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EXECUTIVE SUMMARY 

Within the field pertaining to the measurement of very small quantities of magnetic 

materials, there are nowadays different devices capable of accurately measuring the 

weak magnetic fields present in samples under study. Primarily, these devices are based 

on the technology of SQUID systems (superconducting quantum interference devices) 

which are able to measure magnetic fields up to 10 -18 Tesla (T), being the most 

sensitive magnetometers known till nowadays. 

These SQUID devices have a high precision in the measurement of magnetic fields but 

its use is made in very demanding technical conditions because it needs to incorporate 

an associated cryogenic cooling system. 

Other recent magnetometers, such as SERF based devices (spin-exchange relaxation 

free devices, based into the exchange of the spin without relaxation) allows also to 

measure very weak magnetic fields, without resorting to cryogenic conditions, although 

they can only operate at practically zero fields, being unable to measure higher-intensity 

fields. Furthermore, their conditions of use are technically demanding, requiring a 

preheating of an alkali metal vapor and a special medium used to that end associated to 

the magnetometer. 

To avoid the aforementioned inconvenients it is necessary to develop technical 

alternatives to get accurate measures of weak magnetic fields whose operation 

requirements don´t need to have technically complex processes prior to the sensing 

(such as obtaining cryogenic temperatures, vacuum technology or heating sensing 

atoms), and also involving low manufacturing costs 1. 

That is the reason why this master thesis has been developed. On it, the aim is to obtain 

a high sensitive magnetometer, based on diamagnetic levitation principles, to measure 

weak magnetic samples. The device comprises a system of two permanent magnets in 

which one magnet is in a stable equilibrium levitating position by means of the presence 

of a diamagnetic element being the magnetic study specimen subjected to the action of 

the magnets of the device. This specimen has been designed and produced by optical 

lithography in form of microstructures with variable size that will allow to do 

systematic measurements and to analyze the answer of the sensor. Also, the prototype 
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has been tested with different measurement strategies and with different geometry as 

regards to the size of the magnet, magnet-sample distance, and so on. Finally, the 

measurements done with the prototype have been compared with the one obtained by 

the high sophisticated technique of the SQUID. 

 

I TRODUCTIO  

Since the first magnetic needle compass used by the Chinese to improve the accuracy of 

navigation, many studies have been done to achieve a better knowledge about how the 

magnetic field acts and to find applications to use it in the real life. Was Hans Christian 

Oersted, a professor at the University of Copenhagen, who discovered the relationship 

between electricity and magnetism in 1819. Several other experiments followed. André-

Marie Ampère, in 1820, proves that the magnetic field circulating in a closed-path was 

related to the current flowing through the surface enclosed by the path. In the same year 

Carl Friedrich Gauss, Jean-Baptiste Biot and Félix Savart, came up with the Biot–Savart 

law giving an equation for the magnetic field from a current-carrying wire. Later on, in 

1831, Michael Faraday found that a time-varying magnetic flux through a loop of wire 

induced a voltage. James Clerk Maxwell synthesized and expanded these insights into 

Maxwell's equations, unifying electricity and magnetism into the field of 

electromagnetism. 

Electromagnetism and magnetism knowledge continues to develop, being incorporated 

into the more fundamental theories of gauge theory, quantum electrodynamics, 

electroweak theory, and finally the standard model. 

As result of all this, the magnetic materials are nowadays divided basically into three 

types, and gives place to the respective well known magnetic effects: Ferromagnetism, 

Paramagnetism and Diamagnetism.  

1.- Types of magnetic materials 

To introduce the different types of magnetism the best way is to describe how materials 

respond to magnetic fields, having as a basic that the origin of magnetism lies in the 

orbital and spin motions of electrons and how the electrons interact with one another2.  
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 Ferromagnetic:  

In these materials the atomic moments exhibit very strong interactions which are 

produced by electronic exchange forces due to the relative orientation of the 

spins of two electron

large net magnetization even in the absence of a magnetic field (H). This effect 

is called spontaneous magnetization and is a characteristic of these materials 

(figure 1a).  

Also, the ferromagnets c

removed. This behavior is called hysteresis and gives place to the well known 

hysteresis loop, which shows the variation of magnetiza

field as can be seen in figure 1b).

a) Alignment of moments in 

absence of H. 

Figure 1: Ferromagnetic order. 

 
 Paramagnetic: 

Paramagnetic materials are composed of atoms or ions that have a net magnetic 

moment due to unpaired electrons in partially filled orbitals

interact magnetically having a zero magnetization when there is no field (figure 

2a).  

In the presence of a field there is a partial alignment of the atomic magnetic 

moments appearing a magnetic moment

a net positive magnetization and positive susceptibility (χ). This 

the ratio of M to the field applied:  χ = M/H. The efficiency of the field in 
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In these materials the atomic moments exhibit very strong interactions which are 

produced by electronic exchange forces due to the relative orientation of the 

spins of two electrons. As a result, the alignment of moments gives place to a 

large net magnetization even in the absence of a magnetic field (H). This effect 

is called spontaneous magnetization and is a characteristic of these materials 

Also, the ferromagnets can retain a memory of an applied field once it is 

removed. This behavior is called hysteresis and gives place to the well known 

hysteresis loop, which shows the variation of magnetization (M) with magnetic 

as can be seen in figure 1b). 

 

Alignment of moments in 
b) Hysteresis loop.

Figure 1: Ferromagnetic order.  

Paramagnetic materials are composed of atoms or ions that have a net magnetic 

moment due to unpaired electrons in partially filled orbitals, but they do not 

interact magnetically having a zero magnetization when there is no field (figure 

In the presence of a field there is a partial alignment of the atomic magnetic 

appearing a magnetic moment in the direction of the field, resul

a net positive magnetization and positive susceptibility (χ). This 

the ratio of M to the field applied:  χ = M/H. The efficiency of the field in 

Mr: Remanent
Magnetization

Hc: Coercitivity

 
                         

 

In these materials the atomic moments exhibit very strong interactions which are 

produced by electronic exchange forces due to the relative orientation of the 

s. As a result, the alignment of moments gives place to a 

large net magnetization even in the absence of a magnetic field (H). This effect 

is called spontaneous magnetization and is a characteristic of these materials 

an retain a memory of an applied field once it is 

removed. This behavior is called hysteresis and gives place to the well known 

tion (M) with magnetic 

 

b) Hysteresis loop. 

Paramagnetic materials are composed of atoms or ions that have a net magnetic 

, but they do not 

interact magnetically having a zero magnetization when there is no field (figure 

In the presence of a field there is a partial alignment of the atomic magnetic 

in the direction of the field, resulting in 

a net positive magnetization and positive susceptibility (χ). This χ is defined as 

the ratio of M to the field applied:  χ = M/H. The efficiency of the field in 

Ms: Saturation 
magnetization
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aligning the moments is opposed by the randomizing effects of temperature. As 

a consequence, the susceptibility is temperature dependent. Other characteristic 

behavior is that when the field is removed the magnetization is immediately lost 

(figure 2b).  

a) Alignment of moments in 

absence of H. 

       Figure 2: Paramagnetic material.

 Diamagnetic 

In the diamagnetic substances the atoms have no net magnetic moments because 

all the orbital shells are filled and there are no unpaired electrons (figure 3a).

 

a) Alignment of moments

absence of H. 

 
                Figure 3: Diamagnetic material.

Diamagnetism is a fundamental property of all matter and is due to the non

cooperative behavior of orbiting electrons when exposed to an applied magnetic 

field. The magnetic moment is opposite to the field applied and thus the 

susceptibility is negative (f
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aligning the moments is opposed by the randomizing effects of temperature. As 

ence, the susceptibility is temperature dependent. Other characteristic 

behavior is that when the field is removed the magnetization is immediately lost 

 

a) Alignment of moments in 
b) Magnetization (M) curve versus Field 

Figure 2: Paramagnetic material. 

In the diamagnetic substances the atoms have no net magnetic moments because 

all the orbital shells are filled and there are no unpaired electrons (figure 3a).

 

a) Alignment of moments in 
b) Magnetization (M) curve versus Field (H) applied.

Figure 3: Diamagnetic material. 

Diamagnetism is a fundamental property of all matter and is due to the non

cooperative behavior of orbiting electrons when exposed to an applied magnetic 

field. The magnetic moment is opposite to the field applied and thus the 

susceptibility is negative (figure 3b). As in the paramagnetic materials, when the 
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all the orbital shells are filled and there are no unpaired electrons (figure 3a). 
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field is removed the magnetization is zero, but here the susceptibility is 

temperature independent.  

2.- History of diamagnetic levitation 

Nowadays it is possible to easily levitate diamagnetic substances in the powerful field 

of rare earth magnets. But the way towards this was long.  

It was in the last third of the 18th century when the Dutch Anton Brugmans observed 

for the first time the phenomenon of diamagnetism while he was investigating the action 

of a permanent magnet on a plurality of substances. As he investigated bismuth he 

observed that the piece used for it was repelled by both poles of the magnet.  

