
 

The EM3E Master is an Education Programme supported by the European Commission, the European Membrane   

Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, 

 research centres and universities; www.em3e.eu            Page i 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOVEL ION SELECTIVE 

MEMBRANES  
 

Mahbub MORSHED 

Student, Erasmus Mundus Master in 

Membrane Engineering. (EM3E)  

Academic Session: 2012-2014 

 
 
 

Supervisors 
Dr. Ir. D.C. Nijmeijer  

Professor & Head of Membrane Science & 

Technology (MST), University of Twente,  

The Netherlands.   

Dr. Reyes Mallada 

Associate Professor,  Department of 

Chemical and Environmental Engineering, 

University of Zaragoza,  

Spain. 

 

 



 

The EM3E Master is an Education Programme supported by the European Commission, the European Membrane   

Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, 

 research centres and universities; www.em3e.eu            Page a 
 

 

Acknowledgement 

I would like to express my gratitude and thanks to the head of MST group, Prof. Kitty 

Nijmeijer for giving me the opportunity to conduct my master thesis in MST group.  

I would like to thank Dr. Rayes Mallada for approving me to conduct my master thesis in 

MST group of University Twente.   

My special thanks to Dr. Wiebe Matthijs de Vos. Your suggestion and co-operation helped 

me a lot to learn and get positive energy to continue my master thesis in MST. Your opinion 

helped me to find a way forward and thank you very much for your correction and suggestion 

regarding to my report. I am grateful to Dr. Ir. W.M. de Vos. 

I also want to thank specially Joris de Grooth, Timon Rijnaarts for their support and 

discussion. Every discussion with Joris and Timon was thoughtful and full of learning for me.  

I wish to express my gratitude to all academic staff, technical staff, secretary and all the 

group members. Thanks to my daily supervisor Sinem Tas.  

I am grateful to the EM3E committee for giving me the opportunity to be a part of the EM3E 

program. 

 

  

 

 

 

 

 

 

 

 

 

 

 



 

The EM3E Master is an Education Programme supported by the European Commission, the European Membrane   

Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, 

 research centres and universities; www.em3e.eu            Page b 
 

 

 

DISCLAIMER 

EN-This project has been funded with support from the European Commission. This 

publication reflects the views only of the author, and the Commission cannot be held 

responsible for any use which may be made of the information contained therein. 

BG-Този проект е финансиран с подкрепата на Европейската комисия.Тази публикация 

отразява само личните виждания на нейния автор и от Комисията не може да бъде 

търсена отговорност за използването на съдържащата се в нея информация. 

CS-Tento projekt byl realizován za finanční podpory Evropské unie. Za obsah publikací 

odpovídá výlučně autor. Publikace nereprezentují názory Evropské komise a Evropská 

komise neodpovídá za použití informací, jež jsou jejich obsahem. 

DA-Dette projekt er finansieret med støtte fra Europa-Kommissionen. Denne publikation 

forpligter kun forfatteren, og Kommissionen kan ikke drages til ansvar for brug af 

oplysningerne heri. 

DE- Dieses Projekt wurde mit Unterstützung der Europäischen Kommission finanziert. Die 

Verantwortung für den Inhalt dieser Veröffentlichung trägt allein der Verfasser; die 

Kommission haftet nicht für die weitere Verwendung der darin enthaltenen Angaben. 

ΕΛ-Το ζσέδιο αςηό σπημαηοδοηήθηκε με ηην ςποζηήπιξη ηηρ Εςπωπαϊκήρ Επιηποπήρ. Η 

παπούζα δημοζίεςζη δεζμεύει μόνο ηον ζςνηάκη ηηρ και η Επιηποπή δεν εςθύνεηαι για 

ηςσόν σπήζη ηων πληποθοπιών πος πεπιέσονηαι ζε αςηήν. 

ES- El presente proyecto ha sido financiado con el apoyo de la Comisión Europea. Esta 

publicación es responsabilidad exclusiva de su autor. La Comisión no es responsable del uso 

que pueda hacerse de la información aquí difundida. 

ET-Projekti on rahaliselt toetanud Euroopa Komisjon. Publikatsiooni sisu peegeldab autori 

seisukohti ja Euroopa Komisjon ei ole vastutav selles sisalduva informatsiooni kasutamise 

eest. 

FI- Hanke on rahoitettu Euroopan komission tuella. Tästä julkaisusta (tiedotteesta) vastaa 

ainoastaan sen laatija, eikä komissio ole vastuussa siihen sisältyvien tietojen mahdollisesta 

käytöstä. 

FR- Ce projet a été financé avec le soutien de la Commission européenne. Cette publication 

(communication) n’engage que son auteur et la Commission n’est pas responsable de l’usage 

qui pourrait être fait des informations qui y sont contenues. 

GA- Maoiníodh an tionscadal seo le tacaíocht ón gCoimisiún Eorpach. Tuairimí an údair 

amháin atá san fhoilseachán [scéala] seo, agus ní bheidh an Coimisiún freagrach as aon úsáid 

a d’fhéadfaí a bhaint as an eolas atá ann. 



 

The EM3E Master is an Education Programme supported by the European Commission, the European Membrane   

Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, 

 research centres and universities; www.em3e.eu            Page c 
 

HU- Az Európai Bizottság támogatást nyújtott ennek a projektnek a költségeihez. Ez a 

kiadvány (közlemény) a szerzõ nézeteit tükrözi, és az Európai Bizottság nem tehetõ felelõssé 

az abban foglaltak bárminemû felhasználásért. 

IT- Il presente progetto è finanziato con il sostegno della Commissione europea. L’autore è il 

solo responsabile di questa pubblicazione (comunicazione) e la Commissione declina ogni 

responsabilità sull’uso che potrà essere fatto delle informazioni in essa contenute. 

NL- Dit project werd gefinancierd met de steun van de Europese Commissie. De 

verantwoordelijkheid voor deze publicatie (mededeling) ligt uitsluitend bij de auteur; de 

Commissie kan niet aansprakelijk worden gesteld voor het gebruik van de informatie die erin 

is vervat. 

LT- Šis projektas finansuojamas remiant Europos Komisijai. Šis leidinys [pranešimas] 

atspindi tik autoriaus požiūrį, todėl Komisija negali būti laikoma atsakinga už bet kokį jame 

pateikiamos informacijos naudojimą. 

LV- Šis projekts tika finansēts ar Eiropas Komisijas atbalstu. Šī publikācija [paziņojums] 

atspoguļo vienīgi autora uzskatus, un Komisijai nevar uzlikt atbildību par tajā ietvertās 

informācijas jebkuru iespējamo izlietojumu. 

MT- Dan il-proġett ġie finanzjat bl-għajnuna tal-Kummissjoni Ewropea. Din il-publikazzjoni 

tirrifletti (Dan il-komunikat jirrifletti) l-opinjonijiet ta’ l-awtur biss, u l-Kummissjoni ma 

tistax tinżamm responsabbli għal kull tip ta’ uzu li jista’ jsir mill-informazzjoni li tinsab fiha ( 

fih). 

PL- Ten projekt został zrealizowany przy wsparciu finansowym Komisji Europejskiej. 

Projekt lub publikacja odzwierciedlają jedynie stanowisko ich autora i Komisja Europejska 

nie ponosi odpowiedzialności za umieszczoną w niej zawartość merytoryczną. 

PT- Projecto financiado com o apoio da Comissão Europeia. A informação contida nesta 

publicação (comunicação) vincula exclusivamente o autor, não sendo a Comissão 

responsável pela utilização que dela possa ser feita. 

RO- Acest proiect a fost finanţat cu sprijinul Comisiei Europene.<0}Această publicaţie 

(comunicare) reflectă numai punctul de vedere al autorului şi Comisia nu este responsabilă 

pentru eventuala utilizare a informaţiilor pe care le conţine. 

