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Abstract

In the last few years, the interest of the aerial and terrestrial transport industry in the fab-

rication of textile-reinforced composite materials has sensibly grown. This is basically due to

the remarkable properties of these materials, which combine high mechanical strength with

reduced weight. The manufacturing techniques that provide better control on the final quality

of the components rely on autoclave curing: heat and pressure are applied on vacuum bags

to achieve high volume fractions of the reinforcement and low number of defects due to the

presence of voids. Nevertheless, autoclave curing implies high costs for the acquisition of the

vessel and the process is energy and time consuming.

To reduce the production costs, the industry has increased its interest in out-of-autoclave pro-

cessing technologies, that is, liquid composite molding (LCM) techniques. In its most basic

version, the technique consists in the injection of a catalyzed resin into a closed cavity, where

a pre-placed fiber stack lies. When the resin has completely permeated the preform, the mold

is subject to high temperatures to induce the curing of the resin to obtain the composite.

The current challenge for this technology is to achieve the same quality standards for the final

component as those achievable with in-autoclave processing.

In LCM processes, the final quality of the component depends on several factors, such as:

the structure of the textile, the arrangement of the layers, the adaption to the mold, the com-

paction process, the operating conditions, the geometry of the component, the configuration of

the injection points for the resin, the physical and chemical interactions between the resin and

the textile. All these factors affect the correct saturation of the reinforcement, and therefore

process parameters must be adequately controlled in order to guarantee the required quality

standards for the composite.

In this sense, mold filling simulation software is a valuable tool for the process optimization;

however the permeability of the reinforcement is required as an input parameter. An accurate
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Abstract

evaluation of the permeability of the reinforcement however, represents a challenging task.

Fibrous preforms for LCM generally present a hierarchical structure: the fibers are bunched

in yarns, which in turn are bundled in a fabric. This structure, undergoes complex defor-

mations during the production process: 1) during the compaction in the mold and 2) during

the injection of the resin. This issue remarkably complicates an accurate evaluation of the

permeability of the reinforcement and may be at the origin of the scatter observed in the

experimental measurements.

From a modeling point of view, the different length scales to be taken into account (typically

ranging between one and three orders of magnitude) hinders a proper simulation of the de-

formation of the textile. The typical diameter of the fibers ranges indeed in few micrometers,

while the characteristic dimension of the yarns is in the order of the millimeter. This issue rep-

resents a constraint for standard numerical approaches due to computational limits. In order

to account for the effect on the permeability of the deformation of the hierarchical structure

of the preform, multi-scale modeling techniques must be adopted.

The objective of the thesis is the development of novel theoretical and numerical frameworks

to account for the effect on the permeability of the multi-scale deformations that the textile

undergoes during the two aforementioned stages of the process. The development focuses on

the fiber-yarn level in 2D, where the yarn is always modeled as suspension of fibers by analogy

with a complex fluid. The numerical implementations use computational fluid dynamic (CFD)

tools.

In order to address the problem, the permeability of a textile preform for LCM is first ana-

lyzed by experimental means. A standard CFD approach is then adopted for the simulation

of a representative elementary volume of the textile; it is shown that, by means of this ap-

proach, the experimental permeability cannot be recovered over the full range of porosities.

An X-ray computed microtomography of the textile is then performed. The obtained data are

used for the virtual reconstruction of the exact geometry of the textile after its use for LCM.

The simulations with this latter geometry provide better results; however the uncertainties on

permeability still hold, and the permeability is always overestimated. These uncertainties are

discussed in detail and motivate the work described hereafter.
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The first modeling block of the thesis concerns the analysis of the deformation that the tex-

tiles undergo during the compaction in the mold. A continuum model is first developed and

validated for the squeeze flow of epoxy-based materials, the rheology of which is given by a

viscoplastic constitutive law. The model is then applied to the compaction of yarns, where a

viscoplastic behavior for the fiber bundle is assumed in the quasi-static regime of compression

and by an analogy with flowing granular media. The rheological parameters are obtained from

experimental data by a simplified analytical model for the deformation of the yarns under

compaction. The commercial CFD code ANSYS Fluent is adopted for the numerical solu-

tion. The model yields information about the evolution of the fiber volume fraction during the

compaction and is found to correctly recover the experimental force for high compression ratios.

The second modeling block of the thesis concerns the analysis of the deformation that the

textiles undergo during the injection of the resin. A numerical framework is first developed

and validated for the direct numerical simulation of dilute colloidal suspensions of polymeric

molecules. The numerical method consists in a coupled finite-volume/lattice-Boltzmann so-

lution: finite volume method for hydrodynamics and lattice Boltzmann method for the sub-

grid-scale physics. For computational efficiency, the lattice Boltzmann solution is accelerated

on a graphic processing unit (GPGPU) with a tailored implementation and efficiently coupled

with the macroscopic solver (ANSYS Fluent). The numerical method is then exploited for

the solution of a mesoscopic model for the flow-induced fiber dynamics during the injection.

A statistical model for the fiber dynamics is derived, based on analogy of the yarn with a

non-Brownian suspension of particles with confining potentials. The fiber topology during the

injection is recovered by a topological invariant and yields information about the change in

permeability due to the clustering of fibers in steady-state, fully-saturated conditions. The

results are presented in the form of phase diagrams, which show that in the deformable case

the permeability can be up to one order of magnitude lower than in the rigid case.
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On the basis of the results obtained, the following main conclusions can be drawn:

1. The model developed for the compaction in the mold showed to be appropriate for a

phenomenological analysis of the deformation of the yarns under compression. The model

allows to analyze quantitatively the evolution of the fiber volume fraction, which yields

useful information for a better understanding of the distribution of the fibers before the

injection.

2. The model developed for the fiber dynamics during the injection, allows to analyze their

topology induced by the fluid flow. The clustering of fibers significantly reduces the

permeability at the fiber level, which could explain the overestimation obtained with

simplified numerical approaches. The phase diagrams obtained for the permeability,

both at the yarn and fiber level, allow to identify the best operating conditions for the

infiltration of the resin.

The proposed models have been developed using fluid dynamic techniques, which opens the

possibility for a unified framework for the analysis, and ultimately, for a more precise estimation

of the permeability. This work aims to represent a first tentative in this direction.
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Resumen

En la industria aeronáutica, los materiales compuestos de matriz polimérica y refuerzo en fibra

de vidrio se emplean cada vez más en aplicaciones estructurales debido a sus excepcionales

propiedades, que combinan una alta resistencia mecánica con un peso reducido. Las técnicas

de fabricación que permiten un mejor control de la calidad final de las piezas emplean curado

dentro de autoclave: se aplica calor y presión en sacos a vaćıo, permitiendo la fabricación

de componentes con altas fracciones volumétricas de fibra y bajo contenido de defectos por

presencia de huecos de aire. Sin embargo, el uso de autoclave implica unos altos costes de

adquisición, un uso intensivo de enerǵıa en operación y largos tiempos de proceso.

En un esfuerzo por reducir los costes de fabricación, la industria ha aumentado su interés en

las tecnoloǵıas de procesado fuera de autoclave, es decir el liquid composite molding (LCM).

En su versión más básica, estas técnicas consisten en la inyección de una resina catalizada en

una cavidad cerrada, donde se encuentran las telas previamente situadas. En este proceso,

una vez que la resina ha permeado completamente la tela, es elevada la temperatura del molde

con el objetivo de inducir la solidificación de dicha resina y obtener el material compuesto. El

reto actual para la aplicación de esta tecnoloǵıa es conseguir el mismo nivel de calidad que se

consigue en un proceso con autoclave.

En procesos LCM, la calidad final del componente depende de factores como: la estructura

de la tela, la disposición de las capas de refuerzo, su adaptación al molde, el proceso de

compactación, las condiciones operativas, la geometŕıa del componente, la configuración de

los puntos de inyección de la resina, las interacciones f́ısicas y qúımicas entre la resina y la

tela. Todos estos factores influyen sobre la correcta saturación del refuerzo, por lo que los

parámetros del proceso deben ser adecuadamente controlados a fin de garantizar la calidad del

producto final.

En este sentido, los programas de simulación constituyen herramientas valiosas para la opti-

mización del proceso de llenado del molde, sin embargo, éstos requieren la permeabilidad del
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refuerzo como parámetro de entrada. Una evaluación precisa de la permeabilidad del refuerzo

representa un reto no trivial. De hecho, las telas de refuerzo para LCM generalmente presentan

una estructura jerárquica: las fibras se agrupan en hebras y estas a su vez se entrelazan en

tejidos. Esta estructura experimenta dos tipos de deformaciones complejas durante del proceso

productivo: 1) durante la compactación en el molde y 2) durante la inyección de la resina.

Esto impide una evaluación precisa de la permeabilidad del refuerzo y puede ser el origen de

la dispersión que se observa en las medidas experimentales.

Desde el punto de vista del modelado, las diferentes escalas de longitud que hay que tener en

cuenta (t́ıpicamente vaŕıan entre uno y tres órdenes de magnitud) hacen dif́ıcil la simulación

del proceso de deformación de la tela. De hecho, el diámetro t́ıpico de las fibras es general-

mente de unas pocas micras, mientras que la dimensión caracteŕıstica de las hebras llega ser

del orden de miĺımetros. Esta cuestión constituye un handicap para enfoques estándar de

simulación debido a ĺımites computacionales. Para analizar adecuadamente la influencia de

la deformación de la estructura jerárquica de la tela sobre la permeabilidad, deben adoptarse

técnicas de modelado multi-escala.

El objetivo de esta tesis es el desarrollo de nuevos modelos teóricos y numéricos que tengan

en cuenta el efecto sobre la permeabilidad de las deformaciones multi-escala que las telas

experimentan durante las dos fases del proceso previamente mencionadas. Para lograrlo, la

metodoloǵıa empleada se centra en secciones representativas 2D de las hebras, las cuales se

modelan desde el punto de vista fenomenológico como una suspensión de fibras, por analoǵıa

a un fluido complejo. Para la implementación de las simulaciones se utilizan herramientas de

fluidodinámica computacional.

Para desarrollar esta metodoloǵıa, inicialmente se analiza la permeabilidad de una tela para

LCM a través de medios experimentales. Posteriormente, se adopta un enfoque estándar para

la simulación de un volumen representativo de la tela, el cual muestra que la permeabilidad

experimental no se puede ajustar en todo el rango de porosidades. Se efectúa entonces una

micro-tomograf́ıa de rayos X. Los datos proporcionados por la tomograf́ıa son utilizados para

la reconstrucción virtual de la geometŕıa exacta de la tela después de su uso en un proceso

LCM. Las simulaciones con esta última geometŕıa proporcionan mejores resultados, aunque

permanecen incertidumbres sobre la permeabilidad, la cual siempre se sobrestima. Dichas in-

certidumbres se discuten en detalle y motivan el trabajo descrito a en el resto de la tesis.

viii



Resumen

En un primer bloque de modelado se analiza la deformación de las telas durante la com-

pactación en el molde. Se desarrolla y valida un modelo continuo para la compactación de

materiales epoxy, cuya reoloǵıa se describe a través de una ley constitutiva viscoplástica.

Este modelo se aplica luego al estudio de la compactación de las hebras, donde se asume

un comportamiento de tipo viscoplástico para las hebras en el régimen quasi-estático, por

analoǵıa con medios granulares. Los parámetros reológicos se obtienen a partir de los datos

experimentales a través de un modelo anaĺıtico simplificado para la deformación de las hebras

durante la compactación. Para las soluciones numéricas, se adopta el código comercial de flu-

idodinámica computacional ANSYS Fluent. El modelo proporciona información cuantitativa

sobre la evolución de la fracción de volumen de fibra durante la compactación y se demuestra

capaz de recuperar correctamente la fuerza experimental en el régimen de altos ratios de com-

presión.

En el segundo bloque se analiza la deformación de las telas durante la inyección de resina. En

este bloque inicialmente se desarrolla y valida un método numérico para la simulación directa

de suspensiones coloidales diluidas de moléculas poliméricas. Dicho método numérico con-

siste en una solución acoplada de volúmenes-finitos/lattice-Boltzmann: el método de volmenes

finitos para la hidrodinámica y el método de lattice Boltzmann para la f́ısica de sub-malla.

Por eficiencia computacional, la solución de lattice Boltzmann se acelera en tarjeta grafica

(GPGPU) a través de una implementación adaptada y se acopla eficientemente con el solver

macroscópico (ANSYS Fluent). Posteriormente, el método numérico desarrollado se aplica a

la solución de un modelo mesoscópico para la dinámica de las fibras inducida por el flujo fluido

durante la inyección. Se deriva un modelo estad́ıstico para la dinámica de las fibras, basado

en la analoǵıa entre la hebra y una suspensión no Browniana de part́ıculas con potenciales

de confinamiento. La topoloǵıa de las fibras durante de la inyección se recupera a través de

un invariante topológico y proporciona informaciones sobre la variación de la permeabilidad

debido al agrupamiento de las fibras en condiciones estacionarias y completamente saturadas.

Los resultados se presentan en forma de diagramas de fase, los cuales muestran que la per-

meabilidad puede llegar a ser en el caso deformable hasta un orden de magnitud menor con

respecto al caso ŕıgido.
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Como conclusiones principales del trabajo se plantea que:

1. el modelo desarrollado para la compactación en el molde resulta apto para un estudio

fenomenológico de la deformación de las hebras bajo compactación. Dicho modelo per-

mite analizar cuantitativamente la evolución de la fracción de fibra, lo cual proporciona

información útil para la mejora de la comprensión de la distribución de las fibras antes

de la inyección de la resina.

2. el modelo desarrollado para la dinámica de las fibras durante la inyección, permite analizar

la topoloǵıa de las mismas inducida por el flujo. El agrupamiento de fibras reduce signi-

ficativamente la permeabilidad a nivel de hebra, y esto podŕıa explicar la sobrestimación

que se obtiene con modelos numericos simplificados. Los diagramas de fase obtenidos

para la permeabilidad, tanto a nivel de fibra como de hebra, permiten identificar las

mejores condiciones operativas para la infiltración de la resina.

Los modelos propuestos han sido desarrollados usando técnicas de fluidodinámica computa-

cional, lo cual permitiŕıa en un futuro utilizar entornos unificados para el análisis del proceso

y finalmente, una estimación más precisa de la permeabilidad. El actual trabajo constituye

aśı una primera aproximación en esta dirección.
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Jimenéz, for giving me the possibility of this experience in Spain. Similarly, I sincerely thank

my thesis advisors, Dr. Salvador Izquierdo and Prof. Norberto Fueyo, for their guidance and

for encouraging this work. I am sincerely grateful to Prof. Ignacio Pagonabarraga (Universi-

tat de Barcelona) and Prof. Amine Ammar (Arts et Métiers ParisTech Angers), for fruitful

discussions. Thanks to Prof. Pietro Asinari (Politecnico di Torino), for encouraging me to go

for a PhD. Now I am definitely convinced I made the right choice.

During these years, several persons contributed to enrich this experience, to them I am par-
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Chapter 1

Introduction

1.1 Motivation

In the last few years, the interest of the aeronautical and terrestrial transport industry in

the production and utilization of textile-reinforced composites has grown sensibly. This is

basically due to the remarkable mechanical properties of these materials compared to their

reduced weight. Currently, the most employed manufacturing processes for their fabrication

rely on autoclave curing: heat and pressure are applied on vacuum bags to achieve high vol-

ume fractions of the reinforcement and low number of defects due to the presence of voids.

This technique provides high quality standards of the final components, however it also im-

plies high acquisition and production costs. For this reason, the interest of the industry in

out-of-autoclave processes such as those using injection or infusion is currently increasing.

Out-of-autoclave manufacturing processes go under the name of Liquid Composite Molding

(LCM), a term that encompasses, among others, the Resin Transfer Molding (RTM), the Resin

Infusion (RI) and their relative vacuum assisted versions (VARTM and VARI) [4]. Perhaps,

one of the most employed is RTM [5], due to its capacity to handle complex geometries, its

cost-effectiveness and high throughputs. The basic isothermal technique consists in the injec-

tion of a catalyzed resin into a closed cavity, where a pre-placed fiber stack lies (see Fig. 1.1).

Once the resin has completely permeated the preform, the walls of the mold are subjected

to high temperatures in order to induce the curing of the resin and therefore the hard final

composite. The current challenge for LCM is to achieve the same quality standards as those

achievable with in-autoclave processing.
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1. Introduction

Figure 1.1: Scheme of the resin transfer molding (RTM) process for textile-reinforced composite
manufacturing.

The complexity of the physics and that of the non-linear interactions among the governing

phenomena of the process makes it difficult to develop efficient predictive models. Nonethe-

less, a thorough understanding of the physics is of fundamental importance, since the final

quality of the output depends mostly on the process parameters [6]. The dominant physical

phenomena involved are the fluid mechanics of the resin permeating the fiber reinforcement,

the heat transfer and the chemical reactions due to curing. The final goal of a reliable model

would hence be to accurately describe the dynamics of the resin percolating the textile and

predict the fiber stack saturation. Mold filling simulation software such as PAM-RTM [7],

RTM-Worx [8] or LIMS [9], are valuable tools for process optimization. However, the mold

filling simulation requires the permeability of the textile as an input parameter; therefore its

accurate evaluation is remarkably important. Mostly due to the hierarchical structure of the

fibrous preforms, an accurate evaluation of the permeability is a challenging task, both from

the experimental and numerical point of view.

In a first experimental benchmark published in 2011 [10], the permeability data from twelve

institutions from six countries were compiled and compared for two different fabrics. The test

conditions and procedures were not regulated (e.g. linear or radial injection, saturated or un-

saturated flow, constant pressure or flow rate, test fluids and fiber volume fraction). The result

was a significant scatter on permeability, up to one order of magnitude, among all participants

for both reinforcements tested. The numerous differences between experimental procedures

could not be associated to the observed permeability scatter; consequently it was difficult to
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point out the influence of a specific parameter on the permeability. Only recently, a second

permeability benchmark in 2014 [11] showed that with a stricter regulation of the procedures

and of the experimental conditions, a better comparison of the results can be achieved. The

scatter among the data obtained while respecting the guidelines was below 20-25% (either

among all participants and among the various tests from each single participating institution).

The causes of the uncertainties on permeability measurements and low reproducibility of the

experiments have not yet been identified.

The permeability of the reinforcement depends on several factors, such as: the structure of the

textile, the arrangement of the layers, the adaption to the mold, the operating conditions, the

geometry of the component and the interaction between the fluid and the textile. All these

issues are at the origin of the uncertainty and low reproducibility of the experimental mea-

surements. Furthermore, experimental procedures are expensive and time consuming, which

motivates the interest in the development of alternative strategies for the prediction of perme-

ability.

From a modeling point of view, the problem is complicated by the hierarchical structure of the

textile. The commonly used preforms for these applications are made up of fibers, which are

bunched in yarns, which in turn are bundled in a fabric. This results in multiple scales to be

considered, typically ranging between one and three orders of magnitude. As a consequence,

analytical approaches can be adopted only under strict simplifying assumptions, whilst the

main issue concerned with numerical approaches is the computational cost, which is a con-

straint on the fidelity of the virtual geometrical reconstruction.

For these reasons, the most commonly adopted practice consists in the numerical simulation

of the fluid flow in a representative elementary volume (REV) of the textile, where the intra-

yarn permeability is computed by the so called “constitutive” relations [12], that is, analytical

solutions or experimental correlations which serve as auxiliary means for the numerical simu-

lations [13, 14]. The effective permeability is then recovered by Darcy’s law.
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(a) (b)

Figure 1.2: Scanning electron micrographies (SEM) of the textile after its use for resin transfer
molding process. (a) 200x zoom and (b) 4500x zoom.

Despite its simplicity, this approach often results in unacceptable loss of accuracy on the

permeability estimation with respect to the experimental data, due to:

• The geometrical reproduction of the textile. Several tools are already available for this

purpose, as for example the open-source software TexGen [15]. These tools generally

embed predefined mathematics for the most common textiles; however the simplified

geometry obtained does not accurately reproduce the real one.

• The assumptions on the intra-yarn topology. The empirical expressions for the intra-

yarn permeability requires simplifying geometrical assumptions, which are not represen-

tative of the real topology and result in a loss of important information, as for example

anisotropy.

• The interaction between the fluid flow and the mat. Considering the textile as a rigid

body can be a limiting assumption, since its deformation induced by the fluid flow can

sensibly affect the overall permeability.

All these issues are strictly related to the deformation that the textile undergoes during the

composite production process, that is: (i) the compaction in the mold and (ii) the injection

of the resin. Both processes cause, via different mechanisms, a complex deformation of the

hierarchical structure of the textile, which affects its hydraulic conductivity. Figures 1.2(a)

and 1.2(b) show two images obtained by scanning electron microscopy (SEM) of the textile

after its use for resin transfer molding. The irregular shape of the yarns yield by the fiber
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deformation is mainly result of the compression in the mold, since the deformation due to the

injection of the resin is (partially) reversible and cannot be visually analyzed. The effective

permeability is then affected by the porosity distribution resulting from the compression and

the fiber dynamics during the injection [16].

A unified framework for this kind of analysis has been largely studied and is currently under

investigation by the textile research community [17]. However, the currently available numer-

ical models predict the permeability with an error between 20 and 50% with respect to the

experimental data [18, 19], which motivates further efforts.

