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Resumen

Las variedades de Calabi-Yau constituyen una de las más importantes clases en geo-
metŕıa. Estas variedades, que pueden ser consideradas como la generalización a varias
dimensiones de las superficies K3, son variedades complejas compactas (M,J) de di-
mensión compleja n dotadas de una SU(n) estructura (F,Ψ), de manera que la 2-forma
fundamental F es cerrada y la forma Ψ de tipo (n, 0) es holomorfa. Por tanto, la
holonomı́a de la métrica g(·, ·) = F (·, J ·) se reduce a un subgrupo de SU(n), lo que a
su vez implica que g es Ricci llana, y el fibrado canónico de (M,J) es holomórficamente
trivial.

Las anteriores condiciones que caracterizan las variedades de Calabi-Yau han sido de-
bilitadas en varias direcciones de tal forma que las geometŕıas resultantes siguen jugando
un papel importante en diferentes aspectos de la geometŕıa compleja. En esta memoria
nos centramos en la geometŕıa de variedades complejas compactas (M,J) con fibrado
canónico holomórficamente trivial dotadas de métricas Hermitianas que son menos res-
trictivas que las métricas Kähler.

En el caso de las superficies complejas compactas, las posibilidades de que admitan
fibrado canónico holomórficamente trivial se reducen, salvo isomorfismo, a una superficie
K3, un toro complejo o una superficie de Kodaira, donde las dos primeras son Kähler
y la última es un ejemplo de nilvariedad M = G/Γ, es decir, un cociente compacto de
un grupo de Lie conexo y simplemente conexo G por un lattice Γ de rango máximo
en G. Sin embargo, no hay ninguna clasificación en dimensión compleja 3 o superior,
por lo que es natural comenzar a estudiar esta geometŕıa compleja en algunas clases
particulares de variedades compactas de dimensión real 6. La clase de nilvariedades
con estructura compleja invariante es una buena candidata para este estudio, ya que
Salamon [82] probó que cualquier variedad compleja de este tipo tiene fibrado canónico
holomórficamente trivial. Salamon proporciona a su vez en [82] una clasificación de
nilvariedades de dimensión real 6 admitiendo este tipo de estructuras complejas, siendo
la (nil)variedad de Iwasawa un ejemplo bien conocido que juega un papel relevante en
geometŕıa compleja (véase por ejemplo [6] y las referencias alĺı contenidas).

Aunque la geometŕıa compleja de nilvariedades constituye una fuente importante de
ejemplos en geometŕıa diferencial, estos espacios nunca satisfacen el ∂∂̄-lema porque no
son formales a excepción de los toros complejos [26, 44]. Sin embargo, la investigación
de determinadas propiedades en geometŕıa compleja requiere variedades complejas com-
pactas cumpliendo el ∂∂̄-lema, por lo que es preciso considerar una clase más amplia
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de espacios homogéneos M = G/Γ. La primera extensión natural de las nilvariedades
viene dada por los cocientes compactos de grupos de Lie G que son resolubles en vez de
nilpotentes. Un ejemplo destacable de este tipo es la variedad de Nakamura [67], la cual
presenta una geometŕıa muy rica. Esta clase de variedades, denominadas solvariedades,
es el objeto central de estudio en esta tesis. Más concretamente, describimos las sol-
variedades de dimensión 6 que poseen una estructura compleja invariante con fibrado
canónico holomórficamente trivial, aśı como una clasificación de tales estructuras.

Otro de los objetivos de esta memoria es el estudio de métricas Hermitianas es-
peciales que son menos restrictivas que las métricas Kähler. Es bien sabido que la
existencia de una métrica Kähler sobre una variedad compacta impone fuertes restric-
ciones topológicas. Por contra, en la clase conforme de cualquier métrica Hermitiana
sobre una variedad compleja compacta (M,J) de dimensión compleja n existe siempre
una métrica standard (también llamada Gauduchon), es decir, una métrica Hermitiana
cumpliendo ∂∂̄Fn−1 = 0 [40]. Entre la clase Kähler y la clase Gauduchon, otras clases
interesantes de métricas Hermitianas especiales han sido consideradas en relación con
diversos problemas en geometŕıa diferencial. Por ejemplo, una métrica Hermitiana se
dice equilibrada si la forma fundamental F cumple que Fn−1 es cerrada, y se dice que es
fuertemente Gauduchon si la (n, n − 1)-forma ∂Fn−1 es ∂̄-exacta. Las métricas fuerte-
mente Gauduchon han sido recientemente introducidas por Popovici en [74] mientras
que las equilibradas fueron consideradas previamente por Michelsohn [62].

Por otra parte, Fu, Wang y Wu han introducido en [39] una generalización de las
métricas Gauduchon sobre variedades complejas. Para cada entero 1 ≤ k ≤ n − 1, se
dice que una métrica Hermitiana es k-Gauduchon si ∂∂̄F k ∧ Fn−k−1 = 0. Se observa
que por definición las métricas (n − 1)-Gauduchon coinciden con las métricas Gaudu-
chon, y para k = 1 se tiene que la clase de métricas 1-Gauduchon contiene las métricas
Kähler con torsión, también conocidas como métricas pluricerradas. Streets y Tian in-
trodujeron en [88] un flujo de Ricci Hermitiano bajo el cual la condición Kähler con
torsión es preservada. La geometŕıa Kähler con torsión también ha sido estudiada por
diversos autores (véase por ejemplo [33, 34, 90]). Las nilvariedades de dimensión 6 que
admiten métricas invariantes Kähler con torsión, 1-Gauduchon o equilibradas han sido
determinadas en [33, 35, 95]. En esta tesis estudiamos la existencia de estas métricas
aśı como la existencia de métricas fuertemente Gauduchon en la clase más amplia de
las solvariedades de dimensión 6 provistas con una estructura compleja invariante cuyo
fibrado canónico es holomórficamente trivial.

Asociada a cualquier variedad compleja compacta M existen diversos invariantes
complejos que miden varios aspectos espećıficos de M . Entre ellos distinguimos las co-
homoloǵıas de Dolbeault, Bott-Chern [14], Aeppli [1] y la sucesión espectral de Frölicher
{Er(M)}r≥1 que relaciona la cohomoloǵıa de Dolbeault con la cohomoloǵıa de de Rham
de la variedad [38]. Si M es una variedad Kähler compacta entonces todos estos in-
variantes complejos coinciden porque M satisface el ∂∂̄-lema, sin embargo la sucesión
espectral de Frölicher puede no degenerar en el primer paso para variedades complejas
compactas arbitrarias. Un problema interesante en geometŕıa compleja es el estudio del
comportamiento de estos invariantes. En esta memoria damos una descripción completa
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de la sucesión {Er(M)}r≥1 en el caso de las nilvariedades de dimensión 6, mientras que
para las solvariedades de dimensión 6 dotadas de una estructura compleja invariante de
tipo splitting [51] con fibrado canónico holomórficamente trivial usamos los resultados
de Kasuya y Angella [51, 7] y de Angella y Tomassini [10] para determinar cuándo se
cumple el ∂∂̄-lema. A su vez, motivados por el trabajo [76], exploramos en esta tesis las
relaciones entre la degeneración de la sucesión espectral de Frölicher, el ∂∂̄-lema y la exis-
tencia de métricas equilibradas o fuertemente Gauduchon, aśı como su comportamiento
por deformaciones holomorfas de la estructura compleja.

A continuación describimos con más detalle los contenidos de cada caṕıtulo de esta
memoria de tesis.

El Caṕıtulo 1 tiene como finalidad ubicar el objeto de estudio de la tesis dentro del
marco más general de las variedades complejas. En la Sección 1.1 se repasan nociones
y aspectos básicos sobre geometŕıa compleja en general. Las variedades complejas se
presentan bajo dos puntos de vista, por un lado como variedades diferenciables que
admiten un atlas holomorfo compatible con la estructura diferenciable de la variedad y
por otro como variedades diferenciables junto con un campo de tensores diferenciable
J ∈ End(TM) tal que J2 = −IdTM , cumpliendo a su vez la condición de integrabi-
lidad obtenida por Newlander y Nirenberg [69]. Aunque ambos puntos de vista son
equivalentes, sin embargo este último enfoque es el que se sigue principalmente en la
memoria. La presencia de una estructura compleja da lugar además a la existencia de
fibrados vectoriales holomorfos, entre los que destacan el fibrado tangente holomorfo TM ,
su dual holomorfo Ω1

M (M) y los fibrados de p-formas holomorfas Ωp
M (M) := ∧pΩ1

M (M)
con 1 ≤ p ≤ n, siendo n = dimCM . A este último tipo pertenece el llamado fibrado
canónico holomorfo KM := Ωn

M (M).

Es posible asociar diversos complejos diferenciales a las variedades complejas que dan
lugar a distintas cohomoloǵıas. Este aspecto se trata en la Sección 1.2. La presencia de
una estructura compleja induce una bigraduación en la complexificación del complejo
de formas diferenciales (∧•MC, d) que da lugar a un álgebra bidiferencial bigraduada
(∧•,•M,∂, ∂̄), siendo d = ∂ + ∂̄. A estos complejos diferenciales se asocian los gru-
pos de cohomoloǵıa de de Rham H•dR(M ;C) = ker d/imd y de Dolbeault H•,•

∂̄
(M) =

ker ∂̄/im∂̄ de la variedad compleja, cuyas dimensiones b•(M) := dimH•dR(M ;C) y
h•,•
∂̄

(M) := dimH•,•
∂̄

(M) son finitas cuando la variedad es compacta. A partir del
anterior complejo bigraduado se presentan otras cohomoloǵıas de interés tales como
la cohomoloǵıa de Aeppli H•,•A (M) = ker ∂∂̄/(im∂ + im∂̄) y la cohomoloǵıa de Bott-
Chern H•,•BC(M) = (ker ∂ ∩ ker ∂̄))/im∂∂̄ [1, 14]. La conjugación induce un isomor-
fismo para ambas cohomoloǵıas entre los grupos de bigrados (p, q) y (q, p). Además,
es posible desarrollar una teoŕıa de Hodge asociada a estas dos cohomoloǵıas [85] por
medio de la cual se obtienen diversas propiedades interesantes, como la finitud de las
dimensiones h•,•A (M), h•,•BC(M) de estos grupos en el caso compacto y que ambas coho-

moloǵıas son duales en el sentido hp,qA (M) = hn−q,n−pBC (M) para todo p, q ∈ N. De las
definiciones de estas cohomoloǵıas es posible establecer de manera natural aplicaciones
H•,•BC(M) → H•,•

∂̄
(M) → H•,•A (M) bien definidas, que en general no son ni inyectivas ni

suprayectivas. La validez del isomorfismo H•,•BC(M) ∼= H•,•
∂̄

(M) es equivalente a que la
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variedad compleja cumpla el ∂∂̄-lema [26]. Más recientemente Angella y Tomassini [10]
caracterizan el ∂∂̄-lema en términos de la anulación de ciertos invariantes complejos
que involucran los números de Betti y las dimensiones de los grupos de cohomoloǵıa
de Aeppli y de Bott-Chern. Finalmente, se presenta la sucesión espectral de Frölicher
{E•,•r (M)}r≥1 que parte de la cohomoloǵıa de Dolbeault de una variedad compleja, iden-
tificada con el primer término E•,•1 (M) de la sucesión, y converge a su cohomoloǵıa de
de Rham, el término E•,•∞ (M), siendo éste alcanzado en un número finito de pasos. La
desigualdad obtenida por Frölicher [38] acota superiormente los números de Betti de la
variedad por una suma de números de Hodge de M .

Como se ha mencionado al principio, algunas de las variedades complejas más intere-
santes se distinguen por la presencia de algún tipo especial de métrica Hermitiana, las
cuales se recuerdan en la Sección 1.3. Las métricas Hermitianas se describen por medio
de una 2-forma positiva F ∈ ∧1,1M , llamada forma fundamental (o forma de Kähler).
Es bien sabido que sobre una variedad compleja compacta M de dimensión compleja n
siempre existen métricas compatibles con la estructura compleja, sin embargo Gaudu-
chon [40] prueba que además siempre existe una métrica standard (también conocida
como métrica Gauduchon), dada por ∂∂̄Fn−1 = 0, en la clase conforme de cada métrica
Hermitiana. La presencia de una métrica Kähler [50, 83], definida por dF = 0, impone
fuertes restricciones topológicas a la variedad, algunas de las cuales vienen expresadas
en términos de invariantes cohomológicos. Por ejemplo, Deligne, Griffiths, Morgan y
Sullivan [26] demuestran que la existencia de una tal métrica sobre una variedad com-
pleja compacta implica que ésta cumple el ∂∂̄-lema y por tanto la variedad subyacente
es formal.

La condición Kähler puede debilitarse en dos direcciones. Por un lado, cuando la
torsión de la conexión de Bismut [12] es cerrada, la métrica Hermitiana se denomina
Kähler con torsión [33], siendo estas métricas caracterizadas también por la condición
F ∈ ker ∂∂̄. La geometŕıa con torsión, además de su importancia en F́ısica Matemática en
el contexto de ciertos modelos supersimétricos [41] y en algunos tipos de teoŕıas de cuer-
das [89], juega un papel central en el flujo de Ricci Hermitiano introducido por Streets
y Tian [88]. Recientemente se han introducido clases de estructuras especiales denomi-
nadas Gauduchon generalizadas [39], definidas por la condición ∂∂̄F k∧Fn−k−1 = 0 para
algún k ∈ N tal que 1 ≤ k ≤ n − 1. Estas estructuras contienen a las métricas Kähler
con torsión para k = 1 y coinciden con las métricas Gauduchon cuando k = n − 1.
La otra dirección en la que se pueden debilitar las métricas Kähler viene dada por
la condición Fn−1 ∈ ker d. Este tipo de métricas Hermitianas se denominan equili-
bradas [62] y pertenecen a la clase W3 en la clasificación de Gray-Hervella [42]. A su
vez desempeñan un papel importante en compactificaciones en teoŕıas heteróticas de
cuerdas [89]. Popovici [75] ha introducido una clase intermedia entre las métricas equi-
libradas y las Gauduchon, denominadas fuertemente Gauduchon, que vienen definidas
como ∂Fn−1 ∈ im ∂̄. Además, prueba en [72] que para una variedad compleja compacta
que cumple el ∂∂̄-lema, la condición Gauduchon y la condición fuertemente Gauduchon
coinciden.

Una misma variedad diferenciable puede poseer distintas estructuras complejas de
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modo que las variedades complejas resultantes son no biholomorfas. Todas las estruc-
turas complejas sobre una variedad dada forman un espacio denominado espacio de
moduli de estructuras complejas de la variedad. Conocer dicho espacio de moduli es
un problema de enorme dificultad, aunque la teoŕıa de deformaciones holomorfas de
estructuras complejas desarrollada por Kodaira, Spencer, Nirenberg [53, 54] y Kuran-
ishi [55] proporciona un medio para afrontar esta cuestión al menos parcialmente. Esta
teoŕıa se presenta en la Sección 1.4 que se subdivide en dos partes. La primera parte pre-
senta la noción de deformación holomorfa {(M,Jt)}t∈B de una variedad compleja (M,J)
dada. Por una deformación holomorfa se entiende una familia de estructuras complejas
{Jt}t∈B sobre una misma variedad real subyacente M indexadas por un parámetro t que
pertenece a un espacio complejo B. Cuando el parámetro alcanza un valor distinguido
t0 se recupera la estructura compleja original Jt0 := J . El teorema de Kuranishi da una
descripción local del espacio de deformaciones holomorfas de una variedad compleja,
conocido desde entonces como espacio de Kuranishi de M y denotado por Kur(M), que
permite calcular de una manera relativamente sencilla nuevas variedades complejas com-
pactas. El objeto de la segunda parte es presentar uno de los aspectos más interesantes
de la teoŕıa de deformaciones consistente en el comportamiento abierto o cerrado de
diversas propiedades de la variedad compleja bajo deformaciones. Por un lado, se dice
que una propiedad P es abierta, o estable, bajo deformaciones holomorfas si cuando se
cumple P para (M,J) entonces también se cumple P para cualquier deformación (M,Jt)
suficientemente pequeña. Por otro lado, se dice que una propiedad P es cerrada bajo
deformaciones holomorfas si cuando se cumple P en (M,Jt) para todos los valores del
parámetro excepto en un valor distinguido t0, entonces también se cumple P cuando
t = t0. Se presentan los principales resultados sobre propiedades abiertas y cerradas,
con especial atención al problema de si la propiedad equilibrada y la propiedad fuerte-
mente Gauduchon son cerradas por deformaciones holomorfas [76, Conjectures 1.21 and
1.23]. En el Caṕıtulo 5 se construye un contraejemplo a ambas conjeturas.

El Caṕıtulo 2 tiene como objetivo la geometŕıa compleja invariante en el ámbito de
las solvariedades. La Sección 2.1 se dedica a precisar los términos del objeto de estudio
de este caṕıtulo, que son por un lado las solvariedades y por otro la geometŕıa compleja
invariante. En primer lugar, se considera la clase de variedades compactas a la que
pertenecen las solvariedades, que vienen dadas por el cociente de un grupo de Lie G por
un subgrupo discreto Γ de manera que la variedad cociente M = G/Γ es compacta. A
la variedad cociente se le denomina solvariedad cuando el grupo de Lie G es resoluble o
nilvariedad si G es nilpotente. El estudio de nilvariedades fue iniciado por Malcev [61]
mientras que las solvariedades fueron estudiadas originariamente por Mostow [64]. Un
resultado fundamental para este tipo de variedades compactas es el conocido Teorema
de Nomizu [68] para nilvariedades, aśı como sus extensiones para solvariedades debidas
a Hattori [46] y Mostow [64], que describen la cohomoloǵıa de de Rham de M por medio
de la cohomoloǵıa de Eilenberg-Chevalley del álgebra de Lie subyacente.

La submersión π : G→M permite definir campos de tensores sobre M que proceden
de campos de tensores invariantes por la izquierda definidos sobre G, o equivalentemente,
sobre el álgebra de Lie g del grupo. A este tipo de tensores, denominados invariantes,
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pertenecen las estructuras complejas que se consideran en la memoria. Hasegawa [45]
clasifica las solvariedades de dimensión 4 que admiten estructura compleja invariante y a
su vez prueba que cualquier estructura compleja sobre una solvariedad de esta dimensión
es necesariamente invariante. Sin embargo, Hasegawa señala que esto último deja de ser
cierto en dimensiones superiores, mostrando un ejemplo de una solvariedad de dimensión
real seis con una estructura compleja no invariante obtenida mediante una deformación
de la (sol)variedad de Nakamura, cuyo espacio de Kuranishi hab́ıa sido previamente cal-
culado en [67]. Ya en dimensión 6, existen resultados parciales de clasificación tales como
el de las álgebras de Lie resolubles que admiten estructura compleja abeliana obtenido
por Andrada, Barberis y Dotti [4] o la clasificación de Salamon [82] de álgebras de Lie
nilpotentes h1, . . . , h16, h−19, h+

26 admitiendo estructura compleja. Salamon demuestra a su
vez que la geometŕıa compleja invariante de una nilvariedad (M,J) viene caracterizada
por la existencia de una sección invariante Ψ ∈ ∧n,0M cerrada, siendo n = dimCM ,
por medio de la cual se trivializa el fibrado canónico holomorfo KM . En general la
existencia de una sección cerrada Ψ ∈ ∧n,0g∗ supone una condición suficiente para la
integrabilidad de J . Estas últimas consideraciones justifican clasificar las álgebras de Lie
resolubles g de dimensión real 6 que admiten una estructura compleja con una forma cer-
rada Ψ ∈ ∧3,0g∗ tales que den lugar a solvariedades a partir de ellas. En esta situación, la
sección invariante que define Ψ trivializa el fibrado canónico holomorfo de la solvariedad.
Además, mediante el proceso de simetrización [11] se prueba en la Proposición 2.1.31 que
si una solvariedad M admite una estructura compleja invariante J con fibrado canónico
holomórficamente trivial entonces admite una sección invariante Ψ ∈ ∧n,0M cerrada.
Como una primera consecuencia de este resultado, se prueba en el Teorema 2.1.32 que
la propiedad de tener fibrado canónico holomorfo trivial no es estable por deformaciones
holomorfas. La demostración se basa en una deformación invariante {(M,Jt)}t∈∆ de una
solvariedad compleja (M,J), siendo J invariante con fibrado canónico holomórficamente
trivial.

La existencia de un lattice Γ sobre el grupo de Lie G impone que éste sea uni-
modular [62], lo cual equivale a que su álgebra de Lie g sea también unimodular. La
Proposición 2.1.31 reduce el problema de clasificar las álgebras de Lie que dan lugar a
solvariedades con este tipo de geometŕıa compleja invariante a los dos problemas siguien-
tes:

(i) Clasificar las álgebras de Lie resolubles y unimodulares g de dimensión 6 admitiendo
una estructura casi-compleja J con una forma 0 6= Ψ ∈ ∧3,0g∗ cerrada.

(ii) Encontrar lattices en los grupos de Lie correspondientes a las álgebras de Lie en-
contradas en el problema anterior.

La Sección 2.2 se dedica a resolver el problema (i) utilizando para ello el formalismo
de formas estables introducido por Hitchin [48]. Dado un espacio vectorial real de
dimensión 6 orientado (V, ν), esta técnica permite asociar a una 3-forma ρ ∈ ∧3V ∗ un
endomorfismo Kρ : V → V tal que K2

ρ = λ(ρ)IdV , siendo el signo de λ(ρ) independiente
de la orientación ν ∈ ∧6V ∗ escogida. Si g es un álgebra de Lie resoluble de dimensión 6,
el problema (i) se reduce mediante este formalismo a encontrar las 3-formas cerradas
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ρ ∈ ∧3g tales que Jρ := Kρ es casi-compleja y d(J∗ρρ) = 0. En tal caso, la forma
Ψ := ρ + iJ∗ρρ ∈ ∧3,0g∗ es cerrada y por tanto Jρ es una estructura compleja del tipo
buscado sobre g. Además, la existencia de un par (J,Ψ) cumpliendo estas condiciones
sobre un álgebra de Lie g unimodular impone la condición b3(g) ≥ 2. Esta última
propiedad permite excluir algunas álgebras de Lie resolubles de dimensión 6 de las listas
extráıdas de Turkowski [91], Shabanskaya [86], Schulte-Hengesbach [84] y Freibert y
Schulte-Hengesbach [36]. Sin embargo, ante el elevado número de álgebras de Lie a
analizar, se ha dividido el estudio según el álgebra de Lie sea descomponible o no. Las
álgebras de Lie resolubles y no nilpotentes g1, g

α≥0
2 , g3, . . . , g9 que resuelven el problema

(i) están recogidas en el Teorema 2.2.14. Hay que destacar que se trata de una familia
infinita de álgebras de Lie, ya que las gα≥0

2 son no isomorfas dos a dos, siendo esto una
diferencia con respecto al resultado obtenido por Salamon [82] para las álgebras de Lie
nilpotentes. En las tablas del Apéndice B se encuentran las álgebras de Lie consideradas
para obtener este resultado de clasificación.

La Sección 2.3 aborda el problema (ii) relativo a la existencia de lattices en los
grupos de Lie conexos y simplemente conexos con álgebras de Lie subyacentes h1, . . . , h16,
h−19, h+

26, g1, . . . , g9. Esta cuestión está resuelta para los grupos de Lie nilpotentes en
virtud del teorema de Malcev [61] que caracteriza la existencia de lattices en términos
de la existencia de una estructura racional sobre el álgebra de Lie subyacente. Todas
las álgebras de Lie h1, . . . , h16, h−19, h+

26 admiten una estructura racional por lo que es
posible construir nilvariedades a partir de ellas. Esta cuestión se complica cuando el
grupo de Lie no es nilpotente, y es preciso recurrir a resultados que permitan construir
expĺıcitamente estos lattices. Siguiendo [13] encontramos lattices para aquellos grupos
de Lie que son casi-nilpotentes. En la Proposición 2.3.5 se prueba la existencia de lattices
para los grupos de Lie conexos y simplemente conexos correspondientes a las álgebras
de Lie g1, . . . , g9. Para la familia gα≥0

2 se ha encontrado una familia numerable de
álgebras de Lie {gαn2 }n∈N tales que sus correspondientes grupos de Lie admiten lattice,
en conformidad con un resultado de Witte [100, Proposition 8.7]. El caṕıtulo concluye
con el Teorema 2.3.7 que resume las solvariedades de dimensión 6 con estructura compleja
invariante con fibrado canónico holomórficamente trivial en términos del álgebra de Lie
real subyacente.

El Caṕıtulo 3 tiene como objetivo proporcionar una clasificación de estructuras com-
plejas invariantes con fibrado canónico holomórficamente trivial sobre solvariedades de
dimensión seis. Esta clasificación se realiza salvo equivalencia de estructuras comple-
jas, es decir, dos estructuras J, J ′ : g → g son equivalentes si existe un automorfismo
F : g → g del álgebra de Lie tal que J ′ ◦ F = F ◦ J . Dividimos este caṕıtulo en dos
secciones, la primera dedicada a las nilvariedades y la segunda a las solvariedades. Para
una mejor comprensión de las estructuras complejas sobre un álgebra de Lie nilpotente,
Cordero, Fernández, Gray y Ugarte [24] definen un tipo espećıfico de estructuras deno-
minadas nilpotentes. Las conocidas estructuras compleja-paralelizables, definidas por
[JX, Y ] = J [X,Y ], y las abelianas, dadas por [JX, JY ] = [X,Y ], para todo X,Y ∈ g,
son ejemplos de estructuras complejas nilpotentes cuando g es nilpotente. A la clase de
las compleja-paralelizables pertenecen la célebre (nil)variedad de Iwasawa, cuya álgebra
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de Lie subyacente es h5, y la (sol)variedad de Nakamura [67], con álgebra de Lie sub-
yacente g8. Ugarte [95] prueba que sobre una misma nilvariedad de dimensión 6 no
pueden coexistir una estructura compleja nilpotente y otra que no lo es. Más concreta-
mente, prueba que todas las estructuras complejas sobre las álgebras de Lie h1, . . . , h16

son nilpotentes mientras que las álgebras de Lie h−19 y h+
26 sólo admiten estructuras no

nilpotentes. Las estructuras complejas sobre h−19 y h+
26 son clasificadas por Ugarte y

Villacampa en [96] mientras que, como ya se ha mencionado, las estructuras abelianas
sobre las álgebras de Lie resolubles de dimensión 6 son clasificadas en [4]. Por tanto, en
la Sección 3.1 se plantea como objetivo clasificar las estructuras complejas no abelianas
sobre las álgebras de Lie h1, . . . , h16. Para una exposición más clara hemos dividido este
estudio según el paso de nilpotencia de las álgebras de Lie, y en la Tabla 3.1 se recoge
la clasificación final.

La Sección 3.2 tiene como objeto clasificar las estructuras complejas con una forma
de tipo (3, 0) cerrada sobre las álgebras de Lie resolubles g1, . . . , g9. Para ello se utiliza la
técnica de formas estables considerada en la Sección 2.2 para hallar el espacio de este tipo
de estructuras sobre cada una de las álgebras de Lie de la lista anterior. Por medio de
un proceso de reducción encontramos un representante en cada clase de equivalencia de
estructuras complejas. Es destacable (véase Proposición 3.2.7) que para el álgebra de Lie
g8 correspondiente a la variedad de Nakamura existe una familia infinita de estructuras
{JA}A∈C,ImA 6=0 ∪ {J ′} ∪ {J ′′}, siendo J0 := J−i la estructura compleja-paralelizable
y J1 := J i la abeliana. Estas estructuras complejas junto con la clasificación de las
correspondientes a las álgebras de Lie g1, . . . , g7 y g9 se encuentran recogidas en la
Tabla 3.2.

Los Caṕıtulos 4 y 5 hacen uso de los resultados de clasificación obtenidos en los
Caṕıtulos 2 y 3 para el estudio de ciertos invariantes cohomológicos, la existencia de
métricas Hermitianas especiales y el comportamiento de diversas propiedades por de-
formaciones holomorfas. El Caṕıtulo 4 estudia en concreto la sucesión espectral de
Frölicher {E•,•r (M)}r≥1 y el ∂∂̄-lema. Rollenske [80] demuestra que para una nilvarie-
dad M = G/Γ de dimensión 6 con una estructura compleja invariante J , la inclusión
natural (∧•,•g∗, ∂̄)→ (∧•,•M, ∂̄) induce un isomorfismo en la cohomoloǵıa de Dolbeault,
siempre que el álgebra de Lie subyacente no sea isomorfa a h7. Cordero, Fernández, Gray
y Ugarte [23] demuestran que en tal caso también se cumple que E•,•r (M) ∼= E•,•r (g) para
todo r ≥ 2. La Sección 4.1 contiene el cálculo de la sucesión de Frölicher para toda es-
tructura compleja sobre las álgebras de Lie nilpotentes h1, . . . , h16, h−19, h+

26. De este
estudio y de los resultados previamente mencionados llegamos al Teorema 4.1.4 que con-
tiene una descripción general de la sucesión espectral de Frölicher para las nilvariedades
de dimensión 6 con estructura compleja invariante (excepto para el caso h7). En cuanto
a la validez del ∂∂̄-lema, las nilvariedades no pueden cumplirlo porque no son formales en
el sentido de Sullivan [44]. Por otro lado, es conocido que toda variedad compleja com-
pacta M que satisface el ∂∂̄-lema cumple que E1(M) ∼= E∞(M) y también la simetŕıa
de los números de Hodge hp,q

∂̄
(M) = hq,p

∂̄
(M) para todo p, q ∈ N. Estas consideraciones

dan lugar a la siguiente cuestión formulada por Angella y Tomassini en [10]: encontrar
una variedad compleja compacta que satisfaga las dos últimas condiciones y sin embargo
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no cumpla el ∂∂̄-lema. En la Proposición 4.1.5 mostramos que la nilvariedad compleja
(M = G/Γ, J) con álgebra de Lie subyacente h6 da una respuesta afirmativa a la anterior
cuestión.

En la Sección 4.2 se presentan resultados relativos al cálculo de la sucesión espec-
tral de Frölicher para las solvariedades con estructura compleja invariante cuyo fibrado
canónico es holomórficamente trivial. Esta sección se divide a su vez en dos subseccio-
nes. En la primera se realiza el cálculo de {E•,•r (g)}r≥1 a nivel del álgebra de Lie g.
Por medio del proceso de simetrización se prueba en la Proposición 4.2.1 que si en el
álgebra de Lie se tiene E1(g) � E∞(g) entonces en la solvariedad M también se cumple
E1(M) � E∞(M). Esto permite concluir en el Corolario 4.2.8 que sobre una solvariedad
(M,J) con álgebra de Lie isomorfa a g8 y J equivalente a J0, J1, J ′ ó J ′′ no se cumple el
∂∂̄-lema. En la segunda subsección se presentan en primer lugar los resultados recientes
debidos a Angella y Kasuya [7, 51] que permiten calcular la cohomoloǵıa de Dolbeault y
de Bott-Chern de una solvariedad (M = G/Γ, J) con una estructura compleja invariante
J de un tipo espećıfico, denominado tipo splitting [51, Assumption 1.1]. La presencia
de este tipo de estructuras complejas sobre un grupo de Lie resoluble permite concebirlo
como un producto semidirecto de la forma G = CrnN , siendo N un grupo de Lie nilpo-
tente con una estructura compleja invariante tal que H•,•

∂̄
(N/ΓN ) ∼= H•,•

∂̄
(n). Además

el subgrupo Γ = ΓCr n ΓN ⊂ G escogido para construir la solvariedad debe presentar
cierta compatibilidad con este producto semidirecto. El cálculo de las cohomoloǵıas de
Dolbeault y de Bott-Chern de estas solvariedades se realiza por medio de dos comple-
jos de formas diferenciales de dimensión finita (B•,•Γ , ∂̄) y (C•,•Γ , ∂, ∂̄), de manera que
H•,•
∂̄

(M) ∼= H∂̄(B•,•Γ ) y H•,•BC(M) ∼= HBC(C•,•Γ ), respectivamente.

De las estructuras complejas sobre las álgebras de Lie resolubles g1, . . . , g9 obtenidas
en el Caṕıtulo 3 sólo son de tipo splitting las correspondientes a g1, gα2 con α ≥ 0 y g8,
exceptuando J ′ y J ′′. Además, los ejemplos analizados por Kasuya en [51] se correspon-
den con la estructura compleja de g1 y la compleja-paralelizable de g8. Tras construir
expĺıcitamente lattices compatibles con las estructuras complejas de tipo splitting an-
teriores, en la Proposición 4.2.21 se presentan solvariedades complejas con álgebra de
Lie g0

2 que cumplen el ∂∂̄-lema. Más aún, para una elección concreta de lattice, se
obtiene una solvariedad cuya cohomoloǵıa de de Rham coincide con la cohomoloǵıa de
Chevalley-Eilenberg de g0

2, aunque g0
2 no es completamente resoluble y por tanto no

cumple la hipótesis necesaria para aplicar el resultado de Hattori [46]. Por otro lado,
para una familia infinita {αn}n∈N ⊂ R>0, se construyen solvariedades con álgebra de
Lie subyacente gαn2 cuyos lattices son compatibles con las dos estructuras complejas no
equivalentes J±. Para algunos de estos lattices se tiene E1(M) � E∞(M) mientras que
para otros se cumple el ∂∂̄-lema (véase Proposición 4.2.22). En relación a g8, en la
Proposición 4.2.25 se proporcionan lattices compatibles con cada una de las estructuras
{JA}A∈C,ImA 6=0 de manera que las solvariedades resultantes cumplen el ∂∂̄-lema si y sólo
si A = i

k con k 6= 0 entero.

La Sección 4.3 estudia el comportamiento de invariantes cohomológicos por deforma-
ciones holomorfas. Kodaira y Spencer [53] prueban la semicontinuidad de los números
de Hodge, de donde se sigue que la propiedad “E1(M) ∼= E∞(M)” es abierta por defor-
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maciones holomorfas. Sin embargo, Eastwood y Singer [27] prueban que esta propiedad
no es cerrada usando geometŕıa compleja sobre espacios de twistor. Por otro lado,
Maclaughlin, Pedersen, Poon y Salamon [60] proporcionan la descripción del espacio de
Kuranishi de las nilvariedades nilpotentes en paso 2 con estructura compleja abeliana.
Haciendo uso de éste y nuestros resultados anteriores, en el Corolario 4.3.3 se construye
otro ejemplo, basado en una deformación invariante de una nilvariedad compleja (M,J)
con álgebra de Lie isomorfa a h4 y J la estructura abeliana sobre ella, que muestra que
“E1(M) ∼= E∞(M)” no es una propiedad cerrada. Además, se construye una familia
de estructuras complejas {Jt}t∈R sobre al álgebra de Lie h15 que muestra que las di-
mensiones de los términos E•,•2 no son monótonamente crecientes ni decrecientes. Esta
familia nos permite concluir en el Corolario 4.3.6 que la propiedad “E2(M) ∼= E∞(M)”
no es abierta por deformaciones.

En cuanto al ∂∂̄-lema, es bien conocido que se trata de una propiedad abierta por
deformaciones holomorfas [98, 101, 10]. Angella y Kasuya proporcionan en [8] una
técnica para calcular tanto la cohomoloǵıa de Dolbeault como la cohomoloǵıa de Bott-
Chern a lo largo de deformaciones holomorfas (M,Jt)t∈∆ de una solvariedad compleja
(M,J) de tipo splitting. Mediante esa técnica demuestran [8] que el ∂∂̄-lema no es una
propiedad cerrada por deformaciones. La prueba se basa en una deformación invari-
ante de la variedad de Nakamura. Usando esta técnica y el resultado obtenido en la
Proposición 4.2.25, se construye en la Proposición 4.3.9 una familia de deformaciones
holomorfas {(Mk, Jk,t)}t∈∆ para cada una de las variedades complejas compactas de la
familia infinita {(Mk, Jk := JAk)}k∈Z siendo Ak = i

2k+1 . El álgebra de Lie subyacente a

todas las Mk es isomorfa a g8. Además, estas deformaciones no cumplen el ∂∂̄-lema en
los ĺımites centrales Jk := Jk,0 para todos los k ∈ Z, pero śı para Jk,t con t ∈ ∆∗, lo que
extiende la prueba ideada por Angella y Kasuya a una clase infinita de ejemplos.

En el Caṕıtulo 5 se estudia en su primera Sección 5.1 la existencia de métricas equili-
bradas, fuertemente Gauduchon, Kähler con torsión y, al estar en dimensión compleja 3,
1-Gauduchon generalizadas sobre las solvariedades complejas obtenidas anteriormente.
Por el proceso de simetrización, se tiene que la existencia tanto de métricas Kähler y
equilibradas [31] como de métricas Kähler con torsión [95] sobre una variedad compacta
(M = G/Γ, J) con J invariante se reduce al estudio a nivel del álgebra de Lie. En el
ámbito de las nilvariedades con estructura compleja invariante se conocen resultados
sobre la existencia de métricas Kähler con torsión [33], 1-Gauduchon generalizadas [35]
y equilibradas [95]. Por ello, el estudio se ha centrado para esas métricas en las es-
tructuras complejas sobre las álgebras de Lie resolubles g1, . . . , g9 obteniéndose los re-
sultados de clasificación en las Proposiciones 5.1.1, 5.1.6 y 5.1.8. Como consecuencia,
en el Teorema 5.1.3 se prueba que una solvariedad dotada de estructura compleja in-
variante con fibrado canónico holomórficamente trivial admite una métrica Calabi-Yau
si y sólo si su álgebra subyacente es isomorfa a R6 ó g0

2. En relación a las métricas
fuertemente Gauduchon, se prueba en la Proposición 5.1.9 que su existencia sobre sol-
variedades con estructura compleja invariante es también reducible a su existencia a
nivel del álgebra de Lie. No se conoce ningún estudio previo sobre la existencia de estas
métricas en dimensión 6, por lo que lo dividimos en la Proposición 5.1.11 para nilvarie-
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dades y en la Proposición 5.1.13 (véase también la Tabla 5.2) para solvariedades. Como
ya se ha mencionado antes, la condición equilibrada implica la fuertemente Gauduchon,
y el cumplir el ∂∂̄-lema en una variedad compleja compacta implica la existencia de
métricas fuertemente Gauduchon. Por ello, siguiendo [76, Theorem 1.10], se estudia en
la Proposición 5.1.15 qué nilvariedades complejas admiten métricas fuertemente Gaudu-
chon sin admitir ninguna métrica equilibrada. Los resultados de este estudio se recogen
en la Tabla 5.1.

Finalmente, la Sección 5.2 contiene dos resultados relativos al comportamiento de
métricas Hermitianas bajo deformaciones holomorfas. El Teorema 5.2.1 encierra el re-
sultado más importante de esta sección al demostrar que tanto la propiedad equilibrada
como la propiedad fuertemente Gauduchon no son cerradas por deformaciones holomor-
fas. En la demostración utilizamos la deformación basada en (h4, J) usada en la prueba
del Corolario 4.3.3 para mostrar que E1(M) ∼= E∞(M) no es cerrada por deformaciones.
Por otro lado, Popovici [72] muestra que si una deformación {(M,Jt)}t∈∆ satisface el
∂∂̄-lema para todo t ∈ ∆∗ entonces el ĺımite central (M,J0) admite una métrica fuerte-
mente Gauduchon. Se plantea la cuestión de si se puede asegurar la existencia en el
ĺımite central de métricas más restrictivas que las fuertemente Gauduchon. En relación
a esto, el Teorema 5.2.4 muestra una deformación invariante de una solvariedad com-
pleja {(M,Jt)}t∈∆ que satisface el ∂∂̄-lema y admite métricas equilibradas para todos
los t ∈ ∆∗, pero que en el ĺımite central no satisface el ∂∂̄-lema ni tampoco admite
métricas equilibradas. Por tanto, a diferencia de lo que sucede con las métricas fuerte-
mente Gauduchon, la propiedad del ∂∂̄-lema no hace que existan métricas equilibradas
en el ĺımite central de una deformación.

Parte de los resultados de los Caṕıtulos 2, 3, 4 y 5 de esta memoria han sido obtenidos
en colaboración con Manuel Ceballos, Anna Fino, Luis Ugarte y Raquel Villacampa y
están recogidos en los art́ıculos [18] y [32], mientras que algunos otros resultados más
recientes han sido obtenidos con Daniele Angella y Luis Ugarte.



xx Introduction



Introduction

As it is well-known Calabi-Yau manifolds constitute one of the most important classes
in geometry. These manifolds, which can be thought as higher-dimensional analogues of
K3 surfaces, are compact complex manifolds (M,J) of complex dimension n endowed
with an SU(n) structure (F,Ψ) such that the fundamental 2-form F is closed and the
(n, 0)-form Ψ is holomorphic. Thus, the holonomy of the metric g(·, ·) = F (·, J ·) reduces
to a subgroup of SU(n), so that g is a Ricci-flat Kähler metric, and the canonical bundle
of (M,J) is holomorphically trivial.

The above conditions defining a Calabi-Yau manifold have been weakened in different
directions so that the resulting geometries still play an important role in several aspects
of complex geometry. In this thesis we focus our attention in the geometry of compact
complex manifolds (M,J) with holomorphically trivial canonical bundle endowed with
special Hermitian metrics which are less restrictive than the Kähler ones.

Concerning compact complex manifolds with holomorphically trivial canonical bun-
dle, we recall that in complex dimension 2 the possibilities, up to isomorphism, are a
K3 surface, a torus or a Kodaira surface, where the first two are Kähler and the latter
is an example of a nilmanifold M = G/Γ, i.e. a compact quotient of a simply con-
nected nilpotent Lie group G by a lattice Γ of maximal rank in G. However, there
are no classifications in complex dimension 3 or higher, so it is natural to begin by
studying such complex geometry on some particular classes of compact manifolds of real
dimension 6. A good candidate is the class consisting of nilmanifolds endowed with an
invariant complex structure, as Salamon proved in [82] that any such complex nilmani-
fold has holomorphically trivial canonical bundle. In (real) dimension 6 a classification
of nilmanifolds admitting this kind of complex structures is also provided in [82], where
the Iwasawa (nil)manifold is a classical example which plays a relevant role in complex
geometry (see for instance [6] and the references therein).

Although the complex geometry of nilmanifolds provides an important source of
examples in differential geometry, these spaces never satisfy the ∂∂̄-lemma because they
are not formal except for tori [26, 44]. However, the investigation of some properties
in complex geometry requires compact complex manifolds satisfying the ∂∂̄-lemma, so
one needs to consider a broader class of homogeneous spaces M = G/Γ. The first
natural generalization of nilmanifolds is given by compact quotients of Lie groups G
which are solvable instead of nilpotent. For instance, the Nakamura manifold, whose
complex geometry is very rich [67], is an example of this type. This class of manifolds,
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known as solvmanifolds, is the central object of study in this thesis. More concretely,
we describe the 6-dimensional solvmanifolds admitting an invariant complex structure
with holomorphically trivial canonical bundle, as well as we obtain a classification of
such invariant structures.

As we mentioned above, another goal in this thesis is the study of special Hermitian
metrics which are less restrictive than the Kähler ones. It is well-known that the existence
of a Kähler metric on a compact manifold imposes strong topological obstructions. In
contrast, by [40] on a compact complex manifold (M,J) of complex dimension n there
always exists a Gauduchon metric, i.e. a metric satisfying ∂∂̄Fn−1 = 0, in the conformal
class of any given Hermitian metric. Between the Kähler class and the Gauduchon class
other interesting classes of special Hermitian metrics have been considered in relation
to different problems in differential geometry. For instance, a Hermitian metric is called
balanced if the fundamental form satisfies that Fn−1 is closed, and it is said to be strongly
Gauduchon if the (n, n − 1)-form ∂Fn−1 is ∂̄-exact. Strongly Gauduchon metrics have
been introduced recently by Popovici in [74], whereas balanced metrics were previously
considered in [62].

On the other hand, Fu, Wang and Wu have introduced in [39] a generalization of the
Gauduchon metrics on complex manifolds. For each integer 1 ≤ k ≤ n− 1, a Hermitian
metric is called k-Gauduchon if ∂∂̄F k ∧ Fn−k−1 = 0. Then, by definition the notion of
(n − 1)-Gauduchon metric coincides with the one of the usual Gauduchon metric, and
for k = 1 one has that the class of 1-Gauduchon metrics contains in particular the strong
Kähler with torsion (SKT for short) metrics, also known as pluriclosed metrics. Streets
and Tian introduced in [88] a Hermitian Ricci flow under which the SKT condition is
preserved, and the SKT geometry has been studied by many authors (see for instance [33,
34, 90]). The 6-dimensional nilmanifolds admitting invariant SKT, 1-Gauduchon or
balanced metrics have been determined in [33, 35, 95], and in this thesis we study the
existence of such metrics, as well as the existence of strongly Gauduchon metrics, on the
bigger class of 6-dimensional solvmanifolds endowed with an invariant complex structure
with holomorphically trivial canonical bundle.

Associated to any compact complex manifold M there exist several complex invari-
ants which measure some specific aspects of M . Among them, we distinguish the Dol-
beault, the Bott-Chern and the Aeppli cohomologies [14, 1], and the Frölicher spectral
sequence {Er(M)} relating the Dolbeault to the de Rham cohomology of the mani-
fold [38]. If M is a compact Kähler manifold then all these complex invariants coincide
because M satisfies the ∂∂̄-lemma, however the Frölicher sequence may not degenerate at
the first step for arbitrary compact complex manifolds. A problem of interest in complex
geometry is to study the behaviour of these invariants. In the case of 6-dimensional nil-
manifolds a complete picture of the behaviour of the sequence {Er(M)}r≥1 is given in this
thesis, and for solvmanifolds of dimension 6 endowed with an invariant complex struc-
ture of splitting type (in the sense of [51]) with holomorphically trivial canonical bundle
we use the results by Kasuya and Angella [51, 7] and by Angella and Tomassini [10]
to find when the ∂∂̄-lemma is satisfied. Motivated by the paper [76], in this thesis we
also explore the relations among the degeneration of the Frölicher spectral sequence, the



Introduction xxiii

∂∂̄-lemma and the existence of balanced or strongly Gauduchon metrics, as well as their
behaviour under small holomorphic deformations of the complex structure.

Next we describe in more detail the contents of each chapter in this thesis.

The goal of Chapter 1 is to place our research in the more general context of com-
plex manifolds. We recall the basic notions and results about complex geometry in
Section 1.1. Complex manifolds are introduced from two points of view, on one hand
as smooth manifolds admitting a holomorphic atlas compatible with the differentiable
structure, and on the other hand as smooth manifolds endowed with a C∞ tensor field
J ∈ End(TM) such that J2 = −IdTM and satisfying the integrability condition stated
by the Newlander-Nirenberg Theorem [69]. Although both viewpoints are equivalent, in
this work we adopt the latter one. The presence of a complex structure gives rise to the
existence of holomorphic vector bundles such as the holomorphic tangent bundle TM ,
its holomorphic dual bundle Ω1

M (M) and, more in general, the bundles of holomorphic
p-forms Ωp

M (M) := ∧pΩ1
M (M) with 1 ≤ p ≤ n, where n = dimCM . In particular, the

holomorphic canonical bundle KM := Ωn
M (M) is an example of this type.

Several differential complexes are associated to complex manifolds yielding several
cohomologies. We deal with these cohomologies in Section 1.2. The presence of a
complex structure induces a bigraduation in the complexified complex of differential
forms (∧•MC, d) giving rise to a bidifferential bigraded algebra (∧•,•M,∂, ∂̄), where
d = ∂+ ∂̄. The de Rham cohomology groups H•dR(M ;C) = ker d/imd and the Dolbeault
cohomology groupsH•,•

∂̄
(M) = ker ∂̄/im∂̄ of the complex manifold are associated to these

complexes and their dimensions, denoted by b•(M) := dimH•dR(M ;C) and h•,•
∂̄

(M) :=

dimH•,•
∂̄

(M), respectively, are finite when M is compact. However, other cohomologies
of interest can be defined from the bidifferential bigraded algebra such as the Aeppli
cohomology H•,•A (M) = ker ∂∂̄/(im∂+im∂̄) and the Bott-Chern cohomology H•,•BC(M) =
(ker ∂ ∩ ker ∂̄)/im∂∂̄ [1, 14]. The conjugation map induces an isomorphism between the
cohomology groups of bidegree (p, q) and (q, p). In addition, when M is compact, a
Hodge theory associated to these cohomologies [85] allows to deduce several interesting
properties, such as the finiteness of the dimensions of these groups, denoted by h•,•BC(M)

and h•,•A (M), and the duality between them, in the sense that hp,qA (M) = hn−q,n−pBC (M) for
any p, q ∈ N. From the definitions above, it is possible to set well-defined natural maps
H•,•BC(M)→ H•,•

∂̄
(M)→ H•,•A (M). However, these maps are in general neither injective

nor surjective, and it is proved in [26] that the isomorphism H•,•BC(M) ∼= H•,•
∂̄

(M) holds

if and only if the complex manifold satisfies the ∂∂̄-lemma. Recently, Angella and
Tomassini [10] characterize the ∂∂̄-lemma in terms of the vanishing of some complex
invariants involving the Betti numbers and the dimensions of the Aeppli and the Bott-
Chern cohomology groups. Finally, the Frölicher spectral sequence {E•,•r (M)}r≥1 of a
complex manifold is presented. It links the Dolbeault cohomology, identified with the
first term E•,•1 (M) of the sequence, with the de Rham cohomology, the term E•,•∞ (M),
which is reached in a finite number of steps. We recall the Frölicher inequality [38]
involving the Betti numbers and the Hodge numbers of the complex manifold.

Some of the most interesting complex manifolds are distinguished by the presence
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of a special Hermitian metric. We recall some definitions and results concerning these
metrics in Section 1.3. Hermitian metrics can be described by means of a positive 2-
form F ∈ ∧1,1M , called fundamental form (also Kähler form). It is well-known that on
a compact complex manifold M of complex dimension n one can always find metrics
compatible with the complex structure, moreover Gauduchon [40] proves that there
exists a standard metric (also called Gauduchon metric), defined by ∂∂̄Fn−1 = 0, in
the conformal class of any Hermitian metric. The existence of Kähler metrics [50, 83],
specified by dF = 0, imposes strong topological obstructions on the manifold, some of
them expressed in terms of cohomological invariants. For instance, Deligne, Griffiths,
Morgan and Sullivan proved in [26] that the existence of such metrics on a compact
complex manifold implies the ∂∂̄-lemma and hence the underlying manifold has to be
formal.

The Kähler condition can be weaken in two directions. On the one hand, when
the torsion of the Bismut connection [12] is closed then the Hermitian metric is called
strong Kähler with torsion [33]. These metrics are also characterized by the condition
F ∈ ker ∂∂̄. The geometry with torsion plays a central role in the Hermitian-Ricci flow
introduced by Streets and Tian [39] other than its importance in the context of some
supersymmetric models [41] and in some types of string theories [89]. Recently, a new
type of special Hermitian metrics have been introduced in [39], which are called gen-
eralized Gauduchon and are defined by ∂∂̄F k ∧ Fn−k−1 = 0 for some k ∈ N such that
1 ≤ k ≤ n−1. These structures contain the strong Kähler with torsion metrics for k = 1
and coincide with the Gauduchon metrics for k = n−1. The Kähler condition can be also
weakened by requiring that Fn−1 ∈ ker d. This type of metrics are called balanced [62]
and belong to the class W3 in the Gray-Hervella classification [42]. They have impor-
tance in compactifications of heterotic string theories [89]. Popovici has introduced an
intermediate class between the balanced and the Gauduchon classes [75], called strongly
Gauduchon metrics, defined by ∂Fn−1 ∈ im∂̄. In addition, Popovici proves in [72]
that, for a compact complex manifold satisfying the ∂∂̄-lemma, the Gauduchon and the
strongly Gauduchon conditions coincide.

A smooth manifold can admit several complex structures in such a way that the
corresponding complex manifolds are not biholomorphic. All the complex structures on
a manifold constitute a space called the moduli space of complex structures of the man-
ifold. It is a very hard problem to describe this space although the holomorphic defor-
mation theory of complex structures developed by Kodaira, Spencer, Nirenberg [53, 54]
and Kuranishi [55] provides a partial answer. The basics of this theory are presented
in Section 1.4 which is divided in two parts. The first part is devoted to the notion of
holomorphic deformation {(M,Jt)}t∈B of a complex manifold (M,J). A holomorphic
deformation is conceived as a family of complex structures {Jt}t∈B on the same under-
lying smooth manifold M given by a parameter t ∈ B taking values in a complex space
B. The original complex structure J is recovered when the parameter rises some distin-
guished point t0. The Kuranishi’s Theorem provides a local description of the space of
holomorphic deformations of a complex manifold, denoted by Kur(M), allowing to con-
struct, in a relatively simple way, new compact complex manifolds. In the second part
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several open and closed properties under holomorphic deformations are presented. A
property P is said to be open, or stable, under holomorphic deformations if whenever P
holds for (M,J) then P also holds for (M,Jt) for any t ∈ ∆∗. Here ∆∗ = ∆\{t0}, where
∆ is an open disc in C around t0 and Jt0 = J . On the other hand, a property P is said to
be closed if whenever the property holds for (M,Jt) for any t ∈ ∆∗ then it holds in the
central limit (M,Jt0 = J). The main results concerning open and closed properties are
presented with special attention to the problem on closedness of the balanced and the
strongly Gauduchon properties under holomorphic deformations [76, Conjectures 1.21
and 1.23]. A counterexample to both conjectures will be constructed in Chapter 5.

Chapter 2 is devoted to invariant complex geometry in the class of solvmanifolds. In
Section 2.1 we consider the class of compact complex manifolds constructed by taking a
quotient of a Lie group G by a subgroup Γ ⊂ G, so that the quotient manifold M = G/Γ
is compact. These manifolds are called solvmanifolds when G is solvable or nilmanifolds
when G is nilpotent. The study of nilmanifolds was started by Malcev [61] whereas
solvmanifolds were studied firstly by Mostow [64]. We recall the main result due to
Nomizu [68] for nilmanifolds and its extensions due to Hattori [46] and Mostow [64] for
solvmanifolds concerning the computation of the de Rham cohomology of G/Γ by means
of the Eilenberg-Chevalley cohomology of the underlying Lie algebra g.

The submersion π : G → M allows to define tensor fields on M coming from left-
invariant tensor fields on G, or equivalently, encoded in the Lie algebra g of the Lie
group. The complex structures considered in this work belong to this class of invariant
tensor fields. Hasegawa [45] classifies the solvmanifolds of dimension 4 admitting an
invariant complex structure and proves that any complex structure on a solvmanifold
of this dimension is necessarily invariant. However, Hasegawa shows that the latter is
not true for higher dimensions by showing a solvmanifold of dimension six with a non-
invariant complex structure obtained by a holomorphic deformation of the Nakamura
(solv)manifold, whose Kuranishi space had been previously obtained in [67]. There are
partial classification results in dimensions six such as the solvable Lie algebras admitting
an abelian complex structure obtained by Andrada, Barberis and Dotti [4] or Salamon’s
classification [82] of nilpotent Lie algebras h1, . . . , h16, h−19, h+

26 admitting complex struc-
tures. Salamon also shows that the invariant complex geometry on a complex nilmanifold
(M,J) is characterized by the existence of a closed invariant section Ψ ∈ ∧n,0M , where
n = dimCM . Hence, the holomorphic canonical bundle KM of a complex nilmanifold is
trivial. In general, the existence of a closed section Ψ ∈ ∧n,0g∗ yields a sufficient condi-
tion to the integrability of the complex structure. The latter considerations constitute
a reason to classify the solvable Lie algebras g of dimension six admitting a complex
structure with a closed complex volume form Ψ ∈ ∧3,0g∗ so that the corresponding Lie
groups give rise to solvmanifolds. In this situation the invariant section defined by Ψ
trivializes the holomorphic canonical bundle of the solvmanifold. In addition, by using
the symmetrization process [11] we prove in Proposition 2.1.31 that if a solvmanifold M
admits an invariant complex structure J with holomorphically trivial canonical bundle
then it admits an invariant closed section Ψ ∈ ∧n,0M . As a first consequence of this
result, we prove in Theorem 2.1.32 that the property of having holomorphically triv-



xxvi Introduction

ial canonical bundle is not open under holomorphic deformations. The proof is based
on an invariant deformation {(M,Jt)}t∈∆ of a complex solvmanifold (M,J) where J is
invariant with holomorphically trivial canonical bundle.

The existence of a lattice on a Lie group G implies [62] the unimodularity of G,
and in particular, of the Lie algebra g of the Lie group. Proposition 2.1.31 reduces the
problem of classifying the Lie algebras giving rise to solvmanifolds with this type of
complex geometry to the following two problems:

(i) Classify the solvable and unimodular Lie algebras g of dimension six admitting an
almost-complex structure J with a closed form 0 6= Ψ ∈ ∧3,0g∗.

(ii) Find lattices in the Lie groups corresponding to the Lie algebras obtained in the
previous problem.

Section 2.2 deals with problem (i) using the formalism of stable forms introduced
by Hitchin [48]. Given an oriented six dimensional vector space (V, ν), this technique
allows to associate to any 3-form ρ ∈ ∧3V ∗ an endomorphism Kρ : V → V such that
K2
ρ = λ(ρ)IdV , where the sign of λ(ρ) remains independent of the choice of ν ∈ ∧6V ∗. If

g is a solvable Lie algebra of dimension six, problem (i) reduces with this formalism to
find the closed 3-forms ρ ∈ ∧3g such that Jρ := Kρ is almost-complex and d(J∗ρρ) = 0. In
this case, the complex form Ψ := ρ+iJ∗ρρ ∈ ∧3,0g∗ is closed and therefore Jρ is a complex
structure of the required type on g. In addition, the existence of a pair (J,Ψ) satisfying
these conditions on an unimodular Lie algebra g imposes the condition b3(g) ≥ 2. The
latter allows to exclude some solvable Lie algebras of dimension 6 extracted from the lists
of Turkowski [91], Shabanskaya [86], Schulte-Hengesbach [84] and Freibert and Schulte-
Hengesbach [36]. However, given the great number of Lie algebras to be considered, we
have divided the study according to the Lie algebra is decomposable or not. The (non-
nilpotent) solvable Lie algebras g1, g

α≥0
2 , g3, . . . , g9 solving problem (i) are obtained in

Theorem 2.2.14. It is remarkable that there is an infinite number of Lie algebras because
gα≥0

2 are not isomorphic for distinct α’s. The complete lists of Lie algebras are included
in the tables of Appendix B.

Section 2.3 deals with problem (ii) concerning the existence of lattices in the con-
nected and simply-connected Lie groups with underlying Lie algebras h1, . . . , h16, h−19,
h+

26, g1, . . . , g9. This problem is solved for the nilpotent Lie groups by Malcev’s The-
orem [61] which characterizes the existence of lattice by means of the existence of a
rational structure on the underlying Lie algebra. In particular, all the Lie algebras
h1, . . . , h16, h−19, h+

26 admit a rational structure. When the Lie group is not nilpotent the
question becomes more difficult and we must use partial results allowing us to build the
lattice explicitly. Following [13] we find lattices for those solvable Lie groups which are
almost-nilpotent. We prove in Proposition 2.3.5 the existence of a lattice for the simply-
connected Lie groups associated to the Lie algebras in the list, although for gα2 we are
able to find a lattice only for a countable number of different values of α. The latter is
consistent with a result of Witte [100, Prop. 8.7]. The chapter concludes with Theo-
rem 2.3.7 summing up the solvmanifolds of dimension 6 admitting an invariant complex
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structure with holomorphically trivial canonical bundle in terms of the underlying real
Lie algebra.

The goal of Chapter 3 is to classify the complex structures with holomorphically
trivial canonical bundle on solvmanifolds of dimension six. The classification is up to
equivalence of complex structures on Lie algebras, that is, two structures J, J ′ : g→ g are
said to be equivalent if there exists an automorphism F : g→ g of the Lie algebra such
that J ′ ◦F = F ◦ J . This chapter consists of two parts, the first devoted to nilmanifolds
and the second to solvmanifolds. For a better understanding of the complex structures on
nilpotent Lie algebras, Cordero, Fernández, Gray and Ugarte [24] introduce the notion of
nilpotent complex structures. The well-known complex-parallelizable structures, defined
by [JX, Y ] = J [X,Y ], and the abelian complex structures, defined by [JX, JY ] = [X,Y ],
for all X,Y ∈ g, belong to the bigger class of nilpotent complex structures when g is
nilpotent. It is remarkable that to the class of complex-parallelizable manifolds belong
the Iwasawa manifold, with underlying Lie algebra h5, and the Nakamura manifold [67],
with underlying Lie algebra g8. Ugarte [95] proves that on a six-dimensional nilmanifold
cannot coexist nilpotent and non-nilpotent complex structures. More concretely, all the
complex structures on the Lie algebras h1, . . . , h16 are nilpotent whereas the Lie algebras
h−19 and h+

26 only admit non-nilpotent complex structures. The complex structures on h−19

and h+
26 are classified by Ugarte and Villacampa [96] and, as we mentioned previously,

the abelian complex structures on the solvable Lie algebras of dimension 6 are classified
in [4]. Therefore, the goal of Section 3.1 is to classify the non-abelian complex structures
on the Lie algebras h1, . . . , h16. For a clearer exposition we divide the study according to
the step of nilpotency of the Lie algebra. We include in Table 3.1 the final classification
of all the complex structures on nilpotent Lie algebras of dimension 6.

The aim of Section 3.2 is to classify the complex structures with a closed form of
type (3, 0) on the solvable Lie algebras g1, . . . , g9. We use the technique of stable forms
introduced in Section 2.2 to describe the whole space of these complex structures on the
Lie algebras of the previous list. A reduction process leads us to find a representative
in each equivalence class of complex structures. It is remarkable (see Proposition 3.2.7)
that for the Lie algebra g8 corresponding to the Nakamura manifold there is an infinite
family {JA}A∈C,ImA 6=0∪{J ′}∪{J ′′}, where J0 := J−i is the unique complex-parallelizable
structure and J1 := J i is the unique abelian structure. The classification of complex
structures on g1, . . . , g9 is given in Table 3.2.

Chapters 4 and 5 make use of the results obtained in Chapter 2 and 3 in order to study
several cohomological invariants, the existence of special Hermitian metrics and the be-
haviour of properties under holomorphic deformations. Chapter 4 studies concretely the
Frölicher spectral sequence {E•,•r (M)}r≥1 and the ∂∂̄-lemma. Rollenske [80] proves that
for a nilmanifold M = G/Γ of dimension 6 endowed with an invariant complex struc-
ture the natural inclusion (∧•,•g∗, ∂̄)→ (∧•,•M, ∂̄) induces an isomorphism in Dolbeault
cohomology, whenever the underlying Lie algebra is not isomorphic to h7. Cordero,
Fernández, Gray and Ugarte [23] prove that in such case then E•,•r (M) ∼= E•,•r (g) for
any r ≥ 2. Section 4.1 contains the computation of the Frölicher sequence for all the com-
plex structures on the nilpotent Lie algebras h1, . . . , h16, h−19, h+

26. From this computation
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and the previous results we state in Theorem 4.1.4 a general description of the behaviour
of the Frölicher spectral sequence for six-dimensional nilmanifolds, except for g isomor-
phic to h7. As regards the ∂∂̄-lemma, nilmanifolds cannot satisfy it because they are not
formal in the sense of Sullivan [44]. On the other hand, it is known that any compact com-
plex manifold M satisfying the ∂∂̄-lemma also satisfies that E1(M) ∼= E∞(M) together
with the symmetry of the Hodge numbers hp,q

∂̄
(M) = hq,p

∂̄
(M) for any p, q ∈ N. These

considerations give rise to the following question posed by Angella and Tomassini [10]:
find a compact complex manifold satisfying the latter two conditions but not the ∂∂̄-
lemma. We provide an example answering this question in Proposition 4.1.5 based on a
complex nilmanifold (M = G/Γ, J) with underlying Lie algebra h6.

Section 4.2 deals with the computation of the Frölicher spectral sequence for six-
dimensional solvmanifolds with an invariant complex structure with holomorphically
trivial canonical bundle. This section is divided in two parts. The first part is devoted
to the computation of {E•,•r (g)}r≥1 at the level of the Lie algebra g. By means of the
symmetrization process, we prove in Proposition 4.2.1 that if E1(g) � E∞(g) at the
level of the Lie algebra then also holds E1(M) � E∞(M) on the solvmanifold M . As
a consequence, we prove in Corollary 4.2.8 that a complex solvmanifold (M,J) with
underlying Lie algebra isomorphic to g8 and J equivalent to J0, J1, J ′ or J ′′ does
not satisfy the ∂∂̄-lemma. We consider in the second part of this section the results
due to Angella and Kasuya [7, 51] concerning the computation of the Dolbeault and
Bott-Chern cohomologies of solvmanifolds (M = G/Γ, J) endowed with an invariant
complex structure of splitting type [51, Assumption 1.1]. The presence of this kind of
complex structure on a solvable Lie group allows to conceive it as a semidirect product
G = Cr n N , where N is a nilpotent Lie group endowed with an invariant complex
structure such that H•,•

∂̄
(N/ΓN ) ∼= H•,•

∂̄
(n). In addition, the lattice Γ = ΓCr n ΓN ⊂ G

must satisfy certain compatibility with the semidirect product. The computation of the
Dolbeault and Bott-Chern cohomologies of these complex solvmanifolds is performed
by means of two finite-dimensional differential complexes (B•,•Γ , ∂̄) and (C•,•Γ , ∂, ∂̄), such
that H•,•

∂̄
(M) ∼= H∂̄(B•,•Γ ) and H•,•BC(M) ∼= HBC(C•,•Γ ), respectively.

It turns out that of the complex structures on the Lie algebras g1, . . . , g9 found in
Chapter 3 only those corresponding to g1, gα2 for α ≥ 0 and g8 (except J ′ and J ′′) are of
splitting type. In addition, the examples analyzed by Kasuya in [51] correspond to the
complex structure on g1 and the complex-parallelizable structure on g8. After building
explicitly lattices compatible with the complex structures of splitting type, we present in
Proposition 4.2.21 complex solvmanifolds with underlying Lie algebra g0

2 satisfying the
∂∂̄-lemma. Furthermore, for a concrete choice of the lattice, we get a solvmanifold such
that its de Rham cohomology coincides with the Chevalley-Eilenberg cohomology of g0

2,
although g0

2 is not completely solvable and hence it does not satisfy the hypothesis in
Hattori’s Theorem [46]. For a countable family {αn}n∈N ⊂ R>0, we build solvmanifolds
with underlying Lie algebra gαn2 whose lattices are compatible with the non-equivalent
complex structures J±. Moreover, we get for some lattices that E1(M) � E∞(M)
whereas for others we get solvmanifolds satisfying the ∂∂̄-lemma (see Proposition 4.2.22).
As regards the Lie algebra g8, we provide lattices in Proposition 4.2.25 compatible with
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each complex structure {JA}A∈C,ImA 6=0 so that the resulting solvmanifolds satisfy the
∂∂̄-lemma if and only if A = i

k with k 6= 0 integer.

In Section 4.3 we focus on the behaviour of cohomological invariants under holo-
morphic deformations. Kodaira and Spencer [53] prove the upper semicontinuity of the
Hodge numbers and, as a consequence, the openness of the “E1(M) ∼= E∞(M)” prop-
erty. However, Eastwood and Singer [27] prove that this property is not closed under
holomorphic deformations by using complex geometry on twistor spaces. On the other
hand, Maclaughlin, Pedersen, Poon and Salamon [60] provide a description of the Ku-
ranishi space of six-dimensional 2-step nilmanifolds endowed with an abelian complex
structure. Making use of this and our previous results, we provide in Corollary 4.3.3
another example based on an invariant holomorphic deformation of a complex nilmani-
fold with underlying Lie algebra h4 and J the abelian structure on h4, showing that the
property E1(M) ∼= E∞(M) is not closed. Moreover, we construct a family of complex
structures {Jt}t∈R on the Lie algebra h15 showing that the dimensions of the terms E•,•2

are neither upper semicontinuous nor lower semicontinuous. This family allows us to
conclude in Corollary 4.3.6 that the property “E2(M) ∼= E∞(M)” is not open under
holomorphic deformations.