SK-Tento projekt bol financovaný s podporou Európskej Komisie. Táto publikácia 

(dokument) reprezentuje výlučne názor autora a Komisia nezodpovedá za akékoľvek použitie 

informácií obsiahnutých v tejto publikácii (dokumente). 

SL- Izvedba tega projekta je financirana s strani Evropske komisije. Vsebina publikacije 

(komunikacije) je izključno odgovornost avtorja in v nobenem primeru ne predstavlja stališč 

Evropske komisije. 

SV- Projektet genomförs med ekonomiskt stöd från Europeiska kommissionen. För 

uppgifterna i denna publikation (som är ett meddelande) ansvarar endast upphovsmannen. 

Europeiska kommissionen tar inget ansvar för hur dessa uppgifter kan komma att användas 

 



 

The EM3E Master is an Education Programme supported by the European Commission, the European Membrane   

Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, 

 research centres and universities; www.em3e.eu            Page I 
 

 

Table of contents 

List of Figures .......................................................................................................................... III 

List of Tables ............................................................................................................................ V 

1. Introduction ........................................................................................................................ 1 

1.1 Aim of the project ....................................................................................................... 3 

2. Theory ................................................................................................................................. 4 

2.1 Ion exchange membrane.............................................................................................. 4 

2.2 Modification of ion exchange membrane.................................................................... 5 

2.3 Layer by layer (LbL) self-assembly ............................................................................ 7 

2.3.1 General features of polyelectrolyte multilayers (PEM) by LbL dip coating ....... 8 

2.3.2 PEM phenomena by LbL ..................................................................................... 9 

2.4 Variables for PEM by LbL ........................................................................................ 13 

2.4.1 Effect of temperature ......................................................................................... 14 

2.4.2 Effect of salt concentration ................................................................................ 15 

2.4.3 Effect of ion type ............................................................................................... 18 

2.4.4 Effect of pH........................................................................................................ 19 

2.5 LbL polyelectrolyte membrane ................................................................................. 20 

2.6 Diffusion dialysis and LbL ........................................................................................ 22 

2.6.1 PEM and diffusion dialysis ................................................................................ 24 

3. Experimental ..................................................................................................................... 25 

3.1 Materials .................................................................................................................... 25 

3.2 Methods ..................................................................................................................... 25 

3.2.1 Preparation of polyelectrolyte multilayer by PDADMAC and PSS .................. 25 

3.2.2 Preparation of the polyelectrolyte multilayer by PDADMAC- PSBMA-PSS ... 27 

3.2.3 UV-Vis measurement......................................................................................... 28 

3.2.4 Contact angle measurement ............................................................................... 29 

3.2.5 Measurement of electrical resistance and current voltage curve ....................... 31 

3.2.6 Limiting current density ..................................................................................... 32 



 

The EM3E Master is an Education Programme supported by the European Commission, the European Membrane   

Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, 

 research centres and universities; www.em3e.eu            Page II 
 

3.2.7 Ion flux measurement by diffusion experiment ................................................. 34 

3.3 Data analysis. and calculation ................................................................................... 35 

4. Result and discussion........................................................................................................ 36 

4.1 Membrane Characterization ...................................................................................... 36 

4.1.1 Characterization by UV-Vis spectroscopy......................................................... 36 

4.1.1.1 UV-Vis spectra for PDADMAC-PSS modified FKB .................................... 36 

4.1.1.2 UV-Vis spectra for PDADMAC-PSBMA-PSS modified FKB ..................... 38 

4.1.2 Characterization by contact angle ...................................................................... 39 

4.1.2.1 Contact angle measurement for PDADMAC-PSS modified FKB ................... 39 

4.1.2.2 Contact angle measurement for PDADMAC-PSBMA-PSS modified FKB .... 42 

4.2 Membrane performance ............................................................................................ 43 

4.2.1 Membrane electrical resistance .......................................................................... 43 

4.2.1.1 Electrical resistance for PDADMAC-PSS modified FKB ............................. 43 

4.2.1.2 Electrical resistance for PDADMAC-PSBMA-PSS modified FKB .............. 46 

4.2.2 Limiting current density ..................................................................................... 47 

4.2.3 Membrane performance for PDADMAC-PSS modified FKB .......................... 50 

4.2.3.1 Diffusion experiments for K
+
 ......................................................................... 51 

4.2.3.2 Diffusion experiments for Li
+
 ........................................................................ 52 

4.2.3.3 Diffusion experiments for mixture of K
+
 and Li

+
 .......................................... 53 

4.2.4 Flux and selectivity ............................................................................................ 54 

5. Conclusion ........................................................................................................................ 58 

6. Recommendation .............................................................................................................. 61 

7. References ........................................................................................................................ 66 

Appendix .................................................................................................................................. 76 

 

 

 

 

 



 

The EM3E Master is an Education Programme supported by the European Commission, the European Membrane   

Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, 

 research centres and universities; www.em3e.eu            Page III 
 

List of Figures 

 

Figure 1: A Scheme of a cation exchange membrane……………………………………. 5 

Figure 2: LbL deposition scheme by dip coating ……………………………………....... 7 

Figure 3: The LbL deposition by spray and spin coating ……………………………........ 8 

Figure 4: A Scheme of PEM multilayer ………………………………….......................... 10 

Figure 5: Schematic intrinsic and extrinsic charge balance in the PEM ………………… 11 

Figure 6: Asymmetric growth phenomena of PSS/PDADMAC layer build- up. Layer 

number represents the PSS/PDADMAC alternatively …………………………………… 

 

12 

Figure 7: Effect of deposition temperature on the thickness of a (PDADMAC/PSS) 10 

multilayer on Si wafer and deposited at 1M NaCl ……………………………………….. 

 

15 

Figure 8: (a) Fluorescence intensity varying with the layer number of the multilayer film 

made of ADPy-100 (The pyrene labeled polyanion) and PDADMAC deposited in NaCl 

solutions. 8(b) Thickness vs. layer number for PSS/PDADMAC deposited from 1.0 M 

NaCl………………………………………………………………………………... 

 

 

 

16 

Figure 9: Interior of a multilayer, scheme with two oppositely charged polymer 

strands…………………………………………………………………………….............. 

 

17 

Figure 10: For a PDADMAC/PSS system on Si substrate (a) Salt concentration vs. void 

water and swelling water and type of salt. (b) Salt concentration, type of salt and total 

water content……………………………………………………………………............... 

 

 

18 

Figure 11: Effect of pH vs. layer thickness for PDADMAC/PSS multilayers on Si/SiO2 

surface…………………………………………………………………………………….. 

 

20 

Figure 12: Rejection model of multi-bipolar membrane by polyelectrolyte…………........ 21 

Figure 13: Schematic drawing illustrating the principle of diffusion dialysis utilizing a 

cation exchange membrane to recover a base……………………………………….......... 

 

23 

Figure 14: Scheme of polyelectrolyte layer by LbL via dip coating…………………........ 26 

Figure 15: Scheme of polyelectrolyte multilayer (PDADMAC-PSBMA-PSS) by LbL 

via dip coating……………………………………………………………………………. 

 

27 

Figure 16: UV-Vis absorption spectra of PDADMAC/PSS block- VN multilayer ……… 29 

Figure 17: Dependence of PDADMAC/PSS films formed at various pH of solution on 

Si …………………………………………………………………………………………. 

 

30 

Figure 18: Schematic drawing of the six cell setup.…........................................................ 31 



 

The EM3E Master is an Education Programme supported by the European Commission, the European Membrane   

Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, 

 research centres and universities; www.em3e.eu            Page IV 
 

Figure 19: Experimentally determined current vs. voltage curve measured in a 

laboratory electrodialysis stack with a 0.05 M NaCl-solution …………………………… 

 

33 

Figure 20: Schematic standard glass diffusion cell……………………………………….. 34 

Figure 21: UV-Vis spectra for PDADMAC/PSS bilayers on (a) Quartz glass (b) FKB 

cation exchange membranes; n= number of bilayers from zero to seven………………… 

 

37 

Figure 22: UV-Vis absorbance spectra for PDADMAC-PSBMA-PSS multilayer and 

absorbance vs. number of trilayer at 280nm (inset). ……………………………............... 