1.2 Objectives

The objective of the thesis is the analysis of the deformation that the textile undergoes during

the production process (Fig. 1.1), that is, the compaction in the mold and the injection of

the resin. The two stages are addressed using non-conventional modeling techniques, fully

based on computational fluid dynamics. The developed models must be able to account for

the multi-scale nature of the problem, in order to understand how the topology of the fibers

affects the bulk hydraulic conductivity during the two aforementioned stages of the production

process. The objectives can be summarized as follows:

1. COMPACTION IN THE MOLD

• development and validation of a numerical framework for the squeeze flow of vis-

coplastic soft solids using computational fluid dynamics;

• development of a theoretical framework for the analysis of the compaction of textiles

using the developed numerical model.

2. INJECTION OF THE RESIN

• development and validation of a coupled numerical method for the efficient simula-

tion of multi-scale suspensions;

• development of a theoretical framework for the analysis of the fiber dynamics during

the injection stage, to be solved with the developed numerical method.

Finally, the acquired knowledge and the models proposed will allow for a better understanding

of the causes of the discrepancy between predictive models and experimental data.
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1.3 Methodology

The flow regimes encountered in fibrous porous media are basically three: (i) steady Stokes

flow; (ii) steady laminar (inertial) flow and (iii) unsteady turbulent flow. In this work we focus

on the Stokes flow (i), which is the characteristic regime of infiltration for liquid composite

molding. For Stokes flow, the stream-wise pressure drop ∆p is linearly related to the flow rate

through the permeability of the medium K, by the well known Darcy’s law:

∆p = − µ

K
v; (1.1)

where µ is the viscosity of the fluid and v the superficial flow velocity. In this simple rela-

tionship, the proportionality constant K represents the hydraulic conductivity of the porous

material, which depends mainly on its pore structure.

In hierarchically-structured fibrous materials such as those for liquid composite molding, the

effective permeability depends both on the macroscopic structure (yarn weaving) and on the

pore-level structure (fiber topology), being the former affected by the latter. Therefore macro-

scopic “bulk” properties, such as permeability, ultimately depend on the physics at the smallest

scale, that is, the fiber scale. A reliable evaluation of the effective permeability K should then

include all the physics, all the way down to the fiber scale. However, the difference between the

length scales to be considered in these materials, generally up to three orders of magnitude,

poses a major computational challenge.

In order to account for the underlying microscopic physics on “bulk” properties, a macroscopic

description should be provided with averaged quantities obtained from micro-scale models.

This involves the so called up-scaling or closure problem. However, micro-scale models are

often limited to very few applications, due to the computational resources available to solve

them. Alternatively, an improved macroscopic description can be obtained with mesoscopic

approaches. As the word itself says, these latter modeling approaches lie in between micro-

and macroscopic modeling techniques (Fig. 1.3) and are meant to provide a link between

micro- and macroscopic physics. The advantage of meso-scale modeling techniques is their

ability to preserve essential information of the microscopic physics with reduced computational

cost, which remarkably improves the phenomenological description. For these reasons these

approaches are rapidly gaining popularity in material science (see, for example, [20, 21]).
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Figure 1.3: Modeling approaches and modeling range of the thesis.

As explained in the previous section, the objective of the thesis is the analysis of the defor-

mation that the fibrous preforms undergo during the manufacturing processing (Fig. 1.1) and

how the resulting structure affects the hydraulic conductivity. Considering that the diameter

of the fibers in these textiles is typically lower than 10 µm, while the characteristic dimension

of the yarn is typically around 1 mm, mesoscopic an continuum modeling techniques are em-

ployed (Fig. 1.3).

From a phenomenological point of view, in this work the textile behavior is always modeled by

analogy with a complex fluid. During the compaction in the mold, the yarn is modeled as a

flowing granular material. During the injection stage, the yarn is modeled as a non-Brownian

suspension of fibers. Complex fluids can be considered homogeneous at the macroscopic (or

bulk) scale, but are disordered at the microscopic scale and possess structure at an intermedi-

ate scale. That is, the macroscopic flow behavior (rheology), is a strong function of the fluid

micro-structure. In this sense, the analogy yields information on how the structure of the

fibers affects the bulk behavior (e.g. the permeability).
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Table 1.1: Overview of the modeling work in this thesis.

Compaction in the mold Injection of the resin

Approach Continuum modeling Mesoscopic modeling

Development
Viscoplastic soft solids Dilute colloidal suspensions

CHAPTER 3 CHAPTER 5

Application
Entangled fibrous materials Deformable fibrous media

CHAPTER 4 CHAPTER 6

The first modeling block of the thesis concerns the analysis of the deformation that the textiles

undergo during the compaction in the mold (Fig. 1.1). A continuum model is firstly developed

and validated for the squeeze flow of epoxy-based materials, whose rheology is well represented

by a viscoplastic constitutive law. The model is then applied to the compaction of textiles,

where information about the fiber behavior is inferred from the macroscopic “bulk” behavior

of the yarns using a simplified analytical model for the deformation of the yarns. In this case,

the continuum description is enriched by meso-scale information, extracted from the rheology

using a top-down approach (see Tab. 1.1).

The second modeling block of the thesis concerns the analysis of the deformation that the

textiles undergo during the injection of the resin (Fig. 1.1). A theoretical and numerical

framework is first developed and validated for the direct numerical simulation of dilute colloidal

suspensions of polymeric molecules. The model is then tailored and applied to the analysis

of the flow-induced fiber deformation in hierarchical fibrous media. In this case the yarn

is modeled as a non-Brownian suspension of fibers with confining potentials. Here, modeling

proceeds from a fully mesoscopic coarse-grained approach for polymer molecules to a statistical

model for the fiber dynamics, following a bottom-up approach (see Tab. 1.1).

8
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1.4 Thesis overview

The thesis is organized in seven chapters (including the present one). The structure of the

document follows the two steps of the manufacturing process (Fig. 1.1) and the modeling

framework shown in Tab. 1.1. The outline of each chapter is as follows.

2 In this chapter, the permeability of a textile reinforcement for liquid composite molding is

analyzed by experimental and numerical means. It is shown that by simplified numerical

approaches the experimental data cannot be accurately reproduced over the whole range

of porosities. The causes of the uncertainties are discussed.

3 This chapter concerns the development of the fluid-dynamic model for the compression of

viscoplastic soft solids. The model is validated against experimental data for an epoxy-

based material and an analytical solution for the compressive forces is generalized for

arbitrary shapes of the specimen.

4 The model developed in the previous chapter is applied to the analysis of the compression

of the yarns. To this end, the mechanical response of the textile under compression is first

analyzed experimentally. The compression curve together with a simplified analytical

model allows to model the yarn as a flowing granular material and to extract information

on the dynamics of the fibers.

5 In this chapter the mesoscopic model for viscoelastic suspensions is developed. Special

emphasis is given to the coupling of the numerical methods and to the efficient implemen-

tation of the solution for the meso-scale equation by lattice Boltzmann method (LBM)

on graphic processing units. The details of the implementations and of the related issues

are reported in Appendix A.

6 The model developed in the previous chapter is tailored for the analysis of the fiber

deformation. In this chapter, particular emphasis is given to the interpretation of the

model and to the theoretical framework. The results obtained are presented in the form

of phase diagrams for the permeability of deformable fibrous media.

7 Finally, the conclusions from the work done are drawn, together with a discussion of the

possible improvements of the proposed models as an indication for further development of

this work. A unified framework fully based on computational fluid dynamics is proposed

for the analysis of the permeability of textiles during the manufacturing process.
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Chapter 2

Permeability of textile reinforcements

2.1 Introduction

In this chapter, the permeability of an 8H Satin weave textile is analyzed. A complete ex-

perimental analysis of the textile object of this study is first presented, namely: effective per-

meability, compression curve of the textile, analysis by scanning electron microscopy (SEM)

and computed X-ray microtomography (CMT). The micrographies are processed using image-

analysis techniques, which allows to extract informations on micro- and macroscopic porosities.

Similarly, the microtomographic data is also processed in order to extract the real geometry of

the textile after its use for liquid composite molding. We then perform a numerical evaluation

of the permeability adopting a standard CFD approach, and show that the experimental per-

meability cannot be recovered over the full range of porosities. The causes of this discrepancy

and the related uncertainties in the numerical prediction of the permeability of textiles are

presented and discussed.
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Figure 2.1: Experimental permeability (K1 triangles, K2 circles). As a guide for visualization,
a power-law fit of the data for K1 and K2 is shown.

2.2 Experimental data

2.2.1 Permeabilities

In the eight-harness satin (8H Satin) weave, one warp yarn floats over seven perpendicular

weft yarns and under one (0/90◦ weave). It is a very pliable weave, which is why it is used

for forming over curved surfaces. In this work, the permeability of the textile is evaluated

by radial injection technique [22] in unsaturated conditions using a specifically-designed test

bench. Three tests have been performed for three different volume fractions: φ = 0.341,

φ = 0.3981 and φ = 0.455. The volume fraction has been changed increasing the number of

textile layers inside the mold cavity. The principal permeability components and orientation

of the ellipse are computed from an analytical solution for radial flow [22]; the values obtained

for the three cases are shown in Fig. 2.1. As a guide for visualization a power-law fit of the

data for K1 and K2 is also shown. The mean orientation angle θ of the ellipse for the three

tested volume fractions is respectively 54.60◦, 48.72◦ and 45.51◦.
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Figure 2.2: Convex hulls for the image segmentation over the original gray scale image (a) and
discrete distribution of the micro- and macroscopic volume fractions. The number of bins in
the histograms is 35.

2.2.2 SEM image analysis

In order to understand the structure of the textile after its compression, a set of 110 scanning

electron microscopies are realized on a 15 mm square specimen of the textile (seven layers).

The specimen is prepared for the analysis using a standard metallographic procedure, therefore

it is polished using successively finer abrasive particles. The images obtained are in gray scale

uncompressed .TIF format, which is a raster format for graphic representation. The resolution

of the images is 1024x768, and the dimension of the pixel is approximately 0.5 µm. The images

show that the mean diameter of the fibers is around 8 µm, while the major axis of the yarns is

around 500 µm. The image analysis is performed in Matlab R©. The images are loaded as 8 bit

unsigned integer matrices and converted to binaries (black and white) using the mean value

of the gray scale as threshold. The effective volume fraction can be easily calculated by the

sum of the white pixels over the total number of pixels of the image, but more information can

be extracted from the images, such as the macro- and microscopic volume fractions. For this

purpose, the edges of the yarns in the images must be identified. In order to extract the edges,

the connected components in the black and white images (i.e. the continuous white regions) are

first identified and labeled. Then a convex hull, that is the smallest convex polygon enclosing

all points, is built for each continuous region. All the pixels within the hulls are sequentially set

12
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to 1 (white) and the procedure is repeated until no changes occur. This procedure successively

fills the continuous regions, that is the fibers that are in contact with other(s). The edges of

the yarns are finally obtained (see Fig. 2.2(a)). Transversal yarns (in red) are identified by

regions which horizontally span the whole picture. The macroscopic volume fraction can be

straightforwardly obtained from the final mask, as the sum of the pixels in the filled regions

to the total number of pixels in the image. Similarly, the microscopic volume fraction of each

yarn is obtained by the sum of the white pixels to the total number of pixels in each hull.

The results of the analysis for the whole set of images are shown in Fig. 2.2(b). A mean

value of the micro and macroscopic volume fractions is finally obtained for the specimen (φm

= 0.73 and φM = 0.6), while the distributions provide a qualitative indication of the degree of

compactness of the fibers with respect to the yarns.

13



2. Permeability of textile reinforcements

(a) (b)

Figure 2.3: (a) Surface extraction from X-ray computed microtomography (CMT) data in the
open-source software MicroView [1]. (b) Extracted .stl triangulated surfaces.

2.2.3 CMT data analysis

The X-ray computed microtomography (CMT) is a powerful, non-destructive method to ob-

tain spatially resolved information about porous materials. In this case we use this technique

to analyze a 15x15 mm specimen of the textile extracted from the composite after the pro-

duction process. The specimen is sampled by a microtomographic scanner, which acquires

two-dimensional images of the object in a regular three-dimensional pattern. The 3D volume

can then be rendered using the produced images and their associated information about the

reference system. In this work we use the open-source software MicroView [1] for the analysis

of the data. The software provides several tools for the analysis of the images, such as the

gray-scale statistics. The surface of the object can be extracted as an iso-color surface, whose

threshold value is chosen on the basis of the gray-scale distribution of the images (Fig. 2.3(a)).

Typically the best choice lies close to a minimum in the distribution. The extracted surface is

saved in stereo lithography file format (.stl), that is a triangulated surface (Fig. 2.3(b)).
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2. Permeability of textile reinforcements

2.3 Standard CFD approach

2.3.1 Representative geometry

In this section we adopt a standard technique for the numerical evaluation of the permeability

in textile preforms. A simplified geometry of a representative elementary volume (REV) of

the textile is modeled by computer aided design (CAD). For the sake of completeness, we

remark that open-source software is also available for the generation of the geometry, such as

TexGen [15] or WiseTex [17]. The REV is chosen so that geometrical periodicity yields along

the three principal directions (see Fig. 2.4(a)). Two geometries for two macroscopic porosities

εM = 0.36 and εM = 0.50 are generated. The different porosities are obtained by changing the

ratio between the major and minor axes of the elliptical section of the yarns. The geometries

are enclosed by complementary domains, that is the smallest fitting parallelepiped, and cut by

Boolean operations. The resulting domains are meshed using 2M ca. mixed hexahedral and

tetrahedral elements for the fluid-flow simulation in ANSYS Fluent R©.

2.3.2 CMT reconstructed geometry

The CMT data allows for the exact geometry, eventually down to the fiber scale if the reso-

lution of the micro-tomographic data is smaller than the fiber diameter. In this work we do

not dispose of such resolution, since the fiber diameter is around 8 µm, while the resolution is

around 15 µm. Notice that even if the data were available, the geometry reconstruction and

the simulations would not be computationally affordable.

The extraction of the geometry from the .stl file format is not straightforward for complex parts

such as ours; therefore manual operations would be needed for the reconstruction. In order not

to loose important features of the geometry, we decided to avoid geometrical reconstruction

and directly use the triangulated surface for the discretization. Using a fine triangulation, this

procedure allows for the exact geometry (see Fig. 2.4(b)), as given by the CMT data. The

resulting domains consist in 6M ca. tetrahedral elements.
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Figure 2.4: (a) Pressure field obtained with the standard CFD approach and simplified geome-
try (impermeable textile, εM = 0.5). Pressure field obtained with the standard CFD approach
and reconstructed real geometry.

2.3.3 Numerical solution

Two cases are considered: impermeable and permeable yarns. In the former case the governing

equations are solved only in the complementary domain (i.e. outside the textile), while in the

latter over the whole domain. The governing equations are the incompressible Navier-Stokes

equations with an additional loss term in the second case:

∇ · v = 0; (2.1)

ρv · ∇v = −∇p+ µ∇2v+ F; (2.2)

where ρ is the density, p the pressure, v the velocity vector, µ the dynamic viscosity of the fluid

and F is the friction loss in the porous medium. The equations are solved by finite volume

method using a second order upwind scheme for velocity and a second order interpolation

scheme for pressure. The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) is

adopted for the pressure-velocity coupling.
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2. Permeability of textile reinforcements

The viscous loss term F is given by well-established correlations for the transverse permeability

of aligned fibers. Here we use one of the most employed, which was proposed by Gebart [23]:

K

r2
= C

[

√

1− εc
1− ε

− 1

]5/2

; (2.3)

where r is the radius of the fiber, C a geometrical factor depending on the arrangement and

εc the critical porosity (or percolation threshold). The author calculated C = 16/9π
√
2,

εc = 1− π/4 for square arrangements and C = 16/9π
√
6, εc = 1− π/2

√
3 for hexagonal ones.

The effective permeability is then recovered by Darcy’s law as:

〈v〉 = − 1

µ
K · 〈∇p〉 ; (2.4)

where K is the permeability tensor. The principal values and orientation angle of the perme-

ability tensor can be found considering the Darcy’s law in matrix form:

{

〈vx〉
〈vy〉

}

= − 1

µ

[

Kxx Kxy

Kyx Kyy

]{

〈∂xp〉
〈∂yp〉

}

; (2.5)

and defining a counter-clockwise rotation matrix around the angle θ as:

R =

[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

. (2.6)

The permeability tensor for any angle θ can be written as:

Kθ =

[

Kxx Kxy

Kyx Kyy

]

= RT

[

K1 0

0 K2

]

R; (2.7)

where K1 and K2 are the principal values of permeability. Notice that K1 = K2 recovers the

isotropic case. Here we adopt unidirectional injection technique [24]; therefore three simula-

tions for each test case are necessary to recover the in-plane permeability ellipse, that is along

the three directions θ = 0◦, θ = 45◦ and θ = 90◦.
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Table 2.1: Comparison of the numerically predicted permeabilities for the simplified geometry
(impermeable (I) and permeable (P) cases) and for the CMT-reconstructed geometry with the
experimental data (K [m2] and θ [◦]).

Case εM εm φeff K0 K45 K90 K1 K2 θ

Simpl. (I)
0.36 εcm 0.60 1.57e-10 1.57e-10 1.56e-10 1.57e-10 1.55e-10 25.52

0.50 εcm 0.50 4.64e-10 4.63e-10 4.62e-10 4.64e-10 4.60e-10 11.60

Simpl. (P)
0.36 0.30 0.45 2.25e-10 2.25e-10 2.24e-10 2.26e-10 2.22e-10 27.78

0.50 0.30 0.35 5.93e-10 5.93e-10 5.92e-10 5.93e-10 5.91e-10 22.50

CMT geom. 0.44 0.34 0.37 6.50e-10 7.20e-10 5.80e-10 7.29e-10 4.72e-10 34.48

Experim.

- - 0.45 - - - 1.53e-10 1.01e-10 45.51

- - 0.39 - - - 2.24e-10 1.44e-10 48.72

- - 0.34 - - - 4.93e-10 3.35e-10 54.60

The principal components of the permeability tensor can then be computed from the perme-

abilities obtained along the three directions K0, K45 and K90 as [24]:

K1 = K0
α1 − α2

α1 − α2

cos(2θ)

; (2.8)

K2 = K90
α1 − α2

α1 +
α2

cos(2θ)

; (2.9)

where α1 = (K0 + K90)/2 and α2 = (K0 − K90)/2. The orientation angle of the ellipse is

computed as:

θ =
1

2
tan−1

(

α1

α2

− α2
1 − α2

2

α2K45

)

. (2.10)

2.3.4 Results and discussion

Let us first focus on the representative geometry (Fig. 2.4(a)). In order to guarantee creeping

flow conditions, a Reynolds number based on the hydraulic diameter of the yarn Re = ρvdh/µ

is fixed to 10−3. Non-conformal periodic boundary conditions are imposed along the three

principal directions, so that fully developed flow conditions are simulated. This choice is typ-

ical for the analysis of simplified representative elementary volumes. The pressure field over

the textile for the impermeable case and εM = 0.5 is shown in Fig. 2.4(a) and the analysis is

reported in Tab. 2.1.
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Figure 2.5: Comparison of the numerically predicted permeabilities for the simplified geometry
(impermeable and permeable cases) and for the CMT-reconstructed geometry with the power
law fit of the experimental data (K1 triangles, K2 circles).

The numerical results obtained for K1 and K2 in each case are compared with the power law fit

of the experimental permeabilities in Fig. 2.5. The effective volume fraction φeff is computed

as:

φeff = 1− (1− εm)(1− εM), (2.11)

where in the impermeable case the microscopic porosity corresponds to the percolation thresh-

old εcm = 1 − π/4 (for square fiber arrangement). The comparison shows that the principal

permeabilities are overestimated in all cases, while the permeable case provides better results.

The anisotropy of the permeability tensor cannot be recovered, since we obtain K1
∼= K2, and

therefore the experimental angle of the ellipse (between 45◦ and 55◦) cannot be recovered.
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The reasons can be found in the following uncertainties:

(a) the simplified geometry, which does not account for the real structure of the textile;

(b) saturated/unsaturated conditions for the experimental measurements;

(c) the lack of information on the micro- and macroscopic porosity ratio;

(d) the assumptions on the intra-yarn viscous resistance coefficients;

(e) the REV, which does not correctly account for experimental conditions;

(f) the deformation of the structure of the textile during the injection.

As regards the first issue (a), we run the simulations with the CMT-reconstructed REV (Fig.

2.4(b)). The effective volume fraction of the REV is φeff = 0.37 (see Eq. (4.2)), while the

macroscopic one is φM = 0.56 (computed with the CAD software); thus the microscopic one

is φm = 0.66 (according to Eq. (2.11)). Notice that in this case the geometry is not periodic;

therefore an inlet velocity is imposed to guarantee creeping flow conditions and no-slip condi-

tions are imposed on the walls confining the seven layers. Symmetry conditions are imposed on

the lateral boundaries. Three simulations are run to obtain K0, K45 and K90. The streamwise

pressure drop is computed as the difference of the area-weighted mean static pressure between

the inlet and outlet section for each case. For K45, it is computed with the same strategy

over the diagonal of the computational domain. The principal permeabilities and the angle

of the ellipse obtained are: K1 = 7.29e-10 m2, K2 = 4.72e-10 m2 (Fig. 2.5) and θ = 34.50◦.

