calcein-AM (green). 

 ethidium homodimer-1 (red). 

Reagent preparation: 

 Add ethidium at 4 uM to DPBS and vortex it. 

 Next, add calcein at 2 uM and vortex it again. 

 Solution preparation should be done in the dark and fresh solution should be 

prepared prior to each test. 

Procedure: 

 Change the media from the devices by the just prepared solution. 

 Incubate the samples in the incubator for 30 min and image them. 

Note: negative control samples could be checked incubating them with 70% ethanol 

for 30 mins prior to test performance. 
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