38 

Figure 23: PDADMAC/PSS Contact angle vs. number of bilayers.………………............ 40 

Figure 24: Contact angle vs. number of trilayers………………………………………… 42 

Figure 25: Electrical Resistance vs. number of bilayers…………………………………. 44 

Figure 26: Electrical resistance vs. trilayers. .…………………........................................ 46 

Figure 27: Current-voltage curve for the relation between current through a membrane 

and corresponding voltage drop over the membrane and its boundary layer. (Measured at 

50mM KCl and LiCl) ………………………….................................................................. 

 

 

47 

Figure 28: Limiting current density behaviour with different bilayer. ………………....... 48 

Figure 29: Diffusion of K
+
 in Base, (top), bilayer 6 (middle) and bilayer 6.5 (bottom) … 51 

Figure 30: Diffusion of Li
+
 in Base, (top), bilayer 6 (middle) and bilayer 6.5 (bottom)..... 52 

Figure 31: Diffusion of K
+
 and Li

+
 in Base, (top), bilayer 6 (middle) and bilayer 6.5 

(bottom). ………………………………………………………………………………….. 

 

53 

Figure 32: Iion flux vs. number of bilayers …………………………………………... 54 

Figure 33: selectivity (K
+
/Li

+
) vs. bilayers.……………………………………………… 54 

 

 

 

 

 

 

 

 

 



 

The EM3E Master is an Education Programme supported by the European Commission, the European Membrane   

Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, 

 research centres and universities; www.em3e.eu            Page V 
 

List of Tables 

 

Table 1: Ion exchange membranes (IEM) and its basic nature………………………….. 4 

Table 2: Crystal radii (rc), Stokes radii (rs) and Gibbs hydration energy (-ΔGh) in water 

of various ions…………………………………………………………………………… 

 

6 

Table 3: General features of the polyelectrolyte by LbL dip coating…………………… 9 

Table 4: List of different variables for PEM by LbL dip coating……………………….. 14 

Table 5: K
+
 and Li

+
 flux in FKB and PEM by LbL……………………………………... 55 

Table 6: Selectivity of K
+
/Li

+
 for single ion and mixed ion experiments………………. 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

 

1. Introduction 

 

The ion exchange membrane (IEM) can be defined as a membrane that carries electrical 

charges and its importance can be understood by its application in electrodialysis, diffusion 

dialysis, facilitated transport etc. An IEM has inherent properties, such as ion conductivity, 

hydrophilicity and a fixed career charge within the membrane matrix. These properties make 

it enormously significant for further development in ion separation [1]. There are two types 

of IEM namely the cation exchange membrane (CEM) that carries a fixed negative charge on 

the polymer backbone and the anion exchange membrane (AEM) that has a fixed positive 

charge [1,2]. These properties of an ion exchange membrane draw the attention to involve it 

in harvesting valuable ions. In this consideration we particularly focus on IEM to separate 

novel ions such as Li
+
, Na

+
, K

+
, Mg

2+
 and Ca

2+
 etc. 

Ion exchange membranes are the key component for two most important state of the art 

technologies: electrodialysis (ED) and diffusion dialysis (DD). In ED, an electric potential 

difference is the driving force whereas DD is based on concentration gradient for separation. 

Diffusion dialysis is advantageous because of its characteristic low energy consumption, low 

operating and installation cost and environment friendly technology [3]. Brackish water 

desalination using DD is a good example and also largest application of this separation 

technique [4-8]. However, so far selective separation of monovalent ions by IEM with 

considerable efficiency is not achieved yet. Therefore improving monovalent ion selectivity 

such as such as Li
+ 

separation from a Li
+
/K

+
 or Li

+
/Na

+
 by IEM could be an interesting 

aspect.  

We particularly focus on the selective transport of Li
+
 in the cation exchange membrane. The 

demand of lithium is remarkably increasing in the area of large capacity rechargeable battery, 

future nuclear fusion fuel and electronic devices [9]. Therefore our future vision is to develop 

an efficient IEM process to harvest Li
+
 from sea water. And present objective is to investigate 

selective transport of Li
+
 in the ion exchange membrane by the diffusion dialysis to 

understand the monovalent ion transport behaviour. In sea water, presence of lithium (0.178 

ppm or in between 0.14-0.25ppm) is very low compare to the sodium (10, 800ppm). 

Nevertheless the total amount present is quite high (roughly 230 billion ton) [10-11]. Hence 

harvesting lithium from seawater could be a potential area to explore.  
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To obtain the properties of monovalent ion selectivity (Li
+
) in ion exchange membrane, one 

considerable approach is to modify the ion exchange membrane surface by polyelectrolyte. 

Polyelectrolytes (PE’s) are the polymers with ionisable groups. In presence of a solvent these 

polymer dissociates leaving charges on the polymer chain and releasing counterions in 

solution [12]. Polyelectrolyte multilayers (PEM) are formed by exposing a substrate to 

solutions of oppositely charged polyelectrolytes. Hence, one of the methods for such 

multilayer preparation is the layer by layer (LbL) technique in which adsorption of ionised 

polyelectrolyte occurs by dipping the substrate in PE solutions i.e. dip coating method. The 

requirement for this adsorption is to have alternative charges between substrate and 

polyelectrolyte. Thus the PEM can be formed by the LbL dip coating with different 

combination of oppositely charged polyelectrolytes. The LbL is reported as a versatile 

technique that can influence the surface and the overall performance of the membrane[13-

15].  

Here we argue that the surface modification of ion exchange membrane by polyelectrolyte 

multilayer is able to influence the monovalent ion selectivity. The modified membrane can be 

employed in the diffusion dialysis for selective separation of the Li
+
. For our research a 

commercial cation exchange membrane (FUMASEP- FKB) was used. Membranes with 

polyelectrolyte multilayers (PEM) were prepared with adopting the layer by layer (LbL) dip 

coating technique. For this purpose PDADMAC (polydiallyldimethylammonium chloride), 

PSS (polystyrenesulfonate) and a zwitterionic polymer, PSBMA (polysulfobetaine poly (N-

(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine) were considered. 

PDADMAC is a cationic polymer, widely used in the portable water purification. It is 

chlorine resistant and can be operated over a wide pH range [16]. Other polyelectrolyte PSS 

is anionic. It has ion exchange characteristics and also applies in the water softening 

application [17]. Therefore PDADMAC-PSS polyelectrolyte pair could be a good choice for 

the polyelectrolyte multilayer. We particularly focus to achieve an effective layer growth and 

apply it in the monovalent ion separation.  

 

 

 



 

3 

 

1.1 Aim of the project  

 

The aim of the project is to grow PEM multilayers on cation exchange membranes by dip 

coating to obtain a better understanding of the PEM modified membrane and its performance. 

The project focuses on the formation of different multilayers on the membrane, an 

investigation of the membrane properties and the performance in diffusion dialysis. The 

characteristic change of cation exchange membrane due to the multilayer growth and an 

investigation of the monovalent ion selectivity is the integrated part of the research.  

The aim of the project can be summarised as:  

1. Improving the monovalent ion selectivity of the cation exchange membrane by LbL self-

assembly of polycation and polyanion multilayer. 