As regards the ∂∂̄-lemma, it turns out that it is open under holomorphic deforma-
tions [98, 101, 10]. Angella and Kasuya [8] provide a technique to compute the Dolbeault
and the Bott-Chern cohomologies of a holomorphic deformation (M,Jt)t∈∆ of a complex
solvmanifold of splitting type. By using these results, they prove [8] that the ∂∂̄-lemma
is not closed under holomorphic deformations. The proof consists of a holomorphic de-
formation of the Nakamura manifold. Taking into account this technique and the results
obtained in Proposition 4.2.25, we provide in Proposition 4.3.9 a family of holomorphic
deformations {(Mk, Jk,t)}t∈∆ for each compact complex manifold of the countable fam-
ily {(Mk, Jk := JAk)}k∈Z where Ak = i

2k+1 . The Lie algebra underlying the complex
solvmanifolds Mk is g8. In addition, these holomorphic deformations do not satisfy the
∂∂̄-lemma in the central limits Jk := Jk,0 but the ∂∂̄-lemma holds for the complex struc-
tures Jk,t with t ∈ ∆∗. The construction by Angella and Kasuya corresponds to the
complex solvmanifold (M−i, J−i).

Chapter 5 deals with special Hermitian metrics. In Section 5.1 we study the exis-
tence of balanced, strongly Gauduchon, strong Kähler with torsion and 1-st generalized
Gauduchon metrics on the complex solvmanifolds obtained above. By the symmetriza-
tion process, the existence of Kähler, balanced [31] and strong Kähler with torsion [95]
metrics on a compact manifold of the form (M = G/Γ, J) with J invariant reduces
to the study at the level of the underlying Lie algebra g. In the context of nilmani-
folds there are results of existence of strong Kähler with torsion [33], 1-st generalized
Gauduchon [35] and balanced [95] metrics. Hence, our study of these metrics focus on
their existence on the solvable Lie algebras g1, . . . , g9 obtaining the classification results
in Propositions 5.1.1, 5.1.6 and 5.1.8. As a consequence, we state in Theorem 5.1.3
that a six-dimensional solvmanifold with an invariant complex structure admitting a
Calabi-Yau metric has Lie algebra isomorphic to R6 or g0

2. Concerning the strongly
Gauduchon metrics, we prove in Proposition 5.1.9 that their existence on a solvmani-
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fold is also reduced to the existence on the Lie algebra. The existence of these metrics
on six-dimensional complex solvmanifolds with holomorphically trivial canonical bun-
dle is divided in Proposition 5.1.11 for nilmanifolds and in Proposition 5.1.13 (see also
Table 5.2) for solvmanifolds. As we mentioned above, the balanced condition implies
the strongly Gauduchon condition, and Popovici proves that on compact complex man-
ifolds the ∂∂̄-lemma implies the existence of strongly Gauduchon metrics. Therefore,
following [76, Theorem 1.10] we study in Proposition 5.1.15 which nilmanifolds admit
strongly Gauduchon metrics but none balanced metric. The conclusions of this study
are included in Table 5.1.

Finally, Section 5.2 contains two results concerning the behaviour of Hermitian met-
rics under holomorphic deformations. We prove in Theorem 5.2.1 that neither the
balanced nor the strongly Gauduchon properties are closed. The proof is based on
the holomorphic deformation used in Corollary 4.3.3 to show the non-closedness of the
E1(M) ∼= E∞(M) property. On the other hand, Popovici [72] shows that if a holomor-
phic deformation {(M,Jt)}t∈∆ satisfies the ∂∂̄-lemma for all t ∈ ∆∗, then the central
limit (M,J0) admits a strongly Gauduchon metric. We wonder if the ∂∂̄-lemma assures
the existence of Hermitian metrics stronger than the strongly Gauduchon ones. Concern-
ing this, we show in Theorem 5.2.4 an invariant holomorphic deformation of a complex
solvmanifold {(M,Jt)}t∈∆ satisfying the ∂∂̄-lemma and admitting balanced metrics for
any t ∈ ∆∗, but the central limit neither satisfies the ∂∂̄-lemma nor admits balanced
metrics. Therefore, the ∂∂̄-lemma does not assure the existence of a balanced metric in
the central limit.

Some of the results in Chapters 2, 3, 4 and 5 were obtained in collaboration with
Manuel Ceballos, Anna Fino, Luis Ugarte and Raquel Villacampa and can be found in
the papers [18] and [32], whereas some other more recent results have been obtained
with Daniele Angella and Luis Ugarte.



Chapter 1

Complex manifolds

In this introductory chapter we recall basic notions and some classical results about
complex geometry and Hermitian geometry on manifolds. In Section 1.1 we start by
setting some definitions and notations concerning complex and almost-complex struc-
tures on manifolds. In addition, we remind the Newlander-Nirenberg Theorem [69] which
characterizes the almost-complex structures giving rise to a holomorphic atlas. Holomor-
phic vector bundles on complex manifolds are presented, with special attention to the
holomorphic canonical bundle. The goal of Section 1.2 is to present basic results about
several cohomologies on complex manifolds. The well-known de Rham H•dR(M) and Dol-
beault H•,•

∂̄
(M) cohomology groups are recalled as well as other important cohomologies

such as the Bott-Chern H•,•BC(M) and the Aeppli H•,•A (M) cohomologies [1, 14] and the
main results obtained by Schweitzer [85] concerning the cohomology groups H•,•BC(M)
and H•,•A (M) when M is a compact complex manifold. In addition, we remind some
results connecting these cohomology groups with the ∂∂̄-lemma property [10, 26]. We
conclude the section recalling the Frölicher spectral sequence {E•,•r (M)}r≥1 of a complex
manifold, which links the Dolbeault cohomology to the de Rham cohomology [38]. Sec-
tion 1.3 deals with special Hermitian metrics on complex manifolds. The starting point
are Kähler metrics [50, 83] defined by the closedness of the fundamental form F ∈ ∧1,1M
associated to the metric, whose existence imposes several strong topological obstructions
on a compact complex manifold. Other special Hermitian metrics of interest are pre-
sented such as balanced [62], strongly Gauduchon [75], strong Kähler with torsion [33]
and k-th generalized Gauduchon [39], as well as the main results and the relations among
them. Finally, we consider in Section 1.4 the theory of small holomorphic deformations
of compact complex manifolds developed by Kodaira, Spencer, Nirenberg [53, 54] and
Kuranishi [55]. In the first part of the section, we present the main definitions about the
theory of holomorphic deformations leading us to the Theorem of Kuranishi [55], which
describes the local geometry of the moduli space of complex structures on a compact
complex manifold. In the second part, we remind some general results about the open-
ness or closedness of some important properties, such as the Kähler property [47, 53]
or the ∂∂̄-lemma [8, 10, 98, 101], among others. We follow for the last part a paper by
Popovici [76], paying especial attention to the problems of closedness of the balanced
and the strongly Gauduchon properties.
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1.1 Almost-complex structures and integrability

A complex manifold is a differentiable manifold of even dimension equipped with a so-
called complex structure. There are several approaches to this object, but we start by
presenting it in terms of the existence of a holomorphic atlas.

Definition 1.1.1. Let M be a smooth manifold of real dimension 2n.

• A complex chart on M is a pair (U,ψ) where U ⊆ M is open and ψ : U → Cn is
a diffeomorphism between U and an open set of Cn.

• A holomorphic atlas is a set of complex charts {(Ui, ψi)}i∈I such that M =
⋃
i∈I Ui

and if Ui ∩ Uj 6= ∅, then the transition map ψij : ψi(Ui ∩ Uj)→ ψj(Ui ∩ Uj) given
by ψij := ψj ◦ ψ−1

i is biholomorphic.

M is said to be a complex manifold if it is equipped with a holomorphic atlas. The
complex dimension of M is n. If (U,ψ) is a complex chart and p ∈ U , then its complex
coordinates in the chart U are (z1, . . . , zn) ∈ Cn, where zj : U → C is given by zj = πj◦ψ,
πj : Cn → C being the projection onto the j-th component.

Therefore, complex manifolds are a type of differentiable manifolds endowed with an
atlas whose transition functions are biholomorphic. Therefore, only even-dimensional
smooth manifolds could admit a complex structure. In addition, the existence of a
holomorphic atlas requires the orientability of M .

In this work we focus our attention in complex manifolds with holomorphically trivial
canonical bundle. We briefly recall the definition of holomorphic vector bundle as well as
the natural holomorphic vector bundles associated to any complex manifold: the tangent
and the cotangent bundles, the bundle of holomorphic p-forms and the holomorphic
canonical bundle.

Definition 1.1.2. Let M be a complex manifold of complex dimension n. A holomorphic
vector bundle of rank r on M is a complex manifold E, called the total space, together
with a holomorphic map π : E →M and the structure of an r-dimensional complex vector
space on any fibre Ep := π−1(p) satisfying the following condition: there exists an open
covering M =

⋃
i∈I Ui and biholomorphic maps ϕi : π

−1(Ui)→ Ui ×Cr commuting with
the projections to Ui such that the induced map π−1(p) ∼= Cr is C-linear.

Let M be a complex manifold with dimCM = n, the holomorphic tangent bundle
is the holomorphic vector bundle TM on M of rank n which is given by the transition
functions

ϕij : ψi(Ui ∩ Uj)× Cn → ψj(Ui ∩ Uj)× Cn,
where ϕij(ψi(p), v) := (ψij(ψi(p)), (ψij)∗ψi(p)v), {ψij}i,j∈I denote the holomorphic tran-
sition maps on M , and (ψij)∗ψi(p) ∈ GL(n,C) denotes the Jacobian of the map ψij at
point ψi(p) ∈ Cn. The holomorphic cotangent bundle Ω1

M is the dual vector bundle of
TM . The bundle of holomorphic k-forms is Ωk

M := ∧kΩ1
M for 0 ≤ k ≤ n and, when
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k = n, we get the holomorphic canonical bundle of M denoted by KM := Ωn
M . Hence,

by a complex manifold with holomorphically trivial canonical bundle we mean a complex
manifold M with a global non-vanishing holomorphic volume form 0 6= Ψ ∈ KM which
trivializes the canonical bundle of M .

Remark 1.1.3. Every holomorphic vector bundle on M is in particular a differentiable
(or C∞) vector bundle. However, it is possible to define complex vector bundles on M
which are not holomorphic. They satisfy that the fibres π−1(p) are complex vector spaces
for any p ∈M and also that the transition functions ϕij are C-linear, but the total space
E is not a complex manifold. As a matter of notation, if π : E → M is a C∞-vector
bundle we denote by C∞(M ;E) the set of smooth sections of the bundle. Particularly,
we denote the set of C∞-vector fields on M by X(M) := C∞(M ;TM) and the C∞-tensor
fields of rank (k, l) on M by T kl (M) := C∞(M ;TM⊗ l. . . ⊗TM ⊗ T ∗M⊗ k. . . ⊗T ∗M).
More concretely, T k(M) := T k0 (M) and End(TM) := T 1

1 (M). The space of sections of
the bundle of C∞-alternating tensors of rank k are denoted by ∧kM and its elements
are called k-forms. Otherwise stated, every time we deal with any tensor object T on a
complex manifold M we will assume that it is C∞. When T is a section of a holomorphic
vector bundle we will refer to it explicitly by “the holomorphic tensor field T”.

Let M be a complex manifold of complex dimension n. The existence of a holomor-
phic atlas on M yields to the existence of a smooth tensor field J ∈ End(TM) defined
on the manifold in the following way. Let (U, (zj = xj + iyj)

n
j=1) be a complex chart and

consider the real chart (U, (x1, . . . , xn, y1, . . . , yn)) and the corresponding local basis of
coordinate vector fields {

∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn

}
⊂ TU.

We can locally define a section J ∈ End(TU) by:

J

(
∂

∂xi

)
:=

∂

∂yi
, J

(
∂

∂yi

)
:= − ∂

∂xi
,

for i = 1, . . . , n. It is easy to check that this local definition does not depend on the
complex chart (due to the Cauchy-Riemann equations). Hence, the tensor J can be
extended to the whole manifold obtaining a global smooth tensor field J ∈ End(TM)
satisfying J2 = −IdTM . This tensor field J is called a complex structure on the complex
manifold M . We usually use the notation (M,J) to refer to a complex manifold, or
equivalently, a differentiable manifold M endowed with a complex structure J .

In general, it is interesting to consider a differentiable (not necessarily complex)
manifold M endowed with a smooth section J ∈ End(TM) satisfying the condition
J2 = −IdTM . This kind of tensors are called almost-complex structures on M . Similarly,
the pair (M,J) is called an almost-complex manifold.

Every complex manifold (M,J) admits an almost-complex structure, but there are
almost-complex manifolds which do not give rise to a holomorphic atlas on M . The
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almost-complex structures that yield to a complex structure on M are called integrable.
The Newlander-Nirenberg theorem [69] characterizes the integrability of an almost-
complex structure J in terms of the vanishing of a tensor NijJ associated to J called the
Nijenhuis tensor of J .

Theorem 1.1.4 (Newlander and Nirenberg [69, Theorem 1.1]). Let J be an almost-
complex structure on M , then J is integrable if and only if NijJ = 0, where NijJ ∈ ∧2M
is defined by:

(1.1) NijJ(X,Y ) := [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ], X, Y ∈ X(M).

It is worth noticing that on a differentiable manifold there could exist several almost-
complex structures satisfying the integrability condition (1.1). More in general, it is
required to define a notion of isomorphic complex structures in order to decide whether
two complex manifolds are equivalent under the point of view of its complex geometry.

Definition 1.1.5. Two almost-complex manifolds (M,J), (M ′, J ′) are isomorphic if
there exists a diffeomorphism F : M → M ′ such that F∗ ◦ J = J ′ ◦ F∗. When (M,J)
and (M ′, J ′) are both complex manifolds, they are said to be biholomorphic as complex
manifolds if they are isomorphic as almost-complex manifolds.

Let (M,J) be a complex manifold and consider the complexified of the tangent bundle
TMC := TM ⊗R C. The C-linear extension of J is a diagonalizable endomorphism of
End(TMC) with eigenvalues i and −i. Hence, J induces the splitting of the bundle TMC
such that at every point p ∈M :

(1.2) TpMC = T (1,0)
p M ⊕ T (0,1)

p M,

where T
(1,0)
p M := {X− iJX | X ∈ TpM} and T

(0,1)
p M := {X+ iJX | X ∈ TpM} are the

J-eigenspaces corresponding to the eigenvalues i and −i, respectively. Furthermore, it

turns out that the eigenspaces T
(1,0)
p M ∼= Cn ∼= T

(0,1)
p M are irreducible representations

of the Lie group GL(n,C) and that T
(1,0)
p M and T

(0,1)
p M are complex conjugated (recall

that if V is a real vector space and VC := V ⊗RC is its complexified, then the conjugation
map VC → VC is defined by v ⊗ z := v ⊗ z̄ for any v ∈ V and z ∈ C).

Remark 1.1.6. If (M,J) is an almost-complex manifold, the complexified tangent bun-
dle also admits a splitting like (1.2). It is proved that the almost-complex structure J is
uniquely determined by a splitting of the bundle TMC = T (1,0)M ⊕ T (0,1)M satisfying
T (1,0)M := T (0,1)M . In particular, the integrability of J is equivalent to the property of
[T (0,1)M,T (0,1)M ] ⊆ T (0,1)M .

As a matter of notation, we denote by X1,0(M) and X0,1(M) the sections of the
bundles T (1,0)M and T (0,1)M , respectively.

Recall that the endomorphism J∗ ∈ End(T ∗MC) dual to J is defined by (J∗α)X :=
α(JX). Furthermore, the complex structure of the manifold also induces, via the endo-
morphism J∗, a splitting in the space of the complexified bundle T ∗MC:

T ∗pMC = (T ∗pM)1,0 ⊕ (T ∗pM)0,1,
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where (T ∗pM)1,0 := {α − iJ∗α | α ∈ T ∗pM} and (T ∗pM)0,1 := {α + iJ∗α | α ∈ T ∗pM}
are the J∗-eigenspaces corresponding to the eigenvalues i and −i, respectively. More in
general, the extension of the endomorphism J to other complexified bundles of tensors
induced splittings on them. In complex geometry, one of the most important ones is the
splitting of the space of complexified k-forms ∧kMC given by:

(1.3) ∧kMC =
⊕
p+q=k

∧p,qM,

where ∧p,qM := C∞(M ;∧p(T ∗M)1,0 ⊗ ∧q(T ∗M)0,1). The elements of ∧p,qM are called
(p, q)-forms or complex forms of pure type (p, q). If p + q = k, we define the natural
projections πp,q : ∧kMC → ∧p,qM .

1.2 Cohomologies of complex manifolds

1.2.1 De Rham and Dolbeault cohomology groups

Let M be a differentiable manifold with dimRM = m. The de Rham complex of M is
the differential graded algebra (∧•M,d), where ∧•M := ⊕mk=0 ∧kM is the algebra, with
respect to the wedge product, of differential forms on M called the exterior algebra of
M and d : ∧• M → ∧•+1M is the exterior derivative. Recall that a k-form α is closed
if dα = 0, and it is exact if α = dβ for some (k − 1)-form β. As d2 = 0, every exact
form is closed. Hence, a cohomology associated to this complex can be defined. The
cohomology groups are called the de Rham cohomology groups of the manifold:

H•dR(M) :=
ker
(
d : ∧•M → ∧•+1M

)
im (d : ∧•−1 M → ∧•M)

.

The dimensions of these groups are denoted by b•(M) := dimH•dR(M) when they
are finite dimensional. The most important fact concerning the dimensions of these
cohomology groups is stated by the well-known de Rham Theorem:

Theorem 1.2.1 (de Rham Theorem). Let M be a smooth manifold. The de Rham
cohomology of M is isomorphic to the singular cohomology.

Therefore, the dimensions b•(M) are topological invariants of the manifold coinciding
with the Betti numbers of the underlying topological space.

The Hodge theory of smooth, oriented and compact Riemannian manifolds yields to
several important results concerning the Betti numbers of compact manifolds. Let (M, g)
be an orientable compact Riemannian manifold, and consider a global volume form
0 6= ν ∈ ∧mM . The Riemannian metric defines a smooth inner product on the exterior
algebra ∧M declaring that any two distinct spaces ∧kM and ∧k′M are orthogonal for
distinct k, k′ and

〈α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βk〉p := det(g∗p(α
i
p, β

j
p)).
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Hence, the orientation and the metric on M give rise to the Hodge star operator ∗ : ∧•
M → ∧m−•M defined point-wise by (α ∧ ∗β)p := 〈α, β〉pνp where α, β ∈ ∧•M and
p ∈M .

The theory of integration of forms on manifolds allows to define a global inner product
in the space of k-forms of the manifold defined by 〈〈α, β〉〉 :=

∫
M α ∧ ∗β. Hence, it is

possible to define the operator d∗ : ∧• M → ∧•−1M by the adjoint of the exterior
derivative d with respect to the inner product 〈〈·, ·〉〉. The Laplace-Beltrami operator
∆: ∧• M → ∧•M is defined by ∆ := dd∗ + d∗d. A k-form α is called harmonic if
∆α = 0. The space of harmonic forms is denoted by H•(M) := ker (∆: ∧•M → ∧•M).
Now, we state the following important results:

Theorem 1.2.2 (Hodge Orthogonal Decomposition Theorem). Let (M, g) be a compact
oriented Riemannian manifold, then dimH•(M) <∞ and there is an 〈〈·, ·〉〉-orthogonal
decomposition:

(1.4) ∧•M = H•(M)
⊥
⊕ d

(
∧•−1M

) ⊥
⊕ d∗

(
∧•+1M

)
.

Furthermore, there is an isomorphism only depending on the metric g such that H•dR(M) ∼=
H•(M). In particular, dimH•dR(M) <∞.

As every smooth compact manifold admits a Riemannian metric (using partitions
of unity) there is a proof based on Hodge theory for the following well-known Poincaré
Duality Theorem:

Theorem 1.2.3 (Poincaré Duality). Let M be a compact smooth manifold with dimM =
m. The pairing

Hm−•
dR (M)×H•dR(M)→ R, ([α], [β])→

∫
M
α ∧ β

is non-degenerate, i.e. it induces an isomorphism (the Poincaré duality isomorphism)
such that Hm−•

dR (M) ∼= H•dR(M). In particular, bm−•(M) = b•(M).

Now, let (M,J) be a complex manifold of complex dimension n and consider the
complexified de Rham complex (∧MC, d). Attending to the splitting of the forms given
by (1.3), it is easy to check that d(∧1,0M) ⊆ ∧2,0M ⊕ ∧1,1M . Therefore, the exterior
derivative d decomposes as the sum of two differential operators d = ∂ + ∂̄, where:

(1.5) ∂ := π•+1,• ◦ d : ∧•,•M → ∧•+1,•M, ∂̄ := π•,•+1 ◦ d : ∧•,•M → ∧•,•+1M.

As a direct consequence of the property d2 = 0, these differential operators satisfy
∂2 = ∂̄2 = 0 and ∂∂̄ + ∂̄∂ = 0. Hence, we can define a bi-differential bi-graded algebra
(∧•,•M,∂, ∂̄) associated to the complex manifold (M,J) and, in the same manner as for
the de Rham complex, we can speak about ∂ or ∂̄-closed (p, q)-forms and ∂ or ∂̄-exact
(p, q)-forms.
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Remark 1.2.4. If (M,J) is an almost-complex manifold, then the exterior derivative
operator splits into four differential operators d = A+ ∂ + ∂̄ + Ā, where

A := π•+2,•−1 ◦ d : ∧•,•M → ∧•+2,•−1M, Ā := π•−1,•+2 ◦ d : ∧•,•M → ∧•−1,•+2M

and ∂ and ∂̄ are defined by (1.5). It is proved that the integrability of J is equivalent to
the vanishing of the operators A, Ā.

Now, for every p ∈ {0, . . . , n} consider the differential graded algebra (∧p,•M, ∂̄).
If q ∈ {0, . . . , n} the (p, q)-Dolbeault cohomology group of M , denoted by Hp,q

∂̄
(M), is

defined as the cohomology group associated to the complex (∧p,•M, ∂̄), namely:

Hp,q

∂̄
(M) :=

ker
(
∂̄ : ∧p,q M → ∧p,q+1M

)
im
(
∂̄ : ∧p,q−1 M → ∧p,qM

) .
When they are finite dimensional, we denote their dimensions by h•,•

∂̄
(M) := dimH•,•

∂̄
(M).

They are invariants of the complex structure, and they are called the Hodge numbers of
the complex manifold (M,J).

When (M,J) is a compact complex manifold, the Hodge theory of compact Hermitian
manifolds provides analytic versions for the operators ∂ and ∂̄ of the Hodge Orthogonal
Decomposition Theorem and of the Poincaré Duality Theorem. It suffices to replace the
de Rham cohomology by the Dolbeault cohomology and the ∆-harmonic forms by � or
�-harmonic forms, where � := ∂∂∗+ ∂∗∂ and � := ∂̄∂̄∗+ ∂̄∗∂̄ are the Laplace-Beltrami
operators for ∂ and ∂̄, respectively. In the spirit of Theorems 1.2.2 and 1.2.3, we sum
up the results concerning the Hodge numbers of the complex manifold in the following
theorems:

Theorem 1.2.5 (Hodge Orthogonal Decomposition Theorem). Let (M, g) be a compact
Hermitian manifold, then dimH•,•(M) <∞ and there is an 〈〈·, ·〉〉-orthogonal decompo-
sition:

(1.6) ∧•,•M = H•,•(M)
⊥
⊕ ∂̄

(
∧•,•−1M

) ⊥
⊕ ∂̄∗

(
∧•,•+1M

)
,

where H•,•(M) := ker
(
� : ∧•,•M → ∧•,•M

)
. Furthermore, there is an isomorphism

only depending on the metric g such that H•,•
∂̄

(M) ∼= H•,•(M).

Theorem 1.2.6 (Kodaira-Serre duality). Let M be a compact complex manifold of com-
plex dimension n, then Hn−p,n−q

∂̄
(M) ∼= Hp,q

∂̄
(M) for every bi-degree (p, q). In particular,

hn−p,n−q
∂̄

(M) = hp,q
∂̄

(M).

1.2.2 Bott-Chern and Aeppli cohomologies and the ∂∂̄-lemma

If (M,J) is a complex manifold, then other interesting cohomologies can be defined.
More precisely, the Bott-Chern cohomology group [14] is defined by

H•,•BC(M) :=
ker
(
∂ + ∂̄ : ∧•,•M → ∧•+1,•M ⊕ ∧•,•+1M

)
im
(
∂∂̄ : ∧•−1,•−1 M → ∧•,•M

) .
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On the other hand, the Aeppli cohomology group [1] is defined by

H•,•A (M) :=
ker
(
∂∂̄ : ∧•,•M → ∧•+1,•+1M

)
im (∂ : ∧•−1,•M → ∧•,•M) + im

(
∂̄ : ∧•,•−1 M → ∧•,•M

) .
Unlike the case of the Dolbeault cohomology groups, the conjugation map induces

the isomorphisms Hq,p
BC(M) ∼= Hp,q

BC(M), Hq,p
A (M) ∼= Hp,q

A (M). Similarly to the de Rham
and the Dolbeault cohomologies, a Hodge theory can be defined for the Bott-Chern and
the Aeppli cohomologies. Fixed a Hermitian metric g compatible with J , the following
differential operators can be considered:

∆̃BC :=
(
∂∂̄
) (
∂∂̄
)∗

+
(
∂∂̄
)∗ (

∂∂̄
)

+
(
∂̄∗∂

) (
∂̄∗∂

)∗
+
(
∂̄∗∂

)∗ (
∂̄∗∂

)
+ ∂̄∗∂̄ + ∂∗∂,

∆̃A := ∂∂∗ + ∂∂
∗

+
(
∂∂̄
)∗ (

∂∂̄
)

+
(
∂∂̄
) (
∂∂̄
)∗

+
(
∂̄∂∗

)∗ (
∂̄∂∗

)
+
(
∂̄∂∗

) (
∂̄∂∗

)∗
.

Schweitzer [85, Sect. 2.c] proves that the operators ∆̃BC and ∆̃A are elliptic. As a
consequence of the general theory of partial elliptic operators, it turns out [85, Corollaire
2.3] that the dimensions of the cohomology groups H•,•BC(M) and H•,•A (M) are finite for a
compact complex manifold M . In this case we denote these dimensions by h•,•BC(M) and
h•,•A (M), respectively. In addition, the Hodge star operator associated to a Hermitian

metric induces an isomorphism Hn−q,n−p
A (M) ∼= Hp,q

BC(M) for any p, q ∈ N.

The properties ker ∂∂̄ ⊆ ker d, im∂∂̄ ⊆ imd and ker ∂∂̄ ⊆ ker ∂̄, im∂∂̄ ⊆ im∂̄ yield to
the following natural maps of bi-graded C-vector spaces:

H•,•BC(M)

xx �� &&
H•,•
∂̄

(M)

&&

H•dR(M ;C)

��

H•,•∂ (M)

xx
H•,•A (M)

where H•,•∂ (M) denotes the conjugate of the Dolbeault cohomology group H•,•
∂̄

(M).
However, these maps are in general neither injective nor surjective. Deligne, Griffiths,
Morgan and Sullivan [26, Remark 5.16] state that if one of these maps is an isomorphism
then the rest are isomorphisms too (for an explicit proof see Angella [6, Theorem 2.1]).
In particular, when the identity map H•,•BC(M) → H•dR(M) is injective the compact
complex manifold is said to satisfy the ∂∂̄-lemma.

Definition 1.2.7 ([26, Lemma 5.15]). A complex manifold M satisfies the ∂∂̄-lemma if
every ∂-closed, ∂̄-closed, d-exact form is also ∂∂̄-exact.

It is an interesting question to know whether a given complex manifold satisfies the
∂∂̄-lemma. Angella and Tomassini [10] provide, whenever M is compact, a Frölicher-
type inequality characterizing the validity of the ∂∂̄-lemma in terms of the dimensions
of the Bott-Chern and Aeppli cohomology groups.
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Theorem 1.2.8 (Angella and Tomassini [10, Theorem pp. 2]). Let M be a compact
complex manifold. Then, for every k ∈ N, the following inequality holds:

(1.7)
∑
p+q=k

(hp,qBC(M) + hp,qA (M))− 2 dimCH
k
dR(M ;C) ≥ 0.

Moreover, the equality (1.7) holds for every k ∈ N if and only if M satisfies the ∂∂̄-
lemma.

Remark 1.2.9. When M satisfies the ∂∂̄-lemma it turns out that H•,•BC(M) ∼= H•,•
∂̄

(M).

Therefore the ∂∂̄-lemma implies the symmetry of the Hodge numbers hq,p
∂̄

(M) = hp,q
∂̄

(M)
for every bidegree (p, q).

1.2.3 The Frölicher spectral sequence

As every complex valued d-closed form of pure type (p, q) is also ∂̄-closed, it is clear that
every class of de Rham cohomology represented by a (p, q)-form defines a class of Dol-
beault cohomology Hp,q

∂̄
(M). However, the converse is not true in general. Considering

the bi-differential bi-graded complex (∧•,•M,∂, ∂̄), it is possible to define a filtration on
the complexified de Rham complex

(1.8) F p ∧kMC := {α =
∑
r≥p

αr,q | αr,q ∈ ∧r,qMC, such that r + q = k},

such that F 0∧kMC = ∧kMC and Fn+r∧kMC = {0} if r ≥ 1. This filtration induces the
Frölicher spectral sequence {(E•,•r (M), dr)}r≥1 of the complex manifold (M,J). More
precisely, for each r ≥ 1 there is a sequence of homomorphisms dr

(1.9) · · · dr−→ Ep−r,q+r−1
r (M)

dr−→ Ep,qr (M)
dr−→ Ep+r,q−r+1

r (M)
dr−→ · · ·

such that dr◦dr = 0 and Ep,qr+1(M) = ker dr/im dr. Hence, dimEp,qr+1(M) ≤ dimEp,qr (M),
and Ep,qr+1(M) ∼= Ep,qr (M) if and only if dr = 0. The homomorphisms dr are induced from
the ∂ and the ∂̄ operators. For r = 1, the Frölicher spectral sequence coincides with the
Dolbeault cohomology, namely Ep,q1 (M) ∼= Hp,q

∂̄
(M). Moreover, the explicit description

of each homomorphism d1 is

Hp,q

∂̄
(M)

d1−→ Hp+1,q

∂̄
(M)

[α] −→ [∂α].

Hence, for r = 2 we have the following explicit expression given by Frölicher [38]:

Ep,q2 (M) =
{αp,q ∈ ∧p,q(M) | ∂̄αp,q = 0, ∂αp,q = −∂̄αp+1,q−1}

{∂̄βp,q−1 + ∂γp−1,q | ∂̄γp−1,q = 0} .
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Now, the homomorphisms d2 are given by

Ep,q2 (M)
d2−→ Ep+2,q−1

2 (M)

[αp,q] −→ [∂αp+1,q−1]

Cordero, Fernández, Gray and Ugarte [22] provide a general description of the terms in
the spectral sequence {Ep,qr (M)} and of the operators {dr} as follows:

Theorem 1.2.10 ([22, Theorem 1]). Let M be a complex manifold. Then Ep,qr (M) ∼=
X p,qr
Yp,qr , where

X p,q1 (M) := {α ∈ ∧p,qM | ∂̄α = 0}, Yp,q1 (M) := ∂̄
(
∧p,q−1M,

)
and

X p,qr (M) := {αp,q ∈ ∧p,qM | ∂̄αp,q = 0 and there exists αp+i,q−i ∈ ∧p+i,q−iM such that

∂αp+i−1,q−i+1 + ∂̄αp+i,q−i = 0, for 1 ≤ i ≤ r − 1},

Yp,qr (M) := {∂βp−1,q + ∂̄βp,q−1 ∈ ∧p,qM | there exists βp−i,q+i−1 ∈ ∧p−i,q+i−1M,

2 ≤ i ≤ r − 1, satisfying ∂βp−i,q+i−1 + ∂̄βp−i+1,q+i−2 = 0, ∂̄βp−r+1,q+r−2 = 0}.

Theorem 1.2.11 ([22, Theorem 3]). For r ≥ 2 the map dr : Ep,qr (M)→ Ep+r,q−r+1
r (M)

is given by
dr ([αp,q]) = [∂αp+r−1,q−r+1],

for [αp,q] ∈ Ep,qr (M). Furthermore,

Ep,qr+1(M) =
X p,qr+1(M)

Yp,qr+1(M)
=

ker
(
dr : Ep,qr (M)→ Ep+r,q−r+1

r (M)
)

dr

(
Ep−r,q+r−1
r (M)

) .

Now, the E∞-terms in the Frölicher spectral sequence are defined as follows. Let

Zp,q∞ (M) := F p ∧p+qMC ∩ ker d, Bp,q
∞ (M) := F p ∧p+qMC ∩ imd and Hp,q

∞ (M) := Zp,q∞ (M)
Bp,q∞ (M)

.

Making use of the basic isomorphism for modules A
A∩B

∼= A+B
B we have that the E∞-

terms are defined by:

(1.10) Ep,q∞ (M) :=
Zp,q∞ (M)

Zp+1,q−1
∞ (M) +Bp,q

∞ (M)
∼= Hp,q

∞ (M)

Hp+1,q−1
∞ (M)

.

The complexified k-th de Rham cohomology group also admits a filtration induced
by the filtration (1.8) of the de Rham complex:

Hk(M ;C) = H0,k
∞ (M) ⊃ H1,k−1

∞ (M) ⊃ · · · ⊃ Hn+1,k−n−1
∞ (M) = 0,
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where n is the complex dimension of M . Therefore, using (1.10) we get

(1.11) Hk(M ;C) =
n⊕
p=0

Hp,k−p
∞ (M)

Hp+1,k−p−1
∞ (M)

=
n⊕

p=0,p+q=k

Hp,q
∞ (M)

Hp+1,q−1
∞ (M)

∼=
⊕
p+q=k

Ep,q∞ (M).

Therefore, the Frölicher sequence of a complex manifold M is a spectral sequence
{(E•,•r (M), dr)}r≥1 whose first term E1(M) is precisely the Dolbeault cohomology of M
and such that after a finite number of steps, the sequence converges to the de Rham co-
homology of M . Hence, the Frölicher spectral sequence measures the difference between
the Dolbeault cohomology groups and the de Rham cohomology groups.

Remark 1.2.12. For the remainder of this work we introduce the notation E
|•|
r (M) :=⊕

p+q=•
Ep,qr (M), Er(M) :=

⊕n
k=0E

|k|
r (M), E

|•|
∞ (M) :=

⊕
p+q=•

Ep,q∞ (M) and E∞(M) :=⊕n
k=0E

|k|
∞ (M).

By (1.11), we have E
|•|
∞ (M) ∼= H•dR(M,C) and, whenever M is compact, it is clear

that dimE
|•|
r (M) ≥ b•(M) = dimH•dR(M). The equality holds if and only if Er(M) ∼=

E∞(M), that is, if and only if all the homomorphisms dr+k for k ≥ 0 are identically
zero.

We conclude this section stating the fundamental inequality due to Frölicher:

Theorem 1.2.13 (Frölicher [38, Theorem 2]). Let (M,J) be a compact complex mani-
fold. Then, for every k ∈ N,

(1.12) dimCH
k
dR(M ;C) ≤

∑
p+q=k

hp,q
∂̄

(M).

Remark 1.2.14. When the ∂∂̄-lemma holds on M then every class of the Dolbeault
cohomology group Hp,q

∂̄
(M) can be represented by a d-closed (p, q)-form. Therefore, for

any bidegree (p, q), one has the inclusion Hp,q

∂̄
(M) ↪→ Hp+q

dR (M). By using the Frölicher

inequality (1.12) it turns out that every compact complex manifold satisfying the ∂∂̄-
lemma verifies that the Frölicher sequence degenerates at the first step.

1.3 Special Hermitian geometry

In this section we give the basic definitions about special Hermitian metrics. Hermitian
metrics on a complex manifold are a type of Riemannian metrics which are in some sense
compatible with the complex structure. Although there are several approaches to these
structures, we place them in the bigger class of almost-Hermitian structures:

Definition 1.3.1. Let (M,J) be an almost-complex manifold. An almost-Hermitian
metric on (M,J) is a Riemannian metric g satisfying the compatibility condition

g(JX, JY ) = g(X,Y ),
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for all X,Y ∈ X(M). The triple (M,J, g) is called an almost-Hermitian manifold and
the pair (J, g) is said to be an almost-Hermitian structure on M .

It is very useful to refer to almost-Hermitian structures (J, g) on a manifold by
means of a 2-form F ∈ ∧2M called the fundamental form, or Kähler form, defined by
F (·, ·) := g(J ·, ·). It is worth noticing that the fundamental form is non-degenerate, i.e.
0 6= Fn ∈ ∧2nM , and if we consider it as a complex valued 2-form then F has bidegree
of pure type (1, 1). We can also refer to an almost-Hermitian structure on M with the
pair (J, F ).

When (M,J) is a complex manifold, it is said that g is a Hermitian metric g if it
is an almost-Hermitian metric compatible with J . Notice that, even when J is almost-
complex, given a Riemannian metric g on M (which exists whenever partitions of the
unit exist on the manifold) one can define another Riemannian metric:

h(X,Y ) := g(X,Y ) + g(JX, JY ), X, Y ∈ X(M),

which is almost-Hermitian. Thus, when J is integrable we have the following proposition:

Proposition 1.3.2. Every compact complex manifold admits a Hermitian metric com-
patible with its complex structure.

Now we present several types of Hermitian metrics distinguished by conditions on
the fundamental form F involving the exterior derivative d or the differential operators
associated to the complex structure ∂ and ∂̄.

The first kind and most important of these Hermitian metrics are the so-called Kähler
metrics [50, 83] which lay in the intersection of three main branches of differential ge-
ometry: Riemannian, complex and symplectic geometry.

Definition 1.3.3. A Hermitian metric on (M,J) is Kähler if the fundamental form
F ∈ ∧1,1M is closed. When the complex manifold has a holomorphically trivial canonical
bundle, then the Kähler metrics are called Calabi-Yau metrics.

From now on, a complex manifold is said to be Kähler when it admits a compatible
Kähler metric. We will adopt the same terminology with any other Hermitian metric.

One of the most important results concerning Kähler geometry is the well-known
Hodge Decomposition theorem, which splits the de Rham cohomology into the Dolbeault
cohomology groups. It also provides an obstruction to the existence of Kähler structures
on a compact complex manifold.

Theorem 1.3.4 (Hodge Decomposition Theorem). Let M be a compact complex man-
ifold endowed with a Kähler metric. Then the following decomposition holds:

H•dR(M ;C) =
⊕
p+q=•

Hp,q

∂̄
(M ;C),

where Hq,p

∂̄
(M ;C) = Hp,q

∂̄
(M ;C) for any p, q ∈ N. Hence, hq,p

∂̄
(M) = hp,q

∂̄
(M) for every

bi-degree (p, q).
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Deligne, Griffiths, Morgan and Sullivan [26] prove in the following theorem that the
validity of the ∂∂̄-lemma provides another obstruction to the existence of Kähler metrics
on a compact complex manifold.

Theorem 1.3.5 ([26, Lemma 5.11]). Kähler manifolds satisfy the ∂∂̄-lemma property.

Remark 1.3.6. It follows from the Hodge Decomposition Theorem that if M is Kähler,
then the Frölicher spectral sequence degenerates at the first step, namely, E1(M) ∼=
E∞(M), and the Hodge numbers satisfy hq,p

∂̄
(M) = hp,q

∂̄
(M) for any p, q ∈ N. Recently,

Angella and Tomassini [10] posed the question of constructing a compact complex man-
ifold (M,J) with both E∞(M) ∼= E1(M) and hq,p

∂̄
(M) = hp,q

∂̄
(M) for any p, q ∈ N, but

such that the ∂∂̄-lemma does not hold. We provide an example with these properties in
Chapter 4.

In addition, it turns out that the odd Betti numbers of a compact Kähler manifold
are even, and in particular, the Hodge number h0,1

∂̄
(M) is a topological invariant of

the manifold. Moreover, the even Betti numbers of a Kähler manifold do not vanish
(if F is the fundamental form, then 0 6= [F k] ∈ H2k

dR(M) for k = 0, . . . , n). Another
topological obstruction to the existence of a Kähler metric, and more in general, of
admitting complex structures satisfying the ∂∂̄-lemma, is that the differential graded
algebra (∧•M,d) is formal [26, Corollary 1].

We see that the existence of Kähler metrics imposes strong conditions to both the
complex structures and the topology of the manifold. It is hence natural to weaken
the Kähler condition and study other Hermitian metrics close to the Kähler ones. One
of these metrics are called semi-Kähler Hermitian or balanced Hermitian. We refer
to them by balanced metrics. Balanced metrics were introduced by Michelsohn [62],
although they were characterized in terms of currents. She proved that the existence of
a balanced metric in a compact complex manifold M , with dimCM = n, is equivalent
to the non-existence of a non-zero positive current of bi-dimension (n− 1, n− 1), which
is the (n− 1, n− 1)-component of a boundary (this result was later obtained by Harvey
and Lawson [43] also in the Kähler case). Here, we use an equivalent definition in terms
of the fundamental form F .

Definition 1.3.7. A Hermitian structure is called balanced if the (n − 1, n − 1)-form
Fn−1 is d-closed.

Balanced metrics are also of interest in Physics because they yield to a geometric
interpretation of the solutions of the Strominger system [89].

Given a complex manifold (M,J), recall that the integrability of J produces a de-
composition of the exterior differential d of M as d = ∂ + ∂̄. Several types of Hermitian
metrics arise depending on the behaviour of the fundamental form F with the complex
differential operators ∂ and ∂̄ or some compositions of them. A weaker condition to the
balanced condition are the strongly Gauduchon metrics introduced by Popovici [75].

Definition 1.3.8. A Hermitian structure (J, g) is called strongly Gauduchon (sG for
short) if ∂Fn−1 = ∂̄u for some u ∈ ∧n,n−2M .
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It follows from the previous definitions that if M is a complex surface, that is n = 2,
then the Kähler and the balanced conditions coincide. However, even for n = 2, strongly
Gauduchon metrics do not need to be Kähler, but any compact complex surface carrying
an sG metric also carries a Kähler metric [72, Section 3]. Therefore, a complex surface
is Kähler if and only if it is balanced and this also holds if and only if it is strongly
Gauduchon. For n ≥ 3 the situation changes and there are “pure” strongly Gauduchon
manifolds (with no compatible balanced metrics) and “pure” balanced manifolds (with
no compatible Kähler metrics).

Strongly Gauduchon metrics lie between the balanced metrics and the so-called stan-
dard metrics introduced by Gauduchon in [40]. A standard metric is a Hermitian metric
(J, F ) such that the Lee form θ := Jd∗F is closed, where d∗ is the co-differential induced
by the Hodge star operator. In this work, we refer to standard metrics by Gauduchon
metrics and we study them by means of the following equivalent definition:

Definition 1.3.9. A Hermitian structure (J, g) is called Gauduchon if ∂∂̄Fn−1 = 0.

As we mentioned before, every compact complex manifold admits a compatible Her-
mitian metric. The most important fact about Gauduchon metrics is the following
theorem due to Gauduchon. It asserts that it is possible to associate to every Hermitian
metric defined on a compact complex manifold a Gauduchon metric compatible with the
underlying complex structure.

Theorem 1.3.10 (Gauduchon [40]). Let (M,J, F ) be a compact Hermitian manifold,
then there is a J-Hermitian Gauduchon metric F̃ in the conformal class of F , namely,
there exists f ∈ C∞(M) such that F̃ = efF .

Another kind of Hermitian metrics we are interested in are those whose fundamental
form F has a specific behaviour with respect to the operator ∂∂̄. In particular, we center
our attention in strong Kähler with torsion metrics and generalized k-th Gauduchon
metrics.

Definition 1.3.11. A Hermitian structure (J, g) is called strong Kähler with torsion
( SKT for short) if ∂F is a ∂̄-closed form.

SKT metrics are also called pluriclosed metrics [41] and characterized by the d-
closedness of the torsion 3-form c = JdF of the Bismut connection ∇B. Recall that any
Hermitian manifold (M,J, F ) admits a unique Hermitian connection ∇B, called Bismut
connection, defined by:

g(∇BXY,Z) := g(∇LC
X Y,Z)− 1

2
JdF (X,Y, Z).

where ∇LC is the Levi-Civita connection of g. SKT metrics have been studied in type
II string theory and in 2-dimensional supersymmetric σ-models (see [41, 89]), and they
also have relations with generalized Kähler geometry.
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Remark 1.3.12. It follows from the definition that any Kähler metric is SKT, but the
converse is not true in general. For example, the Kodaira-Thurston manifold or Kodaira
primary surface M = G/Γ, given by:

(1.13) G =




1 z1 z2

0 1 −z̄1

0 0 1

 | z1, z2 ∈ C

 , Γ =




1 z1 z2

0 1 −z̄1

0 0 1

 | z1, z2 ∈ Z[i]

 ,

admits SKT metrics but it cannot admit any Kähler metric, since the first Betti number
of the underlying differentiable manifold is odd.

Alexandrov and Ivanov [5] show that the SKT condition and the balanced condition
are complementary on compact complex manifolds:

Proposition 1.3.13 (Alexandrov and Ivanov [5]). Let (M,J) be a compact complex
manifold. If g is a J-Hermitian metric which is SKT and balanced, then g is Kähler.

In addition, Streets and Tian introduced a Hermitian Ricci flow under which the
SKT condition is preserved [88]. It is clear from the definition that for complex surfaces
every SKT metric is Gauduchon and thus, by Theorem 1.3.10, it is possible to find an
SKT metric in the conformal class of any Hermitian metric. This fact is not true in
higher dimensions.

A weaker condition than the SKT condition is the notion of 1-st generalized Gaudu-
chon metric. More generally, Fu, Wang, and Wu [39] introduced the notion of k-th
generalized Gauduchon metrics on M , which are a generalization of Gauduchon metrics
for complex manifolds.

Definition 1.3.14. A Hermitian metric (J, g) is called generalized k-th Gauduchon
metric if ∂∂̄F k ∧ Fn−k−1 = 0 for k an integer such that 1 ≤ k ≤ n− 1.

It follows from the definition that Gauduchon metrics are (n−1)-generalized Gaudu-
chon metrics. In addition, k-th and k′-th-generalized Gauduchon metrics are unrelated
for distinct k and k′. As in this work we are concerned with complex geometry on six
dimensions, it turns out that between the SKT geometry and the Gauduchon condi-
tion only lie the 1-st Gauduchon metrics, that is, Hermitian metrics represented by a
fundamental form F satisfying that:

∂∂̄F ∧ Fn−2 = 0.

Extending the result obtained by Gauduchon [40] for standard metrics (see Theorem
1.3.10), Fu, Wang and Wu obtain the following result:

Theorem 1.3.15 (Fu, Wang and Wu [39]). For any compact Hermitian manifold (M,J, F )
and for any integer 1 ≤ k ≤ n − 1, there is a unique constant γk(F ) and a (unique up
to a constant) function v ∈ C∞(M) such that i

2∂∂̄(evF k) ∧ Fn−k−1 = γk(F )evFn.



16 Complex manifolds

For k = n− 1 one gets the classical Gauduchon metric. In addition, if M is Kähler
then γk(F ) = 0 and v is a constant function for any 1 ≤ k ≤ n − 1. Furthermore, the
constant γk(F ) is invariant under biholomorphisms depending smoothly on F , and by
[39, Proposition 11], its sign is an invariant of the conformal class of F . Therefore, to
compute its sign we can use the following:

Proposition 1.3.16 ([39]). Given a Hermitian manifold (M,J, F ), the number γk(F )
is > 0 (= 0 or < 0) if and only if there exists a J-Hermitian metric F̃ in the conformal
class of F such that

i

2
∂∂̄F̃ k ∧ F̃n−k−1 > 0 (= 0, or < 0).

Recently, Fino and Ugarte [35] extend Proposition 1.3.13 proving that the 1-st gener-
alized Gauduchon and the balanced conditions are complementary for compact complex
manifolds of complex dimension greater or equal than 3.

Proposition 1.3.17 (Fino and Ugarte [35, Proposition 2.4]). Let (M,J) be a compact
complex manifold of complex dimension n ≥ 3. If g is a J-Hermitian metric which is
1-st Gauduchon and balanced, then g is Kähler.

We show in Figure 1.1 the relations between the different special Hermitian metrics
presented in this section.

Figure 1.1: Special Hermitian metrics.

Kähler

dF = 0

Balanced

dF n−1 = 0

Strongly Gauduchon

∂F n−1 = ∂̄u

Gauduchon

∂̄∂F n−1 = 0

SKT

∂∂̄F = 0

1-st Gauduchon

∂∂̄F ∧ F n−2 = 0

k-th Gauduchon

∂∂̄F k∧F n−k−1 = 0

1.4 Holomorphic deformations

In this section we present the basics about deformation theory of complex manifolds.
In the present work we are mainly concerned with the deformation theory of compact
complex manifolds developed by K. Kodaira, D. C. Spencer, L. Nirenberg [53], [54] and
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M. Kuranishi [55]. This theory provides a tool to obtain new examples of compact
complex manifolds. Furthermore, given a compact complex manifold M , the study of
all small deformations provides a tool to understand the local geometry of the moduli
space of complex structures on M . For the first part of the section, we follow the texts
of Angella [6] and Huybrechts [49] and for the second part the survey by Popovici [72],
concerning open and closed properties.

1.4.1 The theory of small deformations

Let M be a compact smooth manifold endowed with a complex structure J . Basically,
a deformation of J can be understood as a family of complex structures {Jt}t∈B on M
parametrized by a connected complex analytic space B with a base point t0 ∈ B such
that J = Jt0 . We adopt the following terminology:

Definition 1.4.1. Let B be a connected complex analytic space. A family {Mt}t∈B of
compact complex manifolds is said to be an holomorphic family of compact complex man-
ifolds if there exists a complex manifoldM and a surjective holomorphic map π : M→ B
such that π−1(t) = Mt for every t ∈ B and π is a proper holomorphic submersion.

It is even possible to speak about differentiable families of compact complex manifolds
{Mt}t∈B. Thus, it is natural to ask whether two manifolds Mt and Mt′ with t 6= t′ ∈ B
are diffeomorphic or not. The following theorem due to Ehresmann [28] provides a
positive answer to this question only requiring the differentiability of the family.

Theorem 1.4.2 (Ehresmann [28]). Let {Mt}t∈B be a differentiable family of compact
complex manifolds. For any s, t ∈ B the manifolds Ms and Mt are diffeomorphic.

As a consequence, if {Mt}t∈B is a holomorphic family of compact complex manifolds,
then Mt is diffeomorphic to Mt′ . Therefore, only the complex structure Jt varies with
t ∈ B, so the fibres Mt can be identified for any t ∈ B with a fixed smooth manifold
M (the one underlying Mt0) endowed with a holomorphic family of complex structures
{Jt}t∈B.

Consider now another base space B′ with a distinguished point s0 ∈ B′. If f : B′ → B
is a holomorphic map with f(s0) = t0, then the pull-back M′ = f∗M := M×B B′
gives a complex analytic family of deformations on M . A deformation π : M→ B of the
compact complex manifold M is called complete if any other deformation π′ : M′ → B′
of M is obtained by a pull-back under some f : B′ → B. If f is unique, then π : M→ B is
called universal. If only the differential df : Ts0B′ → Tt0B is unique, then the deformation
is called semi universal or versal. Taking these definitions into account, Kuranishi proves
one of the most important results of this theory:

Theorem 1.4.3 (Kuranishi [55, Theorem 2]). Let M be a compact complex manifold.
Then M admits a versal holomorphic family of deformations.

The previous theorem guarantees the existence of a locally complete space of deforma-
tions which is called the Kuranishi space of M , and denoted by Kur(M). It parametrizes
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all sufficiently small deformations, but not uniquely. The Kuranishi space is written in
terms of an open set of the cohomology group H1(M ; ΘM ), where ΘM is the sheaf of
holomorphic vector fields on M .

Remark 1.4.4. From now on, in order to simplify the presentation, we will consider
that the base space is a polydisc ∆ := {t ∈ CN | ||t|| < ε} ⊂ CN , for some N ∈ N with
ε > 0 sufficiently small, and the base point is t0 = 0 ∈ CN .

We sketch the basic tools to compute the Kuranishi space of a compact complex
manifold. Recall that J , considered only as an almost-complex structure, is uniquely

determined by the −i eigenspace T
(0,1)
J M ⊂ TMC. Therefore, a family {Jt}t∈∆ of com-

plex structures on M such that J0 = J can also be viewed as a family of −i eigenspaces

{T (0,1)
Jt

M ⊂ TMC}t∈∆. For a small t ∈ ∆ it turns out that the deformation is encoded
by a map

Ψ(t) : X0,1
J (M)→ X1,0

J (M),

satisfying Ψ(0) = 0 and X + Ψ(t)X ∈ X1,0
Jt

(M) for all X ∈ X0,1
J (M). Hence, the

deformation Jt is associated to a section Ψ(t) ∈ X1,0
J (M)⊗ ∧0,1

J M .

Conversely, given an almost-complex structure J and a section Ψ ∈ X1,0
J (M)⊗∧0,1

J M ,

we construct an almost-complex structure J̃ on M with −i eigenspace T
(0,1)

J̃
M :=

(IdTCM + Ψ)T
(0,1)
J M . The following proposition states the integrability of a deformation

Jt in terms of a partial differential equation involving the operator Ψ(t):

Proposition 1.4.5. Let {Jt}t∈∆ be a family of almost-complex structures on M . The
integrability of Jt is equivalent to the Maurer-Cartan equation:

(1.14) ∂̄Ψ(t) + [Ψ(t),Ψ(t)] = 0,

where, [·, ·] :
(
X1,0
J (M)⊗ ∧0,p

J M
)
×
(
X1,0
J (M)⊗ ∧0,q

J M
)
→ X1,0

J ⊗∧
0,p+q
J M is the Nijenhuis-

Schouten bracket defined by

(1.15) [X ⊗ α, Y ⊗ β] := X ⊗ (β ∧ LY α) + Y ⊗ (α ∧ LXβ) + [X,Y ]⊗ (α ∧ β),

where, LY α is the Lie derivative of α along Y and ∂̄ : X1,0
J (M) ⊗ ∧0,p

J M → X1,0
J (M) ⊗

∧0,p+1
J M is the differential operator defined inductively by:

(1.16) ∂̄(X ⊗ α) := ∂̄(X) ∧ α+ (−1)kX ⊗ ∂̄α,

whith ∂̄(X) := π1,0 ◦ adX |X0,1
J (M)

.

Let ΘM be the sheaf of holomorphic vector fields on M . As the operator ∂̄ defined by
(1.16) satisfies ∂̄2 = 0, the sheaf cohomology groups H•(M ; ΘM ) ofM are the cohomology
groups associated to the differential complex:

0→ X1,0
J (M)

∂̄→ X1,0
J (M)⊗ ∧0,1

J M
∂̄→ X1,0

J (M)⊗ ∧0,2
J M

∂̄→ . . .
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Now, let {Ψ(t)}t∈∆ ⊂ X1,0
J (M) ⊗ ∧0,1

J M be a family of sections with Ψ(0) = 0.
Consider the formal power series expansion in t of Ψ(t):

(1.17) Ψ(t) =
∑
k≥1

Ψk(t),

where {Ψk(t)}k≥1 ⊂ X1,0
J (M)⊗∧0,1

J M and Ψk(t) is homogeneous of degree k in t. Thus,
the Maurer-Cartan equation (1.14) yields to the inductive system of equations:

(1.18)



∂̄Ψ1(t) = 0,

∂̄Ψ2(t) = −[Ψ1(t),Ψ1(t)],

...

∂̄Ψk+1(t) = −
∑

1≤j≤k
[Ψj(t),Ψk+1−j(t)].

The first equation of (1.18) reveals that the first-order deformation Ψ1 defines a cohomo-
logy class of the group H0,1(M ; ΘM ) called the Kodaira-Spencer class of the deformation.
Recalling the Hodge decomposition of the bundles of (p, q)-forms for compact Hermitian
manifolds (1.6) we have the following splitting:

X1,0
J (M)⊗∧0,1

J M = (X1,0
J (M)⊗ ker�)⊕ (X1,0

J (M)⊗ ∂̄ ∧0,0
J M)⊕ (X1,0

J (M)⊗ ∂̄∗ ∧0,2
J M)

together with the projectionsH∂̄ : X1,0
J (M)⊗∧0,1

J M → X1,0
J (M)⊗ker� and P∂̄ : X1,0

J (M)⊗
∧0,1
J M → X1,0

J (M)⊗ ∂̄ ∧0,0
J M . In order that Ψ(t) satisfies (1.14) we must have:

∂̄Ψk+1(t) = −P∂̄

 ∑
1≤j≤k

[Ψj(t),Ψk+1−j(t)]

 .

Thus, one gets ∂̄Ψ(t) + [Ψ(t),Ψ(t)] = H∂̄([Ψ(t),Ψ(t)]).

Now, we have the tools to construct the Kuranishi space of M . We can define
the obstruction map as follows. Consider {Xj ⊗ ω̄k} a basis of H0,1(M ; ΘM ). Given
µ =

∑
j,k tjkXj ⊗ ω̄k. Define the formal power series Ψ(t) :=

∑
k≥1 Ψk(t) inductively:

(1.19)


Ψ1(t) := µ,

∂̄Ψk+1(t) = −P∂̄

 ∑
1≤j≤k

[Ψj(t),Ψk+1−j(t)]

 .

Define the obstruction map obs(µ) : H1(M ; ΘM )→ H2(M ; ΘM ) by:

obs(µ) := H∂̄([Ψ(t),Ψ(t)]).
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Therefore, given µ ∈ H1(M ; ΘM ), an element Ψ(t) contructed with (1.19) defines a
small deformation if it satisfies the Maurer-Cartan equation (1.14), that is, if obs(µ) = 0.
Hence, the versal family of Kuranishis’s Theorem 1.4.3 is constituted by the Kuranishi
space defined by:

Kur(M) :=
{
µ ∈ H1(M ; ΘM ) | ||µ|| � 1, obs(µ) = 0

}
,

which is an open set of the sheaf cohomology group H1(M ; ΘM ). It is worth noticing that
the Kuranishi space describes the local moduli of complex structures of a given complex
manifold and that it can be arbitrarily singular. One of the simplest cases is when M
is a compact Calabi-Yau manifold. In that case, Tian [93, Theorem 1] and Todorov
[94, Theorem 1] found independently that the local moduli space of deformations of the
complex structure of M is again a complex manifold of dimension hn−1,1

∂̄
(M), where

n = dimCM .

1.4.2 Open and closed properties

Concerning the study of deformations of complex structures it is a natural question
whether a property P related to the complex structure of the manifold is preserved
under any family of holomorphic deformations. This yields to the concept of stability,
or openness, of properties under holomorphic deformations of the complex structure.

Definition 1.4.6. A given property P of a compact complex manifold is open under
holomorphic deformations if for every holomorphic family of compact complex manifolds
{Mt}t∈∆ and for every t0 ∈ ∆ the following implication holds:

if Mt0 has property P, then Mt has property P for all t ∈ ∆ sufficiently close to t0.

On the other hand, the behaviour of a property related to the complex structure of
a complex manifold can be studied under other point of view. It may also be of interest
to consider families of holomorphic deformations satisfying certain properties and to ask
if the central limit necessarily satisfies the same property. This gives rise to the notion
of closedness of complex properties under holomorphic deformations:

Definition 1.4.7. A given property P of a compact complex manifold is closed under
holomorphic deformations if for every holomorphic family of compact complex manifolds
{Mt}t∈∆ and for every t0 ∈ ∆ the following implication holds:

if Mt has property P for all t ∈ ∆\{t0}, then Mt0 has property P.

It is worth noticing that openness and closedness are not opposite, and hence, one
property P can be at the same time open and closed. Furthermore, if a property P
is both open and closed, then given a holomorphic family {Mt}t∈∆, all the fibres Mt

satisfy P whenever one of them satisfies P.

Now, we shall summarize the openness and closedness of some of the most impor-
tant properties. The interest in deformation theory started with the following result
concerning the stability of the Kähler property:
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Theorem 1.4.8 (Kodaira and Spencer [53, Theorem 15]). The Kähler property of com-
pact complex manifolds is open under holomorphic deformations.

We mentioned before that Kähler metrics are called Calabi-Yau when the complex
structure has holomorphically trivial canonical bundle. Tian and Todorov independently
found the following result concerning the stability of the Calabi-Yau property:

Theorem 1.4.9 (Tian [93, Theorem 1], Todorov [94, Theorem 1]). The Calabi-Yau
property of compact complex manifolds is open under holomorphic deformations.

A complex surface is Kähler if and only if its first Betti number is even [52, 66, 87].
Therefore, the Kähler property is a topological property for complex surfaces. Recalling
that the fibres of any holomorphic deformation are diffeomorphic to the central limit,
it turns out that the Kähler property is closed for complex surfaces. Therefore, for
any holomorphic family of compact complex surfaces, if some fibre is Kähler, then all
the fibres are Kähler. However, Hironaka shows that the situation changes for higher
dimensions.

Theorem 1.4.10 (Hironaka [47]). The Kähler property of compact complex manifolds
of complex dimension ≥ 3 is not closed under holomorphic deformations.

A compact complex manifold is said to be projective if it admits a closed holo-
morphic embedding in some projective space CPN . Projective compact manifolds are
a special class of compact Kähler manifolds, and they are characterized by the well-
known Kodaira’s Embedding Theorem in terms of the integrality of the de Rham class
[F ] ∈ H2

dR(M) defined by the fundamental form F .

Recall that a proper bimeromorphic map F : M → M ′ between two complex mani-
folds M and M ′ is called a modification. It is said that a compact manifold is class C
of Fujiki (respectively, Moishezon) if there exists a modification to a compact Kähler
(respectively projective) manifold. It turns out that both class C of Fujiki and Moishezon
manifolds satisfy the ∂∂̄-lemma [26, Lemma 5.11,Corollary 5.23]. Hironaka [47] obtains
an example of a Moishezon manifold with a holomorphic family of deformations such
that its fibres are projective. More recently, Popovici proves the following theorem :

Theorem 1.4.11 (Popovici [72, Theorem 1.1]). Let {Mt}t∈∆ be a holomorphic family
of compact complex manifolds. If the fibre Mt is projective for every t ∈ ∆∗, then M0

is Moishezon.

The stability of the class C of Fujiki property is stated in the following theorem:

Theorem 1.4.12 (Campana [17], LeBrun and Poon [58]). The class C of Fujiki property
of compact complex manifolds is not open under holomorphic deformations.

However, although the closedness of this property is unknown, Popovici states the
following conjecture:

Conjecture 1.4.13 (Standard Conjecture [76, Conjecture 1.19]). The class C property
of compact complex manifolds is closed under holomorphic deformations.
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Alessandrini and Bassanelli [3] assert that every class C of Fujiki manifold admits a
balanced metric. Therefore, a way to deal with the former Standard Conjecture is to
consider the behaviour of the balanced property under holomorphic deformations. Recall
that the Iwasawa manifold is the complex parallelizable compact manifoldM = H3(C)/Γ
given by:
(1.20)

H3(C) =




1 z1 z3

0 1 z2

0 0 1

 | z1, z2, z3 ∈ C

 , Γ =




1 z1 z3

0 1 z2

0 0 1

 | z1, z2, z3 ∈ Z[i]

 ,

where H3(C) is the complex Heisenberg group. The non-stability of the balanced property
is proved by Alessandrini and Bassanelli taking a suitable direction in the Kuranishi
space of the Iwasawa manifold computed by Nakamura [67].

Theorem 1.4.14 (Alessandrini and Bassanelli [2]). The balanced property of compact
complex manifolds is not open under holomorphic deformations.

Therefore, one could approach the Standard Conjecture proving firstly the following:

Conjecture 1.4.15 ([76, Conjecture 1.23]). The balanced property of compact complex
manifolds is closed under holomorphic deformations.

We show in Chapter 5 a counterexample to this Conjecture. The strongly Gauduchon
property presents a different stability behaviour with respect to the balanced property,
as the following result due to Popovici shows.

Theorem 1.4.16 (Popovici [73]). The strongly Gauduchon property of compact complex
manifolds is open under holomorphic deformations.

Popovici also shows [75, Theorem 1.3] that the strongly Gauduchon property is
preserved under modification. Hence, it could be an open and closed property under
holomorphic deformations and stable under modification. This gives rise to the following
conjecture proposed by Demailly:

Conjecture 1.4.17 ([76, Conjecture 1.21]). The strongly Gauduchon property of com-
pact complex manifolds is closed under holomorphic deformations.

We show in Section 5.2 a counterexample to this Conjecture. Finally, the following
theorem asserts the non-openness of the SKT property:

Theorem 1.4.18 (Fino and Tomassini [34]). The SKT property of compact complex
manifolds is not open under holomorphic deformations.

Now, we consider some properties related with the topology of the manifold such
as the degeneration of the Frölicher sequence at the first step and the ∂∂̄-lemma. The
stability of the degeneration of the Frölicher sequence at the first step was proven by
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Kodaira and Spencer in [53]. Recalling that the fibres Mt := (M,Jt) are diffeomorphic to
the central limit M0 := (M,J0), the stability follows from the Frölicher inequality (1.12)
and from the upper semicontinuity of the Hodge numbers h•,•

∂̄
(Mt), that is, h•,•

∂̄
(M0) ≥

h•,•
∂̄

(Mt).

b•(M) =
∑
p+q=•

hp,q
∂̄

(M0) ≥
∑
p+q=•

hp,q
∂̄

(Mt) ≥ b•(M).

Thus,
∑

p+q=• h
p,q

∂̄
(Mt) = b•(M) and E1(M) ∼= E∞(M). On the other hand, Eastwood

and Singer prove the non-closedness of the property using the theory of twistor spaces.

Theorem 1.4.19 (Eastwood and Singer [27]). For compact complex manifolds the prop-
erty of the Frölicher spectral sequence degenerating at E1 is not closed under holomor-
phic deformations.

Finally, the behaviour of the ∂∂̄-lemma property under holomorphic deformations
comes described by the following theorems. The stability is proven by Voisin:

Theorem 1.4.20 (Voisin [98, Proposition 9.21], Wu [101], Angella and Tomassini [10,
Corollary 3.7]). The ∂∂̄-lemma property of compact complex manifolds is open under
holomorphic deformations.

Indeed, if {Mt}t∈∆ is a holomorphic family of compact complex manifolds such that
the central limit M0 satisfies the ∂∂̄-lemma, then the stability of this property follows
from Theorem 1.2.8 and recalling that the dimensions of the Bott-Chern and Aeppli
cohomologies are upper semi continuous [85, Lemme 3.2]:

2b•(M) =
∑
p+q=•

(hp,qBC(M0) + hp,qA (M0)) ≥
∑
p+q=•

(hp,qBC(Mt) + hp,qA (Mt)) ≥ 2b•(M).

Hence, 2b•(M) =
∑

p+q=•(h
p,q
BC(Mt) + hp,qA (Mt)). Concerning the closedness of this

property, Angella and Kasuya recently prove the non-closedness of this property.

Theorem 1.4.21 (Angella and Kasuya [8, Corollary 6.1]). The ∂∂̄-lemma property of
compact complex manifolds is not closed under holomorphic deformations.

They found that the ∂∂̄-lemma property is not closed by means of a holomorphic
deformation of the so-called Nakamura manifold, which is the compact complex manifold
M = G/Γ, where G = Cnϕ C2 and

(1.21) ϕ : C→ Aut(C2), ϕ(z1) :=

ez1 0

0 e−z1

 .