The reconstructed geometry provides the possibility to recover the anisotropy of the principal

permeability tensor and a better result for the orientation angle; however the permeabilities

are still overestimated.

As regards issue (b), it has been shown that saturated or unsaturated conditions in the ex-

perimental measurements yield a significant scatter on the permeability data [10, 11]. Some

authors found that saturated permeability is higher than the unsaturated one, other works

report the opposite, while other authors report almost equal values (see [25] and references

therein). These discrepancies are not fully understood and are usually attributed to exper-

imental issues that could modify the saturated and unsaturated permeability ratio, such as

mold deflection, capillary effect, microscopic flow, fiber channeling, and air bubbles [26]. The

unsaturated permeability has been also found to be slightly affected by the test fluid [27].
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With regards to issue (c), the estimation of micro- and macroscopic porosities for the mod-

eling is not possible without an analysis of the structure such as that presented in this work

by scanning electron microscopy or computed micro-tomography. Simplified relations may be

considered or characteristic values assumed; however this information is required for any ana-

lyzed case. The porosity of the yarns and their structure results from the compression stage,

thus simulation of the compression stage would be needed.

In order to address issue (d), transverse [23] and parallel [28, 29] permeability laws can be

used to account for the anisotropy of the yarns. However, the anisotropy of fibers is of minor

importance when the porosity of the yarns is very low, as in this case. Furthermore, if infor-

mation on fiber topology is not available, correlations for aligned or disordered arrangements

should be arbitrarily chosen and would not be representative of the real structure.

As regards issue (e), it is worth to point out that even if using the smallest representative

elementary volume is the most employed approach, it does not allow to recover experimental

conditions. Using a fully-periodic domain, fully-developed flow conditions are retrieved. How-

ever, by means of this approach the permeability is overestimated, also due to the fact that

the viscous pressure loss at the walls is not accounted for. This latter issue is addressed with

the CMT-reconstructed geometry; however the uncertainties remains, as shown. Experimental

guidelines, indeed, foresee a minimum number of textile layers and a minimum size of the REV

to be representative of the textile [11].

With regards to issue (f), the fiber dynamics is known to play a significant role in compaction

and infiltration of fibrous media [16]. However, the problem is rarely addressed because the

hierarchical structure of the textile requires non-standard modeling techniques, thus it is often

neglected.
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2.4 Summary and outlook

In this chapter, the permeability of an 8H Satin weave textile has been analyzed. A stan-

dard CFD approach has been adopted for the numerical prediction of the permeability. It has

been found that using a simplified representative elementary volume allows to estimate the

permeability in the same order of magnitude of the experimental one, however, the numerical

predictions always overestimate experimental data. With this approach, the anisotropy of the

principal permeability tensor obtained experimentally, cannot be recovered. As regards this

latter issue, better results have been achieved using a virtually-reconstructed geometry, ob-

tained by microtomographic data. Anisotropy in the principal permeabilities has been found;

however the experimental angle of the ellipse cannot be recovered and the permeabilities are

still overestimated.

The issues related to the uncertainties in the numerical prediction of the permeability of textiles

have been discussed. The conclusion is that experimental data, such as an analysis by scanning

electron microscopy of the textile or computed microtomography add valuable information on

the structure of the textile, that can be used to tailor numerical simulations for a specific

case. However, such an experimental analysis is not always available and anyway lacks of real

predictive capabilities. Furthermore, the predictions obtained with the virtually-reconstructed

geometry of the textile overestimated the experimental permeabilities. This suggests that the

physics at the fiber scale plays an important role on the effective permeability of the textile

and needs a better understanding.
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Chapter 3

Compression of viscoplastic soft solids

3.1 Introduction

In this chapter, a numerical framework based on computational fluid dynamics for the squeeze

flow of viscoplastic soft solids is developed. In order to validate the model, an epoxy-based

material (i.e. an adhesive) is considered as test fluid. This material has been chosen because

its rheological behavior is known to be well accounted by a viscoplastic constitutive model.

Furthermore, the compaction of adhesives is of practical importance in a wide range of engi-

neering situation where adhesive-bonding techniques are preferred to mechanical fastening.

The compressive forces resulting from the squeeze flow of a specimen of the material are an-

alyzed by experimental, analytical and numerical means. The rheology is modeled according

to a viscoplastic constitutive law (Herschel-Bulkley model), whose parameters are fitted with

experimental data available from a characterization (on cylindrical specimens). An analytical

solution is then generalized to be valid for any initial shape of the specimen (wedge-shaped

in this chapter). A two-phase numerical model for the simulation of the squeeze flow is then

proposed using the commercial CFD solver ANSYS Fluent. The numerical model is intended

as an auxiliary tool, whose utilization in conjunction with the analytical law allows to correctly

predict compressive forces for complex geometries of the specimen. In particular, the aim of

this crossed analysis is to provide valuable information about the limits of each technique and

about how to combine them to accurately predict compaction forces.
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3. Compression of viscoplastic soft solids

Figure 3.1: Experimental system used for the characterization and the squeeze-flow tests.

3.2 Experimental characterization

The squeeze tests were performed using the experimental set-up shown in Fig. 3.1. A squeeze

tool, internally designed, was mounted in a MTS Universal Testing Machine (model Alliance

RF100) [30]. The tests were conducted with two load cells: a 1 kN load cell for the tests on

the cylindrical specimens and a 100 kN one for those on the wedge-shaped specimens. The

tests were performed with a crossbeam velocity between 50 mm/min and 250 mm/min. The

squeeze tool is based on guided parallel plates. The four vertical columns ensure a uniform

distribution of pressure over the specimen. The lower aluminum plate is fixed to the frame

plane, whilst the upper one is assembled to the mobile crossbeam of the universal machine. For

the squeeze, a wooden block covered by kraftliner paper was mounted on the upper plate using

bolts. In order to contain the lateral overflow of the material, for the wedge-shaped specimen

additional aluminum profiles were added to the lower plate. The gap between these profiles and

the wooden block was adjusted to guarantee a friction-free vertical movement. The adhesive

samples were previously prepared on separate plates. The shape of the specimens (cylindrical

or wedge-shaped) was obtained by firstly using a palette for a preliminary modeling and then

accurately finished with a laser-cut steel. Each specimen was tested on its individual plane

used for the preparation, which was correctly positioned and fixed to the universal machine.

Force values were instantaneously recorded by TestWorks R©4 [31].
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3. Compression of viscoplastic soft solids

(a) (b)

Figure 3.2: Schemes for the analytical solution: cylindrical (a) and wedge-shaped (b) geome-
tries. The dimensions are: H ranges from 10 to 25 mm, Lmax is 160 mm, R ranges from 15 to
30 mm and D ranges from 100 to 400 mm.

3.3 Generalized analytical solution

Analytical solutions for squeeze-flow are typically derived for cylindrical samples [32] as shown

in Fig. 3.2 (a). For this case, the following conditions are considered: a constant velocity V =

−dH/dt; an inter-plate volume πR2
maxH, which is assumed to be always full of material and

thus the contribution to the force of the overflow (when squeezing beyond Rmax) is neglected;

a rheology given according to the Herschel-Bulkley model, which in scalar form reads:

τ = τ0 +Kγ̇n; (3.1)

being τ0 the yield shear-stress threshold, K the consistency index and n the power-law index.

This configuration has been previously studied [33, 34], particularly, Adams et al. [35] demon-

strated that for no-slip boundary conditions at the walls and a plasticity number defined as

S = (RVK1/n)/(H2τ
1/n
0 ), in the ranges 0 < S < 100 and 0.1 < n < 1 the mean pressure has

the following form:

p =
F

πR2
= σ0 +

Rτ0
H

[

2

3
+

2

n+ 3

(

2n+ 1

n

)n

Sn

]

; (3.2)

being σ0 the uniaxial yield stress. It is typically assumed that R/H >> 1 and that the

contribution of σ0 is negligible as compared with Rτ0/H, therefore the compressive force takes
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the following form:

F =
2πR3

3H
τ0 +

2πR3K

(n+ 3)H

(

2n+ 1

n

)n(
RV

H2

)n

; (3.3)

However, these two simplifications must be avoided for generalizing the solution to arbitrary

shapes of the sample, see for example Fig. 3.2 (b). For the generalization, the contact area must

be a function of the contact length L. Thus, for cylindrical samples L = R and the contact

area is computed as A = πL2. For wedge-shaped samples this contact area is A = LD. The

definition of the generalized plasticity number S is then:

S =
LV

H2

(

K

τ0

)1/n

; (3.4)

and the generalized expression for the compressive force follows from Eq. (3.2):

F = σ0A+
2LA

3H
τ0 +

2LAK

(n+ 3)H

(

2n+ 1

n

)n(
LV

H2

)n

+O

(

H

L

)2

. (3.5)

The yield stress threshold is straightforwardly defined from the above equation in the limit of

V → 0 and neglecting σ0 as:

τ0 =
3HF

2LA
. (3.6)

When working at constant force, an expression for the velocity as a function of the force can

be obtained from Eq. (3.5) and can be used to compute the separation height as a function

of time as H(tn) = H(tn−1) − V δt, where the explicit expression for the squeeze velocity is

(neglecting O(H/L)2-terms):

V =
H2

L

(

n

2n+ 1

)[(

F − Aσ0 −
2LA

3H
τ0

)

(n+ 3)H

2LAK

]1/n

. (3.7)
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Table 3.1: Fitting of the parameters for the Herschel-Bulkley model. V is the squeeze velocity
[m/s], n the power-law index [−] and K the consistency index [Pasn].

V 0.05 0.05 0.10 0.10 0.25 0.25 Mean Std. Dev.

n 0.30 0.22 0.31 0.35 0.34 0.40 0.32 0.18

K 232.37 251.80 230.73 219.46 325.41 284.03 257.30 0.16

Making dimensionless the force F with the yield-stress force (2LAτ0)/(3H) the dimensionless

compressive force F ∗ is obtained, which is the result of three contributions:

F ∗ = F ∗
s + F ∗

n + F ∗
h . (3.8)

F ∗
s is the dimensionless shear force:

F ∗
s = 1 +

(

3

n+ 3

)(

2n+ 1

n

)n

Sn; (3.9)

which dominates at large S (and large L/H). F ∗
n is a normal force arising from the uniaxial

yield stress σ0. Considering a Von Mises solid [34], σ0 =
√
3τ0 and this force reads:

F ∗
n =

3
√
3

2

H

L
; (3.10)

which is typically relevant in a transition region between S = 1 and S → 0. The last force

F ∗
h encompasses all higher order terms, which are mainly related to surface-fluid interactions.

These include slip effects, surface tension and any other surface potential related to, for ex-

ample, electrostatic forces. This forces are expected to be relevant at small S or equivalently

at small L/H and/or small shear rates (≈ V/H). To approximate the value of this force, we

consider that in the regime of S → 0 the flow is at small shear rates and thus in a Newtonian

plateau and that there is full slip at the walls. Using this assumptions the following force is

obtained [36]:

F ∗
h =

3

2

K

τ0

(

H

L

)2

. (3.11)

Normal and higher-order forces are usually neglected in squeeze-flow analysis but they are the

main forces involved when L/H >> 1, which occurs, for example, at the beginning of the

compression of a geometry as the one in Fig. 3.2 (b).
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The contact length in arbitrary geometries can be approximated as a weighted function between

the initial and the maximum contact length, expressed as a function of the separation height

H as:

L = α

(

Lmax −
Lmax

Hmax

H

)

+ (1− α)Lmax; (3.12)

being α a geometric function defined as:

α =
1

1 + exp
[

−H−β
γ

] . (3.13)

The two fitting coefficients β and γ can be geometrically computed or fitted from CFD and/or

experimental data.

3.4 Viscoplastic rheological model

The analytical solution given by Eq. (3.5), without normal and higher-order contributions,

allows us to use the equipment described in Section 3.1 as a squeeze-flow rheometer. Thus,

the parameters of the Herschel-Bulkley model, n, K and τ0 in Eq. (4.3) are obtained by fitting

experimental data. For these rheometric experiments, cylindrical test samples of 30 mm radius

and 20 mm height are used. The material used is the Spabond 340LV Resin by Gurit [37]. The

experiments were carried out in a range of room temperatures between 294 and 296 K. We

first performed two creeping experiments at constant force (196 and 412 N) to obtain the yield

stress from Eq. (3.6). The mean value obtained for the yield stress was 372.9 Pa with a stan-

dard deviation of 11%. Setting the yield stress to this mean value six experiments at constant

velocity were performed (see Table 3.1) to adjust the values of n and K to experimental data

using Eq. (3.5), without normal and higher-order contributions. The regression coefficients for

all cases are R2 > 0.99. The mean values obtained were n = 0.324 with a standard devia-

tion of 18% and K = 257.30 with a standard deviation of 16%. The use of the squeeze flow

rheometer is especially appropriate for the compression of adhesives, as long as the flow has

the same shear rate values and history as in the compression of the adhesive in real geometries.
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3.5 Numerical fluid-dynamic model

The experimental set-up employed for the characterization of the epoxy-based adhesive is

reproduced using the two-dimensional computational domain shown in Fig. (3.3). The domain

consist in a compression chamber, enclosed between two parallel walls. All the boundaries are

static, except for the upper central wall, which is used for the compression. The adhesive is

modeled as secondary phase and squeezed in the central (thinner) zone of the domain, using

the dynamic mesh technique. The multi-phase model adopted is the Volume-Of-Fluid (VOF)

method. In this approach a single momentum equation is shared between the phases, therefore

the conservation of mass and momentum for the system is given by the incompressible Navier-

Stokes equations as:

∇ · v = 0; (3.14)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+ η∇2v; (3.15)

being ρ the density, p the pressure, v the velocity and η the dynamic viscosity. The tracking

of the interface between the primary (air) and secondary phase (adhesive) is achieved by the

solution of a volume fraction equation, which allows Eq. (3.15) to be shared by the phases

through the properties ρ and η. For the j-th phase the continuity equation reads:

1

ρj

[

∂

∂t
(φjρj) +∇ · (φjρjvj) = Sφj

+
n
∑

i=1

(ṁij − ṁji)

]

; (3.16)

with the first term on right-hand side being a volumetric source and the second the mass

transfer balance between the j-th and the other phase(s). In this case these two term are zero.

The rheology of the adhesive is given by the Herschel-Bulkley model (Eq. 3.1), through the

viscosity as:

γ̇ < γ̇cr : η =
2− γ̇

γ̇cr

γ̇cr
τ0 +K

[

(2− n) (n− 1)
γ̇

γ̇cr

]

; (3.17)

γ̇ > γ̇cr : η =
τ0
γ̇

+K

(

γ̇

γ̇cr

)n−1

; (3.18)

being γ̇cr a critical shear rate. The equations are solved imposing pressure boundary conditions

on the left and right vertical exits, no-slip on the walls. The numerical solution is carried out

by finite volume method using the commercial CFD solver ANSYS Fluent R© v14.0.
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Figure 3.3: Computational mesh and time evolution of the fluid-dynamic solution for the
squeeze-flow of the wedge-shaped specimen with V = 50 mm/min.

We adopt a third order discretization scheme (MUSCL) for momentum and the PRESTO

scheme for pressure. The Semi-Implicit Method for Pressure Linked Equations (SIMPLE) is

used for the pressure-velocity coupling and the transient scheme is first order implicit.
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Figure 3.4: Comparison of analytical and numerical solutions with experimental data for the
squeeze-flow test at constant velocity. The experimental data and numerical solutions are
least-square fitted.

31



3. Compression of viscoplastic soft solids

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

S [−]

F
∗

[-
]

 

 

Experimental
Analytical
CFD

10
−4

10
−2

10
0

10
0

10
5

S [−]

F
∗

[-
]

 

 
F*

s
F*

n
F*

h

V
1

V
2

V
3 L

H
≫ 1

L
H

≪ 1

Figure 3.5: Comparison of the dimensionless analytical and numerical solutions with exper-
imental data for V1 = 50 mm/min, V2 = 100 mm/min and V3 = 250 mm/min . Inset:
decomposition of the analytical solution F ∗ for V2 = 100 mm/min (red) in its contributions.
For L/H ≫ 1 the flow regime is shear-dominated, while for L/H ≪ 1, the flow regime is
dominated by O(L/H)2-order forces. In the transition region normal forces prevail.

3.6 Results and discussion

Experimental and numerical tests at constant velocity have been conducted and compared to

the analytical solution. Dimensional results are reported in Fig. 3.4. The comparison shows

a very good agreement for all cases. The final thickness of the adhesive can be computed by

Eq. (3.6) using the force, the contact area and the yield stress of the adhesive. An additional

dimensionless comparison provides insight into the origin of forces during the squeeze-flow

process, see Fig. 3.5. It can be observed that there are three regimes, each one dominated

for one of the contributed forces in Eq. (3.8). The S > 1 limit is well recovered by the two

approaches. In the S → 0 limit both CFD simulations and experimental results show sig-

nificant oscillations around the expected analytical force. This is due to the nature of forces

involved in this regime (i.e. surface tension, wall friction) that are all of the same order and
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Figure 3.6: Comparison of the analytical solution with experimental data for the squeeze-flow
test at constant force.

interplay, giving a dynamical behavior which has a non-trivial analytical characterization. The

real interplaying forces are not exactly the same as in CFD simulations because these latter

are also affected by numerical diffusion of the interphase in this stage, but they are anyway of

the same order of magnitude. The intermediate regime, in which the normal forces prevail, is

not properly recovered by CFD simulations. The reason is that the yield stress is not defined

in the same way. In the analytical solution we deal with a Von Mises yield criterion but in

the CFD simulation the yield criterion is defined by τ0 and γ̇cr. A Von Mises yield criterion or

advanced pressure-dependent Drucker-Prager one are not usually implemented in CFD with

non-Newtonian rheologies as the conversion from a displacement formulation to a velocity one

requires the use of advanced models for the transport of the stress.

Additional tests at constant force were carried out, but only experimental and analytical results

are reported in Fig. 3.6. CFD simulations at constant force for S < 1 are difficult to carry

out because of the oscillation of forces, as seen in the dimensionless analysis, which makes the

simulation unstable.
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3.7 Summary and outlook

An analytical model for squeeze forces occurring during compaction of viscoplastic materials

has been proposed. The analytical solution has been generalized to be valid for any initial

shape of the specimen before its squeeze. A two-phase numerical model of the squeeze-flow

test has been also proposed. The results obtained with the two approaches showed excellent

agreement with experimental data available for a wedge-shaped geometry of the specimen.

The proposed numerical solution can then be seen as an auxiliary tool to be used in conjunc-

tion with the analytical solution for the prediction of forces in complex geometries.

The analysis and decomposition of the analytical solution in its various contributions, pro-

vides informations on good-engineering practices to apply when performing CFD simulations

of this kind of flows. Particularly, CFD techniques are useful when working at S > 1, oth-

erwise forces can be obtained more efficiently from the analytical expression. If simulations

for S < 1 are needed, it is suggested to elaborate further on surface forces and on yield criteria.

The analytical model developed can be further improved in several ways. For example, in

order to take into account the effect of roughness in thin geometries, the following modeling

approaches have been previously adopted [38]: the use of an effective location of straight walls,

the use of slip conditions, the use of an effective viscosity or the use of a representative porous-

media layer. Another point that could be improved is the use of a temperature-dependent

rheology, including the effects of an eventual curing. The latter would be particularly important

when analyzing compression processes with temporal scales in the same range than those of

curing.
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Chapter 4

Compaction of fiber bundles

4.1 Introduction

In this chapter, the model developed for the squeeze flow of viscoplastic soft solids is applied

for the analysis of the compaction of fiber bundles. In LCM, during the compaction in the

mold, several textile layers are transversely compressed [11]. This results in a deformation

mode which involves elastic deformation, nesting and inter-layer packing. The transverse

compaction of entangled fibrous materials has been studied in considerable detail by the textile

research community [39]; however in the framework of composite manufacturing it has received

relatively little attention. The physics of the compaction is known to depend not only on

the architecture of the fibrous reinforcement, but also on the processing parameters such

as, for example, the compaction speed and dry or pre-impregnated conditions [40]. The non-

linear mechanical behavior of entangled fibrous materials under compaction was first addressed

by Van Wyk [41], who proposed a power-law expression for the response to load in the form:

pc = cφk; (4.1)

where pc is the applied pressure, φ the volume fraction, c and k material parameters. The

model is essentially a non-linear elastic law, which can be used for a large variety of textiles by

fitting the material parameters [42]. Equation (4.1) however, does not account for time-related

effects, such as hysteresis and stress relaxation after loading [43]. Thus, more sophisticated

viscoelastic models have been proposed [44] on the basis of a phenomenological analysis. From

the numerical point of view, the most typical approach relies on the Finite Element Method

(FEM), which is used to study the compaction at the textile-layer scale [45] or at the fiber
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4. Compaction of fiber bundles

scale [46]. For this latter case, alternative discrete simulation techniques have been also pro-

posed [47]. A considerable effort has also been dedicated to describe the textile compaction in

analytical frameworks, for a single textile layer [48] and for multiple layers [49].