2. Evaluation of the membrane performance in diffusion dialysis keeping a focus on a K
+
/Li

+
 

system. 
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2. Theory 

 

2.1 Ion exchange membrane 

 

The ion exchange membrane (IEM) can be a porous and/or non-porous membrane composed 

of functional polymers that have ionic groups. The backbone materials are mainly organic 

polymer with covalently bonded functional groups which also determines the acidic or basic 

nature of the membrane (Table 1). These functional groups are able to interact selectively 

with various ions and can conduct electrical charge via ions. Therefore ion exchange 

membrane is ion conductive in nature. It favours selective ion permeation through the 

membrane together with water molecules which results a selective transport of ions. A 

potential difference accelerates such transport, refers to the basis of electrodialysis and a 

concentration gradient between two solution separated by the ion exchange membrane is the 

key principle of diffusion dialysis [2,5]. The basic classification of ion exchange membrane is 

given in Table 1. 

Table 1: The ion exchange membranes (IEM) and its basic nature.  

Ion exchange membrane (IEM) 

Cation exchange membrane (CEM) Anion exchange membrane(AEM) 

1. Carries fixed negative charge in the 

polymer matrix.   

2. Can be strongly acidic -SO
3-

, 

medium acidic -PO (OH) 2, weakly 

acidic, -COO
-
. 

1. Carries fixed positive charge in the 

polymer matrix. 

2. Can be strongly basic, -N
+
 (CH3)3 and 

weakly basic, -N (CH3)2. 

 

In the IEM, fixed charges (either negative or positive) are in electrical equilibrium in the 

interstitial space; results the stabile surface charge whether exposed in the solution or stored. 

Any discrete charge in the electrolyte solution which is opposite to the fixed membrane 

charge is called counterions whereas the charge similar to the fixed membrane charge is 

called co-ions. Figure 1 shows a schematic diagram of a CEM which has a matrix of fixed 

negative charge. In electrolyte solution counterion which is positively charged (cation) can 

pass through the cation exchange membrane and the anion which is negatively charged (co-

ion) is retained. The electrical charge of the membrane creates the affinity towards the 
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positive charge (for CEM). Similarly exclusion of the negatively charged ions occurs due to 

the repulsion by the membrane charge. The exclusion of co-ions is called Donnan exclusion 

[1, 2-4].  

 

 

 

 

 

 

 

                              Figure 1: A Scheme of a  cation exchange membrane. 

In application, a high conductivity at low degree of swelling is often expected to obtain high 

selectivity of ions. Other important factors are ion exchange capacities, kinetics, permeability 

under current load and electrochemical call characteristics [8, 18-21].  

2.2 Modification of ion exchange membrane 

 

The ion exchange membrane state of the art expresses that it can separate cation from anion 

and vice versa. The challenge is the selective separation of monovalent ions. Therefore the 

modification of the membrane came under consideration involving the IEM in separating 

specific ions. Also the affinity differences among ions and the ion mobility in membrane 

phase are important factors for the IEM.  

As a first approach an increase of the cross linking of a cation exchange membrane is one of 

the ideas because the hydrated ionic radii of cations differ (Table 2) to sieving them with a 

dense polymer matrix. Ionic radii, Stokes radii and Gibbs hydration energies of various ions 

are given in Table 2. Stokes radii is defined as the radius of a hard sphere that diffuses at the 

same rate as that solute synonymous to the effective hydrated radius in solution. 

cv  
Fixed negative charge in 

the polymer matrix 

Co-ion (negative charge 

ion) for cation exchange 

membrane  

Counter ion (positive 

charge ion for cation 

exchange membrane 

 

 

cv 
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Table 2: Crystal radii (rc), Stokes radii (rs) and Gibbs hydration energy (-ΔGh) in water of 

various ions [22]. 

Ions rc(Å)
11

 rs(Å)
12

 - ΔGh(kJmol
-1

)
12

 
    Li

+
 0.73 2.40 510.4 

Na
+
 1.16 1.80 410 

K
+
 1.52 1.30 337 

Ca
2+

 1.14 3.10 1592 

Cl
-
 1.67 1.21 317 

 

Because the hydrated ionic radii of the cation differs from each other and a cross linking 

make the membrane denser, therefore increasing the cross linking can influence the sieving of 

cation permeation. For instance increasing phenol content in m-phenolsulfonate and 

formaldehyde changes the cross linking of the membrane therefore permeation of the calcium 

ions greatly reduces than the sodium ions [22].  

A second approach is to produce a bilayer membrane for example a cationic polyelectrolyte 

layer on the membrane surface. This modification often makes a rod-like spherical structure 

[23] and can affect the ionic mobility. The intrinsic structure of the polymer and the thin 

cationic layer alternate the electrostatic repulsion towards different cations. Different ionic 

radii of cations play an important role to influence the selectivity (Table 2). Thus cation with 

lower valence and higher ionic radius receives stronger electrostatic repulsion on the 

membrane surface [22,23].  

Other modifications of the cation exchange membrane are reported as the formation of hybrid 

membranes by the sol-gel method, the cation exchange membrane with a conducting 

polymer. However the modification by a sol-gel or conducting polymer is rather sensitive to 

achieve the desired membrane, nevertheless can influence the membrane. In recent years the 

molecular imprinting techniques have been actively studied to prepare resins and membranes 

with high selectivity for specific molecules and inorganic ions. Comparing the above 

mentioned modification techniques, a thin cationic charged layer on the top of the cation 

exchange membrane favours to selectively permeate cations with lower valence and larger 

hydrated radius. Thus separation based on the different ionic and hydration radii, valence and 

size selectivity come to the consideration. As a consequence, permselectivity study for 

monovalent cations is reported as an effective approach to understand the separation 

behaviour of monovalent cations [22-24]. 
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2.3 Layer by layer (LbL) self-assembly  

 

There are many ion exchange membranes modification techniques are reported however, 

layer by layer (LbL) can be a promising alternative for the ion exchange membrane 

modification. In principle it can be defined as the alternating exposure of a charged substrate 

to solutions contains positive or negative polyelectrolytes, respectively [25,26]. The basic 

idea is that the sequential exposure leads to the adsorption on the surface due to the 

electrostatic interaction between the polyelectrolyte and the charged surface, therefore the 

surface either need to have charge or the neutral surface need to be modified for the 

adsorption. A charge inversion occurs for such self-assembly method. A charge inversion is 

the reversal of polarity due to an excess adsorption of oppositely chargedpolymer. The 

stability of such film depends on the electrostatic interactions [27,28]. Figure 2 shows a layer 

by layer (LbL) by dip coating where alternating exposure of the polyelectrolyte results in 

layer formation.  

 

Figure 2: LbL deposition scheme via dip coating [26]. 

The deposition cycle showed in the figure 2 repeats to achieve the desired multilayer on the 

substrate. A positively charged substrate is dipped in the solution that contains negatively 

charged polyelectrolyte. After an interval of time of adsorption, a washing step is followed to 

remove the excess polyelectrolyte from the surface. Then deposition of positively charged 

polyelectrolyte and a washing step completes one cycle of deposition and results one bilayer 

of polyelectrolyte multilayer (PEM) on the substrate surface [26].  



 

8 

 

Apart from the LbL by dip coating two other layer deposition techniques are the dip coating 

and the spray coating and the spin coating. Figure 3 shows a schematic diagram for the spray 

and spin coating. Comparing among these techniques spray coating is faster but wastage of 

polyelectrolyte occurs due to the excess drainage during the coating. A spin coating is unable 

to coat a bigger surface area. In contrast the dip coating is a slower process then the other two 

but advantageous in coating a larger surface area with a small amount of electrolyte [29]. 

Therefore the layer by layer (LbL) by a dip coating technique is preferred.  

 

Figure 3: The LbL deposition by spray and spin coating [29]. 

2.3.1 General features of polyelectrolyte multilayers (PEM) by LbL dip coating 

 

The remarkable feature of polyelectrolyte multilayer by LbL dip coating is- a small amount 

of polyelectrolyte molecule can alter the surface as well as its properties. However, the 

multilayer by LbL dip coating propagates because of the reversal of charge. Each deposition 

step (Figure 2, step 1 & 3) leaves the surface primed for the next deposition step thus the 

PEM formation propagates with each immersion step in polyelectrolyte solution. Charge over 

compensation is the partial complexation of the second layer with the loops of the first layer 

and 1:1 polyelectrolyte stoichiometry is a general assumption for such association [30,31]. 