The subgroup Γ is again the semi-direct product of two subgroups Γ′, Γ′′ of C and C2,
respectively. The Kuranishi space of the Nakamura manifold was studied by Nakamura
[67] and Angella and Kasuya took a suitable deformation to prove Theorem 1.4.21.
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The examples found by Alessandrini and Bassanelli to prove the non-openness of
the balanced property, and by Angella and Kasuya to prove the non-closedness of the
∂∂̄-lemma reveal an interesting and rich source of compact manifolds constructed by
taking the quotient of a Lie group G by a discrete subgroup Γ ≤ G called uniform so
that M = G/Γ is compact. In addition, they are endowed with an invariant complex
structure J , that is, its description can be basically referred to the Lie algebra g of the
Lie group.

The underlying real Lie group to the Iwasawa manifold is an example of a six-
dimensional nilpotent Lie group, whereas the underlying real Lie group to the Nakamura
manifold is a six-dimensional solvable Lie group. In addition, both are endowed with an
invariant complex structure such that the holomorphic canonical bundle is trivial, that
is, there is a non-vanishing global holomorphic volume form defined on the manifold.
These considerations make interesting to study the class of six-dimensional solvable Lie
algebras admitting an integrable complex structure that gives rise to solvmanifolds with
holomorphically trivial canonical bundle. Therefore, our aim in the following chapter
will be to achieve a classification of this complex geometry on solvmanifolds, in order
to study the behaviour of some cohomological invariants and the existence of special
Hermitian metrics. As we mentioned before, this study will lead us to find, among other
results, several counterexamples to Conjectures 1.4.15 and 1.4.17, constructing a suitable
deformation of an invariant complex structure on a solvmanifold.



Chapter 2

Solvmanifolds and invariant
complex geometry

The goal of this chapter is to classify the six-dimensional solvmanifolds admitting an
invariant complex structure with holomorphically trivial canonical bundle. Section 2.1
deals with the notions and results concerning solvmanifolds M = G/Γ endowed with
an invariant complex structure J . The results due to Nomizu [68], Hattori [46] and
Mostow [64], for computing the de Rham cohomology of M by means of the Chevalley-
Eilenberg cohomology of the Lie algebra underlying M are recalled. As regards the
complex geometry of nilmanifolds, Salamon [82] shows that nilmanifolds endowed with
an invariant complex structure have holomorphically trivial canonical bundle. We re-
mind partial classifications of solvable Lie algebras admitting complex structures up
to dimension six [4, 44, 82, 71]. We complete this section reminding, when M is a
nilmanifold, several cases for which the natural map (∧•,•g∗, ∂̄) → (∧•,•M, ∂̄) induces
an isomorphism in Dolbeault cohomology [20, 24, 81]. The symmetrization process in-
troduced by Belgun [11] allows us to prove that an invariant complex structure on a
solvmanifold M has holomorphically trivial canonical bundle if and only if it admits an
invariant non-zero holomorphic volume form. As a consequence, our initial classification
problem reduces to classifying the six-dimensional solvable Lie algebras g admitting a
pair (J,Ψ), where J is an almost-complex structure and Ψ is a non-zero closed form
of pure type (3,0) with respect to J , and such that the corresponding connected and
simply-connected Lie groups admit a lattice. We conclude the section providing a com-
pact example, based on an invariant holomorphic deformation, of the non-stability of
the holomorphically trivial canonical bundle property.

The problem of classifying six-dimensional solvable Lie algebras admitting complex
structures with a closed (3, 0)-form is faced in Section 2.2. For this end, we make
use of the formalism of stable forms developed by Hitchin [48], together with ideas
in [19, 36, 37, 84]. We adapt this formalism to our problem allowing us to compute
the space of almost-complex structures on a six-dimensional Lie algebra g by means
of a subset of the space Z3(g) of closed 3-forms on g. Hence, we look for the 3-forms
ρ ∈ Z3(g) such that the corresponding almost-complex structure J∗ρ satisfies that J∗ρρ is
also closed. In that case, the pair (J,Ψ) with J := J∗ρ and Ψ := ρ+ iJ∗ρρ yields an invari-
ant complex structure with holomorphically trivial canonical bundle on the solvmanifold,
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whenever the corresponding Lie group admits a lattice. As a consequence, if a solvman-
ifold admits a complex structure arising from an invariant non-vanishing holomorphic
(3,0)-form, then its underlying Lie algebra g must be isomorphic to one in the list of
Theorem 2.2.14, i.e. g1, g

α
2 (α ≥ 0), g3, . . . , g8 or g9. The Lie algebras g1, g

α
2 (α ≥ 0) and

g3 are decomposable, whereas g4, . . . , g8 and g9 are indecomposable. The Lie algebra g8

is precisely the real Lie algebra underlying the Nakamura manifold [67].

Section 2.3 deals with the existence of lattices on solvable Lie groups. We recall the
well-known theorem of Malcev [61] for the existence of lattices in nilpotent Lie groups
and some previous results following Bock [13] that provide the tools to obtain explicitly
lattices for almost-nilpotent Lie groups. Finally, we prove the existence of a lattice for
the simply-connected Lie groups associated to the Lie algebras in the list above, although
for gα>0

2 we are able to find a lattice only for a countable number of different values of
α, which is consistent with a result by Witte [100].

2.1 Invariant complex structures

In this section we present an important class of compact manifolds M = G/Γ arising
from taking a quotient of a Lie group G by a discrete and cocompact subgroup Γ ≤ G,
as well as the invariant complex structures defined on them. This construction provides
a source of interesting examples of compact manifolds in the study of, not only complex,
but different geometric structures such as Riemannian or symplectic structures, among
others.

2.1.1 Compact homogeneous spaces

Let G be a connected and simply-connected Lie group with dimRG = n, a subgroup
Γ ≤ G is called discrete if the topology of Γ induced by the Lie group G is discrete.
If the subgroup Γ ≤ G is discrete then the space M = G/Γ = {gΓ | g ∈ G} admits a
C∞-atlas such that the surjective map π : G → M = G/Γ defined by π(g) := [g] = gΓ
is smooth. Hence G is the universal covering of M . In addition, the manifolds of the
form M = G/Γ are homogeneous spaces, that is, differentiable manifolds endowed with
a transitive action of a Lie group. Notice that the dimension of M is the dimension of
the Lie group G considered as a differentiable manifold. The subgroup Γ ≤ G is called
cocompact if the resulting quotient manifold M = G/Γ is compact (that is, there is a
compact set K ⊂ G, also called a fundamental domain of Γ, such that KΓ = G).

Definition 2.1.1. A subgroup Γ ≤ G is said to be uniform if it is discrete and cocompact.

Remark 2.1.2. Uniform subgroups of a given Lie group G are closely related to lattices.
A discrete subgroup Γ of a locally compact Lie group G is a lattice subgroup, or simply
a lattice, if µ(G/Γ) < ∞, where µ is the left-invariant Haar measure on G. If G is
unimodular (for a definition of unimodular Lie group see Section 2.1.4) and Γ ⊂ G is
uniform then Γ is a lattice. However, the converse is not true in general. A classic
example is the Lie group G = SL(2,R) and the subgroup Γ = SL(2,Z) because Γ has a
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non compact fundamental domain, so G/Γ is not compact, although the volume µ(G/Γ)
is finite. Hence Γ is a lattice but not a uniform subgroup. This fact does not occur in
connected and solvable Lie groups, see [77, Theorem 3.1]. From now on, when we deal
with uniform subgroups of solvable Lie groups we refer to them as lattices.

Any g ∈ G defines a map Lg : G → G called left translation by Lg(h) := gh. Fur-
thermore, Lg is smooth for any g ∈ G and it is a diffeomorphism. We say that a vector
field X ∈ X(G) is left-invariant if it is invariant under all left translations, namely,
(Lg)∗Xh = Xgh for all g, h ∈ G. It is direct to check that if X,Y ∈ X(G) are left-
invariant vector fields then the vector field [X,Y ] ∈ X(G) is left-invariant. Hence, the
Lie algebra associated to G is defined to be the Lie algebra of left-invariant vector fields
of G. We denote it by g := {X ∈ X(G) | (Lg)∗X = X, ∀g ∈ G}. It is proved that g is
a finite-dimensional Lie subalgebra of X(G) and dimR g = dimRG. Let {e1, . . . , en} be
a basis of g, then the Lie brackets are expressed by:

[ei, ej ] =

n∑
k=1

ckijek, 1 ≤ i, j ≤ n,

where {ckij} ⊂ R are the structure constants of G with respect to the basis {e1, . . . , en}
of g. We denote by g∗ the vector space of left-invariant 1-forms on M . The Eilenberg-
Chevalley complex (∧•g∗, d) is a differential graded algebra, where ∧•g∗ = ⊕nk=0 ∧k g∗ is
the finite dimensional exterior algebra of g∗ with respect to the wedge product together
with the differential operator d : ∧• g∗ → ∧•+1g∗ defined by dα(X,Y ) := −α([X,Y ])
for X,Y ∈ g and α ∈ g∗. Hence, if {e1, . . . , en} is the basis of g∗ dual to the basis
{e1, . . . , en} of g we get

(2.1) dek = −
n∑
k=1

ckije
i ∧ ej .

The previous expression is usually known as the structure equations of the Lie algebra g.

Remark 2.1.3. In the practice, we usually refer to the Lie algebras providing the
structure equations (2.1) of g. For instance, the notation h2 = (0, 0, 0, 0, 12, 34) means
that there is a basis {ej}6j=1 of h∗2 satisfying the structure equations de1 = de2 = de3 =

de4 = 0, de5 = e1 ∧ e2, de6 = e3 ∧ e4; equivalently, the Lie bracket is given in terms of
its dual basis {ej}6j=1 by [e1, e2] = −e5, [e3, e4] = −e6. From now on we also shorten

ei1...ik := ei1 ∧ . . . ∧ eik for any set of indices 1 ≤ i1 < . . . < ik ≤ n.

The map π : G → M = G/Γ enables to define invariant vector fields on M . If
X ∈ g is a left-invariant vector field on the Lie group G, then the vector field π∗X
given by (π∗X)[g] := π∗(Xg) is well defined and hence π∗X ∈ X(M). We say that

X̃ ∈ X(M) is an invariant vector field on M if X̃ = π∗X for some X ∈ g. The map
π is also a local diffeomorphism and as a consequence if we have a left-invariant paral-
lelization {X1, . . . , Xn} ⊂ g of G then {π∗X1, . . . , π∗Xn} ⊂ X(M) is a parallelization of
M . Indeed it is immediate to check that the structure equations expressed in the basis
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{π∗X1, . . . , π∗Xn} on M have the same form that the structure equations expressed in
the basis {X1, . . . , Xn} on G.

The definition of invariant vector fields on M allows us to define invariant k-forms.
It is said that α ∈ T k(M) is an invariant k-form on M if α(X1, . . . , Xk) ∈ R for any
X1, . . . , Xk ∈ g. As a consequence, we can speak in general of invariant tensor fields on
the manifold M . Moreover, if {X1, . . . , Xn} and {α1, . . . , αn} are global parallelizations
of invariant vector fields and 1-forms on M , then any invariant tensor field T ∈ T kl (M)
admits the following expression:

(2.2) T =
n∑

j1,...,jk=1

n∑
i1,...,il=1

T i1...ilj1...jk
Xi1 ⊗ . . .⊗Xil ⊗ αj1 ⊗ . . .⊗ αjk ,

where T i1...ilj1...jk
∈ R. As we saw, some important geometric structures on manifolds are

defined by one or several tensor fields such as complex structures, Riemannian metrics or
symplectic structures. Thus, in the case of manifolds of type M = G/Γ, it is possible to
speak about invariant complex structures, Riemannian metrics or symplectic structures
on M , among others.

Remark 2.1.4. As a matter of notation, when M = G/Γ, we denote by g the space
of invariant vector fields, T kl (g) the space of invariant (k, l)-tensors, End(g) the space of
invariant endomorphisms and ∧kg∗ the space of invariant k-forms on M .

Let M = G/Γ be a compact manifold and {e1, . . . , en} be a basis of invariant 1-forms
on M . The Chevalley-Eilenberg cohomology of M is defined as the cohomology of the
Chevalley-Eilenberg complex (∧•g∗, d). We denote by b•(g) the dimensions of the finite
dimensional Chevalley-Eilenberg cohomology groups:

H•(g) :=
ker
(
d : ∧• g∗ → ∧•+1g∗

)
im (d : ∧•−1 g∗ → ∧•g∗) .

In some special cases it is possible to compute the de Rham cohomology of M by means
of the Chevalley-Eilenberg cohomology of g. The well-known Nomizu’s Theorem [68]
(see Theorem 2.1.8) for nilmanifolds is the more representative result in this sense.

2.1.2 Solvmanifolds and nilmanifolds

Solvmanifolds and nilmanifolds are a kind of compact and homogeneous manifolds of
the form M = G/Γ, where G is a connected and simply-connected solvable (respectively
nilpotent) Lie group.

Recall that a Lie group G is nilpotent if its corresponding Lie algebra g is nilpotent.
The nilpotency of a Lie algebra g is defined by means of some descending chain of ideals
of g.

Definition 2.1.5. A Lie algebra g is nilpotent ( NLA for short) if the descending central
series {gl}l≥0 of g defined by

g0 := g, gl+1 := [gl, g],
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satisfies that gl = 0 for some l ∈ N. Equivalently, if the ascending central series {gl}l≥0

of g defined by
g0 := 0, gl := {X ∈ g | [X, g] ⊆ gl−1 },

satisfies that gl = 0 for some l ∈ N. If s is the first positive integer with this property,
then the NLA g is said to be s-step nilpotent.

The study of nilmanifolds was introduced by Malcev [61]. The simplest examples of
nilmanifolds are the n-dimensional tori. They arise from the fact that every lattice Γ
of the abelian Lie group Rn is isomorphic to Zn. Hence, the corresponding nilmanifold
Rn/Zn is known as the n-dimensional torus. Other important examples of nilmanifolds
are the Kodaira-Thurston manifold and the Iwasawa manifold.

Example 2.1.6. The Kodaira-Thurston manifold is the real four-dimensional nilmani-
fold underlying the compact complex surface given by (1.13). It is defined by M = G/Γ
whereG = H3(R)×R and Γ = Γ′×Z. The nilpotent Lie groupH3(R) is the 3-dimensional
Heisenberg group and Γ′ is a lattice of H3(R) given by:

(2.3) H3(R) =




1 x z

0 1 y

0 0 1

 | x, y, z ∈ R

 , Γ′ =




1 x z

0 1 y

0 0 1

 | x, y, z ∈ Z

 .

The Lie group G = H3(R) × R admits a global chart assigning to each group element
g ∈ G real coordinates (x, y, z, t) ∈ R4 and it is straightforward to check that the
following 1-forms e1 = dx, e2 = dy, e3 = dt, e4 = dz + xdy constitute an invariant basis
of ∧1M . In addition, the structure equations in this basis are

(2.4) de1 = de2 = de3 = 0, de4 = e12.

Example 2.1.7. Another important example is the real six-dimensional nilmanifold
underlying the Iwasawa manifold defined by (1.20). The corresponding Lie group admits
a basis of left-invariant 1-forms {e1, . . . , e6} satisfying the structure equations

(2.5)


de1 = de2 = de3 = de4 = 0,

de5 = e13 + e42,

de6 = e14 + e23.

The Lie algebra satisfying the structure equations (2.5) is denoted by h5 (see Theorem
2.1.25).

As we mentioned in the previous section, one of the most appreciated results about
nilmanifolds states that the de Rham cohomology of a nilmanifold can be computed at
the level of the Lie algebra of the group, or equivalently, by using only invariant forms
on the nilmanifold.
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Theorem 2.1.8 (Nomizu [68, Theorem 1]). Let M = G/Γ be a nilmanifold, then the
inclusion (∧•g∗, d) ↪→ (∧•M,d) induces an isomorphism on cohomology.

The previous theorem states that concerning the calculus of the cohomology of a
nilmanifold the choice of the lattice is irrelevant. This situation does not hold in general
in the bigger class of solvmanifolds which we pass to present immediately.

The general study of solvmanifolds was started by Mostow in [64]. The solvability
of a Lie group G is determined by the solvability of its Lie algebra and it is defined by
means of some descending chain of ideals of g.

Definition 2.1.9. A Lie algebra g is solvable if the descending derived series defined
by

g(0) := g, g(n+1) := [g(n), g(n)],

satisfies that g(n) = 0 for some n ∈ N.

It follows from the previous definition that any nilpotent Lie algebra is solvable.
Hence, any nilmanifold is a solvmanifold but the converse is not true in general. We
recall several fundamental results on solvmanifolds. If M = G/Γ is a solvmanifold of
dimension n, then it is a fibre bundle over a torus with fibre a nilmanifold, which is called
the Mostow fibration of M [64]. In addition, the fundamental group Γ of a solvmanifold
can be represented as an extension of a torsion-free nilpotent group Λ of rank n− k by
a free abelian group of rank k:

(2.6) 0→ Λ→ Γ→ Zk → 0,

where 1 ≤ k ≤ n and k = n if and only if Γ is abelian. Conversely, any abstract
group Γ satisfying (2.6) can be the fundamental group of some solvmanifold [99]. Such
a group is called Wang group. In addition, Mostow [64] proves that two solvmanifolds
having isomorphic fundamental groups are diffeomorphic. The same result had been
proven previously by Malcev [61] in the realm of nilmanifolds. Moreover nilmanifolds
and solvmanifolds G/Γ are aspherical, that is, their homotopy groups πj(G/Γ) = {0}
for j ≥ 2.

Concerning the relation between the de Rham cohomology of the solvmanifold with
the Chevalley-Eilenberg cohomology of the Lie algebra it turns out that Theorem 2.1.8 is
not true in general for solvmanifolds. Nevertheless, Hattori [46] shows that the natural
inclusion (∧•g∗, d) ↪→ (∧•M,d) induces an injective map in cohomology

H•(g)→ H•dR(M).

As a consequence of the injectivity of the previous map, and recalling that H1(g) ∼=
g/[g, g] and b1(g) ≥ 1 if g is solvable and b1(g) ≥ 2 if g is nilpotent, there is the following
lower-bound for the first Betti number of M = G/Γ when G is solvable or nilpotent:

Corollary 2.1.10. Any solvmanifold satisfies b1(M) ≥ 1. Any nilmanifold satisfies
b1(M) ≥ 2.
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Hattori [46] extends Nomizu’s Theorem, by using the Mostow Structure Theorem
[64, Theorem 2], for M = G/Γ when G is completely solvable. Recall that a solvable Lie
group G is called completely solvable if the adjoint representation ad: g → gl(g) of its
Lie algebra g defined by adX(Y ) := [X,Y ] has only real eigenvalues for all X ∈ g.

Theorem 2.1.11 (Hattori [46]). Let M = G/Γ be a solvmanifold, then the inclusion
(∧•g∗, d) → (∧•M,d) induces an injection on cohomology. If G is completely solvable
then the inclusion induces an isomorphism on cohomology.

Finally, the previous result also holds for solvmanifolds satisfying the so-called Mostow
condition [64, Theorem 8.2, Corollary 8.1].

2.1.3 Invariant complex structures on solvmanifolds

Let M = G/Γ be a solvmanifold. In this section, we are concerned concretely with
invariant complex structures defined on M .

Definition 2.1.12. An invariant almost-complex structure on M = G/Γ is an endo-
morphism J ∈ End(g) such that J2 = −IdTM .

As we mentioned before, all kind of invariant geometric structures on M = G/Γ
defined by an invariant tensor field can be referred to a tensor defined at the level of
the Lie algebra g. In particular, invariant almost-complex structures on M = G/Γ are
encoded in almost-complex structures on the Lie algebra g.

Remark 2.1.13. An almost-complex structure J on a Lie algebra g induces the splitting
in the complexified Lie algebra gC = g(1,0) ⊕ g(0,1), where g(1,0) := {X − iJX | X ∈ gC}
(respectively g(0,1) := {X + iJX | X ∈ gC}) denotes the J-eigenspace with eigenvalue
i (respectively −i). Actually, every decomposition gC = V ⊕ V gives rise to a unique
almost-complex structure J such that g(1,0) := V .

The dual almost-complex structure J∗ : g∗ → g∗ induces a splitting in the dual of
the Lie algebra g∗C = (g∗)1,0 ⊕ (g∗)0,1 and more in general in the complexified tensor
products of g and g∗. It is particularly interesting the splitting of the complexified space
of alternating tensors:

∧•g∗C =
⊕
p+q=•

∧p,qg∗,

where ∧p,qg∗ := ∧p(g∗)1,0 ⊗ ∧q(g∗)0,1 and ∧q,pg∗ = ∧p,qg∗. When M = G/Γ is a solv-
manifold endowed with an invariant almost-complex structure J , we denote by g(1,0)

(respectively g(0,1)) the space of complexified invariant vector fields with J-eigenvalue i
(respectively −i) and ∧p,qg∗ the space of invariant (p, q)-forms on M . We usually de-
scribe an invariant complex structure on a solvmanifold by giving a basis of invariant
1-forms and giving the images by the endomorphism J or also by giving a (1, 0)-basis
and the complex structure equations expressed in this basis.
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By the Newlander-Nirenberg Theorem (see Theorem 1.1.4), an invariant complex
structure on M = G/Γ is an invariant almost-complex structure J satisfying the integra-
bility condition NijJ = 0. The following proposition states several equivalent conditions
to the integrability of J .

Proposition 2.1.14. Let J be an invariant almost-complex structure on M = G/Γ,
then the following conditions are equivalent:

1. J is integrable.

2. NijJ(X,Y ) = 0 for any X,Y ∈ g.

3. [g(0,1), g(0,1)] ⊆ g(0,1).

4. d
(
∧1,0g∗

)
⊆ ∧2,0g∗ ⊕ ∧1,1g∗.

Nilmanifolds endowed with an invariant complex structure play an important role in
the study of non-Kähler geometry since Thurston [92] presented a nilmanifold admitting
both a complex structure and a symplectic structure but no Kähler metric.

Example 2.1.15. For instance, let M = G/Γ be the complex surface given by (1.13).
The invariant (1, 0)-forms ϕ := dz1 and η := dz2 + z1dz̄1 satisfy the complex structure
equations

(2.7) dϕ = 0, dη = ϕ ∧ ϕ̄.

If {e1, e2, e3, e4} is an invariant basis of real 1-forms on M such that ϕ = e1 + ie2

and η = e3 − 2ie4 then we get the structure equations (2.4) and hence the underlying
real manifold is the Kodaira-Thurston manifold. Equivalently, the complex structure
given by (2.7) can be seen as an invariant complex structure J on the Kodaira-Thurston
manifold defined by

Je1 = −e2, Je3 = 2e4.

In addition, F = e13 + e24 is a symplectic form. However, by using Nomizu’s Theorem
(see Theorem 2.1.8) it turns out that b1(M) = b1(g) = 3, thus the Kodaira-Thurston
manifold admits both complex and symplectic structures but no Kähler metrics.

Furthermore, concerning the problem of characterizing the nilmanifolds admitting
Kähler metrics, Hasegawa [44, Theorem 1] shows that the unique formal nilmanifolds
are the tori. Therefore, recalling that formality is a necessary condition in order that
a compact manifold satisfies the ∂∂̄-lemma [26, Main Theorem] and that any compact
Kähler manifold satisfies the ∂∂̄-lemma [26, Corollary 5.23], it holds that if a nilmanifold
admits a Kähler metric then it is diffeomorphic to a torus. Therefore, nilmanifolds
provide a source of examples of non-Kähler geometry.

The previous considerations make interesting to consider the invariant complex geo-
metry on nilmanifolds. Salamon [82] states the following equivalent condition for the
integrability of an almost-complex structure J on a real 2n-dimensional nilpotent Lie
algebra:
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Theorem 2.1.16 (Salamon [82, Theorem 1.3]). Let g be a nilpotent Lie algebra, dimR g =
2n, endowed with an almost-complex structure J . Then J is integrable if and only if
(g∗)1,0 has a basis {ωj}nj=1 such that dω1 = 0 and

dωj ∈ I(ω1, . . . , ωj−1), for j = 2, . . . , n,

where I(ω1, . . . , ωj−1) is the ideal in ∧g∗C generated by {ω1, . . . , ωj−1}.

As a consequence of Theorem 2.1.16 the integrability of an almost-complex structure
on an NLA is characterized in the following way:

Corollary 2.1.17. Let J : g → g be an almost-complex structure on a 2n-dimensional
nilpotent Lie algebra, then J is integrable if and only if exists 0 6= Ψ ∈ ∧n,0g∗ such that
dΨ = 0.

Proof. We must prove that the integrability of J implies the existence of a closed complex
volume form. By Theorem 2.1.16 there is a (1,0)-basis {ω1, . . . , ωn} such that dω1 = 0
and dωj ∈ I〈ω1, . . . , ωj−1〉 for j = 2, . . . , n. It is direct to check that the (n, 0)-form
Ψ = ω1 ∧ . . . ∧ ωn is a non-zero closed (n, 0)-form.

Remark 2.1.18. It follows from Corollary 2.1.17 that when M = G/Γ is a nilmanifold
endowed with an invariant complex structure J then the complex manifold (M,J) has
holomorphically trivial canonical bundle because the non-zero invariant section Ψ ∈
∧n,0g∗ is a non-zero holomorphic volume form defined globally on M .

Inspired by Theorem 2.1.16, Cordero, Fernández, Gray and Ugarte [24] suggest a
division on the space of complex structures on a nilpotent Lie algebra g into nilpotent
and non-nilpotent complex structures.

Definition 2.1.19. A complex structure J on a 2n-dimensional nilpotent Lie algebra g
is called nilpotent if there is a basis {ωj}nj=1 for (g∗)1,0 satisfying dω1 = 0 and

(2.8) dωj ∈
∧

2 〈ω1, . . . , ωj−1, ω1, . . . , ωj−1〉, for j = 2, . . . , n.

Equivalently [24], the ascending series {gJl }l≥0 for g adapted to J , which is defined
inductively by

(2.9) gJ0 := 0, gJl := {X ∈ g | [Jk(X), g] ⊆ gJl−1 , k = 1, 2 } , for l ≥ 1,

satisfies that gJl = g for some positive integer l.

Inside nilpotent complex structures on nilpotent Lie algebras, there are two well-
known special classes known as abelian and parallelizable complex structures, although
both abelian and parallelizable can be defined in general on any Lie algebra:

• J is abelian if [JX, JY ] = [X,Y ], for all X,Y ∈ g, or equivalently d(g∗)1,0 ⊂ ∧1,1g∗.
They are also characterized by the fact that the subalgebra g(1,0) is abelian.
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• J is complex-parallelizable if [JX, Y ] = J [X,Y ], for all X,Y ∈ g, or equivalently
d(g∗)1,0 ⊂ ∧2,0g∗ or equivalently [g(1,0), g(0,1)] = {0}. These structures are the
natural complex structures of the complex Lie algebras and give rise to complex
Lie groups. In addition, the corresponding compact complex manifold M = G/Γ
has holomorphically trivial tangent bundle.

Remark 2.1.20. It follows from the definition of the ascending series (2.9) that when
J is a parallelizable or an abelian structure on a nilpotent Lie algebra g, then gJl = gl
for l ≥ 0 hence it is nilpotent. In addition, it is clear that the nilpotency condition for
a complex structure (2.8) is preserved under equivalence of complex structures, that is,
if J ′ is equivalent to J then J is nilpotent if and only if J ′ is.

Some of the most known complex solvmanifolds are endowed with a parallelizable
invariant complex structure. On the one hand, the Iwasawa manifold described in (1.20)
admits the following invariant (1, 0)-basis ω1 := dz1, ω2 := dz2, ω3 := dz3 + z1dz2

satisfying the complex structure equations

(2.10) dω1 = 0, dω2 = 0, dω3 = ω12.

On the other hand, the Nakamura manifold defined by (1.21) admits the following in-
variant (1, 0)-basis ω1 := dz1, ω2 := ez1dz2 and ω3 := e−z1dz3. The complex structure
equations in this basis are:

(2.11) dω1 = 0, dω2 = ω12, dω3 = −ω13.

It is direct to check that the (3, 0)-form Ψ = ω123 = dz1 ∧ dz2 ∧ dz3 defines a nowhere
vanishing invariant holomorphic volume form on M . On the other hand, the same
occurs on the Iwasawa manifold by Corollary 2.1.17. Both complex manifolds have
holomorphically trivial canonical bundle.

Indeed, the following proposition shows that, given an almost-complex structure on
a Lie algebra g, the existence of a non-zero closed (n, 0)-form yields the integrability
of J .

Proposition 2.1.21. Let J be an almost-complex structure on a 2n-dimensional Lie
algebra g and 0 6= Ψ ∈ ∧n,0g∗. If dΨ = 0 then J is integrable.

Proof. Recall that J is integrable if and only if π0,2(dω) = 0 for every ω ∈ ∧1,0g∗,
where π0,2 : ∧2g∗C → ∧0,2g∗. Suppose that there is a complex and closed volume form
Ψ ∈ Λn,0g∗, then there is a (1,0)-basis {ω1, . . . , ωn} of g∗C such that Ψ = ω1 ∧ . . . ∧ ωn.
When we evaluate the exterior derivative of Ψ we get 0 = dΨ = Ωn+1,0 + Ωn,1 + Ωn−1,2,
where Ωp,q is a complex (p, q)-form which must vanish. If we compute explicitly Ωn−1,2

we get:

Ωn−1,2 = π0,2(dω1) ∧ ω2 ∧ . . . ∧ ωn − . . .+ (−1)n+1π0,2(dωn) ∧ ω1 ∧ . . . ∧ ωn−1 = 0,

and necessarily π0,2(dωj) = 0 for every j ∈ {1, . . . , n} and therefore J is integrable.
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For any p ∈ N we can associate a differential graded algebra (∧p,•g∗, ∂̄) of complexified
invariant forms and the finite dimensional invariant Dolbeault cohomology groups are
defined by:

H•,•
∂̄

(g) :=
ker
(
∂̄ : ∧•,• g∗ → ∧•,•+1g∗

)
im
(
∂̄ : ∧•,•−1 g∗ → ∧•,•g∗

) .
The dimensions of these groups are denoted by h•,•

∂̄
(g) := dimH•,•

∂̄
(g). The identity map

∧•,•g∗ ↪→ ∧•,•M induces a natural map

(2.12) H•,•
∂̄

(g)→ H•,•
∂̄

(M),

and when M is a nilmanifold Console and Fino [20, Lemma 7] show that this map is
injective. It is natural to wonder if there is a kind of Nomizu’s Theorem for the Dolbeault
cohomology of a nilmanifold endowed with an invariant complex structure. Concerning
the map (2.12), Sakane [81] proves that for nilmanifolds endowed with an invariant
complex parallelizable structure it is an isomorphism and the same is proven by Console
and Fino [20] when the complex structure is abelian. In addition, Cordero, Fernández,
Gray and Ugarte [24] show that if the complex nilmanifold (M,J) with J invariant is
an iterated principal holomorphic torus bundle then its Dolbeault cohomology can be
computed by means of the invariant Dolbeault cohomology. Finally, Console and Fino
prove the following:

Theorem 2.1.22 (Console and Fino [20, Theorem A]). The map (2.12) is an iso-
morphism on an open set of any connected component of the moduli space of invariant
complex structures on a nilmanifold M .

It is remarkable that this open set can be empty for a given nilmanifold. In the
realm of solvmanifolds, Kasuya [51, Corollary 1.3] has developed recently a technique to
compute the Dolbeault cohomology of a solvmanifold endowed with an invariant complex
structure of splitting type [51, Assumption 1.1] by means of computing the cohomology
of a finite dimensional differential bi-graded algebra. This technique has been extended
by Angella and Kasuya [8, Theorem 1.1] to compute the Bott-Chern cohomology of
solvmanifolds endowed with invariant complex structures of this type. These techniques
will be presented in detail in Chapter 4.

Now we are concerned to show the main results related with invariant complex geo-
metry on solvmanifolds up to dimension six. The unique two-dimensional solvable Lie
algebra admitting a complex structure is the abelian R2 and it turns out that any almost-
complex structure on it is integrable. On the other hand, Ovando [71] classifies the four-
dimensional solvable Lie algebras with complex structure. In addition, Hasegawa shows
that the four-dimensional real solvmanifolds only admit invariant complex structures.
We present his result adding the underlying real Lie algebra of every solvmanifold:

Theorem 2.1.23 (Hasegawa [45, Theorem 1]). A complex surface is diffeomorphic to a
four-dimensional solvmanifold if and only if it is one of the following surfaces: Complex
torus (s1), Hyperelliptic surface (s3), Inoue Surface of type S0 (s5), Primary Kodaira
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surface(s2), Secondary Kodaira surface (s4), Inoue Surface of type S± (s6). The under-
lying real Lie algebras are:

s1 = (0, 0, 0, 0),

s2 = (0, 0, e12, 0),

s3 = (e24,−e14, 0, 0),

s4 = (e24,−e14, e12, 0),

s5 = (ae14 + be24,−be14 + ae24,−2ae34, 0), a 6= 0, b ∈ R,
s6 = (e23, e24,−e34, 0).

Moreover every complex structure on each of these complex surfaces (considered as solv-
manifolds) is invariant.

Remark 2.1.24. It is worth noticing that the underlying real solvmanifold of the pri-
mary Kodaira surfaces (s2) is the Kodaira-Thurston manifold given by (2.3). In addi-
tion, Hasegawa [45] shows an example of a six-dimensional solvmanifold endowed with a
non-invariant complex structure based on a holomorphic deformation of the Nakamura
manifold.

The classification of six-dimensional nilpotent Lie algebras admitting complex struc-
ture is obtained by Salamon [82]. In addition, Ugarte [95] extends this result presenting
the Lie algebras in terms of the different types of complex structures that they admit.

Theorem 2.1.25 ([82, 95]). Let g be a nilpotent Lie algebra of dimension 6. Then, g has
a complex structure if and only if it is isomorphic to one of the following Lie algebras:

h1 = (0, 0, 0, 0, 0, 0),

h2 = (0, 0, 0, 0, e12, e34),

h3 = (0, 0, 0, 0, 0, e12 + e34),

h4 = (0, 0, 0, 0, e12, e14 + e23),

h5 = (0, 0, 0, 0, e13 + e42, e14 + e23),

h6 = (0, 0, 0, 0, e12, e13),

h7 = (0, 0, 0, e12, e13, e23),

h8 = (0, 0, 0, 0, 0, e12),

h9 = (0, 0, 0, 0, e12, e14 + e25),

h10 = (0, 0, 0, e12, e13, e14),

h11 = (0, 0, 0, e12, e13, e14 + e23),

h12 = (0, 0, 0, e12, e13, e24),

h13 = (0, 0, 0, e12, e13 + e14, e24),

h14 = (0, 0, 0, e12, e14, e13 + e42),

h15 = (0, 0, 0, e12, e13 + e42, e14 + e23),

h16 = (0, 0, 0, e12, e14, e24),

h−19 = (0, 0, 0, e12, e23, e14 − e35),

h+
26 = (0, 0, e12, e13, e23, e14 + e25).

Moreover:

(a) Any complex structure on h−19 and h+
26 is non-nilpotent.

(b) For 1 ≤ k ≤ 16, any complex structure on hk is nilpotent.

(c) Any complex structure on h1, h3, h8 and h9 is abelian.

(d) There exist both abelian and non-abelian nilpotent complex structures on h2, h4, h5

and h15.

(e) Any complex structure on h6, h7, h10, h11, h12, h13, h14 and h16 is not abelian.
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Remark 2.1.26. It follows from Theorem 2.1.25 that, in real dimension six, if g ad-
mits complex structures then all of them are either nilpotent or non-nilpotent. Cordero,
Fernández, Gray and Ugarte [24] show that this is not true in general in higher dimen-
sions.

As we mentioned in the previous section, the well-known Iwasawa manifold and
Nakamura manifold admit an invariant closed complex volume form of pure type (3, 0)
and consequently have holomorphically trivial canonical bundle. This consideration
makes interesting to classify the six-dimensional solvmanifolds endowed with an invariant
complex structure with holomorphically trivial canonical bundle. We show in the next
section that the existence of an invariant closed volume form of pure type (3, 0) is not only
a sufficient condition but a necessary condition to trivialize the holomorphic canonical
bundle. For this purpose we make use of the symmetrization process proposed originally
by Belgun [11].

2.1.4 Trivialization of the holomorphic canonical bundle

Let G be a Lie group, g the Lie algebra of G, Γ ≤ G a lattice and dµ a bi-invariant volume
form on the compact manifold M = G/Γ. Belgun [11] provides a method which reduces
in some cases the study of the properties of some geometric structures on M = G/Γ
to the study of such properties on the spaces of left-invariant geometric structures,
equivalently, on the Lie algebra g of G. We present the process and several useful
properties (for shortening we denote T k(M) := T k0 (M) and T k(g) := T k0 (g)).

Lemma 2.1.27 (Belgun [11, Theorem 7], Fino and Grantcharov [31, Theorem 2.1]).
Let M = G/Γ be a compact quotient of a simply-connected Lie group by a lattice Γ,
g the Lie algebra of G and dµ a bi-invariant volume form such that

∫
M dµ = 1. The

symmetrization map (·)ν : T k(M)→ T k(g) defined by

(2.13) Tν(X1, . . . , Xk) :=

∫
p∈M

Tp(X1p , . . . , Xkp)dµ, X1, . . . , Xk ∈ g,

satisfies the following properties:

1. (·)ν |T k(g)= Id |T k(g).

2. If T ∈ ∧kM then (dT )ν = dTν .

3. If α ∈ ∧kM and β ∈ ∧qM then (αν ∧ β)ν = αν ∧ βν .

Remark 2.1.28. If M = G/Γ is a compact quotient of a simply-connected nilpotent
(resp. completely solvable) Lie group, it follows from Nomizu’s Theorem (resp. Hattori’s
Theorem, see Theorems 2.1.8 and 2.1.11) and from properties i), ii) of Lemma 2.1.27
that the restriction of the symmetrization map (·)ν |∧•M : (∧•M,d) → (∧•g∗, d) given
by (2.13) to the exterior algebra of M induces an isomorphism in cohomology.
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Now, let (M = G/Γ, J) be a complex manifold endowed with an invariant complex
structure. Firstly, the symmetrization process (see Lemma 2.1.27) is compatible in some
sense with the complex structure.

Lemma 2.1.29. If α ∈ ∧•,•M then αν ∈ ∧•,•g∗. Similarly, (∂α)ν = ∂αν and (∂̄α)ν =
∂̄αν .

Remark 2.1.30. If M = G/Γ, it is easy to prove the injectivity of the inclusion H•(g)→
H•dR(M) induced by the identity map ∧•g∗ ↪→ ∧•M . Take a closed invariant form
α ∈ ∧•g∗ and suppose that α = dβ with β ∈ ∧•−1M , then by using the symmetrization
process we find that αν = (dβ)ν = dβν and hence [α] = 0 ∈ H•(g). Similarly when M is
endowed with an invariant complex structure, the injectivity of the inclusion H•,•

∂̄
(g)→

H•,•
∂̄

(M) holds by using the symmetrization process and Lemma 2.1.29.

Now, it is natural to ask whether the existence of a holomorphic form of bidegree
(n, 0) with respect to an invariant complex structure on a 2n-dimensional solvmanifold
implies the existence of an invariant non-zero closed (n, 0)-form. We show that the
answer to this question is positive.

Proposition 2.1.31. Let M = Γ\G be a 2n-dimensional solvmanifold endowed with an
invariant complex structure J . If Ψ is a nowhere vanishing holomorphic (n, 0)-form on
(M,J), then Ψ is necessarily invariant.

Proof. Since J is an invariant complex structure on M , we consider a global basis
{ω1, . . . , ωn} of invariant (1, 0)-forms on (M,J). Then, there is a nowhere vanish-
ing complex-valued function f : M → C such that Ψ = f ω1 ∧ · · · ∧ ωn. Since Ψ is
holomorphic, we have ∂̄Ψ = ∂̄f ∧ ω1 ∧ · · · ∧ ωn + f ∂̄(ω1 ∧ · · · ∧ ωn) = 0, that is,
∂̄(ω1 ∧ · · · ∧ ωn) = −∂̄(log f) ∧ ω1 ∧ · · · ∧ ωn. The latter form is an invariant (n, 1)-form
on (M,J), so there is an invariant form α of bidegree (0, 1) on (M,J) such that

(2.14) ∂̄(log f) = α.

By Lemma 2.2.1 the Lie group G is unimodular, hence there is a volume element on M
induced by a bi-invariant one on the Lie group G (its existence is guaranteed by [63]).
Now, we can apply the symmetrization process 2.13 on both sides of equation (2.14) and
making use of the properties of Lemma 2.1.29 we get

(∂̄ log f)ν = ∂̄(log f)ν = αν = α,

because α is invariant. But (log f)ν is the symmetrization of a function, so it is a constant
and then ∂̄(log f)ν = 0. Therefore, α = 0 and by (2.14) we get ∂̄(log f) = 0. This means
that log f is a holomorphic function on a compact complex manifold, which implies that
log f = c, where c is a constant. In conclusion, f = exp(c) is a constant function, and Ψ
is necessarily invariant.

It is known that the property of having holomorphically trivial canonical bundle is
not stable under holomorphic deformations, but as a consequence of the previous result,
we provide in the following theorem an example of the non-stability of this property
based on an invariant holomorphic deformation.
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Theorem 2.1.32. The property of having holomorphically trivial canonical bundle is
not stable under holomorphic deformations.

Proof. We see in Chapter 3 that the real solvmanifold underlying the Nakamura manifold
admits an abelian complex structure, denoted by J1, described in terms of a left-invariant
(1, 0)-basis {ω1, ω2, ω3} satisfying the complex structure equations

dω1 = ω13̄, dω2 = −ω23̄, dω3 = 0.

Notice that the (0, 1)-form ω1̄ defines an invariant Dolbeault cohomology class. Hence,
if X3 is the invariant (1, 0)-vector field on M dual to ω3, we can consider the invariant
holomorphic deformation of (M,J1) given by the direction Ψ(t) = tX3 ⊗ ω1̄ where
t ∈ ∆ = {t ∈ C | |t| < ε} for ε > 0 enoughly small. The complex structure Jt is
described by the following (1, 0)-basis:

η1
t := ω1, η2

t := ω2, η3
t := ω3 − tω1̄.

It is straightforward to check that the complex structure equations of the invariant
complex structure Jt are:

dη1
t = η13̄

t , dη2
t = t̄η12

t − η23̄
t , dη3

t = tη31̄
t ,

and dη123
t = tη1231̄

t 6= 0 for any t ∈ ∆∗. By using Proposition 2.1.31, the solvmanifolds
{(M,Jt)}t∈∆∗ do not have holomorphically trivial canonical bundle and this concludes
the proof.

2.2 Six-dimensional solvable Lie algebras with complex struc-
tures

As a consequence of Proposition 2.1.31, we find that the problem of classifying the Lie
algebras underlying the six-dimensional solvmanifolds M = G/Γ admitting an invariant
complex structure with holomorphically trivial canonical bundle is equivalent to classifi-
cate the six-dimensional solvable Lie algebras g admitting a pair (J,Ψ) where J is an
almost-complex structure and Ψ is a closed form of J-pure type (n, 0) and such that the
corresponding connected and simply-connected Lie group admits a lattice.

∃J ∈ End(g), J2 = −IdTM

with holomorphically trivial canonical bundle

∃J ∈ End(g), J2 = −IdTM such that

∃Ψ ∈ ∧n,0g∗ with dΨ = 0

As we are concerned with studying these complex structures on solvmanifolds M =
G/Γ, we point out that in general not every Lie group G admits a lattice. Milnor [63]
states the following necessary condition for the existence of a lattice:
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Lemma 2.2.1 (Milnor [63, Lemma 6.2]). If G admits a lattice then G is unimodular.

Recall, that a Lie group G is called unimodular if its left-invariant Haar measure is
also right-invariant. The notion of unimodularity is also extended to Lie algebras. A Lie
algebra g is said unimodular if the trace of the adjoint representation adX vanishes for
all X ∈ g. The following lemma shows equivalent conditions for the unimodularity of g:

Lemma 2.2.2. Let G be an unimodular Lie group with dimRG = n and g its Lie algebra,
then the following conditions are equivalent:

1. The linear transformation Ad(g) has determinant ±1 for every g ∈ G [63, Lemma
6.1].

2. g is unimodular [63, Lemma 6.3].

3. d(∧n−1g∗) = {0}.
4. bn(g) = 1.

By using the previous characterization of the unimodularity condition, the next
lemma shows a simple but useful obstruction to the existence of complex structures
with non-zero closed (n, 0)-volume forms in the unimodular case involving the Betti
number bn(g).

Lemma 2.2.3. Let g be a 2n-dimensional Lie algebra. If g is unimodular and admits a
complex structure with a non-zero closed (n, 0)-form Ψ, then bn(g) ≥ 2.

Proof. Let Ψ+,Ψ− ∈ ∧ng∗ be the real and imaginary parts of Ψ, that is, Ψ = Ψ+ + iΨ−.
Since Ψ is closed we have that d(Ψ+) = d(Ψ−) = 0 and therefore [Ψ+], [Ψ−] ∈ Hn(g).
It is sufficient to see that both classes are non-zero and, moreover, that they are not
cohomologous.

Suppose that there exist a, b ∈ R with a2 + b2 6= 0 such that aΨ+ + bΨ− = dα for
some α ∈ ∧n−1g∗. Since 0 6= i

2Ψ ∧ Ψ̄ = Ψ+ ∧Ψ− ∈ ∧2ng∗, we get

d(α ∧ (−bΨ+ + aΨ−)) = (aΨ+ + bΨ−) ∧ (−bΨ+ + aΨ−) = (a2 + b2)Ψ+ ∧Ψ− 6= 0.

But by Lemma 2.2.2 this is in contradiction to the unimodularity of g.

The previous Lemmas 2.2.2 and 2.2.3 reduces the problem of classifying the six-
dimensional solvmanifolds M = G/Γ admitting an invariant complex structure with
holomorphically trivial canonical bundle to classificate the six-dimensional unimodular
solvable Lie algebras g with b3(g) ≥ 2 admitting a pair (J,Ψ) where J is an almost-
complex structure and Ψ is a closed form of J-pure type (3, 0) and such that the corre-
sponding connected and simply connected Lie group admits a lattice.

2.2.1 The formalism of stable forms in six dimensions

A complex volume form Ψ ∈ ∧3,0g∗ can be decomposed into its real and imaginary part
Ψ = Ψ+ + iΨ−, where Ψ+,Ψ− ∈ ∧3g∗ are real 3-forms satisfying JΨ+ = Ψ−. In this
section, we use a technique to construct an almost-complex structure Jρ : g → g on a
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given six-dimensional Lie algebra g by means of a real 3-form ρ ∈ ∧3g∗. Hence, we
obtain the desired pair (J,Ψ) by defining J := Jρ and Ψ := ρ+ iJ∗ρρ.

This technique is based in the algebraic formalism of stable forms developed by
Hitchin in [48]. Actually, it states a surjective mapping between the space of 3-forms
of a six-dimensional vector space V and the set of endomorphisms of the vector space
f : V → V satisfying that f ◦f = λidV . This construction will be very useful in the later
classification of 6-dimensional solvable real Lie algebras admitting complex structures.

Let V be a real six-dimensional vector space and fix an orientation ν ∈ ∧6V ∗. A
3-form ρ ∈ ∧3V ∗ is stable if the orbit {g · ρ | g ∈ GL(V )} is open. Now we want to
express this property in an algebraic way. Let κ : ∧5 V ∗ −→ V be the isomorphism
defined by:

κ(η) := X where X ∈ V satisfies ιXν = η.

If ρ ∈ ∧3V ∗ then for any X ∈ V we have ιXρ ∧ ρ ∈ ∧5V ∗. Hence we can define an
endomorphism Kρ : V −→ V by:

(2.15) Kρ(X) := κ(ιXρ ∧ ρ).

The following proposition states the stability of ρ ∈ ∧3V ∗ in terms of a scalar asso-
ciated to the endomorphism Kρ:

Proposition 2.2.4 (Hitchin [48, Proposition 2]). A 3-form ρ ∈ ∧3V ∗ is stable if and
only if λ(ρ) := 1

6 tr(K2
ρ) 6= 0. Moreover:

• λ(ρ) > 0 if and only if ρ = α + β where α, β ∈ ∧3V ∗ are decomposable and
α ∧ β 6= 0.

• λ(ρ) < 0 if and only if ρ = Ψ + Ψ̄ = 2ReΨ where Ψ ∈ ∧3V ∗C is decomposable and
Ψ ∧ Ψ̄ 6= 0.

Remark 2.2.5. The vector space ∧3V ∗ is divided by the hypersurface {ρ ∈ ∧3V ∗ | λ(ρ) =
0} into two open subsets corresponding to λ(ρ) > 0 and λ(ρ) < 0. Let {e1, . . . , e6} be a
basis of the space V ∗.

• The open set Ω+(V ) := {ρ ∈ ∧3V ∗ | λ(ρ) > 0} is the GL(V )-orbit of the 3-form

(2.16) ρ = e123 + e456.

• The open set Ω−(V ) := {ρ ∈ ∧3V ∗ | λ(ρ) < 0} is the GL(V )-orbit of the 3-form

(2.17) ρ = Ψ + Ψ̄ = 2ReΨ.

where Ψ = (e1 − ie2) ∧ (e3 − ie4) ∧ (e5 − ie6) ∈ ∧3V ∗C .

A basis {e1, . . . , e6} of V ∗ in which the 3-form ρ ∈ ∧3V ∗ is expressed by (2.16) or (2.17)
is called an adapted basis to the endomorphism Kρ. It is easy to check in an adapted
basis that K2

ρ = λ(ρ)IdV .
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From now on we are concerned with the open set Ω−(V ) = {ρ ∈ ∧3V ∗ | λ(ρ) < 0}.
If ρ ∈ Ω− then the endomorphism Jρ : V → V defined by

(2.18) Jρ(X) :=
1√
−λ(ρ)

Kρ(X)

gives rise to an almost-complex structure on V . Actually, we can see that every almost-
complex structure on V may be written as J = Jρ for some ρ ∈ Ω−(V ).

Lemma 2.2.6. Let J : V → V be an almost-complex structure on V, then there exists
a ρ ∈ Ω−(V ) and a volume form ν ∈ ∧6V ∗ such that J = Jρ.

Proof. Let J : V → V be an almost-complex structure on V and {e1, . . . , e6} an adapted
basis of V to J , namely:

Je1 = −e2, Je3 = −e4, Je5 = −e6.

Let {e1, . . . , e6} be the dual basis and consider the complex 3-form Ψ = (e1− ie2)∧ (e3−
ie4) ∧ (e5 − ie6). If we take the real part:

ρ = ReΨ = e135 − e146 − e236 − e245

and the volume form ν = 2e123456, then by (2.15) it is straight to check that Kρ = J .

As a consequence of the previous lemma, there is a natural and surjective mapping
Ω−(V ) → {J : V → V | J2 = −IdV } assigning to each ρ ∈ Ω−(V ) the endomorphism
J := Jρ through relation (2.18). From now on, we work better with almost-complex
structures J∗ : V ∗ → V ∗ defined on the dual of the vector space. As a matter of notation,
given a volume form ν ∈ ∧6V ∗, we denote by J̃∗ρ : V ∗ → V ∗ the endomorphism dual to
Kρ and J∗ρ the corresponding almost-complex structure on V ∗.

Remark 2.2.7. Let ν ∈ ∧6V ∗ be a fixed volume form, then the scalar λ(ρ) enables to
construct a specific volume form φ(ρ) :=

√
|λ(ρ)|ν ∈ ∧6V ∗ such that the action of the

dual endomorphism J∗ρ on 1-forms is given by the formula

(2.19)
(
(J∗ρα)(X)

)
φ(ρ) = α ∧ ιXρ ∧ ρ,

for any α ∈ V ∗ and X ∈ V .

2.2.2 Complex structures with closed (3, 0)-form

From now on, let g be a real solvable Lie algebra of dimension six. We recall that
we are concerned with the complex structures on g admitting a non-zero closed (3,0)-
form. For this goal we consider ideas in [19, 36, 37, 84]. In the context of symplectic
half-flat structures some specific results were obtained in [30] that allowed to classify
6-dimensional solvable Lie algebras admitting such structures.
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Let Z3(g) = {ρ ∈ ∧3g∗ | dρ = 0}. The map Ω−(g) → {J : g → g | J2 = −Idg}
restricts to the surjective mapping

{ρ ∈ Z3(g) | λ(ρ) < 0, d(J∗ρρ) = 0} → {J : g→ g | J2 = −IdV , ∃Ψ ∈ ∧3,0g∗ closed}.

The closed (3,0)-form is given by Ψ = ρ+ iJ∗ρρ. The next result provides an equivalent
condition to determine the existence of such complex structures on g.

Lemma 2.2.8. Let g be a Lie algebra and ν a volume form on g. Then, g admits an
almost-complex structure with a non-zero closed (3, 0)-form if and only if there exists
ρ ∈ Z3(g) such that the endomorphism J̃∗ρ : g∗ → g∗ defined by

(2.20)
(

(J̃∗ρα)(X)
)
ν = α ∧ ιXρ ∧ ρ,

for any α ∈ g∗ and X ∈ g, satisfies that J̃∗ρρ is closed and tr(J̃∗2ρ ) < 0.

Proof. Let J : g −→ g be an almost-complex structure admitting a non-zero (3,0)-form
Ψ = Ψ+ + iΨ− which is closed. Let ρ = Ψ+. Then, λ(ρ) < 0, J = Jρ is determined
by (2.19) and the form J∗ρρ = Ψ− is closed. Since the associated form φ(ρ) is a volume
form on g, we have that ν = s φ(ρ) for some s 6= 0. Now, for the endomorphism
J̃∗ρ : g∗ −→ g∗ given by (2.20) we get

s
(

(J̃∗ρα)(X)
)
φ(ρ) =

(
(J̃∗ρα)(X)

)
ν = α ∧ ιXρ ∧ ρ =

(
(J∗ρα)(X)

)
φ(ρ),

for any α ∈ g∗ and X ∈ g. This implies that J∗ρ = sJ̃∗ρ . Therefore, tr(J̃∗2ρ ) < 0 if and

only if tr(J∗2ρ ) < 0, and moreover, d(J̃∗ρρ) = 0 if and only if d(J∗ρρ) = 0.

As a consequence of Lemma 2.2.3, Theorem 2.1.25 and Corollary 2.1.17 we concen-
trate on unimodular (non-nilpotent) solvable Lie algebras with b3(g) ≥ 2. The complete
lists of the Lie algebras used to obtain the main result of this section can be found in
the Appendix B.

Examples

For the computation of the endomorphism J̃∗ρ we use the simplest volume form ν =
e123456, where {e1, . . . , e6} is the basis of g∗ in which the Lie algebra is expressed. The
next three concrete examples show how we proceed in general in the proofs of Proposi-
tions 2.2.12 and 2.2.13 below in order to exclude candidates.

Example 2.2.9. The classification of nilpotent Lie algebras admitting integrable com-
plex structures obtained by Salamon [82] is recovered using this method. For instance
the Lie algebra h8 = (0, 0, 0, 0, 0, 12) admits up to isomorphism a unique complex struc-
ture given by dω1 = dω2 = 0, dω3 = ω11̄ (see Table 3.1). The almost-complex structure
defined by the (1, 0)-basis {ω1 = e1 − ie2, ω2 = e3 − ie4, ω3 = e5 + 2ie6} satisfies that
the complex (3, 0)-form Ψ = ω123 is closed.
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Example 2.2.10. Let us consider the indecomposable solvable Lie algebra g = A0,−1
6,25 =

(e23, e26,−e36, 0, e46, 0). Any ρ ∈ Z3(g) is given by

ρ = a1e
123 + a2e

126 + a3e
136 + a4e

234 + a5(e235 − e146) + a6e
236 + a7e

246

+a8e
256 + a9e

346 + a10e
356 + a11e

456,

for a1, . . . , a11 ∈ R. Let J̃∗ρ be the endomorphism given by (2.20). A direct calculation
shows that

tr(J̃∗2ρ ) = 6(a2
5 − a1a11)2 ≥ 0.

In this case it is not worth evaluating the closedness of J̃∗ρρ because by Lemma 2.2.8
there is no almost-complex structure J∗ρ coming from a closed 3-form ρ ∈ Z3(g) and in
particular g does not admit a closed complex volume form.

Example 2.2.11. Let us consider the 5 ⊕ 1 decomposable solvable Lie algebra g =
A−1

5,15 ⊕ R = (e15 + e25, e25,−e35 + e45,−e45, 0, 0). Any ρ ∈ Z3(g) is given by

ρ = a1e
125 + a2e

135 + a3e
145 + a4e

156 + a5e
235 + a6(e236 − e146) + a7e

245

+a8e
246 + a9e

256 + a10e
345 + a11e

356 + a12e
456,

for a1, . . . , a12 ∈ R. Let J̃∗ρ be the endomorphism given by (2.20). Then, we have

d(J̃∗ρρ) = 2a2
6

(
2a1e

1256 + a2(e1456 + e2356) + (a3 + a5)e2456 − 2a10e
3456

)
,

1
6tr(J̃∗2ρ ) = (a3 + a5)2a2

6 + 4(a1a10 − a2a7)a2
6 − 2(a3 − a5)a2a6a8 + a2

2a
2
8.

Since the form J̃∗ρρ must be closed, we distinguish two cases depending on the vanishing

of the coefficient a6. If a6 = 0 then tr(J̃∗2ρ ) = 6(a2a8)2 ≥ 0, and if a6 6= 0 then

a1 = a2 = a3 + a5 = a10 = 0 and so tr(J̃∗2ρ ) = 0. Consequently, Lemma 2.2.8 assures
that there is no almost-complex structure J∗ρ admitting a non-zero closed (3,0)-form.

2.2.3 The classification

We start the classification problem of finding the solvable and unimodular six-dimensional
Lie algebras g with b3(g) ≥ 2 admitting an almost-complex structure with closed com-
plex (3, 0)-form. Actually, we answer the equivalent question underlying Lemma 2.2.8.
Firstly we consider the study in decomposable Lie algebras and then in the indecompos-
able ones.

The decomposable case

We tackle the classification problem first in the decomposable case. Let g = b ⊕ c be a
decomposable unimodular solvable six-dimensional real Lie algebra. The unimodularity
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and solvability of g and Lemma 2.2.3 imply restrictions on the factors. In fact, g is
unimodular, resp. solvable, if and only if b and c are unimodular, resp. solvable. More-
over, by Lemma 2.2.3 and the well-known formula relating the cohomology of g with the
cohomologies of the factors, we have

(2.21) b3(b)b0(c) + b2(b)b1(c) + b1(b)b2(c) + b0(b)b3(c) = b3(g) ≥ 2.

Proposition 2.2.12. Let g = b⊕c be a six-dimensional decomposable unimodular (non-
nilpotent) solvable Lie algebra admitting a complex structure with a non-zero closed (3, 0)-
form. Then, g is isomorphic to e(2)⊕ e(1, 1), A−1,−1,1

5,7 ⊕ R or Aα,−α,15,17 ⊕ R with α ≥ 0.

Proof. Since g is decomposable, we divide the proof in the three cases 3⊕ 3, 4⊕ 2 and
5⊕ 1. In the 3⊕ 3 case the inequality (2.21) is always satisfied. The 3⊕ 3 decomposable
unimodular (non nilpotent) solvable Lie algebras are e(2)⊕ e(2), e(2)⊕ e(1, 1), e(2)⊕ h3,
e(2)⊕R3, e(1, 1)⊕ e(1, 1), e(1, 1)⊕ h3 and e(1, 1)⊕R3 (see Table B.1 in the Appendix B
for a description of the Lie algebras). An explicit computation shows that there is no
ρ ∈ Z3 satisfying the conditions λ(ρ) < 0 and d(J∗ρρ) = 0, except for g = e(2)⊕ e(1, 1).
We give an example of a closed complex volume form for e(2) ⊕ e(1, 1) in Appendix B,
Table B.1.

Since R2 is the only 2-dimensional unimodular Lie algebra, the 4⊕ 2 case is reduced
to the study of g = b ⊕ R2 for any 4-dimensional unimodular (non nilpotent) solvable
Lie algebra b satisfying (2.21), i.e. b3(b) + 2b2(b) + b1(b) ≥ 2. The resulting Lie algebras

are: A−2
4,2⊕R2, Aα,−1−α

4,5 ⊕R2 with −1 < α ≤ −1
2 , A

α,−α
2

4,6 ⊕R2, A4,8⊕R2 and A4,10⊕R2

(see Table B.1). However, all of them satisfy λ(ρ) ≥ 0 for any ρ ∈ Z3(g).

Finally, the 5 ⊕ 1 case consists of Lie algebras of the form g = b ⊕ R for any 5-
dimensional unimodular (non-nilpotent) solvable Lie algebra b such that (b2(b), b3(b)) 6=
(0, 0), (1, 0), (0, 1). Therefore, the Lie algebras are: A−1,−1,1

5,7 ⊕ R, A−1,β,−β
5,7 ⊕ R with

0 < β < 1, A−1
5,8⊕R, A−1,−1

5,9 ⊕R, A−1,0,γ
5,13 ⊕R with γ > 0, A0

5,14⊕R, A−1
5,15⊕R, A0,0,γ

5,17 ⊕R
with 0 < γ < 1, Aα,−α,15,17 with α ≥ 0, A0

5,18⊕R, A−1,2
5,19 ⊕R, A1,−2

5,19 ⊕R, A0
5,20⊕R, A0,±1

5,26 ⊕R,

A−1,−1
5,33 ⊕R and A0,−2

5,35 ⊕R. The explicit computation of each case allows us to distinguish
the following three situations:

• If g = A−1,−1
5,9 ⊕ R or A0,±1

5,26 ⊕ R, then λ(ρ) ≥ 0 for all ρ ∈ Z3(g).

• The Lie algebras A−1,−1,1
5,7 ⊕ R and Aα,−α,15,17 ⊕ R with α ≥ 0 admit closed complex

volume forms (see Table B.1 for a concrete example).

• For the rest of Lie algebras there is no ρ ∈ Z3(g) satisfying d(J∗ρρ) = 0 and λ(ρ) < 0
simultaneously.

In conclusion, in the 5 ⊕ 1 case the only possibilities are A−1,−1,1
5,7 ⊕ R and the family

Aα,−α,15,17 ⊕ R with α ≥ 0.

The indecomposable case

Next we obtain the classification when g is indecomposable.
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Proposition 2.2.13. Let g be a six-dimensional indecomposable unimodular (non nilpo-
tent) solvable Lie algebra admitting a complex structure with a non-zero closed (3, 0)-
form. Then, g is isomorphic to N0,−1,−1

6,18 , A0,0,1
6,37 , A0,1,1

6,82 , A0,0,1
6,88 , B1

6,4 or B1
6,6.

Proof. The Lie algebras g such that b3(g) ≥ 2 are listed in Table B.2 of the Appendix B.
The indecomposable case is long to analyse because of the amount of Lie algebras, but
after performing the computations we distinguish the following three situations:

• Let g be one of the following Lie algebras: Aa,−2a,2a−1
6,13 (a ∈ R − {−1, 0, 1

3 ,
1
2}),

Aa,−a,−1
6,13 (a > 0, a 6= 1), A

1
3
,− 2

3
6,14 , Aa,b6,18 with (a, b) ∈ {(−1

2 ,−2), (−2, 1)}, Aa,b6,25 with

(a, b) ∈ {(0,−1), (−1
2 ,−1

2)}, A0,b,−b
6,32 (b > 0), A0,0,ε

6,34 (ε = 0, 1), Aa,b,c6,35 with a > 0 and

(b, c) ∈ {(−2a, a), (−a, 0)} and A0,0,c
6,37 (c > 0, c 6= 1). Then, λ(ρ) ≥ 0 for any ρ ∈ Z3(g).

• The Lie algebras N0,−1,−1
6,18 , A0,0,1

6,37 , A
0,1,1
6,82 , A

0,0,1
6,88 , B

1
6,4 and B1

6,6 admit non-zero closed
(3,0)-forms (see Table B.2 for a concrete example).

• For the rest of Lie algebras there is no ρ ∈ Z3(g) such that d(J∗ρρ) = 0 and λ(ρ) < 0.

Finally, Propositions 2.2.12 and 2.2.13 provide the final classification theorem:

Theorem 2.2.14. Let g be an unimodular (non-nilpotent) solvable Lie algebra of di-
mension 6. Then, g admits a complex structure with a non-zero closed (3, 0)-form if and
only if it is isomorphic to one in the following list:

g1 = A−1,−1,1
5,7 ⊕ R = (e15,−e25,−e35, e45, 0, 0),

gα2 = Aα,−α,15,17 ⊕ R = (αe15+e25,−e15+αe25,−αe35+e45,−e35−αe45, 0, 0), α ≥ 0,

g3 = e(2)⊕ e(1, 1) = (0,−e13, e12, 0,−e46,−e45),

g4 = A0,0,1
6,37 = (e23,−e36, e26,−e56, e46, 0),

g5 = A0,1,1
6,82 = (e24 + e35, e26, e36,−e46,−e56, 0),

g6 = A0,0,1
6,88 = (e24 + e35,−e36, e26,−e56, e46, 0),

g7 = B1
6,6 = (e24 + e35, e46, e56,−e26,−e36, 0),

g8 = N0,−1,−1
6,18 = (e16 − e25, e15 + e26,−e36 + e45,−e35 − e46, 0, 0),

g9 = B1
6,4 = (e45, e15 + e36, e14 − e26 + e56,−e56, e46, 0).

Remark 2.2.15. Only the Lie algebras g1 and g5 are completely solvable.

2.3 Existence of Lattices

This section deals with the existence of lattices on solvable Lie groups. Good references
for this subject are Corwin and Greenleaf [25] and Raghunathan [77].
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It is not trivial in general to know whether a Lie group G admits a lattice or not.
In the context of nilpotent Lie groups the answer to this question is related with some
specific form of the structure equations as it is stated in following well-known theorem
obtained by Malcev [61]. A Lie algebra g is said to admit a rational structure if there is a
rational Lie subalgebra gQ such that g ∼= gQ⊗R. Equivalently, g has a rational structure
if and only if there is an R-basis {X1, . . . , Xn} for g having rational structure constants,
and then gQ := Q〈X1, . . . , Xn〉 provides a rational structure such that g = gQ⊗R. Recall
that given a real n-dimensional vector space V , a lattice L of maximal rank of V is a
free abelian group L = Z〈X1, . . . , Xn〉 where {X1, . . . , Xn} is a R-basis of V .

Theorem 2.3.1 (Malcev [61, Theorem 7],[77, Theorem 2.12]). Let N be a simply con-
nected nilpotent Lie group and let n be its Lie algebra. Then N admits a lattice if and
only if n admits a rational structure. Moreover:

1. if L is a lattice of maximal rank in n contained in nQ then the group generated by
expN L is a lattice in N .

2. if Γ is a lattice in N then L := Z〈logN Γ〉 is a lattice of maximal rank in the
underlying vector space of n such that the structure constants with respect to any
basis contained in L are rational.

Remark 2.3.2. Malcev’s Theorem states a simple criterion to decide if a given connected
and simply connected nilpotent Lie group admits a lattice or not. In particular, it
it immediate to check that all the six-dimensional nilpotent Lie algebras obtained in
Theorem 2.1.25 give rise to nilmanifolds.

The situation changes when we consider a solvable and non-nilpotent Lie group G.
In general it is not easy to decide whether the Lie group admits a lattice or not, but it is
possible to find such lattices in some cases. However, most of low-dimensional solvable
Lie groups are almost-nilpotent and sometimes it is possible to construct one lattice
for them. Roughly speaking, almost-nilpotent Lie groups are those having nilradical of
codimension 1 (recall that the nilradical of a Lie group G is the maximal nilpotent Lie
subgroup of G).