In this work we propose a different framework for the analysis of the yarn compaction based

on computational fluid dynamics (CFD). The yarn is modeled as a continuum soft solid using

a viscoplastic constitutive equation, whose rheological parameters are obtained by fitting the

experimental compression curve. For this purpose, a simplified analytical model for the evo-

lution of the shape of the yarns is considered [48], which yields the rheology at the yarn scale

through the fit and information about the evolution of the volume fraction under compaction.

The resulting multi-phase model is solved numerically by computational fluid dynamics, using

the commercial solver ANSYS Fluent R©.
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Figure 4.1: (a) Experimental set-up for the textile compaction test. (b) Obtained experimental
compression curve compared with the dry compression of a 5H weave (20 plies) [2].

4.2 Experimental characterization

The compression curve for the textile characterization has been obtained by compressing var-

ious textile layers. The tests are performed using a universal testing machine MTS with

maximum load of 100 kN [30]. The experimental set-up is shown in Fig. 4.1(a). The tests

are performed by monitoring the displacement of the compression plate and the applied force,

which yield the thickness of the textile layers as a function of the applied pressure. The com-

pression velocity is 1 mm/min (constant) and the number of textile layers is 48, with an initial

thickness of 15 mm. Using the diameter of the compression plates D = 135 mm, the fabric

weight w = 305 g/m2 and the fiber density ρf = 2.46 g/cm3, the evolution of the effective

volume fraction φeff as a function of the thickness d is:

φeff =
npliesw

dρf
; (4.2)

where nplies is the number of textile layers and the thickness d is a function of the applied

force, thus the compaction curve is obtained (see Fig. 4.1(b)). The data is compared with the

dry compression of a 5 harness (5H) satin weave at the same velocity [2], where 20 plies were

used.
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Figure 4.2: (a) Representative elementary volume (REV) extracted from a SEM image and
schematic of the compaction model. (b) Compaction force at the yarn level as a function of
the yarn height and fit of Eq. (4.4). In the inset, comparison of the evolution of the contact
length as a function of the yarn height obtained with the CFD model with that from Eq. (4.5).

4.3 Theoretical model

The response to the compression of fibrous materials is known to be well accounted by a

viscoplastic-type behavior [50]. Here we consider the quasi-static regime of compression, and

the rheology is given by the Herschel-Bulkley model, which in scalar form reads:

τ = τ0 +Kγ̇n; (4.3)

being τ0 the yield stress threshold, K the consistency index and n the power-law index. The

rheology is fitted to the experimental data using the generalized analytical solution for compres-

sive forces of viscoplastic materials derived in Chapter 3 (neglecting normal and higher-order

contributions):

F =
2

3

LcAc

H
τ0 +

2LcAcK

(n+ 3)H

(

2n+ 1

n

)n(
LcV

H2

)n

; (4.4)

where Lc is the contact length, Ac the contact area, H the thickness of the material being

squeezed and V the compression velocity. In order to fit the rheology, the evolution of the

contact length and thus of the contact area must be known.
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Let us then consider the compaction model shown in Fig. 4.2(a). The yarns are assumed

to be of elliptical section, whose initial major and minor axes are respectively L0 and H0.

At the beginning of the compression, we assume that: the contact length and area are zero

(the perpendicular yarns are tangent); the fibers are aligned in a square configuration. A

constant compression velocity V = 1 mm/min is applied and the yarns deform as shown in

Fig. 4.2(a) on the right. It has been shown that the deformation of the yarn width due to the

compressive force is generally small compared with the deformation of thickness [51]; therefore

a reasonable assumption is L0 = L1 [48]. The contact area is a square which expands with

the contact distance during the compression: Ac = L2
c . The evolution of the contact distance

between two yarns can be computed using an analytical solution for the deforming shape of

the yarns [48]:

Lc = L0

(

1− H

H0

)(

4

π
− H

H0

)−1

, (4.5)

which is valid for H/H0 ≤ 1. In our case the yarn width can be obtained from the SEM images,

L0 = L1 = 550 µm (Fig. 4.2(a)), while the yarn height is computed using the distance between

the compression plates and the number of yarns along the thickness (twice the number of plies):

H = d/2nplies. Notice that the initial thickness d0 at the beginning of the compression yields

H0, while the final thickness d1 yields H1. In this case the initial thickness is 18.5 mm, thus

H0
∼= 200 µm, while the final thickness is 10 mm, which yields H1

∼= 100 µm. The correctness

of the estimated final yarn height is confirmed by the SEM image in Fig. 4.2(a). The resulting

evolution of the contact distance as a function on the yarn height is shown in the inset of Fig.

4.2(b).
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4.4 Fit of the rheological law

The rheology of Eq. (4.3) can be fitted using Eq. (4.4), considering that the contact area must

be multiplied for the number of contacts among the yarns inside the specimen. The number

of contacts can be computed from the area of the compression plate Aplate = πD2/4 and the

size of the REV (LREV = 3.25 mm from Fig. 4.2(a)), as long as the number of warp and

weft yarns in a REV is 8. Thus the number of contacts in the equivalent square area of the

compression plate is:

nc = nplies

(

√

Aplate

LREV

8

)2

; (4.6)

which yields the total contact area as Atot
c = Acnc. For the sake of clarity, we remark that

the contact area for the yarns that are in contact with the compressing plates spans the whole

length of the yarns. However, the load applied is carried only by the fibers underneath the

contact areas inside the specimen. This can be seen in Fig. 4.2(a), where the fibers that carry

the load are those in the central zone of the yarn and are shown in red. Therefore, the volume

fraction of fibers φm in the lateral zones remains unchanged during the compression, while in

the central zone it increases as [48]:

φm = φm0

H0

H
; (4.7)

where φm0 is the initial volume fraction before the compression. The fit of the analytical

solution of Eq. (4.4) is shown in Fig. 4.2(b) and yields the coefficients for the Herschel-Bulkley

model: K = 9000 Pasn, τ0 = 100 Pa and n = 1 (Bingham fluid). Notice that, according to the

definition given in Chapter 3 (Eq. 3.4), the plasticity number S ranges between 0 and 52.5,

which is in the correct range for the analytical solution of Eq. (4.4), that is 0 < S < 100.
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4.5 Numerical fluid-dynamic model

The compression is simulated in ANSYS Fluent R© using an available multi-phase model. The

computational domain consists in a compression chamber, enclosed between two parallel walls.

All the boundaries are static, except for the upper wall, which is used for the compression of

the yarn. The yarn is modeled as a secondary phase and squeezed in the central zone of the

domain, reproducing the compression between other two transversal yarns. The multi-phase

model adopted is the Volume-Of-Fluid (VOF) method. In this approach a single momentum

equation is shared between the phases; therefore the conservation of mass and momentum for

the system is given by the incompressible Navier-Stokes equations as:

∇ · v = 0; (4.8)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+ µ∇2v; (4.9)

being ρ the density, p the pressure, v the velocity and µ the dynamic viscosity. The tracking of

the interface between the primary (air) and secondary phase (yarn) is achieved by the solution

of a volume fraction equation, which allows Eq. (4.9) to be shared by the phases through the

properties ρ and µ. For the j-th phase the continuity equation reads:

1

ρj

[

∂

∂t
(φjρj) +∇ · (φjρjvj) = Sφj

+
n
∑

i=1

(ṁij − ṁji)

]

; (4.10)

where the first term on right-hand side is a source and the second the mass transfer between the

phases. The rheology of the secondary phase (i.e. the yarn) is given by the Herschel-Bulkley

model (Eq. (4.3)), through the viscosity as:

γ̇ < γ̇cr : µ =
2− γ̇

γ̇cr

γ̇cr
τ0 +K

[

(2− n) (n− 1)
γ̇

γ̇cr

]

; (4.11)

γ̇ > γ̇cr : µ =
τ0
γ̇

+K

(

γ̇

γ̇cr

)n−1

; (4.12)

being γ̇cr a critical shear rate. The mass transfer between the phases is zero, while the evo-

lution of the fiber volume fraction is modeled through the mass source term in the volume

fraction equation (4.10).
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4. Compaction of fiber bundles

From a phenomenological point of view, the secondary phase (the yarn) can be thought as the

continuum description of the section of the fiber bundle in a suspending fluid (air). Therefore

the density of the secondary phase before the compression is the weighted mean:

ρ = φm0ρf + (1− φm0)ρair. (4.13)

When the fibers underneath the contact length compact, their volume fraction increases due

to the reduction of air gaps between them, and the mass of the secondary phase decreases.

This effect is modeled through the mass source term in Eq. (4.10) as:

Sφj
= −(1−∆φm)ρair

∆t
; (4.14)

being ∆t the computational time step and ∆φm the variation of the volume fraction between

two consecutive time steps. The evolution of the volume fraction as a function of the yarn

height is assumed to follow Eq. (4.7), where the yarn height is computed as:

H = H0 −∆H = H0 − V t; (4.15)

being t the simulation time. The contact length is computed on the upper wall of the domain

at each time step as the total area of the cells whose value of the volume fraction is unitary.

The contact length is then squared to obtain the contact area. The force is finally computed

as the contact area times the normal stress on the wall (given by pressure and normal viscous

contributions).

The equations are solved imposing pressure boundary conditions on the left and right vertical

exits and no-slip on the walls. The numerical solution is carried out by finite volume method

using the commercial CFD solver ANSYS Fluent R© v14.0. We adopt a third order discretization

scheme (MUSCL) for momentum and the PRESTO scheme for pressure. An implicit method

is chosen for the volume fraction equation and a compressive scheme is applied to reduce

the diffusion at the interphase. The Semi-Implicit Method for Pressure Linked Equations

(SIMPLE) is used for the pressure-velocity coupling and the transient scheme is first order

implicit.
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Figure 4.3: (a) Evolution of the fiber volume fraction during the compression according to the
numerical model. (b) Comparison of the compaction force obtained with the CFD model with
experimental data. In the inset, evolution of the fiber volume fraction φm according to the
analytical model of Eq. (4.7).

4.6 Results and discussion

According to the yarn compaction model proposed, at the beginning of the compression the

contact area is zero, which explains the difference between the analytical curve and the exper-

imental data when the thickness of the yarns is very close to the initial value. However, the

assumption on the initial contact area is a reasonable choice, since an initial value is difficult

to estimate and would lead to non-univocal fitting curves. The scatter of the experimental

data at this stage of the compression can be attributed to the higher-order forces discussed in

Chapter 3, as, for example, electrostatic forces or stick-slip forces among the fibers.

The results obtained with the numerical model are shown in Fig. 4.3(a) for an initial volume

fraction φm0 = 0.35. The volume fraction φm evolves for the fibers underneath the contact

length, while for those in the laterals zones it remains unchanged during the compression.

The evolution of the contact length obtained is shown in the inset of Fig. 4.2(b), where a

significant difference with the analytical model of Eq. (4.5) is observed. This discrepancy is

due to the difficulty to properly recover the curvature of the yarn close to the upper wall on the

computational mesh (Fig. 4.3(a)). The contact area indeed has a discontinuity at the beginning

of the compression, which affects its subsequent evolution. This issue can be observed also in

the compressive force. The compaction force for the whole specimen is obtained multiplying
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the force on a single yarn by the total number of contacts in the specimen (Eq. (4.6)). The

force obtained numerically is compared with the experimental curve in Fig. 4.3(b), which

shows that, at the beginning of the compression, the discontinuity in the contact length affects

the evolution of the force. For high compression rates the force is very well recovered, which

means that the difficulty in the CFD solution lies mainly in the discretization of the ellipse at

the beginning of the compression. This issue also justifies the small discrepancy in the volume

fraction between the numerical simulation and the input analytical of Eq. (4.7), shown in the

inset of Fig. 4.3(b).

4.7 Summary and outlook

In this chapter, a phenomenological model for the analysis of the compaction of fiber bundles

has been proposed. The yarn has been modeled as a viscoplastic soft solid, whose rheology

has been obtained from experimental data using a simplified model for the evolution of the

yarn shape. The proposed model addresses the analysis of the compaction of entangled fibrous

materials in a non-conventional way, that is by computational fluid dynamics.

The results obtained are encouraging. The experimental compressive force yielded by the

compaction test is very well recovered for high compression ratios. For low compression ratios,

such as, at the beginning of the compression, the evolution of the contact area yielded by the

CFD model significantly differs from the analytical model. This also affects the compressive

force, which in this regime cannot be properly recovered. This issue has been found to be

associated mainly with the discretization of the ellipse representative of the shape of the yarn

in 2D. Indeed, if the aspect ratio of the ellipse is high, such as for the case considered, the cur-

vature close to the compressive wall cannot be properly recovered on a Cartesian discretization

(without using excessively fine meshes).

As further developments of the proposed model, it is suggested to consider shear-thickening

behavior for the rheology of the yarns. This would allow, for example, to include information

about friction among the fibers or stiffening effects due to out-of-plane constraints. The slip

conditions at the walls (i.e. with the transversal crossing yarns) may be also studied as well

as lateral contact between the yarns.
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Chapter 5

Dilute viscoelastic suspensions

5.1 Introduction

In this chapter, the coupled method for the direct numerical simulation of mesoscopic suspen-

sions is developed. The test fluid is a dilute viscoelastic suspension of polymeric molecules.

One of the most commonly adopted practices for the simulation of these suspensions relies

on macroscopic constitutive equations for the polymeric extra stress, derived from molecular

models and solved via well-established numerical methods [52]. The advantage of this ap-

proach is the low computational cost associated, the drawback is that some kinetic models

does not have a closed-form continuous counterpart. With regards to the finitely extensible

non-linear elastic (FENE) model for example, a rheological law can only be derived under

closure approximations, i.e. FENE-P, FENE-LS [53]. The resulting models are then able to

phenomenologically describe the basic flow features but the underlying theoretical assumptions

can hinder the retrieval of relevant viscoelastic phenomena.

In a more general modeling strategy, the kinetic origin of the molecular models is retained [54].

Methods using this approach are generally described as micro-macro models, due to the sepa-

rated solution of the micro and macro scales. Continuity and momentum equations are solved

using continuous equations (macro-scale) and kinetic equations are solved by stochastic or

deterministic methods (micro-scale) [55]. In this framework, one of the most popular method-

ologies is the CONNFFESSIT approach, where a finite element solution of the macroscopic

equations is combined with stochastic simulations for the dumbbell configuration [56]. One

of the major issues concerned with this approach is the high computational expense and the

embedded statistical noise, which can be filtered using variance reduction techniques [57].
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5. Dilute viscoelastic suspensions

Another similar and commonly used approach is the Brownian configuration field method [58].

This method already embeds efficient variance reduction, as long as individual molecules are

clustered in continuous configuration fields according to their initial configuration and applied

force, but the computational cost of the stochastic simulation is anyway a limit.

An alternative approach for noise reduction and faster computations consists in the solution

of an equivalent Fokker-Planck equation for the probability density of the dumbbell configu-

ration. However, a literature review reveals that due to the dimensionality of the problem and

the lack of efficient numerical methods to solve the Fokker-Planck equation, little progress has

been done in this framework [55] and no method prevail. Relevant recent work about the direct

solution of the Fokker-Planck equation for complex flows relies on a Galerkin spectral element

technique for 2D [59] and its extension to 3D [3]. Another group of promising methods are

those that approximate the solution of the Fokker-Planck equation reducing the dimensionality

of the problem. This order-reduction can be done a priori, like in the lattice-Fokker-Planck

method [60], on line like in the proper generalized decomposition [61] or a posteriori like in

the proper orthogonal decomposition [62]. All these techniques aim to systematically reduce

the degrees of freedom and therefore the computational expense.

In this work we focus on direct deterministic numerical methods, therefore no approximation

occurs beyond mesh resolution. The proposed approach relies on a previous work by Ammar

[63] about a lattice Boltzmann solution of the Fokker-Planck equation for homogeneous flows.

Recently this method has been also theoretically analyzed [64] and applied for the solution of

a population balance equation [65] and for the Fokker-Planck equation [66]. However, none

of the previous works [63–66] deals with the coupling of the kinetic solution with macroscopic

fields, thus we investigate efficient ways to exploit it in multi-scale simulations.
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5. Dilute viscoelastic suspensions

Figure 5.1: Overview of the proposed approach. λP and λF are the time-scales associated
respectively with the polymer molecules and the viscosity of the solvent.

5.2 Theoretical model

5.2.1 Hydrodynamic system

Let us consider a polymeric solution as a blend between a Newtonian and a viscoelastic fluid.

Assuming the flow to be incompressible and isothermal, mass and momentum conservation

reads:

∇x · v = 0; (5.1)

ρ
∂v

∂t
+ ρv · (∇xv) = −∇xp+∇x · σ; (5.2)

where ρ is the density, p the pressure, v the velocity vector and the subscript x denotes

operators in physical space. The total stress tensor σ, embeds contributions from both the

Newtonian solvent σs and the polymeric solute σp, therefore σ = σs + σp. Denoting by µs

the dynamic viscosity of the solvent, σs is given as:

σs = µs

(

∇xv+ (∇xv)
†
)

= µsγ̇; (5.3)

being γ̇ the rate of strain tensor. In order to close the hydrodynamic system, an additional

material model must be solved for the viscoelastic contribution σp.
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5. Dilute viscoelastic suspensions

5.2.2 Viscoelastic model

In the simplest micro-mechanical approach for polymer rheology, molecular chains are modeled

by two beads and a spring connector, that is by a non-rigid dumbbell immersed in a fluid. A

general kinetic model can then be derived considering the equations of motion of the beads in

the dumbbell, namely the equilibrium of inertial, frictional, Brownian and connector forces [67].

For a j-th bead located in ri, the equilibrium yields the so called Langevin equation:

mj
d

dt

(

drj
dt

− v (rj)

)

= ζj

(

drj
dt

− v (rj)

)

+ σ
dWj

dt
+ Fj

c; (5.4)

with m being the mass of the bead, ζ a drag coefficient, σ a coefficient for the standard Wiener

process W and Fc the connector force. Indicating with kB the Boltzmann constant and T

the absolute temperature, σ =
√
2kBζT from the principle of equipartition of energy [52].

Assuming high friction regime and thus over-dumped Brownian dynamics [68], the inertial

term on the left-hand side can be dropped and, indicating with ξ = r2 − r1 the end-to-end

vector of a dumbbell, yields the following (Itô) stochastic differential equation:

dξ

dt
= κ · ξ − 2

ζ
Fc (ξ) +

√

4kBT

ζ

dW

dt
; (5.5)

where W is a standard Brownian motion (W2 −W1) /
√
2 and the symbol κ has been adopted

for the transpose of the velocity gradient tensor (∇xv)
†. The peculiarity of the dumbbell model

lies in the expression of the connector force law H(ξ). In this work we are concerned with

the finitely extensible non-linear elastic model, therefore indicating with h the spring constant

and ξ0 a finite extensibility parameter, the connector force reads:

Fc (ξ) = H(ξ)ξ =
h

1− ||ξ||2 /ξ02
ξ; (5.6)

with ||·|| indicating vector norm. This entropic force law, originally proposed by Warner [69],

exhibits linear behavior for small extensions and the finite length ξ0 in the limit of an infinite

force. In a stochastic approach, Eq. (5.5) should then be stochastically solved for the dumbbell

configurations in the random process W.
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Using stochastic analysis, the ordinary differential equation (5.5), can be associated with

a partial differential equation for a probability density function (PDF), which can then be

deterministically solved instead of a large number of realizations for the Brownian driver.

In this case the resulting probability density function ψ (x, ξ, t) satisfies the Fokker-Planck

equation [70]:

∂ψ

∂t
+ v · (∇xψ) +∇ξ ·

[(

κ · ξ − 2

ζ
Fc (ξ)

)

ψ

]

=
2kBT

ζ
∇2

ξψ; (5.7)

which is also called Smoluchowski equation in polymer science. Index ξ on operators indicates

that they act in configuration space. Due to its dimensionality, the solution of Eq. (5.7) is

non-trivial and we proceed as detailed in the next section.

5.2.3 Solution strategy

In order to solve the Fokker-Planck equation directly, we consider a time-splitting-like pro-

cedure similar to that proposed by Lozinski and Chauvière [59]. Following this idea, the

operators acting in the configuration space are separated from those acting in the physical

space. In this way Eq. (5.7) can be firstly solved in the configuration space for an intermediate

distribution function ψn∗
, which is then used for the solution in the physical space. We adopt

a mixed explicit/implicit framework:

ψn∗ − ψn

∆tξ
= −∇ξ ·

[(

κ · ξ − 2

ζ
Fc (ξ)

)

ψn

]

+
2kBT

ζ
∇2

ξψ
n; (5.8)

ψn+1 − ψn∗

∆tx
+ v ·

(

∇xψ
n+1
)

= 0; (5.9)

thus Eq. (5.7) reduces to an advection-diffusion equation in the configuration space (5.8) and

an advection equation in physical space (5.9). Let us now firstly focus on Eq. (5.8): the

space scaling is achieved considering a relaxation time θ = ζ/4h and a dimensionless finite

extensibility parameter b = ξ20h/kBT , therefore ξ is made dimensionless with
√

kBT/h, κ with

θ−1 and time with θ, thus the resulting dimensionless equation reads:

ψn∗ − ψn

∆t̂ξ̂
= −∇ξ̂ ·

[(

κ̂ · ξ̂ − 1

2
H(ξ̂)ξ̂

)

ψn

]

+ α̂∇2
ξ̂
ψn; (5.10)
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with the dimensionless diffusion coefficient being α̂ = 1/2.