But was in 1845 when the British scientist Michael Faraday, coin the word diamagnetic 

to distinguish substances that between the poles of a powerful electromagnet were 

attracted towards the magnet poles, and others which were moved from stronger points 

of the field to weaker points. The first one he called “magnetic”. The second one 

“diamagnetic” 3.  

Two years later the studies made by William Thomson give place to a doubt about the 

feasibility of the diamagnetic levitation due to the difficulty of getting a magnet strong 

enough, and a diamagnetic substance sufficiently light.  

It was needed near a century to achieve the technology developed enough to have 

finally the first demonstration of diamagnetic levitation, which comes in 1939 by the 

hand of the German physicist Werner Braunbek.  He used a strong inhomogeneous 

magnetic field of an electromagnet to levitate tiny pieces of graphite and bismuth, 

showing that the Earshaw´s theorem (… a magnetic body floating in a static magnetic 

field cannot be in a state of stable equilibrium…) is invalid for substances with a 

relative magnetic permeability smaller than unity 4. 

After this the dutch Boerdijk repeated Braunbek´s experiment but with a permanent 

magnet instead of an electromagnet. In this way, he was the first one to demonstrate the 

levitation of a permanent magnet. His experimental setup was smaller but equalled  

Braunbek’s setup.  
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The next step to improve the diamagnetic levitation possibilities was given by Dr. Erich 

Steingroever, who was the first to propose the use of anisotropic graphite for 

diamagnetic levitation to achieve higher load capacities 5. On two types of graphite, the 

Ceylon graphite (a natural graphite mono-crystal) and on the pyrolytic graphite (which 

is synthezised from purified hydrocarbon gases) the susceptibility perpendicular to the 

graphite crystal layers is much higher than parallel and also higher than in isotropic 

graphite. Due to the higher susceptibility the load capacity of the levitating diamagnetic 

object increases. 

Finally, the availability of very strong neodymium iron boron (NdFeB) permanent 

magnets since the 1990’s made possible new developments on the field of diamagnetic 

levitation 3.   

Due to all this was possible that the physicist Andrey Geim and his co-authors research 

attracted the attention of media and broad public when they levitated living creatures 

like frogs.  This was not only by fun. To obtain these results was first necessary that 

Geim and M.V. Berry examined extensively the equilibrium conditions needed for 

levitation of diamagnetic objects in the magnetic field of a solenoid. Stable levitation 

zones were calculated in detail for different solenoid geometries and different values of 

the magnetic field. Afterwards an experimental validation followed in the magnetic field 

of a powerful bitter magnet 3.   

The applications of the diamagnetic levitation that appears after all these studies have 

replaced some uses in the traditional measurements of the microsensors 6  and MEMs 

accelerometers to measure the earthquakes 7, or the one of the  tiltmeters 8 and rotators 9. 

Also different fields has been explored like to measure the diamagnetic susceptibility10 

or to manipulate femtodroplets 11. At the same time patents of a wide classes of systems 

used to do this experiments have been published 12, 13, 14, 15.  

Regarding to this master project the diamagnetic levitation phenomenon has been used 

to characterize ferromagnetic thin films with nanometric thickness. Using the strong 

diamagnetism of the pyrolytic graphite and the big BH product that the neodymium iron 

boron based supermagnets show, it is possible to levitate a supermagnet without the 

necessity of an external source of energy and at room temperature. This effect of 

levitation must not get mixed up with the superconductive effect. This last only exists if 
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the magnetic field does not exceed a critical value which is function of the temperature 

and is necessary to maintain this temperature at sufficient low values 16.   

 

PRESE T MAG ETIC MEASUREME T TECH IQUES  

The results obtained with the prototype have been compared with the conventional 

magnetic measurement technique of the SQUID. As nowadays there are different 

devices capable of accurately measuring weak magnetic fields present in samples under 

study, some of the most common so as some emergent ones are explained here.  

1.- The SQUID (Superconducting Quantum Interference Device) 

It is a magnetometer based on superconducting loops containing Josephson junctions 

(JJ) and is capable to measure fields as low as 5×10−18 T under determined conditions. 

The technology behind a SQUID´s operation was exposed by Brian Josephson in 1962. 

He discovered that a superconducting (critical) tunneling current flows between two 

superconductors separated by a thin layer of insulation, in the absence of any applied 

voltage 17. The junction of separation is called the Josephson junction and the value of 

this critical current through the JJ is affected by the presence of a magnetic field. 

Depending on the number of Josephson junctions there are two main types of SQUIDs: 

direct current (DC) SQUID composed of two JJ and radio frequency (RF) SQUID 

composed of a single JJ. As the first one is more sensitive it is the one explained here.  

In the figure 4 is illustrated the working principle of a DC SQUID magnetometer. 

 

Figure 4: DC SQUID magnetometer operation mode 18.  
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As can be seen in the figure, the enclosed components in the outer dashed box are kept 

at a cryogenic temperature (achieved by using a cryogenic cooling system), and 

magnetically shielded, except the pickup coil. The rest of the circuitry is left at the 

ambient temperature. 

By applying a DC bias current, Ib to the SQUIDs loop, a voltage is produced across the 

junctions, which is a periodic function of the sensed ma

loop. Through the feedback coil and a feedback resistor a feedback voltage is produced 

that helps to maintain a modulated constant flux mag

The output from the integrator presents a linearis

to the sensed flux 18. By measuring the feedback current it is possible to know the 

variation in the flux, and therefore the magnetic moment m originating this flux. 

Figure 5: The pickup coils with the sample 

To measure the sample, it is placed into the pickup coils inside a plastic straw (see 

figure 5). The magnetic material influences on the flux of the sensor coil in a 

proportional quantity to the magnetization of the sample, contributing to the flux or 

reducing it 19.  

The magnetic property measurement system (MPMS) used to obtain the measurements 

has been the MPMS XL 5T of Quantum Design. The minimum magnetic moment that it 

is able to detect is of 10-10 

field is of the order of 10-18
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As can be seen in the figure, the enclosed components in the outer dashed box are kept 

at a cryogenic temperature (achieved by using a cryogenic cooling system), and 

magnetically shielded, except the pickup coil. The rest of the circuitry is left at the 

By applying a DC bias current, Ib to the SQUIDs loop, a voltage is produced across the 

junctions, which is a periodic function of the sensed magnetic flux through the pick

loop. Through the feedback coil and a feedback resistor a feedback voltage is produced 

that helps to maintain a modulated constant flux magnitude within the SQUIDs loop. 

e integrator presents a linearised response from the SQUID, relative 

By measuring the feedback current it is possible to know the 

variation in the flux, and therefore the magnetic moment m originating this flux. 

Figure 5: The pickup coils with the sample 19.  

To measure the sample, it is placed into the pickup coils inside a plastic straw (see 

figure 5). The magnetic material influences on the flux of the sensor coil in a 

proportional quantity to the magnetization of the sample, contributing to the flux or 

The magnetic property measurement system (MPMS) used to obtain the measurements 

XL 5T of Quantum Design. The minimum magnetic moment that it 

 Am2 (Amperometer square) whereas the minimum magnetic 
18 T. 

 
                         

 

As can be seen in the figure, the enclosed components in the outer dashed box are kept 

at a cryogenic temperature (achieved by using a cryogenic cooling system), and are 

magnetically shielded, except the pickup coil. The rest of the circuitry is left at the 

By applying a DC bias current, Ib to the SQUIDs loop, a voltage is produced across the 

gnetic flux through the pick-up 

loop. Through the feedback coil and a feedback resistor a feedback voltage is produced 

nitude within the SQUIDs loop. 

esponse from the SQUID, relative 

By measuring the feedback current it is possible to know the 

variation in the flux, and therefore the magnetic moment m originating this flux.  

 

To measure the sample, it is placed into the pickup coils inside a plastic straw (see 

figure 5). The magnetic material influences on the flux of the sensor coil in a 

proportional quantity to the magnetization of the sample, contributing to the flux or 

The magnetic property measurement system (MPMS) used to obtain the measurements 

XL 5T of Quantum Design. The minimum magnetic moment that it 

(Amperometer square) whereas the minimum magnetic 
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2.- The VSM (Vibrating Sample Magnetometer) 

The vibrating sample magnetometer measures the magnetization of a small sample of 

magnetic material placed in an external magnetizing field by converting the dipole field 

of the sample into an ac electrical signal.  

The basic instrument invented by Simon Foner in 1959 is depicted in figure 6. On it, the 

sample (5) is vibrated perpendicularly to the applied field by the loudspeaker assembly 

(1), (2), and (4) inducing a voltage in the stationary detection coils (7). This voltage is 

used to deduce the properties of the sample. A second voltage is induced in a similar 

stationary set of reference coils (6) by a reference sample (4) which may be a small 

permanent magnet or an electromagnet. The phase and amplitude of the resulting 

voltages are directly related because the sample and reference are driven synchronously. 

Then the magnetic moment of the sample is proportional to the known portion of the 

voltage from (7), using the voltage from (6) as a reference 20. 