Definition 2.3.3. A Lie group G is almost-nilpotent if it can be written as G = RnµN
where N is the nilradical of G and µ : R → Aut(N) is a one-parameter subgroup of
Aut(N). The underlying Lie algebra is g = Rn(µ(t)∗)e n. When the nilradical is abelian,
namely N = Rn, then G is called almost-abelian.

Recall that given a Lie algebra g, the space of derivations of g is the subspace of
linear maps of g satisfying the Leibnitz rule d(g) := {f : g→ g | f([X,Y ]) = [f(X), Y ] +
[X, f(Y )]} ⊂ gl(g). It is shown in [13] that for every t ∈ R is possible to recover the
automorphisms µ(t) of N by means of the derivations of the Lie algebra d(n):

µ(t) = expN ◦ expAut(|n|)(tϕ) ◦ logN , ∀t ∈ R, ϕ ∈ d(n)

and (µ(t)∗)e = expAut(|n|)(tϕ), where e is the identity element of N and Aut(|n|) is the
Lie group of automorphisms of the vector space underlying the Lie algebra n. Recall that
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if N is abelian then the exponential expN : n → N is the identity map. The following
result allows to construct a lattice in the case that G is almost-nilpotent.

Lemma 2.3.4 (Bock [13, Chapter 2]). Let G = R nµ N be an (n + 1)-dimensional
almost-nilpotent Lie group with nilradical N and n the Lie algebra of N . If there exists
t1 6= 0 and a rational basis {X1, . . . , Xn} of n such that the coordinate matrix of de(µ(t1))
in such a basis is integer, then Γ = t1Z nµ expN (Z〈X1, . . . , Xn〉) is a lattice of G.

In this section we show that the simply-connected solvable Lie groups Gk corre-
sponding to the Lie algebras gk in Theorem 2.2.14 admit lattices Γk of maximal rank.
Therefore, we get compact complex solvmanifolds Gk/Γk with holomorphically trivial
canonical bundle. Recall that the Lie algebra g8 is the underlying real Lie algebra of
the Nakamura manifold. Although g8 has four-dimensional nilradical and hence is not
almost-nilpotent, Yamada [102] shows that it admits a lattice. The rest of Lie algebras
are either almost-nilpotent or direct sum of an almost-nilpotent Lie algebra with another
one, therefore we can apply the techniques explained previously.

Proposition 2.3.5. For any k 6= 2, the connected and simply-connected Lie group Gk
with underlying Lie algebra gk admits a lattice.

For k = 2, there exists a countable number of distinct α’s, including α = 0, for which
the connected and simply-connected Lie group with underlying Lie algebra gα2 admits a
lattice.

Proof. The Lie algebra g8 is not almost-nilpotent, but its corresponding connected and
simply-connected Lie group G8 admits a lattice by [102]. It is not hard to see that for
k 6= 8 the Lie algebra gk of Theorem 2.2.14 is either almost-nilpotent or a product of
almost-nilpotent Lie algebras. In fact, we find the following correspondence with some
of the Lie algebras studied in [13] (we use the notation in that paper in order to compare
directly with the Lie algebras therein): g1

∼= g−1,−1,1
5,7 ⊕R, g0

2
∼= g0,0,1

5,17 ⊕R, g3
∼= g0

3,5⊕g−1
3,4,

g4
∼= g0,0,−1

6,37 , g5
∼= g0,−1,0

6,88 , g6
∼= g0,−1,−1

6,92 and g7
∼= g∗6,92. For these cases, the existence

of lattices in the corresponding Lie groups is already proved in [13]. So, it remains to
study gα2 with α > 0, and g9.

We show first that there exists a countable subfamily of gα2 with α > 0 whose corre-
sponding Lie group Gα2 admits lattice. The 5-dimensional factor Aα,−α,15,17 in the decom-

posable Lie algebra gα2 = Aα,−α,15,17 ⊕ R is given by

[e1, e5] = −αe1 + e2, [e2, e5] = −e1 − αe2, [e3, e5] = αe3 + e4, [e4, e5] = −e3 + αe4,

which is almost abelian since Aα,−α,15,17 = R nade5
R4. If we denote by Bα the coordinate

matrix of the derivation ade5 : R4 → R4 in the basis {e1, e2, e3, e4}, then the coordinate
matrix of de(µ(t)) is the exponential

etBα =


eαtcos(t) eαtsin(t) 0 0

−eαtsin(t) eαtcos(t) 0 0

0 0 e−αtcos(t) e−αtsin(t)

0 0 −e−αtsin(t) e−αtcos(t)

 .
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If tl = lπ with l ∈ Z and l > 0, then the characteristic polynomial of the matrix etlBα is

p(λ) = (1− (−1)l(eαtl + e−αtl)λ+ λ2)2, which is integer if αl,m = 1
lπ log(m+

√
m2−4
2 ) with

m ∈ Z and m > 2. Moreover, etlBα = P−1Cl,mP , where

P−1 =


0 0 ε β+

ε β+ 0 0

0 0 −ε β−

−ε β− 0 0

 , Cl,m =


0 −1 0 0

1 m(−1)l 0 0

0 0 0 −1

0 0 1 m(−1)l

 ,

with ε = 1√
m2−4

and β± = m2−4±(−1)l
√
m2−4

2(m2−4)
. Taking the basis

X1 = ε(e2 − e4), X2 = β+e2 + β−e4, X3 = ε(e1 + e3), X4 = β+e1 + β−e3,

of R4 and using Lemma 2.3.4 we have that Γ′ = lπZnµ Z〈X1, . . . , X4〉 is a lattice of the

simply-connected Lie group associated to Aα,−α,15,17 with α = αl,m. Hence, Γ = Γ′ × Z is

a lattice in G
αl,m
2 .

The Lie algebra g9 can be seen as an almost-nilpotent Lie algebra g = R nade6
h,

where h = 〈e1, . . . , e5 | [e1, e4] = −e3, [e1, e5] = −e2, [e4, e5] = −e1〉 is a 5-dimensional
nilpotent Lie algebra. Proceeding in a similar manner as for gα2 and denoting by B
the coordinate matrix of the derivation ade6 : h → h in the basis {e1, . . . , e5} then the
coordinate matrix of de(µ(t)) is the exponential etB:

etB =



1 0 0 0 0

0 cos(t) sin(t) 1
2(−tcos(t) + sin(t)) t

2sin(t)

0 −sin(t) cos(t) t
2sin(t) 1

2(tcos(t) + sin(t))

0 0 0 cos(t) −sin(t)

0 0 0 sin(t) cos(t)


.

Hence, we compute the characteristic polynomial of de(µ(t)) getting that p(λ) = (λ2 −
2λcos(t) + 1)2. If t1 = π then p(λ) ∈ Z[λ] and the coordinate matrix of de(µ(t1)) in the
basis {X1 = π

2 e1, X2 =
√

π
2 e4, X3 =

√
π
2 e5, X4 = (π2 )3/2e2 +

√
π
2 e4, X5 = −(π2 )3/2e3 +√

π
2 e5} of h is

C =



1 0 0 0 0

0 −2 0 −1 0

0 0 −2 0 −1

0 1 0 0 0

0 0 1 0 0


.
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Moreover, {X1, . . . , X5} is a rational basis of h because [X1, X2] = [X1, X4] = −X3 +X5,
[X1, X3] = [X1, X5] = X2 −X4, [X2, X3] = [X2, X5] = −[X3, X4] = −X1. Hence, if we
denote by H the simply-connected Lie group corresponding to h, then using Lemma 2.3.4
we have that Γ = πZ nµ expH(Z〈X1, . . . , X5〉) is a lattice in the Lie group G9.

Remark 2.3.6. Bock found a lattice for the Lie group associated to Aα,−α,12 with α =

α1,3 = 1
π log 3+

√
5

2 , that is, for l = 1 and m = 3. Notice that our result for k = 2 is
consistent with the result obtained by Witte in [100, Prop. 8.7], where it is shown that
only countably many non-isomorphic simply-connected Lie groups admit a lattice, so
that one cannot expect a lattice to exist for any real α > 0.

The Lie algebra g9 does not appear in [13]. Its nilradical is the 5-dimensional Lie
algebra h, which is isomorphic to g5,3 (in the notation of [13]), but there are only two solv-
able and unimodular Lie algebras with nilradical g5,3 considered in that paper (namely
g−1

6,76 and g6,78) which are both completely solvable, but g9 is not.

We summarize the result of Salamon (Theorem 2.1.25) together with the results of
Theorem 2.2.14, Proposition 2.3.5 and Proposition 2.1.31 in the following theorem:

Theorem 2.3.7. Let M = G/Γ be a six-dimensional solvmanifold endowed with an
invariant complex structure J with holomorphically trivial canonical bundle, then the
underlying Lie algebra g is isomorphic to h1, . . . , h16, h

−
19 or h+

26 if g is nilpotent or

g1, g
α≥0
2 , g3 . . . , g8 or g9 if g is not nilpotent.



Chapter 3

Invariant complex structures on
six-dimensional solvmanifolds

In this chapter we deal with the problem of obtaining a classification of invariant complex
structures with holomorphically trivial canonical bundle on six-dimensional solvmani-
folds. As we proved in the previous chapter, this problem is equivalent to classify the
complex structures with a non-zero closed (3, 0)-form on the underlying solvable Lie
algebras. The chapter is divided in two sections, the first one devoted to nilpotent Lie
algebras and the second to solvable Lie algebras. Since the invariant complex structures
on nilmanifolds have always holomorphically trivial canonical bundle, the goal of Section
3.1 is to obtain a complete description of such structures on six-dimensional nilmanifolds
with underlying real Lie algebras h1, . . . , h16, h−19, h+

26, according to [82]. There have been
several partial approaches to this problem. For instance, Andrada, Barberis and Dotti [4]
obtain a classification of abelian complex structures on the class of six-dimensional Lie
algebras. On the other hand, the non-nilpotent complex structures on six-dimensional
nilpotent Lie algebras are classified by Ugarte and Villacampa [96]. Therefore, we study
the non-abelian nilpotent complex structures for the nilpotent Lie algebras and the final
classification of invariant complex structures on nilmanifolds is summarized in Table 3.1.
On the other hand, Section 3.2 deals with the case of solvmanifolds endowed with an
invariant complex structure with holomorphically trivial canonical bundle. We have seen
in the previous chapter that the underlying real Lie algebras of such solvmanifolds are
g1, . . . , g9. By using the techniques developed by Hitchin considered in Section 2.2, we
describe the whole space of complex structures with a closed (3, 0)-form on these Lie
algebras. The reduced expressions of the complex structures are finally summarized in
Table 3.2. In order to lighten the exposition of this part, we have included some long
computations in the Appendix A.

3.1 Complex structures on nilmanifolds

We have seen that any invariant complex structure on a compact manifold of the form
M = G/Γ can be referred to a complex structure on the Lie algebra g of the group.
Hence, it is natural to define a notion of isomorphic complex structures defined on the
same Lie algebra.
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Definition 3.1.1. Let g be a Lie algebra endowed with two complex structures J and
J ′. J and J ′ are said to be equivalent (or isomorphic) if there is an automorphism
F : g −→ g of the Lie algebra, that is F [·, ·] = [F ·, F ·], such that F ◦ J = J ′ ◦ F .

Remark 3.1.2. It is proved that if J, J ′ : g→ g are two almost-complex structures on g
they are equivalent if and only if there exists a linear isomorphism G : (g∗)1,0

J −→ (g∗)1,0
J ′

commuting with the Chevalley-Eilenberg differential, namely d◦G = G◦d, where (g∗)1,0
J

and (g∗)1,0
J ′ denote the (1, 0)-subspaces of g∗C associated to J and J ′ respectively.

We recall that the abelian [4] and the non-nilpotent [96] complex structures on nilpo-
tent Lie algebras of dimension 6 have already been classified. Hence, we start studying
the remaining case, that is, the non-abelian nilpotent complex structures.

3.1.1 The non-abelian nilpotent case

Now we start with the study of the class of non-abelian nilpotent complex structures
on six-dimensional nilpotent Lie algebras. In order to provide such classification, our
starting point is the following result:

Proposition 3.1.3 (Ugarte [95, Proposition 2]). Let J be a nilpotent complex structure
on a nilpotent Lie algebra g of dimension 6. There is a basis {ωj}3j=1 for (g∗)1,0 satisfying

(3.1)


dω1 = 0,

dω2 = ε ω11̄ ,

dω3 = ρω12 + (1− ε)Aω11̄ +B ω12̄ + C ω21̄ + (1− ε)Dω22̄,

where A,B,C,D ∈ C, and ε, ρ ∈ {0, 1}.

We recall that by ωjk (resp. ωjk) we mean the wedge product ωj∧ωk (resp. ωj∧ωk),
where ωk indicates the complex conjugation of ωk. From now on, we shall use a similar
abbreviated notation for “basic” forms of arbitrary bidegree.

Remark 3.1.4. It is worth noticing that equations (3.1) above include the abelian com-
plex structures as those for which ρ = 0. On the other hand, the complex parallelizable
structures correspond to ε = 0 and A = B = C = D = 0, and the possible Lie algebras
are h1 (for ρ = 0) and h5 (for ρ = 1), that is, a complex torus and the Iwasawa manifold
respectively.

Now we start the classification up to equivalence of non-abelian nilpotent complex
structures. We divide the study, according to the step of nilpotency of the Lie algebra,
in 2-step and 3-step cases.
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2-step nilpotent Lie algebras

Let us start with non-abelian nilpotent complex structures on 2-step NLAs g of dimen-
sion 6. Such a Lie algebra has first Betti number at least 3, and if it is equal to 3 then
necessarily the coefficient ε in (3.1) is non-zero. We consider firstly the case ε = 0, that
is, the Lie algebra has first Betti number ≥ 4. We finish this section considering ε = 1.

The following proposition provides a further reduction of the equations (3.1) when
ε = 0.

Proposition 3.1.5. Let J be a complex structure on a 2-step nilpotent Lie algebra g of
dimension 6 with first Betti number ≥ 4. If J is not complex-parallelizable, then there
is a basis {ωj}3j=1 of (g∗)1,0 such that

(3.2) dω1 = dω2 = 0, dω3 = ρω12 + ω11̄ + λω12̄ +Dω22̄,

where D ∈ C with ImD ≥ 0 and λ ∈ R≥0. Moreover, if we denote x = ReD and
y = ImD, then:

(i) If λ = ρ, then the Lie algebra g is isomorphic to

(i.1) h2, for y 6= 0;

(i.2) h3, for ρ = y = 0 and x 6= 0;

(i.3) h4, for ρ = 1, y = 0 and x 6= 0;

(i.4) h6, for ρ = 1 and x = y = 0;

(i.5) h8, for ρ = x = y = 0.

(ii) If λ 6= ρ, then the Lie algebra g is isomorphic to

(ii.1) h2, for 4y2 > (ρ− λ2)(4x+ ρ− λ2);

(ii.2) h4, for 4y2 = (ρ− λ2)(4x+ ρ− λ2);

(ii.3) h5, for 4y2 < (ρ− λ2)(4x+ ρ− λ2).

Proof. In [95, Lemma 11] it is proved that under these conditions there is a basis {σj}3j=1

for (g∗)1,0 such that

(3.3) dσ1 = dσ2 = 0, dσ3 = ρ σ12 + σ11̄ +B σ12̄ +Dσ22̄,

where B,D ∈ C and ρ ∈ {0, 1}.
If B 6= 0 then we can take any non-zero solution z of the equation z̄ B

|B| = z, and

the complex equations (3.3) reduce to (3.2) with λ = |B| with respect to the new basis
{ω1 = z σ1, ω2 = z̄ σ2, ω3 = |z|2 σ3}.

Consider now B = λ with λ ∈ R≥0 in (3.3). If D 6= 0, then with respect to the new
basis {ω1 = −D̄ σ2, ω2 = σ1 + λσ2, ω3 = D̄ σ3} we arrive at (3.2) with D̄ instead of D.

Finally, the second part of the proposition follows directly from [95, Proposition 13].
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Remark 3.1.6. From Proposition 3.1.5 we have that on the Lie algebras h6 or h8 any
two complex structures are equivalent (see Figures 3.1 and 3.2). On the other hand, the
complex equations

dω1 = dω2 = 0, dω3 = ω11̄ ± ω22̄

define two non-equivalent complex structures on h3, and any complex structure on h3

is equivalent to one of them [95, Corollary 16]. More generally, for ρ = 0 the complex
structures are abelian and the classification problem has been solved in [4] (see Corollary
3.1.23 for details in the 2-step case).

Figure 3.1: Complex structures satisfying (3.2) with ρ = λ = 0.

h2

h8h3 h3

D ∈ C

Figure 3.2: Complex structures satisfying (3.2) with ρ = λ = 1.

h2

h6h4 h4

D ∈ C

As a consequence, it remains to classify in the 2-step case the non-abelian complex
structures on the Lie algebras h2, h4 and h5. From now on, we consider in this section
that ρ = 1 and we use the notation (1, λ,D) to refer to a Lie algebra with a complex
structure admitting a (1,0)-basis {ω1, ω2, ω3} satisfying the complex equations (3.2) with
parameters ρ = 1, λ ≥ 0 and D ∈ C with ImD > 0.

We will say that two triples (1, λ,D) and (1, λ′, D′) are equivalent, denoted by
(1, λ,D) ∼ (1, λ′, D′), if the corresponding structures J and J ′ are equivalent. So,
the problem reduces to classify triples (1, λ,D) up to equivalence.

Lemma 3.1.7. Let us consider two triples (1, λ,D) and (1, t, E) as above.

(i) If D = 0 then, (1, t, E) ∼ (1, λ, 0) if and only if t = λ and E = 0.
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(ii) If D 6= 0 then, (1, t, E) ∼ (1, λ,D) if and only if there exist non-zero complex
numbers e, f such that E = De/ē and

(3.4)

( |f |2
ē
− 1

)
(D̄ē−De)2 = (λf̄ − tf)(λD̄ēf − tDef̄).

Proof. The structure equations corresponding to the triples (1, λ,D) and (1, t, E) are

dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + λω12̄ +Dω22̄,

dσ1 = dσ2 = 0, dσ3 = σ12 + σ11̄ + tσ12̄ + Eσ22̄,

where λ, t ≥ 0 and ImD, ImE ≥ 0. Then (1, t, E) ∼ (1, λ,D) if and only if there
exists an automorphism of the Lie algebra preserving the complex equations, i.e. there
is (mij) ∈ GL(3,C) such that σi =

∑3
j=1mij ω

j and

dσi =
3∑
j=1

mij dω
j , i = 1, 2, 3.

These conditions are equivalent to

σ1 = aω1 + b ω2, σ2 = c ω1 + f ω2, σ3 = m31 ω
1 +m32 ω

2 + e ω3,

and

(3.5)



(I) e = af − bc,
(II) e = |a|2 + t ac̄+ E|c|2,
(III) λe = ab̄+ t af̄ + Ecf̄ ,

(IV) 0 = āb+ t bc̄+ Ec̄f,

(V) De = |b|2 + t bf̄ + E|f |2.

Notice that m13 = m23 = 0, e 6= 0 and the coefficients m31 and m32 are not relevant.
It is straightforward to see that coefficient f must be non-zero (otherwise λ = t and

D = E) and so we can express a as

a =
e+ bc

f
.

First of all, let us suppose that D = 0. Replacing a in (IV) and using (V) we obtain
that b = 0 and therefore E = 0 by equation (V). Combining (I) and (III) we get that
λf = tf̄ . Since λ and t are real non-negative numbers, we conclude that λ = t, i.e.
(1, λ, 0) defines an equivalence class for every λ ≥ 0. This completes the proof of (i).

We suppose next thatD 6= 0. In order to solve (3.5) we transform it into an equivalent
system by doing the following substitutions. Replacing a in equation (IV) and using (V)
we can express

c̄ = − bē

De
.
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Next, in (II) we can substitute a and c and use again (V) to obtain that

De = Eē,

which implies in particular |D| = |E|. Notice that since D 6= 0 we can assume E 6= D̄
by Proposition 3.1.5. Now, c̄ = −b/E. Proceeding in a similar way in equation (III) we
get

b̄ =
λf − tf̄
1−D/Ē .

Finally, using the expressions of a, b, c above, equation (V) is equivalent to (3.4). There-
fore, given e, f ∈ C − {0} satisfying De = Eē and (3.4), it is always possible to find
a, b, c ∈ C such that system (3.5) is satisfied.

Remark 3.1.8. As a consequence of Lemma 3.1.7 (ii), when D 6= 0 a necessary condition
for (1, t, E) to be equivalent to (1, λ,D) is that |D| = |E|. Moreover, to find an equivalent
complex structure (1, t, E) it suffices to find t ≥ 0 and e, f ∈ C − {0} satisfying (3.4),
because E is necessarily given by E = De/ē.

Corollary 3.1.9. Let E 6= D̄. If (1, t, E) ∼ (1, λ,D) then, t = λ if and only if E = D.

Proof. By hypothesis D cannot be zero, so we are in case (ii) of Lemma 3.1.7. Suppose
first that λ = t in (3.4), i.e.

(D̄ē−De)2

( |f |2
ē
− 1

)
= λ2(f̄ − f)(D̄ēf −Def̄).

The right hand side of the previous equality is a real number. If it is zero then e = |f |2
(otherwise De = D̄ē would imply E = D̄); thus, e is a real number and since E = De/ē

we conclude that D = E. On the other hand, if it is a non-zero real number, then |f |
2

ē −1
must be a real number and then e ∈ R and again D = E.

Conversely, let us suppose that E = D 6= 0. In this case e ∈ R and by (3.4) we can
express it as

e = |f |2 − (λf̄ − tf)(λD̄f − tDf̄)

(D̄ −D)2
.

Notice that by hypothesis D 6= Ē = D̄. To ensure that e ∈ R it must happen that
(λf̄ − tf)(λD̄f − tDf̄) ∈ R or equivalently,

|f |2(λ2 − t2)(D̄ −D) = 0.

As f(D̄ −D) 6= 0 the only possibility to solve the previous equation is λ = t.

From the previous results it follows that it remains to consider the case when D 6= 0
and λ 6= t. The next lemma provides a simplification of equation (3.4).

Lemma 3.1.10. Let us suppose that λ 6= t, D = x + iy 6= 0 and e ∈ C − {0}. Then,
(1, λ,D) ∼ (1, t,De/ē) if and only if

(3.6) 4y2 − (t2 − λ2)(4x+ t2 − λ2) ≥ 0.
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Proof. By Lemma 3.1.7 (ii), we know that (1, λ,D) ∼ (1, t,De/ē) if and only if (3.4) is
satisfied. This condition reads, with respect to H = De, as

(H̄ −H)2
(
D̄|f |2 − H̄

)
= H̄(λf̄ − tf)(λfH̄ − tf̄H).

Taking real and imaginary parts in the expression above we obtain

(3.7)


4H2

2 (H1 − x|f |2) = |f |2(t2 − λ2)H2
2 + |f |2(t2 + λ2)H2

1

−2λt(f2
1 − f2

2 )H2
1 − 4λtH1H2f1f2,

4H2
2 (y|f |2 −H2) = 2λH2

[
tH1(f2

1 − f2
2 ) + 2tH2f1f2 − λ|f |2H1

]
,

where H = H1 + iH2 and f = f1 + if2. Observe that H2 6= 0, otherwise we get a
contradiction using the first equation of (3.7).

Substituting the second equation of (3.7) in the first one and replacing H by De, we
can express the system (3.7) ase

2
1(t2 − λ2) + 4ye1e2 + e2

2(t2 − λ2 + 4x) = 0,

2H2(y|f |2 −H2) = λ
[
tH1(f2

1 − f2
2 ) + 2tH2f1f2 − λ|f |2H1

]
,

(3.8)

where e = e1 + ie2.
To solve the first equation in (3.8) as a second degree equation in e1 we need the

discriminant to be greater than or equal to 0, i.e. 4y2 − (t2 − λ2)(4x + t2 − λ2) ≥ 0,
which is precisely condition (3.6).

Now, suppose that (3.6) holds. Then we obtain that

e1 =
e2β

λ2 − t2 , e = e2

(
β

λ2 − t2 + i

)
,

where β = 2y +
√

4y2 − (t2 − λ2)(4x+ t2 − λ2) and e2 is determined by the second
equation in (3.8).

Summing up the previous results we obtain the following:

Corollary 3.1.11. Let us suppose that λ 6= t and D = x+ iy 6= 0. If (3.6) holds then

(1, λ,D) ∼
(

1, t,D

(
β2 − (λ2 − t2)2

β2 + (λ2 − t2)2
+

2β(λ2 − t2)

β2 + (λ2 − t2)2
i

))
,

where β = 2y +
√

4y2 − (t2 − λ2)(4x+ t2 − λ2).

Comparing the inequalities (ii.1) and (ii.2) in Proposition 3.1.5 with the condi-
tion (3.6), we observe that for h2 and h4 it is possible to take t = 1 in the previous
corollary in order to get equivalences with the complex structures (i.1) and (i.3), respec-
tively. Therefore, using Corollary 3.1.9, we conclude:
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Proposition 3.1.12. Let us consider the family of complex structures

(3.9) dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄ +Dω22̄, ImD ≥ 0.

Then:

(i) any non-abelian complex structure on h2 is equivalent to one and only one structure
in (3.9) with ImD > 0;

(ii) any non-abelian complex structure on h4 is equivalent to one and only one structure
in (3.9) with D ∈ R− {0}.

The classification of complex structures on h5 requires a more subtle study.

Lemma 3.1.13. Any non-abelian complex structure on h5 which is not complex-parallelizable
belongs to one of the following families:

(I) dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + λω12̄ + iy ω22̄, where 0 ≤ 2y < |1− λ2|;

(II) dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + (x+ iy)ω22̄, where 4y2 < 1 + 4x.

Moreover,

(i) the structures in family (I) are non-equivalent;

(ii) the structures in family (II) are non-equivalent;

(iii) a structure (1, λ, iy) in family (I) is equivalent to a structure in family (II) if and
only if 2λ2 ∈ [0, 1) and 2y ∈ [λ2, 1− λ2).

Proof. Let us consider a complex structure given by (1, λ,D = x+ i y) on h5, i.e.

4y2 < (1− λ2)(4x+ 1− λ2),

according to Proposition 3.1.5 (ii.3). If λ2 ≥ 2x, then (1, λ,D) ∼ (1,
√
λ2 − 2x, i|D|)

because (3.6) expresses simply as 4|D|2 ≥ 0 and it trivially holds. On the other hand, if
λ2 < 2x, then (1, λ,D) ∼ (1, 0, E), where E is given in Corollary 3.1.11, because in this
case 4y2 + λ2(4x− λ2) ≥ 0, that is, condition (3.6) is satisfied.

To study further equivalences, it is clear that structures in family (I) are non-
equivalent and the same holds for structures in family (II). Now let us consider the
triples (1, λ, iy) and (1, 0, E). Then, (3.6) expresses simply as

(3.10) 4y2 ≥ λ4.

Condition for family (I) implies that 4y2 < (1− λ2)2, which is equivalent to 4y2 − λ4 <
1− 2λ2, so if 2λ2 ≥ 1 then (3.10) does not hold. Now, if 0 ≤ λ2 < 1

2 then the condition

for family (I) is equivalent to y < 1
2 − λ2

2 , and therefore when 2y ∈ [λ2, 1 − λ2) the

triple (1, λ, iy) in family (I) is equivalent to the triple (1, 0, E = −1
2(λ2 −

√
4y2 − λ4 i))

in family (II).
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Proposition 3.1.14. Any non-abelian complex structure on h5 which is not complex-
parallelizable is equivalent to one and only one structure in the following families:

(I) dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + λω12̄ +Dω22̄,

where ReD = 0 and

0 ≤ 2 ImD < λ2, 0 < λ2 < 1
2 ; or

0 ≤ 2 ImD < |1− λ2|, 1
2 ≤ λ2.

(II) dω1 = dω2 = 0, dω3 = ω12 + ω11̄ +Dω22̄, where 4(ImD)2 < 1 + 4ReD.

To finish this section, it remains to study the case of 2-step NLAs g with first Betti
number equal to 3, which corresponds to ε = 1 in (3.1).

Proposition 3.1.15. Let J be a nilpotent complex structure on a nilpotent Lie algebra
g given by (3.1) with ε = 1, i.e.

dω1 = 0, dω2 = ω11̄, dω3 = ρω12 +B ω12̄ + C ω21̄,

with ρ ∈ {0, 1} and B,C ∈ C such that (ρ,B,C) 6= (0, 0, 0). Then g is 2-step nilpotent
if and only if B = ρ = 1 and C = 0. In such case g is isomorphic to h7 and all the
complex structures are equivalent.

Proof. Let Z1, Z2, Z3 be the dual basis of ω1, ω2, ω3. It is clear that [g, g] has dimension
at least 2 and is contained in 〈i(Z2 − Z̄2),ReZ3, ImZ3〉. Since ReZ3, ImZ3 are central
elements and

[i(Z2 − Z̄2), Z1] = (ρ−B)i Z3 + C̄i Z̄3,

we conclude that g is 2-step nilpotent if and only if B = ρ and C vanishes.
Let (ρ,B,C) = (1, 1, 0) and let us consider a basis {e1, . . . , e6} for g∗ given by

ω1 = 1√
2
(e2 + ie1), ω2 = 1√

2
e3 + ie4 and ω3 = e6 + ie5. Now, the Lie algebra g is

isomorphic to h7.

3-step nilpotent Lie algebras

In this section we classify, up to equivalence, nilpotent complex structures on 3-step
nilpotent Lie algebras g of dimension 6. In this case the coefficient ε = 1 in the equa-
tions (3.1) given in Proposition 3.1.3. The equivalence of complex structures in terms of
the triple (ρ,B,C) is given in the following lemma.

Lemma 3.1.16. Let g be a six-dimensional nilpotent Lie algebra endowed with a nilpo-
tent complex structure (3.1) with ε = 1 and (ρ,B,C) 6= (0, 0, 0). Then:

(i) if the structure is abelian, then there is a basis {ωj}3j=1 for (g∗)1,0 satisfying either

(3.11) dω1 = 0, dω2 = ω11̄, dω3 = ω21̄,

or

(3.12) dω1 = 0, dω2 = ω11̄, dω3 = ω12̄ + c ω21̄,

where c ∈ R, c ≥ 0.
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(ii) in the non-abelian case there is a basis {ωj}3j=1 for (g∗)1,0 satisfying

(3.13) dω1 = 0, dω2 = ω11̄, dω3 = ω12 +B ω12̄ + c ω21̄,

where B ∈ C and c ∈ R such that c ≥ 0.

Moreover, for any possible choice of parameters B and c, each structure in (3.11), (3.12)
and (3.13) defines a different equivalence class of complex structures.

Proof. If the complex structure is abelian then the pair (B,C) 6= (0, 0) since ρ = 0. If
B = 0 then it is clear that one arrives at equation (3.11). If B 6= 0 then with respect

to the basis {z ω1, |z|2 ω2, z|z|
2

B ω3}, where z is any non-zero solution of |C||B| z̄ = C
B z, the

equations (3.1) reduce to the form (3.12).
For the proof of (ii), we observe that with respect to {z ω1, |z|2 ω2, z|z|2 ω3}, where

z 6= 0 satisfies z̄ |C| = z C, the equations (3.1) reduce to (3.13).
Finally it can be seen, by a similar argument to the first part of the proof of

Lemma 3.1.7, the non-equivalence of the different complex structures defined in (3.11),
(3.12) and (3.13).

The following result provides a classification of abelian structures in the 3-step case
in a slightly more straightforward way than the one given in [4].

Corollary 3.1.17. Let J be an abelian structure on a six-dimensional nilpotent Lie
algebra g given by (3.11) or (3.12). Then, g is isomorphic to h15, except for c = 1 in
which case g ∼= h9.

Proof. For the equations (3.12), let us consider a basis {e1, . . . , e6} for g∗ given by
ω1 = −e1 + i e2, ω2 = 2e3 + 2i e4 and ω3 = 2e5 + 2(c+ 1)i e6. Then, e1, e2, e3 are closed,
de4 = e12, de5 = (c − 1)(e13 + e42) and de6 = e14 + e23. Thus, if c 6= 1 then the Lie
algebra g is isomorphic to h15; otherwise, g ∼= h9. Finally, if {e1, . . . , e6} is a basis of
1-forms satisfying the structure equations of h15, then the (1, 0)-basis:

ω1 = e1 + ie2, ω2 = 2e3 − 2ie4, ω3 = −2e5 + 2ie6,

defines the complex structure given by (3.11).

Remark 3.1.18. Notice that the family (3.13) includes the case h7 precisely for ρ =
B = 1 and c = 0 as it is shown in Proposition 3.1.15.

Next we determine the Lie algebras underlying the complex equations (3.13) in the
remaining cases. They all have first Betti number equal to 3 and are nilpotent in step 3.
Also notice that the dimension of their center is at least 2.

Proposition 3.1.19. Let J be a nilpotent complex structure on a 3-step nilpotent Lie
algebra g given by (3.13). Then g has 3-dimensional center if and only if |B| = 1, B 6= 1
and c = 0. In such case g is isomorphic to h16.



Complex structures on nilmanifolds 61

Proof. Let Z1, Z2, Z3 be the dual basis of ω1, ω2, ω3. Then, Re (Z3) and Im (Z3) are
central elements. Let T = λ1Z1 + λ̄1Z̄1 + λ2Z2 + λ̄2Z̄2 be another non-zero element in
the center of g, where (λ1, λ2) ∈ C2 − {(0, 0)}. It follows from (3.13) that

0 = [T,Z1] = λ̄1Z2 − λ̄1Z̄2 − (λ2 −Bλ̄2)Z3 − cλ̄2Z̄3,

which implies λ1 = 0, cλ2 = 0 and λ2 = Bλ̄2. Therefore, c = 0 and |B| = 1 in order the
center to be 3-dimensional, because otherwise the equation λ2 = Bλ̄2 would have trivial
solution. Moreover, B 6= 1 because g is nilpotent in step 3.

Finally, since |B| = 1 and B 6= 1, let us consider the basis {e1, . . . , e6} for g∗ given by:
e1 + i e2 = i(B − 1)ω1, e3 = ω2 + ω2̄, e4 = 1−ReB

1−B i(ω2 +B ω2̄), e5 + i e6 = (1−ReB)ω3.

Then, we can write the differential of ω3 in the form

dω3 = ω1 ∧ (ω2 +B ω2̄) =

(
i(B − 1)

1−ReB
ω1

)
∧
(

1−ReB

1−B i(ω2 +B ω2̄)

)
,

which implies that e1, e2, e3 are closed, de4 = e12, de5 = e14 and de6 = e24, i.e. g ∼=
h16.

Next we establish the conditions for the coefficients B and c in terms of the dimension
of g2 = [g, [g, g]].

Lemma 3.1.20. Let J be a complex structure on a 3-step nilpotent Lie algebra g given
by (3.13). Then:

(i) If c = |B − 1| 6= 0, then dim g2 = 1.

(ii) If c 6= |B − 1|, then dim g2 = 2.

Proof. From (3.13) we have that

g2 = [Z2 − Z̄2, g] = 〈(1−B)Z3 + c Z̄3, c Z3 + (1− B̄)Z̄3〉.

It is clear that dim g2 = 2 if and only if (1−B)(1− B̄)− c2 6= 0.

Notice that if c = |B − 1| 6= 0 then g is isomorphic to h10, h11 or h12. Since the case
c = 0 6= |B − 1|, |B| = 1 corresponds to g ∼= h16 by Proposition 3.1.19, we conclude that
for c 6= |B − 1| and (c, |B|) 6= (0, 1) the Lie algebra g is isomorphic to h13, h14 or h15.

In order to distinguish the underlying Lie algebras, we use the following argument
for g = hk, 10 ≤ k ≤ 15. Let α(g) be the number of linearly independent elements τ in
∧2g∗ such that τ ∈ d(g∗) and τ ∧ τ = 0. This number can be identified with the number
of linearly independent exact 2-forms which are decomposable, that is, α(hk) = 3 for
k = 10, 12, 13, α(hk) = 2 for k = 11, 14 and α(hk) = 1 for k = 15.

If τ is any exact element in ∧2g∗ then τ = µdω2 + µ̄ dω2̄ + ν dω3 + ν̄ dω3̄, for some
µ, ν ∈ C, and by (3.13) we have

τ = (µ− µ̄)ω11̄ + ν ω12 + (νB − ν̄c)ω12̄ + (νc− ν̄B̄)ω21̄ + ν̄ ω1̄2̄.
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A direct calculation shows that

τ ∧ τ = 2
(
|ν|2(1− |B|2 − c2) + c

(
ν2B + ν̄2B̄

))
ω121̄2̄.

Thus, if we denote p = Re ν and q = Im ν, then τ ∧ τ = 0 if and only if

(3.14)
(
1−|B|2−c2+ 2cRe B

)
p2 − (4c Im B) pq +

(
1−|B|2−c2− 2cRe B

)
q2 = 0.

Observe that the trivial solution p = q = 0 corresponds to τ = 2i Im µω11̄, according to
the fact that α(g) ≥ 1.

Figure 3.3: Complex structures satisfying (3.13).

h12

h10h11 h11

h12

h7

B ∈ C

B = 1B = 0

Proposition 3.1.21. Let J be a complex structure on a 3-step nilpotent Lie algebra g
given by (3.13) with c = |B − 1| 6= 0. Then:

(i) g ∼= h10 if and only if B = 0;

(ii) g ∼= h11 if and only if B ∈ R− {0, 1};
(iii) g ∼= h12 if and only if ImB 6= 0.

In particular, all the complex structures on h10 are equivalent.

Proof. Since c = |B − 1| 6= 0, it follows from Lemma 3.1.20 that g is isomorphic to h10,
h11 or h12.

Firstly, g ∼= h10 if and only if the coefficients in equation (3.14) vanish. In fact, for
h10 we have by Theorem 2.1.25 that ν dω3 + ν̄ dω3̄ ∈ 〈e12, e13, e14〉 for any ν ∈ C so any
pair (p, q) ∈ R2 solves the equation (3.14), which implies the vanishing of its coefficients.
Conversely, if the coefficients 1−|B|2− c2 +2cRe B, c Im B and 1−|B|2− c2−2cRe B
are all zero then necessarily B = 0 and c = 1, that is, dω1 = 0, dω2 = ω11̄ and
dω3 = (ω1 − ω1̄) ∧ ω2, and therefore the Lie algebra is isomorphic to h10.

On the other hand, notice that if c = |B − 1| 6= 0 and (B, c) 6= (0, 1) then (3.14)
is a second degree equation in p or q. Since its discriminant is a positive multiple of
(Im B)2, if Im B 6= 0 then we get two independent solutions and α(g) = 3, that is,
g ∼= h12. Finally, for Im B = 0 the equation (3.14) provides one solution and α(g) = 2,
so g ∼= h11.
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Proposition 3.1.22. Let J be a complex structure on a 3-step nilpotent Lie algebra
g given by (3.13) with c 6= |B − 1| such that (c, |B|) 6= (0, 1) and define ∆(B, c) :=
c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 < 0. Then:

(i) g ∼= h13 if and only if ∆(B, c) < 0;

(ii) g ∼= h14 if and only if ∆(B, c) = 0;

(iii) g ∼= h15 if and only if ∆(B, c) > 0.

Proof. Since c 6= |B − 1| and (c, |B|) 6= (0, 1), it follows from Lemma 3.1.20 and Propo-
sition 3.1.19 that g is isomorphic to h13, h14 or h15.

Notice that the condition (c, |B|) 6= (0, 1) implies that the coefficients of p2 and q2 in
equation (3.14) cannot be both zero, so (3.14) is always a second degree equation. Let

∆(B, c) := c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2.

Since the discriminant as a second degree equation in p is equal to −4q2∆(B, c) and
the discriminant as a second degree equation in q equals −4p2∆(B, c), the number of
independent solutions of equation (3.14) depends on the sign of ∆(B, c). Thus, for
∆(B, c) < 0 there exist two such solutions and thus g ∼= h13, for ∆(B, c) = 0 there exists
only one such solution and g ∼= h14, and finally for ∆(B, c) > 0 there is no solution and
α(g) = 1, which implies that g ∼= h15.

3.1.2 Classification of complex structures

In this section we aim to have a complete description of the complex structures on
six-dimensional nilpotent Lie algebras up to equivalence.

Firstly, we deal with the classification of abelian structures J on 6-dimensional nilpo-
tent Lie algebras obtained by Andrada, Barberis and Dotti in [4]. In the 3-step case
we use directly the equations given in Lemma 3.1.16 and Corollary 3.1.17, but in the
2-step case we have written the complex structure equations of any abelian J in a form
that fits in our Proposition 3.1.5. More precisely, in the 2-step case we first consider the
following reduction of the equations (3.2) of any abelian complex structure.

Corollary 3.1.23. If J is abelian and g is a 2-step six-dimensional nilpotent Lie algebra,
then there is a basis {ωj}3j=1 for (g∗)1,0 satisfying one of the following equations:

(i) dω1 = dω2 = dω3 = 0;

(ii) dω1 = dω2 = 0, dω3 = ω11̄ +Dω22̄, with D ∈ C, |D| = 1, ImD ≥ 0;

(iii) dω1 = dω2 = 0, dω3 = ω11̄ + ω12̄ +Dω22̄, with D ∈ C, ImD ≥ 0.

Proof. Suppose ρ = 0 in (3.2). If in addition λ = 0, then in terms of the basis
{
√
|D| ω1, |D|ω2, |D|ω3} we obtain (i) or (ii), whereas if λ 6= 0 then we get equa-

tions (iii) with respect to {ω1, λ ω2, ω3}.
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Next we illustrate how to rewrite the complex structure equations of any abelian J
on the Lie algebra h5 in a form that fits in our Corollary 3.1.23. By [4, Theorem 3.5]
there is, up to isomorphism, one family Jt, t ∈ (0, 1], of abelian structures given by

Jte
1 = e3, Jte

2 = e4, Jte
5 =

1

t
e6.

With respect to the (1,0)-basis {σ1 = e1 − i e3, σ2 = e2 − i e4, σ3 = −2i e5 − 2
t e

6}, the
complex structure equations for Jt are

dσ1 = dσ2 = 0, dσ3 = σ11̄ − i

t
σ12̄ − i

t
σ21̄ − σ22̄.

Now, by [95, Lemma 11] there exists a (1,0)-basis {ωj}3j=1 satisfying

dω1 = dω2 = 0, dω3 = ω11̄ + ω12̄ +Dω22̄,

with D = 1−t2
4 . Notice that D ∈ [0, 1

4) because t ∈ (0, 1].

Now, we summarize all the results concerning the complex structures on six-dimensional
nilpotent Lie algebras. Firstly, the parallelizable complex structures are modelled by:

dω1 = dω2 = 0, dω3 = ρω12,

with ρ = 0 or 1, and the Lie algebras are the abelian h1 (for ρ = 0) and h5 (for ρ = 1),
where the latter case corresponds to the Iwasawa manifold. The remaining complex
structures in dimension 6 are parametrized, up to equivalence, by the following three
families:

Family I: dω1 = dω2 = 0, dω3 = ρω12 + ω11̄ + λω12̄ +Dω22̄,

where ρ = 0 or 1, D ∈ C with ImD ≥ 0 and λ ∈ R≥0. The complex structure is abelian
if and only if ρ = 0. The Lie algebra is 2-step nilpotent with first Betti number ≥ 4, i.e.
g is isomorphic to h2, . . . , h6 or h8.

Family II: dω1 = 0, dω2 = ω11̄, dω3 = ρω12 +Bω12̄ + cω21̄,

where ρ = 0 or 1, B ∈ C and c ∈ R≥0. Moreover (ρ,B,C) 6= (0, 0, 0). The complex
structure is abelian if and only if ρ = 0. The Lie algebra is isomorphic to h7 or h9, . . . , h16.
Finally, we recall that the non-nilpotent complex structures on six-dimensional NLAs
are classified by Ugarte and Villacampa [96].

Family III: dω1 = 0, dω2 = ω13 + ω13̄, dω3 = εω11̄ ± (ω12̄ − ω21̄),

where ε = 0 or 1. The corresponding Lie algebras are h−19 (for ε = 0) and h+
26 (for ε = 1).

The classification up to equivalence of complex structures on six-dimensional nilpo-
tent Lie algebras is summarized in Table 3.1.
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3.2 Complex structures on solvmanifolds

In this section we classify, up to equivalence, the complex structures having non-zero
closed (3,0)-form on the Lie algebras of Theorem 2.2.14. We divide the study according
to the Lie algebra is decomposable or not.

3.2.1 The decomposable case

According to Theorem 2.2.14, the decomposable Lie algebras are g1, g
α
2 with α ≥ 0

and g3.

The Lie algebras g1 and gα2

We start studying the 5⊕1 decomposable Lie algebras obtained in Theorem 2.2.14. The
specific form of the expressions of the almost-complex structures J∗ρ with ρ, J∗ρρ ∈ Z3(g)
enables us to state the following lemma:

Lemma 3.2.1. Let J be any complex structure on g1 = A−1,−1,1
5,7 ⊕R or gα2 = Aα,−α,15,17 ⊕R,

α ≥ 0, with closed volume (3, 0)-form, then there is a non-zero closed (1, 0)-form.

Proof. Let g1 = A−1,−1,1
5,7 ⊕ R = (e15,−e25,−e35, e45, 0, 0). Any ρ ∈ Z3(g1) is given by

ρ = a1e
125 + a2e

126 + a3e
135 + a4e

136 + a6e
156 + a8e

245 + a9e
246

+ a10e
256 + a11e

345 + a12e
346 + a13e

356 + a14e
456,

for a1, . . . , a14 ∈ R. We use the equation (2.19) to compute the endomorphisms on g1

corresponding to ρ ∈ Z3(g1). When we compute the images of e5, e6 by J∗ρ we find that
the subspace spanned by e5, e6 is J∗ρ -invariant:

J∗ρe
5 = 1√

|λ(ρ)|
((a1a12 + a11a2 − a4a8 − a3a9)e5 + 2(a12a2 − a4a9)e6),

J∗ρe
6 = 1√

|λ(ρ)|
(−2(a1a11 − a3a8)e5 − (a1a12 + a11a2 − a4a8 − a3a9)e6).

This holds for the particular case of λ(ρ) < 0 and therefore, the (1,0)-form η = e5−iJ∗ρe5

is closed for any almost-complex structure J∗ρ on g1 with ρ ∈ Z3(g1).

The same situation appears in gα2 = Aα,−α,15,17 ⊕R = (αe15 + e25,−e15 +αe25,−αe35 +

e45,−e35 − αe45, 0, 0) with α ≥ 0 because the subspace spanned by e5, e6 is found to be
J∗ρ -invariant for all the endomorphisms defined by equation (2.19) with ρ ∈ Z3(gα2 ).

Lemma 3.2.2. Let J be any complex structure on g1 = A−1,−1,1
5,7 ⊕R or gα2 = Aα,−α,15,17 ⊕R,

α ≥ 0, with closed volume (3, 0)-form. Then, there is a (1, 0)-basis {ω1, ω2, ω3} satisfying
the following reduced equations
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(3.15)


dω1 = Aω1 ∧ (ω3 + ω3̄),

dω2 = −Aω2 ∧ (ω3 + ω3̄),

dω3 = 0,

where A = cos θ + i sin θ, θ ∈ [0, π).

Proof. Using Lemma 3.2.1 let us consider a basis of (1, 0)-forms {η1, η2, η3} such that
η3 = e5−iJ∗ρe5 is closed. The structure equations of g1 = A−1,−1,1

5,7 ⊕R and gα2 = Aα,−α,15,17 ⊕
R with α ≥ 0 force the differential of any 1-form to be a multiple of e5 = 1

2(η3 + η3̄), so
there exist A,B,C,D,E, F ∈ C such that

dη1 = (Aη1 +B η2 + E η3) ∧ (η3 + η3̄),

dη2 = (C η1 +Dη2 + F η3) ∧ (η3 + η3̄),

dη3 = 0.

Moreover, since d(η123) = 0 necessarily D = −A.
Let us consider the non-zero 1-form τ1 = Aη1 +B η2 + E η3. Notice that

dτ1 =
(
(A2 +BC)η1 + (AE +BF )η3

)
∧
(
η3 + η3̄

)
,

which implies that A2 +BC 6= 0 because otherwise dτ1 would be a multiple of e56. Then,
with respect to the new (1,0)-basis {τ1, τ2, τ3} given by

τ1 = Aη1 +B η2 + E η3, τ1 = C η1 −Aη2 + F η3, τ3 = η3,

the complex structure equations are

(3.16)


dτ1 = (Aτ1 +B τ2) ∧ (τ3 + τ 3̄),

dτ2 = (C τ1 −Aτ2) ∧ (τ3 + τ 3̄),

dτ3 = 0.

Now we distinguish two cases:
• If B 6= 0 then we consider the new basis {ω1, ω2, ω3} given by

ω1 =
(
A+
√
A2 +BC

)
τ1 +B τ2, ω2 =

(
A−
√
A2 +BC

)
τ1 +B τ2, ω3 =

∣∣∣√A2 +BC
∣∣∣ τ3.

With respect to this basis, the equations (3.16) reduce to

dω1 =

√
A2 +BC∣∣∣√A2 +BC

∣∣∣ ω1 ∧ (ω3 + ω3̄), dω2 = −
√
A2 +BC∣∣∣√A2 +BC

∣∣∣ ω2 ∧ (ω3 + ω3̄), dω3 = 0,
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that is, the equations are of the form (3.15).
• If C 6= 0 then with respect to the basis {ω1, ω2, ω3} given by

ω1 = C τ1 −
(
A−
√
A2 +BC

)
τ2, ω2 = C τ1 −

(
A+
√
A2 +BC

)
τ2, ω3 =

∣∣∣√A2 +BC
∣∣∣ τ3,

the equations (3.16) again reduce to equations of the form (3.15).

Finally, notice that in the equations (3.15) one can change the sign of A by changing
the sign of ω3, so we can suppose that A = cos θ + i sin θ with angle θ ∈ [0, π).

Proposition 3.2.3. Up to isomorphism, there is only one complex structure with closed
(3, 0)-form on the Lie algebras g1 = A−1,−1,1

5,7 ⊕ R and g0
2 = A0,0,1

5,17 ⊕ R, whereas gα2 =

Aα,−α,15,17 ⊕R has two such complex structures for any α > 0. More concretely, the complex
structures are:

(g1, J) : dω1 = ω1 ∧ (ω3 + ω3̄), dω2 = −ω2 ∧ (ω3 + ω3̄), dω3 = 0;(3.17)

(g0
2, J) : dω1 = i ω1 ∧ (ω3 + ω3̄), dω2 = −i ω2 ∧ (ω3 + ω3̄), dω3 = 0;(3.18)

(g
α= cos θ

sin θ
2 , J±) :


dω1 = (± cos θ + i sin θ)ω1 ∧ (ω3 + ω3̄),

dω2 = −(± cos θ + i sin θ)ω2 ∧ (ω3 + ω3̄),

dω3 = 0,

(3.19)

where θ ∈ (0, π/2).

Proof. A real Lie algebra underlying the equations (3.15) is isomorphic to g1 or gα2 for
some α ≥ 0. In fact, in terms of the real basis {β1, . . . , β6} given by ω1 = β1 + iβ2,
ω2 = β3 + iβ4 and ω3 = 1

2(β5 + iβ6), we have

dβ1 = cos θ β15 − sin θ β25, dβ3 = − cos θ β35 + sin θ β45, dβ5 = 0,

dβ2 = sin θ β15 + cos θ β25, dβ4 = − sin θ β35 − cos θ β45, dβ6 = 0.

In particular:
• If θ = 0 then taking e1 = β1, e2 = β4, e3 = β3, e4 = β2, e5 = β5 and e6 = β6 the
resulting structure equations are precisely those of the Lie algebra g1.
• If θ ∈ (0, π) then sin θ 6= 0 and taking e1 = β1, e2 = −β2, e3 = β3, e4 = β4,

e5 = sin θ β5 and e6 = β6 we get the structure equations of g
|α|
2 with α = − cos θ

sin θ . Notice
that α takes any real value when θ varies in (0, π), and if θ 6= π

2 then θ and π − θ
correspond to two complex structures on the same Lie algebra. By a standard argument
one can prove that these two complex structures are non-equivalent.
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Figure 3.4: Complex structures satisfying (3.15) according to Proposition 3.2.3.

θπ−θ

gα2 = Aα,−α,1
5,17 ⊕ R, α = cos θ

sin θ

g1 = A−1,−1,1
5,7 ⊕ R

g02 = A0,0,1
5,17 ⊕ R

gα2

The Lie algebra g3

Let us consider now the Lie algebra g3 = e(2) ⊕ e(1, 1). Any non-zero closed 3-form
ρ ∈ Z3(g3) is given by

ρ = a1e
123 + a2e

124 + a3e
134 + a4e

145 + a5e
146 + a6e

156 + a7e
234 + a8(e136 − e245)+

a9(e135 − e246) + a10(e126 + e345) + a11(e125 + e346) + a12e
456,

for a1, . . . , a12 ∈ R. By imposing the closedness of J∗ρρ together with the condition
tr(J∗2ρ ) < 0, one can arrive by a long computation to an explicit description of the com-
plex structure J∗ρ , which allows us to prove that the family {e1, e2, e3, J∗ρe

1, J∗ρe
2, J∗ρe

3}
of 1-forms of g3 is always linearly independent (for further details see Appendix A). In
conclusion, the forms

ω1 = e1 − iJ∗ρe1, ω2 = e2 − iJ∗ρe2, ω3 = e3 − iJ∗ρe3,

constitute a (1,0)-basis for the complex structure J∗ρ , and with respect to this basis the
complex structure equations have the form

(3.20)


dω1 = 0,

dω2 = −1
2ω

13 + b ω11̄ + fi ω12̄ − fi ω21̄ − (1
2 + gi)ω13̄ + gi ω31̄,

dω3 = 1
2ω

12 + c ω11̄ + (1
2 + hi)ω12̄ − hi ω21̄ − fi ω13̄ + fi ω31̄,

where the coefficients b, c, f, g, h are real and satisfy 4gh = 4f2 − 1 (see Appendix A,
Lemma A.0.7).
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Proposition 3.2.4. Up to isomorphism, the complex structures with closed (3, 0)-form
on the Lie algebra g3 = e(2)⊕ e(1, 1) are given by

(3.21) (g3, J
x) :


dω1 = 0,

dω2 = −1
2ω

13 − (1
2 + xi)ω13̄ + xi ω31̄,

dω3 = 1
2ω

12 + (1
2 − i

4x)ω12̄ + i
4x ω

21̄,

where x ∈ R≥0.

Proof. Observe first that with respect to the (1,0)-basis {ω1, ω2 + 2c ω1, ω3− 2b ω1}, the
complex structure equations express again as in (3.20) but with b = c = 0, that is to
say, one can suppose that the coefficients b and c both vanish.

Let us prove next that we can also suppose the coefficient f to be zero. To see this,
let {ω1, ω2, ω3} be a (1,0)-basis satisfying (3.20) with b = c = 0 and f 6= 0, and let us
consider the (1,0)-basis {η1, η2, η3} given by

η1 = ω1, η2 = ω2 − g−h−
√

1+(g+h)2

2f ω3, η3 =
g−h−

√
1+(g+h)2

2f ω2 + ω3.

A direct calculation shows that with respect to {η1, η2, η3} the corresponding coefficient
f vanishes. Finally, since 4gh = −1 we are led to the reduced equations (3.21), where
we have written x instead of g.

To conclude the proof, let Jx and Jx
′

be two complex structures corresponding to
x, x′ ∈ R. It is easy to see that the structures are equivalent if and only if xx′ = −1

4 .
This represents an hyperbola in the (x, x′)-plane, so the equivalence class is given by one
of the branches of the hyperbola, that is, we can take x > 0.

3.2.2 The indecomposable case

Next we classify the complex structures with closed volume form on the six-dimensional
indecomposable non-nilpotent solvable unimodular Lie algebras. According to Theorem
2.2.14 they are the Lie algebras g4, . . . , g9.

The Lie algebras g4, g5, g6 and g7

Lemma 3.2.5. Let J be any complex structure on gk (4 ≤ k ≤ 7) with closed (3, 0)-form.
Then, there is a (1, 0)-basis {ω1, ω2, ω3} such that

(3.22)


dω1 = Aω1 ∧ (ω3 + ω3̄),

dω2 = −Aω2 ∧ (ω3 + ω3̄),

dω3 = G11 ω
11̄ +G12 ω

12̄ +G12 ω
21̄ +G22 ω

22̄,

where A,G12 ∈ C and G11, G22 ∈ R, with (G11, G12, G22) 6= (0, 0, 0), satisfy

(3.23) |A| = 1, (A+A)G11 = 0, (A+A)G22 = 0, (A−A)G12 = 0.



Complex structures on solvmanifolds 71

Proof. Let us consider first the Lie algebra g4 with structure equations given as in
Theorem 2.2.14. Any element ρ ∈ Z3(g4) is given by

ρ = a1e
123 + a2e

126 + a3(e125 − e134) + a4(e124 + e135) + a5e
136a6(e156 + e234)+

a7(e146 − e235) + a8e
236 + a9e

246 + a10e
256 + a11e

346 + a12e
356 + a13e

456,

for a1, . . . , a13 ∈ R. A direct calculation shows that if a2
3 + a2

4 = 0 then there do not
exist closed 3-forms ρ satisfying the conditions d(J∗ρρ) = 0 and λ(ρ) < 0.

Suppose that a2
3 + a2

4 6= 0. Then, an element ρ ∈ Z3(g4) satisfies the condition
d(J∗ρρ) = 0 if and only if

a10 =
a3(a2

6 − a2
7) + 2a4a6a7 − a11(a2

3 + a2
4)

a2
3 + a2

4

, a12 =
2a3a6a7 − a4(a2

6 − a2
7) + a9(a2

3 + a2
4)

a2
3 + a2

4

,

and a13 = 0. Moreover, under these relations one has that λ(ρ) = −4(a3a9 − a4a11 +
a6a7)2 ≤ 0.

Let ρ ∈ Z3(g4) be such that λ(ρ) < 0 and d(J∗ρρ) = 0. A direct calculation shows

that J̃∗ρe
6 is given by

J̃∗ρe
6 = 2(a2

3 + a2
4)e1 + 2(a3a6 + a4a7)e2 + 2(a3a7 − a4a6)e3 + 2(a3a11 + a4a9 + a2

7)e6.

Therefore, the coefficient of e1 in J∗ρe
6 is non-zero for any ρ. A similar computation

for the Lie algebras g5, g6 and g7 shows that for any complex structure Jρ with closed
(3, 0)-form, we also have that

J∗ρe
6 = c1e

1 + c2e
2 + c3e

3 + c4e
4 + c5e

5 + c6e
6,

where the coefficient c1 is non-zero.
Let us consider the (1, 0)-form η3 = e6 − iJ∗ρe6. From the structure equations of gk

(4 ≤ k ≤ 7) in Theorem 2.2.14, it follows that dη3 = ic1e
23 − iα ∧ e6, if g = g4,

dη3 = ic1(e24 + e35)− iα ∧ e6, if g = g5, g6, g7,

where α is a 1-form. Since c1 6= 0 we can write the 2-forms e23 and e24 + e35 as

(3.24)

 e23 = − i
c1
dη3 + 1

c1
α ∧ e6, if g = g4,

e24 + e35 = − i
c1
dη3 + 1

c1
α ∧ e6, if g = g5, g6, g7.

Now, let η1, η2 be such that {η1, η2, η3} is a basis of (1, 0)-forms. Since e6 is closed
and η3 + η3̄ = 2e6, the integrability of the complex structure implies that dη3 has no
component of type (2, 0) and

dη3 = G11 η
11̄+G12 η

12̄+G13 η
13̄+G12 η

21̄+G22 η
22̄+G23 η

23̄+G13 η
31̄+G23 η

32̄+G33 η
33̄,
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for some G11, G22, G33 ∈ R and G12, G13, G23 ∈ C.
From the structure of the Lie algebras gk (4 ≤ k ≤ 7), the relation (3.24) and taking

into account that dη3 is of type (1,1), it follows that there exist λ, µ ∈ C such that

(3.25)



dη1 = λ dη3 + (Aη1 +B η2 + E η3) ∧ (η3 + η3̄),

dη2 = µdη3 + (C η1 +Dη2 + F η3) ∧ (η3 + η3̄),

dη3 = G11 η
11̄ +G12 η

12̄ +G13 η
13̄ +G12 η

21̄ +G22 η
22̄ +G23 η

23̄

+G13 η
31̄ +G23 η

32̄ +G33 η
33̄,

for some A,B,C,D,E, F ∈ C.
Now, we prove that these complex equations can be reduced to equations of the

form (3.22). Notice first that with respect to the (1,0)-basis {η1−λ η3, η2−µ η3, η3} we
get complex equations of the form (3.25) with λ = µ = 0. So, without loss of generality
we can suppose λ = µ = 0. Moreover, the coefficients E and F also vanish. In fact,
suppose for example that E 6= 0 (the case F 6= 0 is similar). Using (3.25) with λ = µ = 0,
the condition d(dη1) = 0 is equivalent to

EG11 = EG12 = EG13 = EG22 = EG23 = 0,

so E 6= 0 implies dη3 = G33 η
33̄ = G33 η

3 ∧ (η3 + η3̄). But this is a contradiction with
the structure of the Lie algebras gk (4 ≤ k ≤ 7), because d(g∗k) would be annihilated by

the real 1-form η3 + η3̄.
From now on, we suppose that λ = µ = E = F = 0 in the equations (3.25). A direct

calculation shows that

dη123 = G13 η
1231̄ +G23 η

1232̄ + (A+D +G33)η1233̄,

so η123 is closed if and only if G13 = G23 = 0 and D = −A − G33. Moreover, the
unimodularity of the Lie algebras gk (4 ≤ k ≤ 7) implies that G33 = 0. In fact, taking
the real basis {f1, . . . , f6} of g∗k given by

η1 = f2 + if3, η2 = f4 + if5, η3 = f6 + if1,

we get that the trace of adf6 is zero if and only if G33 = −2ReA−2ReD, which implies,
using that G33 = −A−D, that the coefficient G33 = 0.

Summing up, we have proved the existence of a (1, 0)-basis {η1, η2, η3} satisfying the
reduced complex equations

(3.26)


dη1 = (Aη1 +B η2) ∧ (η3 + η3̄),

dη2 = (C η1 −Aη2) ∧ (η3 + η3̄),

dη3 = G11 η
11̄ +G12 η

12̄ +G12 η
21̄ +G22 η

22̄,
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where A,B,C,G12 ∈ C and G11, G22 ∈ R.
Notice that A2 + BC 6= 0 because otherwise the (1,0)-form Aη1 + B η2 would be

closed, but this is a contradiction to b1(gk) = 1, for 4 ≤ k ≤ 7. Therefore, arguing as
in the proof of Lemma 3.2.2 we can suppose that B = C = 0 and |A| = 1 in (3.26).
Finally, the condition d(dη3) = 0 is satisfied if and only if (A+ A)G11 = (A+ A)G22 =
(A−A)G12 = 0.

As a consequence of the previous lemma, we have the following classification of
complex structures on gk, for 4 ≤ k ≤ 7.

Proposition 3.2.6. Up to isomorphism there is only one complex structure J with
closed (3, 0)-form on the Lie algebras g5 = A0,1,1

6,82 and g6 = A0,1,1
6,88 , and two such complex

structures on the Lie algebras g4 = A0,0,1
6,37 and g7 = B1

6,6. More concretely, the complex
structures are given by:

(g4, J
±) : dω1 = i ω1∧ (ω3 + ω3̄), dω2 =−i ω2∧ (ω3 + ω3̄), dω3 = ±ω11̄;(3.27)

(g5, J) : dω1 = ω1∧ (ω3 + ω3̄), dω2 =−ω2∧ (ω3 + ω3̄), dω3 = ω12̄ + ω21̄;(3.28)

(g6, J) : dω1 = i ω1∧ (ω3 + ω3̄), dω2 =−i ω2∧ (ω3 + ω3̄), dω3 = ω11̄ + ω22̄;(3.29)

(g7, J
±) : dω1 = i ω1∧(ω3+ ω3̄), dω2 =−i ω2∧(ω3+ ω3̄), dω3 = ±(ω11̄− ω22̄).(3.30)

Proof. First notice that in the equations (3.22), after changing the sign of ω3 if necessary,
we can always suppose that A = cos θ+i sin θ with angle θ ∈ [0, π). We have the following
cases:

• If cos θ 6= 0, then (3.23) implies G11 = G22 = 0 and sin θ G12 = 0, so sin θ = 0 because
(G11, G12, G22) 6= (0, 0, 0) is satisfied if and only if G12 6= 0. Therefore, in this case
A = 1 and, moreover, we can normalize the coefficient G12 (it suffices to consider G12 ω

1

instead of ω1). So the complex structure equations take the form (3.28), and in terms of
the real basis {e1, . . . , e6} defined by ω1 = e2 − ie3, ω2 = e5 + ie4 and ω3 = 1

2e
6 − 2ie1,

one has

de1 = e24 + e35, de2 = e26, de3 = e36, de4 = −e46, de5 = −e56, de6 = 0,

that is, the underlying Lie algebra is g5.

• If cos θ = 0, then (3.23) implies that A = i and G12 = 0. Therefore, the complex
structure equations become

dω1 = i ω1 ∧ (ω3 + ω3̄), dω2 = −i ω2 ∧ (ω3 + ω3̄), dω3 = G11 ω
11̄ +G22 ω

22̄,

where (G11, G22) 6= (0, 0). We have the following possibilities:

- When G22 = 0 we can suppose that G11 = ±1 (it suffices to consider
√
|G11|ω1

instead of ω1), and then the complex structure equations reduce to (3.27). In terms of
the real basis {e1, . . . , e6} given by ω1 = e2 − ie3, ω2 = e4 + ie5 and ω3 = −1

2e
6 ± 2ie1,

we arrive at

de1 = e23, de2 = −e36, de3 = e26, de4 = −e56, de5 = e46, de6 = 0,
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that is, the underlying Lie algebra is g4. A standard argument allows to conclude that
the two complex structures in (3.27) are non-isomorphic.

- The case G11 = 0 easily reduces to the previous case, so it does not produce any
non-isomorphic complex structure.

- Finally, if G11 6= 0 and G22 6= 0 then we can suppose G11 = ±1 and G22 = ±1
(it suffices to consider

√
|Gkk|ωk instead of ωk for k = 1, 2). It is clear that the case

G11 = G22 = −1 is equivalent to G11 = G22 = 1, so it remains to study the following
three cases: (G11, G22) = (1, 1), (1,−1), (−1, 1). In terms of the real basis {β1, . . . , β6}
defined by ω1 = β2 + iβ4, ω2 = β3 + iβ5 and ω3 = 1

2β
6 + 2iβ1, one has

dβ1 = −G11 β
24 −G22 β

35, dβ2 = −β46, dβ3 = β56, dβ4 = β26, dβ5 = −β36, dβ6 = 0.

When (G11, G22) = (1, 1), taking the basis e1 = −2β1, e2 = β2 + β3, e3 = −β4 + β5,
e4 = β4 + β5, e5 = β2 − β3 and e6 = −β6, the real structure equations are

de1 = e24 + e35, de2 = −e36, de3 = e26, de4 = −e56, de5 = e46, de6 = 0,

so the underlying Lie algebra is g6 and the complex structure is given by (3.29). The
cases (G11, G22) = (1,−1) and (G11, G22) = (−1, 1) both correspond to the same Lie
algebra (in fact, a change in the sign of β1 gives an isomorphism), so we suppose next
that (G11, G22) = (1,−1), i.e.

dβ1 = −β24 + β35, dβ2 = −β46, dβ3 = β56, dβ4 = β26, dβ5 = −β36, dβ6 = 0.

Taking e1 = −β1, e3 = −β3 and e6 = −β6, we conclude that g7 is the underlying Lie
algebra. Therefore, the complex structures on g7 are given by (3.27), and it can be
proved that they are non-isomorphic.