From now on, the convection vector of ψ in the configuration space (terms in round brackets

on right-hand side of Eq. (5.10)) will be indicated with u for convenience. The reader should

notice that the scaling of the velocity gradient tensor κ represents the link between the physical

velocity field and the convection vector u through the relaxation time θ of the polymer. On

the basis of this consideration, we define a microscopic (or local) Weissenberg number that

will be used later, based on the second invariant of the rate of strain tensor as:

Wim := θIIγ̇ = θ
1

2

[

(tr(γ̇))2 − tr(γ̇2)
]

(5.11)

According to the adopted scaling, the connector force law H(ξ) in Eq. (5.6) in dimensionless

form reads as:

H(ξ̂) =
[

1− ||ξ̂||2/b
]−1

. (5.12)

Equation (5.10) with the connector force law (5.12) is therefore the final dimensionless equa-

tion to be solved in the configuration space. We assume the dumbbells to be always laying in

the same plane, therefore the configuration space is two-dimensional and the dumbbell exten-

sibility domain (support of the PDF) results in a disc of radius
√
b. Equation (5.10) is solved

for a solution of ψn∗
for the local convection vector u at each point in a domain. The details

about the numerical method together with its optimization will be extensively discussed later.

The obtained intermediate ψn∗
should be convected in physical space by Eq. (5.9) according

to the second stage of the operator-splitting procedure. However, we note that the convection

of the full PDF in an Eulerian framework would require a prohibitively amount of data to be

stored and transported. This issue can be overcome considering that the final target for the

hydrodynamic system is the viscoelastic stress tensor. Therefore, we proceed by computing

an intermediate stress tensor, which is convected in physical space in place of the relative

distribution. Being 〈〈·〉〉 the ensemble averaging operator, the intermediate dimensionless

viscoelastic stress tensor σ̂n∗

p is calculated from ψn∗
using the Kramers expression [54]:

σ̂n∗

p = 〈〈H(ξ̂)ξ̂ ⊗ ξ̂〉〉 − I =

∫

||ξ̂||2<b

ψn∗
(H(ξ̂)ξ̂ ⊗ ξ̂)dξ̂ − I.
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Applying the ensemble average to Eq. (5.9) yields:

σ̂n+1
p − σ̂n∗

p

∆tx
+ v ·

(

∇σ̂n+1
p

)

= 0. (5.13)

In the iterative solution adopted, this procedure is formally equivalent to the convection of

the PDF before computing stresses. Furthermore, the conservation of stresses is analogous to

the conservation of the second order moment of the distribution, which is actually the target

quantity. The advantage of this approach is that the second stage for the solution of the

Fokker-Planck equation (5.9), reduces to the convective transport of three scalar quantities,

one for each component of the symmetric stress tensor.

Finally, the dimensionless stress tensor is scaled-up to its corresponding in the physical space,

to serve as volumetric source term in the momentum equation (5.2). Indicating with nc the

number of polymer chains per unit volume, an equivalent polymer viscosity can be defined as

µp = θnckBT and the extra stress is scaled as [71]:

σp =
µp

θ

(

b+ 4

b

)

σ̂n+1
p . (5.14)
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5.3 Numerical methods

5.3.1 Finite Volume Method

The macroscopic governing equations (5.1) and (5.2) and the transport of stresses (5.13) are

solved by finite volume method (FVM). In this approach, transport equations are numerically

solved on a discretized computational domain (mesh) and the conserved variables are calculated

at cell centers. Partial differential equations are therefore converted to algebraic equations by

integration about the cells (or control volumes), for example Eq. (5.2):

∫

Vc

ρ
∂v

∂t
dV +

∮

ρv · (∇xv) dA =

∮

(−∇xp+∇x · σ) dA. (5.15)

Equation (5.15) is then applied to each control volume and its neighboring cells in the domain,

resulting in a system of algebraic equations with sparse coefficient matrix to be solved. Fluxes

at cell faces, which are required for convective terms, can then be interpolated using several

numerical schemes: we adopt a third order quadratic upwind scheme (QUICK) for momentum

(5.2) and transport of stresses (5.13) and a second order scheme for pressure interpolation.

The Semi-Implicit Method for Pressure Linked Equations (SIMPLE) is chosen for the pressure-

velocity coupling. For the sake of clarity, we remark that despite the hyperbolic nature of Eq.

(5.13), the solution is sufficiently smooth to be solved with a third order scheme. The interested

reader can refer for example to [72] for details on the methods.

5.3.2 Lattice Boltzmann Method

The advection-diffusion equation for the FENE model (5.10) is solved by lattice Boltzmann

method (LBM). This mesoscopic approach relies on the Boltzmann transport equation, whose

discrete form in the Bhatnagar-Gross-Krook (BGK) approximation of the collision operator,

reads as [73]:

fi

(

ξ̂ + ciδt̂, t̂+ δt̂
)

− fi

(

ξ̂, t̂
)

= −1

τ

(

fi

(

ξ̂, t̂
)

− f eq
i

(

ξ̂, t̂
))

; (5.16)

with δt̂ being the time step, fi the discrete particle distribution functions and ci the associated

microscopic velocity vectors.
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Figure 5.2: Lattices and relative discrete distribution functions: five links for D2Q5 (black
color) and four additional links for D2Q9 (gray diagonals).

The equilibrium distribution function f eq
i can be derived, for example, via second-order Taylor

expansion in the Mach number of the Maxwell-Boltzmann equilibrium [74]:

f eq
i =

(

1 +
ciu

c2s
+

(ciu)
2

2c4s
− ||u||2

2c2s

)

ωiψ; (5.17)

where cs is the lattice speed of sound that, indicating with δξ̂ the lattice spacing and thus

c = δξ̂/δt̂ the lattice speed, is defined as cs = c/
√
3. The reader should notice that in this

case we retain the tilde notation for space and time for analogy with the equation being solved

(5.10), but rigorously we should consider dimensionless lattice units. Macroscopic quantities

can be recovered from the moments of the distribution function:

ψ =
∑

i

fi =
∑

i

f eq
i ; (5.18)

ψu =
∑

i

cif
eq
i ; (5.19)

ψ
(

uu+ c2sI
)

=
∑

i

cicif
eq
i ; (5.20)

which also allow to recover the macroscopic equation (5.10) and an expression for the lattice

relaxation time by asymptotic expansion (Chapman-Enskog procedure) [63]. Let us drop the
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tilde notation for readability and denote with Ωi the collision operator, that is, the terms on

right-hand side of Eq. (5.16). Considering a 2-nd order Taylor expansion of the post-collision

term (first term on the left-hand side), Eq. (5.16) yields:

Ωi (f) ≈ (∂t +∇ · ci) fi +
1

2

(

∂2t + 2∂t∇ · ci +∇∇ : cici
)

fi. (5.21)

Let us also consider the following expansions of the time derivative ∂t and distribution function

fi in terms of a small formal number ǫ (spatial derivative is not expanded):

∇ = ε∇1 +O
(

ǫ2
)

; (5.22)

∂t = ǫ∂t1 + ǫ2∂t2 +O
(

ǫ3
)

; (5.23)

fi = f i
eq + ǫf i

(1) + ǫ2f i
(2) +O

(

ǫ3
)

. (5.24)

Applying (5.23) and (5.24) in Eq. (5.21) yields the scale-separated form (5.25) and (5.26).

Combining to get rid of higher order derivatives yields (5.27).

(∂t1 +∇ · ci) f i
eq = − 1

τδt
f i

(1); (5.25)

∂t2f i
eq + (∂t1 +∇ · ci) f i

(1) +
δt

2
(∂t1 +∇ · ci)2 f i

eq = − 1

τδt
f i

(2); (5.26)

∂t2f i
eq +

(

1− 1

2τ

)

(∂t1 +∇ · ci) f i
(1) = − 1

τδt
f i

(2). (5.27)

Using now the 0-th order moment (5.18) and the condition (5.28) on the non-equilibrium

distribution functions, yields (5.29) and (5.30):

∑

i

f i
neq =

∑

i

f i
(1,2) = 0; (5.28)

∂t1ψ +∇ · (ψu) = 0; (5.29)

∂t2ψ +

(

1− 1

2τ

)

∇ ·
∑

i

cif i
(1) = 0. (5.30)
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Recovering f i
(1) from Eq. (5.25), the sum in (5.30) becomes (5.31), rearranging (5.32):

∑

i

cif i
(1) =− τδt

∑

i

ci (∂t1 +∇ · ci) f i
eq

=− τδt
(

∂t1 (ψu) +∇ ·
[

ψ
(

uu+ c2sI
)])

; (5.31)

∑

i

cif i
(1) = −τδt

(

u (∂t1ψ +∇ · (ψu)) + c2s∇ψ
)

. (5.32)

Finally using (5.32) into (5.30) and reassembling scales, yields the final macroscopic equation:

∂ψ

∂t
= −∇ξ · (uψ) + δt

(

τ − 1

2

)

c2s∇2
ξψ; (5.33)

that from the comparison with (5.7), gives the following expression for the lattice relaxation

time (introducing again the tilde notation):

τ =
α̂

δt̂cs2
+

1

2
. (5.34)

Given the advective-diffusive nature of Eq. (5.10), the numerical solution can be carried out

on two lattice topologies, D2Q9 and D2Q5 (Fig. 5.2). The domain length l is imposed to be

20 percent larger then the domain of existence of the PDF, therefore indicating with N the

number of nodes, the lattice spacing δξ̂ is given by l/N . The discrete velocities ci and weights

ωi for the D2Q9 lattice are:

ci =











(0, 0) i = 0

(±c, 0), (0,±c) i = 1, 2, 3, 4

(±c,±c) i = 5, 6, 7, 8

ωi =











4/9 i = 0

1/9 i = 1, 2, 3, 4

1/36 i = 5, 6, 7, 8

and for the D2Q5 lattice:

ci =

{

(0, 0) i = 0

(±c, 0), (0,±c) i = 1, 2, 3, 4
ωi =

{

1/3 i = 0

1/6 i = 1, 2, 3, 4
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Figure 5.3: Shaded surface of the analytical equilibrium PDF (Eq. 5.35) on a 1,681 DoF lattice
(a) and ℓ2-norm convergence of ψ with τ = 0.55 (b).

5.3.3 Coupled algorithm

The numerical solution of the coupled model has been carried out using the commercial CFD

code ANSYS Fluent R©. The lattice Boltzmann solution is called at cell centers as a sub-grid

routine via compiled-C user defined function (UDF). The numerical procedure is as follows:

1. solution of the governing equations for v and p by FVM: Eq. (5.1) and (5.2);

2. sub-grid lattice Boltzmann solution of the FENE kinetic equation: Eq. (5.10);

3. computation of the local viscoelastic stress tensor: Eq. (5.13);

4. convective transport of the viscoelastic stresses by FVM: Eq. (5.13);

5. addition of the extra-stress to the momentum equation: (Eq. 5.2).

The procedure is iteratively repeated until global convergence. The internal convergence cri-

terion for the FVM iterations (step 1 and 4 of the above algorithm) is a 10−8 residual, while

for global convergence (between step 5 and 1 of the next loop) is 10−4.
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Figure 5.4: Start-up plane Couette flow: shaded surface of the equilibrium PDF for Wim =
5 on a 1,681 DoF lattice (a) and dimensionless shear stress evolution σ̂pxy for different Wim
on a D2Q9 lattice with 3,721 DoF and τ = 0.55 (b).

The standard test case of the viscoelastic flow around a confined cylinder (used for the vali-

dation, see Section 5.4.2) has a steady-state solution. Thus, a proper choice of the time steps,

both in the configurational and physical space, is needed. The configurational-space time step

∆tξ is the one needed to reach the steady state of the local viscoelastic stress, which is dy-

namically checked in each cell. It should be noticed that several internal time steps in lattice

units δt̂ are needed to reach ∆tξ. The physical-space time step ∆tx is chosen in order to

obtain an equilibrium between accuracy and performance, as done in other operator-splitting

approaches [3].
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Figure 5.5: Error convergence for Wim = 1 and 5 on the two lattices (a) and stability map for
D2Q9 and D2Q5 lattices (b).

5.4 Model analysis

5.4.1 Sub-grid solution

In this section, the indexes introduced in Section 5.2 are omitted for readability. We analyze

the sub-grid solution of the Fokker-Planck equation by a lattice Boltzmann method in terms

of: its relaxation towards equilibrium, evolution to steady-state solutions, numerical errors,

stability range and computational time.

The relaxation of the probability density ψ(ξ̂, t̂) to equilibrium is tested considering that for

null velocity gradient κ̂, an analytical solution for Eq. (5.10) can be found in the form [63]:

ψeq = H(ξ̂)−b/2

[
∫

H(ξ̂)−b/2dξ̂

]−1

; (5.35)

which for a dimensionless dumbbell extensibility b = 10 (constant throughout this chapter),

yields the equilibrium distribution shown in Fig. 5.3(a).
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Table 5.1: Comparison of the computational time [s] and relative numerical error [%] for the
two lattices for τ = 0.55 and τ = τmax (start-up plane Couette flow at Wim = 5).

stencil DoF = N2 1,681 3,721 6,561 10,201 14,641

D2Q9

τ = 0.55 0.98 4.88 15.24 36.86 80.54

τ = τmax 0.33 0.87 2.48 4.63 8.43

speed-up 3.0 5.6 6.1 8.0 9.6

error 0.5357 -0.1933 -0.1538 -0.1690 -0.1092

D2Q5

τ = 0.55 0.62 3.11 6.45 9.93 14.24

τ = τmax 0.2 0.63 1.93 3.92 7.03

speed-up 3.1 4.9 3.4 2.5 2.0

error 0.0764 -0.0594 -0.0297 -0.0347 -0.0198

Given an initial distribution function ψ0 (constant in this case), satisfying the normality con-

dition
∫

ψ(ξ̂)dξ̂ = 1, the relaxation rate and error convergence are analyzed by an ℓ2-norm

with respect to the reference solution ψeq defined as:

||ε||2 =
1

N

N
∑

k=1

√

ψ2
eq − ψ2

t̂
; (5.36)

being ψt̂ the distribution function at time t̂. The convergence criterion for relaxation is a 10−8

residual calculated as backward finite difference on the norm. The analysis for the two lattices

shows that the error of the 8-neighbors lattice is slightly larger than that of the 4-neighbors

one (see Fig. 5.3(b)).

With regards to the analysis of non-null κ̂ gradient, we examine the time evolution of the shear

stress σ̂pxy for a start-up planar Couette flow [0, κ̂xy; 0, 0]. The initial distribution function ψ0 is

in this case (as in the rest of the paper) given as Eq. (5.35). According to its definition (5.11),

in this case the local Weissenberg number corresponds to the magnitude of the component κ̂xy

itself. The resulting steady-state PDF for Wim = 5 is shown in Fig. 5.4(a), while the stress

evolution for varying Wim is shown in Fig. 5.4(b). The error analysis has been carried out

for Wim = 1 and Wim = 5 and is shown in Fig. 5.5(a). To allow a proper visualization of the

comparison, the shear stress has been normalized using the value obtained with the highest

number of nodes σ̂pxy/σ̂
ref
pxy for each case. Notice as for a higher Wim the solution requires a

higher number of nodes to converge, in particular for the D2Q9 lattice.
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This behavior can be associated with the shape of the PDF at steady-state, that for lower

Wim is closer to the initial condition. More details about error analysis of lattice Boltzmann

methods for Fokker-Planck equations can be found in [63, 66].

An analysis of the stability domains for the two tested lattices has been also carried out for

Wim in the range 1 to 10. The results show that the stability range of the D2Q9 is larger than

that of the D2Q5 lattice in the region of low Wim and high DoF (Fig. 5.5(b)). Despite the

increased stability, the error of the 8-neighbors lattice is also slightly larger than that of the

4-neighbors one (Fig. 5.5(a)).

Table 5.1 shows the comparison of the computational time required by the two lattices to

converge to steady-state for the start-up plane Couette flow at Wim = 5, using the minimum

relaxation time τ = 0.55 and the maximum stable allowed on the basis of the stability map.

The tested CPU is an Intel c© Xeon c© X5650 2.67GHz. The D2Q5 lattice requires less compu-

tational time due to the reduced number of links and therefore of computational operations,

however the speed-up for the D2Q9, when moving from τmin to τmax, is greater due to the

larger stability range. The relative numerical error introduced increasing the relaxation time

for the two lattices is anyway always lower than 1% and the maximum speed-up achievable is

nearly ten times for the D2Q9 lattice.
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Figure 5.6: Mesh layout close to the cylinder surface (2 m length and 1,770 cells displayed).

5.4.2 Validation

The coupled model is validated against the benchmark problem of two-dimensional viscoelastic

flow around a cylinder confined between two parallel plates [52]. In order to save in compu-

tational time, only half of the domain is studied and symmetry conditions are applied on the

lower boundaries. The domain extent is 4 m length (L), 0.5 m height (H) and the hole is 0.25

m radius (R) centered in the origin. The ratio of the radius of the cylinder to the half-width of

the channel (blockage) has been chosen to be Λ = 0.5 and the ratio of the solvent to the total

zero-shear-rate viscosity is β = µs/(µs+µp) = 0.59 [3, 71]. The mesh layout close to the cylin-

der surface is shown in Fig. 5.6, where only 2 m length and 1,770 cells are displayed to allow a

proper visualization of the mesh layout. The boundary conditions are: stream-wise periodicity

between inlet and outlet; no-slip for momentum and homogeneous Neumann for convection of

stresses on the hole and upper boundary (walls). Indicating with vref the reference velocity at

inlet (or outlet) of the periodic domain, we define for this problem a macroscopic (or global)

Weissenberg and Reynolds number as:

WiM =
vref
R
θ = γ̇refθ; ReM =

ρvrefR

µ
. (5.37)

The Reynolds number is kept constant to 10−3 for steady-state creeping flow. In order to

test the FVM mesh independence, the solution has been carried out on three different grids,

respectively of 15,000 (M1), 25,000 (M2) and 40,000 (M3) cells for WiM = 0.6. The number

of nodes and relaxation time for the sub-grid solution are N = 128 and τ = 0.8 (D2Q5). The

obtained profiles of dimensionless viscoelastic stresses on the symmetry plane and on the cylin-

der surface are consistent with those obtained by Chauvière and Lozinski [3] with a Galerkin
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Table 5.2: Comparison of the calculated drag factor with the results obtained by Chauvière
and Lozinski [3] for different Weissenberg number.

WiM Cµ
D Cµ

D [3] Cp
D Cp

D [3] C
σp

D C
σp

D [3] CD CD [3]

0.6 6.2103 6.2248 1.9342 1.9980 0.6769 0.6696 8.8216 8.8925

0.9 5.8497 6.0175 1.9061 1.9953 0.5915 0.5393 8.3474 8.5521

spectral element method for the 2D case (Fig. 5.7). We also report the contours of dimen-

sionless dumbbell elongations in the domain (Fig. 5.8) and of the dimensionless viscoelastic

stresses (Fig. 5.9). These latter are reported also for the case WiM = 0.9 in Fig. 5.10. As

further validation we compare a drag coefficient defined as follows:

CD =
Fx

4πR(µs + µp)vref
; (5.38)

with Fx being the total drag force on the cylinder surface (with polar angle ϑ):

Fx = 2

∫ π

0

[(

−p+ 2µs
∂vx
∂x

+ σpxx

)

cosϑ+

(

µs

(

∂vy
∂x

+
∂vx
∂y

)

+ σpxy

)

sinϑ

]

Rdϑ. (5.39)

In order to compare the results with those obtained by Chauvière and Lozinski [3], the drag

factor CD is split into pressure Cp
D, viscous C

µ
D and viscoelastic contributions C

σp

D . The anal-

ysis (Table 5.2) show very good agreement for WiM = 0.6, the relative error on the total

drag factor is below 1%. On the other hand, for WiM = 0.9 the error is around 2.5%. We

noticed that despite a converged solution can be achieved with increasing WiM , the accuracy

decreases. The cause of this decrease in accuracy can be sought in the discretization of the

PDF in cartesian coordinates with the lattice-Boltzmann method and on the choice of the

time-step. In this work we limit the maximum WiM to 0.9 and leave a deeper analysis of this

issue for future work.

The sub-grid solution can be called from Fluent R© via user defined function implementation

and eventually parallelized on multiple processors. For computational efficiency, we use an

accelerated version running on graphic card (GPU). The GPU is less flexible on the choice of

the number of nodes, but provides remarkable acceleration: in this case the speed-up reaches

nearly 50x with respect to the CPU (see Appendix A for details).
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Figure 5.7: Profiles of the dimensionless viscoelastic stresses on the symmetry plane and on
the cylinder surface for WiM = 0.6. The results for the two tested FVM meshes (M1, M2 and
M3) are compared with ref. [3]: (a) σ̂pxx (b) σ̂pxy (c) σ̂pyy .
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(a)

(b)

(c)

Figure 5.8: Contours of dimensionless molecular elongations (configuration tensor) forWiM =
0.6: (a) 〈〈ξ̂xξ̂x〉〉 (b) 〈〈ξ̂xξ̂y〉〉 (c) 〈〈ξ̂y ξ̂y〉〉.
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(a)

(b)

(c)

Figure 5.9: Contours of dimensionless viscoelastic stresses for WiM = 0.6: (a) σ̂pxx (b) σ̂pxy

(c) σ̂pyy .
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(a)

(b)

(c)

Figure 5.10: Contours of dimensionless viscoelastic stresses for WiM = 0.9: (a) σ̂pxx (b) σ̂pxy

(c) σ̂pyy .
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Figure 5.11: Discrete distribution of Wim in the physical domain (mesh M1, number of bins
50, WiM = 0.6).