 

 

Figure 6: Simplified form of vibrating-sample magnetometer : (1) loudspeaker transducer, (2) conical 

paper cup support (3), drinking straw (4) reference sample, (5) sample, (6) reference coils, (7) sample 

coils, (8) magnet poles, (9) metal container 20. 
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Nowadays the technique has been improved but the basic principle of operation for a 

vibrating sample magnetometer (a changing magnetic flux will induce a voltage in a 

pickup coil) remains. Also the basic measurement of the magnetic moment is 

accomplished by oscillating the sample near a detection (pickup) coil and 

synchronously detecting the coefficient of the sinusoidal voltage response from the 

detection coil. 

 
In the VSM systems that are being used today the loudspeaker transducer has been 

change by a linear motor transport (head) for vibrating the sample. Also the electronics 

for driving the linear motor transport and detecting the response from the pickup coils 

has been developed. The rest remains the same 21.  

The way of working is as follows: the sample is attached to the end of a sample rod 

which is driven sinusoidally. The center of oscillation is positioned at the vertical center 

of a gradiometer pickup coil. By using an optical linear encoder signal readback from 

the VSM linear motor transport, the precise position and amplitude of oscillation is 

controlled. Then, the voltage induced in the pickup coil is amplified and lock-in 

detected in a VSM detection module using the position encoder signal as reference for 

the synchronous detection. By averaging the in-phase and quadrature-phase signals 

from the encoder and from the amplified voltage from the pickup coil the final value is 

obtained.  

The system is able to resolve magnetization changes of less than 10-9  Am2 at a data rate 

of 1 Hz 22.  

3.- MFM (Magnetic Force Microscope) 

Magnetic force microscopy imaging is a useful technique to locally study the magnetic 

state of nanostructures.  It provides simultaneously information about the topography 

and the magnetization of the samples.  

Usually, their images complete the magnetic characterization performed by standard 

macroscopic methods such as SQUID or VSM. But other times, it can also be used to 

give a quantitative value of the magnetization 23, 24 in nanostructures by means of the 

quantitative MFM imaging analysis as can be seen in the next figure 25. 
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Figure 7: Hysteresis loop of a ferromagnetic sample  measured by SQUID magnetometry (solid line). The 

data points were obtained from the MFM images 23.  

For mapping the magnetic forces of the sample the magnetic tip of the MFM interacts 

with the sample’s stray magnetic field. According to Hooke’s Law the force (F) 

detected depends on the spring constant (k) of the cantilever (assuming that the 

cantilever is oriented parallel to the sample surface) and the variation on the position in 

the z-axis 26. 

 
F = - k∆z                                                        (1) 

 
 

                              
Figure 8: Interaction of the magnetic tip with the sample stray magnetic field.  
 

There are two modes of the tip-sample interaction: static MFM (dc) and dynamic MFM 

(ac). In the static MFM mode the interaction force is measured through the detection of 

the cantilever deflection from the equilibrium position, while in the dynamic MFM 

mode is registered the force gradient, that is to say, the change in resonant properties of 

S

S

SUBSTRATE

MAGNETIC SAMPLE

MFM TIP
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the vibrating system cantilever-sample. The dynamic mode operation is more sensitive 

to the magnetic field variation than the static one 27.  

Since it is based on the force or force derivatives detection, the relation with the energy 

of tip-sample interaction (Etip-sample) is: 

                                                      F =   Etip - sample                                              (2) 

The Etip-sample can be expressed in terms of a convolution of the tip stray field Htip and 

the sample magnetization Msample, where integration is performed over the whole 

magnetic volume of the sample. 

                                                E tip-sample ~ ∫sample  M sample H tip                                       (3) 

Therefore, having measured the forces (or their derivatives) acting between a tip and a 

sample, it is theoretically possible to restore the magnetisation distribution Msample 

within an unknown sample upon some model assumptions on distribution of the stray 

field from MFM tip Htip and having assessed this value numerically28.  

The sensitivity of this measurement technique is found to be in the 10-18 Am2 range 

under ambient conditions29. But it is limited by the tip's magnetic moment and the noise 

level of the instrument.  

 

4.- SERFs (Spin-exchange relaxation-free) magnetometers 

 
A spin exchange relaxation-free magnetometer is a type of magnetometer developed in 

the early 2000s. It measures magnetic fields by using lasers to detect the interaction 

between alkali metal atoms in a vapor and the magnetic field.  

The general idea of the method is that light that is near-resonant with an optical 

transition creates long-lived orientation and/or higher-order moments in the atomic 

ground state, which subsequently undergo Larmor spin precession in the magnetic 

field30. The modification of the optical absorptive and dispersive properties of the atoms 

that this precession causes is detected by measuring the light transmitted through the 

atomic medium. 
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The resonant medium is usually a vapor of alkali atoms (Rubidium (Rb), Cesium (Cs) 

or Potassium (K)) contained in a glass bulb.  As the depolarization caused by collisions 

with the cell walls that enclose the atomic vapor limit the spin-relaxation time, cells 

filled with buffer gas are commonly used. This gas ensures that the atoms optically 

polarized in the central part of the cell take a long time to diffuse to the walls. The 

surface relaxation can also be reduced by using a coating on the cell walls that has low 

adsorption energy for atoms, so they spend less time bound to the surface of the cell. 

Among such coatings, materials with long chains of hydrocarbons as paraffin work well 

with alkali metals 31. 

Another way to improve the magnetometer sensitivity is to increase the density of 

alkali-metal atoms. This has been done typically by increasing the temperature of the 

cell, although alternative approaches using light-induced desorption have been 

investigated32.  

Regarding to light sources used for atomic magnetometers, originally they were 

discharge lamps but today the light sources of choice are diode lasers 33. 

The atomic magnetometers can be configured so that their output is directly related to 

the absolute magnitude of the magnetic field through fundamental physical constants. 

Therefore, no calibration is required. 

In the figure 9, a scheme of a general SERF is depicted. As can be seen, the 

magnetometer consists of a cell containing an alkali vapor and a buffer gas. The alkali 

vapor is generated by heating a droplet of potassium, rubidium or cesium inside a T-

shaped glass cell. 

The unpaired electrons on the alkali atoms are spin-polarized by a pump laser (high 

power diode laser) circularly polarized, pointing the electron spins along the direction of 

circular polarization.  A perpendicular probe laser (single frequency diode laser) detects 

the orientation of the electron spins as they precess in a magnetic field.  

This laser is detuned from the alkali resonance and as it passes through the polarized 

vapor, the laser polarization angle is rotated due to the circular dichroism of the vapor. 

The degree of rotation is proportional to the degree to which spins are pointing along 

the probe beam 34.  



Magnetic measurements of nanometric thin films by  
means of a new sensor based on diamagnetic levitation.  

 
                                                                                                                                                      

 
14 

Mª Rosario Mayoral Blasco 

To obtain the magnetic field this probe beam is focused onto an array of photodiodes. 

 
Figure 9: Schematic of a SERF system 34.  

As explained before, the SERFs are fundamentally limited by spin-exchange relaxation. 

Hence, if the spin-exchange collisions happen fast enough and in a sufficiently low 

magnetic field the spins do not have enough time to precess and decohere between 

collisions. To achieve these conditions, the oven heats the droplet of alkali in the cell 

(acquiring the required density), and the shield of the cell from external magnetic fields 

reduce the precession frequency.  

To conclude, the potential capability in sensitivity of this magnetic magnetometer is on 

the order of 10-18 T regarding to the magnetic field. 

5.- itrogen Vacancy ( V) Magnetometry 

The nitrogen-vacancy (NV) color center in diamond has recently emerged as highly 

versatile optical emitters that exhibit room temperature spin properties.  What sets it 

apart from other color centers is that it is magnetic (i.e., of nonzero spin) and that the 

luminescence is coupled to the spin state, such that the luminescence intensity can be 

modulated by magnetic fields 35. Their remarkable properties include single photon 

emission, a spin-triplet ground state with long spin coherence time at room temperature, 

and spin dependent photoluminescence. These properties enable NV centers to locally 
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detect and measure magnetic fields acting as highly sensitive magnetic field sensors 

with nanoscale spatial precision 36. 

The NV center is formed by removing two adjacent carbon atoms and replacing one of 

them with a nitrogen atom while leaving the other site vacant.  The NV center has been 

shown to exist in three different electronic forms, the negatively charged NV−, the 

neutral NV0 and the positively charged NV+. Of them, only the NV− is magneto-

optically active.  

The electronic structure of the NV center involves six electrons. Three of them come 

from the dangling sp3 bonds of the carbon atoms surrounding the vacancy and other 

two from the lone pair of electrons located on the nitrogen. The sixth electron is 

captured from another site in the lattice often coming from other nitrogen impurities, 

making the overall charge state NV−.  

 

 

Figure 10: Scheme of a NV center. The dashed lines represent dangling bonds which all overlap in the 
vacancy. The carbon atoms each contribute one electron , the nitrogen atom contributes two electrons, 
and one more electron comes from other lattice defects  to generate the negatively charged NV center 37.  
 
A simple energy-level diagram of the NV center, is shown in Figure 11. There are 

various electronic levels in the NV center which includes a ground state |g> of 

symmetry 3A2, an excited state |e> of symmetry 3E, and a metastable singlet state |s> 

that involves two levels with symmetries 1A1 and 1E. As two out of six electrons are 

unpaired, the spin states of ground and first excited states are both triplet states (S=1) 

and are further split into three spin sublevels.  