Figure 3.5: Complex structures satisfying (3.22) according to Proposition 3.2.6.
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The Lie algebra g8

Proposition 3.2.7. Let J be any complex structure on g8 with closed volume (3, 0)-
form. Then, there is a (1, 0)-basis {ω1, ω2, ω3} satisfying one of the following reduced
equations:

(g8, J
′) : dω1 = 2i ω13 + ω33̄, dω2 = −2i ω23, dω3 = 0;(3.31)

(g8, J
′′) : dω1 = 2i ω13 + ω33̄, dω2 = −2i ω23 + ω33̄, dω3 = 0;(3.32)

(g8, J
A) :


dω1 = −(A− i)ω13 − (A+ i)ω13̄,

dω2 = (A− i)ω23 + (A+ i)ω23̄,

dω3 = 0,

(3.33)

where A ∈ C with ImA 6= 0. Moreover, the complex structures above are non-equivalent.

Proof. With respect to the structure equations of g8 given in Theorem 2.2.14, any closed
3-form ρ ∈ Z3(g8) is given by

ρ = a1 e
126 + a2 e

135 + a3 e
145 + a4 e

156 + a5 e
235 + a6(e146 + e236)

+ a7 e
245 + a8(e136 − e246) + a9 e

256 + a10 e
346 + a11 e

356 + a12 e
456,

where a1, . . . , a12 ∈ R. A direct calculation shows that such a ρ satisfies the conditions
d(J∗ρρ) = 0 and λ(ρ) < 0 if and only if a1 = 0, a2 = −a7, a3 = a5, a10 = 0 and
a6a7 − a5a8 6= 0. Moreover, in this case λ(ρ) = −4(a6a7 − a5a8)2.

The associated complex structures J∗ρ express in terms of the real basis {e1, . . . , e6}
as

J∗ρe
1 = e2 + a5a12−a7a11

a6a7−a5a8
e5 + a6a12−a8a11

a6a7−a5a8
e6,

J∗ρe
2 = −e1 + a5a11+a7a12

a6a7−a5a8
e5 + a6a11+a8a12

a6a7−a5a8
e6,

J∗ρe
3 = e4 + a4a7−a5a9

a6a7−a5a8
e5 + a4a8−a6a9

a6a7−a5a8
e6,

J∗ρe
4 = −e3 − a4a5+a7a9

a6a7−a5a8
e5 − a4a6+a8a9

a6a7−a5a8
e6,

J∗ρe
5 = a5a6+a7a8

a6a7−a5a8
e5 +

a2
6+a2

8
a6a7−a5a8

e6,

J∗ρe
6 = − a2

5+a2
7

a6a7−a5a8
e5 − a5a6+a7a8

a6a7−a5a8
e6.

Let us consider the basis of (1,0)-forms {ω1, ω2, ω3} given by

ω1 = e1 − iJ∗ρe1 = e1 − i
(
e2 + k1e

5 + k2e
6
)
,

ω2 = e3 − iJ∗ρe3 = e3 − i
(
e4 + k3e

5 + k4e
6
)
,

ω3 = 1
2c(e

5 − iJ∗ρe5) = 1
2ce

5 − i
(
b
2ce

5 + 1
2e

6
)
,

where k1 = a5a12−a7a11
a6a7−a5a8

, k2 = a6a12−a8a11
a6a7−a5a8

, k3 = a4a7−a5a9
a6a7−a5a8

, k4 = a4a8−a6a9
a6a7−a5a8

, b = a5a6+a7a8
a6a7−a5a8

and c =
a2

6+a2
8

a6a7−a5a8
. Notice that c 6= 0, and −2(a6 + ia8)ω123 = ρ+ i J∗ρρ.
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With respect to this basis, the complex structure equations are

(3.34)


dω1 = −(A− i)ω13 − (A+ i)ω13̄ +B ω33̄,

dω2 = (A− i)ω23 + (A+ i)ω23̄ + C ω33̄,

dω3 = 0,

where A = b+ ic, B = 2c(k1 + ik2) and C = −2c(k3 + ik4). Notice that ImA = c 6= 0.

Now, we reduce the complex equations (3.34) as follows:

• If A 6= −i, then with respect to the (1,0)-basis {η1, η2, η3} given by

η1 = −(A+ i)ω1 +Bω3, η2 = (A+ i)ω2 + Cω3, η3 = ω3,

the complex structure equations are of the form (3.33).

• If A = −i, the equations (3.34) reduce to

J(B,C) : dω1 = 2iω13 +Bω33̄, dω2 = −2iω23 + Cω33̄, dω3 = 0.

Notice that the structures J(B,C) and J(C,B) are equivalent, since it suffices to consider
the change of basis η1 = ω2, η2 = ω1, η3 = −ω3. Now:

- if B = C = 0 then the complex equations are of the form (3.33) with A = −i;
- if only one of the coefficients B,C is non-zero, for instance B, then taking 1

Bω
1

instead of ω1, we arrive at the complex equations (3.31);

- finally, if B,C 6= 0 then we can normalize both coefficients and the corresponding
complex equations are (3.32).

It is straightforward to check that the complex structures given in equations (3.31)–
(3.33) are non-equivalent.

Figure 3.6: Complex structures on g8 according to Proposition 3.2.7.

J0, A = −i

J1, A = i

JA, (B,C) = (0, 0)

J ′, A = −i, (B,C) = (1, 0)

J ′′, A = −i, (B,C) = (1, 1)
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Remark 3.2.8. Note that on g8 there exists a unique bi-invariant complex structure
and a unique abelian complex structure corresponding to the values A = −i and A = i
in (3.33). We denote them by J0 and J1 respectively. It is worth noticing, that the
bi-invariant complex structure J0 corresponds to the complex structure equations (2.11)
of the Nakamura manifold [67]. Hence, as a consequence of Proposition 3.2.7, we have
found an infinitely non-isomorphic family of invariant complex structures on the real
six-dimensional solvmanifold underlying the complex parallelizable Nakamura manifold.
The abelian structure J1 was also studied in [4].

Remark 3.2.9. The proof of Theorem 2.1.32 is based on an invariant deformation of a
solvmanifold (M = G/Γ, J), where (g, J) is isomorphic to (g8, J1). Hence, we see that
the Lie algebra g8 admits complex structures with no closed (3, 0)-form. Moreover, there
are integrable complex structures J∗ρ on g8 which do not come from a closed 3-form ρ.

For example, the 3-form ρ = e123 + 1√
2
(−e135 + e146 + e236 + e245) /∈ Z3(g8) defines the

following integrable complex structure:

J∗ρe
1 = e2, J∗ρe

2 = −e1, J∗ρe
3 = e4,

J∗ρe
4 = −e3, J∗ρe

5 =
√

2e1 + e6, J∗ρe
6 = −

√
2e2 − e5.

If we consider the (1,0)-basis ω1 = e1 − ie2, ω2 = e3 − ie4 and ω3 = e5 − i(
√

2e1 + e6)
then the complex structure equations are:

dω1 = − 1√
2
ω11̄ − iω13̄,

dω2 = − 1√
2
ω12 + 1√

2
ω21̄ + iω23̄,

dω3 = − 1√
2
ω13̄ − 1√

2
ω31̄.

This fact reveals the rich complex geometry on the Lie algebra g8 in a form similar to
the nilpotent Lie algebra h5 underlying the Iwasawa manifold.

The Lie algebra g9

Let us consider now the Lie algebra g9 = B1
6,4 = (e45, e15+e36, e14−e26+e56,−e56, e46, 0).

If J is a complex structure with a closed complex volume form then we can find a (1,0)-
basis {ω1, ω2, ω3} satisfying the complex structure equations:

(3.35)


dω1 = −c2ω11̄ − c ω31̄ − c ω13̄ − ω33̄,

dω2 = (E + 1
2)c ω11̄ − i

2ω
21̄ + Eω31̄ + 1

2ω
13̄ + i

2ω
12 − Eω13,

dω3 = (c2 + i
2)c ω11̄ + (c2 + i

2)ω31̄ + c2ω13̄ + c ω33̄ − i
2ω

13,

where the coefficient c is real and E ∈ C (for further details see Appendix A, Lemma A.0.11).
The next proposition shows that the coefficients c and E in (3.35) can be reduced to
zero.
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Proposition 3.2.10. Up to isomorphism, there is only one complex structure with closed
(3, 0)-form on the Lie algebra g9 = B1

6,4, whose complex equations are

(3.36) (g9, J) : dω1 =−ω33̄, dω2 =
i

2
ω12 +

1

2
ω13̄ − i

2
ω21̄, dω3 =− i

2
ω13 +

i

2
ω31̄.

Proof. Now, let {ω1, ω2, ω3} be a (1,0)-basis satisfying (3.35), and consider the new
(1,0)-basis

{σ1 = ω1, σ2 = icEω1 + ω2 + iEω3, σ3 = cω1 + ω3}.
A direct calculation shows that this basis satisfies equations (3.35) with c = 0 and E = 0,
that is, the complex equations can always be reduced to (3.36). In particular, all the
complex structures are equivalent.

The results of this section are summarized in Table 3.2.
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Chapter 4

Complex cohomologies and the
∂∂̄-lemma

Let M = G/Γ be a six-dimensional solvmanifold endowed with an invariant complex
structure J with holomorphically trivial canonical bundle. We make use of the classifi-
cation of the complex structures obtained in Chapter 3 in order to study the behaviour
of some important complex invariants as the Dolbeault cohomology and, more gener-
ally, the Frölicher spectral sequence {Er(M)}r≥1. The validity of the ∂∂̄-lemma is also
considered. Concretely, Section 4.1 is devoted to give a general description of the be-
haviour of the Frölicher spectral sequence of nilmanifolds. As a consequence, we provide
an example based on a complex nilmanifold answering to a question posed by Angella
and Tomassini [10] concerning the existence of a compact complex manifold satisfying
E1(M) ∼= E∞(M) and the symmetry of the Hodge numbers hq,p

∂̄
(M) = hp,q

∂̄
(M) for

every p, q ∈ N, but not the ∂∂̄-lemma. Section 4.2 deals with the computation of the
complex cohomologies of (non-nilpotent) solvmanifolds. We firstly compute the Frölicher
sequence for the Lie algebras g1, . . . , g9 and, as a consequence, we provide a partial result
about the behaviour of the Frölicher sequence for solvmanifolds. We consider the results
of Kasuya and Angella [51, 7] for computing the Dolbeault and Bott-Chern cohomology
of complex solvmanifolds of splitting type. The complex structures with holomorphi-
cally trivial canonical bundle which are of splitting type have underlying Lie algebras
isomorphic to g1, gα2 with α ≥ 0 or g8. In addition, we compute some lattices on the
corresponding Lie groups which are compatible with the splitting and we finish the sec-
tion providing several examples of solvmanifolds with different cohomological behaviour
from the point of view of the Frölicher sequence and the ∂∂̄-lemma.

The study of complex invariants under holomorphic deformations is considered in
Section 4.3. This section is divided into two parts, the first devoted to the Frölicher
sequence and the second to the ∂∂̄-lemma. We provide an invariant deformation of a
complex nilmanifold with underlying Lie algebra isomorphic to h4 endowed with the
abelian complex structure, showing the non-closedness of the E1-degeneration property
of the Frölicher spectral sequence. In addition, a family of complex structures on the
nilpotent Lie algebra h15 shows that for r ≥ 2 the dimension of the terms E•,•r (Jt) in
general is neither upper nor lower semi-continuous function of t, in contrast to the upper
semi-continuity of the dimensions of the first step terms E•,•1 proved by Kodaira and
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Spencer [53]. Moreover, this family Jt allows us to prove that the degeneration of the
Frölicher sequence at the second step is not an open property under deformations. As
regards the ∂∂̄-lemma, we recall the recent results obtained by Angella and Kasuya [8]
used to prove the non-closedness of the ∂∂̄-lemma. Making use of these techniques we
construct a countable family of complex solvmanifolds {(Mk, Jk)}k∈Z with underlying Lie
algebra isomorphic to g8 which do not satisfy the ∂∂̄-lemma but admitting an invariant
holomorphic deformation {(Mk, Jk,t)}t∈∆ satisfying the ∂∂̄-lemma for any t ∈ ∆∗. This
family contains the one obtained by Angella and Kasuya in [8] to prove the non-closedness
of the ∂∂̄-lemma.

4.1 The Frölicher spectral sequence on nilmanifolds

Let M = G/Γ be a six-dimensional nilmanifold endowed with an invariant complex
structure J , and let g be the Lie algebra of G. Rollenske [80, Section 4.2] proves that if
g 6∼= h7 then the natural inclusion of differential graded algebras

(
∧•,•g∗, ∂̄

)
↪→ (∧•,•M, ∂̄)

induces an isomorphism
H•,•
∂̄

(g) −→ H•,•
∂̄

(M),

between the Lie-algebra Dolbeault cohomology of (g, J) and the Dolbeault cohomology
of (M,J). Thus, an inductive argument [23, Theorem 4.2] implies that the natural map
ι : Ep,qr (g) −→ Ep,qr (M) is also an isomorphism, and therefore Ep,qr (M) ∼= Ep,qr (g) for
any p, q and any r ≥ 1, whenever g 6∼= h7. Using these results and the classification of
invariant complex structures up to equivalence obtained for nilmanifolds, we show the
general behaviour of the Frölicher sequence in dimension 6.

For the study of the degeneration of the Frölicher sequence at the first step, it is
sufficient to study the Dolbeault cohomology in relation to the (de Rham) cohomology
of the Lie algebra. Moreover, using the Serre duality in Dolbeault cohomology for Lie
algebras proved in [79], namely Hp,q

∂̄
(g) = Hn−p,n−q

∂̄
(g), it suffices to study the spaces

Hp,q

∂̄
for (p, q) = (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0) and (2, 1). In what follows we use

the notation:

δBA =

 1 if A = B,

0 if A 6= B.

Proposition 4.1.1. Let us consider a six-dimensional nilpotent Lie algebra g with a
complex structure J in the family

(4.1) dω1 = dω2 = 0, dω3 = ρω12 + ω11̄ + λω12̄ +Dω22̄,

with ρ = 0, 1 and λ ∈ R, D ∈ C with λ, ImD ≥ 0. Then:

(i) If g ∼= h3, h6 or h8, then the Frölicher sequence degenerates at the first step for
any J .

(ii) If g ∼= h2 or h4, then E1
∼= E∞ if and only if J is not abelian. Moreover, any

abelian complex structure on h2 or h4 satisfies E1 6∼= E2
∼= E∞.
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(iii) A complex structure J on g ∼= h5 satisfies E1
∼= E∞ if and only if ρD 6= 0.

Moreover, if ρ = 0 or D = 0 then E1 6∼= E2
∼= E∞.

Proof. It is direct to see that the Dolbeault groupsHp,q

∂̄
for (p, q) = (1, 0), (2, 0), (3, 0), (0, 1)

and (0, 2) of any complex structure given by the structure equations (4.1) are:

H1,0

∂̄
= C〈[ω1], [ω2]〉, H2,0

∂̄
= C〈[ω12], δD0 [ω13]〉, H3,0

∂̄
= C〈[ω123]〉,

H0,1

∂̄
= C〈[ω1̄], [ω2̄], (1− ρ)[ω3̄]〉, H0,2

∂̄
= C〈(1− ρ)[ω1̄2̄], [ω1̄3̄], [ω2̄3̄]〉.

For ρ = 0, the Dolbeault groups H1,1

∂̄
and H2,1

∂̄
for any complex structure in the family

are:

H1,1

∂̄
= C〈[ω12̄], [ω21̄], [ω22̄], [ω13̄], [ω23̄], δD0 [ω31̄ + λω32̄]〉,

H2,1

∂̄
= C〈δD0 [ω122̄], [ω123̄], [ω131̄ −Dω232̄], [ω231̄ + λω232̄], [ω132̄], δD0 [ω133̄]〉,

whereas for ρ = 1 these Dolbeault cohomology groups are:

H1,1

∂̄
= C〈[ω12̄], [ω21̄], [ω22̄], [ω13̄ + ω32̄], [Dω23̄ − ω31̄ − λω32̄]〉,

H2,1

∂̄
= C〈δD0 [ω122̄], [Dω123̄ − ω131̄], [λω123̄ + ω231̄], [ω123̄ − ω232̄], [ω132̄]〉.

(i) The Lie algebras h3, h6 and h8

If g ∼= h3 then we have that ρ = λ = 0 and D = ±1 (see Table 3.1), and counting
the dimension of the Dolbeault groups we get

dimE
|1|
1 = 5 = b1(h3), dimE

|2|
1 = 9 = b2(h3), dimE

|3|
1 = 10 = b3(h3).

Hence E1
∼= E∞ for the two complex structures on h3. It follows from Table 3.1 that if

g ∼= h6 then it admits only a complex structure corresponding to ρ = λ = 1 and D = 0,
therefore

dimE
|1|
1 = 4 = b1(h6), dimE

|2|
1 = 9 = b2(h6), dimE

|3|
1 = 12 = b3(h6).

Similarly if g ∼= h8 then it admits only a complex structure which corresponds to ρ =
λ = D = 0 and

dimE
|1|
1 = 5 = b1(h8), dimE

|2|
1 = 11 = b2(h8), dimE

|3|
1 = 14 = b3(h8).

Therefore, for any complex structure on h6 and h8 we get E1
∼= E∞ and the proof of (i)

is complete.
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(ii) The Lie algebras h2 and h4

In order to prove (ii), first we notice that if J is non-abelian on g ∼= h2 or h4 then from
Table 3.1 the coefficient D 6= 0, and counting the dimension of the Dolbeault groups
above we get

dimE
|1|
1 = 4 = b1(g), dimE

|2|
1 = 8 = b2(g), dimE

|3|
1 = 10 = b3(g);

therefore, E1
∼= E∞ for any non-abelian complex structure on h2 or h4.

Let us suppose now that J is abelian (ρ = 0) on g ∼= h2 or h4. Since from Table 3.1
the coefficient D 6= 0 again, counting dimensions we get that E1 6∼= E∞. More precisely,

dimE
|1|
1 = 5 > 4 = b1(g), dimE

|2|
1 = 9 > 8 = b2(g), dimE

|3|
1 = 10 = b3(g),

dimE
|4|
1 = 9 > 8 = b4(g), dimE

|5|
1 = 5 > 4 = b5(g).

Therefore E
|3|
1
∼= E

|3|
∞ and we must compute dimE

|1|
2 , dimE

|2|
2 , dimE

|4|
2 and dimE

|5|
2 .

Next we show that the map E0,1
1

d1−→ E1,1
1 is non-zero. For the class [ω3̄] ∈ E0,1

1 , we have

d1([ω3̄]) = [∂ω3̄] = [ω11̄ + λω21̄ + D̄ ω22̄].

Since ∂̄(g(1,0)) = 〈∂̄ω3 = ω11̄ + λω12̄ + Dω22̄〉, we conclude that d1([ω3̄]) = 0 if and
only if λ = 0 and D ∈ R, but this corresponds to g ∼= h3. Therefore, dimE0,1

2 =

dim Ker d1 ≤ dimE0,1
1 − 1 and so dimE

|1|
2 ≤ dimE

|1|
1 − 1 = 4 = b1(g), which implies

E
|1|
2
∼= E

|1|
∞ . Moreover, dimE1,1

2 ≤ dimE1,1
1 − dim Im d1 and so E

|2|
2
∼= E

|2|
∞ because

dimE
|2|
2 ≤ dimE

|2|
1 − 1 = 8 = b2(g).

A similar argument can be applied to prove that the map E2,2
1

d1−→ E3,2
1 is also

non-zero. In fact,

d1([ω131̄3̄ − λω132̄3̄ −Dω232̄3̄]) = (λ2 −D + D̄)[ω1231̄2̄]

is zero if and only if λ = 0 and D is a non-zero real number, but this corresponds to

g ∼= h3. Arguing as above allows us to conclude that E
|k|
2
∼= E

|k|
∞ also for k = 4, 5, which

completes the proof of (ii).

(iii) The Lie algebra h5

If g ∼= h5 we divide the study of the behaviour of the Frölicher sequence into abelian
and non-abelian complex structures. The relevant Betti numbers of h5 are b1(h5) = 4,
b2(h5) = 8 and b3(h5) = 10.

If J is a non-abelian complex structure then ρ = 1 and the complex parameter D
may assume the values D = 0 or D 6= 0.
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• If D = 0 then

dimE
|1|
1 = 4 = b1(h5), dimE

|2|
1 = 9 > 8 = b2(h5), dimE

|3|
1 = 12 > 10 = b3(h5),

dimE
|4|
1 = 9 > 8 = b4(h5), dimE

|5|
1 = 4 = b5(h5).

Hence E
|k|
1
∼= E

|k|
∞ for k = 1, 5. The map E1,1

1
d1−→ E2,1

1 is not zero as for instance
d1([ω13̄ + ω32̄]) = (1− λ2)[ω122̄] which is non-zero because from Table 3.1 the coefficient

λ2 cannot be equal to 1. Hence, dimE
|2|
2 ≤ dimE

|2|
1 −1 = 8 = b2(h5). Similarly the map

E1,2
1

d1−→ E2,2
1 is not zero because d1([ω11̄3̄ + λω32̄3̄]) = [ω121̄3̄ + λω122̄3̄ + λ2ω231̄2̄] which

is non-zero in E2,2
1 because λ2 6= 1 and ∂̄(∧2,1g∗) = 〈ω121̄2̄, ω121̄3̄ + λω122̄3̄ + ω231̄2̄〉. In

conclusion E2
∼= E∞.

• if D 6= 0 then dimE
|1|
1 = 4 = b1(h5), dimE

|2|
1 = 8 = b2(h5), dimE

|3|
1 = 10 = b3(h5),

that is, E1
∼= E∞.

Let us consider now if J is an abelian complex structure on h5 (ρ = 0, λ = 1 and
D ∈ [0, 1

4) in (4.1):

• if D = 0 counting dimensions we get:

dimE
|1|
1 = 5 > b1(h5), dimE

|2|
1 = 11 > b2(h5), dimE

|3|
1 = 14 > b3(h5),

dimE
|4|
1 = 11 > b4(h5), dimE

|5|
1 = 5 > b5(h5).

We consider the following non-zero maps d1, where we specify one cohomology class
and its corresponding non-zero image in each case:

E0,1
1

d1−→ E1,1
1

d1−→ E2,1
1

d1−→ E3,1
1

[ω3̄] 7→ [ω21̄]− [ω12̄]

[ω13̄] 7→ −[ω122̄]

[ω133̄] 7→ [ω1231̄].

Similarly, the following homomorphisms

E0,2
1

d1−→ E1,2
1

d1−→ E2,2
1

d1−→ E3,2
1

are non-zero (take for instance the classes [ω2̄3̄], [ω31̄3̄ +ω32̄3̄] and [ω231̄3̄ +ω232̄3̄]). Since
Ep,q2

∼= Ker d1/Im d1, counting the dimensions we get

dimE
|1|
2 ≤ dimE

|1|
1 − 1 = 4 = b1(h5), dimE

|2|
2 ≤ dimE

|2|
1 − 3 = 8 = b2(h5),

dimE
|3|
2 ≤ dimE

|3|
1 − 4 = 10 = b3(h5), dimE

|4|
2 ≤ dimE

|4|
1 − 3 = 8 = b4(h5),

dimE
|5|
2 ≤ dimE

|5|
1 − 1 = 4 = b5(h5).
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This implies that E2
∼= E∞ because dimE

|k|
2 = bk(h5) for all k.

• if D 6= 0, we get:

dimE
|1|
1 = 5 > b1(h5), dimE

|2|
1 = 9 > b2(h5), dimE

|3|
1 = 10 = b3(h5),

dimE
|4|
1 = 5 > b4(h5), dimE

|5|
1 = 9 > b5(h5).

It is enough to see that the maps E0,1
1

d1−→ E1,1
1 and E2,2

1
d1−→ E3,2

1 are not zero. In the
first case it is clear because d1([ω3̄]) = [∂ω3̄] = [ω11̄ + ω21̄] 6= 0. For the second case
d1([ω132̄3̄]) = [∂ω132̄3̄] = [−ω1231̄2̄] 6= 0. Therefore E1 � E2

∼= E∞.

Proposition 4.1.2. Let us consider a six-dimensional Lie algebra g with a complex
structure J in the family

(4.2) dω1 = 0, dω2 = ω11̄, dω3 = ρω12 +B ω12̄ + c ω21̄,

where ρ = 0, 1 and B ∈ C, c ≥ 0 with (ρ,B, c) 6= (0, 0, 0). Then:

(i) If g ∼= h7, h9, h10, h11 or h12, then the Frölicher sequence degenerates at the first
step for any J .

(ii) Any complex structure on h16 satisfies E1 6∼= E2
∼= E∞.

(iii) Any complex structure on h13 or h14 satisfies E1
∼= E2 6∼= E3

∼= E∞.

(iv) On h15 we have:

(iv.1) E1 6∼= E2
∼= E∞, if c = 0 and B 6= ρ;

(iv.2) E1
∼= E2 6∼= E3

∼= E∞, if ρ = 1 and |B − 1| 6= c 6= 0;

(iv.3) E1 6∼= E2 6∼= E3
∼= E∞, if ρ = 0 and |B| 6= c 6= 0.

Proof. We follow a similar argument as in the proof of Proposition 4.1.1 studying the
spaces Hp,q

∂̄
for (p, q) = (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0) and (2, 1). For ρ = 1, these

Dolbeault groups for any complex structure in the family are:

(4.3)

H1,0

∂̄
= C〈[ω1], δB0 δ

c
0[ω3]〉, H2,0

∂̄
= C〈[ω12], δc0[ω13]〉, H3,0

∂̄
= C〈[ω123]〉,

H0,1

∂̄
= C〈[ω1̄], [ω2̄]〉, H0,2

∂̄
= C〈[ω1̄3̄], [ω2̄3̄]〉,

H1,1

∂̄
= C〈(Bc+ δB0 )[ω12̄], [ω13̄ + ω22̄], [Bω13̄ − ω31̄], δc0[ω21̄], δc0[ω32̄]〉,

H2,1

∂̄
= C〈δc0[ω121̄], [ω122̄], [c ω123̄ + ω132̄], [Bω123̄ + ω231̄], δc0[ω133̄ + ω232̄]〉.

Notice that the coefficient Bc + δB0 is non-zero except for B 6= 0 and c = 0. A first

consequence is that dimE
|2|
1 ≥ 6 in any case, which implies that E1 6∼= E∞ for any
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complex structure on h13, h14, or h16, as well as for any non-abelian complex structure
on h15, because these Lie algebras have b2 = 5.

For the abelian complex structures (ρ = 0) since (B, c) 6= (0, 0) we get

(4.4)

H1,0

∂̄
= C〈[ω1]〉, H2,0

∂̄
= C〈[ω12], δc0[ω13]〉, H3,0

∂̄
= C〈[ω123]〉,

H0,1

∂̄
= C〈[ω1̄], [ω2̄], [ω3̄]〉, H0,2

∂̄
= C〈[ω1̄2̄], [ω1̄3̄], [ω2̄3̄]〉,

H1,1

∂̄
= C〈(1− δc0)[ω12̄], [ω13̄], δc0[ω21̄], [Bω22̄ + ω31̄], δc0[ω32̄]〉,

H2,1

∂̄
= C〈δc0[ω121̄], [ω122̄], [ω123̄], [Bω132̄ − cω231̄], δc0[ω133̄]〉.

(i) The Lie algebras h7, h9, h10, h11 or h12

For the Lie algebra g ∼= h7 there is only one complex structure defined by ρ = 1 and
(B, c) = (1, 0) in (4.2) which implies

dimE
|1|
1 = 3 = b1(h7), dimE

|2|
1 = 8 = b2(h7), dimE

|3|
1 = 12 = b3(h7).

If g ∼= h10 it admits also a unique complex structure given by ρ = 1 and (B, c) = (0, 1),
which implies

dimE
|1|
1 = 3 = b1(h10), dimE

|2|
1 = 6 = b2(h10), dimE

|3|
1 = 8 = b3(h10).

For the Lie algebras g ∼= h11 or h12 we have that ρ = 1, B 6= 0 and c = |B − 1| 6= 0
because B 6= 1 in both cases. Thus,

dimE
|1|
1 = 3 = b1(g), dimE

|2|
1 = 6 = b2(g), dimE

|3|
1 = 8 = b3(g).

Therefore, E1
∼= E∞ for any complex structure on h7, h10, h11 or h12.

Finally, it remains to study the abelian case ρ = 0, whose corresponding Lie algebra
is h9 or h15. Now from Table 3.1 we get h9 for B = c = 1 and it is easy to see that in

this case dimE
|k|
1 = bk(h9) for any k, and so E1

∼= E∞ for any complex structure on h9.
This concludes the proof of (i).

(ii) The Lie algebra h16

If g ∼= h16 we know from Table 3.1 that the complex structures are defined by the

values c = 0, ρ = 1, |B| = 1 and B 6= 1. From (4.3) the dimensions of E
|k|
1 for any

complex structure on h16 are

dimE
|1|
1 = 3 = b1(h16), dimE

|2|
1 = 8 > 5 = b2(h16), dimE

|3|
1 = 12 > 6 = b3(h16),

dimE
|4|
1 = 8 > 5 = b4(h16), dimE

|5|
1 = 3 = b5(h16).
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Hence E1 � E∞. We consider the following non-zero maps d1, where we specify some
cohomology classes having linearly independent images in each case:

E1,1
1

d1−→ E2,1
1

d1−→ E3,1
1

[ω13̄ + ω22̄] 7→ (B̄ − 1)[ω121̄]

[ω32̄] 7→ (1−B)[ω122̄]

[ω133̄ + ω232̄] 7→ (B̄ − 1)[ω1231̄].

Similarly,

E0,2
1

d1−→ E1,2
1

d1−→ E2,2
1

[ω2̄3̄] 7→ (B̄ − 1)[ω11̄3̄]

[Bω22̄3̄ + ω31̄3̄] 7→ (1−B)[ω121̄3̄]

[ω32̄3̄] 7→ (1−B)[ω122̄3̄] + (1− B̄)[ω231̄2̄].

Now, counting the dimensions for E
|k|
2 we get that:

dimE
|2|
2 ≤ dimE

|2|
1 − 3 = 5 = b2(h16), dimE

|3|
2 ≤ dimE

|3|
1 − 6 = 6 = b3(h16),

dimE
|4|
2 ≤ dimE

|4|
1 − 3 = 5 = b4(h16).

This implies that E2
∼= E∞ because necessarily dimE

|k|
2 = bk(h16) for all k.

(iii) The Lie algebras h13, h14 or h15

Now, we prove (iii) and (iv.2) as they belong to the same structure of complex
equations given by Proposition 3.1.22 (see Table 3.1). They correspond to the complex
structures J (B,c) of the Lie algebras h13 and h14 together with the complex structures

J
(B,c)
3 of the Lie algebra h15 for ρ = 1 and |B − 1| 6= c 6= 0 in (4.2). As dimE

|1|
1 =

3 = b1(g), being g ∼= h13, h14 or h15, we get that E
|1|
1
∼= E

|1|
∞ . We consider the following

non-zero d2 map:

E0,2
2

d2−→ E2,1
2

[ω2̄3̄] 7→
[
∂
(
ω23̄ + 1−B̄

c ω32̄
)]

= |B−1|2−c2
c [ω122̄].

It is easy to check that [ω122̄] defines a non-zero class in E2,1
2 , because ω122̄ 6= ∂̄β2,0+∂γ1,1

for any β2,0 and any ∂̄-closed γ1,1. Hence,

b2(g) ≤ dimE
|2|
3 ≤ dimE

|2|
2 − 1 ≤ dimE

|2|
1 − 1 = 6− 1 = 5 = b2(g)
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and we conclude that E
|2|
∞ ∼= E

|2|
3 6∼= E

|2|
2
∼= E

|2|
1 .

We can also consider

E1,2
2

d2−→ E3,1
2

[ω31̄3̄ +Bω22̄3̄] 7→
[
∂
(

1−B
c ω133̄ + 1−B−c2

c ω232̄
)]

= c2−|B−1|2
c [ω1231̄],

where the class [ω1231̄] is non-zero in E3,1
2 because ω1231̄ 6= ∂̄β3,0 + ∂γ2,1 for any β3,0 and

any ∂̄-closed γ2,1. Thus,

b3(g) ≤ dimE
|3|
3 ≤ dimE

|3|
2 − 2 ≤ dimE

|3|
1 − 2 = 8− 2 = 6 = b3(g)

and we conclude that E
|3|
∞ ∼= E

|3|
3 6∼= E

|3|
2
∼= E

|3|
1 . By the same argument,

b4(g) ≤ dimE
|4|
3 ≤ dimE

|4|
2 − 1 ≤ dimE

|4|
1 − 1 = 6− 1 = 5 = b4(g)

and therefore E
|4|
∞ ∼= E

|4|
3 6∼= E

|4|
2
∼= E

|4|
1 . Summing up all the information, we conclude

that E1
∼= E2 6∼= E3

∼= E∞.

(iv) The Lie algebra h15

Finally we prove the cases (iv.1) and (iv.3). In order to prove (iv.1) we need to
study independently the abelian and the non-abelian complex structures with c = 0 and
B 6= ρ on h15. We start with the abelian ones. In this case, from (4.4) it follows that

the dimensions of E
|k|
1 are

dimE
|1|
1 = 4 > 3 = b1(h15), dimE

|2|
1 = 9 > 5 = b2(h15), dimE

|3|
1 = 12 > 6 = b3(h15).

We consider the following non-zero maps d1, specifying again cohomology classes having
linearly independent images in each case:

E0,1
1

d1−→ E1,1
1

d1−→ E2,1
1

d1−→ E3,1
1

[ω3̄] 7→ −[ω21̄]

[ω13̄] 7→ [ω121̄]

[ω32̄] 7→ −[ω122̄]

[ω133̄] 7→ [ω1231̄],

and similarly,
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E0,2
1

d1−→ E1,2
1

d1−→ E2,2
1

d1−→ E3,2
1

[ω2̄3̄] 7→ [ω21̄2̄]

[ω22̄3̄ + ω31̄3̄] 7→ −[ω121̄3̄]

[ω32̄3̄] 7→ −[ω131̄3̄] + [ω231̄2̄]

[ω132̄3̄] 7→ −[ω1231̄2̄].

Counting the dimensions for E
|k|
2 we get that

dimE
|1|
2 ≤ dimE

|1|
1 − 1 = 3 = b1(h15), dimE

|2|
2 ≤ dimE

|2|
1 − 4 = 5 = b2(h15),

dimE
|3|
2 ≤ dimE

|3|
1 − 6 = 6 = b3(h15), dimE

|4|
2 ≤ dimE

|4|
1 − 4 = 5 = b4(h15),

dimE
|5|
2 ≤ dimE

|5|
1 − 1 = 3 = b5(h15).

This implies that E2
∼= E∞ because necessarily dimE

|k|
2 = bk(h15) for all k.

If ρ = 1 and c = 0, then B 6= 1 and dimE
|1|
1 = b1(h15) + δB0 . So E

|1|
1
∼= E

|1|
∞ when

B 6= 0. For B = 0 we can consider the two following maps

E1,0
1

d1−→ E2,0
1

[ω3] 7→ [ω12] 6= 0,

E1,3
1

d1−→ E2,3
1

[ω31̄2̄3̄] 7→ [ω121̄2̄3̄] 6= 0,

to conclude that dimE
|1|
2 ≤ dimE

|1|
1 − 1 = 3 = b1(h15) and dimE

|5|
2 ≤ dimE

|5|
1 − 1 =

3 = b1(h15), and therefore, E
|k|
2
∼= E

|k|
∞ if k = 1 or k = 5.

Now, for B 6= 1 we have that dimE
|2|
1 = 8 + δB0 > 5 = b2(h15), dimE

|3|
1 = 12 > 6 =

b3(h15), dimE
|4|
1 = 8 + δB0 > 5 = b4(h15). In order to conclude that E2

∼= E∞ it suffices
to consider the following non-zero maps d1:

E1,1
1

d1−→ E2,1
1

d1−→ E3,1
1

[ω13̄ + ω22̄] 7→ (B̄ − 1)[ω121̄]

[ω32̄] 7→ (1−B)[ω122̄]

[ω133̄ + ω232̄] 7→ (B̄ − 1)[ω1231̄]

and
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E0,2
1

d1−→ E1,2
1

d1−→ E2,2
1

[ω2̄3̄] 7→ (B̄ − 1)[ω11̄3̄]

[Bω22̄3̄ + ω31̄3̄] 7→ (1−B)[ω121̄3̄]

[ω32̄3̄] 7→ [ω122̄3̄ − ω131̄3̄ + B̄ω231̄2̄].

For the last case (iv.3), we first observe that dimE
|1|
1 = 4 > 3 = b1(h15), but

d1([ω3̄]) = −c[ω12̄] − B̄[ω21̄]. Since this class is zero if and only if c ω12̄ + B̄ω21̄ ∈
∂̄(∧1,0g∗) = 〈ω11̄, Bω12̄ + c ω21̄〉, i.e. |B| = c, we have that the map d1 : E0,1

1 −→ E1,1
1 is

non-zero. Therefore, dimE
|1|
2 ≤ dimE

|1|
1 − 1 = 3, i.e. E

|1|
1 6∼= E

|1|
2
∼= E

|1|
∞ . We also have

the following non-zero d2 map:

E0,2
2

d2−→ E2,1
2

[ω2̄3̄] 7→
[
∂(ω23̄ − B̄

c ω
32̄)
]

= |B|2−c2
c [ω122̄] 6= 0.

We deduce that

b2(h15) ≤ dimE
|2|
3 ≤ dimE

|2|
2 − 1 ≤ dimE

|2|
1 − 2 = 7− 2 = 5 = b2(h15)

and we conclude that E
|2|
∞ ∼= E

|2|
3 6∼= E

|2|
2 6∼= E

|2|
1 .

The map

E1,2
2

d2−→ E3,1
2

[ω31̄3̄ +Bω22̄3̄] 7→
[
∂
(
−B
c ω

133̄ − c ω232̄
)]

= c2−|B|2
c [ω1231̄] 6= 0

is also non-zero, which implies that

b3(h15) ≤ dimE
|3|
3 ≤ dimE

|3|
2 − 2 ≤ dimE

|3|
1 − 2 = 8− 2 = 6 = b3(h15),

and we conclude that E
|3|
∞ ∼= E

|3|
3 6∼= E

|3|
2
∼= E

|3|
1 . We also have,

b4(h15) ≤ dimE
|4|
3 ≤ dimE

|4|
2 − 1 ≤ dimE

|4|
1 − 2 = 7− 2 = 5 = b4(h15),

and therefore E
|4|
∞ ∼= E

|4|
3 6∼= E

|4|
2 6∼= E

|4|
1 . Consequently, in case (iv.3) we get E1 6∼= E2 6∼=

E3
∼= E∞.

Proposition 4.1.3. Let us consider a six-dimensional nilpotent Lie algebra g with a
complex structure J in the family

(4.5) dω1 = 0, dω2 = ω13 + ω13̄, dω3 = iε ω11̄ ± i(ω12̄ − ω21̄),

with ε = 0, 1. Then:
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(i) The Frölicher sequence degenerates at the first step for any J on h−19 (ε = 0).

(ii) Any complex structure on h+
26 (ε = 1) satisfies E1 6∼= E2

∼= E∞.

Proof. It is easy to see that

H1,0

∂̄
= C〈[ω1]〉, H2,0

∂̄
= C〈[ω12]〉, H1,1

∂̄
= C〈[ω11̄], [ω23̄]〉,

H0,1

∂̄
= C〈[ω1̄], [ω3̄]〉, H0,2

∂̄
= C〈[ω1̄2̄], [ω2̄3̄]〉, H3,0

∂̄
= C〈[ω123]〉,

H2,1

∂̄
= C〈[ω123̄], [ω131̄]〉.

This implies that dimE
|1|
1 = 3, dimE

|2|
1 = 5 and dimE

|3|
1 = 6. Since b1(h−19) = 3,

b2(h−19) = 5 and b3(h−19) = 6, we conclude that the Frölicher sequence degenerates at the
first step for any J on h−19.

Next we suppose g ∼= h+
26. In this case dimE

|1|
1 = 3 > 2 = b1(h+

26), and so any J on
h+

26 satisfies E1 6∼= E∞. Moreover,

dimE
|1|
1 = 3 > 2 = b1(g), dimE

|2|
1 = 5 > 4 = b2(g), dimE

|3|
1 = 6 = b3(g),

dimE
|4|
1 = 5 > 4 = b4(g), dimE

|5|
1 = 3 > 2 = b5(g).

Since the maps

E0,1
1

d1−→ E1,1
1 , E2,2

1
d1−→ E3,2

1 ,

are non-zero (take for instance [ω3̄] and [ω232̄3̄ ± ω231̄3̄]), it follows that E2
∼= E∞.

Once we have computed the behaviour of the Frölicher spectral sequence for all
the complex structures on 6-dimensional nilpotent Lie algebras we state the following
theorem describing the behaviour of the Frölicher spectral sequence for invariant complex
structures on nilmanifolds. The result (including the Frölicher behaviour for (h7, J)) is
summarized in the Table 3.1.

Theorem 4.1.4. Let M = G/Γ be a 6-dimensional nilmanifold endowed with an invari-
ant complex structure J such that the underlying Lie algebra g 6∼= h7. Then the Frölicher
spectral sequence {Er(M)}r≥1 behaves as follows:

(a) If g ∼= h1, h3, h6, h8, h9, h10, h11, h12 or h−19, then E1(M) ∼= E∞(M) for any J .

(b) If g ∼= h2 or h4, then E1(M) ∼= E∞(M) if and only if J is non-abelian; moreover,
any abelian complex structure on h2 or h4 satisfies E1(M) 6∼= E2(M) ∼= E∞(M).

(c) If g ∼= h5 and J is a complex structure on h5 given in Table 3.1, then:

(c.1) E1(M) 6∼= E2(M) ∼= E∞(M) when J is complex-parallelizable;

(c.2) E1(M) ∼= E∞(M) if and only if J is not complex-parallelizable and ρD 6= 0;
moreover, E1(M) 6∼= E2(M) ∼= E∞(M) when ρD = 0.
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(d) If g ∼= h16 or h+
26, then E1(M) 6∼= E2(M) ∼= E∞(M) for any J .

(e) If g ∼= h13 or h14, then E1(M) ∼= E2(M) 6∼= E3(M) ∼= E∞(M) for any J .

(f) If g ∼= h15 and J is a complex structure on h15 given in Table 3.1, then:

(f.1) E1(M) 6∼= E2(M) ∼= E∞(M), when c = 0 and |B − ρ| 6= 0;

(f.2) E1(M) ∼= E2(M) 6∼= E3(M) ∼= E∞(M), when ρ = 1 and |B − 1| 6= c 6= 0;

(f.3) E1(M) 6∼= E2(M) 6∼= E3(M) ∼= E∞(M), when ρ = 0 and |B| 6= c 6= 0.

As a consequence of the previous study we face the following problem posed by
Angella and Tomassini in [10] (see Remark 1.3.6): to construct a compact complex
manifold M such that E1(M) ∼= E∞(M) and hp,q

∂̄
(M) = hq,p

∂̄
(M) for every p, q ∈ N but

for which the ∂∂̄-lemma does not hold. Since nilmanifolds do not satisfy the ∂∂̄-lemma
(as they are not formal unless they are complex tori), the following result provides a
solution.

Proposition 4.1.5. Let J be any invariant complex structure on a nilmanifold M with
underlying Lie algebra isomorphic to h6. Then E1(M) ∼= E∞(M) and the Hodge numbers
satisfy

h0,0

∂̄
(M) = 1,

h1,0

∂̄
(M) = 2, h0,1

∂̄
(M) = 2,

h2,0

∂̄
(M) = 2, h1,1

∂̄
(M) = 5, h0,2

∂̄
(M) = 2,

h3,0

∂̄
(M) = 1, h2,1

∂̄
(M) = 5, h1,2

∂̄
(M) = 5, h0,3

∂̄
(M) = 1,

h3,1

∂̄
(M) = 2, h2,2

∂̄
(M) = 5, h1,3

∂̄
(M) = 2,

h3,2

∂̄
(M) = 2, h2,3

∂̄
(M) = 2,

h3,3

∂̄
(M) = 1.

Proof. Any complex structure J on h6 is equivalent to the complex structure given in
Table 3.1, that is, ρ = λ = 1 and D = 0. Its Dolbeault cohomology groups Hp,q

∂̄
for

(p, q) = (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0) and (2, 1) are

H1,0

∂̄
= C〈[ω1], [ω2]〉, H2,0

∂̄
= C〈[ω12], [ω13]〉, H3,0

∂̄
= C〈[ω123]〉,

H0,1

∂̄
= C〈[ω1̄], [ω2̄]〉, H0,2

∂̄
= C〈[ω1̄3̄], [ω2̄3̄]〉,

H1,1

∂̄
= C〈[ω12̄], [ω21̄], [ω22̄], [ω13̄ + ω32̄], [ω31̄ + ω32̄]〉,

H2,1

∂̄
= C〈[ω122̄], [ω131̄], [ω123̄ + ω231̄], [ω123̄ − ω232̄], [ω132̄]〉.

By Serre duality we get the above Hodge diamond which is symmetric. Moreover,

dimE
|1|
1 = 4 = b1(h6), dimE

|2|
1 = 9 = b2(h6), dimE

|3|
1 = 12 = b3(h6),

so the Frölicher spectral sequence degenerates at the first step.
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4.2 The Frölicher sequence and the ∂∂̄-lemma on solvma-
nifolds

From now on we consider a (non-nilpotent) solvmanifold (M = G/Γ, J) endowed with an
invariant complex structure with holomorphically trivial canonical bundle. As we men-
tioned before, the choice of the lattice can contribute to the values of the Hodge numbers
of the complex solvmanifold, or more in general, to the behaviour of the Frölicher se-
quence. However, we prove in the following proposition that the non-degeneracy at the
first step of the Frölicher sequence is enough to be proved at the level of the Lie algebra.

Proposition 4.2.1. Let M = G/Γ be a compact manifold endowed with an invariant
complex structure J . If (g, J) satisfies that E1 � E∞, then E1(M) � E∞(M).

Proof. It follows from the symmetrization process (see Lemma 2.1.27). Let [α] ∈ Ep,q1 (g)
such that ∂α /∈ ∂̄ ∧p+1,q−1 g∗, then α defines a left-invariant (p, q)-form on M . If
there exists ψ ∈ ∧p+1,q−1M such that ∂α = ∂̄ψ then by the symmetrization process
(∂α)ν = ∂αν = ∂α = (∂̄ψ)ν = ∂̄ψν contradicting the hypothesis.

Hence, Section 4.2.1 starts by computing the Frölicher spectral sequence for the
underlying real Lie algebras g1, . . . , g9 endowed with the complex structures described in
Propositions 3.2.3, 3.2.4, 3.2.6, 3.2.7 and 3.2.10 included in Table 3.2. As a consequence
of Proposition 4.2.1, we provide a partial result of the behaviour of the Frölicher spectral
sequence of the corresponding solvmanifolds.

4.2.1 Behaviour at the invariant level

We compute the Frölicher sequence at the level of the Lie algebra dividing the study
according to the different families of complex structures found in the classification up to
equivalence done in Section 3.2.

Lemma 4.2.2. If J is a complex structure with closed complex volume (3,0)-form on
the Lie algebras g1 or gα2 with α ≥ 0, then E1

∼= E∞.

Proof. The Betti numbers of the Lie algebra g1 coincide with the ones of g0
2, namely,

b1(g1) = 2, b2(g1) = 5 and b3(g1) = 8, whereas the Betti numbers of the Lie algebras gα2
with α > 0 are b1(gα2 ) = 2, b2(gα2 ) = 3 and b3(gα2 ) = 4. Lemma 3.2.2 states that every
complex structure with closed complex volume (3,0)-form on the Lie algebras g1 or gα2
are described by a (1,0)-basis {ω1, ω2, ω3} satisfying the structure equations (3.15). A
direct computation shows that:

H1,0

∂̄
= C〈[ω3]〉, H2,0

∂̄
= C〈[ω12]〉, H3,0

∂̄
= C〈[ω123]〉,

H0,1

∂̄
= C〈[ω3̄]〉, H0,2

∂̄
= C〈[ω1̄2̄]〉,

H1,1

∂̄
= C〈δiA[ω11̄], δ1

A[ω12̄], δ1
A[ω21̄], δiA[ω22̄], [ω33̄]〉,

H2,1

∂̄
= C〈[ω123̄], δiA[ω131̄], δ1

A[ω132̄], δ1
A[ω231̄], δiA[ω232̄]〉.
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for any A ∈ C. If A = 1 or i, i.e. if g ∼= g1 or g0
2:

dimE
|1|
1 = 2 = b2(g1), dimE

|2|
1 = 5 = b2(g1), dimE

|3|
1 = 8 = b3(g1)

and therefore E1
∼= E∞. For the structures given by A 6= 1, i:

dimE
|1|
1 = 2 = b1(gα2 ), dimE

|2|
1 = 3 = b2(gα2 ), dimE

|3|
1 = 4 = b3(gα2 )

obtaining again E1
∼= E∞.

Lemma 4.2.3. If J is a complex structure with closed complex volume (3,0)-form on
the Lie algebra g3 then E1

∼= E∞.

Proof. By Proposition 3.2.4 every complex structure on g3 with complex closed volume
(3,0)-form is described by a (1,0)-basis {ω1, ω2, ω3} satisfying the complex structure
equations (3.21). The Dolbeault cohomology groups are:

H1,0

∂̄
= 〈[ω1]〉, H2,0

∂̄
= {0}, H1,1

∂̄
= C〈[ω11̄], [ i2xω

23̄ + ω32̄]〉,

H0,1

∂̄
= 〈[ω1̄]〉, H0,2

∂̄
= 〈[ω2̄3̄]〉, H2,1

∂̄
= C〈[ i2xω123̄ + ω132̄]〉, H3,0

∂̄
= 〈[ω123]〉.

Clearly we have

dimE
|1|
1 = 2 = b1(g3), dimE

|2|
1 = 3 = b2(g3), dimE

|3|
1 = 4 = b3(g3),

therefore E1
∼= E∞.

Lemma 4.2.4. If J is a complex structure with closed complex volume (3,0)-form on
the Lie algebras g4, g5, g6 or g7 then E1

∼= E∞.

Proof. The Betti numbers of the four Lie algebras coincide and we have b1(gi) = 1,
b2(gi) = 3 and b3(gi) = 6 for i = 4, 5, 6, 7. By Lemma 3.2.5 the complex structures
on the Lie algebras g4, g5, g6 or g7 with closed volume (3,0)-form may be written in
terms of a (1,0)-basis {ω1, ω2, ω3} satisfying the complex structure equations (3.22). It
is direct to check that

H1,0

∂̄
= {0}, H0,1

∂̄
= C〈[ω3̄]〉, H2,0

∂̄
= C〈[ω12]〉,

H1,1

∂̄
= C〈δ1

A[ω12̄], δiA[ω22̄]〉, H0,2

∂̄
= C〈[ω1̄2̄]〉, H3,0

∂̄
= C〈[ω123]〉,

H2,1

∂̄
= C〈[ω123̄], δ1

A[ω132̄ − ω231̄], δiA[G11ω
131̄ −G22ω

232̄]〉.

Thus, counting dimensions we have

dimE
|1|
1 = 1 = b1(gi), dimE

|2|
1 = 3 = b2(gi), dimE

|3|
1 = 6 = b3(gi),

for i = 4, 5, 6, 7 and then E1
∼= E∞ for the complex structures given by (3.22).



96 Complex cohomologies and the ∂∂̄-lemma

Lemma 4.2.5. Let J be a complex structure with closed complex volume (3,0)-form on
the Lie algebra g8, then E1

∼= E∞ if J satisfies (3.33) with A 6= ±i and E1 6∼= E2
∼= E∞

in other cases.

Proof. We have seen in Proposition 3.2.7 that the complex structures on g8 with a closed
complex volume (3,0)-form may be represented by a (1,0)-basis {ω1, ω2, ω3} satisfying
the complex structure equations:

dω1 = −(A− i)ω13− (A+ i)ω13̄ +Bω33̄, dω2 = (A− i)ω23 +(A+ i)ω23̄ +Cω33̄, dω3 = 0.,

where A = −i and (B,C) ∈ {(0, 0), (1, 0), (1, 1)} or A 6= −i, ImA 6= 0 and B = C = 0.
The Dolbeault cohomology groups are:

H1,0

∂̄
= C〈δ−iA δ0

B[ω1], δ−iA [Cω1 − ω2], [ω3]〉, H0,1

∂̄
= C〈δiA[ω1], δiA[ω2], [ω3]〉,

H2,0

∂̄
= C〈δ0

Bδ
0
C [ω12], δ−iA [ω13], δ−iA [ω23]〉, H0,2

∂̄
= C〈[ω1̄2̄], δiA[ω1̄3̄], δiA[ω2̄3̄]〉,

H1,1

∂̄
= C〈δ−iA [ω13̄], δ−iA [ω23̄], δiA[ω31̄], δiA[ω32̄], δ0

Bδ
0
C [ω33̄]〉,

H2,1

∂̄
= C〈δiA[ω121̄], δiA[ω122̄], [ω123̄], δ−iA [ω133̄], δ0

Bδ
0
Cδ
−i
A [ω233̄]〉, H3,0

∂̄
= C〈[ω123]〉

For the complex structures JA satisfying (3.33) with A 6= ±i we get

dimE
|1|
1 = 2 = b1(g8), dimE

|2|
1 = 3 = b2(g8), dimE

|3|
1 = 4 = b3(g8),

therefore E1
∼= E∞. For the parallelizable J0 and the abelian J1 structure corresponding

to (3.33) with A± i we get:

dimE
|1|
1 = 4 > 2 = b1(g8), dimE

|2|
1 = 7 > 3 = b2(g8), dimE

|3|
1 = 8 > 4 = b3(g8),

dimE
|4|
1 = 7 > 3 = b4(g8), dimE

|2|
1 = 4 > 2 = b5(g8).

Finally, for the structures J ′ and J ′′ given by equations (3.31) and (3.32) we get:

dimE
|1|
1 = 3 > b1(g8), dimE

|2|
1 = 5 > b2(g8), dimE

|3|
1 = 6 > b3(g8),

dimE
|4|
1 = 5 > b4(g8), dimE

|2|
1 = 3 > b5(g8).

Therefore we must study the Frölicher sequence at the second step Ep,q2 if A = i or
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A = −i. If A = i then we have:

E0,1
1

d1−→ E1,1
1

d1−→ E2,1
1

d1−→ E3,1
1

[ω1̄] 7→ 2i[ω31̄]

[ω2̄] 7→ 2i[ω32̄]

[ω11̄] 7→ 2i[ω131̄]

[ω12̄] 7→ −2i[ω132̄]

[ω121̄] 7→ −2i[ω1231̄]

[ω122̄] 7→ 2i[ω1232̄].

Similarly, the homomorphism E2,2
1

d1−→ E3,2
1 is non-zero because d1[ω121̄3̄] = [∂̄ω121̄3̄] =

−2i[ω1231̄3̄] 6= 0 and d1[ω122̄3̄] = [∂̄ω122̄3̄] = 2i[ω1232̄3̄] 6= 0. Since Ep,q2
∼= Ker d1/Im d1,

counting the dimensions we get

dimE
|1|
2 ≤ dimE

|1|
1 − 2 = 2 = b1(g8), dimE

|2|
2 ≤ dimE

|2|
1 − 4 = 3 = b2(g8),

dimE
|3|
2 ≤ dimE

|3|
1 − 4 = 4 = b3(g8), dimE

|4|
2 ≤ dimE

|4|
1 − 4 = 3 = b4(g8),

dimE
|5|
2 ≤ dimE

|5|
1 − 2 = 2 = b5(g8).

This implies that E2
∼= E∞ because dimE

|k|
2 = bk(g8) for all k if A = i.

If A = −i and (B,C) = (0, 0) then we have the following non-zero homomorphisms:

E1,0
1

d1−→ E2,0
1

[ω1] 7→ 2i[ω13]

[ω2] 7→ −2i[ω23],

E1,1
1

d1−→ E2,1
1

[ω13̄] 7→ 2i[ω133̄]

[ω23̄] 7→ −2i[ω233̄],

E1,2
1

d1−→ E2,2
1

[ω11̄2̄] 7→ 2i[ω131̄2̄]

[ω21̄2̄] 7→ −2i[ω231̄2̄],

E1,3
1

d1−→ E2,3
1

[ω11̄2̄3̄] 7→ 2i[ω131̄2̄3̄]

[ω21̄2̄3̄] 7→ −2i[ω231̄2̄3̄].

Since Ep,q2
∼= Ker d1/Im d1, counting the dimensions we get

dimE
|1|
2 ≤ dimE

|1|
1 − 2 = 2 = b1(g8), dimE

|2|
2 ≤ dimE

|2|
1 − 4 = 3 = b2(g8),

dimE
|3|
2 ≤ dimE

|3|
1 − 4 = 4 = b3(g8), dimE

|4|
2 ≤ dimE

|4|
1 − 4 = 3 = b4(g8),

dimE
|5|
2 ≤ dimE

|5|
1 − 2 = 2 = b5(g8).
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This implies that E2
∼= E∞ because dimE

|k|
2 = bk(g8) for all k if A = −i and (B,C) =

(0, 0).

Finally, if A = −i and (B,C) 6= (0, 0) then the following homomorphism:

E1,0
1

d1−→ E2,0
1

[Cω1 −Bω2] 7→ 2i[Cω13 +Bω23],

E1,1
1

d1−→ E2,1
1

[ω13̄] 7→ 2i[ω133̄],

E1,2
1

d1−→ E2,2
1

[Cω11̄2̄ −Bω11̄2̄] 7→ 2i[Cω131̄2̄ +Bω231̄2̄],

E1,3
1

d1−→ E2,3
1

[ω11̄2̄3̄] 7→ 2i[ω131̄2̄3̄].

are non-zero. Finally, we get

dimE
|1|
2 ≤ dimE

|1|
1 − 1 = 2 = b1(g8), dimE

|2|
2 ≤ dimE

|2|
1 − 2 = 3 = b2(g8),

dimE
|3|
2 ≤ dimE

|3|
1 − 2 = 4 = b3(g8), dimE

|4|
2 ≤ dimE

|4|
1 − 2 = 3 = b4(g8),

dimE
|5|
2 ≤ dimE

|5|
1 − 1 = 2 = b5(g8).

This implies that E2
∼= E∞ because dimE

|k|
2 = bk(g8) for all k if A = −i and (B,C) 6=

(0, 0) and this concludes the proof.

Lemma 4.2.6. If J is a complex structure with closed complex volume (3,0)-form on
the Lie algebra g9 ,then E1

∼= E∞.

Proof. Proposition 3.2.10 states that there is only one complex structure on g9 with
closed complex volume (3,0)-form satisfying the complex structure equations (3.36). It
is direct to check that

H1,0

∂̄
= {0}, H2,0

∂̄
= {0}, H1,1

∂̄
= C〈[ω1̄]〉,

H0,1

∂̄
= {0}, H0,2

∂̄
= C〈[ω2̄3̄]〉, H3,0

∂̄
= C〈[ω123]〉, H2,1

∂̄
= {0}.

Clearly we get dimE
|1|
1 = 1 = b1(g9), dimE

|2|
1 = 1 = b2(g9), dimE

|3|
1 = 2 = b3(g9),

hence E1
∼= E∞.

We summarize the results obtained in Lemmas 4.2.2, 4.2.3, 4.2.4, 4.2.5 and 4.2.6 in
the following Proposition:

Proposition 4.2.7. Let (g, J) be a six-dimensional non-nilpotent solvable unimodular
Lie algebra endowed with a complex structure with a closed volume (3, 0)-form.

• If g ∼= gi for i 6= 8, then E1
∼= E∞.

• If g = g8, then E1
∼= E∞ if J satisfies (3.33) with A 6= ±i and E1 6∼= E2

∼= E∞ in
other case.
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As a direct consequence of Propositions 4.2.7 and 4.2.1 we state the following:

Corollary 4.2.8. Let M = G/Γ be a solvmanifold with underlying real Lie algebra
g8 endowed with an invariant complex structure satisfying (3.31), (3.32) or (3.33) with
A = ±i then E1(M) � E∞(M). In particular the complex solvmanifolds (M,J) do not
satisfy the ∂∂̄-lemma.

4.2.2 Complex structures of splitting type

The works of Angella and Kasuya [51, 7] provide some results concerning the computa-
tion of the Dolbeault and Bott-Chern cohomologies of certain solvmanifolds M = G/Γ
endowed with an invariant complex structure of splitting type.

Definition 4.2.9 (Kasuya [51, Assumption 1.1]). A solvmanifold M = G/Γ endowed
with an invariant complex structure J is said to be of splitting type if G is a semi-direct
product Cn nϕ N such that:

1. N is a connected simply-connected 2m-dimensional nilpotent Lie group endowed
with a left-invariant complex structure JN ;

2. for any t ∈ Cn, it holds that ϕ(t) ∈ GL(N) is a holomorphic automorphism of N
with respect to JN ;

3. ϕ induces a semi-simple action on the Lie algebra n associated to N ;

4. G has a lattice Γ which can be written as Γ = ΓCn nϕ ΓN , where ΓCn and ΓN are
lattices of Cn and N respectively, and it holds ϕ(t) (ΓN ) ⊆ ΓN for any t ∈ ΓCn;

5. the inclusion
(
∧•,•n∗, ∂̄

)
↪→
(
∧•,•N/ΓN , ∂̄

)
induces an isomorphism

H•,•
∂̄

(n)
∼=→ H•,•

∂̄
(N/ΓN ) .

Kasuya [51] proves that the computation of the Dolbeault cohomology of a compact
complex solvmanifold endowed with an invariant complex structure of splitting type
can be done by means of a finite-dimensional sub-complex

(
B•,•Γ , ∂̄

)
of the complex

of differential forms (∧•,•M, ∂̄). Analogously, Angella and Kasuya [7] show that the
Bott-Chern cohomology is computable by means of a finite-dimensional double sub-
complex

(
C•,•Γ , ∂, ∂̄

)
of the double complex (∧•,•M, ∂, ∂̄). In both cases, the operators

∂ and ∂̄ in the complexes
(
B•,•Γ , ∂̄

)
and

(
C•,•Γ , ∂, ∂̄

)
are the restriction of the differential

operators ∂ and ∂̄ induced by the complex structure on the solvmanifold to the spaces
B•,•Γ , C•,•Γ ⊂ ∧•,•M . Next, we sketch the basic tools to obtain the spaces B•,•Γ and
C•,•Γ stating the main theorems concerning the computation of the Dolbeault and the
Bott-Chern cohomology.

Let G = Cn nϕ N be a Lie group endowed with a left-invariant complex structure
of splitting type. Consider the standard basis {X1, . . . , Xn} of Cn and a left-invariant
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(1, 0)-basis {Y1, . . . , Ym} ⊂ n1,0 for the complex structure JN of N such that the induced
action ϕ on n1,0 is represented in this basis by the diagonal matrix

ϕ =


α1

. . .

αm

 ,

for α1, . . . , αm characters of Cn (recall that α : Cn → C∗ is a character of Cn if α is a
homomorphism between the abelian groups (Cn,+) and (C∗, ·)).

Let
{
x1, . . . , xn, α

−1
1 y1, . . . , α

−1
m ym

}
be the basis of (g∗)1,0 which is dual to the basis

of g(1,0) given by

{X1, . . . , Xn, α1Y1, . . . , αmYm} .

By using [51, Lemma 2.2], it turns out that for any j ∈ {1, . . . ,m}, there exist unique
unitary characters βj , γj : Cn → C∗ such that αjβ

−1
j and ᾱjγ

−1
j are holomorphic. Hence,

Kasuya states the following:

Theorem 4.2.10 (Kasuya [51, Corollary 4.2]). Let M = G/Γ be a solvmanifold endowed
with an invariant complex structure of splitting type and B•,•Γ ⊂ ∧•,•M be the finite-
dimensional subspace given by
(4.6)

Bp,q
Γ := C〈xI ∧

(
α−1
J βJ

)
yJ ∧ x̄K ∧

(
ᾱ−1
L γL

)
ȳL | |I|+ |J | = p and |K|+ |L| = q

such that (βJγL)|Γ = 1〉,

for (p, q) ∈ N2. Then, the inclusion (B•,•Γ , ∂̄) ↪→ (∧•,•M, ∂̄) induces a cohomology iso-
morphism

H•,•
∂̄

(B•,•Γ ) ∼= H•,•
∂̄

(M).

Remark 4.2.11. In (4.6) we shorten αI := αi1 ·· · ··αik for a multi-index I = (i1, . . . , ik).

Angella and Kasuya [7] extend the previous technique to the computation of the
Bott-Chern cohomology of a solvmanifold.

Theorem 4.2.12 (Angella and Kasuya [7, Theorem 2.16]). Let M = G/Γ be a solvman-
ifold endowed with an invariant complex structure of splitting type and C•,•Γ ⊂ ∧•,•M be
the finite-dimensional subspace given by

(4.7) C•,•Γ := B•,•Γ + B̄•,•Γ ,

where B̄•,•Γ :=
{
ω̄ ∈ ∧•,•M | ω ∈ B•,•Γ

}
and B•,•Γ defined by (4.6). Then, the inclusion

(C•,•Γ , ∂, ∂̄) ↪→ (∧•,•M,∂, ∂̄) induces a cohomology isomorphism

H•,•BC(C•,•Γ ) ∼= H•,•BC(M).
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Lemma 4.2.13. Let (M = G/Γ, J) be a complex solvmanifold of splitting type and

(B•,•Γ , ∂, ∂̄) the complex defined by (4.6). If ∂|B•,•Γ
= ∂̄|B•,•Γ

= 0 and Bq,p
Γ = Bp,q

Γ for all

p, q ∈ N then (M,J) satisfies the ∂∂̄-lemma.

Proof. If the complex (B•,•Γ , ∂, ∂̄) satisfies Bq,p
Γ = Bp,q

Γ for all p, q ∈ N then C•,•Γ = B•,•Γ .
Furthermore, the condition ∂|B•,•Γ

= ∂̄|B•,•Γ
= 0 forces the natural isomorphisms

H•,•BC(M) ∼= H•,•BC(CΓ) = C•,•Γ = B•,•Γ = H•,•
∂̄

(BΓ) ∼= H•,•
∂̄

(M).

Hence, (M,J) satisfies the ∂∂̄-lemma.

We would like to use the previous Theorems 4.2.10 and 4.2.12 in order to study the
cohomology of solvmanifolds M = Gk/Γ with underlying real Lie algebras gk endowed
with the invariant complex structures with holomorphically trivial canonical bundle (see
Table 3.2). However, in order to do this, it is necessary to know which of these complex
manifolds are of splitting type. The following lemma states a simple cohomological
obstruction to the existence of a complex structure of splitting type:

Lemma 4.2.14. If (M = G/Γ, J) is a solvmanifold endowed with an invariant complex
structure of splitting type and G = Cn nϕ N then b1(g) ≥ 2n. In particular, b1(g) ≥ 2.

Proof. As a consequence of Definition 4.2.9, ifM = G/Γ is of splitting type the connected
and simply-connected Lie group G endowed with the left-invariant structure must admit
a semi-direct product decomposition such that G = Cn nϕ N . But this implies that
b1(g) ≥ 2n.

The Lie algebras g4, g5, g6, g7 or g9 have b1(g) = 1, hence by Lemma 4.2.14 we have
that if M = G/Γ is a solvmanifold with underlying real Lie algebra g4, g5, g6, g7 or g9

endowed with an invariant complex structure J , then (M,J) is not of splitting type.