5.4.3 Optimization

Let us now focus more in detail on the solution forWim = 0.6. As derived from the analysis in

Section 5.4.1, the error and numerical performance depends on the localWim. The parameters

for the sub-grid solution can then be adjusted according to the local Weissenberg number in

the domain (Fig. 5.11). For this case, the local Weissenberg ranges between 0 and 9, with the

highest frequencies between 0 and 2 and tail between 2 and 9. The parameters N and τ can

then be chosen according to the following criteria:

1. Minimize numerical error: high lattice resolution and minimum relaxation time are to be

used. This approach assures converged solution throughout the domain but non-homogeneous

numerical error. The computational cost is high due to excessive number of nodes in low−Wim

regions.

2. Maximize computational speed: coarse lattice resolution and maximum stable relaxation

time. The lattice parameters are chosen according to the maximum value of Wim in the

domain, that is the coarsest allowed lattice and the maximum stable relaxation time. This

approach does not guarantee constant nor converged numerical error. The maximum error

depends on the choice of the lattice size (Fig. 5.5(a)).
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Table 5.3: Summary table of the three sub-grid solution approaches: ME (minimize error), SA
(strain-adaptive) and MS (maximize speed). The comparison of the computational speed-up
per FVM iteration refers to different approaches on the same stencil (results for mesh M1).

stencil approach N τ error speed-up

D2Q9

(ME) minimize error Nmax τmin variable
13.6 (ME/SA)

(SA) strain-adaptive f(Wim) τmax controlled
17.9 (SA/MS)

(MS) maximize speed Nmin τmax variable

D2Q5

(ME) minimize error Nmax τmin variable
2.9 (ME/SA)

(SA) strain-adaptive f(Wim) τmax controlled
23.7 (SA/MS)

(MS) maximize speed Nmin τmax variable

3. Strain-adaptive: lattice resolution based on local Wim. The lattice parameters are dy-

namically adapted according to the local Wim (Fig. 5.11). Therefore, coarser lattices are

used in low −Wim regions and finer lattices in high −Wim ones. This approach represents

a trade-off between the two above discussed ones and allows to optimize the computational

speed, providing control on the error. The number of different lattices to use can be chosen

on the basis of an expanded analysis such as that in Fig. 5.5(a), according to the desirable

degree of speed-up/error control.

An overview of the three approaches is reported in Table 5.3. The parameters for the com-

parison of the achievable speed-up are: Nmin = 41, Nmax = 121, τmin = 0.55 and τmax the

maximum local stable value for the locally-adaptive approach (Fig. 5.5(b)) and the maximum

stable value for Wim = 9 for optimizing the computational speed (0.6 for D2Q9 and 0.55 for

D2Q5). In order to compare the advantage of the locally-adaptive approach here we use two

lattice sizes, namely N = 81 for Wim = 1 ÷ 5 and N = 121 for Wim = 6 ÷ 9. We remark

that this choice is made to illustrate the methodology but the number of lattice resolutions is

arbitrary.
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5.5 Summary and outlook

A novel micro-macro model for dilute polymeric solutions has been presented. The proposed

approach relies on a coupled numerical solution for the macro and microscopic scales: a finite-

volume method for the fluid-flow equations and a lattice-Boltzmann method for the kinetic

viscoelastic model. This micro-macro approach allows to properly simulate non-homogeneous

viscoelastic flows. The convection of the configuration distribution function in physical space

is taken into account by means of an operator-splitting algorithm. This leads to an hyper-

bolic equation for the convective transport of viscoelastic stresses in physical space, which is

equivalent to the transport of the distribution function. The algorithm is validated for its

use in steady-state conditions. The validity of the introduced model has been proven against

the benchmark problem of two-dimensional flow past a confined cylinder. We have observed

a decrease of accuracy as reaching Wi = 1. Regarding this issue, there are three sources of

error that deserve further investigation: (i) the failure of the Chapman-Enskog expansion for

WiM > 1 as reported by Singh et al. [66]; (ii) the time step selected for the operator-splitting

algorithm, which is not unique and affects the accuracy and (iii) the Cartesian discretization of

the configuration distribution function used when the Fokker-Planck equation is solved with

the lattice Boltzmann method. These three sources of error could be avoided by a proper

redefinition of the approach and this is left for future work.

From a computational point of view, we have introduced and proven the validity of the coupling

strategy when the micro-solver is implemented in a graphic card. This allows a 60x acceleration

of the computational time. We have used a low-performance single graphic card, but the

solution can also be distributed on multiple units, further reducing the computational time.

We remark that in this work we proposed the coupling with a finite volume method solver,

but the accelerated sub-grid solution can be easily called from other solvers (i.e. FEM-LBM

or LBM-LBM solutions). Finally, the results obtained suggest that a direct numerical method

together with proper hardware implementation, may deserve attention in the framework of

numerical methods for complex fluids.
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Chapter 6

Deformable fibrous media

6.1 Introduction

In this chapter the coupled numerical method developed for dilute viscoelastic suspensions

is applied for the solution of a mesoscopic model for the fiber dynamics during the injection

in LCM. As already discussed in the introduction of this thesis, textile preforms for these

applications generally present a hierarchical structure and therefore different length scales to

be taken into account (typically ranging between one and three orders of magnitude). As a

consequence, the numerical solution of the fluid flow in the real geometry is computationally

expensive or even not affordable with standard techniques when length scales diverge. The

most commonly adopted practice for the numerical evaluation of the permeability of textile

preforms, consist therefore in the numerical solution of the fluid flow in a REV of the textile,

were the micro-scale permeability is computed by well established correlations. This approach

however, has been shown to yield uncertainties on the prediction of the effective permeability

(see Chapter 2), which can be attributed to the topology of the fibers that is not well accounted

by the correlations for the micro-scale permeability.

The so-called “constitutive” relations [12], are analytical solutions or experimental correla-

tions which serve as auxiliary means for the numerical simulations and are generally derived

separating scales and/or reducing the dimensionality of the problem. A review of the several

experimental and analytical techniques developed in this framework can be found in [13, 14].

One of the best established correlations was proposed by Gebart [23], who derived analytically
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a permeability law for ordered arrangements of cylinders:

K

R2
= C

[

√

1− εc
1− ε

− 1

]5/2

; (6.1)

whereK is the permeabiloity, R is the characteristic radius, C is a geometrical factor depending

on the arrangement, ε is the porosity and εc its critical value (or percolation threshold). The

author calculated C = 16/9π
√
2, εc = 1 − π/4 for square arrangements and C = 16/9π

√
6,

εc = 1−π/2
√
3 for hexagonal ones. Papathanasiou [75] addressed the multi-scale nature of the

problem by solving numerically a square array layout of permeable multi-filament yarns with

circular fibers and showed that the effective permeability depends strongly on the microscopic

porosity only at low values of the macroscopic one. He proposed a dimensionless correlation

for the multi-scale permeability in the form [76]:

Keff = KM

[

1 + a1

(

K
M

Km

)n−3/2
]

; (6.2)

being KM and Km respectively the macro- and microscopic permeabilities. The constants

a1 and n are geometrical parameters that the author best fitted with numerical simulation

data, obtaining: a1 = 2.3 and n = 0.59 for square arrangements, a1 = 3.0 and n = 0.625

for hexagonal. Analogous studies were conducted for different yarn cross-sections and ar-

rangements [77, 78]. Due to the geometrical dependence on the percolation threshold, the

validity of the above (or similar) correlations is limited to strictly regular layouts, both at

the macro- and microscopic scales. Consequently, their use for the numerical simulation of

textile geometries often results in an unacceptable loss of accuracy due to: (i) the false as-

sumption of regular topologies; (ii) the deformation of the structures induced by the fluid flow.

In order to overcome the first issue (i), random or realistically-reconstructed fiber configura-

tions have been extensively studied [79, 80] and statistical descriptors have been proposed to

relate the permeability to non-regular fiber arrangements [81, 82]. The effect of several micro-

structural parameters on the effective permeability has been also investigated using up-scaling

techniques [83, 84]. However, despite the intense work on configurations and up-scaling, the

fluid-structure interaction problem (ii) has not been addressed in this framework, as far as the

present authors know.
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The flow-induced deformation of fibers however, affects the interconnectivity of the porous

matrix and thus the percolating paths, which in turn affect the permeability [12]. Indeed,

relevant recent work on the permeability of deforming porous matrices, relies on the idea that

the flow resistance of particle clusters (in two dimensions) is larger than that justifiable by

single particle contributions. This is basically due to the entrapment of fluid within the cluster,

which increases the apparent volume fraction reducing the hydraulic (or wet) area. Scholz et al.

[85] recently proposed an empirical expression for permeability based on this concept:

K = cl2c

(

1− χo

N

)β

; (6.3)

where c is a constant that depends on the local pore geometry, lc is the limiting hydrodynamic

length, χo is the open-space Euler characteristic (of the conducting phase), N is the number

of particles and β is the conductivity exponent. The Euler characteristic χ is a Minkowski

functional that in this framework is defined as the difference between the number of connected

components of each phase [86]; thus χo is the difference between the liquid phase and the

number of solid components (neglecting the fluid entrapped in closed cavities). The authors

best fitted β = 1.27 against experimental and numerical data for quasi-two-dimensional porous

structures (close to the critical value βc = 1.3 for two-dimensional structures [85]). The quan-

tity 1 − χo is generally referred to as genus and represents the total number of clusters of

single or touching particles; thus (1− χo) /N is the number of clusters per particle or cluster

density, which in the following will be called Ω for compactness.

Based on this latter idea, we propose a multi-scale framework for the analysis of the local

fiber topology induced by the fluid flow, through the cluster density. A two-dimensional meso-

scopic model for the deformation of the fibers subject to out-of-plane movement restrictions

is derived for creeping flow conditions by analogy with non-Brownian suspensions of parti-

cles with confining potentials. This leads to a homogeneous Fokker-Planck equation in phase

space for the probability density function of the fiber displacements. A fiber clustering cri-

terion is then defined via autoconvolution functions of the probability densities, which yield

the local topology of the fibers and the related change in permeability through the cluster

density Ω. The resulting multi-scale hydrodynamic system is solved numerically by a coupled

finite-volume/lattice-Boltzmann method (the latter accelerated on GPU). Due to the lack of

experimental or analytical means for its validation, the proposed model is assessed in terms of

a non-Newtonian reduced viscosity related to the Brinkman’s closure for porous media.
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Figure 6.1: Schematics of the scales considered and relative representative elementary volumes
(REV): yarn macro-scale (a) and fiber micro-scale (b). Fiber configurations (c) and correspon-
dent cluster density Ω, which is defined as the number of single or connected components per
fiber.

6.2 Theoretical model

Let us consider the modeling framework shown in Fig. 6.1. We consider two scales: a macro-

scale (the yarn scale in Fig. 6.1(a)) and a micro-scale (the fiber scale in Fig. 6.1(b)). The

relative two-dimensional representative elementary volumes (REV) are shown on the right,

respectively REVM and REVm. The fibers are assumed to be clamped at both ends, thus they

can bend under the effect of the perpendicular flow field. The cross-section of the yarn re-

sults in a domain of two-dimensional interacting particles suspended in the fluid (Fig. 6.1(a))),

whose movement is restricted by the out-of-plane constraint.

Each fiber can bend up to ξmax, which is a function of the distance z from REVm to the clamped

end (Fig. 6.1(b)). The length of the fiber Lz is imposed by the structure of the textile, for ex-

ample, by knit points. The two-dimensional model, is intended to be applied to real 3D fabrics.
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The bending direction is imposed by the flow field, so in general the section of each fiber on

REVm can move in a circle whose radius is ξmax. The bending of each fiber affects that of the

neighboring ones by hydrodynamic interaction, so the relative movement can lead to an in-

crease or a reduction in the distance between them (Fig. 6.1(c)). Contact is approached as the

relative distance ξc tends to zero. The resulting topology affects the fluid percolating paths,

as long as clustered structures or preferential channels can form, which reduce or increase the

hydraulic conductivity of the yarn.

In order to derive the theoretical model, we start by considering the transport equations at the

micro-scale and proceed by upscaling them to the macro-scale via volume-averaging technique.

The fluctuating stress tensor resulting from the fluid-structure interaction problem is closed

with the proposed models for the fiber dynamics and clustering (which are detailed in dedicated

sections).

6.2.1 Volume-averaged equations

Let us consider the representative elementary volume at the micro-scale (REVm) in Fig. 6.1(b).

The section of the fiber is represented by the solid σ-phase, suspended in the fluid ν-phase.

The σ-region is therefore a mono-disperse solid phase without interconnectivity. The flow in

the fluid ν-region is assumed to be Newtonian, isothermal and incompressible. The inertial

effects are neglected in creeping flow conditions. The continuum transport equations for the

fluid ν-region are given by the steady-state Stokes system:

∇x · v = 0; (6.4)

0 = −∇xp+ µ∇2
xv; (6.5)

where v is the velocity vector, p is the pressure and µ the viscosity. The subscript x on

operators indicates that they act in physical space. For solving this system of equations the

no-slip boundary condition is set at the ν − σ interface, v|νσ = 0. In order to account for the

porous media description, the superficial average of a quantity ϕ is defined as:

〈ϕ〉 = 1

V

∫

Vν

ϕdV ; (6.6)
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and the intrinsic volume average as:

〈ϕ〉ν =
1

Vν

∫

Vν

ϕdV ; (6.7)

where Vν is the volume of the fluid ν–phase in the total averaging volume V (extending over

the length Lz). The relationship between superficial and intrinsic volume-averaged quantities

is 〈ϕ〉 = εm 〈ϕ〉ν , with εm the porosity for the ν–phase defined as εm = Vν/V. The super-

ficial average of the continuity equation (6.4) is expanded by applying the spatial averaging

theorem [87]:

∇x · 〈v〉+
1

V

∫

Sνσ

nνσ · vdS = 0; (6.8)

where Sνσ is the interface area between the fluid ν–phase and the solid σ–phase, nνσ its unit

normal. Equation (6.8) can be simplified by imposing the boundary condition v|νσ = 0 at the

ν-σ–interface [88], which yields:

∇x · 〈v〉 = 0. (6.9)

The superficial average is applied to the momentum equation (6.5), which yields:

0 = −〈∇p〉+ µ〈∇2
xv〉. (6.10)

Applying twice the spatial averaging theorem [87] and arranging terms in such a way that the

superficial averaged velocity and the intrinsic averaged pressure are the main variables in the

equation, the averaged momentum equation is obtained [88, 89]:

0 =−∇x 〈p〉ν +
µ

εm
∇2

x 〈v〉 −
µ

εm
(∇xεm · ∇x 〈v〉ν)

− 1

Vν

∫

Sνσ

nνσ · [−I(p− 〈p〉ν)

+ µ(∇xv −∇x 〈v〉ν)]dS; (6.11)

being I the unit tensor. The last term is the position-dependent fluctuating stress tensor [90],

which represents the drag force exerted by the solid phase onto the fluid phase (Fd
νσ→ν) within

the averaging volume Vν . This term needs to be closed in order to solve the equations.
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Table 6.1: Geometrical parameters and physical properties of the glass fibers considered.

symbol units value symbol units value

Geometry Material

Yarn radius R µm 100 ÷ 500 Density ρo g/cm3 2.4

Fiber radius r µm 10 Young Modulus E MPa 85

Fiber length Lz µm 800

The Brinkman’s approximation for this term is [91]:

Fd,Br
νσ→ν ≈ −µK−1

m (x, εm) · 〈v〉+ (µeff − µ)∇2
x 〈v〉 ; (6.12)

where the first term is a Darcy drag, while the second is a correction that accounts for ran-

domness in disordered media through an effective viscosity µeff. In this work we adopt the

following closure:

Fd,Ω
νσ→ν ≈ −µK−1

m (x, εm,Ω) · 〈v〉 ; (6.13)

where the permeability tensor is a function of the porosity and of the local topology of the

solid phase through the cluster density Ω. This latter parameter accounts for the degree of

aggregation of the solid phase, thus intrinsically for apparent variations in porosity through

the open-space Euler characteristic χo [85]. Finally, for constant porosity εm, the equations to

be solved in the yarn domain at the macro-scale (Fig. 6.1(a)) read:

∇x · 〈v〉 = 0; (6.14)

0 = −∇x 〈p〉ν +
µ

εm
∇2

x 〈v〉 − µK−1
m (x, εm,Ω) · 〈v〉 ; (6.15)

where the permeability tensor is recovered by solving the models for fiber dynamics and clus-

tering, as explained in the next sections.
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6.2.2 Microscopic dynamics

The equations to reproduce the movement of the solid σ–phase in Fig. 6.1(b) are derived from

Newton’s Second Law in a statistical way. As shown in the figure, the bending of the fibers is

modeled by a mass-spring system, whose spring represents the resistance to bending and is thus

related to the out-of-plane forces. The dynamic equilibrium on the mass is regulated by: (i) a

drag force (Fd(t)), due to the movement through the viscous solvent; (ii) the connector force

(Fc(t)), which represents the resistance to bending; (iii) a stochastic diffusion term (Fh(t)),

which accounts for hydrodynamic dispersion. Inertial terms are neglected in the limit of small

Stokes numbers, which in this case we define as [92]:

St =
2ρorLzvin
18µR

≪ 1; (6.16)

being ρo the density of the material of the fibers and vin the velocity at the inlet of REVM

(Fig. 6.1(a)). The velocity vin results from imposing creeping flow conditions through a

Reynolds number based on the yarn radius R (see Section 6.4.3 for details).

Indicating with rc the position of the fixed end of the spring (i.e. the undeformed state) and

r(t) the position vector of the mass (see Fig. 6.1(b)), the drag force is:

Fd(t) = ζLz

(

v(r(t), t)− dr

dt
(t)

)

, (6.17)

with ζ being an Oseen drag coefficient [93], Lz the length of the fiber and the term inside the

brackets the velocity of the mass relative to the viscous solvent.

The connector force is given as:

Fc(t) = H(rc − r(t)), (6.18)

where the connector force law H will be discussed later. The last force results from hydrody-

namic interactions:

Fh(t) = σdW(t), (6.19)

being σ the standard deviation of the Wiener process W(t). In this work we use this term to

model the diffusive random fluctuations of the fibers due to hydrodynamic dispersion; for this

purpose we adopt a diffusion coefficient D and write σ =
√
2D for convenience.
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Table 6.2: Summary table of the model parameters.

Parameter Dimensional Dimensionless

symbol Eq. units value symbol scaling value

Macro, micro porosities - - - - εM , εm - 1 - π/4 ÷ 0.99

Maximum extensibility ξmax (6.23) µm 0 ÷ 36 ξ̂max ξ̂max = ξ2
max

/2θD 0 ÷ 6.5 · 104

Contact distance ξc (6.25) µm 0 ÷ 157 ξ̂c ξ̂c = ξc/
√

2θD 0 ÷ 1.1 · 103

Macro viscous number - (6.29) - - IM - 0 ÷ 3

Fiber relaxation time θ - s 0.01 ÷ 15 - - -

Micro viscous number - (6.30) - - Im - 0 ÷ 14

Diffusion coefficient D - m2/s 10−12 ÷ 10−9 D̂ D̂ = D/2D 1/2

In the limit of small Stokes number, lubrication forces [94] are neglected, assuming that the

relative velocity between the fibers is small. Finally, the dynamic equilibrium of forces on the

mass yields the stochastic differential equation (Langevin equation):

dr

dt
(t) = v(r(t), t) +

H

ζLz

(rc − r(t)) +
√
2D

dW

dt
(t). (6.20)

Applying the forward Kolmogorov equation [95] and letting ξ = rc − r(t) yields the diffusion

(Fokker-Planck) equation for the probability density ψ(ξ, t) of the local fiber displacement

with respect to the undeformed state:

∂ψ

∂t
+∇ξ ·

[(

∇xv · ξ − Hξ

ζLz

)

ψ

]

= D∇2
ξψ. (6.21)

In this work we assume the connector force law to follow the finitely extensible non-linear

elastic model [95], therefore:

H =
h

1− ||ξ||2 /ξ2max

; (6.22)

with h being the spring constant and ξmax the maximum extensibility (see Fig. 6.1(b)).

6.2.3 Model parameters

Let us now focus on the calculation of the maximum extensibility ξmax and of the contact

distance ξc (see Fig. 6.1(b)). Considering the fiber as a high-aspect-ratio hyperstatic beam

subject to a distributed load, the bending (and thus the maximum extensibility) is given

as [96]:

ξmax =
ζz2

24EJ
(Lz − z)2 ; (6.23)

78



6. Deformable fibrous media

being E the Young modulus of the material and J = πr4/4 the second moment. The drag

force per unit length ζ can be recovered by the Oseen formula [93] as:

ζ =
4πµvin

log (4/Rem)− γ + 0.5
; (6.24)

where Rem is the Reynolds number based on the fiber radius and γ the Euler constant. The

maximum bending ξmax depends on the geometry of the fibers, on their material and on the

flow, which makes this parameter representative of the out-of-plane forces.