Because the NV center is not spherically symmetric, the two mS= ±1 states are 

degenerate, and the mS =0 state is energetically lower. The ground state zero-field 

splitting (ZFS) energy is given by D=2.87 GHz whereas the energy difference between 

N

V C

C
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spin sublevels is D=1.42 GHz for the excited state. Thus, a transition from ms = 0 to 

ms= ±1 can be achieved by absorption of microwaves at around 2.87GHz.The spin-

lattice relaxation time, T1, gives the transition rate between mS =0 and mS= ±1 sublevels 

and is of a few milliseconds at room temperature. Finally, by applying magnetic fields 

the mS=±1 levels shifts in opposite directions (Figure 11, inset).  

 

Figure 11: Energy-level diagram of the NV−. |g>, |e>, and |s> denotes the electronic ground state, the 

electronic excited state, and the metastable singlet state respectively. Wiggly arrows indicate the radiative 

transition, whereas the black arrows indicate strong and weak nonradiative decay via the singlet state. The 

inset depict the three spin sublevels with mS = 0 and mS = ±1 at zero and nonzero magnetic field B. D is 

the zero-field splitting and 2γ B is the Zeeman splitting, where γ is the electron gyromagnetic ratio. By 

convention, the lower energy transition is associated with ms = −1 35. 

The metastable singlet state |s> is mainly populated from |e, mS= ±1> owing to 

differing crossover rates (Figure 11), what implies a pivotal role in the magneto-optic 

behavior of the NV center. An electron in the |e, mS= ±1> state decay via the long-lived 

singlet state, whereas an electron in |e, mS =0> mostly decays via the fast radiative 

transition leading to an optical contrast between the mS =0 and mS= ±1 states of 

approximately 30%. Then, the optical emission is seen as fluorescence from the NV 

center, and a change in fluorescence gives information about the spin state. The 

promotion to either the ms = +1 or ms = -1 states can be detected by a decrease in 

fluorescence 38.  

To obtain the magnetic field is used the EPR (electron paramagnetic resonance) by 

D= 2.87 GHz
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slowly sweeping an auxiliary microwave field. As the microwave frequency is resonant 

with the EPR transition the fluorescence intensity is reduced due to the excitation from 

mS =0 to mS= ±1. This effect, called optically detected magnetic resonance (ODMR), 

provides a means to modulate the fluorescence intensity dependent on the magnetic 

interactions of the single electron spin. There are different mechanism by which the 

ODMR lines in the NV center can be split: the strain, the Zeeman-effect and the 

hyperfine coupling. Of them, the Zeeman-effect is used here by coupling a static B-field  

(nominally aligned along the NV axis) to the NV-dipole moment. As the NV dipole is 

magnetic it wants to align itself to the applied magnetic field.  The three spin states, 

mS=+1, 0, -1 correspond to the dipole being oriented directly along, perpendicular to, 

and directly against, the NV axis. Consequently, the energy of the +1 spin state would 

increase and that of the -1 state would decrease in energy, while the zero state remains 

unchanged. This leads to a reduction in the frequency for the mS=0  -1 transition and 

in an increase in the frequency for the mS=0  +1 transition 37. Thus, two resonances 

appear in the ODMR spectrum as a magnetic field is applied. The absorption at this two 

resonant microwave frequencies yields information about the degree of Zeeman 

splitting and hence magnetic field. The separation between this two resonance 

frequencies is given by 2γ Bz, where γ =2π ×2.8 GHz/T is the electron gyromagnetic 

ratio and Bz is the magnetic field parallel to the NV axis. As a result, measurements of 

the ODMR frequency immediately yield the absolute value of the magnetic field 35. 

One aspect of diamond impurities is that they are highly stable, even if the host crystal 

is only a few nanometers in size. This small size provides numerous opportunities to 

employ them as local probes to monitor external perturbations, such as magnetic fields, 

with high sensitivity and spatial resolution. Then, the basic idea is to embed an NV 

center at the apex of a very sharp tip (<10-nm tip radius) into a scanning device and to 

scan this tip over the structure of interest. By mapping the position-dependent Zeeman 

shift of a single defect center, the magnetic field of a magnetic nanostructure is 

obtained. This Zeeman shift is typically measured by selectively exciting the transition 

|0 〉  |-1 〉 of the triplet spin ground state with a microwave pulse and reading out 

population of the | 0〉 spin state optically 39. Thus, an optical image of the magnetic field 

of a magnetic nanostructure is obtained by measuring the NV center fluorescence while 

scanning the tip over the surface. This technique has shown excellent sensitivity to 

nanotesla changes in magnetic field as well as nanometer spatial resolution in ambient 
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conditions and is theoretically expected 38 that with a further develop it should achieved 

a field resolution of 10 -18 T. 

 

Figure 12: Basic principle of scanning magnetometry. A sharp tip with a NV center at the apex is used to 

map out the three-dimensional magnetic field vector above a magnetic nanostructure, such as an isolated 

electronic spin 40.  

To sum up this section, the table 1 shows a comparative of the minimum detectable 

magnetic moment of the MPMS (SQUID system), the VSM and the MFM. As the 

SERFs and NV magnetometry are recent techniques to measure the magnetic properties, 

the studies developed till today have been based into the measurement of the magnetic 

field. This is the reason why their sensitivities are compared here regarding to the 

magnetic field sensitivity of the MPMS instead of the magnetic moment.   

 

Table 1: Comparative sensitivities between the different magnetic measurement techniques. 

MPMS 1E-10 1E-18
VSM 1E -9 -----------
MFM 1E-18 -----------
SERF ---------------- 1E-18

NV magnetometry ----------------- 1E -9

Magnetic moment 

sensitivity (Am2)

Magnetic field  
sensitivity (T)

Magnetic 
measurement 

technique
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THE TESTED PROTOTYPE 

1.- Basics 

The main macroscopic behavior of diamagnetic materials is that they are repelled by 

magnetic fields. This property has been used in this master thesis to obtain a stable and 

free diamagnetic levitation system, in order to measure ferromagnetic thin films and to 

characterize its sensibility to nanometric ferromagnetic structures.   

To levitate diamagnetic materials the first step is to set up a geometry that can support 

the object against gravity and at the same time ensure the stability. To achieve it there 

are two basic approaches: passive or active. The term active is used for systems using a 

feedback control loop, in opposition to systems levitating passively which do not 

require any control and do not need any energy. In this project, passive levitation has 

been chosen due to the simplicity of these systems.  

Within the passive levitation there are three basic configurations allowing stable free 

levitation of permanent magnets 41 as is shown in figure 13. 

 

Figure 13: Basic configurations used to achieve passive levitation of a permanent magnet M2 42.  

Looking to the levitation configuration on the left of the figure 13, to stabilize the 

equilibrium state of the small magnet M2 a diamagnetic material has been placed 

closely below it. This exercises an upward force of repulsion upon M2 which increases 

if M2 comes closer to the diamagnetic material. Maintaining M1 and the diamagnetic 

body without changes on their position, any slighting lowering of M2 from the 

equilibrium state results in an increase in the repulsion exercised by the diamagnetic 

body and a decrease of the attraction force between the two magnets M1 and M2. The 
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sum of both effects is always superior to the weight of

return to its equilibrium position.

magnetic attractive force is more important but the

The sum of both forces is always lower

the two remaining configurations, the diamagnetic levitation works in a similar way 

The maximum displacement is typically below one millimeter.

2.- The equipment 

As can be seen in figure 14, the equipment comprise of: 

1.- The diamagnetic levitation system.

2.- Solenoid. 

3.- A magnetic Hall sensor.

4.- The electronic control. 

5.- The micrometric gears. 

Figure 14: Different parts of the equipment.
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sum of both effects is always superior to the weight of M2, making M2 to move up and 

eturn to its equilibrium position. In the case that M2 displaces slightly upwards, the 

magnetic attractive force is more important but the diamagnetic repulsion decreases. 

The sum of both forces is always lower than the weight of M2 thus M2 moves down. In 

configurations, the diamagnetic levitation works in a similar way 

The maximum displacement is typically below one millimeter. 

As can be seen in figure 14, the equipment comprise of:  

The diamagnetic levitation system. 

A magnetic Hall sensor. 

 

 

Figure 14: Different parts of the equipment. 

 
                         

 

M2, making M2 to move up and 

In the case that M2 displaces slightly upwards, the 

diamagnetic repulsion decreases. 

than the weight of M2 thus M2 moves down. In 

configurations, the diamagnetic levitation works in a similar way 42.  
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2.1.- The diamagnetic levitation system.

The basis of the system is the diamagnetic levitation structure. On it

diamagnetic substance- magnet 2” configuration has been used (the third structure 

beginning from the left in the figure 13). The two

magnets with a relative size between them enough to obtain their stability under the 

effect of the diamagnetic material. 

Figure 15: The diamagnetic levitation system.