Proposition 4.2.15. Let G be a Lie group with underlying real Lie algebra g1, gα2 with
α ≥ 0 or g8 endowed with a left-invariant complex structure J defined by (3.15) or (3.33).
Then G = C2 oϕA C where ϕA : C→ GL(C2) is defined by the diagonal matrix:

(4.8) ϕA(z) :=

α1(z) 0

0 α2(z)


and α1, α2 : C→ C∗ are characters such that α2 = α−1

1 and

α1(z) :=

 eA(z+z̄) if J satisfies (3.15)

e−(A−i)z−(A+i)z̄ if J satisfies (3.33)
for any z ∈ C.

Proof. We provide the proof for the Lie algebras g1 and gα2 with α ≥ 0. Let {ω1, ω2, ω3}
be a left-invariant basis of (1, 0)-forms satisfying the complex structure equations (3.15),
namely dω1 = Aω1 ∧ (ω3 + ω3̄), dω2 = −Aω2 ∧ (ω3 + ω3̄), dω3 = 0 with A = eiθ and
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θ ∈ [0, π). We can take complex coordinates (z1, z2, z3) ∈ C3 on G and integrate these
equations obtaining the expressions of the left-invariant (1, 0)-forms:

ω1 = e−A(z3+z̄3)dz1, ω2 = eA(z3+z̄3)dz2, ω3 = dz3.

The invariance of the (1, 0)-forms L∗g(ω
j) = ωj by an element g ∈ G with coordinates

(a1, a2, a3) ∈ C3 determines the multiplication law of the group

(4.9) (a1, a2, a3) · (z1, z2, z3) = (eA(a3+ā3)z1 + a1, e
−A(a3+ā3)z2 + a2, z3 + a3)

and hence we can give a matrix representation of the corresponding Lie group endowed
with the complex structure as

(4.10) GA =




eA(z3+z̄3) 0 0 z1

0 e−A(z3+z̄3) 0 z2

0 0 1 z3

0 0 0 1

 | z1, z2, z3 ∈ C


.

By the coordinate expression of the multiplication given by (4.9) it is clear that GA =
C2 oϕA C and by the matrix representation (4.10) the complex manifolds GA are bi-
holomorphic to C3. The action ϕA : C → GL(C2) may be represented by the following
matrix:

ϕA(z3) =

eA(z3+z̄3) 0

0 e−A(z3+z̄3)

 ∈ GL(2,C).

Similarly, every complex structure on g8 with closed volume form satisfying equations (3.33)
is a semi-direct product GA = C2 oϕA C where the action ϕA : C→ GL(C2) is:

ϕA(z3) =

e−(A−i)z3−(A+i)z̄3 0

0 e(A−i)z3+(A+i)z̄3

 ∈ GL(2,C).

Remark 4.2.16. The complex structure on g1 given by (3.17) and the parallelizable
complex structure J0 on g8 given by (3.33) for A = −i correspond to the complex
structures studied by Kasuya in [51, Examples 1 and 2]. On the other hand, it can be
proved that the complex structures on g3 defined by (3.21) and the complex structures
J ′ and J ′′ on g8 defined by (3.31) and (3.32) are not of splitting type.

From now on, we considerG = CnϕC2 the connected and simply-connected Lie group
with underlying real Lie algebra g1, gα2 or g8 endowed with an invariant complex structure
satisfying (3.15) or (3.33). In order to construct suitable solvmanifolds M = G/Γ for
using Theorems 4.2.10 and 4.2.12, we must consider lattices Γ = Γ′ nϕ Γ′′ on G where
Γ′′ is a lattice of C2 and Γ′ is a lattice of C compatible with the splitting. This implies
that the matrices ϕ(z3)|Γ′ must be in the conjugation class of a regular integer matrix
for any z3 ∈ C.
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Lemma 4.2.17. A matrix Mf =

ef 0

0 e−f

 ∈ GL(2,C) with f ∈ C is in the class of

conjugation of an integer matrix if and only if f = log(n+
√
n2−4
2 ) with n ∈ Z.

Proof. As the matrix Mf is diagonal then it is conjugated with an integer matrix if and
only if the characteristic polynomial

pMf
(λ) = λ2 + (ef + e−f )λ+ 1 ∈ Z[λ]

and this holds if and only if ef + e−f = n ∈ Z. Solving this equation we get f± =

log(n±
√
n2−4
2 ) but f− = −f+ and it is direct to check that the matrices Mf and M−f

are conjugated.

Remark 4.2.18. Notice that for n = 2 then ϕ(f) = IdC2 , giving rise to the abelian
complex Lie group G = C3, therefore we exclude this case in the following. In or-
der to make easier the computations of lattices, we show the values of the function

f(n) := log(n+
√
n2−4
2 ) ∈ C for n ∈ Z in the next table:

n ≤ −3 −2 −1 0 1 2 ≥ 3

log(n+
√
n2−4
2 ) log(|n+

√
n2−4
2 |) + iπ iπ 2iπ

3
iπ
2

iπ
3 0 log(n+

√
n2−4
2 )

Table 4.1: Values of the function f(n).

Results on gα2 with α ≥ 0

Proposition 4.2.15 states that the connected and simply-connected Lie groups G with un-
derlying real Lie algebra gα2 with α ≥ 0 endowed with a left-invariant complex structure
described by (3.15) may be written as a semi-direct product CnϕA C2, where the holo-
morphic action ϕA is described by a diagonal matrix (4.8). The characters αj : C→ C∗
required to construct the double complex (B•,•Γ , ∂̄) are

(4.11) α1(z3) = eA(z3+z̄3), α2(z3) = e−A(z3+z̄3),

for A = eiθ with θ ∈ (0, π). In particular, by considering a set {z1, z2} of local coordinates
on C2 and z3 a local coordinate on C, we have a basis of left-invariant (1, 0)-forms:

ω1 = α−1
1 dz1 = e−A(z3+z̄3)dz1, ω2 = α−1

2 dz2 = eA(z3+z̄3)dz2, ω3 = dz3.

The unitary characters β1, β2, γ1, γ2 : C → C∗ satisfying that α1β
−1
1 , α2β

−1
2 , ᾱ1γ

−1
1 ,

ᾱ2γ
−1
2 are holomorphic are the following:

(4.12)
β1(z3) = e−Āz3+Az̄3 , β2(z3) = β1(z3)−1 = eĀz3−Az̄3 ,

γ1(z3) = e−Az3+Āz̄3 , γ2(z3) = γ1(z3)−1 = eAz3−Āz̄3 .
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According to (4.6), the generators of the complex B•,•Γ = ∧•,•〈ϕ1, ϕ2, ϕ3, ϕ̃1, ϕ̃2, ϕ̃3〉 are
ϕ1 = β1ω

1 = e−(A+Ā)z3dz1,

ϕ2 = β2ω
2 = e(A+Ā)z3dz2,

ϕ3 = ω3 = dz3,


ϕ̃1 = γ1ω

1̄ = e−(A+Ā)z3dz̄1,

ϕ̃2 = γ2ω
2̄ = e(A+Ā)z3dz̄2,

ϕ̃3 = ω3̄ = dz̄3.

where ϕ1, ϕ2, ϕ3 have bidegree (1, 0), ϕ̃1, ϕ̃2, ϕ̃3 have bidegree (0, 1) and, in addition, one
of the following conditions

β1|Γ = 1, γ1|Γ = 1, (β1γ1)|Γ = 1, (β1γ
−1
1 )|Γ = 1,

concerning the compatibility of the complex structure with the lattice Γ ⊂ G must be sa-
tisfied. The complex structure equations expressed in the co-frame {ϕ1, ϕ2, ϕ3, ϕ̃1, ϕ̃2, ϕ̃3}
are:

(4.13)


dϕ1 = (A+ Ā)ϕ13,

dϕ2 = −(A+ Ā)ϕ23,

dϕ3 = 0,


dϕ̃1 = −(A+ Ā)ϕ31̃,

dϕ̃2 = (A+ Ā)ϕ32̃,

dϕ̃3 = 0

Now, we are concerned to find lattices Γ := Γ′nϕA Γ′′, where Γ′ ⊂ C and Γ′′ ⊂ C2 are
lattices of C and C2 respectively, compatible with the semi-direct product G = CnϕAC2.
As we mentioned before, this means that the restriction to Γ′ of ϕA must be in the
conjugation class of an integer matrix.

Lemma 4.2.19. Let x3, b ∈ R be such that 0 6= b ∈ R and

1. x3 ∈ {π2 , π3 , π4 , π6 } for A = ei
π
2 .

2. x3(n) = π
2ImAn

for An = eiθn such that θn ∈ (0, π) satisfies

(4.14) tan θn =
π

log(|n+
√
n2−4
2 |)

for n ≤ −3.

If ϕA : C → GL(C2) is described by (4.8) and (4.11), then the lattice Γ′ = x3Z ⊕ ibZ
satisfies that ϕA|Γ is in the conjugation class of an integer matrix.

Proof. Suppose 0 6= z3 ∈ Γ′ ⊂ C and Γ′ is lattice such that ϕA|Γ is in the conjugation
class of an integer matrix. By Lemma 4.2.17, z3 = x3 + iy3 satisfies that eiθ(z3 + z̄3) =
log(n+

√
n2 − 4) with θ ∈ (0, π) holds, namely,

(4.15) 2x3 sin θ = Arg

(
n+
√
n2 − 4

2

)
, 2x3 cos θ = log

∣∣∣∣∣n+
√
n2 − 4

2

∣∣∣∣∣ .
Hence x3 6= 0 (recall that we excluded the value n = 2, see Remark 4.2.18) and we can
consider y3 = 0.
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(i) If A = ei
π
2 then substituting θ = π

2 in (4.15) and observing Table 4.1 yield the
solutions x3 ∈ {π2 , π3 , π4 , π6 } for n ∈ {−2,−1, 0, 1}.
(ii) If A = eiθ with θ ∈ (0, π) and θ 6= π

2 , then, as x3 6= 0, the results in Table 4.1 force
that n ≤ −3. Dividing both equations in (4.15) we obtain that the complex structures
on G satisfying equations (3.19) admitting a lattice compatible with the splitting are
given by the unique angle θ ∈ (0, π) satisfying (4.14). Finally, substituting in (4.15) we
get x3(n) = π

2ImAn
.

Remark 4.2.20. Recall that the complex structure satisfying (3.19) for the parameter
θ determines the underlying real Lie algebra by the expression α = | cos θ

sin θ |, hence the Lie
groups G = CnϕAn C

2 with An = eiθn and θn defined by (4.14) have underlying real Lie

algebra gαn2 with αn = 1
π | log(|n+

√
n2−4
2 |)| for n ≤ −3.

In addition, if θn ∈ (0, π) with θ 6= π
2 is a solution of (4.14) then it defines a complex

structure on gαn2 satisfying (3.19). The other non-equivalent complex structure on gαn2 is
represented by π−θn. Notice that as sin(π−θn) = sin θn then, fixed 0 6= b ∈ R, the same
lattice Γ′ = x3(n)Z⊕ ibZ is compatible with both non-equivalent complex structures.

Once we have computed the lattices compatible with the splitting structures we can
use Theorem 4.2.10 in order to compute cohomologies of the corresponding complex
solvmanifolds.

Proposition 4.2.21. Let G = C nϕA C2 be a Lie group endowed with an invariant
complex structure of splitting type where ϕA is described by (4.8) and (4.11) for A = ei

π
2

and Γ = Γ′ nϕA Γ′′ is a lattice of G compatible with the splitting, where Γ′ is a lattice of
C according to Lemma 4.2.19. Then, the complex solvmanifold (M = G/Γ, J) satisfies
the ∂∂̄-lemma.

Moreover if Γ′ = π
2Z⊕ iZ then the inclusion H•(g0∗

2 ) ↪→ H•(M) is an isomorphism
although g0

2 is not completely solvable.

Proof. Let Γ = Γ′ nϕ Γ′′ be a lattice compatible with the splitting. By Lemma 4.2.19,
Γ′ = x3Z⊕ ibZ where x3 ∈ {π2 , π3 , π4 , π6 } and 0 6= b ∈ R. Then for the unitary characters
given by (4.12) we have

β1|Γ 6= 1, γ1|Γ 6= 1, (β1γ1)|Γ = 1,

for any x3 and (β1γ
−1
1 )|Γ = 1 if and only if x3 = π

2 . The results of the computation of the
double complex B•,•Γ are summarized in Table 4.2. Moreover, the complex structure on
g0

2 corresponds to A = i in equations (4.13) and we get the hypothesis of Lemma 4.2.13,
therefore the complex solvmanifold M = G/Γ satisfies the ∂∂̄-lemma property for every
lattice compatible with the splitting.

Particularly, for the lattice Γ′ = π
2Z⊕ibZ with 0 6= b ∈ R we find that bk(M) = bk(g

0
2)

for k = 0, . . . , 6 and therefore the inclusion H•(g0∗
2 ) ↪→ H•(M) is an isomorphism.

Nevertheless, the eigenvalues of the endomorphism ade5 : g0
2 → g0

2 are λ1 = −λ2 = i,
λ3 = 0, hence g0

2 is not completely solvable.
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Proposition 4.2.22. Let G = C nϕA C2 be a Lie group endowed with an invariant
complex structure of splitting type, where ϕA is described by (4.8) and (4.11) and An =
eiθn for some n ≤ −3, where θn ∈ (0, π) satisfies (4.14) and Γ = Γ′ nϕAn Γ′′ is a lattice
of G compatible with the splitting where Γ′ is a lattice of C according to Lemma 4.2.19.
Then Γ′ = π

2ImAn
Z⊕ ibZ and if (M = G/Γ, J) is the complex solvmanifold, then

• E1(M) � E∞(M) for b = k π
2ReAn

with 0 6= k ∈ Z.

• (M,J) satisfies the ∂∂̄-lemma for b 6= k π
2ReAn

with 0 6= k ∈ Z.

Proof. Let Γ = Γ′nϕAn Γ′′ be a lattice compatible with the splitting. By Lemma 4.2.19,
Γ′ = π

2ImAn
Z⊕ ibZ with 0 6= b ∈ R. Then for the unitary characters given by (4.12) we

have 
(β1γ

−1
1 )|Γ = 1 for any b ∈ R,

(β1γ1)|Γ = 1 if and only if b = k π
2ReAn

with k ∈ Z,
β1|Γ = γ1|Γ = 1 if and only if b = (2k + 1) π

2ReAn
with k ∈ Z

The results of the computation of the complex B•,•Γ can be found in Table 4.3. For the
lattices Γ′ = π

2ImAn
Z⊕ ibZ with b 6= k π

2ReAn
for any k ∈ Z, the complex B•,•Γ satisfies the

hypothesis of Lemma 4.2.13 and hence the corresponding complex solvmanifolds satisfy
the ∂∂̄-lemma.
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B•,•Γ (Γ′ = π
2Z⊕ ibZ, 0 6= b ∈ R) h•,•

∂̄
b• B•,•Γ (Γ′ = x3Z⊕ ibZ, x3 6= π

2 , 0 6= b ∈ R) h•,•
∂̄

b•

(1,0) C
〈
ϕ3
〉

1
2

C
〈
ϕ3
〉

1
2

(0,1) C
〈
ϕ3̄
〉

1 C
〈
ϕ3̄
〉

1

(2,0) C
〈
ϕ12
〉

1

7

C
〈
ϕ12
〉

1

5
(1,1) C

〈
ϕ11̃, ϕ12̃, ϕ21̃, ϕ22̃, ϕ33̄

〉
5 C

〈
ϕ11̃, ϕ22̃, ϕ33̄

〉
3

(0,2) C
〈
ϕ1̄2̄
〉

1 C
〈
ϕ1̃2̃
〉

1

(3,0) C
〈
ϕ123

〉
1

12

C
〈
ϕ123

〉
1

8(2,1) C
〈
ϕ123̄, ϕ131̃, ϕ132̃, ϕ231̃, ϕ232̃

〉
5 C

〈
ϕ123̄, ϕ131̃, ϕ232̃

〉
3

(1,2) C
〈
ϕ11̃3̄, ϕ12̃3̄, ϕ21̃3̄, ϕ22̃3̄, ϕ31̃2̃

〉
5 C

〈
ϕ11̃3̄, ϕ22̃3̄, ϕ31̃2̃

〉
3

(0,3) C
〈
ϕ1̃2̃3̄

〉
1 C

〈
ϕ1̃2̃3̄

〉
1

(3,1) C
〈
ϕ1233̄

〉
1

7

C
〈
ϕ1233̄

〉
1

5
(2,2) C

〈
ϕ121̃2̃, ϕ131̃3̄, ϕ132̃3̄, ϕ231̃3̄, ϕ232̃3̄

〉
5 C

〈
ϕ121̃2̃, ϕ131̃3̄, ϕ232̃3̄

〉
3

(1,3) C
〈
ϕ31̃2̃3̄

〉
1 C

〈
ϕ31̃2̃3̄

〉
1

(3,2) C
〈
ϕ1231̃2̃

〉
1

2
C
〈
ϕ1231̃2̃

〉
1

2

(2,3) C
〈
ϕ121̃2̃3̄

〉
1 C

〈
ϕ121̃2̃3̄

〉
1

(3,3) C
〈
ϕ1231̃2̃3̄

〉
1 1 C

〈
ϕ1231̃2̃3̄

〉
1 1

Table 4.2: The double complex B•,•Γ for computing the Dolbeault cohomology of the
complex solvmanifolds (M = G/Γ, J), with underlying Lie algebra g0

2, described in
Proposition 4.2.21.
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B
•,
•

Γ
(Γ
′ =

iπ
2
I
m
A
n
Z
⊕

i(
2
k
−

1
)π

2
R
e
A
n
Z)

h
•,
•

∂̄
b
•

B
•,
•

Γ
(Γ
′ =

iπ
2
I
m
A
n
Z
⊕

2
ik
π

2
R
e
A
n
Z)

h
•,
•

∂̄
b
•

B
•,
•

Γ
(Γ
′ =

iπ
2
I
m
A
n
Z
⊕
ib
Z,
b
6=

k
π

2
R
e
A
n

)
h
•,
•

∂̄
b
•

(1
,0

)
C
〈 ϕ1 ,

ϕ
2
,ϕ

3
〉

3
2

C
〈 ϕ3〉

1
2

C
〈 ϕ3〉

1
2

(0
,1

)
C
〈 ϕ̃

1
,ϕ̃

2
,ϕ

3̄
〉

3
C
〈 ϕ

3̄
〉

1
C
〈 ϕ

3̄
〉

1

(2
,0

)
C
〈 ϕ12

,ϕ
1
3
,ϕ

2
3
〉

3

5

C
〈 ϕ12

〉
1

5

C
〈 ϕ12

〉
1

5
(1
,1

)
C
〈 ϕ

1
1̃
,ϕ

1
2̃
,ϕ

1
3̄
,ϕ

2
1̃
,ϕ

2
2̃
,ϕ

2
3̄
,ϕ

3
1̃
,ϕ

3
2̃
,ϕ

3
3̄
〉

9
C
〈 ϕ

1
1̃
,ϕ

1
2̃
,ϕ

2
1̃
,ϕ

2
2̃
,ϕ

3
3̄
〉

5
C
〈 ϕ

1
2̃
,ϕ

2
1̃
,ϕ

3
3̄
〉

3

(0
,2

)
C
〈 ϕ

1̃
2̃
,ϕ

1̃
3̄
,ϕ

2̃
3̄
〉

3
C
〈 ϕ

1̃
2̃
〉

1
C
〈 ϕ

1̃
2̃
〉

1

(3
,0

)
C
〈 ϕ12

3
〉

1

8

C
〈 ϕ12

3
〉

1

8

C
〈 ϕ12

3
〉

1

8
(2
,1

)
C
〈 ϕ

1
2
1̃
,ϕ

1
2
2̃
,ϕ

1
2
3̄
,ϕ

1
3
1̃
,ϕ

1
3
2̃
,ϕ

1
3
3̄
,ϕ

2
3
1̃
,ϕ

2
3
2̃
,ϕ

2
3
3̄
〉

9
C
〈 ϕ

1
2
3̄
,ϕ

1
3
1̃
,ϕ

1
3
2̃
,ϕ

2
3
1̃
,ϕ

2
3
2̃
〉

5
C
〈 ϕ

1
2
3̄
,ϕ

1
3
2̃
,ϕ

2
3
1̃
〉

3

(1
,2

)
C
〈 ϕ

1
1̃
2̃
,ϕ

1
1̃
3̄
,ϕ

1
2̃
3̄
,ϕ

2
1̃
2̃
,ϕ

2
1̃
3̄
,ϕ

2
2̃
3̄
,ϕ

3
1̃
2̃
,ϕ

3
1̃
3̄
,ϕ

3
2̃
3̄
〉

9
C
〈 ϕ

1
1̃
3̄
,ϕ

1
2̃
3̄
,ϕ

2
1̃
3̄
,ϕ

2
2̃
3̄
,ϕ

3
1̃
2̃
〉

5
C
〈 ϕ

1
2̃
3̄
,ϕ

2
1̃
3̄
,ϕ

3
1̃
2̃
〉

3

(0
,3

)
C
〈 ϕ

1̃
2̃
3̄
〉

1
C
〈 ϕ

1̃
2̃
3̄
〉

1
C
〈 ϕ

1̃
2̃
3̄
〉

1

(3
,1

)
C
〈 ϕ

1
2
3
1̃
,ϕ

1
2
3
2̃
,ϕ

1
2
3
3̄
〉

3

5

C
〈 ϕ

1
2
3
3̄
〉

1

5

C
〈 ϕ

1
2
3
3̄
〉

1

5
(2
,2

)
C
〈 ϕ

1
2
1̃
2̃
,ϕ

1
2
1̃
3̄
,ϕ

1
2
2̃
3̄
,ϕ

1
3
1̃
2̃
,ϕ

1
3
1̃
3̄
,ϕ

1
3
2̃
3̄
,ϕ

2
3
1̃
2̃
,ϕ

2
3
1̃
3̄
,ϕ

2
3
2̃
3̄
〉 9

C
〈 ϕ

1
2
1̃
2̃
,ϕ

1
3
1̃
3̄
,ϕ

1
3
2̃
3̄
,ϕ

2
3
1̃
3̄
,ϕ

2
3
2̃
3̄
〉 5

C
〈 ϕ

1
2
1̃
2̃
,ϕ

1
3
2̃
3̄
,ϕ

2
3
1̃
3̄
〉

3

(1
,3

)
C
〈 ϕ

1
1̃
2̃
3̄
,ϕ

2
1̃
2̃
3̄
,ϕ

3
1̃
2̃
3̄
〉

3
C
〈 ϕ

3
1̃
2̃
3̄
〉

1
C
〈 ϕ

3
1̃
2̃
3̄
〉

1

(3
,2

)
C
〈 ϕ

1
2
3
1̃
2̃
,ϕ

1
2
3
1̃
3̄
,ϕ

1
2
3
2̃
3̄
〉

3
2

C
〈 ϕ

1
2
3
1̃
2̃
〉

1
2

C
〈 ϕ

1
2
3
1̃
2̃
〉

1
2

(2
,3

)
C
〈 ϕ

1
2
1̃
2̃
3̄
,ϕ

1
3
1̃
2̃
3̄
,ϕ

2
3
1̃
2̃
3̄
〉

3
C
〈 ϕ

1
2
1̃
2̃
3̄
〉

1
C
〈 ϕ

1
2
1̃
2̃
3̄
〉

1

(3
,3

)
C
〈 ϕ

1
2
3
1̃
2̃
3̄
〉

1
1

C
〈 ϕ

1
2
3
1̃
2̃
3̄
〉

1
1

C
〈 ϕ

1
2
3
1̃
2̃
3̄
〉

1
1
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Results on g8

Proposition 4.2.15 states that the connected and simply-connected Lie groups G with
underlying real Lie algebra g8 endowed with a left-invariant complex structure described
by (3.33) may be written as a semi-direct product C nϕ C2, where the action ϕ is
described by a diagonal matrix of the form (4.8). Now, the characters α1, α2 : C → C∗
required to construct the double complex (B•,•Γ , ∂̄) are

(4.16) α1(z3) = e−(A−i)z3−(A+i)z̄3 , α2(z3) = e(A−i)z3+(A+i)z̄3 ,

where A ∈ C such that ImA 6= 0. In particular, by considering a set {z1, z2} of local
coordinates on C2 and z3 a local coordinate on C, we have the following basis of left-
invariant (1, 0)-forms:

ω1 = α−1
1 dz1 = e(A−i)z3+(A+i)z̄3dz1, ω2 = α−1

2 dz2 = e−(A−i)z3−(A+i)z̄3dz2, ω3 = dz3.

The unitary characters β1, β2, γ1, γ2 : C → C∗ satisfying that α1β
−1
1 , α2β

−1
2 , ᾱ1γ

−1
1 ,

ᾱ2γ
−1
2 are holomorphic are in this case:

(4.17)
β1(z3) = e(Ā−i)z3−(A+i)z̄3 , β2(z3) = β1(z3)−1 = e−(Ā−i)z3+(A+i)z̄3 ,

γ1(z3) = e(A−i)z3−(Ā+i)z̄3 , γ2(z3) = γ1(z3)−1 = e−(A−i)z3+(Ā+i)z̄3 ,

and the generators of the complex B•,•Γ = ∧•,•〈ϕ1, ϕ2, ϕ3, ϕ̃1, ϕ̃2, ϕ̃3〉 are:
ϕ1 = β1ω

1 = e(A+Ā−2i)z3dz1,

ϕ2 = β2ω
2 = e−(A+Ā−2i)z3dz2,

ϕ3 = dz3,


ϕ̃1 = γ1ω

1̄ = e(A+Ā−2i)z3dz̄1,

ϕ̃2 = γ1ω
2̄ = e−(A+Ā−2i)z3dz̄2,

ϕ̃3 = dz̄3,

where ϕ1, ϕ2, ϕ3 have bidegree (1, 0) and ϕ̃1, ϕ̃2, ϕ̃3 have bidegree (0, 1). The complex
structure equations expressed in the co-frame {ϕ1, ϕ2, ϕ3, ϕ̃1, ϕ̃2, ϕ̃3} are:

(4.18)


dϕ1 = (A+ Ā− 2i)ϕ13,

dϕ2 = −(A+ Ā− 2i)ϕ23,

dϕ3 = 0,


dϕ̃1 = −(A+ Ā− 2i)ϕ31̃,

dϕ̃2 = (A+ Ā− 2i)ϕ32̃,

dϕ̃3 = 0.

Lemma 4.2.23. Let A ∈ C be such that ImA 6= 0 and FA : Z → C be the function
defined by:
(4.19)

FA(n) :=
1

2ImA
Arg

(
n+
√
n2 − 4

2

)
+
i

2
(log

∣∣∣∣∣n+
√
n2 − 4

2

∣∣∣∣∣−ReA

ImA
Arg

(
n+
√
n2 − 4

2

)
).

If ϕA : C→ GL(C2) is described by (4.8) and (4.16) then the lattice Γ′ := F (n)Z⊕F (n′)Z
of C with n 6= n′ ∈ Z satisfies that ϕA|Γ is in the conjugation class of an integer matrix.
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Proof. Let Γ = Γ′ nϕA Γ′′ ⊂ C nϕA C2, where Γ′ is a lattice of C compatible with the
splitting. This means that the restriction of ϕA to Γ′ must be in the conjugation class
of an integer matrix. By using Lemma 4.2.17, z3 = x3 + iy3 satisfies that −(A− i)z3 −
(A+ i)z̄3 = log(n+

√
n2 − 4) holds. The previous condition gives rise to the equations

2ReAx3 + 2y3 = log

∣∣∣∣∣n+
√
n2 − 4

2

∣∣∣∣∣ , 2x3ImA = Arg

(
n+
√
n2 − 4

2

)
.

Solving the previous system we conclude that

x3 =
1

2ImA
Arg

(
n+
√
n2 − 4

2

)
, y3 =

1

2
(log

∣∣∣∣∣n+
√
n2 − 4

2

∣∣∣∣∣−ReA

ImA
Arg

(
n+
√
n2 − 4

2

)
),

hence we can define a function FA : Z→ C by FA(n) := x3 + iy3.

Remark 4.2.24. In order to obtain different lattices of Lie group G = C nϕA C2 with
ϕA described by (4.8) and (4.16), we find convenient to tabulate the different values of
the map FA : Z→ C defined by (4.19) in the following table:

n FA(n)

≤ −3 π
2ImA + i

2(log |n+
√
n2−4
2 | − ReA

ImAπ)

−2 π
2ImA(1− iReA)

−1 π
3ImA(1− iReA)

0 π
4ImA(1− iReA)

2 0

1 π
6ImA(1− iReA)

≥ 3 i
2 log(n+

√
n2−4
2 )

Table 4.4: Values of the function FA(n) defined by (4.19).

Proposition 4.2.25. Let G = C nϕA C2 be a Lie group endowed with an invariant
complex structure of splitting type where ϕA is described by (4.8) and (4.16) and Γ =
Γ′ nϕA Γ′′ is a lattice of G compatible with the splitting, where Γ′ = FA(−2)Z⊕ FA(n)Z
for some n ≥ 3. The complex solvmanifold (M = G/Γ, J) satisfies the ∂∂̄-lemma if and
only if A 6= i

k ∈ C for 0 6= k ∈ Z.

Proof. Let Γ = Γ′nϕA Γ′′ be a lattice compatible with the splitting, where Γ′ = π
2ImAZ⊕

i
2 log(n+

√
n2−4
2 )Z then we have

(β1γ1)|Γ = 1, for any A ∈ C,
(β1γ

−1
1 )|Γ = 1, if and only if A = i

k with 0 6= k ∈ Z,
β1|Γ = γ1|Γ = 1, if and only if A = i

2k+1 with k ∈ Z.
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The computation of the double complex B•,•Γ for the solvmanifolds M = G/Γ can be
found in Table 4.5. If A = i

k for 0 6= k ∈ Z then E1(M) � E∞(M) and in particular M
does not satisfy the ∂∂̄-lemma, whereas for A 6= i

k the hypothesis of Lemma 4.2.13 are
satisfied and hence all the corresponding complex solvmanifolds satisfy the ∂∂̄-lemma.
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4.3 Cohomological invariants under holomorphic deforma-
tions

This section is devoted to show the behaviour of several cohomological properties of
complex manifolds under holomorphic deformations. More in detail, we are especially
concerned with the degeneracy of the Frölicher sequence as well as the validity of the
∂∂̄-lemma property. We consider in all cases that M = G/Γ is a solvmanifold endowed
with an invariant complex structure J with holomorphically trivial canonical bundle.

From now on, we mean by an invariant deformation a holomorphic deformation given
by a family of invariant sections {Ψ(t)}t∈∆ ⊂ H0,1

∂̄
(g∗C; g(1,0)).

4.3.1 Degeneration of the Frölicher sequence

Although the Kuranishi space provides a tool to understand the local moduli space
of complex structures of a complex manifold it is nearly always difficult to compute.
Nevertheless, nilmanifolds endowed with an invariant complex structure are a class of
compact complex manifolds for which the Kuranishi space may be computed.

On the other hand, Maclaughlin, Pedersen, Poon and Salamon [60, Theorem 4.3]
prove that the deformations arising from a nilmanifold M = G/Γ with G a 2-step
nilpotent Lie group endowed with an invariant abelian complex structure are invariant.
This result is generalized by Console, Fino and Poon [21] for nilmanifolds endowed with
an invariant abelian complex structure in general. Both [60, 21] also show that the
Kuranishi space of an invariant abelian complex nilmanifold is often smooth. More
recently, Rollenske proves the following:

Theorem 4.3.1 (Rollenske [79, Theorem]). Let M = G/Γ be a nilmanifold endowed with
an invariant complex structure J such that H1,•

∂̄
(g)→ H1,•

∂̄
(M) is an isomorphism. Then

all small deformations of the complex structure J are also invariant complex structures.
More precisely, the Kuranishi family contains only invariant complex structures.

As regards parallelizable complex structures, Rollenske [78, Theorem 4.5] shows that
the Kuranishi space of a complex parallelizable nilmanifold is cut out by polynomial
equations but is frequently singular and reducible.

Now, we make use of the description of the Frölicher sequence on nilmanifolds ob-
tained in Theorem 4.1 in order to find some interesting behaviours under holomorphic
deformations. The following result shows that there are many complex nilmanifolds
M = G/Γ for which the Frölicher spectral sequence is stable under small deformations
of the complex structure.

Proposition 4.3.2. Let M = G/Γ be a 6-dimensional nilmanifold endowed with an
invariant complex structure J , and let g be the Lie algebra of G. If

g ∼= h1, h3, h6, h8, h9, h10, h11, h12, h13, h14, h16, h
−
19 or h+

26,

then dimEp,qr (M,J) is stable under small deformations of J for any p, q and any r ≥ 1.
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Proof. All the Lie algebras of the list satisfy, by Theorem 4.3.1, that the inclusion
ι : H0,1

∂̄
(g) → H0,1

∂̄
(M) is an isomorphism. Hence, all small deformations of the com-

plex structure J are again invariant complex structures. Proceeding as in the proof of
Theorem 4.1.4, it can be proved that if g 6∼= h2, h4, h5 or h15, then dimEp,qr (M) does not
depend on the invariant complex structure on M for any p, q and any r ≥ 1, so it is
stable under small deformation of J .

Although the non-closedness of the E1-degeneration of Frölicher spectral sequences
was proven by Eastwood and Singer [27] (see Theorem 1.4.19), we show a counterexample
to the closedness of the E1(M) ∼= E∞(M) property by means of an invariant holomorphic
deformation of a nilmanifold endowed with a complex structure.

Corollary 4.3.3. Let (M = G/Γ, J1) be a nilmanifold with underlying Lie algebra h4

endowed with its abelian complex structure J1. Then, there is a holomorphic family of
compact complex manifolds {Mt := (M, It)}t∈∆, with I0 = J1 and ∆ = {t ∈ C | |t| < 1},
such that E1(Mt) ∼= E∞(Mt) for each t ∈ ∆∗, but E1(M0) � E∞(M0).

Proof. Let us consider the structure equations of the abelian complex structure J1 on
h4 as

dη1 = dη2 = 0, dη3 =
i

2
η11̄ +

1

2
η12̄ +

1

2
η21̄.

According to Theorem 4.1.4, the complex nilmanifold (M,J1) satisfies E1(M,J1) �
E2(M,J1) ∼= E∞(M,J1) (see also Table 3.1). The Kuranishi space is studied by Maclaugh-
lin, Pedersen, Poon and Salamon [60, Example8]. Hence if {X1, X2, X3} ⊂ h4C is a (1, 0)-
basis dual to {η1, η2, η3}, we consider the invariant holomorphic deformation given by
the direction Ψ(t) := tX1⊗ (η1̄− iη2̄) for each t ∈ C such that |t| < 1. The deformation
It is described by a basis (1, 0)-basis {µ1

t , µ
2
t , µ

3
t } given by

µ1
t := η1 + tη1̄ − itη2̄, µ2

t := η2, µ3
t := η3.

Notice that this corresponds to Φ1
1 = t, Φ1

2 = −it and Φ2
1 = Φ2

2 = Φ3
1 = Φ3

2 = Φ3
3 = 0 in

the parameter space for J1 obtained in [60, Example 8]. A direct calculation shows that

(4.20) dµ1
t = dµ2

t = 0, dµ3
t =

1

2(1− |t|2)

(
2t̄µ12

t + iµ11̄
t + µ12̄

t + µ21̄
t − i|t|2µ22̄

t

)
,

hence, the equations define a complex structure It on M for each t ∈ ∆. In particular, It
correspond to non-abelian complex structures on h4 for all t ∈ ∆∗ and by Theorem 4.1.4
(see Table 3.1) the complex manifolds satisfies E1(Mt) ∼= E∞(Mt) for any t ∈ ∆∗.

The Lie algebra h15 has a rich complex geometry with respect to the Frölicher se-
quence (see Table 3.1). We construct in the following example a differentiable family
{Jt}t∈R along which the three cases in (f) of Theorem 4.1.4 are realized.
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Example 4.3.4. On h15, let us consider the following family of complex structures

Jte
1 = −

√
3(3− sin t)(7 + 3 sin t)

(5 + sin t)(11− sin t)
e2,

Jte
3 =

√
3(3− sin t)(11− sin t)

(5 + sin t)(7 + 3 sin t)
e4,

Jte
5 = −

√
(11− sin t)(7 + 3 sin t)

3(3− sin t)(5 + sin t)
e6,

where t ∈ R. Let

4ω1 =
√

(11− sin t)(5 + sin t) e1 + i
√

3(3− sin t)(7 + 3 sin t) e2,

8ω2 = (5 + sin t)(7 + 3 sin t) e3 − i
√

3(5 + sin t)(3− sin t)(11− sin t)(7 + 3 sin t) e4,

and

128ω3 = (5 + sin t)(7 + 3 sin t)
(

3(3− sin t)
√

(11− sin t)(5 + sin t) e5

+ i (11− sin t)
√

3(3− sin t)(7 + 3 sin t) e6
)
.

Then, {ω1, ω2, ω3} is a (1, 0)-basis for Jt satisfying

dω1 = 0, dω2 = ω11̄, dω3 =
1− sin t

2
ω12 + 2ω12̄ +

1 + sin t

4
ω21̄.

It is clear that the complex structure Jt is abelian if and only if t = 4k+1
2 π, k ∈ Z.

For any t 6= 4k+1
2 π the complex structure equations can be written as

dω1 = 0, dω2 = ω11̄, dω3 = ω12 +
4

1− sin t
ω12̄ +

1 + sin t

2(1− sin t)
ω21̄.

Thus, concerning the Frölicher spectral sequence for the family {Jt}t∈R, by Theorem 4.1.4 (f)
we get:

• E1 6∼= E2 6∼= E3
∼= E∞, for t = 4k+1

2 π, k ∈ Z;

• E1 6∼= E2
∼= E∞, for t = 4k−1

2 π, k ∈ Z;

• E1
∼= E2 6∼= E3

∼= E∞, for any other value of t.

As a consequence of this example, in the following result we show that for r ≥ 2
the dimension of the term E•,•r (Jt) in general is neither upper nor lower semi-continuous
function of t.
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Corollary 4.3.5. Let M be a nilmanifold with underlying Lie algebra h15 endowed with
the invariant complex structures Jt given in Example 4.3.4. Then,

dimE0,2
2 (Jπ

2
) = 3 > 2 = dimE0,2

2 (Jt), dimE1,1
2 (Jπ

2
) = 2 < 3 = dimE1,1

2 (Jt),

and

dimE0,2
3 (Jπ

2
) = 2 > 1 = dimE0,2

3 (Jt), dimE1,1
3 (Jπ

2
) = 2 < 3 = dimE1,1

3 (Jt),

for any t ∈ (π2 ,
3π
2 ). Therefore, the dimensions of the terms E1,1

2 (Jt) and E1,1
3 (Jt) are

not upper semi-continuous functions of t, and the dimensions of the terms E0,2
2 (Jt) and

E0,2
3 (Jt) are not lower semi-continuous functions of t.

Proof. It follows directly from the proof of Theorem 4.1.4 taking into account that for
t = π

2 the complex structure lies in case (f.3) and for any t ∈ (π2 ,
3π
2 ) the structures Jt

lie in case (f.2).

This behaviour of the dimensions of the Frölicher terms E•,•r (M) for r ≥ 2 is in deep
contrast with the case r = 1, as Kodaira and Spencer [53] show the upper semicontinuity
of the Hodge numbers, namely dimH•,•

∂̄
(Jt), with respect to t along a deformation.

Finally, we state the following:

Corollary 4.3.6. The property of the Frölicher spectral sequence degenerating at E2

is not deformation open.

Proof. The family Jt given in Example 4.3.4 satisfies E2(J−π
2
) ∼= E∞(J−π

2
), because J−π

2

is in case (f.1) of Theorem 4.1.4, but E2(Jt) 6∼= E∞(Jt) for t ∈ (−π
2 ,

π
2 ).

4.3.2 The ∂∂̄-lemma

As we mentioned in Chapter 1, Angella and Kasuya [8] use a deformation of the Naka-
mura manifold to show the non-closedness of the ∂∂̄-lemma property (see Theorem 1.4.21).
It turns out that the underlying complex structure on the Nakamura manifold belongs to
the family {JA}A∈C\R of complex structures on g8 described by (3.33) taking the value
of the parameter A = −i (see Remark 3.2.9). On the other hand, Proposition 4.2.25
provides a countable family of complex structures of splitting type on g8 together with
lattices compatible with the splitting such that the corresponding complex solvmani-
folds do not satisfy the ∂∂̄-lemma property. The aim of this section is to provide a
suitable holomorphic deformation for any of these complex solvmanifolds satisfying the
∂∂̄-lemma for all the parameters of the deformations.

To achieve this end, we firstly present the results obtained by Angella and Kasuya [8]
to compute the Dolbeault and the Bott-Chern cohomologies of the deformed complex
solvmanifolds of a complex solvmanifold of splitting type. We consider in this paragraph
a solvmanifold M = G/Γ endowed with a complex structure J of splitting type and
(B•,•Γ , ∂̄) and (C•,•Γ , ∂, ∂̄) the finite-dimensional differential sub-complexes defined by the
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expressions (4.6) and (4.7). Let {Jt}t∈∆ be a holomorphic deformation of J and denote
by ∂t and ∂̄t the complex differential operators induced by the complex structure Jt.

Angella and Kasuya provide conditions in the following theorems in order that suit-
able deformations (B•,•t , ∂̄t) and (C•,•t , ∂t, ∂̄t) for t ∈ ∆ of the complexes (B•,•Γ , ∂̄) and
(C•,•Γ , ∂, ∂̄) still allow to compute the Dolbeault and the Bott-Chern cohomologies of the
deformed complex solvmanifolds (M,Jt).

Theorem 4.3.7 (Angella and Kasuya [8, Theorem 1.1]). Let (X, J) be a compact com-
plex manifold, and consider deformations {Jt}t∈∆ such that J0 = J . We suppose that we

have a family
{
C•,•t = 〈φ•,•j (t)〉j

}
t∈∆

of sub-vector spaces of (∧•,•Jt X, ∂t, ∂̄t) parametrized

by t ∈ ∆ such that:

(1) for each t ∈ ∆, it holds that (C•,•t , ∂̄t) is a sub-complex of (∧•,•Jt X, ∂̄t);

(2) φ•,•j (t) is smooth on X ×∆, for any j;

(3) the inclusion C•,•0 ⊂ ∧•,•J X induces the cohomology isomorphism

H•,•
∂̄0

(C•,•0 ) ∼= H•,•
∂̄

(X) ;

(4) there exits a smooth family {gt}t∈∆ of Jt-Hermitian metrics such that ∗̄gt(C•,•t ) ⊆
Cn−•,n−•t , where we denote by ∗̄gt the anti-C-linear Hodge-∗-operator of gt, and by
2n the real dimension of X.

Then, for sufficiently small t, the inclusion C•,•t ⊂ ∧•,•Jt (X) induces the cohomology
isomorphism

H•,•
∂̄t

(C•,•t ) ∼= H•,•
∂̄t

(X) .

Theorem 4.3.8 (Angella and Kasuya [8, Theorem 1.2]). Let (X, J) be a compact com-
plex manifold, and consider deformations {Jt}t∈∆ such that J0 = J . We suppose that we

have a family
{
C•,•t = 〈φ•,•j (t)〉j

}
t∈∆

of sub-vector spaces of (∧•,•Jt X, ∂t, ∂̄t) parametrized

by t ∈ ∆ such that:

(1) for each t ∈ ∆, it holds that (C•,•t , ∂t, ∂̄t) is a sub-double-complex of (∧•,•Jt X, ∂t, ∂̄t);

(2) φ•,•j (t) is smooth on X ×∆, for any j;

(3) the inclusion C•,•0 ⊂ ∧•,•J X induces the Bott-Chern cohomology isomorphism

H•,•BC(C•,•0 ) ∼= H•,•BC(X) ;

(4) there exits a smooth family {gt}t∈∆ of Jt-Hermitian metrics such that ∗̄gt(C•,•t ) ⊆
Cn−•,n−•t , where we denote by ∗̄gt the anti-C-linear Hodge-∗-operator of gt, and by
2n the real dimension of X.
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Then, for sufficiently small t, the inclusion C•,•t ⊂ ∧•,•Jt X induces the Bott-Chern coho-
mology isomorphism

H•,•BC(C•,•t ) ∼= H•,•BC(X) .

Now, we consider the connected and simply-connected Lie group G with underlying
real Lie algebra g8 and the family {Jk}06=k∈Z of non-isomorphic left-invariant complex
structures where Jk := JAk satisfies the equations (3.33) for the values Ak = i

2k+1 with
k ∈ Z.

Looking at Table 4.4, we associate to the Lie group G endowed with a fixed complex
structure Jk the lattice Γk = Γ′k nϕAk Γ′′ on G compatible with the splitting where Γ′k
is the lattice of C given by

(4.21) Γ′k =
kπ

2
Z⊕ i log

(n+
√
n2 − 4

2

)
Z

for some natural number n ≥ 3. Hence we obtain a countable family of compact complex
manifolds {(Mk := G/Γk, Jk)}k∈Z. We show in the next proposition that in this family is
possible to find a countable subfamily of examples of the non-closedness of the ∂∂̄-lemma
property under small deformations.

Proposition 4.3.9. Every compact complex solvmanifold of the family {(Mk, Jk)}k∈Z
with underlying real Lie algebra g8 does not satisfy the ∂∂̄-lemma, but admits a small
holomorphic deformation satisfying the ∂∂̄-lemma.

Proof. Notice that by Proposition 4.2.25, none of these complex solvmanifolds satisfy
the ∂∂̄-lemma.

Now, for any fixed Ak = i
2k+1 , we consider an open disc ∆(0, εk) ⊂ C for εk > 0

small enough, and the family {Jk,t}t∈∆(0,εk) of holomorphic deformations of Jk in the
invariant direction

(4.22) Ψk(t) := tXk
3 ⊗ ω̄3

k ∈ (g8)1,0
Jk
⊗ ∧0,1

Jk
g∗8,

where {ω1
k, ω

2
k, ω

3
k} constitute a (1, 0)-basis of Jk satisfying the complex structure equa-

tions (3.33) and {Xk
1 , X

k
2 , X

k
3 } ⊂ (g8)1,0

Jk
denotes the dual basis. The holomorphic defor-

mation (4.22) corresponds to consider the following basis of invariant (1, 0)-forms with
respect to the complex structure Jk,t:

ω1
k,t := ω1

k , ω2
k,t := ω2

k , ω3
k,t := ω3

k − t ω̄3
k

With respect to such co-frame, the structure equations are
dω1

k,t = − (Ak−i)+(Ak+i) t̄
1−|t|2 ω1

k,t ∧ ω3
k,t −

(Ak+i)+(Ak−i) t
1−|t|2 ω1

k,t ∧ ω̄3
k,t,

dω2
k,t = (Ak−i)+(Ak+i) t̄

1−|t|2 ω2
k,t ∧ ω3

k,t + (Ak+i)+(Ak−i) t
1−|t|2 ω2

k,t ∧ ω̄3
k,t,

dω3
k,t = 0.
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Hence, we get that the complex solvmanifolds (Mk, Jk,t) are of splitting type for any
t ∈ ∆(0, εk), where the action ϕk,t : C → GL(C2) is described by a diagonal matrix of
the form (4.8) and the characters α1

k,t, α
2
k,t : C → C∗ required to construct the complex

(B•,•t , ∂̄t) are:

α1
k,t(z3) := e

− (Ak−i)+(Ak+i) t̄

1−|t|2 z3− (Ak+i)+(Ak−i) t
1−|t|2 z̄3

, α2
k,t(z3) = α1

k,t(z3)−1.

Since the unitary characters β1
k,t, β

2
k,t, γ

1
k,t, γ

2
k,t : C → C∗ satisfying that α1

k,t(β
1
k,t)
−1,

α2
k,t(β

2
k,t)
−1, ᾱ1

k,t(γ
1
k,t)
−1, ᾱ2

k,t(γ
2
k,t)
−1 are holomorphic are unique, we can define the

generators of the complex B•,•t = ∧•,•〈ϕ1
k,t, ϕ

2
k,t, ϕ

3
k,t, ϕ̃

1
k,t, ϕ̃

2
k,t, ϕ̃

3
k,t〉 of Theorem 4.3.7 by:

ϕ1
k,t := β1

k,t ω
1
k,t = e−2iz3 dz1,

ϕ2
k,t := β2

k ω
2
k,t = e2iz3 dz2,

ϕ3
k,t := ω3

k,t = dz3 − t dz̄3,


ϕ̃1
k,t := γ1

k ω̄
1
k,t = e−2iz3 dz̄1,

ϕ̃2
k,t := γ2

k ω̄
2
k,t = e2iz3 dz̄2,

ϕ̃3
k,t := ϕ̄3

k,t = dz̄3 − t̄ dz3,

where ϕ1
k,t, ϕ

2
k,t, ϕ

3
k,t have bidegree (1, 0) and ϕ̃1

k,t, ϕ̃
2
k,t, ϕ̃

3
k,t have bidegree (0, 1) for the

complex structure Jk,t. Consider the bi-differential bi-graded complex C•,•t of Theo-
rem 4.3.8 defined by:

C•,•t := B•,•t +B•,•t ,

where we take into account the following identities: ϕ̄3
k,t = ϕ̃3

k,t, ϕ̃
1
k,t ∧ ϕ̃2

k,t = ϕ̄1
k,t ∧ ϕ̄2

k,t,

ϕ1
k,t ∧ ¯̃ϕ1

k,t = 0, ϕ2
k,t ∧ ¯̃ϕ2

k,t = 0, ϕ1
k,t ∧ ϕ̃2

k,t = ¯̃ϕ1
k,t ∧ ϕ̄2

k,t, ϕ
2
k,t ∧ ϕ̃1

k,t = ¯̃ϕ2
k,t ∧ ϕ̄1

k,t,

ϕ1
k,t ∧ ϕ̄1

k,t = ¯̃ϕ1
k,t ∧ ϕ̃1

k,t, ϕ
2
k,t ∧ ϕ̄2

k,t = ¯̃ϕ2
k,t ∧ ϕ̃2

k,t, as explicitly is described in Table 4.7.
The complex structure equations of Jk,t expressed in this basis are:



dϕ1
k,t = 2 i

1−|t|2 ϕ
1
k,t ∧ ϕ3

k,t − 2 t i
1−|t|2 ϕ

1
k,t ∧ ϕ̄3

k,t,

dϕ2
k,t = − 2 i

1−|t|2 ϕ
2
k,t ∧ ϕ3

k,t + 2 t i
1−|t|2 ϕ

2
k,t ∧ ϕ̄3

k,t,

dϕ3
k,t = 0,

d ¯̃ϕ1
k,t = − 2 i

1−|t|2
¯̃ϕ1
k,t ∧ ϕ̄3

k,t + 2 t̄ i
1−|t|2

¯̃ϕ1
k,t ∧ ϕ3

k,t,

d ¯̃ϕ2
Ak,t

= 2 i
1−|t|2

¯̃ϕ2
k,t ∧ ϕ̄3

k,t − 2 t̄ i
1−|t|2

¯̃ϕ2
k,t ∧ ϕ3

k,t,



dϕ̃1
k,t = − 2 i

1−|t|2 ϕ
3
k,t ∧ ϕ̃1

k,t − 2 t i
1−|t|2 ϕ̃

1
k,t ∧ ϕ̄3

k,t,

dϕ̃2
k,t = 2 i

1−|t|2 ϕ
3
k,t ∧ ϕ̃2

k,t + 2 t i
1−|t|2 ϕ̃

2
k,t ∧ ϕ̄3

k,t,

dϕ̃3
k,t = 0,

dϕ̄1
k,t = − 2 i

1−|t|2 ϕ̄
1
k,t ∧ ϕ̄3

k,t − 2 t̄ i
1−|t|2 ϕ

3
k,t ∧ ϕ̄1

k,t,

dϕ̄2
k,t = 2 i

1−|t|2 ϕ̄
2
k,t ∧ ϕ̄3

k,t + 2 t̄ i
1−|t|2 ϕ

3
k,t ∧ ϕ̄2

k,t.

.

Finally, taking the Hermitian metric on (Mk, JAk,t) defined by:

gk,t := ϕ1
k,t � ϕ̃1

k,t + ϕ2
k,t � ϕ̃2

k,t + ϕ3
k,t � ϕ̄3

k,t.

By Theorems 4.3.7, 4.3.8, the complexes (B•,•t , ∂̄t) and (C•,•t , ∂t, ∂̄t) allow to compute
the Dolbeault cohomology and the Bott-Chern cohomology of the compact complex
manifolds (Mk, Jk,t) for any t ∈ ∆(0, εk). The computations of the spaces B•,•t and
C•,•t can be found in the Tables 4.6 and 4.7, whereas the cohomology groups H•,•

∂̄
(Bt)

and H•,•BC(Ct) are tabulated in the Tables 4.8 and 4.9. Finally the dimensions of the
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cohomology groups are summarized in Table 4.10. Observing Table 4.10 it is direct
to check that for t 6= 0 the inequality of Angella and Tomassini (1.7) vanishes for any
k = 0, . . . , 6 and hence the compact complex manifolds (Mk, Jk,t) satisfy the ∂∂̄-lemma
for any t ∈ ∆∗(0, εk).

Remark 4.3.10. The parallelizable Nakamura manifold together with its small defor-
mation given by Angella and Kasuya in [8] corresponds to the family of holomorphic
deformations {(M−1, J−i,t)}t∈∆(0,ε−1).

On the other hand, Proposition 4.2.25 states that the compact complex manifolds of
the family {(M := G/Γk, Jk)}06=k∈Z for A = i

k do not satisfy the ∂∂̄-lemma, hence it is
reasonable that the result obtained in Proposition 4.3.9 can be extended to this family.
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B•,•t

(0,0) C 〈1〉

(1,0) C
〈
ϕ1
t , ϕ

2
t , ϕ

3
t

〉
(0,1) C

〈
ϕ1̃
t , ϕ

2̃
t , ϕ

3̄
t

〉
(2,0) C

〈
ϕ12
t , ϕ

13
t , ϕ

23
t

〉
(1,1) C

〈
ϕ11̃
t , ϕ

12̃
t , ϕ

13̄
t , ϕ

21̃
t , ϕ

22̃
t , ϕ

23̄
t , ϕ

31̃
t , ϕ

32̃
t , ϕ

33̄
t

〉
(0,2) C

〈
ϕ1̃2̃
t , ϕ

1̃3̄
t , ϕ

2̃3̄
t

〉
(3,0) C

〈
ϕ123
t

〉
(2,1) C

〈
ϕ121̃
t , ϕ122̃

t , ϕ123̄
t , ϕ131̃

t , ϕ132̃
t , ϕ133̄

t , ϕ231̃
t , ϕ232̃

t , ϕ233̄
t

〉
(1,2) C

〈
ϕ11̃2̃
t , ϕ11̃3̄

t , ϕ12̃3̄
t , ϕ21̃2̃

t , ϕ21̃3̄
t , ϕ22̃3̄

t , ϕ31̃2̃
t , ϕ31̃3̄

t , ϕ32̃3̄
t

〉
(0,3) C

〈
ϕ1̃2̃3̄
t

〉
(3,1) C

〈
ϕ1231̃
t , ϕ1232̃

t , ϕ1233̄
t

〉
(2,2) C

〈
ϕ121̃2̃
t , ϕ121̃3̄

t , ϕ122̃3̄
t , ϕ131̃2̃

t , ϕ131̃3̄
t , ϕ132̃3̄

t , ϕ231̃2̃
t , ϕ231̃3̄

t , ϕ232̃3̄
t

〉
(1,3) C

〈
ϕ11̃2̃3̄
t , ϕ21̃2̃3̄

t , ϕ31̃2̃3̄
t

〉
(3,2) C

〈
ϕ1231̃2̃
t , ϕ1231̃3̄

t , ϕ1232̃3̄
t

〉
(2,3) C

〈
ϕ121̃2̃3̄
t , ϕ131̃2̃3̄

t , ϕ231̃2̃3̄
t

〉
(3,3) C

〈
ϕ1231̃2̃3̄
t

〉
Table 4.6: The space B•,•t for computing the Dolbeault cohomology of the complex
solvmanifolds (Mk := G/Γk, Jk,t) where {Jk,t}t∈∆(0,εk)⊂C is the holomorphic deformation

defined by the direction Ψk(t) := tXk
3 ⊗ ω̄3

k ∈ (g8)1,0
Jk
⊗ ∧0,1

Jk
g∗8 of the complex structure

Jk := JAk satisfying the equations (3.33) for the value Ak = i
2k+1 for some k ∈ Z. The

lattice Γk of G is the semi-direct product of a lattice Γ′A in C given by (4.21) and a
lattice Γ′′ in C2.
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C•,•t

(0,0) C 〈1〉

(1,0) C
〈
ϕ1
t , ϕ

2
t , ϕ

3
t , ϕ

¯̃1
t , ϕ

¯̃2
t

〉
(0,1) C

〈
ϕ1̃
t , ϕ

2̃
t , ϕ

3̄
t , ϕ

1̄
t , ϕ

2̄
t

〉
(2,0) C

〈
ϕ12
t , ϕ

13
t , ϕ

23
t , ϕ

¯̃13
t , ϕ

¯̃23
t

〉
(1,1) C

〈
ϕ11̃
t , ϕ

12̃
t , ϕ

13̄
t , ϕ

21̃
t , ϕ

22̃
t , ϕ

23̄
t , ϕ

31̃
t , ϕ

32̃
t , ϕ

33̄
t , ϕ

¯̃11̄
t , ϕ

31̄
t , ϕ

¯̃22̄
t , ϕ

32̄
t , ϕ

¯̃13̄
t , ϕ

¯̃23̄
t

〉
(0,2) C

〈
ϕ1̃2̃
t , ϕ

1̃3̄
t , ϕ

2̃3̄
t , ϕ

1̄3̄
t , ϕ

2̄3̄
t

〉
(3,0) C

〈
ϕ123
t

〉
(2,1) C

〈
ϕ121̃
t , ϕ122̃

t , ϕ123̄
t , ϕ131̃

t , ϕ132̃
t , ϕ133̄

t , ϕ231̃
t , ϕ232̃

t , ϕ233̄
t , ϕ

¯̃1¯̃21̄
t , ϕ

¯̃131̄
t , ϕ

¯̃1¯̃22̄
t , ϕ

¯̃232̄
t , ϕ

¯̃133̄
t , ϕ

¯̃233̄
t

〉
(1,2) C

〈
ϕ11̃2̃
t , ϕ11̃3̄

t , ϕ12̃3̄
t , ϕ21̃2̃

t , ϕ21̃3̄
t , ϕ22̃3̄

t , ϕ31̃2̃
t , ϕ31̃3̄

t , ϕ32̃3̄
t , ϕ

¯̃11̄2̄
t , ϕ

¯̃21̄2̄
t , ϕ

¯̃11̄3̄
t , ϕ31̄3̄

t , ϕ
¯̃22̄3̄
t , ϕ32̄3̄

t

〉
(0,3) C

〈
ϕ1̃2̃3̄
t

〉
(3,1) C

〈
ϕ1231̃
t , ϕ1232̃

t , ϕ1233̄
t , ϕ

¯̃1¯̃231̄
t , ϕ

¯̃1¯̃232̄
t

〉
(2,2) C

〈
ϕ121̃2̃
t , ϕ121̃3̄

t , ϕ122̃3̄
t , ϕ131̃2̃

t , ϕ131̃3̄
t , ϕ132̃3̄

t , ϕ231̃2̃
t , ϕ231̃3̄

t , ϕ232̃3̄
t , ϕ

¯̃131̄2̄
t , ϕ

¯̃231̄2̄
t , ϕ

¯̃1¯̃21̄3̄
t , ϕ

¯̃1¯̃22̄3̄
t , ϕ

¯̃131̄3̄
t , ϕ

¯̃232̄3̄
t

〉
(1,3) C

〈
ϕ11̃2̃3̄
t , ϕ21̃2̃3̄

t , ϕ31̃2̃3̄
t , ϕ

¯̃11̄2̄3̄
t , ϕ

¯̃21̄2̄3̄
t

〉
(3,2) C

〈
ϕ1231̃2̃
t , ϕ1231̃3̄

t , ϕ1232̃3̄
t , ϕ

¯̃1¯̃231̄3̄
t , ϕ

¯̃1¯̃232̄3̄
t

〉
(2,3) C

〈
ϕ121̃2̃3̄
t , ϕ131̃2̃3̄

t , ϕ231̃2̃3̄
t , ϕ

¯̃131̄2̄3̄
t , ϕ

¯̃231̄2̄3̄
t

〉
(3,3) C

〈
ϕ1231̃2̃3̄
t

〉
Table 4.7: The space C•,•t for computing the Bott-Chern cohomology of the complex
solvmanifolds (Mk := G/Γk, Jk,t) where {Jk,t}t∈∆(0,εk)⊂C is the holomorphic deformation

defined by the direction Ψk(t) := tXk
3 ⊗ ω̄3

k ∈ (g8)1,0
Jk
⊗ ∧0,1

Jk
g∗8 of the complex structure

Jk := JAk satisfying the equations (3.33) for the value Ak = i
2k+1 for some k ∈ Z. The

lattice Γk of G is the semi-direct product of a lattice Γ′A in C given by (4.21) and a
lattice Γ′′ in C2.
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H•,•
∂̄

(Bt)
t = 0 t 6= 0

dim dim

(0,0) C 〈1〉 1 C 〈1〉 1

(1,0) C
〈
ϕ1, ϕ2, ϕ3

〉
3 C

〈
ϕ3
〉

1

(0,1) C
〈
ϕ1̃, ϕ2̃, ϕ3̄

〉
3 C

〈
ϕ3̄
〉

1

(2,0) C
〈
ϕ12, ϕ13, ϕ23

〉
3 C

〈
ϕ12
〉

1

(1,1) C
〈
ϕ11̃, ϕ12̃, ϕ13̄, ϕ21̃, ϕ22̃, ϕ23̄, ϕ31̃, ϕ32̃, ϕ33̄

〉
9 C

〈
ϕ12̃, ϕ21̃, ϕ33̄

〉
3

(0,2) C
〈
ϕ1̃2̃, ϕ1̃3̄, ϕ2̃3̄

〉
3 C

〈
ϕ1̃2̃
〉

1

(3,0) C
〈
ϕ123

〉
1 C

〈
ϕ123

〉
1

(2,1) C
〈
ϕ121̃, ϕ122̃, ϕ123̄, ϕ131̃, ϕ132̃, ϕ133̄, ϕ231̃, ϕ232̃, ϕ233̄

〉
9 C

〈
ϕ123̄, ϕ132̃, ϕ231̃

〉
3

(1,2) C
〈
ϕ11̃2̃, ϕ11̃3̄, ϕ12̃3̄, ϕ21̃2̃, ϕ21̃3̄, ϕ22̃3̄, ϕ31̃2̃, ϕ31̃3̄, ϕ32̃3̄

〉
9 C

〈
ϕ12̃3̄, ϕ21̃3̄, ϕ31̃2̃

〉
3

(0,3) C
〈
ϕ1̃2̃3̄

〉
1 C

〈
ϕ1̃2̃3̄

〉
1

(3,1) C
〈
ϕ1231̃, ϕ1232̃, ϕ1233̄

〉
3 C

〈
ϕ1233̄

〉
1

(2,2) C
〈
ϕ121̃2̃, ϕ121̃3̄, ϕ122̃3̄, ϕ131̃2̃, ϕ131̃3̄, ϕ132̃3̄, ϕ231̃2̃, ϕ231̃3̄, ϕ232̃3̄

〉
9 C

〈
ϕ121̃2̃, ϕ132̃3̄, ϕ231̃3̄

〉
3

(1,3) C
〈
ϕ11̃2̃3̄, ϕ21̃2̃3̄, ϕ31̃2̃3̄

〉
3 C

〈
ϕ31̃2̃3̄

〉
1

(3,2) C
〈
ϕ1231̃2̃, ϕ1231̃3̄, ϕ1232̃3̄

〉
3 C

〈
ϕ1231̃2̃

〉
1

(2,3) C
〈
ϕ121̃2̃3̄, ϕ131̃2̃3̄, ϕ231̃2̃3̄

〉
3 C

〈
ϕ121̃2̃3̄

〉
1

(3,3) C
〈
ϕ1231̃2̃3̄

〉
1 C

〈
ϕ1231̃2̃3̄

〉
1

Table 4.8: The harmonic representatives of the Dolbeault cohomology of the complex
solvmanifolds (Mk := G/Γk, Jk,t) where {Jk,t}t∈∆(0,εk)⊂C is the holomorphic deformation

defined by the direction Ψk(t) := tXk
3 ⊗ ω̄3

k ∈ (g8)1,0
Jk
⊗ ∧0,1

Jk
g∗8 of the complex structure

Jk := JAk satisfying the equations (3.33) for the value Ak = i
2k+1 for some k ∈ Z. The

lattice Γk of G is the semi-direct product of a lattice Γ′A in C given by (4.21) and a
lattice Γ′′ in C2.