On the other hand, the contact distance ξc is a geometrical function of the porosity. In this

work we consider the fibers to be in a square arrangement when undeformed (see Fig. 6.1(c));

thus the contact distance can be written as:

ξc =

√

πr2

1− εm
− 2r. (6.25)

An overview of the material properties and dimensions are shown in Tab. 6.1.

6.2.4 Nondimensionalization

Considering a characteristic time-scale θ = ζLz/2h of the fiber relaxation and a characteristic

length-scale of the mass-spring system ℓ =
√
2θD (see Fig. 6.1(b)), the maximum extensibility

and contact distance are made dimensionless respectively as ξ̂max = ξ2max/2θD and ξ̂c =

ξc/
√
2θD. The dimensionless form of Eq. (6.21) is:

∂ψ

∂t̂
+∇ξ̂ ·

[(

θ (∇xv) · ξ̂ − 1

2
Ĥ ξ̂

)

ψ

]

= D̂∇2
ξ̂
ψ; (6.26)

where D̂ is a dimensionless diffusion coefficient which is equal to 1/2 due to scaling and θ (∇xv)

is the dimensionless shear-rate. The dimensionless connector force in Eq. (6.22) reads:

Ĥ =
[

1− ||ξ̂||2/ξ̂max

]−1

; (6.27)

thus the support of the probability density function is a disc of radius ξ̂
−1/2
max . The initial

distribution for Eq. (6.26) is given as the analytical solution for θ (∇xv) = 0, which, considering
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Figure 6.2: (a) Numerical data obtained for Ω as a function of the viscous number Im. The
main figure shows the collapse of the data in the inset with the relaxation time θ (ξ̂max = 10,
ξ̂c/ξ̂max = 0.5). (b) Cluster density Ω as a function of the contact/bending ratio ξ̂c/ξ̂max for
ξ̂max = 10 and of the maximum extensibility ξ̂max for ξ̂c/ξ̂max = 0.3 (inset). Figures (c), (d)
and (e) show an example configuration of the probability densities at the corresponding points
in Fig. 6.2(b).

unitary normalization, reads:

ψ0(ξ̂) = Ĥ−ξ̂max/2

[
∫

Ĥ−ξ̂max/2dξ̂

]−1

. (6.28)

An overview of the model parameters is shown in Table 6.2. The relaxation time θ is estimated

on the basis of a viscous number defined as [97, 98]:

IM = θ
vin
R
, (6.29)
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which represents the ratio between the time scale of the fiber rearrangement and the time

scale of the flow. In this work, we set the maximum viscous number IM = 3, which is the

maximum value for which we found stability of the numerical methods (see Section 6.3). The

dimensionless shear rate at the fiber scale (i.e. in the porous region), is then defined in scalar

form as:

Im = θIIγ̇; (6.30)

being IIγ̇ = the second invariant of the rate of strain. The dimensionless shear rate Im can be

seen as a microscopic viscous number (whose typical value is IM/εm).

The proposed model does not explicitly account for the contact among the fibers, therefore

the maximum extensibility is restricted to ξmax ≤ ξc + r (Fig. 6.1(b)). This physically means

that when the contact is approached, the fiber cannot extend any further. The condition in

dimensionless form reads (from Eq. (6.25)):

ξ̂max ≤
(

√

πr2

1− εm
− r

)

(2θD)−1 . (6.31)

Considering that the porosity εm is bounded between the percolation threshold εcm = 1− π/4

(for a square arrangement) and 1, and assuming for the diffusion coefficient D values in the

range 10−12 ÷ 10−9 m2/s, Eq. (6.31) yields for the maximum extensibility the values given in

Table 6.2.
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Figure 6.3: Micro-scale phase diagram for deformable fibrous media (a). The diagram shows
the iso-colors of the cluster density Ω as a function of the microscopic viscous number Im, the
normalized microscopic porosity ε̃m and the maximum extensibility ξ̂max (ξ̂c/ξ̂max = 0 ÷ 1
and D = 10−12 m2/s). The numerical data are best fitted and a reduced number of points per
dimension are shown to allow a proper visualization. Figure (b) shows the iso-Ω contours on
the plane ξ̂max = 10 in (a).

6.2.5 Fiber clustering

The clustering criterion is defined on the basis of topological arguments, that is on the basis

of the configuration of the fibers obtained from Eq. (6.26) through the probability of their

displacement from the initial position. The distribution functions are associated with the

section of the fibers in Fig. 6.1(b) and 6.1(c), thus a contact zone is defined by the overlap

of the probability of one fiber with its neighboring ones. The probability that a fiber be in

contact range with the neighbors is given by:

Ω = 1−
(

1−m

nf

) nf
∑

i=1

ψ(ξ̂) ∗ ψ(ξ̂ + ξ̂cni); (6.32)

where nf is the number of neighboring fibers, m is the reciprocal of the maximum number of

fibers in a cluster, ni is the unit vector to the i-th neighboring fiber and ∗ is the convolution

operator. In this work we assume a square (undeformed) configuration, and thus each fiber

has 8 neighbors (nf = 8) on a square reference topological unit (Fig. 6.1(c) left). Notice that

the topological unit is representative of the configuration of a number of fibers N , through the

probability density, and thus the parameter m varies between 1/2 (for a cluster of 2 fibers) and
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0 (for infinitely large cluster). In this work we analyze the worst condition for permeability,

that is m = 0. When Ω = 1 no clustering occurs (rigid fibers) while when Ω = 0 the fibers

form a single cluster (impermeable structure).

According to the chosen definition for overlap, Ω represents the quantity (1− χo/N) in Eq. (6.3),

with N in this case being the number of fibers represented by the topological unit. Therefore,

considering that in our case the limiting hydrodynamic length lc in Eq. (6.3) is the contact

distance ξc in Eq. (6.25), the permeability can be rewritten as:

Km = c

[

√

πr2

1− εm
− 2r

]2

Ωβ, (6.33)

where for the local pore geometry constant we adopt the same value (c = 1/12) as for Eq.

(6.3) [85], which corresponds to a confinement between parallel plates [99].

Finally, Eq. (6.33) yields the permeability as a function of the porosity εm and of the cluster

density Ω, which is used for the closure of the hydrodynamic system (Eq. (6.15)).

6.3 Numerical methods

The numerical approach for solving the theoretical model consists in a coupled finite-volume/lattice-

Boltzmann solution: finite volume method for the fluid flow equations and lattice Boltzmann

method for the Fokker-Planck equation. This hybrid methodology has already been applied

and validated for the numerical simulation of viscoelastic suspensions in Chapter 5; therefore

here we briefly recall the approach and refer the reader to the previous Chapter for further

details.

6.3.1 Fluid flow equations

The volume-averaged transport equations (6.14) and (6.15) are solved by the finite volume

method (FVM) using the commercial solver ANSYS Fluent R©. In this paper we adopt a

third order quadratic upwind scheme for momentum and a second order scheme for pres-

sure interpolation. The Semi-Implicit Method for Pressure Linked Equations is used for the

pressure–velocity coupling.
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6.3.2 Fiber dynamics model

The Fokker-Planck equation in the configuration space (6.26) is solved by a lattice Boltzmann

method (LBM) using a lattice-BGK equation. In this work we adopt a 16,384 DoF lattice

(D2Q5) and a relaxation time τ = 0.55 (see Chapter 5). For computational efficiency, the

lattice Boltzmann solution is accelerated on a Graphic Processing Unit (GPU) by a Compute

Unified Device Architecture (CUDA) implementation [100] using shared memory. For the

details of the implementation see Appendix A.

6.3.3 Multi-scale system

The multi-scale hydrodynamic system resulting from Eq. (6.14), (6.15) and (6.26) is solved

by coupling the two previous methods. The compiled CUDA code of the lattice Boltzmann

solution is dynamically called at cell centers from the FVM solver through a compiled User

Defined Function (UDF). The sub-grid simulation is driven by passage and retrieval of the

required variables between the two compiled codes through a stream process.

The algorithm has already been applied and validated for non-homogeneous Fokker-Planck

equations in dilute viscoelastic suspensions in Chapter 5. In this chapter we deal with a

homogeneous Fokker-Planck equation, therefore the algorithm reduces to the following:

1. solution of Eq. (6.14) and (6.15) by the finite volume method (on the CPU);

2. solution of Eq. (6.26) by lattice Boltzmann method (on the GPU);

3. solution of Eq. (6.32) for the clustering model (on the GPU);

4. correction of Eq. (6.33) for the local permeability (on the CPU).

The initial guess for the loop is given by the correspondent case of rigid porous medium (i.e.

without sub-grid model). The numerical algorithm is repeated until global convergence of Eq.

(6.14) and (6.15), which in this case requires 4 to 6 complete loops. Each loop requires around

2 hours of GPU time with a 20-25,000 cell FVM mesh.
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Figure 6.4: Comparison of the reduced viscosity of the proposed model with that of wet
granular media. Dimensionless viscosity as a function of the normalized volume fraction φ̃m

(a) and of the viscous number Im (b). The maximum extensibility is ξ̂max = 10, the diffusion
coefficient D = 10−10 m2/s and the constant A = 0.1r2 (Eq. (6.37)).

6.4 Results and discussion

6.4.1 Micro-scale model

Let us first focus on the analysis of the proposed model for the fiber dynamics (Eq. (6.26))

and clustering (Eq. (6.32)). A parametric study has been carried out using a set of 2,000

random realizations of the velocity gradient tensor ∇v, which account for local inhomogeneity

of the flow field inside the porous medium. Incompressibility condition has been assured. The

study has been performed varying the parameters θ (fiber relaxation time), ξ̂max (maximum

bending) and the ratio ξ̂c/ξ̂max (contact/bending ratio). The cluster density Ω in Eq. (6.32)

is computed for each realization, which allows the analysis of its dependence on each parameter.

The data obtained for varying θ as a function of the invariant of ∇v is shown in the inset of

Fig. 6.2(a): the data collapse into a single curve for θIIγ̇ , which is the dimensionless rate of

strain or microscopic viscous number Im. The spread of the data is due to the definition of Im

based on the invariant, for which, the same value can be yield by different ∇v.
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The effect on Ω of varying ξ̂c/ξ̂max and ξ̂max is shown in Fig. 6.2(b) and relative inset, while

Fig. 6.2(c), 6.2(d) and 6.2(e) show an example configuration of the probability densities at

the corresponding points in the figure.

In order to interpret physically the results, let us firstly recall that Ω is bounded between 0

and 1, which respectively correspond to the maximum and minimum fiber clustering, i.e. to

the impermeable and rigid conditions of the fibrous medium. If Im → 0, the strain rate (or

the relaxation time) tends to zero, therefore Ω is given by the overlap of the initial probability

densities of Eq. (6.28) (see Fig. 6.2(c)). For increasing Im, the probability densities present

more localized features, thus the overlap reduces and Ω increases (see Fig. 6.2(d) and 6.2(e)).

This physically recovers the increasing anisotropy and stiffness of the fibers due to the higher

strain rate, which leads the fibers towards the rigid condition (Ω = 1).

With regards to the dependence of Ω on the maximum bending ξ̂max and contact/bending ratio

ξ̂c/ξ̂max, Fig. 6.2(b) shows that for constant ξ̂max and increasing ξ̂c, the contact probability

is reduced and Ω increases. This is justified by the fact that, for increasing ξ̂c, the porosity

increases (see Eq. (6.31)), lowering the contact probability. Similarly, the inset in the figure

shows the effect of varying ξ̂max with constant ξ̂c/ξ̂max.

In order to present the results in a compact manner, a microscopic phase diagram is built

(Fig. 6.3(a)). The numerical data is best fitted and a reduced number of points is plotted

for each dimension to allow a proper visualization. The diagram shows the contours of the

cluster density Ω for D = 10−12 m2/s as a function of the microscopic viscous number Im, the

maximum extensibility parameter ξ̂max and a normalized microscopic porosity ε̃m defined as:

ε̃m =
εm − εcm
εmax
m − εcm

, (6.34)

where the porosity εm as a function of the model parameters is given by Eq. (6.31), and

ξ̂c/ξ̂max ranges between 0 and 1. The maximum porosity εmax
m is given by ξ̂c = ξ̂max.
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Figure 6.5: (a) Comparison of the numerically predicted effective permeability with the ana-
lytical solution of Eq. (6.2) for rigid porous media. In the inset, comparison of the microscopic
permeability given by Eq. (6.1) and Eq. (6.33). (b) Multi-scale phase diagram for fibrous
media. In the blue area, the microscopic porosity has a negligible effect on permeability; in
the green area, the effects of fiber deformations are negligible; in the red area, the effect of
fiber deformation significantly modifies the effective permeability. In the inset, flow field con-
figuration at point (p). The model parameters for the simulation are: ξ̂max = 10, εM = 0.36,
εm = 0.8, IM = 0.6, ξ̂c/ξ̂max = 0.36, D = 10−11 m2/s and z = Lz/2. The colorbar shows the
Ω scale for the contours and the velocity magnitude (within parentheses) for the pathlines.

The plane corresponding to ξ̂max = 10 in the phase diagram is shown in Fig. 6.3(b). The

contours show the iso-Ω values as a function of the viscous number Im and normalized porosity

ε̃m. For Ω < 0.1 the fibrous medium tends to the impermeable state and for Ω > 0.9 to the

rigid one. In the intermediate range, the cluster density Ω for a constant porosity increases

with the viscous number, and decreases with the maximum extensibility (Fig. 6.3(a)). The

first effect is related to the increasing stiffness of the fibers and thus to the lower contact

probability, while the second one is due to the increasing maximum bending of the fibers.

Finally, the increase in Ω observed for very high Im, can be associated with the jamming of

the fibers for very low porosities.
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6. Deformable fibrous media

6.4.2 Model assessment

We will now focus on the assessment of the behavior of the proposed model. We should

first indicate that a framework for the validation is not available, neither experimentally nor

analytically. Therefore we compare the results of our model with the rheology of wet granular

media in terms of an equivalent reduced viscosity. Boyer et al. [98] have recently proposed a

phenomenological law for the rheology of dense suspensions of spherical particles in terms of

volume fraction φm and a dimensionless viscous number Iv (which is formally equivalent to

our definition for Im). The authors deduced the dimensionless shear viscosity in the following

form:

η̂ = 1 +
5

2
φm

(

1− φm

φmax
m

)−1

+ ν(φm)

(

φ

φmax
m − φm

)2

; (6.35)

where φmax
m = 0.585 is the maximum volume fraction at the jamming point and φm = φmax

m /(1+

I
1/2
v ). The first two terms on the right-hand side of Eq. (6.35) represent the hydrodynamic

contribution η̂h to the rheology and they tend to the Einstein viscosity η̂E = 1 + 5φm/2 at

O(φm). The third term represents solid contact contributions η̂c, where:

ν(φm) = c1 +
c2 − c1

1 + I0φ2
m(φ

max
m − φm)−2

; (6.36)

being c1 = 0.32, c2 = 0.7 and I0 = 0.005 fitting rheological parameters [98]. The expression for

the contact contribution has been chosen to be similar to an analogous one for dry granular

media [97].

In order to assess the behavior of our model, we compare the numerical results obtained

with the above mentioned contributions, namely ηE, ηh and ηh+c, according to the following

rheological description:

η̂ =
µeff

µ
≈ 1 + A

[

(

Kdef
m

)−1 −
(

Krig
m

)−1
]

, (6.37)

obtained by comparison of the Brinkman’s closure (Eq. (6.12)) and ours (Eq. (6.13)). The

prefactor A results from the comparison, which is based on a simplified 1D approximation of

the two closures for unidirectional flow within the porous medium. The exact value of the

prefactor depends on the integration constants (i.e. boundary conditions). Here we show the

results for a typical value A = 0.1r2.
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Figure 6.6: (Color online) Multi-scale permeability of deformable fibrous media: Ω = 0.1 (a)
and Ω = 0.5 (b). The colorbars show the ratio between the effective permeabilities in the
deformable and rigid cases.

The comparison is shown in Fig. 6.4(a), where the permeabilities in the deformable and rigid

case are given by Eq. (6.33). In the rigid case Ω = 1 (constant). The volume fraction has

been normalized as it is done for the porosity in Eq. (6.34). The normalization allows a

better comparison of the results, as long as the maximum volume fraction at jamming for wet

granular media is φmax
m = 0.585, while in our case it can be assumed to be φmax

m = 1− εcm (due

to the ordered packing).

The numerical data show qualitative agreement with the rheology of wet granular suspensions.

For a constant viscous number Im and increasing volume fractions, the behavior is shear-

thickening, due to the increasing clustering of the fibers for the reduced mobility. On the

other hand, the behavior is shear-thinning for constant volume fraction and increasing viscous

number. This physically recovers the increasing stiffness of the fibers and thus the lower

clustering probability. Figure (6.4(b)) shows that for low and intermediate volume fractions

the non-Newtonian reduced viscosity exhibits shear-thinning behavior with low- and high-

shear plateaux. For high volume fractions and high shear rates, the behavior changes abruptly

from shear thinning to shear thickening (compare Fig. 6.3(b)). This phenomenon is related

to the restriction caused by the out-of-plane forces, which leads the fibers close to jamming.

89



6. Deformable fibrous media

6.4.3 Multi-scale model

In order to assess the accuracy of the FVM numerical solution, we firstly analyze the per-

meability of a dual-scale rigid porous medium (Fig. 6.1(a)). The domain is periodic, and

the macroscopic Reynolds number ReM = ρvinR/µ is kept constant at 10−3 (creeping flow).

The microscopic permeability is computed according to Eq. (6.1) considering a square fiber

arrangement. The effective permeability is then recovered by Darcy’s law as:

Keff = − µ

∆p
vin; (6.38)

where ∆p is the stream-wise pressure drop per unit length. The numerical results (Fig. 6.5(a))

show very good agreement with the correlation for multi-scale fibrous media of Eq. (6.2). As

expected, the effect of the microscopic porosity εm on the effective permeability is important

for low macroscopic porosities, in this case for εM < 0.6. In this range, the effective perme-

ability can vary up to two orders of magnitude, depending on the microscopic porosity εm.

At the microscopic scale, the permeability can vary with respect to the rigid case according to

the topology of the fibers induced by the fluid flow. The entity of this variability is shown in

the inset of Fig. 6.5(a), which shows that the permeability of the rigid case given by Eq. (6.33)

for Ω = 1 slightly underestimates that given by Eq. (6.1). The permeability decreases with

the clustering of the fibers, that is, with decreasing Ω. If Ω tends to zero, the permeability

also tends to zero, which means that the yarn is impermeable (we show only Ω = 0.1 for

illustration). Therefore, better conditions for infiltration are achieved for high Ω, that is, high

(dimensionless) strain rates (compare Fig. 6.3(b)).

In order to analyze this effect on the effective permeability, a multi-scale phase diagram

(Fig. 6.5(b)) is built with the effective volume fraction φeff, which is a commonly used quantity

for textiles since it is experimentally measurable through the weight and volume of the textile.

For a given φeff, the relationship between micro and macroscopic porosities cannot be easily

computed; however the effective volume fraction can be written in terms of the porosities in

the following form:

φeff = (1− εm) (1− εM) ; (6.39)

which describes all the possible configurations of the textile. The diagram in Fig. 6.5(b) shows

the whole range of micro- and macroscopic porosities, down to the percolation thresholds (εcm

and εcM). The blue area corresponds to εM > 0.6, where the microscopic porosity has a neg-
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ligible effect on permeability (Fig. 6.5(a)). The green area identifies the range of microscopic

porosity from the percolation threshold to 0.5, where the effects of fiber deformations are

negligible due to the high packing of fibers and thus to their reduced mobility. The red area

represents the range of micro- and macroscopic porosities where the effect of fiber deformation

and thus of the clustering significantly modifies the effective permeability.

The inset shows the pathlines of the flow field on top of the Ω contours obtained with the

multi-scale model in the deformable case at the corresponding point (p) in the diagram. The

model parameters are: ξ̂max = 10, εM = 0.36, εm = 0.8, IM = 0.6 and ξ̂c/ξ̂max = 0.36 with

D = 10−11 m2/s. For this case, the effective permeability is 10% lower than in the rigid case

due to the clustering of fibers in the yarn.

In order to present the results in a compact manner, we show the effect of the clustering of fibers

in the yarn on the effective permeability using the phase diagrams in Fig. 6.6(a) and 6.6(b).

The effective permeability is given by Eq. (6.2), where the macro permeability KM is given by

Eq. (6.1) and the microscopic one Km by Eq. (6.33). The qualitative limiting values shown

in Fig. 6.5(b) are well recovered, that is, fiber deformation is important in the red region.