However, the polyelectrolytes multilayer by LbL dip coating gives unique features (Table 3) 

which also can be termed as the competitive advantage over bulk chemistry i.e. chemistry in 

general. For example a PEM by LbL dip coating allows achieving a vast surface coverage 
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with a tiny amount of PE material. In each deposition step it produces a thin, stable layer on 

the substrate but influence the surface properties significantly. A charge overcompensation 

and a charge reversal gives even more options for the surface properties tuning  for example  

incorporating a targeted amount of charge by varying substrate, electrolyte types, deposition 

condition etc. As a consequence specific property like a monovalent ion selectivity and 

enhanced ion transport in the membrane are assumed to be achievable.  

Table 3: General features of the polyelectrolyte by LbL dip coating [31]. 

Variable Brief description 

Surface functional groups Accessible only from the solution side. 

Monolayer thickness 0.5 nm to 5 nm 

Typical surface area 0.20 nm
2
 per molecule, 5x10

14
 molecules per 

cm
2
. 

Mass density At a mass of 400 g/mol, 1 cm
2
 of a densely 

packed monolayer corresponds to 0.33 μg of 

material. 

Area coverage 5g (semi-preparative scale) covers 1500 m
2
. 

 Monomolecular layers of polymer May be thinner and less dense and typically 

consist of 0.1 to 1.5 mg/m
2
. 

  

2.3.2 PEM phenomena by LbL 

 

The formation of the layer is the combination of two consecutive steps; adsorption of 

polyelectrolyte on the substrate surface and the stability of this layer due to the electrostatic 

interaction. When a substrate is exposed in the polyelectrolyte solution, redistribution of the 

electrolyte particles occurs between the solution and the substrate interface which creates an 

interfacial potential difference [32]. Therefore the interface differs from the substrate and the 

bulk solution phase and ultimately leads to the adsorption. The electrostatic interaction 

between the polyelectrolyte chain and substrate surface results a stable layer. The PEM 

formation is highly dependent on the surface charge density (substrate) and polyelectrolyte 

chain in the solution. When surface charge density increases, the dilute chain of 

polyelectrolyte on the surface transforms into the semi dilute. As a result a thin layer forms 

on the substrate. These polyelectrolyte layers differ from the bulk polymer by leaving behind 
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an overcharged surface i.e. overcompensation of the surface charge by polyelectrolyte chain 

which results a molecularly layered multicomposite film with high degree of complexity on 

the substrate [33-38]. A fast adsorption is followed by slow rearrangement and transport of 

the chains to the surface occurs by diffusion so that electrostatic force can take place. A slow 

rearrangement enables the diffusion again into the inner region of previously deposited layer. 

By mixing positive and negative segments, irreversible complexation of the charges occurs. 

In each monolayer deposition we obtain the oppositely charged surface which is the charge 

reversal of the surface [37, 38].  

The basic structure of a polyelectrolyte multilayered film can be divided into three regions as 

shown in the figure 4.  

 

 

 

 

 

 

 

Figure 4: A Scheme of PEM multilayer [40]. 

The PEM can be divided into three zones. The first zone is near to the surface, zone II is the 

bulk zone and zone III is the transition zone. Zone I is composed of few multilayers and the 

number of layer depends on the type of substrate. When a new layer is absorbed after having 

the arrangement shown in Figure 4, thickness of zone I and zone III stays the same and the 

zone II grows one layer more. However the thickness of each individual layer of zone I is 

smaller than the thickness of each layer of zone II. On the other hand all layers of zone II are 

composed of equal thickness of polyanion and polycation. Polyelectrolyte of the zone II 

mainly follows a 1:1 stoichiometry. It worth to mention that the transition between the layers 

are not as sharp as it is shown in the Figure 3.  

When PEM layer is fabricated, zone I completes first, then zone II and zone III. After 

forming zone III, each new layer addition increases the zone II by transiting one layer from 

I III II 

Substrate 
Interior 

multilayer film 
Surface 
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zone III, but the overall thickness of zone I and zone III stays the same [40]. While 

conventional multilayer growth suggests a symmetric trend, an asymmetric growth model is 

proposed for PDADMAC/PSS polyelectrolyte on the silicon surface [41].  

One possibility of asymmetric growth could be the absence of the surface ions. In this case 

the charge reversal cannot occur symmetrically with each deposition step and thus an 

asymmetric growth originates. Whenever the charge is not balanced by ion pairing between 

polyelectrolyte repeat units counterions are found whether in the bulk or at the surface of the 

polyelectrolyte multilayer. In polyelectrolyte multilayer polymer and counterion charge 

balance is often termed as extrinsic and intrinsic charge balance. Extrinsic charge is defined 

as the charge by the polymer and counterion interaction and intrinsic charge occurs when 

polymer ions interact. In Figure 5, extrinsic and intrinsic charge balance is schematically 

shown.   

 

 

 

 

 

 

Figure 5: Scheme of  intrinsic and extrinsic charge balance in the PEM [41] 

However the overall charge is balanced by the combination of extrinsic and intrinsic charges 

which also gives a stable multilayer on the substrate.  

After forming a number of layers it is observed that the alteration of the charge does not 

follow symmetric order rather complete alternation of the charge occurs only near the surface. 

Figure 6 shows that after forming a dozen layers, excess positive sites begin to accrue in the 

multilayer.  

Treating the surface as a reaction-diffusion region for pairing of polymer charges, a model 

profile was shown in figure 6. Different reaction-diffusion ranges of positive and negative 

polyelectrolyte charge lead to a coverage of glassy, stoichiometric complex growing on the 

top of a layer of rubbery, PDADMAC-rich complex [41] 
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Figure 6: Asymmetric growth phenomena of PSS/PDADMAC layer build- up. Layer number 

represents the PSS/PDADMAC alternatively [41]. 

It is reported that the complete alternation of the charge occurs only near the surface and an 

intrinsic negative thin layer forms with almost all PDADMAC deposition steps. Also after 

10-12 layers, PSS no longer compensates all the PDADMAC charges therefore PEM contains 

anions all the time which is the crucial point for asymmetric growth. The phenomenon can be 

explained as when PDADMAC is on the top layer, many positive sites are found and in 

addition PSS all positive sites are consumed.  

After deposited the PSS, a stoichiometric film produces but with PDADMAC multilayer 

forms with excess PDADMAC. Thus, the growth becomes asymmetric; however the salt 

concentration and the substrate are important in such system.  

In general, it worth to mention that that for PDADMAC/PSS system after a sufficient number 

of layers, a persistent layer of PDADMAC remains within the bulk of the film, and the 

alternation of charge occurs only near the surface. However polyelectrolyte repeat unit is a 

part of long chain, for this reason a thin layer has a strong dependence on polyelectrolyte 

molecular weight. The adsorption of PSS is rate limiting therefore PSS molecular weight has 

a stronger dependence on layer [41].  

Nevertheless the layer formation is a complex method with a diverse dependency on the 

multiple variables which need to be considered for the desired surface structure. A number of 

parameters and their effect on layer growth are explained in the following section.  
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2.4 Variables for PEM by LbL 

 

A successful LbL growth is primarily guided by longer adsorption time, rinsing volume of 

water and surface coverage. Longer adsorption time favours to the reproducibility because 

the plateau of the adsorption depends on polyelectrolyte concentration and adsorption time. 

The polyelectrolyte (PE) concentration is easy to reproduce but at the initial phase of 

adsorption small difference of time causes large difference in the adsorbed mass. And close 

to the adsorption plateau even large difference of time lead only a small difference of 

adsorbed mass. [42].  

The volume of rinsing water is important because of the possibility of cross contamination. 