124 Complex cohomologies and the ∂∂̄-lemma

H•,•BC(Ct)
t = 0 t 6= 0

dim dim

(0,0) C 〈1〉 1 C 〈1〉 1

(1,0) C
〈
ϕ3
〉

1 C
〈
ϕ3
〉

1

(0,1) C
〈
ϕ3̄
〉

1 C
〈
ϕ3̄
〉

1

(2,0) C
〈
ϕ12, ϕ13, ϕ23

〉
3 C

〈
ϕ12
〉

1

(1,1) C
〈
ϕ12̃, ϕ21̃, ϕ31̃, ϕ32̃, ϕ33̄, ϕ

¯̃13̄, ϕ
¯̃23̄
〉

7 C
〈
ϕ12̃, ϕ21̃, ϕ33̄

〉
3

(0,2) C
〈
ϕ1̃2̃, ϕ1̄3̄, ϕ2̄3̄

〉
3 C

〈
ϕ1̃2̃
〉

1

(3,0) C
〈
ϕ123

〉
1 C

〈
ϕ123

〉
1

(2,1) C
〈
ϕ123̄, ϕ131̃, ϕ132̃, ϕ133̄, ϕ231̃, ϕ232̃, ϕ233̄, ϕ

¯̃133̄, ϕ
¯̃233̄
〉

9 C
〈
ϕ123̄, ϕ132̃, ϕ231̃

〉
3

(1,2) C
〈
ϕ12̃3̄, ϕ21̃3̄, ϕ31̃2̃, ϕ31̃3̄, ϕ32̃3̄, ϕ

¯̃11̄3̄, ϕ31̄3̄, ϕ
¯̃22̄3̄, ϕ32̄3̄

〉
9 C

〈
ϕ12̃3̄, ϕ21̃3̄, ϕ31̃2̃

〉
3

(0,3) C
〈
ϕ1̃2̃3̄

〉
1 C

〈
ϕ1̃2̃3̄

〉
1

(3,1) C
〈
ϕ1231̃, ϕ1232̃, ϕ1233̄

〉
3 C

〈
ϕ1233̄

〉
1

(2,2) C
〈
ϕ121̃2̃, ϕ131̃2̃, ϕ131̃3̄, ϕ132̃3̄, ϕ231̃2̃, ϕ231̃3̄, ϕ232̃3̄, ϕ

¯̃1¯̃21̄3̄, ϕ
¯̃1¯̃22̄3̄, ϕ

¯̃131̄3̄, ϕ
¯̃232̄3̄

〉
11 C

〈
ϕ121̃2̃, ϕ132̃3̄, ϕ231̃3̄

〉
3

(1,3) C
〈
ϕ11̃2̃3̄, ϕ21̃2̃3̄, ϕ31̃2̃3̄

〉
3 C

〈
ϕ31̃2̃3̄

〉
1

(3,2) C
〈
ϕ1231̃2̃, ϕ1231̃3̄, ϕ1232̃3̄, ϕ

¯̃1231̄3̄, ϕ
¯̃1232̄3̄

〉
5 C

〈
ϕ1231̃2̃

〉
1

(2,3) C
〈
ϕ121̃2̃3̄, ϕ131̃2̃3̄, ϕ231̃2̃3̄, ϕ

¯̃131̄2̄3̄, ϕ
¯̃231̄2̄3̄

〉
5 C

〈
ϕ121̃2̃3̄

〉
1

(3,3) C
〈
ϕ1231̃2̃3̄

〉
1 C

〈
ϕ1231̃2̃3̄

〉
1

Table 4.9: The harmonic representatives of the Bott-Chern cohomology of the complex
solvmanifolds (Mk := G/Γk, Jk,t) where {Jk,t}t∈∆(0,εk)⊂C is the holomorphic deformation

defined by the direction Ψk(t) := tXk
3 ⊗ ϕ̄3

k ∈ (g8)1,0
Jk
⊗ ∧0,1

Jk
g∗8 of the complex structure

Jk := JAk satisfying the equations (3.33) for the value Ak = i
2k+1 for some k ∈ Z. The

lattice Γk of G is the semi-direct product of a lattice Γ′A in C given by (4.21) and a
lattice Γ′′ in C2.
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dimCH
•,•
]JA,t

t = 0 t 6= 0

dR ∂̄ BC ∂̄ BC

(0,0) 1 1 1 1 1

(1,0)
2

3 1 1 1

(0,1) 3 1 1 1

(2,0)

5

3 3 1 1

(1,1) 9 7 3 3

(0,2) 3 3 1 1

(3,0)

8

1 1 1 1

(2,1) 9 9 3 3

(1,2) 9 9 3 3

(0,3) 1 1 1 1

(3,1)

5

3 3 1 1

(2,2) 9 11 3 3

(1,3) 3 3 1 1

(3,2)
2

3 5 1 1

(2,3) 3 5 1 1

(3,3) 1 1 1 1 1

Table 4.10: Summary of the dimensions of the cohomologies of complex solvmanifolds
(M := G/Γk, Jk), where Jk := JAk is the complex structure satisfying the equations
(3.33) for the value Ak = i

2k+1 for some k ∈ Z, and of its small deformations given by

the direction Ψk(t) := tXk
3 ⊗ ω̄3

k ∈ (g8)1,0
Jk
⊗∧0,1

Jk
g∗8. The lattice Γk of G is the semi-direct

product of a lattice Γ′A in C given by (4.21) and a lattice Γ′′ in C2.
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Chapter 5

Special Hermitian geometry on
solvmanifolds

We study in this chapter the existence and the behaviour under holomorphic deforma-
tions of several special Hermitian metrics on complex solvmanifolds endowed with an
invariant complex structure with holomorphically trivial canonical bundle. Section 5.1
deals with the problem of existence of balanced, strongly Gauduchon, strong Kähler
with torsion (briefly SKT) and generalized Gauduchon Hermitian metrics on this type
of complex solvmanifolds. The existence of Kähler, balanced or SKT [31, 95] metrics
on a compact manifold of the form M = G/Γ reduces to the level of the Lie algebra.
In addition, the existence of SKT [33, 95], balanced [95] and invariant 1-st generalized
Gauduchon [35] metrics on 6-dimensional complex nilmanifolds (M,J) with J invari-
ant has already been studied. Hence, we restrict our investigation to the existence of
these special metrics on the Lie algebras g1, . . . , g9 compatible with the complex struc-
tures with a closed form of bidegree (3, 0) obtained in Chapter 3. It follows that the
6-dimensional solvmanifolds with an invariant complex structure admitting compatible
Calabi-Yau metrics have underlying Lie algebra isomorphic to R6 or g0

2. As regards
the strongly Gauduchon metrics, motivated by [74], we provide new examples of com-
pact complex manifolds admitting such metrics but that are not balanced and on which
the ∂∂̄-lemma does not hold. Finally, using the results obtained in this section and in
Chapter 4, we present new examples based on the complex structures on the Lie algebra
h5 showing that the property E1(M) ∼= E∞(M) and strongly Gauduchon property are
unrelated. The results of this section are summarized in Tables 5.1 and 5.2.

Section 5.2 deals with the behaviour of Hermitian metrics under holomorphic defor-
mations, particularly with the problems of closedness of the balanced and the strongly
Gauduchon properties [74]. By means of a holomorphic deformation on a nilmanifold
with underlying Lie algebra h4 endowed with its abelian complex structure, we demon-
strate that the strongly Gauduchon and the balanced properties are not closed under
holomorphic deformations. Popovici [72, Proposition 4.1] shows that if a holomorphic
deformation {(M,Jt)}t∈∆ satisfies the ∂∂̄-lemma for any t ∈ ∆∗, then the central limit
admits a strongly Gauduchon metric. We conclude the chapter presenting a family
of compact complex manifolds {(M,Jt)}t∈∆ such that (M,Jt) satisfies the ∂∂̄-lemma
and admits balanced metrics for any t 6= 0, but the central limit neither satisfies the
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∂∂̄-lemma nor admits balanced metrics.

5.1 Existence of special Hermitian metrics

We study the existence of special Hermitian metrics on 6-dimensional solvmanifolds
(M = G/Γ, J) endowed with an invariant complex structure J with holomorphically
trivial canonical bundle. Recall that by Theorem 2.3.7, the underlying real Lie algebras
g are isomorphic to h1, . . . , h16, h−19 or h+

26 if g is nilpotent and g1, g
α≥0
2 , g3 . . . , g8 or g9 if

g is not nilpotent.

Any Hermitian metric g on the Lie algebra g passes to a Hermitian structure on
the solvmanifold M . Hence, our strategy to check the existence of special Hermitian
metrics on these solvmanifolds consists on starting with the classification of pairs (g, J)
obtained in Chapter 3 and then finding the J-Hermitian structures F on g satisfying
the required conditions. The positive-definiteness of the metric g and the compatibility
between the metric and the complex structure J is equivalent to F ∈ ∧1,1g∗, together
with the existence of some invariant (1,0)-basis {ω1, ω2, ω3} for the complex structure J
such that the fundamental 2-form F may be represented by:

(5.1) 2F = i (r2ω11̄ + s2ω22̄ + t2ω33̄) + uω12̄ − ūω21̄ + vω23̄ − v̄ω32̄ + zω13̄ − z̄ω31̄,

where the coefficients r2, s2, t2 are non-zero real numbers and u, v, z ∈ C satisfy r2s2 >
|u|2, s2t2 > |v|2, r2t2 > |z|2 and r2s2t2 + 2Re (iūv̄z) > t2|u|2 + r2|v|2 + s2|z|2.

5.1.1 Strong Kähler with torsion geometry

The existence of SKT metrics on six-dimensional nilmanifolds M = G/Γ admitting
invariant complex structures was firstly studied by Fino, Parton and Salamon [33]. In
fact, they prove that such a complex nilmanifold admits an invariant SKT metric if and
only if the Lie algebra g is isomorphic to h2, h4, h5 or h8. By using the symmetrization
process, Ugarte [95] shows that the same classification is valid if the invariance of the
metric is not required. We include the previous results in the statement of the following
classification theorem:

Theorem 5.1.1. Let M = G/Γ be a six-dimensional solvmanifold admitting invariant
complex structures with holomorphically trivial canonical bundle. M has an SKT metric
if and only if g ∼= h2, h4, h5 or h8 if g is nilpotent and g ∼= g0

2 or g4 if g is not nilpotent.

Proof. Let F be a J-Hermitian metric given by (5.1). We firstly study the existence of
SKT metrics on g1 and gα2 . The equations (3.15) parametrize all the complex structures
J on g1 or gα2 , so we get

(5.2) ∂∂̄F = −2ir2(ReA)2ω131̄3̄+2u(ImA)2ω132̄3̄−2ū(ImA)2ω231̄3̄−2is2(ReA)2ω232̄3̄.

Thus, ∂∂̄F = 0 implies ReA = 0, and necessarily A = i. In this case F is SKT if and
only if u = 0. By Proposition 3.2.3 the corresponding Lie algebra is g0

2.
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For the Lie algebra g3, by Proposition 3.2.4 any J on g3 is equivalent to one complex
structure Jx given by (3.21). The (3,3)-form ∂∂̄F ∧ F is the following

(5.3) ∂∂̄F ∧ F = 1+4x2

16x2

(
4x2s4 + t4

)
ω1231̄2̄3̄.

Since this form is never zero, there is no SKT metric on g3.
For the Lie algebras gk (4 ≤ k ≤ 7), using the equations (3.22), which parametrize

all the complex structures J on gk, we get

(5.4)
∂∂̄F = it2(G11G22 − |G12|2)ω121̄2̄ − 2ir2(ReA)2ω131̄3̄ − 2is2(ReA)2ω232̄3̄

+ 2u(ImA)2ω132̄3̄ − 2ū(ImA)2ω231̄3̄.

Thus, ∂∂̄F = 0 implies ReA = 0, and from the conditions given for equations (3.22)
we have G12 = 0. Now, ∂∂̄F = 0 also implies G11G22 = 0, so from Proposition 3.2.6 it
follows that only g4 admits SKT structures: in fact, a generic F given by (5.1) is SKT
if and only if u = 0.

For the study of SKT metrics on g8, instead of using the complex structure equa-
tions (3.31), (3.32) and (3.33), we use the equations (3.34) obtained in the proof of
Proposition 3.2.7. A direct calculation shows that

(5.5) ∂∂̄F ∧ F = 2
(
r2s2(1 + Re(A)2) + |u|2Im(A)2

)
ω1231̄2̄3̄,

and in particular, this form does not depend on the complex coefficients B,C in (3.34).
The form ∂∂̄F ∧ F never vanishes, so there is no SKT metric on g8.

Finally, for the Lie algebra g9, from the complex equations (3.36) in Proposition 3.2.10
it follows

(5.6) ∂∂̄F ∧ F =
(
|v|2 + s4

8

)
ω1231̄2̄3̄ 6= 0,

so the Lie algebra g9 does not admit SKT metrics.

Remark 5.1.2. In the previous theorem we have proved that any complex structure with
non-trivial closed (3,0)-form on g0

2 or g4 admits SKT metrics. Moreover, a generic metric
F given by (5.1) satisfies the SKT condition with respect to the complex equations (3.18)
for (g0

2, J), or (3.27) for (g4, J±), if and only if u = 0. Therefore, in both cases the SKT
metrics are given by

(5.7) 2F = i (r2ω11̄ + s2ω22̄ + t2ω33̄) + vω23̄ − v̄ω32̄ + zω13̄ − z̄ω31̄,

where the coefficients r2, s2, t2 are non-zero real numbers and v, z ∈ C satisfy r2s2t2 >
r2|v|2 + s2|z|2. Whereas it was already known that the Lie algebra g0

2 admits SKT
metrics, a solvmanifold based on g4 provides, as far as we know, a new example of
6-dimensional compact SKT manifold.

We recall that a complex structure J on a symplectic manifold (M,ω) is said to be
tamed by the symplectic form ω if ω(X, JX) > 0 for any non-zero vector field X on M .
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The pair (ω, J) is also called Hermitian-symplectic structure in [88]. By [29, Proposition
2.1] the existence of a Hermitian-symplectic structure on a complex manifold (M,J) is
equivalent to the existence of a J-compatible SKT metric g whose fundamental form
satisfies ∂F = ∂̄β for some ∂-closed (2, 0)-form β. As a consequence of Theorem 5.1.1,
we have that a six-dimensional solvmanifold (M = G/Γ, J) with J invariant and holo-
morphically trivial canonical bundle, has a symplectic form ω taming J if and only
if g ∼= g0

2 and (J, ω) is a Kähler structure. By [29], if (M,J) admits a non-invariant
symplectic form taming J , then there exists an invariant one. So we can immediately
exclude the solvmanifolds with g ∼= g4 since g4 does not admit any symplectic form. For
the solvmanifolds with g ∼= g0

2 by a direct computation we have that ∂F = ∂̄β, for some
∂-closed (2, 0)-form β, if and only if dF = 0.

The space of SKT metrics on g0
2 and g6 is parametrized by (5.7). It is immediate to

check that there is no Kähler metric on g6 compatible with the complex structure (3.29).
However, the fundamental form F = i

2(r2ω11̄ + s2ω22̄ + t2ω33̄) with rst 6= 0 defines a
Kähler metric on (g0

2, J) with J satisfying (3.18). The symmetrization process allows us
to state the following:

Theorem 5.1.3. Let M = G/Γ be a six-dimensional solvmanifold endowed with an
invariant complex structure. Then M admits a Calabi-Yau metric if and only if the
underlying real Lie algebra is isomorphic to R6 or g0

2.

Proof. Recall that a Calabi-Yau metric is a Kähler metric compatible with a complex
structure with holomorphically trivial canonical bundle. By the symmetrization process
the existence of a Kähler structure on M implies the existence of an invariant one.
Furthermore, by Proposition 2.1.31 the existence of a closed complex volume form also
implies the existence of an invariant one. Therefore, the only possible underlying Lie
algebras are R6 and g0

2 and this concludes the proof.

5.1.2 Generalized Gauduchon structures

As we mentioned in Section 1.3, the study of generalized Gauduchon structures in the
class of six-dimensional manifolds (or complex dimension three) reduces uniquely to the
class of 1-st generalized Gauduchon metrics. Fu, Wang and Wu [39] prove the following
general result concerning the sign of the invariant γ1(F ) for three-dimensional compact
complex manifolds:

Theorem 5.1.4 (Fu, Wang and Wu [39, Theorem 6]). On any compact 3-dimensional
complex manifold there exists a Hermitian metric g such that its fundamental 2-form F
has γ1(F ) > 0.

Therefore, if one finds a Hermitian metric F̃ such that γ1(F̃ ) < 0 then the smooth
variation of the invariant γ1 in the space of Hermitian metrics implies the existence of a
1-st generalized Gauduchon metric on M .

As regards complex manifolds of the form (M = G/Γ, J) with J an invariant complex
structure, it is remarkable that the symmetrization process cannot be applied to the 1-st
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Gauduchon condition in order to reduce the problem to the Lie algebra level. In the
realm of six-dimensional nilmanifolds endowed with invariant complex structures, Fino
and Ugarte prove the following:

Theorem 5.1.5 (Fino and Ugarte [35, Propositions 3.3, 3.5]). Let (M = G/Γ, J) be a
6-dimensional nilmanifold endowed with an invariant complex structure J . An invariant
J-Hermitian metric is 1-st Gauduchon if and only if it is SKT. Moreover, an invariant
J-Hermitian metric has γ1 < 0 if and only if g ∼= h2, h3, h4 or h5.

Now, we study the existence of 1-st Gauduchon metrics and the sign of γ1 for the
non-nilpotent solvmanifolds with an invariant complex structure with holomorphically
trivial canonical bundle:

Theorem 5.1.6. Let M = G/Γ be a 6-dimensional non-nilpotent solvmanifold and
denote by g the Lie algebra of G. Let J be an invariant complex structure with holo-
morphically trivial canonical bundle, and F an invariant J-Hermitian metric on M .
Then:

(i) If g ∼= g1, g
α
2 (α > 0), g3, g5, g7, g8 or g9, then γ1(F ) > 0 for any (J, F ).

(ii) If g ∼= g0
2 or g4, then γ1(F ) ≥ 0 for any (J, F ); moreover, an invariant Hermitian

metric is 1-st Gauduchon if and only if it is SKT.

(iii) If g ∼= g6 then there exist invariant Hermitian metrics such that γ1(F ) > 0, = 0
or < 0; in particular, there are invariant 1-st Gauduchon metrics which are not
SKT.

Proof. Let F be an invariant J-Hermitian metric given by (5.1). Then,

F 3 = −3

4
det(F )ω1231̄2̄3̄, where det(F ) =

∣∣∣∣∣∣∣∣
i r2 u z

−u i s2 v

−z −v i t2

∣∣∣∣∣∣∣∣ .
Notice that the conditions required by the coefficients of the fundamental form imply
idet(F ) > 0. Now, if

∂∂̄F ∧ F = µω1231̄2̄3̄,

then i
2∂∂̄F ∧ F = 2µ

3idet(F )F
3, which implies that

γ1(F ) > 0,= 0 or < 0 if and only if µ > 0,= 0 or < 0.

In what follows we will compute µ for any triple (g, J, F ) and study its possible signs.

For the Lie algebras g1 and gα2 , from (5.2) it follows that

∂∂̄F ∧ F = 2
(
r2s2(ReA)2 + |u|2(ImA)2

)
ω1231̄2̄3̄.
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Therefore, γ1(F ) ≥ 0 for any F . Moreover, γ1(F ) ≥ 0 if and only if ReA = 0 and u = 0,
which precisely corresponds an to SKT metric on g0

2.
From (5.3), (5.5) and (5.6) it follows that γ1 > 0 for any (J, F ) on g3, g8 and g9.
For the Lie algebras gk (4 ≤ k ≤ 7), using (5.4) we get

2∂∂̄F ∧ F =
[
4r2s2(ReA)2 + 4|u|2(ImA)2 − t4(G11G22 − |G12|2)

]
ω1231̄2̄3̄.

Let us firstly consider g4. By (3.27) we can take A = i, G11 = ±1 and G12 = G22 = 0,
so 2∂∂̄F ∧F = 4|u|2ω1231̄2̄3̄. This implies that γ1 ≥ 0, and it is equal to zero if and only
if the structure is SKT. This completes the proof of (i).

For the Lie algebra g5, by (3.28) we have that A = G12 = 1 and G11 = G22 = 0, so
2∂∂̄F ∧ F = (4r2s2 + t4)ω1231̄2̄3̄ and γ1 > 0.

Similarly, using (3.30), for g7 we can take A = i, G12 = 0 and (G11, G22) = (−1, 1)
or (1,−1). Therefore, 2∂∂̄F ∧ F = (t4 + 4|u|2)ω1231̄2̄3̄ and thus γ1 > 0. This completes
the proof of (ii).

Finally, to prove (iii), by (3.29) we consider A = i, G12 = 0 and G11 = G22 = 1.
Since 2∂∂̄F ∧ F = (4|u|2 − t4)ω1231̄2̄3̄, we conclude that on g6 there exist Hermitian
metrics such that γ1 > 0, = 0 or < 0, depending on the sign of 4|u|2 − t4.

Remark 5.1.7. On the other hand, it is worthy to remark that on the solvmanifold
M = G/Γ with Lie algebra g ∼= g6 there exist invariant 1-st Gauduchon metrics, although
M does not admit any SKT metric. In fact, with respect to the complex equations
(3.29), any invariant Hermitian metric F given by (5.1) with |u| = t2

2 is 1-st Gauduchon.
However, there is no SKT metric by Theorem 5.1.1. This is in deep contrast with
the nilpotent case, because any invariant 1-st Gauduchon metric on a 6-nilmanifold is
necessarily SKT (see Theorem 5.1.5).

5.1.3 Balanced metrics

Given an homogeneous space M = G/Γ endowed with an invariant complex structure J ,
Fino and Grantcharov [31] state, using the symmetrization process, that the existence
of compatible balanced metrics on (M,J) can be reduced to the existence of invariant
metrics. Balanced geometry has been studied also under the point of view of its relation
with other properties on the complex manifold. For instance, it turns out [56] that the
balanced, the Frölicher degeneration and the C∞-pure and full properties are unrelated.
The classification of six-dimensional nilmanifolds admitting balanced Hermitian metrics
is obtained by Ugarte [95]. We include his result in the following theorem, where in
particular new examples of balanced solvmanifolds are found.

Theorem 5.1.8. Let M = G/Γ be a six-dimensional solvmanifold admitting invariant
complex structures with holomorphically trivial canonical bundle. M admits a balanced
metric if and only if g ∼= h1, . . . , h6 or h−19 if g is nilpotent and g ∼= g1, gα≥0

2 , g3, g5, g7

or g8 if g is not nilpotent.
Moreover, the solvable and non-nilpotent Lie algebras endowed with J with non-zero

closed (3, 0)-form admit balanced metrics, except for the complex structures which are
isomorphic to (3.31) or (3.32) on g8.
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Proof. Since a J-Hermitian metric F given by (5.1) is balanced if and only if ∂F 2 = 0,
next we compute the (3,2)-form ∂F 2 for each Lie algebra g.

For the existence of balanced metrics on g1 and gα2 , from the complex structure
equations (3.15) it follows

(5.8) 2 ∂F 2 = (ir2z + ūv)Ā ω1231̄3̄ + (is2v − uz)Ā ω1232̄3̄.

Since A is non-zero, this form vanishes if and only if is2v − uz = 0 and ir2z + ūv = 0.
Now, r2s2 − |u|2 > 0 implies that these conditions are equivalent to v = z = 0.

For the Lie algebra g3, a direct calculation using the complex equations (3.21) shows
that

(5.9)
2 ∂F 2 = − 1

2x

(
t2 Reu+ Im (v̄z)− x(it2u+ v̄z)

)
ω1231̄2̄+

2x
(
s2 Re z − Im (uv) + is2z−uv

4x

)
ω1231̄3̄.

Thus, the form F 2 is closed if and only if it2u+ v̄z = (t2Reu+ Im (v̄z))/x,

is2z − uv = −4x(s2Re z − Im (uv)).

Notice that since x is real, we have that both it2u + v̄z and is2z − uv are also real
numbers. But this implies that t2Reu + Im (v̄z) = 0 and s2Re z − Im (uv) = 0, so the
system above is homogeneous. Finally, since s2t2 − |v|2 > 0 necessarily u = z = 0.

For the Lie algebras gk (4 ≤ k ≤ 7), from equations (3.22) we have
(5.10)

2 ∂F 2 =
[
(s2t2 − |v|2)G11 + (r2t2 − |z|2)G22 + (vz̄ − it2ū)G12 + (v̄z + it2u)G12

]
ω1231̄2̄+

(ir2v + ūz)Aω1231̄3̄ + (is2z − uv)Aω1232̄3̄.

Since A is non-zero and r2s2 − |u|2 > 0, the coefficients of ω1231̄3̄ and ω1232̄3̄ vanish if
and only if v = z = 0. The latter conditions reduce the expression of the form (5.10) to

2 ∂F 2 = t2
(
s2G11 + r2G22 − iū G12 + iuG12

)
ω1231̄2̄.

Now, we can use the complex classification given in Proposition 3.2.6 to conclude that
the only possibilities to get a closed form F 2 are, either G12 = 0 and (G11, G22) =
(1,−1), (−1, 1), or G11 = G22 = 0 and G12 = 1. The first case corresponds to g7 and the
coefficients r2 and s2 in the metric must be equal, whereas the second case corresponds
to g5 with metric coefficient u ∈ R.

For the study of balanced Hermitian metrics on g8, by the complex equations (3.34),
a direct calculation shows that

(5.11)
2 ∂F 2 = −

[
(ir2v + ūz)(A− i) + (r2s2 − |u|2)C

]
ω1231̄3̄+[

(uv − is2z)(A− i) + (r2s2 − |u|2)B
]
ω1232̄3̄.
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Since r2s2 − |u|2 6= 0, the structure (J, F ) is balanced if and only if

B = − is2z̄ + ūv̄

r2s2 − |u|2 (A+ i), C =
ir2v̄ − uz̄
r2s2 − |u|2 (A+ i).

It follows from Proposition 3.2.7 that the complex structures (3.31) and (3.32) do not
admit balanced metrics, because A = −i but B is not zero. However, any complex
structure in the family (3.33) has balanced Hermitian metrics because B = C = 0. In
fact, if A 6= −i then the metric (5.1) is balanced if and only if v = z = 0, and for A = −i
(i.e. the complex structure is bi-invariant) any metric is balanced.

In the case of the Lie algebra g9, from the complex equations (3.36) it follows
(5.12)

4∂F 2 =
(
i ūv̄ − s2z̄

)
ω1231̄2̄ −

(
i vz̄ + t2ū− uv + i s2z

)
ω1231̄3̄ + 2(|u|2 − r2s2)ω1232̄3̄,

which implies that the component of ∂F 2 in ω1232̄3̄ is non-zero, so there are not balanced
Hermitian metrics.

Finally, notice that for the Lie algebras g1, gα2 , g3, g5 and g7 we have proved above
that any complex structure J admits balanced Hermitian metrics. However, for the Lie
algebra g8, a complex structure J admits balanced metric if and only if it is isomorphic
to one in the family (3.33).

5.1.4 Strongly Gauduchon metrics

The symmetrization process is valid for the balanced and the SKT condition. We see in
the following proposition that it also holds for the strongly Gauduchon condition:

Proposition 5.1.9. (M = G/Γ, J) has an sG metric if and only if it has an invariant
one.

Proof. Suppose that (g, J) does not admit any strongly Gauduchon metric and let F ∈
∧1,1g∗ be a fundamental form, that is, there is no u ∈ ∧n,n−2g∗ satisfying ∂̄Fn−1 = ∂u.
F defines a fundamental 2-form F̃ ∈ ∧1,1M and if ũ ∈ ∧n,n−2M satisfies ∂̄F̃n−1 = ∂ũ,
then the form ũν would satisfy the equation ∂̄Fn−1 = ∂ũν . This contradicts the fact
that (g, J) does not admit any strongly Gauduchon metric.

Therefore, the existence of sG metrics on (M = G/Γ, J) is reduced to the existence at
the level of Lie algebra g of G. Recall that for complex surfaces the existence of balanced
metrics is equivalent to the existence of sG metrics. In higher dimensions, there exist
compact complex manifolds having sG metrics but not admitting any balanced metric
and on which the ∂∂̄-lemma does not hold [76, Theorem 1.10]. If the complex structure is
abelian then both classes of Hermitian metrics are the same, as we show in the following
result.

Corollary 5.1.10. Let F be an invariant Hermitian structure on (M = G/Γ, J). If J
is abelian, then F is sG if and only if it is balanced.
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Proof. If F is a strongly Gauduchon metric, then there is a form u ∈ ∧n,n−2M such that
∂Fn−1 = ∂̄u. This is equivalent to ∂̄Fn−1 = ∂v with v ∈ ∧n−2,nM because F is a real
2-form. If J is abelian, then the complex differential operators ∂ : ∧•,• g∗ → ∧•+1,•g∗

are identically zero. Thus, the balanced condition yields to dFn−1 = ∂̄Fn−1 = 0 and
therefore, F is balanced.

Now we suppose that (M = G/Γ, J) is a nilmanifold endowed with an invariant complex
structure. Next we prove that the nilmanifolds admitting an sG metric are the same as
those admitting a balanced metric, although any complex structure on such nilmanifolds
admits sG metrics.

Proposition 5.1.11. Let M = G/Γ be a six-dimensional nilmanifold admitting inva-
riant complex structures. M admits an sG metric if and only if g is isomorphic to
h1, . . . , h6 or h−19.

Proof. By Proposition 5.1.9 it suffices to study the invariant case. Let us start with the
non-nilpotent case, that is, the complex structures corresponding to the nilpotent Lie
algebras h−19 and h+

26 (see Appendix, Table 3.1). Using the calculations in the proof of
[95, Proposition 25] we have

4∂F ∧ F =
(
iε (s2t2 − |v|2)± (t2u+ t2ū+ ivz̄ − iv̄z)

)
ω1231̄2̄ +

(
uv − is2z

)
ω1231̄3̄.

As ∂̄(∧3,1g∗) = 〈ω1231̄3̄〉, if the Hermitian structure (J, F ) is sG then

∓ iε (s2t2 − |v|2) = t2(u+ ū) + i(vz̄ − v̄z).

Since the left-hand side is purely imaginary and the right-hand side is real, we get that
ε = 0 and therefore, g ∼= h−19.

For the nilpotent case, let us consider the general complex equations (3.1). Now, the
fundamental 2-form of any J-Hermitian metric is given also by (5.1). Using again [95,
Proposition 25], we get

4∂F ∧ F=
(
(1− ε)Ā(s2t2 − |v|2) + B̄(it2u+ v̄z)− C̄(it2ū− vz̄)
+ (1− ε)D̄(r2t2 − |z|2)

)
ω1231̄2̄ − ε(s2t2 − |v|2)ω1231̄3̄.

Since ∂̄(∧3,1g∗) = 〈ρω1231̄2̄〉, if the Hermitian structure (J, F ) is sG then ε = 0, i.e.
g ∼= hi for i = 1, . . . , 6. Moreover, if in addition ρ = 1, then any J-Hermitian structure
is sG.

In conclusion, if there exists an sG metric then g ∼= h1, . . . , h6 or h−19. The con-
verse follows directly from [95, Theorem 26] because these Lie algebras admit balanced
Hermitian metrics.

Remark 5.1.12. From the proof of the previous proposition it follows that on h2, h4, h5

and h6, if J is a non-abelian nilpotent complex structure, then any invariant J-Hermitian
metric is sG. This is in contrast with h−19, where for any complex structure the space of
balanced metrics is strictly contained in the space of sG metrics, and moreover there are
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Hermitian metrics which are not sG. For instance, consider a Hermitian metric on h−19

given by

Ω =
i

2
ω11̄ + (u2 + z2 + 1)i ω22̄ + (u2 + z2 + 1)i ω33̄ +

u

2
(ω12̄ − ω21̄) +

z

2
(ω13̄ − ω31̄),

that is, in (5.1) we take r = 1, v = 0, u and z real and s2 = t2 = 2(u2 + z2 + 1):

• if u = z = 0, then the metric is balanced;

• if u = 0 and z 6= 0, then the metric is sG but not balanced;

• if u 6= 0, then the metric is not sG.

Notice that this indicates a contrast between the sG and SKT geometries, since by [33]
the existence of an SKT structure on a 6-dimensional nilpotent Lie algebra depends only
on the complex structure.

With the previous result we state a theorem of existence of strongly Gauduchon
metrics in the class of six-dimensional solvmanifolds endowed with an invariant complex
structure with holomorphically trivial canonical bundle.

Theorem 5.1.13. Let M = G/Γ be a six-dimensional solvmanifold admitting invari-
ant complex structures with holomorphically trivial canonical bundle. M has a strongly
Gauduchon metric if and only if g ∼= h1, . . . , h6 or h−19 if g is nilpotent and g ∼= g1, gα≥0

2 ,
g3, g5, g7 or g8 if g is not nilpotent.

Moreover, if g ∼= g1, gα≥0
2 , g3 or g8 endowed with J with non-zero closed (3, 0)-form,

then any Hermitian metric is sG.

Proof. Since balanced condition implies the sG condition, by Theorem 5.1.8 we know
that if g ∼= g1, gα2 , g3, g5, g7 or g8, then there exist sG metrics. Moreover, any J on the
Lie algebras g1, gα2 , g3, g5 and g7 admits sG metrics. We prove next that there are not
sG metrics on g4, g6 and g9.

From (3.22) we have ∂̄(∧3,1g∗) = 〈ω1231̄3̄, ω1232̄3̄〉, and by (5.10) the (3,2)-form ∂F 2

is a combination of ω1231̄2̄, ω1231̄3̄ and ω1232̄3̄. Hence, the existence of sG metric is
equivalent to the vanishing of the coefficient of ω1231̄2̄ in ∂F 2. By (3.27), the Lie algebra
g4 corresponds to A = i, G11 = ±1 and G12 = G22 = 0, so the coefficient of ω1231̄2̄ is
equal to ±(s2t2−|v|2), which is never zero. On the other hand, by (3.29) the Lie algebra
g6 corresponds to A = i, G11 = G22 = 1 and G12 = 0, and the coefficient of ω1231̄2̄ is
(s2t2 − |v|2) + (r2t2 − |z|2), which is strictly positive. In conclusion, there do not exist
sG metrics for g4 or g6.

For the Lie algebra g9, equations (3.36) imply

∂̄ω1231̄ = 0, ∂̄ω1232̄ = (i/2)ω1231̄2̄, ∂̄ω1233̄ = −(i/2)ω1231̄3̄,

therefore ∂̄ ∧3,1 g∗ = 〈ω1231̄2̄, ω1231̄3̄〉. By (5.12) we have that the component of ∂F 2 in
ω1232̄3̄ is nonzero, so ∂F 2 6∈ ∂̄ ∧3,1 g∗ and F is never sG. Thus, there do not exist sG
metrics for g9.



Existence of special Hermitian metrics 137

To finish the proof, it remains to see that any pair (J, F ) on g1, gα2 , g3 and g8 is
sG. By Proposition 3.2.3 and (5.8), a direct calculation implies ∂F 2 ∈ ∂̄(∧3,1g∗), so any
(J, F ) on g1 or gα2 is sG. For g3 (resp. g8) Analogously, we also have ∂F 2 ∈ ∂̄(∧3,1g∗) for
any Hermitian structure (J, F ), by Proposition 3.2.4 and (5.9) (resp. Proposition 3.2.7
and (5.11)).

Remark 5.1.14. The results concerning the existence of special Hermitian metrics on
the solvable and non-nilpotent Lie algebras g1, . . . , g9 are summarized in Table 5.2.

Motivated by [76, Theorem 1.10], we are concerned to find examples of “pure’”
strongly Gauduchon manifolds, that is, compact complex manifolds admitting a com-
patible strongly Gauduchon metric but no balanced metric.

Proposition 5.1.15. Let M = G/Γ be a 6-dimensional nilmanifold with an invariant
complex structure J such that M does not admit balanced metrics. If (M,J) has a sG
metric, then g is isomorphic to h2, h4 or h5.

Moreover, according to the classification in Table 3.1, such a J is given by: x+y2 ≥ 1
4

on h2; x ≥ 1
4 on h4; and λ = 0, y 6= 0 or λ = y = 0, x ≥ 0 on h5.

Proof. Any complex structure on h6 or h−19 admits balanced metrics. From [97], we
have that only h3 and h5 have abelian complex structures J admitting balanced met-
rics. In fact, any such J on h5 admits balanced Hermitian metrics, whereas for h3 the
complex structure must be equivalent to the choice of (−)-sign in Table 3.1. From Corol-
lary 5.1.10, it remains to study the non-abelian nilpotent complex structures J on h2,
h4 and h5. Since any such J admits sG metrics by Remark 5.1.12, next we show which
of them do not admit balanced metrics.

In the three cases the complex equations are of the form

(5.13) dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + λω12̄ +Dω22̄.

A similar argument as in the proof of [97, Proposition 2.3] shows that, up to equivalence,
the fundamental 2-form of any J-Hermitian metric is given by

2F = i (ω11̄ + s2 ω22̄ + t2 ω33̄) + uω12̄ − ū ω21̄,

where s2 > |u|2 and t2 > 0.

If D = x+ iy and u = u1 + iu2, the balanced condition is

(5.14) s2 + x+ iy = u2λ+ iu1λ.

We distinguish several cases depending on the values of λ.

If λ 6= 0, then F is balanced if and only if u1 = y/λ and u2 = (s2 + x)/λ. The
condition s2 > |u|2 is equivalent to s4 + (2x− λ2)s2 + x2 + y2 < 0, and it is easy to see
that a non-zero s satisfying this condition exists if and only if

(5.15) λ4 − 4xλ2 − 4y2 > 0.
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From Table 3.1, we get that any J on h2 such that x+ y2 ≥ 1
4 has no balanced metrics.

Similarly, for h4 any J such that x ≥ 1
4 does not admit balanced metrics.

For h5 and λ 6= 0, we have that x = 0 by Table 3.1. Thus, there are no balanced
metrics if and only if λ4 ≤ 4y2. Since y ≥ 0, this is equivalent to λ2 ≤ 2y. But from
Table 3.1, we get that this cannot happen. Therefore, for λ 6= 0 the complex structures
admit balanced metrics.

Finally, in the case of h5 with λ = 0 we get that the balanced condition (5.14) reduces
to y = 0 and s2 = −x > 0. From Table 3.1 we have that 0 < 1 + 4x, i.e. x ∈ (−1

4 ,∞).
Therefore, if y 6= 0 or y = 0, x ≥ 0, then there are no balanced metrics.

Remark 5.1.16. As a consequence of the proof of Proposition 5.1.15, we show in
Table 5.1 the complex structures J , up to equivalence, on the solvable Lie algebras
h1, . . . , h6, h

−
19 that admit balanced Hermitian metrics.

As pointed out by Popovici [76, Theorem 1.11], the degeneration of the Frölicher
sequence at E1 and the existence of sG metrics are unrelated. From the study of the sG
geometry above and from Theorem 4.1.4 we get:

Theorem 5.1.17. Let M = G/Γ be a 6-dimensional nilmanifold endowed with an in-
variant complex structure J . If there exists an sG metric, then the Frölicher spectral
sequence degenerates at the second level, i.e. E2(M) ∼= E∞(M). Moreover, if there
exists an sG metric and g 6∼= h5, then E1(M) ∼= E∞(M).

Proof. By Proposition 5.1.11, the Lie algebra g underlying M = G/Γ must be isomorphic
to h1, . . . , h6 or h−19, so Theorem 4.1.4 implies that the Frölicher sequence degenerates
at the second level. The last assertion follows directly by taking into account Corol-
lary 5.1.10 and Table 5.1 below.

Concerning other relations among cohomological properties of compact complex man-
ifolds, it is proved in [56] that there is no relation between cohomological decomposition
at the first stage (in the sense of [9, 59]) and degeneration of the Frölicher sequence at
the first step, as well as that the cohomological decomposition at the first stage and
the existence of balanced Hermitian metric are also unrelated. Moreover, in [56] the
balanced Hermitian structures (J, F ) on nilmanifolds of dimension 6 for which the map
L : H1

dR(M) −→ H5
dR(M) given by the cup product by [F 2] is an isomorphism are stud-

ied. This has applications to a result of Angella and Tomassini [9] in the context of
semi-Kähler geometry.



Existence of special Hermitian metrics 139

g Abelian structures Non-Abelian structures

h1 dω2 = 0, dω3 = 0 —

h2 —
dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄ + (x+ iy)ω22̄,

y > 0, x+ y2 < 1
4

h3 dω2 = 0, dω3 = ω11̄ − ω22̄ —

h4 —
dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄ + xω22̄,

x < 1
4 , x 6= 0

dω2 = 0, dω3 = ω12

dω2 = 0, dω3 = ω12 + ω11̄ + λω12̄ + (x+ iy)ω22̄,

dω2 = 0, with (λ, x, y) satisfying one of:

h5 dω3 = ω11̄ + ω12̄ + xω22̄, • λ = y = 0, x ∈
(
−1

4 , 0
)
;

0 ≤ x < 1
4 • 0 < λ2 < 1

2 , 0 ≤ y < λ2

2 , x = 0;

• 1
2 ≤ λ2 < 1, 0 ≤ y < 1−λ2

2 , x = 0;

• λ2 > 1, 0 ≤ y < λ2−1
2 , x = 0.

h6 — dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄

h−19 — dω2 = ω13 + ω13̄, dω3 = ±i(ω12̄ − ω21̄)

Table 5.1: Classification of complex structures on nilpotent Lie algebras admitting
balanced metrics.
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5.2 Balanced and strongly Gauduchon metrics under holo-
morphic deformations

In this section we study some properties related to the existence of balanced and sG
metrics under deformation of the complex structure. Let ∆ be an open disc around
the origin in C. In what follows, we denote by {(M,Jt)}t∈∆ a holomorphic family of
compact complex manifolds. As we mentioned in Section 1.4.2, the strongly Gauduchon
and the balanced properties of compact complex manifolds are conjectured to be closed
under holomorphic deformations [76, Conjectures 1.21,1.23]. We provide in this section
a counterexample to both conjectures.

We consider a nilmanifold M = G/Γ with underlying real Lie algebra isomorphic
to h4. Recall that by Proposition 5.1.15 the abelian complex structure J0 on M does
not admit sG metrics. Thus, it is sufficient to deform holomorphically J0 in such a way
that Jt admits balanced metric for any t 6= 0, taking into account our existence result of
balanced metrics summarized in Table 5.1.

Theorem 5.2.1. Let (M = G/Γ, J1) be a nilmanifold with underlying Lie algebra h4

endowed with its abelian complex structure J1. Then, there is a holomorphic family of
compact complex manifolds {Ma := (M, Ia)}a∈∆, with I0 = J1 and ∆ = {a ∈ C | |a| <
1}, such that Ma has a balanced metric for each a ∈ ∆\{0}.

Proof. Let us consider the holomorphic deformation {Ja}a∈∆ of the pair (h4, J1) given
in Corollary 4.3.3. Recall that Ja is described by a (1, 0)-basis satisfying the complex
structure equations (4.20):

dµ1
a = dµ2

a = 0, dµ3
a =

1

2(1− |a|2)

(
2āµ12

a + iµ11̄
a + µ12̄

a + µ21̄
a − i|a|2µ22̄

a

)
.

By Corollary 5.1.10, if a = 0 then the complex nilmanifold (M,J1) does not admit sG
metrics because J1 is abelian and J1 does not have compatible balanced metrics (see
Table 5.1).

For any a ∈ C such that 0 < |a| < 1 the complex structure is nilpotent but not

abelian. In this case we can normalize the coefficient of µ12
a by taking 1−|a|2

ā µ3
a instead

of µ3
a, so we can suppose that the complex structure equations are

dµ1
a = dµ2

a = 0, dµ3
a = µ12

a +
i

2ā
µ11̄
a +

1

2ā
(µ12̄
a + µ21̄

a )− ia

2
µ22̄
a .

With respect to the (1,0)-basis {ω1
a = µ1

a − iµ2
a, ω

2
a = −2āi µ2

a, ω
3
a = −2āi µ3

a}, the
structure equations for Ja become

dω1
a = dω2

a = 0, dω3
a = ω12

a + ω11̄
a −

1

a
ω12̄
a +

1− |a|2
4|a|2 ω22̄

a .

Now, as in the proof of Proposition 3.1.5 we can suppose that the coefficient of ω12̄
a is

equal to 1/|a|.
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In conclusion, for any a ∈ C such that 0 < |a| < 1 there exists a (1,0)-basis for

which the complex equations are of the form (5.13), with λ = 1
|a| and D = 1−|a|2

4|a|2 .

Taking x = ReD = 1−|t|2
4|t|2 and y = ImD = 0, one has 4x + ρ − λ2 = 0 according to

Proposition 3.1.5 (ii.2). Now, following the proof of Proposition 5.1.15, since λ 6= 0 the
complex structure Jt admits a balanced metric if and only if (5.15) is satisfied. But the
latter condition reads

λ2(λ2 − 4x) =
1

|a|2 > 0,

so there exists a balanced Hermitian metric for each a ∈ C such that 0 < |a| < 1.

Remark 5.2.2. It is worth giving a closer look at the failure of the sG property at
a = 0. Let {Ja}a∈∆ be the family of complex structures given by (4.20) for any a ∈ ∆ =
{a ∈ C | |a| < 1}, and let us consider the real 2-form F compatible with Ja given by

2F = ir2 µ11̄ + is2 µ22̄ + it2 µ33̄,

where r, s, t ∈ R. Since

4F ∧ dF =
it2

2(1− |a|2)
(s2 − |a|2r2)(µ121̄2̄3̄ − µ1231̄2̄),

the 4-form F 2 is closed if and only if s2 = |a|2r2, i.e. if and only if F is given by

2F = ir2 µ11̄ + i|a|2r2 µ22̄ + it2 µ33̄.

This defines a balanced Ja-Hermitian metric for any r, t > 0 and for any 0 < |a| <
1. However, in the “central limit” a = 0 the form becomes degenerate, that is, the
underlying metric is not positive definite.

Although the sG property is not closed, Popovici has proved that the existence of sG
metrics in the central limit is guaranteed under strong additional conditions concerning
the ∂∂̄-lemma.

Proposition 5.2.3 (Popovici [72, Proposition 4.1]). If the ∂∂̄-lemma holds on (M,Ja)
for every a ∈ ∆ \ {0}, then (M,J0) has an sG metric.

An interesting problem is if the conclusion in the above proposition holds under
weaker conditions than the ∂∂̄-lemma. Latorre, Ugarte and Villacampa [57, Corollary
4.5] prove that the vanishing of some complex invariants, which are closely related to the
∂∂̄-lemma, is not sufficient to ensure the existence of an sG metric in the central limit.

Another problem related to Proposition 5.2.3 is if the central limit admits a Hermitian
metric, stronger than sG, under the ∂∂̄-lemma condition. Our aim is now to construct a
holomorphic family of compact complex manifolds (M,Jt)t∈∆ such that (M,Jt) satisfies
the ∂∂̄-lemma and admits balanced metric for any t 6= 0, but the central limit neither
satisfies the ∂∂̄-lemma nor admits balanced metric. The construction is based on the



142 Special Hermitian geometry on solvmanifolds

balanced Hermitian geometry of g8 studied in Theorem 5.1.8, which is the real Lie
algebra underlying the Nakamura manifold.

We recall that the ∂∂̄-lemma property is open and non-closed under holomorphic
deformations. The non-closedness of the ∂∂̄-lemma property is proved by Angella and
Kasuya [8] by means of a suitable deformation (M, It) of the holomorphically paralleliz-
able Nakamura manifold (M, I0) (notice that (M, I0) has balanced metrics). We will use
their result on the ∂∂̄-lemma for (M, It), t 6= 0, as a key ingredient in the proof of the
following result.

Theorem 5.2.4. There exists a solvmanifold M with a holomorphic family of complex
structures Ja, a ∈ ∆ = {t ∈ C | |t| < 1}, such that (M,Ja) satisfies the ∂∂̄-lemma and
admits balanced metric for any a 6= 0, but the central limit (M,J0) neither satisfies the
∂∂̄-lemma nor admits balanced metrics.

Proof. Let J ′ be the complex structure on the Lie algebra g8 defined by the (1, 0)-
basis {ω1, ω2, ω3} satisfying (3.31) in Proposition 3.2.7. By Theorem 5.1.8, any complex
solvmanifold (M = G/Γ, J ′) with underlying Lie algebra g8 does not admit balanced
metrics.

For each a ∈ C such that |a| < 1, we consider the complex structure Ja on M defined
by the (1,0)-basis

Φ1
a := ω1, Φ2

a := ω2, Φ3
a := ω3 + aω3̄.

A simple computation shows that the complex structure equations are

(5.16)


dΦ1

a = 2i
1−|a|2 Φ13

a − 2ia
1−|a|2 Φ13̄

a + 1
1−|a|2 Φ33̄

a ,

dΦ2
a = − 2i

1−|a|2 Φ23
a + 2ia

1−|a|2 Φ23̄
a ,

dΦ3
a = 0.

Using these equations, the (2,3)-form ∂̄F 2 for a generic metric (5.1) with respect to the
basis {Φ1

a,Φ
2
a,Φ

3
a} reads as

2 ∂̄F 2 =

(
2ia(ir2v̄ − uz̄)

1− |t|2
)

Φ131̄2̄3̄
a +

(
2ia(is2z̄ + ūv̄)

1− |a|2 + (r2s2 − |u|2)

)
Φ231̄2̄3̄
a .

Suppose that a 6= 0 with |a| < 1. If u = v = 0, then the balanced condition reduces to
solve

2az̄

1− |t|2 = r2, with r2t2 > |z|2.

Thus, taking z = (1 − |a|2)r2/(2ā), the condition r2t2 > |z|2 is satisfied for any t such

that t2 > (1−|a|2)2r2

4|a|2 .

Therefore, we have proved that for any Ja, a ∈ ∆∗, the structures

(5.17) 2F = i (r2Φ11̄
a + s2Φ22̄

a + t2Φ33̄
a ) +

(1− |a|2)r2

2ā
Φ13̄
a −

(1− |a|2)r2

2a
Φ31̄
a ,
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with r, s 6= 0 and t2 > (1−|a|2)2r2

4|a|2 , are balanced.

Notice that the previous argument is valid for the quotient M of any lattice in the
simply-connected Lie group G associated to g = g8. However, to ensure the ∂∂̄-lemma
for the complex structures Ja with a 6= 0 we need to consider the lattice Γ considered
by Angella and Kasuya in [8]. In fact, in [8] the authors consider the holomorphically
parallelizable Nakamura manifold X = (G/Γ, I0), whose complex structure I0 precisely
corresponds to the complex structure J−i in our family (3.33) (see Proposition 3.2.7). If
{η1, η2, η3} is a (1, 0)-basis satisfying (3.33) for A = −i, they consider a invariant small
deformation It given by the direction

(5.18) Ψt := t
∂

∂z3
⊗ dz̄3 ∈ H0,1(M ; ΘM ),

where z3 is a complex coordinate such that η3 = dz3. By [8, Proposition 4.1] one has that
Xt = (G/Γ8, It) satisfies the ∂∂̄-lemma for any t 6= 0. Since I0 = J−i, the deformation
It defined by (5.18) can be expressed in terms of the following (1,0)-basis

Υ1
t := η1, Υ2

t := η2, Υ3
t := η3 − t η3̄,

and the structure equations for It are

(5.19)


dΥ1

t = 2i
1−|t|2 Υ13

t + 2it
1−|t|2 Υ13̄

t ,

dΥ2
t = − 2i

1−|t|2 Υ23
t − 2it

1−|t|2 Υ23̄
t ,

dΥ3
t = 0.

On the other hand, it is easy to see that for any a 6= 0 the equations (5.16) express
with respect to the (1,0)-basis {Θ1

a = Φ1
a + i

2aΦ3
a,Θ

2
a = Φ2

a,Θ
3
a = Φ3

a} as

(5.20)


dΘ1

a = 2i
1−|a|2 Θ13

a − 2ia
1−|a|2 Θ13̄

a ,

dΘ2
a = − 2i

1−|a|2 Θ23
a + 2ia

1−|a|2 Θ23̄
a ,

dΘ3
a = 0.

Now, from (5.19) and (5.20) we conclude that for a 6= 0 the complex structure Ja is
precisely the complex structure It with t = −a. Therefore, for any a 6= 0 the compact
complex manifold (M,Ja) = (G/Γ, Ja) satisfies the ∂∂̄-lemma because Xt=−a does by [8,
Proposition 4.1].

Finally, by Corollary 4.2.8, the central limit of {Ja}a∈∆ or {It}t∈∆ satisfies E1(M) �
E∞(M). Hence, the ∂∂̄-lemma does not hold.

Remark 5.2.5. Notice that (5.17) defines balanced metrics for any a 6= 0 in the complex
deformation (M,Ja). However, the central limit of any metric (5.17) does not exist;
actually, J ′ does not admit any balanced metric by Theorem 5.1.8.



144 Special Hermitian geometry on solvmanifolds

We can construct another deformation where the central limit is the complex struc-
ture J ′′ given by (3.32). It turns out that this deformation has the same behaviour
as for the deformation of the complex structure J given by (3.31) constructed in The-
orem 5.2.4. Therefore, the complex structures J ′ and J ′′ given by (3.31) and (3.32),
respectively, are the central limits of complex structures that satisfy the ∂∂̄-lemma. No-
tice that this is consistent with Proposition 5.2.3, because by our Theorem 5.1.13 both
complex structures admit sG metric.
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Appendices





Appendix A

Complex structures on solvable
Lie algebras

In this section we show several results related to the description of the invariant com-
plex geometry with holomorphically trivial canonical bundle on six-dimensional solv-
manifolds. We show the specific procedure followed with complex structures on the Lie
algebras g3 and g9 to arrive to the expressions (3.20), in the case of g3, and (3.35), in
the case of g9. These equations are the starting point to obtain the classification up to
equivalence of complex structures with closed complex volume form for these Lie alge-
bras, summarized in the expressions (3.21) and (3.36), respectively. In both cases, we
have proceeded following in the next steps:

i) We define an orientation on the vector space underlying the Lie algebra fixing the
volume form ν := e123456, where {e1, . . . , e6} denotes the basis of 1-forms in which the
Lie algebra is expressed. Then, we compute the space of closed 3-forms denoted by Z3(g)
and, taking an arbitrary ρ ∈ Z3(g), we obtain the endomorphism J̃∗ρ : g∗ → g∗ defined

by the formula (2.20). At this point, we focus our attention in the real 4-form d(J̃∗ρρ)

and the real number 1
6tr(J̃∗2ρ ) and using Lemma 2.2.8 we look for all the closed 3-forms

ρ ∈ Z3(g) satisfying both the conditions d(J̃∗ρρ) = 0 and 1
6tr(J̃∗2ρ ) < 0.

ii) Once we have computed the space of integrable complex structures admitting a (3,0)-
form {J : g∗ → g∗ | J2 = −Idg, d(∧3,0g∗) = 0} we look for a (1,0)-basis {ω1, ω2, ω3} on
g∗C and compute the complex structure equations in this basis.

iii) We conclude finding new (1, 0)-bases obtained by means of successive Lie algebra
automorphisms compatible with the complex structure equations until we arrive to the
final reduced expressions of the complex structure equations.

The Lie algebra g3.

The Lie algebra g3 := e(2) ⊕ e(1, 1) is the decomposable Lie algebra described by a
basis {e1, . . . , e6} of g∗3 satisfying the structure equations de1 = de4 = 0, de2 = −e13,
de3 = e12, de5 = −e46, de6 = −e45. We provide several results in order to arrive to the
complex structure equations (3.20).
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Lemma A.0.6. There are almost complex structures admitting a closed complex volume
form on the Lie algebra g3.

Proof. In the proof we look for all the complex structures admitting a closed complex
volume form. Any closed 3-form ρ ∈ Z3(g3) is given by:

ρ = a1e
123 + a2e

124 + a3e
134 + a4e

145 + a5e
146 + a6e

156 + a7e
234 + a8(e136 − e245) +

a9(e135 − e246) + a10(e126 + e345) + a11(e125 + e346) + a12e
456,

where a1, . . . , a12 ∈ R. When we compute the exterior derivative of J̃∗ρ we obtain:

1
2d(J̃∗ρρ) =

(a3
10− a10a

2
11− a1a10a12− a10a6a7+ a10a

2
8− a1a6a9+ a12a7a9− 2a11a8a9+ a10a

2
9)e1245+

(a2
10a11− a3

11− a1a11a12− a11a6a7− a1a6a8+ a12a7a8− a11a
2
8+ 2a10a8a9− a11a

2
9)e1246−

(a1a11a6− a11a12a7+ a2
10a8+ a2

11a8− a1a12a8− a6a7a8+ a3
8− 2a10a11a9− a8a

2
9)e1345−

(a1a10a6− a10a12a7+ 2a10a11a8− a2
10a9− a2

11a9− a1a12a9− a6a7a9+ a2
8a9 − a3

9)e1346,

whereas the value of the trace is:

1
6tr(J̃∗2ρ ) = a4

10 + a4
11 + a2

1a
2
12 − 2a1a12a6a7 + a2

6a
2
7 + 4a11(a1a6 − a12a7)a8 − 2a1a12a

2
8−

2a6a7a
2
8 + a4

8 − 4a10(a1a6 − a12a7 + 2a11a8)a9 + 2a1a12a
2
9 + 2a6a7a

2
9 − 2a2

8a
2
9 + a4

9−

2a2
10(a2

11 + a1a12 + a6a7 − a2
8 − a2

9) + 2a2
11(a1a12 + a6a7 + a2

8 + a2
9).

Now, we have that d(J̃∗ρρ) = 0 and tr(J̃∗2ρ ) < 0 if and only if the coefficients a1, . . . , a12

belong to one of the following four families:

I) a10a12 + a6a9 6= 0 and a1 =
(a3

10−a10a2
11−a10a6a7+a10a2

8+a12a7a9−2a11a8a9+a10a2
9)

a10a12+a6a9
,

a7 =
(a2

10a6−a2
11a6+2a11a12a8+a6a2

8−2a10a12a9−a6a2
9)

a2
6+a2

12
. In particular, if a8 = 1

2 , a10 =

a12 = 0 and a11 = 1 then tr(J̃∗2ρ ) = −1;

II) a11a6 − a12a8 6= 0, a12 6= 0 and a9 = a10 = 0, a1 =
−(a2

11a12+2a11a6a8−a12a2
8)

a2
6+a2

12
,

a7 =
(−a3

11−a1a11a12−a1a6a8−a11a2
8)

a11a6−a12a8
. In particular if a6 = 0, a8 = 1

2 and a11 = a12 = 1

then tr(J̃∗2ρ ) = −1;

III) a9 = a12 = 0, a6, a10 6= 0 and a1 = −2a11a8
a6

, a7 =
(a2

10−a2
11+a2

8)
a6

. If a8 = 1
2 and

a11 = 1 is clear that tr(J̃∗2ρ ) = −1;

IV) a12 = 0, a6 6= 0, a10 = 0, a11 6= 0, a±8 =
−a1a6±

√
−4a4

11+a2
1a

2
6−4a2

11a6a7

2a11
, a7 =

−4a4
11+a2

1a
2
6

4a2
11a6

. If a1 = a6 = 1 then tr(J̃∗2ρ ) = −1.
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Lemma A.0.7. Let J : g3 → g3 be a complex structure admitting a closed complex
volume form, then there is a (1,0)-basis {ω1, ω2, ω3} satisfying the complex structure
equations:

(A.1)


dω1 = 0,

dω2 = −1
2ω

13 + b ω11̄ + fi ω12̄ − fi ω21̄ − (1
2 + gi)ω13̄ + gi ω31̄,

dω3 = 1
2ω

12 + c ω11̄ + (1
2 + hi)ω12̄ − hi ω21̄ − fi ω13̄ + fi ω31̄,

where the coefficients b, c, f, g, h are real and satisfy 4gh = 4f2 − 1.

Proof. Firstly, we prove that the (1,0)-forms:

ω1 = e1 − iJ∗ρe1, ω2 = e2 − iJ∗ρe2, ω3 = e3 − iJ∗ρe3

are linearly independent for any J : g3 → g3 admitting a closed (3,0)-form. When we
compute ω123 expressed as (complex) linear combination of the basis {e123, . . . , e456} and
we get the coefficient multiplying the element e456 (namely the contraction ιe6ιe5ιe4(ω123))
we obtain:

• for family I: ιe6ιe5ιe4(ω123) = −2i(a12−ia6)2, which never is cancelled as a2
6+a2

12 6=
0.

• for family II: ιe6ιe5ιe4(ω123) = 2i(a2
12 + a2

6), which never is cancelled as a12 6= 0.

• for family III: ιe6ιe5ιe4(ω123) = −2ia2
6, which never is cancelled as a6 6= 0.

• for family IV: ιe6ιe5ιe4(ω123) = − 2i
a2

1
, which never is cancelled.

Now, we show the complex equations obtained for the family III. For instance, sub-
stituting the values obtained for family III (see the proof of Lemma A.0.6) we get
tr(J̃∗2ρ ) = −4(a8a11)2. If we substitute a8 by 1

2a11
we get a whole family of integrable

complex structures. Moreover, the complex structure equations for all them expressed
in terms of the (1,0)-basis {ω1 = e1 − iJ∗ρe1, ω2 = e2 − iJ∗ρe2, ω3 = e3 − iJ∗ρe3} are:

dω1 = 0,

dω2 = −1
2ω

13 + bω11̄ + i a10
2a11

(−ω12̄ + ω21̄)− (1
2 + i(a2

10 − a2
11))ω13̄ + i(a2

10 − a2
11)ω31̄,

dω3 = 1
2ω

12 + cω11̄ + (1
2 + i

4a2
11

)ω12̄ − i
4a2

11
ω21̄ + i a10

2a11
(ω13̄ − ω31̄).

Comparing the former equations with (A.1) we observe for this family that f = − a10
2a11

,

g = a2
10 − a2

11, h = 4
a2

11
and the coefficients b and c are real (we omit the explicit

expressions of b and c because of their length). We can identify the same structure
of the complex structure equations for the other families I, II and IV identifying the
coefficients b, c, f, g, h. Finally, if we consider a Lie algebra g equipped with a complex
structure and a (1,0)-basis satisfying the complex equations (A.1) then d(ω123) = 0 and
the relation 4gh = 4f2 − 1 turns out from imposing the Jacobi identity.
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The Lie algebra g9.

The Lie algebra g9 := B1
6,4 is the indecomposable Lie algebra described by a basis

{e1, . . . , e6} of g∗9 satisfying the structure equations de1 = e45, de2 = e15 + e36, de3 =
e14 − e26 + e56, de4 = −e56, de5 = e46, de6 = 0.

Remark A.0.8. In the lists of the six-dimensional indecomposable solvable Lie alge-
bras [37] we find that the Lie algebras B±1

6,4 := (e45, e15 + e36, e14− e26± e56,−e56, e46, 0)

admit an almost complex structure with a closed (3, 0)-form. Actually, B−1
6,4 and B1

6,4

are isomorphic. If {ẽ1, . . . , ẽ6} is a basis of B−1
6,4 then the basis {e1, . . . , e6} given by

e1 = −ẽ1, e6 = −ẽ6 and ej = ẽj for j = 2, 3, 4, 5 yields the Lie algebra B1
6,4.

We provide several results in order to arrive to the complex structure equations (3.35).

Lemma A.0.9. There are almost complex structures admitting a closed complex volume
form on the Lie algebra g9.

Proof. As we have done with the Lie algebra g3 in the proof of Lemma A.0.6 we aim to
cover all the complex structures admitting a closed complex volume form. Any closed
3-form ρ ∈ Z3(g9) is given by:

ρ = a1(e124 − e135)+ a2e
145+ a3e

146+ a4e
156+ a5(e136 − e245)+ a6(e125 + e134 − e246)+

a7e
256+ a8(e126 + e345)+ a9e

346+ a10(e125 + e134 + e356)+ a11e
456,

where a1, . . . , a11 ∈ R. When we compute the exterior derivative of J̃∗ρ we obtain:

1
2d(J̃∗ρρ) = −(−a10a

2
5 + a2

5a6 + a2
1a7 + a2

10a7 − 2a10a6a7 + a2
6a7 − 2a1a5a8 + a10a

2
8−

a6a
2
8 − a2

1a9 − a2
10a9 + 2a10a6a9 − a2

6a9)e1246 + (a2
1a10 + a3

10 + a1a
2
5 + a2

1a6 − a2
10a6−

a10a
2
6 + a3

6 − 2a10a5a8 + 2a5a6a8 − a1a
2
8)e1256 − (a2

1a10 + a3
10 + a1a

2
5 + a2

1a6 − a2
10a6−

a10a
2
6 + a3

6 − 2a10a5a8 + 2a5a6a8 − a1a
2
8)e1346 − (−a10a

2
5 + a2

5a6 + a2
1a7 + a2

10a7−

2a10a6a7 + a2
6a7 − 2a1a5a8 + a10a

2
8 − a6a

2
8 − a2

1a9 − a2
10a9 + 2a10a6a9 − a2

6a9)e1356+

(−a1a
2
10 − a2

5a6 − a1a
2
6 − a2

10a7 + 2a10a6a7 − a2
6a7 + a1a5a8 + a5a7a8 + a6a

2
8 + a2

1a9+

2a1a7a9− a5a8a9)e1456+ (a2
10a5− a5a

2
6+ a1a5a7+ a1a10a8− a2

5a8+ a1a6a8− a10a7a8+

a6a7a8 − a3
8 − a1a5a9 + a10a8a9 − a6a8a9)e2456 + (a1a10a5 + a3

5 + a1a5a6 − a10a5a7+

a5a6a7 − a2
10a8 + a2

6a8 − a1a7a8 + a5a
2
8 + a10a5a9 − a5a6a9 + a1a8a9)e3456,
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and the corresponding trace is:

1
6tr(J̃∗2ρ ) = a4

5+ 4a3
10a6− 8a2

10a
2
6+ 4a10a

3
6+ a2

10a
2
7− 2a10a6a

2
7+ a2

6a
2
7+ 4a5(−a2

10 + a2
6)a8+

2a10a7a
2
8− 2a6a7a

2
8+ a4

8 − 2a2
10a7a9+ 4a10a6a7a9− 2a2

6a7a9− 2a10a
2
8a9+ 2a6a

2
8a9+ a2

10a
2
9−

2a10a6a
2
9+ a2

6a
2
9+ a2

1(a2
10+ 2a10a6+ a2

6− 4a7a9)+ 2a2
5(a2

8+ a6(a7− a9)+ a10(−a7+ a9))+

2a1(a2
5a6+ 2a5a8(−a7+ a9)+ a2

10(a7+ a9)+ a10(a2
5− a2

8− 2a6(a7+ a9))+

a6(−a2
8 + a6(a7 + a9)).

A straightforward computation shows that the coefficient in d(J̃∗ρρ) multiplying e1246

vanishes if and only if a1 = 0 and a10 = a6 then we get tr(J̃∗2ρ ) = (a2
5 + a2

8)2 ≥ 0. So we
have necessarily that a2

1 + (a10 − a6)2 6= 0 and we can perform the substitution:

a9 =
(−a10a

2
5 + a2

5a6 + a2
1a7 + a2

10a7 − 2a10a6a7 + a2
6a7 − 2a1a5a8 + a10a

2
8 − a6a

2
8)

a2
1 + (a10 − a6)2

.

We find that d(J̃∗ρρ) = 0 and tr(J̃∗2ρ ) < 0 if and only if the coefficients a1 . . . , a11 belong
to one of the following families:

I) a1 = a8 = 0, a10 = −a6 6= 0, a9 = −a7 and a7 = −a6a
2
5. In particular, if a6 = 1

2

then tr(J̃∗2ρ ) = −1;

II) a1 = 0, a8 6= 0, a5 = 1+2a6(a10−a6)
2a8

, a7 =
4a6+(a10−a6)(1+4(a2

6−a4
8))

8a2
8

, a9 = −a7. In

particular, if a10 = a6 + 1 then tr(J̃∗2ρ ) = −1;

III) a1 6= 0 and a7 = a+
7 , a8 = a+

8 . In particular, if a6 =
√

1− a2
1 +a10 and a1 > 0 then

tr(J̃∗2ρ ) = −1;

IV) a1 6= 0 and a7 = a−7 , a8 = a+
8 . In particular, if a6 =

√
1− a2

1 +a10 and a1 < 0 then
tr(J̃∗2ρ ) = −1;

V) a1 6= 0 and a7 = a+
7 , a8 = a−8 . In particular, if a6 =

√
1− a2

1 +a10 and a1 < 0 then
tr(J̃∗2ρ ) = −1;

VI) a1 6= 0 and a7 = a−7 , a8 = a−8 . In particular, if a6 =
√

1− a2
1 +a10 and a1 > 0 then

tr(J̃∗2ρ ) = −1,

where

a±8 = 1
2a1

(
− 2a10a5 + 2a5a6 ±

(
(−2a10a5 + 2a5a6)2 + 4a1(a2

1a10 + a3
10 + a1a

2
5+

a2
1a6 − a2

10a6 − a10a
2
6 + a3

6)
)1/2)

,
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and

aε7± = − 1

4a4
1

(
a5

1 + a3
1a

2
10 + 4a2

1a10a
2
5 + 2a3

1a10a6 − 4a2
1a

2
5a6 − 3a3

1a
2
6 −

ε
[
4a2

1a5

√
(a1a10 + a2

5 + a1a6)(a2
1 + a2

10 − 2a10a6 + a2
6)±((

− a5
1 − a3

1a
2
10 − 4a2

1a10a
2
5 − 2a3

1a10a6 + 4a2
1a

2
5a6 + 3a3

1a
2
6 +

4a2
1a5

√
(a1a10 + a2

5 + a1a6)(a2
1 + a2

10 − 2a10a6 + a2
6)
)2

+

8a4
1(−3a3

1a10a
2
5 − 3a1a

3
10a

2
5 − 2a2

1a
4
5 − 4a2

10a
4
5 − a4

1a10a6 −
a2

1a
3
10a6 − a3

1a
2
5a6 + a1a

2
10a

2
5a6 + 8a10a

4
5a6 + a4

1a
2
6 + a2

1a
2
10a

2
6 +

7a1a10a
2
5a

2
6 − 4a4

5a
2
6 + a2

1a10a
3
6 − 5a1a

2
5a

3
6 − a2

1a
4
6 + (a3

1a5 +

a1a
2
10a5 + 4a10a

3
5 + 2a1a10a5a6 − 4a3

5a6 − 3a1a5a
2
6)√

(a1a10 + a2
5 + a1a6)(a2

1 + a2
10 − 2a10a6 + a2

6)
)1/2])

,

where ε = ±1 and a+
7± denotes the two solutions corresponding to a+

8 (analogously for

a−7±).