Fig. 6.6(b) shows that for typical textile parameters, namely intermediate cluster density

(Ω = 0.5), low to intermediate effective volume fractions (φeff < 0.4) and intermediate to high

micro-to-macro porosities (εm/εM = 1.5 ÷ 2.5), the effective permeability of the deformable

case can be up to 60% lower than that of the rigid case.
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6. Deformable fibrous media

6.5 Summary and outlook

A two-dimensional mesoscopic model for fiber deformation in hierarchical fibrous media has

been presented. The model has been derived for creeping flow conditions by analogy with non-

Brownian suspensions of particles with confining potentials. The resulting multi-scale hydro-

dynamic system is numerically solved by a coupled finite-volume/lattice-Boltzmann method.

The behavior of the proposed model has been compared with the rheology of wet granular

suspensions through a non-Newtonian reduced viscosity and qualitative agreement has been

found.

The microscopic permeability of the fibrous medium has been characterized in terms of poros-

ity, dimensionless shear rate and dimensionless out-of-plane forces. The best conditions for

infiltration have been found for high shear rates and high out-of-plane forces, that is for rigid

fibers and thus reduced clustering.

The effective permeability has been shown to be sensitively affected by deformability over

the whole range of volume fractions; in particular for typical values for textiles, the effective

permeability of the deformable case can be up to 60% lower than that in the rigid case. The

results obtained suggest that a better insight on the physics of the fibers can be helpful in

identifying best operating conditions for infiltration in hierarchical fibrous media.

The present work could be improved considering further physical or chemical potentials within

the fibers. In order to reduce the computational cost, model order reduction techniques could

be applied.

92



Chapter 7

Conclusions

7.1 Conclusions and further work

Most of the uncertainty on the numerical evaluation of the permeability of textile preforms

for fiber-reinforced composites is related to the deformations that the textiles undergo during

the production process, that is: the compaction in the mold (i), and the injection of the resin

(ii). The difficulties in the development of proper numerical models to account for these de-

formations are due to the hierarchical structure of the preforms, which requires non-standard

modeling techniques. The development of novel numerical models to account for the effect on

permeability of these deformations has been subject of this thesis.

The analysis of the mechanical behavior of the textile during the compression in the mold

(i), has been addressed by means of a phenomenological model, where the yarns have been

modeled as viscoplastic soft solids, based on the analogy between the fiber bundles and flow-

ing granular media. The resulting multi-phase model has been solved numerically using the

commercial CFD code ANSYS Fluent.

The analysis of the deformation of the textile and its interaction with the resin during the

injection (ii), has been addressed by means of a mesoscopic model, which accounts for the

fluid-structure interaction at the fiber level. A coupled numerical method has been developed

for the solution, which consists in the finite volume method for the fluid flow equations (in

ANSYS Fluent) and a lattice Boltzmann method for the fiber dynamics (accelerated on GPU

through a tailored implementation).
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On the basis of the results obtained, the following main conclusions can be drawn:

1. The model developed for the compaction in the mold, showed to be appropriate for a

phenomenological analysis of the deformation of the yarns under compression. The model

allows to quantitatively analyze the evolution of the fiber volume fraction during the

compaction, which yields useful information for a better understanding of the distribution

of the fibers before the injection of the resin.

2. The proposed analogy between fiber bundles and granular materials provides the possi-

bility to develop advanced mesoscopic constitutive models for the yarns (and ultimately,

for the textiles). Such constitutive models can then be efficiently solved using computa-

tional fluid dynamics, to study the fiber topology resulting from the compaction and its

effect on permeability.

3. The mesoscopic model developed for the fiber dynamics during the injection, allows an-

alyzing their topology induced by the fluid flow. The permeability of the fibers has been

described in terms of a topological invariant instead of geometrical parameters, which is

the fundamental point for the analysis. The computational cost of the mesoscopic model

has been remarkably reduced by the coupled numerical method developed.

4. It has been found that the clustering of fibers during the injection significantly reduces

the effective permeability in hierarchical fibrous media, which could explain the overesti-

mations generally obtained with simplified numerical approaches. In this sense, the phase

diagrams presented for the permeability, allow identifying the best operating conditions

for the infiltration of the resin.

5. The proposed models have been developed using non-conventional techniques of fluid

dynamics, which opens the possibility for a unified framework for the analysis and ulti-

mately, for a more precise estimation of the permeability. This work aims to represent a

first tentative in this direction.
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As regards the future developments of the present work, the following improvements of the

proposed models are suggested:

YARN COMPACTION MODEL

• A viscometric rheology [98, 101] can be adopted for the yarns in the quasi-static regime

of compression. This would lead to the inclusion of normal viscosities, which is this

framework should be related to the restriction due to the out-of-plane forces.

• In order to account for time-related effects (e.g. fiber relaxation or hysteresis), viscoelas-

tic constitutive models can be considered. In this sense, an extension for this case of the

model developed in Chapter 6 can be also considered.

• Improvement of the behavior of the interface adding multi-scale information through

phase-field models [102].

• Further elaboration on the topology of the fibers (i.e. clustering), which has been found

in this thesis to sensibly affect the hydraulic conductivity of the yarns during the injection

of the resin.

FIBER DYNAMICS MODEL

• Extension of the proposed model to transient, non-saturated conditions. This would

involve the solution of a multi-phase model for partially-saturated conditions.

• Inclusion of further potentials (e.g. lubrication and electrostatic forces) among the fibers.

These mesoscopic potentials could be also fed via molecular dynamics (e.g. REAX

potentials for curing [103]).

• Application of model order reduction techniques to the sub-grid scale equation, in con-

junction with the use of GPU computing.

• Generalization of the numerical model developed for different applications in mesoscopic

material modeling.
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UNIFIED CFD APPROACH

Taking into account the possible future developments, the models have been thought for their

implementation into the commercial CFD solver ANSYS Fluent. In this sense, the following

procedure is suggested as a first approximation towards a unified framework for the analysis:

1. compaction of the yarn with the model proposed in Chapter 4;

2. extraction of the final compressed geometry of the yarn as a new fluid zone;

3. switch the solver to single-phase model and disable dynamic mesh;

4. define the newly created zone as porous and use the model proposed in Chapter 6;

5. apply a pressure drop and compute the permeability.

Some of the advantages of this methodology are that: (i) the mesh is unique, Cartesian and

very simple; (ii) the computational cost is negligible; (iii) several test cases and configurations

can be easily analyzed; (iv) the numerical framework is ready for the extension to 3D geome-

tries.
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7.2 Conclusiones y trabajo futuro (Español)

Muchas de las incertidumbres sobre la predicción numérica de la permeabilidad de tejidos

para materiales compuestos reforzados en fibra, están relacionadas con las deformaciones que

dichos tejidos experimentan durante el proceso de producción, es decir: la compactación en el

molde (i) y la inyección de la resina (ii). Las dificultades en el desarrollo de modelos numéricos

aptos para tener en cuenta estas deformaciones, están relacionadas con la estructura jerárquica

de la tela, que requiere técnicas de modelado no estándar. El desarrollo de nuevos modelos

numéricos para tener en cuenta el efecto de estas deformaciones sobre la permeabilidad ha sido

el objeto de esta tesis.

La respuesta mecánica de la tela durante la compactación en el molde (i), ha sido estudiada me-

diante un modelo fenomenológico, en el cual las hebras se han modelado como sólidos blandos

viscoplásticos, en la base de una analoǵıa entre el conjunto de fibras y materiales granulares.

El modelo multi-fase resultante ha sido resuelto numéricamente usando el software comercial

de CFD ANSYS Fluent.

La deformación de la tela y su interacción con la resina durante la inyección (ii), ha sido es-

tudiada mediante un modelo mesoscópico que tiene en cuenta la interacción fluido-estructura

a nivel de fibra. Un método numérico acoplado se ha desarrollado para la solución numérica,

que consiste en el método de volúmenes finitos para las ecuaciones del flujo fluido (en ANSYS

Fluent) y un método de lattice Boltzmann para la dinámica de las fibras (acelerado en GPU

a través de una implementación adaptada).

En base a los resultados obtenidos, se derivan las siguientes conclusiones principales:

1. el modelo desarrollado para la compactación en el molde resulta apto para un estudio

fenomenológico de la deformación de las hebras bajo compactación. Dicho modelo per-

mite analizar cuantitativamente la evolución de la fracción de fibra, lo cual proporciona

información útil para la mejora de la comprensión de la distribución de las fibras antes

de la inyección de la resina.

2. La analoǵıa propuesta entre el conjunto de fibras y materiales granulares proporciona la

posibilidad de desarrollar modelos constitutivos avanzados para las hebras (y finalmente

para la tela). Dichos modelos constitutivos se pueden luego resolver eficientemente con
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herramientas de fluidodinámica computacional, para estudiar la topoloǵıa de las fibras

que resulta de la compresión y finalmente su efecto sobre la permeabilidad.

3. el modelo desarrollado para la dinámica de las fibras durante la inyección, permite

analizar la topoloǵıa de las mismas inducida por el flujo. La permeabilidad de las fi-

bras ha sido caracterizada a través de un invariante topológico en lugar de parámetros

geométricos, lo cual constituye el punto fundamental del análisis. El coste computacional

del modelo mesoscópico ha sido reducido significativamente gracias al modelo numérico

acoplado que se ha desarrollado.

4. Se ha visto que el agrupamiento de fibras durante la inyección reduce significativamente

la permeabilidad efectiva a nivel de hebra en medios fibrosos jerárquicos, lo cual podŕıa

explicar la sobrestimación que se obtiene con modelos numéricos simplificados. En este

sentido, los diagramas de fase obtenidos para la permeabilidad permiten identificar las

condiciones operativas mejores para la infiltración de la resina.

5. Los modelos propuestos han sido desarrollados usando técnicas no convencionales de

fluidodinámica computacional, lo cual permitiŕıa en un futuro utilizar entornos unificados

para el análisis del proceso y finalmente una estimación más precisa de la permeabilidad.

El actual trabajo constituye aśı una primera aproximación en esta dirección.

Con vistas a un posible ulterior desarrollo de los modelos propuestos se sugieren las siguientes

mejoras:

MODELO DE COMPACTACIÓN DE LAS HEBRAS

• Adopción de una reoloǵıa viscométrica [98, 101] para las hebras en el régimen quasi-

estático de compresión que permita incluir viscosidades normales, las cuales en este caso

deben estar relacionadas con las fuerzas fuera de plano.

• Para tener en cuenta efectos temporales (como por ejemplo de relajación de las fibras o

de histéresis) se podŕıan adoptar reoloǵıas viscoelásticas. En este sentido, una extensión

para este caso del modelo propuesto en el caṕıtulo 6 se podŕıa considerar.

• Mejora del comportamiento de la interface añadiendo información multi-escala a través

de modelos phase-field [102].

• Ulterior desarrollo sobre la topoloǵıa de las fibras (es decir, el agrupamiento), lo cual se

ha visto en esta tesis afecta significativamente la conductividad hidráulica de las hebras

durante la inyección de la resina.
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MODELO PARA LA DINÁMICA DE LAS FIBRAS

• Extensión del modelo propuesto para condiciones transitorias no saturadas. Esto conll-

evaŕıa la solución de un modelo multi-fase para condiciones parcialmente saturadas.

• Inclusión de potenciales mesoscópicos adicionales entre las fibras (como por ejemplo de

lubricación y de fuerzas electrostáticas). Estos potenciales se podŕıan alimentar con sim-

ulaciones de dinámica molecular (por ejemplo, potenciales REAX para el curado [103]).

• Aplicación de técnicas de reducción de orden a la ecuación de sub-malla, en conjunción

con la utilización de GPUs.

• Generalización del modelo numérico desarrollado en diferentes aplicaciones de modelos

mesoscópicos de materiales.

ENTORNO UNIFICADO DE CFD

Teniendo en cuenta los posibles desarrollos futuros, los modelos propuestos han sido pensados

para una implementación basada en el código comercial de CFD ANSYS Fluent. En este

sentido, el siguiente procedimiento es sugerido como primera aproximación hacia un entorno

unificado para el análisis:

1. compactación de la hebra con el modelo propuesto en el caṕıtulo 4;

2. extracción de la geometŕıa final de la hebra como una nueva zona flúıda;

3. cambiar el solutor para mono-fase y deshabilitar la malla dinámica;

4. definir la nueva zona como porosa y usar el modelo propuesto en el caṕıtulo 6;

5. aplicar un gradiente de presión y calcular la permeabilidad.

Algunas de las ventajas que esta metodoloǵıa proporciona son que: (i) la malla es única,

Cartesiana y muy sencilla; (ii) el coste computacional es muy bajo; (iii) se podŕıan analizar de

forma muy sencilla varios casos test y configuraciones; (iv) el entorno numérico es adecuado

para la extensión a geometŕıas 3D.
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Appendix A

GPU implementations

In this section we present and discuss the methodology that progressively led us to the faster

implementation for Graphic Processing Unit (GPU). Going into the details of coding goes

beyond the purpose of the present work, therefore we provide a methodological description

for each strategy. A slightly more detailed description is given for the faster implementation

achieved. The available GPU is an NVIDIA c© Quadro 600 1GB DRAM DDR3 96 cores and

all the tests are performed in single-precision floating point operations. The CPU for the

comparisons is an Intel c© Xeon c© X5650 2.67 GHz.
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Figure A.1: Comparison of the computational time for compiled a compiled C code and
SAILFISH (D2Q9 lattice with τ = 0.55) on the available hardware (a) and GPU profiling for
the coupling (normalized quantities).
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A.1 Sailfish implementation

Sailfish is an open-source code for computational fluid dynamics based on lattice Boltzmann

method and optimized for NVIDIA c© graphic cards [104]. The structure of the code is non-

trivial as it makes use of different scripting languages. The highest level code is Python,

where the simulation parameters are set-up (mesh size, methods, initial and boundary condi-

tions). The code generation passes then through Mako templates, which generate CUDA C

or OpenCL optimized code. The generated code is then compiled on-the-fly and the resulting

binary is run on graphic card. The code in its current version (0.3) is primarily designed

to solve Navier-Stokes equations, however small changes in the lowest-level kernels allow us

to tailor it for our purposes, that is, to solve an advection-diffusion equation. The speed-up

achieved with respect to the CPU reaches nearly 60x (see Fig. A.1(a)).

The coupling with Fluent R© is realized by means of serial dynamical calls to Sailfish from a

compiled user defined function (written in C). Despite the simplicity of implementation, this

approach has proven not to be computationally efficient, due to the time required by Sailfish

for the GPU code generation and compilation for each call. The total time (or wall time) for

a single call is indeed significantly higher than the effective computational time on the GPU

cores (kernel time). A profiling of the timing and of the GPU utilization is reported in Fig.

A.1(b). We conclude that Sailfish in its current version cannot be straightforwardly exploited

for our purposes and an ad-hoc implementation for GPU has to be developed.

A.2 Texture memory implementation

The Compute Unified Device Architecture (CUDA) is a parallel computing platform and cod-

ing environment developed by NVIDIA c© [100], which enables to exploit the power of graphic

processing units for scientific applications (GPGPU). A GPU-oriented implementation for

CUDA-enabled cards can be all the way written in C or C++, taking advantage of the lan-

guage extensions (API) provided (see the CUDA Programming Guide [105]).
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Figure A.2: Scheme of the CUDA implementation using shared memory (a) and comparison of
the computational time for compiled C and the CUDA implementation using shared memory
(D2Q9 and D2Q5 lattices with τ = 0.55) (b).

The general layout of a code, comprises a host function running on CPU and kernel functions

running on the GPU. The kernels therefore take advantage of the parallelization on the graphic

card. Due to the large computing power, the bottleneck resides in the memory read/write op-

erations. As a general rule, a proper implementation should then reduce memory accesses as

much as possible and/or use faster memories available on the graphic card. In this imple-

mentation for example we use texture memory, which is a read-only memory that is spatially

cached, making faster the data retrieval in the device memory [105].

The implementation relies on two kernels, one for the collision step and one for the streaming.

The mesh is hierarchically divided into grid, blocks and threads. Typically each node is

assigned a thread, which is then handled by a processor. Data is allocated and passed from

the CPU to the GPU and vice-versa, respectively at the beginning and at the end of the

solution process. The data exchange between the two kernels is optimized using textures,

however this data passage represent a bottleneck in the code. By means of this approach,

indeed, the maximum speed-up achieved is around 25x with respect to the CPU.
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Table A.1: Comparison of the computational time [s] for a compiled C code and the CUDA
code (shared memory implementation).

N 96 128 160 192 224 256

D2Q9 CPU 30.4 95.5 235.8 483.0 889.0 1495.0

D2Q9 GPU 0.8 2.0 4.7 10.1 23.3 34.7

speed-up 38x 48x 50x 48x 38x 43x

D2Q5 CPU 19.0 60.0 149.0 303.5 567 948

D2Q5 GPU 0.4 1.3 2.5 5.0 9.6 7.1

speed-up 48x 46x 60x 60x 60x 55x

A.3 Shared memory implementation

In order to overcome the limit of the previous code, in this version we make use of shared

memory, an extremely fast on-chip memory. The main issues to take into account for the

implementation of a lattice Boltzmann method, is that it is of limited size (for our card is 48

KB), and that the data is shared only between threads belonging to the same block. A proper

implementation of a lattice Boltzmann method using shared memory was originally proposed

by Tölke [106]. We also refer the reader to [107] for more details on the hardware and for code

excerpts.

Here we propose a similar strategy, but tailored for small meshes (our case). The code relies

on a single kernel for collision and propagation and the mesh is processed by rows; therefore

each block corresponds to one mesh row and the number of threads to the mesh width Fig.

A.2(a). In this way the size of the data loaded into shared memory per block is limited to

that required to process one row. Collision and propagation are then performed on shared

memory, where the horizontal propagation of the distributions is straightforward within the

block, while the vertical one is achieved with a correct alignment between global and shared

memory. The coalescence of global memory accesses and the lack of bank conflicts on shared

memory has been checked using the CUDA visual profiler [108] (we do not go into the details

of these issues, the interested reader can refer to the CUDA Programming Guide [105]).
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It is important to remark that this implementation is tailored for small meshes and does not

apply in other cases. Fixing the block size equal to the mesh width indeed, sets a constraint on

the choice of the number of threads (which plays a key-role for performance). This approach

represents a tentative to properly exploit the GPU for small meshes, which is not normally

done, but relevant for our application. With this implementation the speed-up reaches nearly

60x with respect to the CPU, as shown in Fig. A.2(b) and Table A.1.

The developed code is finally compiled with the CUDA compiler (nvcc) and dynamically

called from a Fluent R© user defined function. The sub-grid simulation is driven by passage and

retrieval of the required variables between the two compiled codes through a stream process.
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Appendix B

Thesis contributions

The following scientific contributions have been accomplished on the basis of this work:

Journal publications

4. L. Bergamasco, S. Izquierdo, M. Laspalas, M.A. Jiménez, Analysis of multi-scale effects

on the permeability of textile reinforcements for liquid composite molding, Composites

Part A: Applied Science and Manufacturing, almost completed ;

3. L. Bergamasco, S. Izquierdo, I. Pagonabarraga, N. Fueyo, Multi-scale permeability of

deformable fibrous porous media, Physical Review E: Statistical, Non-linear and Soft

Matter Physics, submitted to journal ;

2. L. Bergamasco, S. Izquierdo, E. Duvivier, J.M. Royo, A. Chiminelli, M.A. Jiménez, Gen-

eralized analytical solution for compressive forces in adhesively-bonded-joint assembling,

International Journal of Adhesion & Adhesives, 52 (2014) 26–30;

1. L. Bergamasco, S. Izquierdo, A. Ammar, Direct numerical simulation of complex vis-

coelastic flows via fast lattice-Boltzmann solution of the Fokker-Planck equation, Journal

of Non-Newtonian Fluid Mechanics, 201 (2013) 29-38;
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B. Thesis contributions

Conference Proceedings

2. M. Laspalas, M. Lizaranzu, M. Castrillón, A. Gimeno, S. Izquierdo, L. Bergamasco, F.

Mart́ın de la Escalera, J.R. Sainz de Aja, M.A. Jiménez, Input data determination for

RTM simulation of composite materials, Proceedings of the 16th European Conference

on Composite Materials (ECCM16), Seville (Spain), Jun 2014.

1. L. Bergamasco, S. Izquierdo, M.A. Jiménez, RTM permeability prediction using CFD

and a GPU acceleration of a lattice Boltzmann solution for sub-grid probability density

functions, Proceedings of the 20th European Congress on Computational Methods in

Applied Sciences and Engineering (ECCOMAS), Vienna (Austria), Sep 2012;

Workshop/Conference talks

3. L. Bergamasco, S. Izquierdo, M. Laspalas, M.A. Jiménez, Analysis of multi-scale effects

on the permeability of textile reinforcements for liquid composite molding, 12th Inter-

national Conference on Flow Processing in Composite Materials (FPCM12), Enschede

(Netherlands), Jul 2014.

2. L. Bergamasco, S. Izquierdo, M.A. Jiménez, RTM permeability prediction using CFD

and a GPU acceleration of a lattice Boltzmann solution for sub-grid probability density

functions, 20th European Congress on Computational Methods in Applied Sciences and

Engineering (ECCOMAS), Vienna (Austria), Sep 2012;

1. L. Bergamasco, S. Izquierdo, M.A. Jiménez, Lattice Boltzmann solution of FENE kinetic

equations for polymeric fluids, Maths & Chemistry Workshop, Zaragoza (Spain), Jun

2012;
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