Whenever the substrate is removed from one polyelectrolyte solution, it adhere some excess 

of polyelectrolytes and can create cross contamination with the next PE deposition step. 

Therefore a dilution factor needs to be considered to avoid cross contamination. Dilution 

factor is calculated by dividing the volume of the first rinsing bath by the estimated volume 

of the adhering liquid. The number and the rinsing bath are normally chosen so that the 

overall dilution factor is maintained at least 1:10
6
.  

The surface coverage of the functional groups is one of the most important key parameters 

for reproducibility. Most of the LbL shows linear growth which is associated with the 

functional group densities on the surface. Increasing or decreasing the surface coverage of the 

functional groups or the molecule diffusing in the whole surface able to influence the 

polyelectrolyte multilayer (PEM) linear growth. However for PDADMAC/PSS system, the 

growth can be different then a linear which is explained by figure 5 and figure 6. The 

substrates with few functional groups permit a molecular orientation towards the surface 

when absorbed. The polyelectrolyte with a high degree of polymerization gives a large 

number of functional groups, thus the orientation become less. Therefore, reproducible result 

for successful polyelectrolyte multilayer growth on any substrate is highly dependent on 

surface coverage, deposition condition and molecular weight of the polyelectrolyte [43-45].  

Nevertheless, polyelectrolyte multilayer formation depends on a wide range of parameters. 

Table 4 gives a list of different variable which shows that polyelectrolyte multilayer 

dependency is a function of not only different parameters but also different possible 

interactions. Therefore a careful consideration of parameter (Table 4) control needs to 

consider for a successful layer growth with a reproducible standard. 



 

14 

 

Table 4: A List of different variables for PEM by LbL dip coating [45].  

Different interactions for LbL Important parameters 

(Primary) 

Other important  

parameters 

1. Electrostatic 

interaction. 

2. Donor/acceptor 

interactions 

3. Hydrogen bridging 

4. Adsorption/drying 

cycles 

5. Covalent bonds 

6. Stereocomplex 

formation or specific 

recognition 

1. Individual layer & 

its thickness 

2. Type of surface, 

salt & PE 

concentration, 

surface charge.  

3. Surface properties 

such as nature and 

density of the 

charged groups, 

local mobility (in 

case of a polymeric 

surface) 

1. Solvent 

2. Concentration of adsorbing 

species 

3. Adsorption time 

4. Temperature 

5. Nature and concentration of 

added salt 

6. Rinsing time 

7. Humidity 

8. Drying 

9. Agitation  or rinsing 

10. dipping speed etc.  

 

The deposition condition is a vast aspect for PEM as the target thickness with functionalities 

and desired properties are often expected; however the type of polymer, salt concentration 

and the deposition time are often considered as most important.  

It also worth to mention that- the structure and the properties of each layer is governed by the 

respective polyanion/polycation pair and the deposition conditions. Therefore the choices of 

parameters are also different for different polyelectrolytes. As an example, the layer 

deposition for PSS/PAH is strongly pH dependent whereas PDADMAC/PSS is mostly not 

[45].  

After several layer formation the properties of the substrate are hindered by the 

polyelectrolyte which means the properties of thin polyelectrolyte multilayer becomes 

dominant over the properties of the substrate. Therefore it is often said that polyelectrolyte 

multilayer films are independent of the underlying substrate. 

2.4.1 Effect of temperature  

 

The layer thickness increases with increasing temperature and relative humidity. Even small 

differences in temperature can easily account for changes in film thickness of the order of 5–
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10% depending on the swellability of the film, however can be overlooked with the standard 

laboratory conditions. A film thickness vs. temperature for a (PDADMAC/PSS) 10 is shown 

in figure 7.  

 

Figure 7: Effect of deposition temperature on the thickness of a (PDADMAC/PSS) 10 

multilayer on Si wafer and deposited at 1M NaCl. [46] 

The thickness of layers increases with the increasing temperature. The possible explanation is 

the change of interaction with temperature. At elevated temperature the solubility of PSS in 

water decreases which can be related with the solvent quality i.e. water. Thus solvent quality 

is reduced when temperature is increases and results a thicker film [30,47]. In addition to that 

another argument is about the possibility of the hydrophobic effect. The solubility of 

hydrophobic materials decreases at high temperature. The reduced solubility is assumed to 

drive the polymer to the surface and increase the thickness of adsorbed layers. It seems that at 

high temperature both localized dissociation and conformational dynamics of polyelectrolyte 

molecules tend to increase which results an increased tendency to send the loops on the 

surface and tail to the solution [30, 46]  

2.4.2 Effect of salt concentration 

 

The polyelectrolyte multilayer formed at different salt concentration shows different 

fluorescence emission intensity shown in figure 8. The measurement was performed by the 

fluorescence emission spectrometer on a solid sample holder. The incident angle was 45° to 

the film surface. The emission intensity was taken at 396 nm as the characteristics of pyrene 
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and evaluated after subtracting the intensity of a cleaned quartz slide (as a blank) to eliminate 

the substrate emission and scattering. It was shown that the salt concentration increases as the 

intensity increases. A second example is shown in figure 8(b), as the layer number increases 

the thickness increases. Thicknesses were determined using an ellipsometer with 632.8 nm 

radiation at 70° incident angle. [48,49].  

 

 

 

 

 

 

 

Figure 8: 8(a) Fluorescence intensity varying with the layer number of the multilayer film 

made of ADPy-100 (The pyrene labeled polyanion) and PDADMAC deposited in NaCl 

solutions [42]. 8(b) Thickness vs. layer number for PSS/PDADMAC deposited from 1.0 M 

NaCl [49]. 

While increasing the ionic strength of the medium, the layer becomes thicker. At a higher salt 

concentration, the polyelectrolyte trends to be coiled more and increases the thickness which 

can be explained by the intrinsic charge compensation, schematically shown in figure 9 [48]. 

Compensation via polycation–polyanion complexation is called intrinsic charge 

compensation. However, increasing the salt concentration will increase the extrinsic charge 

compensation, which reduces the number of complexation points between two 

polyelectrolytes, allowing the more possibilities to coil or to move through the film which 

gives rougher and thicker structures.  

It worth to mention that, at a very high salt concentration the layer can be de-structured due to 

the high number of counterion interactions [50-53]. Therefore salt concentration effect is 

obvious on polyelectrolyte multilayer which indicates a careful choice of salt concentration; 

necessary to obtain the desired thickness.  

7(a) 7(b) 
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Figure 9: Interior of a multilayer, scheme with two oppositely charged polymer strands (a) 

fully intrinsic. (b) Ion swells the multilayer and competes for polymer charge in the presence 

of polyelectrolyte. (c) Overcompensation from the surface into the film [48]. 

Figure 9 shows the hypothesis of adding a salt and therefore the transformation from intrinsic 

to extrinsic with the phenomenon of charge overcompensation. When two polymer chains are 

fully intrinsic, an addition of the NaCl makes the previously intrinsic polymer chain to be 

swelled and also more water is brought by the salt. If one of the polyelectrolytes, either 

positive or negative is added; the overcompensation extends further because it decreases the 

segment-segment repulsion. As a result, more coiled complex structure forms. However the 

swelling of multilayer by salt is reversible but by polyelectrolyte addition is irreversible. 

Since a deposition cycle terminates with the rinsing step therefore increase in film thickness 

with additional salt is not expected. If the polymer were adsorbed in the thermodynamically 

reversible limit, the polymer would desorb in pure water. Thus the thickness increment in the 

polyelectrolyte deposition in a time scale can be considered as irreversible. The irreversibility 

is checked by preparing a radiolabeled positive layer (14C labeled PM2VP) on the top of 10 

layer of PSS/PDADMAC and immersed it to 10 mM PDADMAC in 0.1 and 1M salt 

solutions. No evidence of desorption was found on a time scale of hours, and a small 

exchange was observed after several days [49,54].  
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2.4.3 Effect of ion type  

 

The effect of salt concentration, type of salt and water content relation during the formation 

of a polyelectrolyte multilayer is shown in the figure 10. The polyelectrolyte of oppositely 

charged layers creates voids in the multilayer. In vacuum these voids are empty but upon 

swelling filled with water which is called void water. Void water does not contribute to the 

swelling of the multilayers but exclusively change the scattering length density.  