Lemma A.0.10. Let J : g9 → g9 be a complex structure admitting a closed complex
volume form, then there is a (1,0)-basis {ω1, ω2, ω3} satisfying the complex structure
equations:

(A.2)


dω1 = −c2ω11̄ − c ω31̄ − c ω13̄ − ω33̄,

dω2 = Dω11̄ − i
2ω

21̄ + Eω31̄ + Fω13̄ + i
2ω

12 +Hω13 +Gω33̄,

dω3 = cK ω11̄ +Kω31̄ + c2ω13̄ + c ω33̄ − i
2ω

13,

where the coefficient c is real, the coefficients D,E, F,G,H,K are complex and K =
c2 + i

2 , F = cG+ 1
2 , H = F − E − 1

2 and G = −i(c(1 + 2E)− 2D).

Proof. Firstly, we show that the (1,0) forms

ω1 = e6 − iJ∗ρe6, ω2 = e2 − iJ∗ρe2, ω3 = e4 − iJ∗ρe4

are linearly independent for any J : g9 → g9 admitting a closed complex volume form.
Proceeding in the same manner as in the proof of Lemma A.0.7 we compute the 3-
form ω123 for the twelve families obtained in Lemma A.0.9 and express it as a linear
combination of the basis {e123, . . . , e456}. It turns out that the coefficient multiplying
e124 is 2i in all cases, namely ιe4ιe2ιe1(ω123) = 2i, and therefore the (1,0)-forms ω1, ω2, ω3

are linearly independent constituting then a (1,0)-basis for g∗9C.



155

When we compute the complex structure equations for the family I expressed in the
(1,0)-basis {ω1, ω2, ω3} we get:

dω1 = −a2
5ω

11̄ − a5ω
13̄ − a5ω

31̄ − ω33̄,

dω2 = i
2ω

12 + 1
4(−1− 4a11 + 4a4a5 + 2a2a

2
5 − i(2a2 − a2

5))ω13 + 1
4(−2ia4+

2a5 + 4a11a5 − ia3
5 + 2a2a

3
5)ω11̄ + 1

2(1 + 2a4a5 − ia2
5 + 2a2a

2
5)ω13̄

− i
2ω

21̄ + 1
4(1 + 4a11 + 2a2a

2
5 + i(2a2 − a2

5))ω31̄ + 1
2(2a4 + 2a2a5 − ia5)ω33̄,

dω3 = − i
2ω

13 − 1
2 ia5(−1 + (1 + i)a5)(1 + (1 + i)a5)ω11̄ + a5

5ω
13̄−

1
2 ia5(−1 + (1 + i)a5)(1 + (1 + i)a5)ω31̄ + a5ω

33̄.

Comparing with the equations (A.2) we identify the coefficients

D = 1
4(−2ia4 + 2a5 + 4a11a5 − ia3

5 + 2a2a
3
5), E = i(2a2 − a2

5),

F = 1
2(1 + 2a4a5 − ia2

5 + 2a2a
2
5), G = 1

2(2a4 + 2a2a5 − ia5),

H = − i
2 , K = 1

2 ia5(−1 + (1 + i)a5)(1 + (1 + i)a5),

and c = a5. It is direct to check that F = cG + 1
2 , H = F − E − 1

2 and G = −i(c(1 +
2E)− 2D) whereas the condition K = c2 + i

2 arises from imposing d(ω123) = 0.

Lemma A.0.11. Let g be a Lie algebra equipped with a complex structure satisfying the
complex equations (A.2) then there is a (1,0)-basis satisfying the equations:

(A.3)


dω1 = −c2ω11̄ − c ω31̄ − c ω13̄ − ω33̄,

dω2 = (E + 1
2)c ω11̄ − i

2ω
21̄ + Eω31̄ + 1

2ω
13̄ + i

2ω
12 − Eω13,

dω3 = (c2 + i
2)c ω11̄ + (c2 + i

2)ω31̄ + c2ω13̄ + c ω33̄ − i
2ω

13.

The coefficient c is real and E ∈ C.

Proof. Let {ω1, ω2, ω3} be a (1,0)-basis satisfying the complex structure equations (A.2).
Consider the (1,0)-basis {η1, η2, η3} given by η1 = ω1, η2 = ω2 +Gω1 and η3 = ω3. Then
the complex structure equations in the basis are the same as (A.2) but with G = 0 and
hence by the relations between the complex coefficients we have F = 1

2 and H = −E.
Now, after imposing the Jacobi identity we get that D = c(E + 1

2).
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Appendix B

Tables of solvable Lie algebras
and complex geometry

In this section we include the Lie algebras studied to obtain the classification Theo-
rem 2.2.14 of six-dimensional unimodular (non-nilpotent) solvable Lie algebras admit-
ting a complex structure with a closed complex volume form. As the existence of a
lattice in the corresponding Lie group implies the unimodularity of g, that is b6(g) = 1,
and according to the obstruction given by Lemma 2.2.3, we have center our study in
those solvable Lie algebras g with b3(g) ≥ 2.

As regards the descomposable Lie algebras, we follow the lists and notations of low
dimensional Lie algebras contained in [84] and [36]. The 3⊕ 3 case is the product of two
three-dimensional unimodular solvable Lie algebras (notice that in this case, b3 is always
≥ 2 by (2.21)). The 4 ⊕ 2 case is the product by R2 of a four-dimensional unimodular
solvable Lie algebra h with b1(h)+2b2(h)+b3(h) ≥ 2. Finally, the 5⊕1 case is the product
by R of a five-dimensional unimodular solvable Lie algebra h with b2(h)+b3(h) ≥ 2. The
results concerning the decomposable case are included in Table B.1.

Table B.2 contains the six-dimensional solvable unimodular indecomposable Lie al-
gebras. The Lie algebras labeled by N0,−1,−1

6,18 and N−1,−1
6,20 arise from the classification by

Turkowski [91], and they are the only six-dimensional unimodular solvable Lie algebras
with nilradical of dimension 4 and b3 ≥ 2. The other solvable Lie algebras of Table B.2
are taken from the lists of [37]. We also include in Table B.2 the column “λ(ρ) ≥ 0” in
which the symbol X means that any closed 3-form ρ on the Lie algebra satisfies λ(ρ) ≥ 0,
in particular, ρ does not give rise to an almost complex structure (a similar study was
done in [36] for any decomposable Lie algebra).

Finally, we recall that the existence of a closed complex volume form is equiva-
lent to the existence of a complex structure when g is nilpotent (see Corollary 2.1.17).
However, we decide to include them in these tables to underline that we recover with
the method used in Section 2.2.2 of this work the classification of Salamon [82] of six-
dimensional nilpotent Lie algebras admitting complex structure. We denote the 34 types
of 6-dimensional nilpotent Lie algebras by nk with k = 1, . . . , 34.
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Lie algebra Structure equations closed volume form

n1 = h1 (0, 0, 0, 0, 0, 0) (e1 − ie2) ∧ (e3 − ie4) ∧ (e5 − ie6)

n2 = h8 (0, 0, 0, 0, 0, 12) (e1 − ie2) ∧ (e3 − ie4) ∧ (e5 + 2ie6)

n3 = h3 (0, 0, 0, 0, 0, 12 + 34) (e1 + ie3) ∧ (e2 + ie4) ∧ (e5 + 2ie6)

n4 = h6 (0, 0, 0, 0, 12, 13) (e1 − i(e2 + 2e4)) ∧ (e3 − ie4) ∧ (e5 − 2ie6)

n5 = h2 (0, 0, 0, 0, 12, 34) (e2 + 2ie1) ∧ (e3 − ie4) ∧ (e5 − ie6)

n8 = h9 (0, 0, 0, 0, 12, 14 + 25) (e1 − ie2) ∧ (e4 − ie5) ∧ (e6 − 2ie3)

n9 (0, 0, 0, 0, 12, 15) −

n18 = h16 (0, 0, 0, 12, 14, 24) (e1 − ie2) ∧ (e4 + 2ie3) ∧ (e5 − ie6)

n22 (0, 0, 0, 12, 14, 15) −

n23 (0, 0, 0, 12, 14, 15 + 24) −

e(2)⊕ e(2) (0,−e13, e12, 0,−e46, e45) −

e(2)⊕ e(1, 1) (0,−e13, e12, 0,−e46,−e45) (e1−ie4)∧(e2−2i(e2−e6))∧(e3+i( e
3

2 +e5))

e(2)⊕ h3 (0,−e13, e12, 0, 0, e45) −

e(2)⊕ R3 (0,−e13, e12, 0, 0, 0) −

e(1, 1)⊕ e(1, 1) (0,−e13,−e12, 0,−e46,−e45) −

e(1, 1)⊕ h3 (0,−e13,−e12, 0, 0, e45) −

e(1, 1)⊕ R3 (0,−e13,−e12, 0, 0, 0) −

A−2
4,2 ⊕ R2 (−2e14, e24 + e34, e34, 0, 0, 0) −

Aα,−1−α
4,5 ⊕ R2 (e14, αe24,−(1 + α)e34, 0, 0, 0) −

−1 < α ≤ −1
2

A
α,−α

2
4,6 ⊕ R2 (αe14,−α

2 e
24+e34,−e24− α

2 e
34, 0, 0, 0) −

α > 0

A4,8 ⊕ R2 (e23, e24,−e34, 0, 0, 0) −

A4,10 ⊕ R2 (e23, e34,−e24, 0, 0, 0) −

A−1,−1,1
5,7 ⊕ R (e15,−e25,−e35, e45, 0, 0) (e1 − ie4) ∧ (e2 − ie3) ∧ (e5 − ie6)

A−1,β,−β
5,7 ⊕ R (e15,−e25, βe35,−βe45, 0, 0) −

0 < β < 1

A−1
5,8 ⊕ R (e25, 0, e35,−e45, 0, 0) −

A−1,−1
5,9 ⊕ R (e15 + e25, e25,−e35,−e45, 0, 0) −

A−1,0,γ
5,13 ⊕ R (e15,−e25, γe45,−γe35, 0, 0) −

γ > 0

Table B.1: Six-dimensional decomposable unimodular solvable Lie algebras with b3 ≥ 2.
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Lie algebra Structure equations closed volume form

A0
5,14 ⊕ R (e25, 0, e45,−e35, 0, 0) −

A−1
5,15 ⊕ R (e15 + e25, e25,−e35 + e45,−e45, 0, 0) −

A0,0,γ
5,17 ⊕ R (e25,−e15, γe45,−γe35, 0, 0) −

0 < γ < 1

Aα,−α,15,17 ⊕ R (αe15 + e25,−e15 + αe25, (e1 − ie2) ∧ (e4 − ie3) ∧ (e6 − ie5)

α ≥ 1 −αe35 + e45,−e35 − αe45, 0, 0)

A0
5,18 ⊕ R (e25 + e35,−e15 + e45, e45,−e35, 0, 0) −

A−1,2
5,19 ⊕ R (−e15 + e23, e25,−2e35, 2e45, 0, 0) −

A1,−2
5,19 ⊕ R (e15 + e23, e25, 0,−2e45, 0, 0) −

A0
5,20 ⊕ R (e23 + e45, e25,−e35, 0, 0, 0) −

A0,±1
5,26 ⊕ R (e23 ± e45,−e35, e25, 0, 0, 0) −

A−1,−1
5,33 ⊕ R (e14, e25,−e34 − e35, 0, 0, 0) −

A0,−2
5,35 ⊕ R (−2e14, e24 + e35,−e25 + e34, 0, 0, 0) −

Table B.1: Six-dimensional decomposable unimodular solvable Lie algebras with b3 ≥ 2
(continued).

Lie algebra Structure equations closed volume form λ(ρ) ≥ 0

n6 = h4 (0, 0, 0, 0, e12, e14 + e23) (e1 − ie2) ∧ (e3 + ie4) ∧ (e5 + 2ie6) −

n7 = h5 (0, 0, 0, 0, e13 − e24, e14 + e23) (e1 − 2ie2) ∧ (e3 − ie4) ∧ (e5 − ie6) −

n10 (0, 0, 0, 0, e12, e15 + e34) − −

n11 = h7 (0, 0, 0, e12, e13, e23) (e2 + ie3) ∧ (e2 + 2ie5) ∧ (e4 − ie6) −

n12 = h10 (0, 0, 0, e12, e13, e14) (e2 + 2ie1) ∧ (e3 + ie4) ∧ (e5 + ie6) −

n13 = h12 (0, 0, 0, e12, e13, e24) (e1 + i(e1 + e2)) ∧ (e3 + ie4) ∧ (e5 + i(e5 + e6)) −

n14 = h11 (0, 0, 0, e12, e13, e14 + e23) (e2 − 2ie1) ∧ (e3 − ie4) ∧ (e5 + ie6) −

n15 = h15 (0, 0, 0, e12, e13 + e14, e24) (e2 + 3ie1) ∧ (e3 − i2
3e

4) ∧ (e5 − ie6) −

n16 = h14 (0, 0, 0, e12, e14, e13 − e24) (e1 + ie2) ∧ (e3 + ie4) ∧ (e6 + 2ie5) −

n17 = h13 (0, 0, 0, e12, e13 + e14, e24) (e1 + ie2) ∧ (e3 + ie4) ∧ (e6 + 2ie5) −

Table B.2: Six-dimensional indecomposable unimodular solvable Lie algebras
with b3 ≥ 2.
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Lie algebra Structure equations closed volume form λ(ρ) ≥ 0

n19 = h19− (0, 0, 0, e12, e23, e14 − e35) (e1 − ie3) ∧ (e2 − 2ie6) ∧ (e4 + ie5) −

n20 (0, 0, 0, e12, e23, e14 + e35) − −

n21 (0, 0, 0, e12, e13, e14 + e35) − −

n24 (0, 0, 0, e12, e14, e15 + e23 + e24) − −

n25 (0, 0, 0, e12, e14, e15 + e23) − −

n26 (0, 0, 0, e12, e14 − e23, e15 + e34) − −

n27 = h26+ (0, 0, e12, e13, e23, e14 + e25) (e1 − ie2) ∧ (e3 − 2ie6) ∧ (e4 − ie5) −

n28 (0, 0, e12, e13, e23, e14 − e25) − −

n29 (0, 0, e12, e13, e23, e14) − −

n30 (0, 0, e12, e13, e14, e15 + e23) − −

n31 (0, 0, e12, e13, e14 + e23, e15 + e24) − −

n32 (0, 0, e12, e13, e14, e15) − −

n33 (0, 0, e12, e13, e14,−e25 + e34) − −

n34 (0, 0, e12, e13, e14 + e23,−e25 + e34) − −

N0,−1,−1
6,18 (e16 − e25, e15 + e26,−e36 + e45,−e35 − e46, 0, 0) (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 − ie6) −

N−1,−1
6,20 (−e56,−e25 − e26,−e36, e45, 0, 0) − −

A−1,b,−2b+1
6,13 ((b− 1)e16 + e23,−e26, be36, e46, (1− 2b)e56, 0) − −

b /∈ {−1, 0, 1
2 , 1, 2}

Aa,−2a,2a−1
6,13 (−ae16 + e23, ae26,−2ae36, e46, (2a− 1)e56, 0) − X

a /∈ {−1, 0, 1
3 ,

1
2}

Aa,−a,−1
6,13 (e23, ae26,−ae36, e46,−e56, 0) − X

a > 0, a 6= 1

Aa,b,c6,13 ((a+ b)e16 + e23, ae26, be36, e46, ce56, 0) − −

(a, b, c) ∈ {(0,−1, 1), (−1, 1,−1),

(−1,−1, 3), (−1, 2,−3)}

A
1
3
,− 2

3
6,14 (−1

3e
16 + e23 + e56, 1

3e
26,−2

3e
36, e46,−1

3e
56, 0) − X

A
−1, 2

3
6,14 (−1

3e
16 + e23 + e56,−e26, 2

3e
36, e46,−1

3e
56, 0) − −

A−1
6,15 (e23, e26,−e36, e26 + e46, e36 − e56, 0) − −

A
0,− 1

2
6,17 (−1

2e
16 + e23,−1

2e
26, 0, e36, e56, 0) − −

Aa,b6,18 ((a+ 1)e16 + e23, ae26, e36, e36 + e46, be56, 0) − X

(a, b) ∈ {(−1
2 ,−2), (−2, 1)}

Table B.2: Six-dimensional indecomposable unimodular solvable Lie algebras with b3 ≥ 2
(continued).
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Lie algebra Structure equations closed volume form λ(ρ) ≥ 0

Aa,b6,18 ((a+ 1)e16 + e23, ae26, e36, e36 + e46, be56, 0) − −

(a, b) ∈ {(−1,−1), (−3, 3)}

Aa,b6,21 (2ae16 + e23, ae26, e26 + ae36, e46, be56, 0) − −

(a, b) ∈ {(0,−1), (−1, 3), (−1
3 ,

1
3)}

Aa,b6,25 ((b+ 1)e16 + e23, e26, be36, ae46, e46 + ae56, 0) − X

(a, b) ∈ {(0,−1), (−1
2 ,−1

2)}

A−1,0
6,25 (e16 + e23, e26, 0,−e46, e46 − e56, 0) − −

A−1
6,26 (e23 + e56, e26,−e36, 0, e46, 0) − −

A0,b,−b
6,32 (e23,−e36, e26, be46,−be56, 0) − X

b > 0

A0,0,ε
6,34 (e23 + εe56,−e36, e26, 0, e46, 0) − X

ε ∈ {0, 1}

Aa,b,c6,35 ((a+ b)e16 + e23, ae26, be36, ce46 − e56, e46 + ce56, 0) − X

a > 0, (b, c) ∈ {(−2a, a), (−a, 0)}

A0,0
6,36 (e23, 0, e26,−e56, e46, 0) − −

A0,0,c
6,37 (e23,−e36, e26,−ce56, ce46, 0) − X

c > 0, c 6= 1

A0,0,1
6,37 (e23,−e36, e26,−e56, e46, 0) (e1 + ie6) ∧ (e2 − ie3) ∧ (e4 + ie5) −

Aa,b6,39 ((b+ 1)e16 + e45, e15 + (b+ 2)e26, ae36, be46, e56, 0) − −

(a, b) ∈ {(−1,−1), (−5
2 ,−1

2),

(5,−3), (2,−2)}

A−1
6,41 (e45, e15 + e26,−e36 + e46,−e46, e56, 0) − −

Aa,b6,54 (e16 + e35, be26 + e45, (1− a)e36, (b− a)e46, ae56, 0) − −

(a, b) ∈ {(0,−1), (−1,−3
2), (2, 0)}

A−1
6,63 (e16 + e35,−e26 + e45 + e46, e36,−e46, 0, 0) − −

A0,0
6,70 (−e26 + e35, e16 + e45,−e46, e36, 0, 0) − −

A−1
6,76 (−e16 + e25, e45, e24 + e36, e46,−e56, 0) − −

A6,78 (−e16 + e25, e45, e24 + e36 + e46, e46,−e56, 0) − −

B0
6,3 (e45, e15 + e36, e14 − e26,−e56, e46, 0) − −

A0,1,b
6,82 (e24 + e35, e26, be36,−e46,−be56, 0) − −

0 ≤ b < 1

B1
6,4 (e45, e15 + e36, e14 − e26 + e56,−e56, e46, 0) (e1 − i e62 ) ∧ (e2 + ie3) ∧ (e4 − ie5) −

Table B.2: Six-dimensional indecomposable unimodular solvable Lie algebras with b3 ≥ 2
(continued).
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A0,1,1
6,82 (e24 + e35, e26, e36,−e46,−e56, 0) (e1 − i e62 ) ∧ (e2 − ie3) ∧ (e4 − ie5) −

A0,1
6,83 (e24 + e35, e26, e26 + e36,−e46 − e56,−e56, 0) − −

A0,1,b
6,88 (e24 + e35, e26 − be36, be26 + e36,−e46 − be56, be46 − e56, 0) − −

b > 0

A0,0,1
6,88 (e24 + e35,−e36, e26,−e56, e46, 0) (e1 + i e

6

2 ) ∧ (e2 + ie4) ∧ (e3 + ie5) −

A0,1,b
6,89 (e24 + e35, be26,−e56,−be46, e36, 0) − −

b ∈ R

A0,±1
6,90 (e24 + e35, e46,±e56, 0,∓e36, 0) − −

A0,1
6,93 (e24 + e35,−e56,−e46 − e56, e26 + e36, e26, 0) − −

Ba
6,6 (e24 + e35, e46, ae56,−e26,−ae36, 0) − −

−1 < a < 1, a 6= 0

B1
6,6 (e24 + e35, e46, ae56,−e26,−ae36, 0) (e1 − i e62 ) ∧ (e2 + ie4) ∧ (e3 − ie5) −

A−2
6,94 (e25 + e34,−e26 + e35,−2e36, 2e46, e56, 0) − −

Table B.2: Six-dimensional indecomposable unimodular solvable Lie algebras with b3 ≥ 2
(continued).



Conclusions

In this section we enumerate the most important results obtained in the thesis.

Chapter 1 is devoted to introduce the subject of the thesis in the broader context
of complex geometry. We recall the most relevant notions and results about complex
manifolds, with special attention to the several cohomologies which can be defined on
them, such as de Rham, Dolbeault, Aeppli [1] and Bott-Chern [14], as well as some special
Hermitian metrics considered in the work: balanced [62], strongly Gauduchon [74], strong
Kähler with torsion [33] or generalized Gauduchon [39]. We also recall the results of the
theory of holomorphic deformations that we have needed for our work.

The goal of Chapter 2 is to classify the solvable Lie algebras g of dimension 6 underly-
ing the complex solvmanifolds (M = G/Γ, J), where J is an invariant complex structure
with holomorphically trivial canonical bundle. By using the symmetrization process [11],
we obtain the first important result of the thesis reducing the previous problem to the
study of the existence of certain complex geometry on the underlying Lie algebras:

Result 1. A 2n-dimensional compact manifold M = G/Γ endowed with an invariant
complex structure J has holomorphically trivial canonical bundle if and only if it admits
an invariant non-vanishing closed section Ψ ∈ ∧n,0M .

When the Lie algebra is nilpotent and of dimension 6, the posed problem at the
beginning of the chapter was solved by Salamon [82], finding that the Lie algebra is
isomorphic to one in the list h1, . . . , h16, h−19, h+

26. For this reason, we focus our atten-
tion in finding the (non-nilpotent) solvable and unimodular six-dimensional Lie algebras
admitting a complex structure with a non-zero closed (3, 0)-form. After presenting and
adapting the formalism of stable forms introduced by Hitchin [48] to our problem, we
get the following result, which includes the one obtained by Salamon:

Result 2. If a solvable and unimodular Lie algebra g of dimension 6 admits a complex
structure with a non-zero closed (3, 0)-form, then it is isomorphic to h1, . . . , h16, h−19 or

h+
26 if g is nilpotent, or g1, gα≥0

2 , g3, . . . , g8 or g9 if g is not nilpotent, where:

g1 := A−1,−1,1
5,7 ⊕ R = (e15,−e25,−e35, e45, 0, 0),

gα2 := Aα,−α,15,17 ⊕ R = (αe15+e25,−e15+αe25,−αe35+e45,−e35−αe45, 0, 0), α ≥ 0,

g3 := e(2)⊕ e(1, 1) = (0,−e13, e12, 0,−e46,−e45),
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g4 := A0,0,1
6,37 = (e23,−e36, e26,−e56, e46, 0),

g5 := A0,1,1
6,82 = (e24 + e35, e26, e36,−e46,−e56, 0),

g6 := A0,0,1
6,88 = (e24 + e35,−e36, e26,−e56, e46, 0),

g7 := B1
6,6 = (e24 + e35, e46, e56,−e26,−e36, 0),

g8 := N0,−1,−1
6,18 = (e16 − e25, e15 + e26,−e36 + e45,−e35 − e46, 0, 0),

g9 := B1
6,4 = (e45, e15 + e36, e14 − e26 + e56,−e56, e46, 0).

Once we know which Lie algebras can be endowed with the required complex ge-
ometry, we determine which of the corresponding connected and simply-connected Lie
groups admit lattices giving rise to solvmanifolds. The answer to this question turns
out to be positive and well-known when the Lie group is nilpotent with underlying Lie
algebra isomorphic to h1, . . . , h16, h−19 or h+

26, because all of them admit a rational struc-

ture [61]. For the solvable Lie groups with Lie algebra isomorphic to g1, g
α≥0
2 , g3 . . . , g8

or g9 we get the following:

Result 3. For any k 6= 2, the connected and simply-connected Lie group Gk with un-
derlying Lie algebra gk admits a lattice. For k = 2 there exists a countable family
{αn}n∈N ⊂ R≥0, including the case α = 0, such that the connected and simply-connected
Lie group with Lie algebra isomorphic to gαn2 admits a lattice.

We classify in Chapter 3 the complex structures with a closed (3, 0)-form on the
solvable Lie algebras g up to equivalence of complex structures on Lie algebras. We
have divided the study depending on the nilpotency of the Lie algebra. For nilpotent
Lie algebras of dimension 6, there are several partial results for this problem when the
complex structure is abelian [4] or non-nilpotent [96]. We have obtained the following
result concerning the remaining case, that is, the complex structure is nilpotent and
non-abelian (and non complex-parallelizable):

Result 4. If g is a nilpotent Lie algebra of dimension 6 admitting a nilpotent complex
structure J , which is neither abelian nor complex-parallelizable, then there exists a basis
{ω1, ω2, ω3} of (1, 0)-forms satisfying one of the following reduced complex structure
equations:

(h2, J
D) : (0, 0, ω12 + ω11̄ + ω12̄ +Dω22̄), ImD > 0,

(h4, J
D) : (0, 0, ω12 + ω11̄ + ω12̄ +Dω22̄), D ∈ R\{0},

(h5, J
λ,D) : (0, 0, ω12 + ω11̄ + λω12̄ +Dω22̄), where ReD = 0 and

• 0 ≤ 2ImD < λ2 con 0 < λ2 < 1
2 ;

• 0 ≤ 2ImD < |1− λ2| con 1
2 ≤ λ2,
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(h6, J) : (0, 0, ω12 + ω11̄ + ω12̄),

(h7, J) : (0, ω11̄, ω12 + ω12̄),

(h10, J) : (0, ω11̄, ω12 + ω21̄),

(h11, J
B) : (0, ω11̄, ω12 +Bω12̄ + |B − 1|ω21̄), B ∈ R \ {0, 1},

(h12, J
B) : (0, ω11̄, ω12 +Bω12̄ + |B − 1|ω21̄), ImB 6= 0,

(h13, J
B,c) : (0, ω11̄, ω12 +Bω12̄ + c ω21̄), c 6= |B − 1|, (c, |B|) 6= (0, 1), ∆(B, c) < 0,

(h14, J
B,c) : (0, ω11̄, ω12 +Bω12̄ + c ω21̄), c 6= |B − 1|, (c, |B|) 6= (0, 1), ∆(B, c) = 0,

(h15, J
B,c) : (0, ω11̄, ω12 +Bω12̄ + c ω21̄), c 6= |B − 1|, (c, |B|) 6= (0, 1), ∆(B, c) > 0,

(h16, J
B) : (0, ω11̄, ω12 +Bω12̄) with |B| = 1 and B 6= 1,

where λ, c ≥ 0, B,D ∈ C and ∆(B, c) := c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2.

It is remarkable that the latter result, together with [4, 96], provides a complete
description of the complex geometry on nilpotent Lie algebras of dimension 6. The
second part of the chapter deals with classifying the complex structures with a non-
vanishing closed (3, 0)-form on the solvable Lie algebras of the list g1, . . . , g9. We have
obtained the following result:

Result 5. If g is a (non-nilpotent) solvable unimodular Lie algebra of dimension 6 ad-
mitting a complex structure J with a non-vanishing closed (3, 0)-form then there exists a
basis {ω1, ω2, ω3} of (1, 0)-forms satisfying one of the following reduced complex structure
equations:

(g1, J) : (ω13 + ω13̄,−(ω23 + ω23̄), 0),

(g0
2, J) : (i(ω13 + ω13̄),−i(ω23 + ω23̄), 0),

(gα>0
2 , J±) : ((± cos θ + i sin θ)(ω13 + ω13̄), (∓ cos θ − i sin θ)(ω23 + ω23̄), 0), α = cos θ

sin θ ,

(g3, J
x) : (0,−1

2ω
13 − (1

2 + ix)ω13̄ + ixω31̄, 1
2ω

12 + (1
2 − i

4x)ω12̄ + i
4xω

21̄),

(g4, J
±) : (i(ω13 + ω13̄),−i(ω23 + ω23̄),±ω11̄),

(g5, J) : (ω13 + ω13̄,−(ω23 + ω23̄), ω12̄ + ω21̄),

(g6, J) : (i(ω13 + ω13̄),−i(ω23 + ω23̄), ω11̄ + ω22̄),

(g7, J
±) : (i(ω13 + ω13̄),−i(ω23 + ω23̄),±(ω11̄ − ω22̄)),

(g8, J
A) : (−(A− i)ω13 − (A+ i)ω13̄, (A− i)ω23 + (A+ i)ω23̄, 0), Im (A) 6= 0,

(g8, J
′) : (2iω13 + ω33̄,−2iω23, 0),
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(g8, J
′′) : (2iω13 + ω33̄,−2iω23 + ω33̄, 0),

(g9, J) : (−ω33̄, 1
2(iω12 − iω21̄ + ω13̄), i2(−ω13 + ω31̄)),

where θ ∈ (0, π2 ), x > 0, A ∈ C with Im (A) 6= 0.

The goal of Chapter 4 is to study some complex invariants, such as the Frölicher
spectral sequence and the ∂∂̄-lemma, on complex solvmanifolds endowed with invariant
complex structures with holomorphically trivial canonical bundle. We have divided the
study depending on the Lie algebra is nilpotent or not. By the results in [80, 23], the
Dolbeault cohomology of a complex nilmanifold can be computed at the level of the Lie
algebra (whenever the Lie algebra is not isomorphic to h7, in such case it is not known
whether this is true or not). As a consequence, and by using the classification of complex
structures obtained in Chapter 3, we provide a general picture of the behaviour of the
Frölicher spectral sequence for nilmanifolds of dimension 6 endowed with an invariant
complex structure:

Result 6. Let M = G/Γ be a nilmanifold of dimension 6 endowed with an invariant
complex structure J such that the underlying Lie algebra g 6∼= h7. The Frölicher spectral
sequence {Er(M)}r≥1 has the following behaviour:

(a) If g ∼= h1, h3, h6, h8, h9, h10, h11, h12 or h−19, then E1(M) ∼= E∞(M) for any J .

(b) If g ∼= h2 or h4, then E1(M) ∼= E∞(M) if and only if J is non abelian; in addition,
any abelian complex structure on h2 or h4 satisfies E1(M) 6∼= E2(M) ∼= E∞(M).

(c) If g ∼= h5 and J is a complex structure on h5 given in Result 4, then:

(c.1) E1(M) 6∼= E2(M) ∼= E∞(M) when J is parallelizable;

(c.2) E1(M) ∼= E∞(M) if and only if J is not complex parallelizable and ρD 6= 0;
in addition, E1(M) 6∼= E2(M) ∼= E∞(M) when ρD = 0.

(d) If g ∼= h16 or h+
26, then E1(M) 6∼= E2(M) ∼= E∞(M) for any J .

(e) If g ∼= h13 or h14, then E1(M) ∼= E2(M) 6∼= E3(M) ∼= E∞(M) for any J .

(f) If g ∼= h15 and J is a complex structure on h15 given in Result 4, then:

(f.1) E1(M) 6∼= E2(M) ∼= E∞(M), when c = 0 and |B − ρ| 6= 0;

(f.2) E1(M) ∼= E2(M) 6∼= E3(M) ∼= E∞(M), when ρ = 1 and |B − 1| 6= c 6= 0;

(f.3) E1(M) 6∼= E2(M) 6∼= E3(M) ∼= E∞(M), when ρ = 0 and |B| 6= c 6= 0.

As for the de Rham cohomology, the Dolbeault cohomology of a complex solvman-
ifold is not computable only with the data of the complex structure on the Lie alge-
bra. However, the computation of the Frölicher spectral sequence on the Lie algebra
allows us to state that if E1(g) � E∞(g) then E1(M) � E∞(M). From this fact we
extract some partial results about certain complex solvmanifolds with underlying Lie
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algebra isomorphic to g8. In addition, thanks to some previous works of Kasuya and
Angella [51, 7], it is possible to compute the Dolbeault and the Bott-Chern cohomologies
of a solvmanifold endowed with a complex structure of splitting type by means of certain
finite-dimensional differential complexes. By a complex structure of splitting type [51,
Assumption 1.1] on a solvmanifold M = G/Γ we mean a complex structure coming from
a left-invariant complex structure on the Lie group such that it can be conceived as a
semidirect product G = C nϕ N , N being nilpotent, and such that the lattice Γ ⊂ G
presents some compatibility with the splitting. Therefore, in order to apply these results
to the complex structures with holomorphically trivial canonical bundle we must firstly
identify which of these complex structures are of splitting type. Secondly, we must find
lattices compatible with the splittings for the corresponding Lie groups. We summarize
the results in the following:

Result 7. A complex solvmanifold (M = G/Γ, J), where J is invariant with holomorphi-
cally trivial canonical bundle, is of splitting type if (g, J) is equivalent to (g1, J), (g0

2, J),
(gα2 , J

±) with α > 0 or (g8, J
A) with A ∈ C, ImA 6= 0. In addition:

(a) if (g, J) is isomorphic to (g0
2, J), then the corresponding Lie group admits lattices

compatible with the splitting such that the complex solvmanifolds satisfy E1(M) �
E∞(M), and other lattices such that the complex solvmanifolds satisfy the ∂∂̄-lemma.

(b) if (g, J) is isomorphic to (gα2 , J
±) with α > 0, then for a countable family of α’s the

corresponding Lie groups admit lattices compatible with the non-equivalent complex
structures of splitting type J±. For some lattices the complex solvmanifolds satisfy
E1(M) � E∞(M) and for other lattices the complex solvmanifolds satisfy the ∂∂̄-
lemma.

(c) if (g, J) is isomorphic to (g8, J
A), where A ∈ C with ImA 6= 0, then the correspond-

ing Lie group admits lattices compatible with the splitting. In addition, there exists
a family of lattices ΓA compatible with the splitting of the Lie groups with complex
structure JA such that the complex solvmanifolds satisfy the ∂∂̄-lemma if and only
if A 6= i

k with integer k 6= 0.

Moreover, any complex solvmanifold (M,J) with underlying Lie algebra g8 and J equiv-
alent to J−i, J i, J ′ or J ′′ does not satisfy the ∂∂̄-lemma.

The last part of Chapter 4 is devoted to the study of these complex invariants under
holomorphic deformations. As regards the Frölicher spectral sequence, Kodaira and
Spencer [53] proved the upper semi-continuity of the Hodge numbers, dimE•,•1 (M), in
a holomorphic deformation, which implies that the property E1(M) ∼= E∞(M) is open
under deformations. In contrast, Eastwood and Singer [27] prove the non-closedness of
the property E1(M) ∼= E∞(M). The complex geometry on the nilpotent Lie algebras
h4 and h15 together with the description of the Frölicher spectral sequence for complex
nilmanifolds allows us to build two examples presenting interesting behaviours. The
first provides another example of the result of Eastwood and Singer by using only an
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invariant holomorphic deformation. The second shows that the behaviour of the property
E2(M) ∼= E∞(M) is different from the one proved by Kodaira and Spencer for the
property E1(M) ∼= E∞(M):

Result 8. A nilmanifold (M = G/Γ, J1), with g isomorphic to h4 and J1 its abelian
structure, admits an invariant holomorphic deformation {Mt := (M, It)}t∈∆, with I0 =
J1, such that E1(Mt) ∼= E∞(Mt) for any t ∈ ∆∗, whereas E1(M0) � E∞(M0).

In addition, there exists a family of complex nilmanifolds {Mt := (M,Jt)}t∈R, where g
is isomorphic to h15, such that the dimensions dimE0,2

2 (Mt), dimE0,2
3 (Mt) are not lower

semi-continuous and the dimensions dimE1,1
2 (Mt), dimE1,1

3 (Mt) are not upper semi-
continuous. Moreover, the property E2(M) ∼= E∞(M) is not open under holomorphic
deformations.

As regards the ∂∂̄-lemma, it is known that it is open under holomorphic deforma-
tions [98, 101, 10]. More recently, Angella and Kasuya [8] have proved that the ∂∂̄-lemma
is not closed under holomorphic deformations by means of an invariant deformation of
the Nakamura manifold, which corresponds in our classification to a solvmanifold en-
dowed with an invariant complex structure such that (g, J) is isomorphic to (g8, J

−i).
By using the study of cohomology for complex solvmanifolds done in this chapter, we
obtain a countable family of examples extending the previous result due to Angella and
Kasuya:

Result 9. There is a countable family of complex solvmanifolds of splitting type {(Mk :=
G/Γk, Jk)}k∈Z not satisfying the ∂∂̄-lemma, where (G, Jk) is a Lie group endowed with an
invariant complex structure such that (g, Jk) is isomorphic to (g8, J

Ak) with Ak = i
2k+1

and Γk ⊂ G is a lattice compatible with the splitting induced by Jk. In addition, for any
k ∈ Z there exists a holomorphic deformation {(Mk, Jk,t)}t∈∆ satisfying the ∂∂̄-lemma
for any t ∈ ∆∗, where ∆ = {t ∈ C | |t| < 1}.

Chapter 5 deals with Hermitian structures on six-dimensional solvmanifolds com-
patible with the invariant complex structures that trivialize the holomorphic canonical
bundle. There are known some results concerning the existence of strong Kähler with
torsion [33], invariant 1-generalized Gauduchon [35] and balanced [95] metrics for the
case of nilmanifolds. Hence, we have centered our attention in the existence of these
special metrics for the complex structures on the solvable Lie algebras g1, . . . , g9. In
the case of strongly Gauduchon metrics we have performed this study for the previous
Lie algebras together with the nilpotent Lie algebras h1, . . . , h16, h−19, h+

26. The results
obtained are included in the following:

Result 10. Let M = G/Γ be a six-dimensional solvmanifold admitting invariant complex
structures with holomorphically trivial canonical bundle, then M admits a:

(a) Kähler metric (and therefore Calabi-Yau) if and only if g is isomorphic to R6, g0
2;

(b) strong Kähler with torsion metric if and only if g is isomorphic to h2, h4, h5, h8,
g0

2, g4;
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(c) invariant 1-generalized Gauduchon metric if and only if g is isomorphic to h2, h4,
h5, h8, g0

2, g4, g6;

(d) balanced metric if and only if g is isomorphic to h1, . . . , h6, h−19, g1, gα≥0
2 , g3, g5, g7,

g8;

(e) strongly Gauduchon metric if and only if g is isomorphic to h1, . . . , h6, h−19, g1, gα≥0
2 ,

g3, g5, g7, g8.

The detailed study of the existence of these metrics on the solvable Lie algebras g1, . . . , g9,
endowed with a complex structure with non-zero closed (3, 0)-form, is summed up in the
following table:

Metrics

SKT 1st-Gauduchon Balanced sG
(invariant)

g1 @ @ ∃ for any J any (J, F )

g02 ∃ for any J ∃ for any J ∃ for any J any (J, F )

gα>0
2 @ @ ∃ for any J any (J, F )

g3 @ @ ∃ for any J any (J, F )

g4 ∃ for any J ∃ for any J @ @

g5 @ @ ∃ for any J ∃ for any J

g6 @ ∃ for any J @ @

g7 @ @ ∃ for any J ∃ for any J

g8

@ @ ∃ for any J 6= J′, J′′ any (J, F )

g9 @ @ @ @

The balanced condition trivially implies the strongly Gauduchon condition. Further-
more, Popovici [72] proves that a compact complex manifold satisfying the ∂∂̄-lemma
admits strongly Gauduchon metrics compatible with the complex structure. However,
there are “pure” strongly Gauduchon manifolds in the sense that the ∂∂̄-lemma does not
hold on them and they do not admit balanced metrics. We give a complete description
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in the class of six-dimensional nilmanifolds of the invariant complex structures admit-
ting strongly Gauduchon metrics but no balanced metrics (recall that except the tori,
nilmanifolds do not satisfy the ∂∂̄-lemma because they are not formal [44]):

Result 11. Let M = G/Γ be a 6-dimensional nilmanifold endowed with an invariant
complex structure J such that M does not admit balanced metrics. If (M,J) admits a
strongly Gauduchon metric then g is isomorphic to h2, h4 or h5. Moreover, J is non-
abelian and given by: ReD+ (ImD)2 ≥ 1

4 on h2; ReD ≥ 1
4 on h4; and λ = 0, ImD 6= 0

or λ = ImD = 0,ReD ≥ 0 on h5, according to the description of the complex structures
provided in Result 4.

Finally, we have studied the balanced and the strongly Gauduchon properties un-
der holomorphic deformations. Alessandrini and Bassanelli proved that the balanced
property is not open under deformations [3] and Popovici [73] proves that the strongly
Gauduchon property is open. It was conjectured that both properties are closed [76,
Conjecture 1.21, Conjecture 1.23]. By means of the study performed for the previous re-
sult about the existence of balanced and strongly Gauduchon metrics on six-dimensional
nilmanifolds, we have constructed a counterexample to both conjectures:

Result 12. A nilmanifold (M = G/Γ, J1), with g isomorphic to h4 and J1 its abelian
structure, admits an invariant holomorphic deformation {Mt := (M, It)}t∈∆, with I0 =
J1, such that Mt are balanced for all t ∈ ∆∗, but M0 is not strongly Gauduchon.

As a consequence, the balanced and the strongly Gauduchon properties are not closed
under holomorphic deformations.

Although we mentioned previously that the ∂∂̄-lemma property is not closed un-
der holomorphic deformations, Popovici [72] proves that a holomorphic deformation
{(M,Jt)}t∈∆ satisfying the ∂∂̄-lemma for any t ∈ ∆∗ implies the existence of a compat-
ible strongly Gauduchon metric in the central limit (recall that the strongly Gauduchon
property is a necessary condition to the validity of the ∂∂̄-lemma). In the following
result we show, by means of a holomorphic deformation of a complex solvmanifold, that
the result by Popovici is optimal in the sense that we cannot expect to find (in general)
balanced metrics in the central limit.

Result 13. There exists a holomorphic deformation {(M = G/Γ, Jt)}t∈∆ of a solv-
manifold , where g is isomorphic to g8 and Jt are invariant with holomorphically triv-
ial canonical bundle, satisfying the ∂∂̄-lemma and admitting balanced metrics for any
t ∈ ∆∗, but the central limit (M,J0) does not admit balanced metrics nor the ∂∂̄-lemma
holds.
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En esta sección se muestran los resultados más importantes obtenidos en la tesis.

El Caṕıtulo 1 es un caṕıtulo introductorio que tiene como fin situar el objeto de estu-
dio de la tesis en el contexto más amplio de la geometŕıa compleja general. Se introducen
las nociones y resultados más relevantes sobre variedades complejas, prestando especial
atención a las diversas cohomoloǵıas que se les pueden asociar, tales como de Rham, Dol-
beault, Aeppli [1] y Bott-Chern [14], aśı como algunas métricas Hermitianas especiales
que son consideradas en la memoria: equilibradas [62], fuertemente Gauduchon [74],
Kähler con torsión [33] o generalizadas Gauduchon [39]. También son presentados los
aspectos más necesarios para el resto del trabajo relativos a la teoŕıa de deformaciones
holomorfas.

El objetivo del Caṕıtulo 2 es clasificar las álgebras de Lie resolubles g de dimensión 6
subyacentes a las solvariedades complejas (M = G/Γ, J), siendo J una estructura com-
pleja invariante con fibrado canónico holomórficamente trivial. Mediante el proceso de
simetrización [11] se obtiene el primer resultado importante de la tesis, que reduce el
anterior problema a un estudio sobre la existencia de cierta geometŕıa compleja sobre
las álgebras de Lie subyacentes:

Resultado 1. Una variedad compacta M = G/Γ de dimensión 2n dotada de una es-
tructura compleja invariante J tiene fibrado canónico holomórficamente trivial si y sólo
si admite una sección invariante Ψ ∈ ∧n,0M cerrada que no se anula en ningún punto.

Cuando el álgebra de Lie es nilpotente y de dimensión 6, el problema planteado
en el objetivo del caṕıtulo ya hab́ıa sido resuelto por Salamon [82], encontrando que el
álgebra de Lie debe ser isomorfa a una de la lista h1, . . . , h16, h−19, h+

26. Por ello nos hemos
centrado en encontrar las álgebras de Lie unimodulares resolubles y no nilpotentes de
dimensión 6 que admiten una estructura compleja con una forma de tipo (3, 0) cerrada
y no nula. Tras presentar y adaptar el formalismo de formas estables de Hitchin [48] a
nuestro problema, se obtiene el siguiente resultado que incluye el resultado obtenido por
Salamon:

Resultado 2. Si un álgebra de Lie unimodular y resoluble g de dimensión 6 admite una
estructura compleja con una forma cerrada no nula de tipo (3, 0), entonces es isomorfa a
h1, . . . , h16, h−19 ó h+

26 si g es nilpotente, o a g1, gα≥0
2 , g3, . . . , g8 ó g9 si g no es nilpotente,

siendo:
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g1 := A−1,−1,1
5,7 ⊕ R = (e15,−e25,−e35, e45, 0, 0),

gα2 := Aα,−α,15,17 ⊕ R = (αe15+e25,−e15+αe25,−αe35+e45,−e35−αe45, 0, 0), α ≥ 0,

g3 := e(2)⊕ e(1, 1) = (0,−e13, e12, 0,−e46,−e45),

g4 := A0,0,1
6,37 = (e23,−e36, e26,−e56, e46, 0),

g5 := A0,1,1
6,82 = (e24 + e35, e26, e36,−e46,−e56, 0),

g6 := A0,0,1
6,88 = (e24 + e35,−e36, e26,−e56, e46, 0),

g7 := B1
6,6 = (e24 + e35, e46, e56,−e26,−e36, 0),

g8 := N0,−1,−1
6,18 = (e16 − e25, e15 + e26,−e36 + e45,−e35 − e46, 0, 0),

g9 := B1
6,4 = (e45, e15 + e36, e14 − e26 + e56,−e56, e46, 0).

Una vez conocidas qué álgebras de Lie pueden soportar la geometŕıa compleja bus-
cada, ha sido preciso determinar cuáles de los correspondientes grupos de Lie conexos
y simplemente conexos admiten lattices que dan lugar a solvariedades. La respuesta a
esta pregunta es afirmativa y ya conocida para los grupos de Lie nilpotentes con álgebra
de Lie subyacente isomorfa a h1, . . . , h16, h−19 ó h+

26, ya que todas ellas admiten una es-
tructura racional [61]. Para los grupos de Lie resolubles con álgebra de Lie subyacente
isomorfa a g1, gα≥0

2 , g3, . . . , g8 ó g9 se ha obtenido lo siguiente:

Resultado 3. Para cada k 6= 2, el grupo de Lie conexo y simplemente conexo Gk con
álgebra de Lie subyacente gk admite lattice. Para k = 2 existe una familia numerable
{αn}n∈N ⊂ R≥0, que incluye α = 0, de manera que el grupo de Lie conexo y simplemente
conexo con álgebra de Lie subyacente gαn2 admite lattice.

En el Caṕıtulo 3 se han clasificado las estructuras complejas con forma de tipo (3, 0)
cerrada no nula sobre álgebras de Lie g resolubles salvo equivalencia de estructuras
complejas sobre el álgebra de Lie. Este estudio se ha dividido según g sea nilpotente
o no. Para el caso de las álgebras de Lie nilpotentes se conoćıan resultados parciales a
este problema cuando la estructura compleja es abeliana [4] o no nilpotente [96]. Hemos
obtenido el siguiente resultado relativo al caso pendiente, que es cuando la estructura
compleja es nilpotente y no abeliana (y no compleja paralelizable):

Resultado 4. Si g es un álgebra de Lie nilpotente de dimensión 6 que admite una
estructura compleja J nilpotente, que no es abeliana ni compleja paralelizable, entonces
existe una base {ω1, ω2, ω3} de formas de tipo (1, 0) cumpliendo alguna de las ecuaciones
de estructura complejas reducidas siguientes:

(h2, J
D) : (0, 0, ω12 + ω11̄ + ω12̄ +Dω22̄), ImD > 0,

(h4, J
D) : (0, 0, ω12 + ω11̄ + ω12̄ +Dω22̄), D ∈ R\{0},
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(h5, J
λ,D) : (0, 0, ω12 + ω11̄ + λω12̄ +Dω22̄), siendo ReD = 0 y

• 0 ≤ 2ImD < λ2 con 0 < λ2 < 1
2 ;

• 0 ≤ 2ImD < |1− λ2| con 1
2 ≤ λ2,

(h5, J
λ,D) : (0, 0, ω12 + ω11̄ + λω12̄ +Dω22̄), 4(ImD)2 < 1 + 4ReD,

(h6, J) : (0, 0, ω12 + ω11̄ + ω12̄),

(h7, J) : (0, ω11̄, ω12 + ω12̄),

(h10, J) : (0, ω11̄, ω12 + ω21̄),

(h11, J
B) : (0, ω11̄, ω12 +Bω12̄ + |B − 1|ω21̄), B ∈ R \ {0, 1},

(h12, J
B) : (0, ω11̄, ω12 +Bω12̄ + |B − 1|ω21̄), ImB 6= 0,

(h13, J
B,c) : (0, ω11̄, ω12 +Bω12̄ + c ω21̄), c 6= |B − 1|, (c, |B|) 6= (0, 1), ∆(B, c) < 0,

(h14, J
B,c) : (0, ω11̄, ω12 +Bω12̄ + c ω21̄), c 6= |B − 1|, (c, |B|) 6= (0, 1), ∆(B, c) = 0,

(h15, J
B,c) : (0, ω11̄, ω12 +Bω12̄ + c ω21̄), c 6= |B − 1|, (c, |B|) 6= (0, 1), ∆(B, c) > 0,

(h16, J
B) : (0, ω11̄, ω12 +Bω12̄) con |B| = 1 y B 6= 1,

donde λ, c ≥ 0, B,D ∈ C y ∆(B, c) := c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2.

Destacamos que el anterior resultado, junto con los mencionados [4, 96], completa
una descripción general de la geometŕıa compleja sobre las álgebras de Lie nilpotentes
de dimensión 6. La segunda parte del caṕıtulo se ha dedicado a clasificar las estructuras
complejas con una forma de tipo (3, 0) cerrada sobre las álgebras de Lie resolubles de la
lista g1, . . . , g9. El resultado obtenido es el siguiente:

Resultado 5. Si g es un álgebra de Lie resoluble (no nilpotente) y unimodular de di-
mensión 6 que admite una estructura compleja con una forma cerrada no nula de tipo
(3, 0) entonces existe una base {ω1, ω2, ω3} de formas de tipo (1, 0) cumpliendo alguna
de las ecuaciones de estructura complejas reducidas siguientes:

(g1, J) : (ω13 + ω13̄,−(ω23 + ω23̄), 0),

(g0
2, J) : (i(ω13 + ω13̄),−i(ω23 + ω23̄), 0),

(gα>0
2 , J±) : ((± cos θ + i sin θ)(ω13 + ω13̄), (∓ cos θ − i sin θ)(ω23 + ω23̄), 0), α = cos θ

sin θ ,

(g3, J
x) : (0,−1

2ω
13 − (1

2 + ix)ω13̄ + ixω31̄, 1
2ω

12 + (1
2 − i

4x)ω12̄ + i
4xω

21̄),

(g4, J
±) : (i(ω13 + ω13̄),−i(ω23 + ω23̄),±ω11̄),

(g5, J) : (ω13 + ω13̄,−(ω23 + ω23̄), ω12̄ + ω21̄),
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(g6, J) : (i(ω13 + ω13̄),−i(ω23 + ω23̄), ω11̄ + ω22̄),

(g7, J
±) : (i(ω13 + ω13̄),−i(ω23 + ω23̄),±(ω11̄ − ω22̄)),

(g8, J
A) : (−(A− i)ω13 − (A+ i)ω13̄, (A− i)ω23 + (A+ i)ω23̄, 0),

(g8, J
′) : (2iω13 + ω33̄,−2iω23, 0),

(g8, J
′′) : (2iω13 + ω33̄,−2iω23 + ω33̄, 0),

(g9, J) : (−ω33̄, 1
2(iω12 − iω21̄ + ω13̄), i2(−ω13 + ω31̄)),

donde θ ∈ (0, π2 ), x > 0, A ∈ C con Im (A) 6= 0.

El objetivo del Caṕıtulo 4 es estudiar algunos invariantes complejos, tales como la
sucesión espectral de Frölicher y el ∂∂̄-lema, sobre solvariedades complejas dotadas de
estructura compleja invariante con fibrado canónico holomorfo trivial. Este estudio se
ha dividido según el álgebra de Lie sea nilpotente o no. Por los resultados de [80, 23]
la cohomoloǵıa de Dolbeault de una nilvariedad compleja puede ser calculada a nivel
del álgebra de Lie (exceptuando si el álgebra de Lie es isomorfa a h7, en cuyo caso se
desconoce si esto último es cierto o no). Como consecuencia de estos resultados, y usan-
do la clasificación de estructuras complejas obtenida en el Caṕıtulo 3, proporcionamos
una descripción general del comportamiento de la sucesión espectral de Frölicher para
nilvariedades de dimensión 6 dotadas de una estructura compleja invariante:

Resultado 6. Sea M = G/Γ una nilvariedad de dimensión 6 dotada de una estructura
compleja invariante J tal que el álgebra de Lie subyacente g no es isomorfa a h7. La
sucesión espectral de Frölicher {Er(M)}r≥1 se comporta como sigue:

(a) Si g ∼= h1, h3, h6, h8, h9, h10, h11, h12 ó h−19, entonces E1(M) ∼= E∞(M) para
toda J .

(b) Si g ∼= h2 ó h4, entonces E1(M) ∼= E∞(M) si y sólo si J es no abeliana; además,
cualquier estructura compleja abeliana sobre h2 ó h4 cumple E1(M) 6∼= E2(M) ∼=
E∞(M).

(c) Si g ∼= h5 y J es una estructura compleja sobre h5 dada en el resultado 4 entonces:

(c.1) E1(M) 6∼= E2(M) ∼= E∞(M) cuando J es compleja paralelizable;

(c.2) E1(M) ∼= E∞(M) si y sólo si J no es compleja paralelizable y ρD 6= 0;
además, E1(M) 6∼= E2(M) ∼= E∞(M) cuando ρD = 0.

(d) Si g ∼= h16 ó h+
26, entonces E1(M) 6∼= E2(M) ∼= E∞(M) para toda J .

(e) Si g ∼= h13 ó h14, entonces E1(M) ∼= E2(M) 6∼= E3(M) ∼= E∞(M) para toda J .

(f) Si g ∼= h15 y J es una estructura compleja sobre h15 dada en el resultado 4 entonces:

(f.1) E1(M) 6∼= E2(M) ∼= E∞(M), cuando c = 0 y |B − ρ| 6= 0;
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(f.2) E1(M) ∼= E2(M) 6∼= E3(M) ∼= E∞(M), cuando ρ = 1 y |B − 1| 6= c 6= 0;

(f.3) E1(M) 6∼= E2(M) 6∼= E3(M) ∼= E∞(M), cuando ρ = 0 y |B| 6= c 6= 0.

En general, al igual que sucede con la cohomoloǵıa de de Rham, la coholomoǵıa de
Dolbeault de una solvariedad con una estructura compleja invariante no es computable
sólo con los datos de la estructura en el álgebra de Lie. Sin embargo, el cálculo de la
sucesión espectral de Frölicher a nivel del álgebra de Lie permite afirmar que si E1(g) �
E∞(g) entonces E1(M) � E∞(M). De esto obtenemos resultados parciales para algunas
solvariedades complejas con g isomorfa a g8. A su vez, gracias a trabajos previos de
Kasuya y Angella [51, 7], es posible determinar las cohomoloǵıas de Dolbeault y de
Bott-Chern de una solvariedad dotada de una estructura compleja de tipo splitting por
medio de ciertos complejos diferenciales de dimensión finita. Por una estructura compleja
de tipo splitting [51, Assumption 1.1] sobre una solvariedad M = G/Γ se entiende una
estructura compleja que procede de una invariante por la izquierda sobre el grupo de Lie
G de manera que éste se puede presentar como un producto semidirecto G = C nϕ N ,
siendo N nilpotente, y tal que el lattice Γ ⊂ G escogido presenta cierta compatibilidad
con el splitting. Por tanto, para aplicar estos resultados a las estructuras complejas
que dan lugar a un fibrado canónico holomorfo trivial es preciso identificar en primer
lugar cuáles de estas estructuras complejas son a su vez de tipo splitting. Se deben
encontrar en segundo lugar lattices compatibles con los splittings para los grupos de
Lie correspondientes. En el siguiente resultado se sintetiza lo obtenido en el caṕıtulo en
relación a lo anterior:

Resultado 7. Una solvariedad compleja (M = G/Γ, J), siendo J invariante con fibrado
canónico holomórficamente trivial, es de tipo splitting si (g, J) es equivalente a (g1, J),
(g0

2, J), (gα2 , J
±) con α > 0 ó (g8, J

A) con A ∈ C, ImA 6= 0. Además:

(a) si (g, J) es isomorfa a (g0
2, J), entonces el grupo de Lie correspondiente admite

algunos lattices compatibles con el splitting tales que las solvariedades complejas
cumplen E1(M) � E∞(M), y otros lattices tales que las solvariedades complejas
cumplen el ∂∂̄-lema.

(b) si (g, J) es isomorfa a (gα2 , J
±) para un α > 0, entonces, para una familia numerable

de α’s, los grupos de Lie correspondientes admiten lattices compatibles con las dos
estructuras no equivalentes de tipo splitting J±. Para unos lattices las solvariedades
complejas cumplen E1(M) � E∞(M) y para otros lattices las solvariedades complejas
cumplen el ∂∂̄-lema.

(c) si (g, J) es isomorfa a (g8, J
A) con A ∈ C, ImA 6= 0, entonces el grupo de Lie

correspondiente admite lattices compatibles con el splitting. Además, existe una fa-
milia de lattices ΓA compatibles con el splitting de los grupos de Lie con estructura
compleja JA de manera que las solvariedades complejas cumplen el ∂∂̄-lema si y sólo
si A 6= i

k con k 6= 0 entero.

Finalmente, toda solvariedad compleja (M = G/Γ, J) con álgebra de Lie subyacente g8

y J equivalente a J−i, J i, J ′ ó J ′′ no satisface el ∂∂̄-lema.
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La última parte del Caṕıtulo 4 está dedicada al estudio de estos invariantes complejos
bajo deformaciones holomorfas. En relación a la sucesión espectral de Frölicher, Kodaira
y Spencer [53] prueban la semicontinuidad de los números de Hodge, dimE•,•1 (M), a lo
largo de una deformación holomorfa, de donde se sigue que la propiedad E1(M) ∼=
E∞(M) es abierta por deformaciones. Eastwood y Singer [27] prueban que por contra,
la propiedad E1(M) ∼= E∞(M) no es cerrada por deformaciones. La geometŕıa compleja
sobre las álgebras de Lie nilpotentes h4 y h15 junto con la descripción de la sucesión
espectral de Frölicher para nilvariedades complejas constrúıdas a partir de ellas, nos
permite obtener dos ejemplos que presentan comportamientos interesantes. El primero
proporciona otro ejemplo del resultado de Eastwood y Singer mediante una deformación
invariante y el segundo muestra un comportamiento de la propiedad E2(M) ∼= E∞(M)
diferente al hallado por Kodaira y Spencer para la propiedad E1(M) ∼= E∞(M):

Resultado 8. Una nilvariedad (M = G/Γ, J1), con g isomorfa a h4 y J1 su estructura
abeliana, admite una deformación holomorfa invariante {Mt := (M, It)}t∈∆, con I0 =
J1, tal que E1(Mt) ∼= E∞(Mt) para todo t ∈ ∆∗, mientras que E1(M0) � E∞(M0).

Además, existe una familia de nilvariedades complejas {Mt := (M,Jt)}t∈R, con g iso-
morfa a h15, tal que las dimensiones dimE0,2

2 (Mt), dimE0,2
3 (Mt) no son monótonamente

crecientes y las dimensiones dimE1,1
2 (Mt), dimE1,1

3 (Mt) no son monótonamente decre-
cientes. Más aún, la propiedad E2(M) ∼= E∞(M) no es abierta por deformaciones.

En relación al ∂∂̄-lema, es conocido que se trata de una propiedad abierta por de-
formaciones [98, 101, 10]. Más recientemente, Angella y Kasuya [8] han demostrado
que el ∂∂̄-lema no es una propiedad cerrada bajo deformaciones holomorfas usando
una deformación invariante de la variedad de Nakamura, que en nuestra clasificación
se corresponde con una solvariedad dotada de una estructura compleja invariante tal
que (g, J) es isomorfa a (g8, J

−i). Usando el estudio realizado para la cohomoloǵıa de
solvariedades complejas en este caṕıtulo, obtenemos una familia infinita numerable de
ejemplos que extienden el resultado de Angella y Kasuya:

Resultado 9. Existe una familia numerable de solvariedades complejas de tipo splitting
{(Mk := G/Γk, Jk)}k∈Z que no cumplen el ∂∂̄-lema, siendo (G, Jk) un grupo de Lie con
una estructura compleja invariante de manera que (g, Jk) es isomorfa a (g8, J

Ak) con
Ak = i

2k+1 y Γk ⊂ G un lattice compatible con el splitting inducido por Jk. Además,
para cada k ∈ Z existe una deformación holomorfa {(Mk, Jk,t)}t∈∆ tal que cumple el
∂∂̄-lema para todo t ∈ ∆∗, siendo ∆ = {t ∈ C | |t| < 1}.

En el Caṕıtulo 5 nos hemos centrado en el estudio de la geometŕıa Hermitiana so-
bre solvariedades de dimensión 6 compatible con las estructuras complejas invariantes
que trivializan el fibrado canónico holomorfo. Ya eran conocidos resultados de exis-
tencia de métricas Kähler con torsión [33], invariantes 1-Gauduchon generalizadas [35]
y equilibradas [95] para el caso de las nilvariedades. Por esta razón hemos estudiado
la existencia de estas métricas para las estructuras complejas sobre las álgebras de Lie
resolubles g1, . . . , g9. Para el caso de las métricas fuertemente Gauduchon el estudio se
ha realizado para las álgebras de Lie anteriores junto con las nilpoltentes h1, . . . , h16,
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h−19, h+
26. Los resultados obtenidos, junto con los ya conocidos para nilvariedades, los

agrupamos en el siguiente:

Resultado 10. Una solvariedad M = G/Γ de dimensión 6 que admite estructuras com-
plejas invariantes con fibrado canónico holomórficamente trivial, admite una métrica:

(a) Kähler (y por tanto Calabi-Yau) si y sólo si g es isomorfa a R6 ó g0
2;

(b) Kähler con torsión si y sólo si g es isomorfa a h2, h4, h5, h8, g0
2 ó g4;

(c) 1-Gauduchon generalizada invariante si y sólo si g es isomorfa a h2, h4, h5, h8, g0
2,

g4 ó g6;

(d) equilibrada si y sólo si g es isomorfa a h1, . . . , h6, h−19, g1, gα≥0
2 , g3, g5, g7 ó g8;

(e) fuertemente Gauduchon si y sólo si g es isomorfa a h1, . . . , h6, h−19, g1, gα≥0
2 , g3, g5,

g7 ó g8.

El estudio pormenorizado de existencia de estas métricas sobre las álgebras de Lie reso-
lubles g1, . . . , g9, dotadas con una estructura compleja admitiendo una forma cerrada no
nula de tipo (3, 0), se resume en la siguiente tabla:

Métricas

SKT 1-Gauduchon Equilibradas sG

(invariantes)

g1 @ @ ∃ para cualquier J cualquier (J, F )

g0
2 ∃ para cualquier J ∃ para cualquier J ∃ para cualquier J cualquier (J, F )

gα>0
2 @ @ ∃ para cualquier J cualquier (J, F )

g3 @ @ ∃ para cualquier J cualquier (J, F )

g4 ∃ para cualquier J ∃ para cualquier J @ @

g5 @ @ ∃ para cualquier J ∃ para cualquier J

g6 @ ∃ para cualquier J @ @

g7 @ @ ∃ para cualquier J ∃ para cualquier J

g8

@ @ ∃ para cualquier J 6= J ′, J ′′ cualquier (J, F )

g9 @ @ @ @
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La condición equilibrada implica trivialmente la condición fuertemente Gauduchon.
Popovici [72] a su vez prueba que una variedad compacta compleja que cumple el ∂∂̄-
lema admite métricas fuertemente Gauduchon compatibles con la estructura compleja.
Sin embargo, existen variedades complejas que son fuertemente Gauduchon “puras” en
el sentido de que ni cumplen el ∂∂̄-lema ni son equilibradas. Sobre la clase de las nilvarie-
dades de dimensión 6 (que, salvo los toros complejos, no cumplen el ∂∂̄-lema por no ser
formales [44]) damos una descripción de aquellas estructuras complejas invariantes que
admiten métricas fuertemente Gauduchon compatibles sin admitir métricas equilibradas:

Resultado 11. Sea M = G/Γ una nilvariedad de dimensión 6 dotada de una estructura
compleja invariante J tal que (M,J) no admite métricas equilibradas. Si (M,J) admite
métricas fuertemente Gauduchon entonces g es isomorfa a h2, h4 ó h5.

Además, tal J es no abeliana y dada por: ReD + (ImD)2 ≥ 1
4 en h2; ReD ≥ 1

4 en
h4; y λ = 0, ImD 6= 0 ó λ = ImD = 0,ReD ≥ 0 en h5, según la descripción de las
estructuras complejas proporcionada en el Resultado 4.

Finalmente nos hemos centrado en el estudio de las propiedades equilibrada y fuerte-
mente Gauduchon en relación a la teoŕıa de deformaciones. Alessandrini y Bassanelli [3]
prueban que la propiedad equilibrada no es abierta por deformaciones mientras que
Popovici [73] prueba que la propiedad fuertemente Gauduchon śı lo es. Sin embargo, se
conjeturó que estas propiedades eran cerradas por deformaciones holomorfas [76, Conje-
tura 1.21, Conjetura 1.23]. Mediante el estudio realizado en el resultado anterior sobre
la existencia de geometŕıa equilibrada y fuertemente Gauduchon sobre nilvariedades de
dimensión 6, hemos constrúıdo un contraejemplo a ambas conjeturas que recogemos en
el siguiente resultado:

Resultado 12. Una nilvariedad (M = G/Γ, J1), con g isomorfa a h4 y J1 su estructura
abeliana, admite una deformación holomorfa invariante {Mt := (M, It)}t∈∆, con I0 =
J1, tal que las Mt son equilibradas para todo t ∈ ∆∗, mientras que M0 no es fuertemente
Gauduchon.

Como consecuencia, las propiedades equilibrada y fuertemente Gauduchon no son
cerradas bajo deformaciones holomorfas.

Aunque, como ya se ha mencionado antes, la propiedad del ∂∂̄-lema no es cerrada
por deformaciones, Popovici [72] prueba que una deformación holomorfa {(M,Jt)}t∈∆

cumpliendo el ∂∂̄-lema en todo t ∈ ∆∗ implica que en el ĺımite central existe una métrica
fuertemente Gauduchon, que como hemos dicho, es una propiedad necesaria para que la
variedad compacta compleja cumpla el ∂∂̄-lema. En el siguiente resultado mostramos,
mediante una deformación holomorfa de una solvariedad compleja, que el resultado de
Popovici es óptimo, en el sentido de que no se puede esperar (en general) encontrar
métricas equilibradas en el ĺımite central:

Resultado 13. Existe una deformación holomorfa invariante {Mt := (G/Γ, Jt)}t∈∆ de
una solvariedad, siendo g isomorfa a g8 y Jt con fibrado canónico holomorfo trivial, tal
que Mt cumple el ∂∂̄-lema y es equilibrada en todo t ∈ ∆∗ mientras que M0 no cumple
el ∂∂̄-lema ni es equilibrada.
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