Magnets 

The big magnet 1 (M1) is f

structure of 12 x 12 x 12 mm

magnet. It provides the force necessary to counter gravity. 

The second magnet (magnet 2, M2) is the one that levitates and also interacts 

magnetically with the sample of the magnetic material, object of the measurements. 

magnets with different geometries and sizes have been used in this position.

them with a cylindrical shape

and of 1 mm diameter the other. The third has 

last three ones have been cubic magnets with sides 1 mm, 2.5 mm and 3 mm 

respectively. 
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The diamagnetic levitation system. 

The basis of the system is the diamagnetic levitation structure. On it

magnet 2” configuration has been used (the third structure 

beginning from the left in the figure 13). The two magnets are NdFeB

magnets with a relative size between them enough to obtain their stability under the 

effect of the diamagnetic material.  

Figure 15: The diamagnetic levitation system. 

The big magnet 1 (M1) is fixed onto a structure of aluminum (Al) 

of 12 x 12 x 12 mm3. This is the lifting magnet or, as is often called, the bias 

magnet. It provides the force necessary to counter gravity.  

The second magnet (magnet 2, M2) is the one that levitates and also interacts 

magnetically with the sample of the magnetic material, object of the measurements. 

magnets with different geometries and sizes have been used in this position.

th a cylindrical shape of 1 mm thickness, being one of them of 1.

the other. The third has a spherical shape of diameter 3 mm. The 

last three ones have been cubic magnets with sides 1 mm, 2.5 mm and 3 mm 

 
                         

 

The basis of the system is the diamagnetic levitation structure. On it a “magnet 1-

magnet 2” configuration has been used (the third structure 

NdFeB permanent 

magnets with a relative size between them enough to obtain their stability under the 

 

 and has a cubic 

This is the lifting magnet or, as is often called, the bias 

The second magnet (magnet 2, M2) is the one that levitates and also interacts 

magnetically with the sample of the magnetic material, object of the measurements. Six 

magnets with different geometries and sizes have been used in this position. Two of 

of 1.5 mm diameter 

a spherical shape of diameter 3 mm. The 

last three ones have been cubic magnets with sides 1 mm, 2.5 mm and 3 mm 
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Diamagnetic material 

As from Earnshaw´s theorem a permanent magnet cannot be levitated by one or more 

other permanent magnets alone because of instability of the equilibrium position of the 

magnet, pyrolytic graphite has been used to overcome it. This graphite has the highest 

diamagnetism of all the diamagnetic materials at room temperature. It has this property 

because some of its electrons effectively travel in a larger-than-normal orbits.  

For a better understanding of this behavior, let´s have a very simple model of the atom 

to explain it. An electron (as example of all the electrons of the atom) orbiting around 

the nucleus of an atom of diamagnetic material generates a magnetic field that is just 

like that of a tiny current-carrying loop of wire. In the natural state this fields are 

randomly created and they cancel one another doing that the material does not generate 

a field of its own. But when exposed to an external magnetic field these electrons speed 

up or slow down so as to oppose the change in the field inside their orbits. The net 

effect is a repulsive force caused by the induced magnetization that opposes to the 

applied field 4. 

To achieve the great stability in the position of the levitated magnet a horizontal slab of 

pyrolytic graphite has been chosen because it is strongly repelled by vertical fields but 

is little affected by in-plane fields. 

Hence, the levitation system used works as follows. The permanent magnet M1 attracts 

the small permanent magnet M2 situated vertically below it. For small horizontal 

displacements of M2 the equilibrium is stable, whereas for small, vertical displacement 

is unstable. This lability is overcome by placing directly over M2 a horizontal slab of a 

diamagnetic body. This latter exercises a downward force of repulsion upon M2 which 

increases if M2 comes closer to the diamagnetic material or decreases if M2 goes 

further. As explained before, the sum of forces of the magnet 1 and the pyrolytic 

graphite balance the displacement of the M2, maintaining the equilibrium. The vertical 

distance between the magnet M1 and the diamagnetic material can be changed by a 

micrometric gear, to obtain a stable levitation depending on the magnetization of M1 

and M2 and on the susceptibility of the diamagnetic material. This made possible to use 

different M2 magnets and in this way, to obtain the best response to the sample used.  

 



Magnetic measurements of nanometric thin films by  
means of a new sensor based on diamagnetic levitation.  

 
                                                                                                                                                      

 
23 

Mª Rosario Mayoral Blasco 

2.2.-  Solenoid 

The coil is used to vary the position of the magnet levitated. 

By its connection to a current generator it creates a field 

(positive and negative) that interacts with the second magnet in 

such a way that their stable levitation is overcome, falling 

down onto the sample to be measured or being restored to the 

initial equilibrium. By looking at the currents at which these 

two situations occur is possible to calculate the magnetic 

moment of the sample.  

Figure 16: The coil used to vary the position of the magnet levitated. 

2.3.- A magnetic Hall sensor 

This sensor is used to measure the displacement of the position of the magnet 2 respect 

to the equilibrium position. Through this displacement is possible to determine the 

effect created by the magnetic sample under study. The integrated circuit acts as a 

transducer, varying its output voltage (the Hall voltage VH) in a proportional way to the 

variation of the magnetic field at which are exposed the magnet 1, the magnet 2 the 

pyrolytic graphite and the magnetic sample.  

 

 

Figure 17: The magnetic Hall sensor 

As its name shows it is based on the Hall´s effect. This can be observed when the 

combination of a magnetic field through a sample and a current along the length of the 

sample creates an electrical voltage perpendicular to both the magnetic field and the 

The Hall sensor

Solenoid
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current. The underlying principle is the Lorentz force, that is, the force on a moving 

point charge due to electromagnetic fields 43.  

The simple theory of the Hall´s effect can be explained as follows. Consider a 

conducting slab as shown in Figure 18, with length l in the x direction, width w in the y 

direction and thickness t in the z direction.  

 

Figure 18: Geometry of fields and sample in Hall´s effect 44.  
 
Assume the conductor to have charge carrier of charge q, number density n and drift 

velocity vx (average velocity of the charge carriers over the volume of the conductor) 

when a current Ix flows in the positive x direction. 

  
Knowing that Ix is equal to the current density Jx multiplied by the cross-sectional area 

of the conductor wt and as Jx is the charge density nq multiplied by the drift velocity vx 

then: 

                                                 Ix = Jxwt = nqvxwt                                               (4) 

Now, assuming that the conductor is placed in a magnetic field perpendicular to the 

plane of the slab, the charge carriers will experience a Lorentz force qvxB that will 

deflect them toward one side of the slab causing an accumulation of charges along this 

side which creates a transverse electric field Ey that counteracts the force of the 

magnetic field.  
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Since the electrical and magnetic forces on the charge carriers in that direction must be 

balanced when steady state is reached, there will be no net flow of charge in the y 

direction.  

Then:  

   Ey = vxBz                                                            (5) 

being Ey the electric field (called the Hall field) in the y direction and Bz the magnetic 

field in the z direction. 

Also, the potential difference across the sample and the Hall voltage VH is related to the 

Hall field by 

                                              VH = - ∫0
w Eydy = - Eyw                                                (6) 

Thus, from equations (1), (2) and (3) the Hall voltage can be obtained as:   

VH = - ( 
1 

) 
IxBz  

                                                  (7) 
nq t 

       

The term in parenthesis is known as the Hall coefficient (RH). It is positive if the charge 

carriers are positive, and negative if the charge carriers are negative 44.  

 

2.4.- The electronic control 

The next step to understand the measurements made on this master thesis is to know 

how works the electronic part involved into the process. It comprises basically a current 

generator, a Hall sensor control and a microprocessor.  

2.4.1.- The current generator 

As explained before (section 2.2) this current generator has been used to overcome the 

stable levitated equilibrium of the second magnet or to restore to it. The schematic of 

this current generator is shown in figure 19. On it, by means of an instrumentation 

amplifier (AMP04) a variable voltage VP is obtained whereas the two operational 

amplifiers of the L272 chip are used to have a fixed reference voltage (VM).   
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To achieve the desired current a third voltage VO, supplied by a microprocessor, is also 

involved on the system.  

 

 

Figure 19: Shematic of the current generator. 

Then, to get the variable current the first step is to fix the voltage VM to a value of 

1.25V (Volts) by means of the stable reference REF03 and a potentiometer. The second 

step has been to construct the circuit in such a way that the voltage VP be equal to the 

difference between the reference voltage 2.5 V given by the REF03 and the voltage VO 

deal by the microprocessor multiplied by the gain of the instrumentation amplifier. This 

gain can be calculated by the next formula 45: 

Gain = 100 KΩ                                                                    (8) RG 
                                        

therefore, choosing RG equal to 100 KΩ the gain is 1 and the value of VP follows the 

equation:   

 VP = Gain (2.5 V – VO) = (2.5 V – VO)                                           (9) 

 

As the variable voltage VO is given by the microprocessor, the current (i) flowing in the 

coil is related to the different elements of the circuit by the next equations:  

Assuming VO= 0 V: 

VM = 1.25 V (fixed) 

VP= (2.5 V – VO) = (2.5 V – 0 V) = 2.5 V 

VO

VM

VP

1
1
.1
8
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By consequence, the maximum 

i =  
2.5 V – 

11.18 Ω

where the resistor of 11.18 

Now, assuming VO= 2.5 V

VM = 1.25 V (fixed) 

VP= (2.5 V – VO) = (2.5 V 

Thus, the maximum current able to flow

i =  
0 V – 1.25 V

11.18 Ω

Thereby, by the different values of VO inside t

microprocessor a variable current 

generating the different fields needed.