 

 

 

 

 

 

 

Figure 10: For a PDADMAC/PSS system on Si substrate (a) Salt concentration vs. void 

water and swelling water and type of salt. (b) Salt concentration, type of salt and total water 

content [55]. 

An increasing the ionic concentration increases the amount of swell water and decreases the 

amount of void water. Also higher the ionic strength the total amount of the water content is 

larger. At 0.5 M NaBr multilayer are unstable therefore not shown in the figure 10.  

Since swell water and void water behaves opposite to each other which means two water 

species partially compensate each other. The presence of different salt can create variable 

electrostatic screening of the charge on the polyelectrolyte layer and also influence both the 

dynamics of polyanion/polycation complexes.  

The different dynamics are the result of the hydration behaviour of the salt and the solubility 

behaviour when different salt is used. The solubility behaviour and the complex formation 

often referred partially to the Hofmeister Series that gives the consistent effect of solubility as 

F
- 

> Cl
- 

>Br
-
 and hydrophobic effect. Thus in PDADMAC/PSS, both thickness and water 
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content of the multilayers increases with increasing ionic strength and ion size. The amount 

of void water decreases with the increasing salt concentration and anion radius while the 

amount of swelling water increases with salt concentration and anion radius. This can be 

interpreted as a denser structure in the dry state and larger ability to swell in water for 

multilayers, prepared from high ionic strengths and/or salt solution of large anions [55]. In 

other explanation says that the smaller ion has a relatively small polarizibility, high electric 

fields at short distances, and keep their water of hydration which can affect the structure of 

the PEM [56,57]. The anion effect on PSS/PDADMAC films is much higher than the cation 

[58]. At the same time the trend of the thickness and the roughness is a function of the type of 

the counter ion; the larger the anion, the thicker and rougher the film. The larger ion has 

higher polarizability, and therefore interacts more strongly with polyelectrolytes which 

increases more coiled structures. The stronger interaction of the ions/polyions will also 

increase the polymer mobility inside the PEM by decreasing the complexation points between 

polyanions and polycations. In reality, the effect of increasing anion size (F
-
, Cl

-
 and Br

-
 used 

as counteranions) is qualitatively the same as increasing ionic strength (0.1, 0.25 and 0.5M 

NaCl) [55-58]. 

2.4.4 Effect of pH 

 

The pH of weak polyelectrolyte solutions dramatically affects the film thickness and makes a 

strong effect on permeability behaviour whereas for strong polyelectrolyte pH does not have 

any effect on the polyelectrolyte multilayer [59-63]  

The reason of this behaviour is because the weak polyelectrolytes are not fully charged in 

solution, and moreover their fractional charge can be modified by changing the solution pH, 

counterion concentration, or ionic strength. A weaker polyelectrolyte has a lower dissociation 

constant that means it will be partially dissociated at intermediate pH. On the other hand a 

strong polyelectrolyte such as PDADMAC/PSS dissociates completely in solution for most 

reasonable pH values [62,63]. Thus in weak polyelectrolyte polymer charge density is a 

strong function of pH but for strong polyelectrolyte it is normally expected to be pH 

independent. However figure 11 does not agree with the statement and shows an increase of 

layer thickness increases when pH is high [64].   



 

20 

 

 

Figure 11: Effect of pH vs. layer thickness for PDADMAC/PSS multilayers on Si/SiO2 surface 

[64]. 

It is usually expected that thickness of PDADMAC/PSS should be identical irrespective to 

the pH condition. Since the negative surface charge of Si/SiO2 support increases strongly 

with pH [65] therefore the increase of thickness of PDADMAC/PSS with pH has occurred 

[64,66]. A substrate effect also can be understood from figure 11.  

2.5 LbL polyelectrolyte membrane  

 

The LbL assembly of different polyelectrolytes on the various types of membrane results a 

composite membrane which allows high separation capability [50-57]. Selective transport of 

the ions and molecules across the polyelectrolyte multilayer membranes are reported as 

potential for water softening and desalination [70]. The LbL assembly is conducted by the 

conjugation of two types of oppositely charged polyelectrolytes; therefore can give a highly 

cross-linked structure. Therefore, it can act as a molecular sieve for separating small and 

large molecule from each other [71]. Using the different type of polyelectrolytes with 

different charge density, the network can be controlled and application of it can be forecasted 

in the controlled release, water purification, separation and the purification of organic 

compounds [72]. As for example, PDADMAC/PSS gives a comparably more porous 

structure and size selective transport has been reported for mono and polyfunctional alcohol 

derivatives [73]. Transport of the differently charged aromatic compounds of similar size was 

also investigated which indicates that the organic ions with the highest charge density receive 

the strongest electrostatic (Donnan) rejection from the membrane, quite similar to the 
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inorganic ions [72,73]. A rejection model scheme is shown in figure 12 where multi-bipolar 

structure of the polyelectrolyte membranes favours the separation of mono- and divalent ions 

by Donnan exclusion [74]  

 

 

 

 

 

Figure 12: Rejection model of multi-bipolar membrane by polyelectrolyte. [74] 

The architecture of multi-bipolar film rejects the ions by electrostatic repulsive forces, also 

called Donnan exclusion. Divalent ions receive a much stronger repulsive force from the 

positively charged layer than monovalent ones. Thus divalent ions are more strongly rejected 

and a good selectivity is obtained. Similarly divalent anions are rejected by the negatively 

charged layers. However the model shows that the difference in the permeation of mono- and 

divalent ions becomes effective when the number of adsorbed layers is increased. When 

membranes containing polyallylamine (PAH) as the cationic polyelectrolyte, a 60 layer pairs 

of PAH/polystyrenesulfonate shows the separation factor for Na
+
/Mg

2+
 up to 112.5 and for 

Cl
-
/SO4

2-
 up to 45.0 [74,75] However, permeation also depends on the concentration of 

excess charges, addition of salt to the polyelectrolyte solution or increasing the pH. Salt 

addition leads to additional incorporation of charged chain segment and thus improves the ion 

separation and the increase of the pH value may lead to deprotonation of the cationic 

polyelectrolyte so that chain segments (without charge) are incorporated, which deteriorate 

the ion separation. Another important factor influencing the ion transport is the molecular 

structure of the polyelectrolyte. A high charge density favours a dense, less permeable 

membrane exhibiting improved rejection of divalent ions [75] 

A single polymer adsorption makes significant affect in the polymer morphology. Also 

different combination of the weak and strong polyelectrolyte gives even more change in the 

polymer morphology. Therefore it is an interesting phenomenon to study the permeability of 

a membrane with a blend formation and the morphology as well for ion separation [76]. To 

improve the separation behaviour and the surface properties, one of the ideas is to engage 

Cationic 

Anionic 

Cationic 
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macrocyclic compounds such as calixarenes and crown ethers. It has been reported that the 

modification with such compounds make the membrane more permeable for monovalent than 

for divalent ions because the divalent and the trivalent ion receive stronger repulsion from the 

membrane bound charges. Therefore permeation rates of alkali metal ions increase in the 

direction of lower charge density of the ions ( Li
+
< Na

+
 <K

+
.). The effect also can be co-

relating with the ring size of the compounds. As the ring size increases the permeation value 

for different ions differs therefore can be considered for monovalent ion selectivity [77-81].  