2.4.2.- The Hall sensor control

The Hall sensor (explained in the section 2.3

exposed the magnet 1, the magnet 2, the pyroly

transforms these measurements 

correspondent to the different positions of the second levitated magnet respect to its 

equilibrium. Basically, when there is the maximum of field it gives the maximum 

voltage whereas at the minimum field is on the contrary. 

Figure 20: Schematic of the Hall sensor control.
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maximum current that flows in the coil is defined by

 1.25 V 
= 111 mA (positive current) 

11.18 Ω 

 Ω is one chosen as shunt.  

ssuming VO= 2.5 V: 

(2.5 V – 2.5 V) = 0 V 

maximum current able to flow in the coil is: 

1.25 V 
= - 111 mA (negative current) 

11.18 Ω 

, by the different values of VO inside the range (2.5 V, -2.5 V) give

current in the range (-111 mA, 111mA) will flow in

fields needed. 

all sensor control 

explained in the section 2.3) detects the variations in field at which are 

gnet 1, the magnet 2, the pyrolytic graphite and the magnetic sample

these measurements into a voltage (the Hall voltage VH)

different positions of the second levitated magnet respect to its 

equilibrium. Basically, when there is the maximum of field it gives the maximum 

voltage whereas at the minimum field is on the contrary.  

Schematic of the Hall sensor control. 

 
                         

 

defined by: 

(10) 

(11) 

2.5 V) given by the 

will flow in the coil 

the variations in field at which are 

tic graphite and the magnetic sample. It 

all voltage VH) that is 

different positions of the second levitated magnet respect to its 

equilibrium. Basically, when there is the maximum of field it gives the maximum 
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As can be seen in the figure 

proportional voltage that is inside the range of voltages that the microprocessor can 

register. Then, the microprocessor analyze

the Y axis that will be shown on the screen of

program chosen as interface

a zero value at the minimum and the maximum voltage at the maximum the middle 

point is achieved dividing these two values between two.

magnetic properties of the sample

sensor. 

2.4.3.- The microprocessor

It is well known that the microprocessor is the chip that controls all the traffic of 

whatever electronic application

Figure 21: The microprocessor. 

2.5.- The micrometric gears

Two micrometric gears have been used

the M1-pyrolytic graphite- 

the wafer.  
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figure 20, the Hall sensor control adapts these variations 

proportional voltage that is inside the range of voltages that the microprocessor can 

register. Then, the microprocessor analyze them and gives the correspondent value to

that will be shown on the screen of a computer by means of the M

interface. As the operation of the system has been chosen

a zero value at the minimum and the maximum voltage at the maximum the middle 

point is achieved dividing these two values between two. This will help 

ies of the sample by looking at the variation measurements of the

The microprocessor 

the microprocessor is the chip that controls all the traffic of 

electronic application, being the nucleus of every complex circuit.

It has been used here to give the variable 

VO needed to obtain the desirable c

flowing through the coil. Furthermore

reads also the voltages VM, VP and VH 

making the correspondent logic operations 

so as to obtain the values of the current 

flowing in the coil in order to show them 

into the X axis of the screen of the M

program. 

 

 

 

The micrometric gears 

have been used. One of them, to change the distance between 

 M2; the other, to control the distance among

 
                         

 

these variations to a 

proportional voltage that is inside the range of voltages that the microprocessor can 

correspondent value to 

a computer by means of the Matlab 

the system has been chosen as to have 

a zero value at the minimum and the maximum voltage at the maximum the middle 

This will help to estimate the 

by looking at the variation measurements of the 

the microprocessor is the chip that controls all the traffic of 

circuit.  

give the variable 

obtain the desirable current 

flowing through the coil. Furthermore, it 

reads also the voltages VM, VP and VH 

making the correspondent logic operations 

values of the current 

the coil in order to show them 

he screen of the Matlab 

to change the distance between 

the distance among magnet 2 and 
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In the first case the aim is to achieve

second, to do possible that the magnetic fields of the sample and the levitating magnet 

can interact between themselves.

3.-The program 

The program used as interface to analyze

Figure 22: Matlab program. Values to choose.

As shows in the figure 22

through the coil by writing it in the value box corresponding to 

(<10 mA), being 10 milliamp (

gives the rate in seconds (s
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irst case the aim is to achieve the best stable diamagnetic levitation. In the 

second, to do possible that the magnetic fields of the sample and the levitating magnet 

can interact between themselves. 

used as interface to analyze the measurements is Matlab.  

Matlab program. Values to choose. 

22 it is possible to choose the range of current that will flow 

through the coil by writing it in the value box corresponding to Max. Current, Imax 

milliamp (mA) the maximum in absolute value. The 

in seconds (s) at which the current changes between the maximum and 

 
                         

 

the best stable diamagnetic levitation. In the 

second, to do possible that the magnetic fields of the sample and the levitating magnet 

 

 

it is possible to choose the range of current that will flow 

Max. Current, Imax 

The Period, T (s) 

at which the current changes between the maximum and 
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minimum value during the process and the Sampling,  are the number of points (N) 

displayed into the screen in each complete cycle. The boxes Current, I (mA), Hall 

Voltage, Vh (V) and Elapsed Time, t (s) shows respectively during the measurement the 

values of the current flowing by the coil, the Hall voltage correspondent to these current 

and the time elapsed from the beginning of the measure. 

In the figure 23 is displayed the graph that appears on the screen after the realization of 

a measurement. On it, the Y axis exhibits the value of the Hall voltage (in Volts) and the 

X axis the value of the current (in milliamp) flowing in the coil. The system has been 

connected so that the current at which the levitated magnet falls onto the sample is 

higher than the current at which the magnet returns to its equilibrium position. 

 

Figure 23: The Matlab program screen shows the fall of the magnet onto the wafer and its recover to 

equilibrium position. 

As the force necessary to recover the equilibrium position of the magnet is higher than 

the one needed to make it to fall, the current value correspondent to the return to 

equilibrium position has been chosen to get the final measure. This last is achieved by 

making the difference between the measure obtained having only the wafer and the one 

with the sample in order to avoid the magnetic contribution of the substrate.  

 

Magnet falls onto 
the wafer 

Magnet returns 
to levitated 
equilibrium 
position

M2

wafer

M2

wafer
M2

wafer
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4.-The wafer (samples)

Finally, to understand the results obtain

used to do the measurements. 

In the figure 24 is depicted a picture

sample.  

Figure 24: Mask used for the deposition of the magnetic nanometric structures.

of 100 mm. 

As can be seen it comprise

different widths. Their values

as follows:  

1.- Ten squares of 100 µm x 100 µm.

2.- From left to right, squares of side: 

50 µm, 100 µm, 150

3.- Ten squares of 500 µm x 500 µm.

4.- Five squares of 200 µm x 200 µm.
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(samples) 

derstand the results obtained, is important to know how are the s

e measurements.  

is depicted a picture of the lithography mask used to fabricate

 

the deposition of the magnetic nanometric structures. The circle has a diameter 

As can be seen it comprises a variation of shapes (square and lines) which have

values regarding to width and length in micrometers (

of 100 µm x 100 µm. 

squares of side:   

0 µm, 200 µm, 400 µm, 600 µm, 800 µm and 

of 500 µm x 500 µm. 

of 200 µm x 200 µm. 

 
                         

 

tant to know how are the structure 

lithography mask used to fabricate the wafer 

 

The circle has a diameter 

of shapes (square and lines) which have also 

in micrometers (µm) goes 

 1000 µm.  
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5.- A line of 400 µm width x 42000 µm length.  

6.- Ten lines of 10000 µm length and a width varying from left to right between 10 µm 

to 100 µm with an increase of 10 µm each one.  

7.- Twenty lines of 10000 µm length and a width varying from left to right between 10 

µm to 100 µm with an increase of 10 µm every two. That is to say, they are equal in 

width every two.  

8.- Ten lines of 10000 µm length and a width varying from left to right between 100 µm 

to 1000 µm with an increase of 100 µm each one.  

To achieve the above structures, it has been necessary to use a process of optical 

lithography known as lift-off because of the nanometric thickness of the samples. The 

way to obtain them is shown in the next figure.  

 

Figure 25: Lift-off process with positive photoresist. 

In this lift-off process the first step has been to spin coat the positive photoresist (PR) 

onto a 4-inch wafer substrate.  Next, this PR has been irradiated by U.V. rays through a 

mask (1) changing the structure of the PR: the bonds between molecules are broken 

2) DEVELOP

4) ACETONE IMMERSION

FINAL RESULT

1)IRRADIATION

POSITIVE PHOTORESIST 
SUBSTRATE

3) GROW OF THE SAMPLE

SAMPLE

MASK

U.V. RAYS

SAMPLES
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when exposed, whereas the rest maintained polymerized. By wet chemical develop (2) 

only the PR in exposed areas is dissolved 46, creating the pattern of the geometry 

wanted. Then, the ferromagnetic material used for the measurements has been grown 

onto this pattern (3) by means of an e-beam evaporator. Finally, by immersion of the 

wafer into acetone (4) the parts with positive PR have been eliminated giving place to 

the structure of the ferromagnetic nanometric samples desired.  

As is well known, the resist used for lift-off processes is usually negative in order to 

achieve the best profile of the pattern. In the case of the structures that have been 

produced here, as they have a micrometric size and very small thickness, it is possible to 

use a positive resist without problem. 

To get the results of this master project three different 4-inch wafers have been 

processed. One of them with a substrate of double side polished silicon (100) and the 

other two with a substrate of glass. Regarding to the thickness of the nanometric 

structures, onto the silicon wafer it has been deposited 10 nm (nanometer) of iron (Fe) 

covered by 10 nm of gold (Au), whereas the two glass wafers have been structured with 

20 nm of Fe being covered one of them with 10 nm of Au and the other by 20 nm of Al.  

This last change of Al instead of Au so as the increase of 10 nm in the quantity of the 

covering material deposited has been done because of problems of oxidation observed 

on the first glass wafer. 

With regard to the measurements made in this master thesis, by the presence of the 

magnetic field of the sample in the vecinity of the levitated magnet its position is 

altered. This convey a correspondent variation on the magnetic field measured by the 

equipment that gives the possibility to quantify the magnetic properties of the sample by 

means of a correct calibration of the device.  

To conclude, the sensing principle comprises the use of a magnetic material (sample) 

situated next to the levitated magnet in such a way that the magnetic fields of the 

sample and the levitated magnet could interact between them. Then, by the comparison 

between the position of this magnet in absence of sample and in the presence of it, is 

possible to derivate the magnetic moment of the sample by means of a correct 

calibration.  
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MEASUREME TS 

To position the samples under the 

made: four of them for the different square samples and the last

samples. This is necessary because the structures are difficult to see by eye.

In all of them, it has been drawn

line of 400 µm width x 42000 µm length and the horizontal line correspondent to the 

position of the squares of 500 µm of side.

The next figures show the process to 

example, in the case of the 500 

 The first step is to c

template for the 500 µm side squares

Figure 26: Template for the 500 µm side squares

just to show the center point which has been used to calculate the distance to the location of the 500 

side squares. 
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the samples under the levitated magnet, five different templates

: four of them for the different square samples and the last one

This is necessary because the structures are difficult to see by eye.

has been drawn the vertical line correspondent to the 

400 µm width x 42000 µm length and the horizontal line correspondent to the 

position of the squares of 500 µm of side. 

the process to position the sample in the correct location.

example, in the case of the 500 µm side squares: 

step is to choose the appropriate template.  In this example, the 

template for the 500 µm side squares. 

 

Template for the 500 µm side squares with location lines. The horizontal line in the middle is 

which has been used to calculate the distance to the location of the 500 

 
                         

 

templates have been 

one for the line 

This is necessary because the structures are difficult to see by eye. 

the vertical line correspondent to the location of the 

400 µm width x 42000 µm length and the horizontal line correspondent to the 

the sample in the correct location. For 

In this example, the 

 

The horizontal line in the middle is 

which has been used to calculate the distance to the location of the 500 µm 
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 The second step is to

vertical line of of 

correspondent to the position of the squares of 500 µm of side

Figure 27: Position of the wafer 

 Finally, the sample 

lines drawn on the basic template used to locate

Figure 28: Centering of the template with the wafer regarding to the position of the magnet M2.

Vertical 
location 
of 400 µm
width x 
42000 µm
length line 

L400
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step is to place the wafer in the accurate position by means of the 

 400 µm width x 42000 µm length and the horizontal line 

correspondent to the position of the squares of 500 µm of side. 

on the template. 

the sample is positioned under the magnet by means of the centering 

e basic template used to locate the magnet M2. 

Centering of the template with the wafer regarding to the position of the magnet M2.

Vertical location 
of the ten 500 
µm side squares 

Horizontal 
location of 500 
µm side squares 

108 97654321

 
                         

 

in the accurate position by means of the 

400 µm width x 42000 µm length and the horizontal line 

 

under the magnet by means of the centering 

 

 

Centering of the template with the wafer regarding to the position of the magnet M2. 

Vertical location 
of the ten 500 

side squares 
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Once the samples are positioned under the levitating magnet, the measurement is 

realized and the data obtained are saved with the Matlab program. 

Finally, it is necessary a calibration value to transform the output of the prototype to the 

magnetic moment due to the magnetic sample. To obtain it, a sample of 49 mm2 area 

with a thickness of 20 nm has been measured in a SQUID at 300 K (Kelvin). The 

sample shows saturation at 1000 Oe (Oersted) and has at this point a value of 1.06x10-6 

Am2 as can be seen in the figure below.  

 

Figure 29: Magnetic moment of a sample of 49 mm2 area and 20 nm thickness measure with a SQUID at 

300 K. 

As the magnets of NdFeB used have a magnetic field much larger than 1000 Oe, the 

magnetization of the samples under its effect is also saturated. Hence, the magnetic 

moment can be considered as proportional to the area of the sample and thus, the value 

of the moment regarding to the area of the 400 µm side squares is calculated to be 

3.46x10-9 Am2.  

Then, the calibration value is obtained by dividing this data (3.46x10-9 Am2) by the 

current obtained for the 400 µm side squares with the cylindrical magnet M2, giving a 

final data for the calibration of 2.66x10-10 Am2 / mA. This calibration depends on the 

magnet used and the geometry. 

The final measurement of the magnetic moment of the structure samples is obtained by 

multiplying this calibration value by the current measure by the system. 
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1.- Silicon wafer (100): 10 nm Fe, 10 nm Au. 

This wafer has been prepared by depositing 10 nm of Fe covered of 10 nm of Au onto a 

substrate of silicon (100). The magnet M2 used to obtain the magnetic moment of the 

structures has been the one with cylindrical shape of diameter 1.5 mm and a thickness 

of 1 mm.  

In the graphic depicted in figure 30 it is shown the value of the current versus the 

sample width of the lines of 10000 µm length and a width varying from left to right 

between 10 µm to 100 µm with an increase of 10 µm each one.  By looking at these data 

it is clear that the system has enough resolution to distinguish between the lines, 

showing also the lineal tendency expected as a function of the width. 

 

Figure 30: Current versus width of the samples of the silicon wafer (100) using the cylindrical magnet of 
1.5 mm of diameter and 1mm of thickness. The width of the lines varies between 10 µm to 100 µm with 
an increase of 10 µm each one. 

To confirm the previous results it has been measured the lines of 10000 µm length and a 

width varying from left to right between 10 µm to 100 µm with an increase of 10 µm 

every two (equal in width two at two). The series1 in the graphic of figure 31 shows the 

values obtained for the lines situated at the left of the twin pair, whereas the series2 are 

the one situated at the right.  

In this case, the linearity is clearly maintained in the lower widths whereas as increasing 

this width it does not. This effect can be due to the manual positioning of the samples 
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under the magnet M2 and the small distance between lines what can do that the 

magnetic moments interfered between lines.  

 

Figure 31: Current versus width of the samples of the silicon wafer (100) using the cylindrical magnet of 
1.5 mm of diameter and 1mm of thickness. The width of the lines varied between 10 µm to 100 µm with 
an increase of 10 µm every two. 

The next step continues with the linearity by measuring the lines of 10000 µm length 

and a width varying from 100 µm to 1000 µm with an increase of 100 µm each one. 

Figure 32 illustrates the results obtained. 

 

Figure 32: Current versus width of the samples of the silicon wafer (100) using the cylindrical magnet of 
1.5 mm of diameter and 1mm of thickness. The width of the lines varied between 100 µm to 1000 µm 
with an increase of 100 µm each one. 
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As can be seen, the linearity is conserved except for the line of width 1000 µm that 

exhibit a decay on the measurement probably due to the interferences with the anterior 

line because of the proximity between lines.  

Furthermore, to test the reproducibility and the resolution of the system the series with 

squares has been measured. The first were the series with the squares of 500 µm x 500 

µm. The next graphic shows that the measurements have a stable behavior varying 

between them in a maximum of 60 µA. The increase in the numbers of the X axis has 

been used to distinguish between the equal squares. 

 

Figure 33: Current versus sample number (all of them are equal fabricated squares) of the silicon (100) 
wafer using the cylindrical levitating magnet of 1.5 mm of diameter and 1mm of thickness. The samples 
are squares of 500 µm x 500 µm. 

It was not possible to measure neither the squares of 100 µm x 100 µm nor the squares 

of 200 µm x 200 µm. In consequence, a new wafer has been prepared, changing the 

silicon substrate by other of glass to improve the visibility of the structures. This has 

been done in order to achieve better positioning of the samples under the levitating 

magnet. Also, the thickness has been doubled to look for the sensibility of the system 

regarding to the material deposited. 

2.- Glass wafer: 20 nm Fe, 10 nm Au. 

This wafer has been prepared by depositing 20 nm of Fe covered of 10 nm of Au onto a 

0,0E+00

5,0E-01

1,0E+00

1,5E+00

2,0E+00

2,5E+00

49 50 51 52 53 54 55 56 57 58 59 60

C
u

r
r
e
n

t 
 (

m
A

)

number of the square

Current measurement for several equal squares

Cylindrical M2 magnet: 1.5 mm diameter, 1 mm high
Wafer Si (100): 10 nm Fe, 10 nm Au 



Magnetic measurements of nanometric thin films by  
means of a new sensor based on diamagnetic levitation.  

 
                                                                                                                                                      

 
40 

Mª Rosario Mayoral Blasco 

substrate of glass. The magnet M2 used to obtain the magnetic moment of the structures 

has been the same of the previous section.  

As the linearity of the measurements has been proved before they will not be shown 

again, centering this section into measurements that displays the doubling of the values 

because the double deposition of iron and to look if it is possible to see smaller shapes.  

The best way to confirm this double correspondence is by comparison of measurements 

done with the square of 500 µm x 500 µm used in the preceding part. 

The comparative graphic depicted below confirms that doubling the quantity of 

ferromagnetic material deposited the values measured are multiplied by two. As before 

explained the numbers of the X axis have been chosen to distinguish between the ten 

different squares. 

 

Figure 34: Comparison of magnetic moment versus side of the square samples between the silicon wafer 
and the glass wafer with the cylindrical levitating magnet of 1.5 mm of diameter and 1mm thickness. The 
samples are squares of 500 µm side. 

There is, however, an increase in the measurement of the squares situated in the middle 

of the wafer. This is probably due to a higher deposition of material in this zone because 

of the working way of the evaporator.  

Regarding to a possible lower limit compared with the samples of the silicon wafer, it 

was not possible to determine because of the oxidation of the samples. Hence, a new 

wafer was prepared. 
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3.- Glass wafer: 20 nm Fe, 20 nm Al. 

This wafer has been prepared by depositing 20 nm of Fe covered of 20 nm of Al. The 

increase in the quantity of the cover (20 nm instead 10 nm) as the change of material 

(Al instead Au) has been done to avoid the oxidation of the Fe with the time observed in 

the previous wafer. As the wetting properties of Al are better than the ones of Au they 

refill better the possible holes due to evaporation inhomogeneities producing a more 

compact recover and thus avoiding the possibility of oxygen molecules to react with the 

Fe. 

To continue with the characterization of the prototype, in this section six different 

magnets with different sizes and shapes has been used to look for the best of them 

regarding to the sensibility (the one capable to measure the smaller sample). This has 

been done by measuring the squares with sides 50 µm, 100 µm, 150 µm, 200 µm, 400 

µm, 600 µm, 800 µm and 1000 µm and comparing the results obtained with the different 

magnets. 

3.1- M2: cylindrical, diameter 1.5 mm, thickness 1 mm 

The first magnet used is the same employed in the previous sections. The results 

obtained are shown in the next graphic. 

 

Figure 35: Current versus side of the squares structures with error bars.  

-5

0

5

10

15

20

25

0,0E+00 2,0E+02 4,0E+02 6,0E+02 8,0E+02 1,0E+03 1,2E+03

C
u

rr
en

t 
(m

A
)

Side  of the squares (micrometers)

Current versus side of the squares

Cylindrical M2 magnet : 1,5 mm diameter, 1mm thickness
Wafer glass: 20 nm Fe, 20 nm Al



Magnetic measurements of nanometric thin films by  
means of a new sensor based on diamagnetic levitation.  

 
                                                                                                                                                      

 
42 

Mª Rosario Mayoral Blasco 

The measurements have been made doing two complete cycles to see the 

reproducibility.  As can be seen, the low side squares have a big deviation in the data 

what means that the system is not able to measure them correctly.  

Also the behavior at high sides deviated from the one expected (see figure 36). This 

shows that from a determined side value of the squares the magnetic moment detected is 

saturated, giving an upper limit of the size structures capable to be measured depending 

on the magnet employed. 

 

Figure 36: Expected behavior of the squares regarding its side. 

Therefore, the measure of the 400 µm can be considered as the lower limit capable to be 

measured, giving a value of 3.46 x 10-9 Am2 for the magnetic moment.  

3.2- M2: spherical, diameter 3 mm 

The magnet used here has been a spherical one with a diameter of 3 mm. Due to its 

spherical shape, it has an effect of rotation when it is over the sample. This rotation 

affects to the sensor Hall detection doing impossible to obtain any useful data, as can be 

seen in the next figures that show the behavior under the effect of the substrate without 

a sample and with the sample of the maximum area (1000x1000 µm2). 
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Figure 36: Measurement of the substrate without sample and the spherical magnet of 3 mm diameter. 

 

Figure 37: Measurement of the square of 1000 µm side with the spherical magnet of 3 mm diameter. 

3.3- M2: cubic, side 1 mm 

It has been observed that this magnet rotates during its levitation state doing that 

sometimes it falls onto the wafer in a non-parallel side position over the square samples. 
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As a consequence, it can´t interact with all square surface of the bigger samples. 

However, this is not a problem for the small ones.  

Then, to analyze the data in the figure 38 it is necessary to have in mind the position of 

the magnet over the wafer. On this sense, the square of 1000 µm side has a large error 

because the magnet recovers its original levitated position the first cycle (where the 

magnet falls in a non-parallel position) and don´t do the second cycle (the magnet stay 

over the sample in the correct position). Regarding to the squares of 800, 600 and 400 

µm the magnet is over the sample in a perfect parallel location. The samples of 200, 

150, 100 and 50 µm are enough small to avoid this problem.  

On behalf of the results achieved, the graphic shows that this magnet is able to detect 

the square of 200 µm side, whereas the negative data of the 50 µm square side is due to 

the noise of the system.  

With all this it is possible to conclude that the lower limit is given by the square of 200 

µm side, obtaining a value of the magnetic moment by means of the calibration constant 

of 8 x 10-10 Am2 .  

 

Figure 38: Current versus side of squares with the cubic magnet of 1 mm side. 
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3.4- M2: cubic, side 2.5 mm 

This magnet exhibits a behavior regarding to the data obtained similar to the spherical 

magnet. Furthermore, it has the rotation effect explained in the section 3.3. The next 

graphic depict this.   

 

Figure 39: Behavior of the cubic magnet of side 2,5 mm. 

3.5- M2: cubic, side 3 mm 

As this magnet shows the same characteristics as the one explained before a new 

magnet has been probed.  

3.6- M2: cylindrical, diameter 1 mm, thickness 1 mm 

This cylindrical magnet has no problems with the rotation because the axis of rotation is 

an axis of symmetry of the magnet. Therefore, it has been chosen to compare with the 

previous results. However, it has been not possible to achieve a position on which the 

hysteresis loop used to obtain the current at which the system recovers the magnet is 

null for the non-sample state as displays the figure 40.  
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Figure 40: Hysteresis loop of the non-sample state measure by the cylindrical magnet of 1mm diameter, 

1mm thickness. 

CO CLUSIO S 

A new magnetic sensor based on a levitated magnet has been successfully tested. It has 

been proved to be useful in the characterization of magnetic thin film structures with 

nanometric thickness. 

The measurements done with the cylindrical magnet of 1.5 mm diameter and 1 mm 

thickness exhibit a good behavior respect to the linearity of the samples as well as a 

doubling on the values due to the double deposition regarding to the thickness of 

material.  

Respect to the best magnet to be used, is clear that the cubic of 1 mm side gives the best 

resolution even when its rotation in the levitated state that does it sometimes to fall over 

the sample in a tilted position makes it unable to be used correctly with samples bigger 

than 400 µm side. 

On behalf of magnets of bigger size, they produce unexpected behavior on the Hall 

sensor because of its rotation over the sample (as the spherical 3 mm diameter one) or 

by its rotation in the levitated state (the cubic 2.5 and 3 mm sides ones).  
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Regarding to this, cylindrical magnets don´t have the effect of perturbation due to the 

rotation in the levitated state nor the effect of the tilt over the sample. But the 

relationship between their diameter and thickness need to be controlled in order to 

achieve a non-hysteresis loop when measuring the non-sample position.  

There is also, depending of the size and shape of the magnet used, a moment when a 

saturation step is reach. This shows an upper limit to have in mind for the structure and 

quantity of ferromagnetic material of the samples to be measured. 

About the prototype itself, it suffers from a problem due to the positioning of the 

samples under the magnet which now is a manually and delicate operation. It is 

important to say that smaller the magnet is, bigger the necessity is of an accurate 

positioning due to the smaller surface covered by it. Then, this is a big handicap to solve 

to achieve a system easy to be use.  

Finally, it has been prove in this master project that the lower limit of detection 

achieved by the system is of 8 x 10-10 Am2 at room temperature. This performance is 

encouraging for a further development to include it in the future into the magnetic 

moment measurement techniques. 
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