A careful controlling of the LbL and the polyelectrolyte deposition is able to give confined 

pore geometry on the surface which enhances the volume density of ionisable groups in the 

membrane phase. Such high density allows the permeation control upon Donnan exclusion of 

ionic species. For example the LbL films of PAH and PAA on a glass filter can remove the 

environmentally-unfriendly gasses (Basic odorant) [80]. A PDADMAC/PSS multilayer on 

porous substrate shows a high flux (Cl
−
/SO4

2-
). As a best case (PSS/PDADMAC)3PSS on a 

porous alumina support showed a 96% rejection of SO4
2−

, a chloride/sulfate selectivity of 26 

[83]. Also recently found that the Cl
-
/F

-
 nanofiltration selectivities of PSS/PDADMAC films 

on porous alumina membranes reach a maximum value of 3.4 for (PSS/PDADMAC)4PSS 

films[84]. Nevertheless, ion transport through polyelectrolyte multilayers depends on ion-

exchange sites. And the ion-exchange capacity of PSS/PDADMAC films is a function of the 

number of deposited layers. Therefore at higher number of layers it is expected to have better 

monovalent ion selectivity [85].  

2.6 Diffusion dialysis and LbL 

 

Diffusion dialysis is an ion-exchange membrane separation process which is driven by 

concentration gradient and also known as concentration or natural dialysis. Since the driving 

force for the separation process is mainly concentration gradient, dialysis is known as a 

spontaneous separation process [86]. If there is a concentration difference of solutes across an 

ion exchange membrane, solute diffuses through the membrane. Thus, diffusion potential 

corresponding to the concentration gradient is generated across the membrane [2]. Due to the 

attractive force inside the membrane (Ion exchange membrane), the transport of counter-ions 

through the membrane is more facilitated. However, electrical neutrality needs to be 

preserved in the whole process. Co-ions with small hydration radius and little charge can 

always have high mobility and transport through the membrane [87,88]. The characteristic of 

low energy consumption, low installation and operating cost, make it attractive however, it 
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has the limitation to the low processing capability and low efficiency [89]. The applications 

of diffusion dialysis are recover acids and valuable metals from industrial waste solution [90] 

The principle of the diffusion dialysis process is shown in the figure 13 (recovery of base) 

considering a cation exchange membrane.  

 

 

 

 

 

 

 

 

 

Figure 13: Schematic drawing illustrating the principle of diffusion dialysis utilizing a cation 

exchange membrane to recover a base [4]. 

The mass transport in diffusion dialysis is determined by the transport of ions through the 

membrane. The feed and the product solutions are separated by the membrane. In order to 

promote the process efficiency a practical consideration is to decrease membrane thickness 

and increase the membrane area. [7]. The electrodialysis is an electromembrane separation 

technique uses ion exchange membrane arrangement and also a difference in electrical 

potential to separate ions from solution and from each other [91].  

Ion transport by the diffusion dialysis and electrodialysis, in general, is described by the 

Nernst-Planck’s equation (Equation 1). The equation illustrates three forces diffusion, 

migration and convection. The simplified expression is as- 

    
  

  
    

 

  

  

  
           (1) 
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Product (Base) Feed (Salt or 

base mixture) 
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+
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Here J is ionic flux [molm
-2

s
-1

], v is convection velocity in [ms
-1

] c is concentration of 

component [molm
-3

] D is diffusion co-efficient of the component [m
2
s

-1
], x is direction co-

ordinator [m] z is valence number of component I [-], F is Faraday constant [Cmol
-1

], R is gas 

constant [Jmol
-1

K
-1

] T is temperature [K] and ɸ is electric potential [V] 

In the equation first term represents the diffusion which is first Fick law; second term is the 

migration force and third is the convection. Since for the dense membrane no convection 

occurs the equation can be rewrite as equation (2) 

    
  

  
    

 

  

  

  
         (2) 

In the following paragraph, definition of important parameters such as membrane degree of 

swelling, resistance and flux are given which often considered to describe diffusion dialysis 

and/or electrodialysis.  

2.6.1 PEM and diffusion dialysis 

 

The modification of the cation exchange membrane and applying it in diffusion dialysis could 

give specific cation selectivity. The nanoscopic PEM allows significant changes in 

morphology and/or surface properties like surface charge density. These changes can 

effectively contribute to improve on cation separation, recovery of ions, water purification, 

acid and base separation or recovery. [92,93].  

The LbL deposition by the electrostatic interaction affects the ion exchange sites [94], size of 

the ion and their mobility. Under the influence of diffusion dialysis condition these 

parameters could give monovalent ion selectivity by diffusion.  

A diffusion dialysis with the high cross linked dense membrane (by PEM) may be able to 

hinder the larger size ions and gives size exclusion. Positive layer on the cation exchange 

membrane can make higher repulsion to the multivalent ions which also affect the 

monovalent ion selectivity [2, 33, 94-99].  
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3. Experimental  

 

3.1 Materials 

 

The polyelectrolyte multilayer (PEM) samples were prepared on FKB Fumatech cation 

exchange membranes which were purchased from FuMA-Tech GmbH, Germany. The layer 

by layer technique was followed by using polycation PDADMAC
*
, polyanion PSS

**
 and poly 

zwitterion PSBMA
***

 Polyelectrolyte multilayer deposition was conducted in a salt medium 

prepared by sodium chloride, NaCl (≥99.5 %,). Different inorganic salts including sodium 

chloride, NaCl (≥99.5 %,), potassium chloride, KCl (≥ 99%), and sodium sulphate, Na2SO4 

(≥98%) were purchased from Sigma Aldrich. Lithium chloride, LiCl (≥98%) was obtained 

from Fluka analytical and hydrochloric acid, HCl (37%) from Mereck, Germany. MiliQ 

milipore demiwater was used for other auxiliary purpose. All chemicals were laboratory 

grade standard.  

*Poly (diallyldimethylammonium chloride), Mw = 150 kDa, 20 wt % in water from Kemira, 

Finland). ** Polystyrene sulfonic acid, Mw = 100 kDa, 20 wt % in water from Tosoh Organic 

Chemical Co., LTD (Japan). *** Poly- N-(3-Sulfopropyl)-N-(methacryloxyethyl)-N,N-

dimethylammonium betaine (SBMA) from Sigma Aldrich (The Netherlands) . 

 

3.2 Methods 

 

3.2.1 Preparation of polyelectrolyte multilayer by PDADMAC and PSS 

 

The polyelectrolyte multilayer sample was prepared on the fumasep® FKB cation exchange 

membrane. The membrane was preconditioned in demineralized water for six hours to obtain 

the optimal performance, minimal wrinkling and lowest electrical resistance. Since the 

membrane was already in H
+
 form therefore further acid treatment was avoided.  

In the following step, a PDADMAC and a PSS bath was prepared by mixing 1g/l of each 

polyelectrolyte in 0.2 M NaCl solution. Both the solution was vigorously stirred for 

approximately 30 minute in room temperature for proper mixing of the polyelectrolyte in the 
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salt solution. Another two baths were prepared by the demiwater for rinsing purpose. The 

volume water in each bath was kept as same as the polyelectrolyte baths.  

Preconditioned FKB membrane was then cut into approximate 3.5x 3.5 cm and taped over a 

square shaped glass support. Each four side of the square shaped membrane was taped on the 

glass support keeping approximately 3x3 cm membrane area to be exposed in the solution. 

The sample was vertically dipped in the PDADMAC solution bath and then rinsed in water 

bath. At this step a monolayer i.e.0.5 bilayer was formed. The next successive step sample 

was dipped in the PSS bath and then rinsed in the water. At this stage 1 bilayer was formed. 

The duration of the layer deposition and rinsing was followed as 30 min/bath.  

A scheme of LbL formation on FKB membrane.by dip coating is shown in figure 14.  

 

 

 

 

 

 

 

 

 

Figure 14: A Scheme of polyelectrolyte multilayer by LbL via dip coating. 

The cycle of deposition steps were repeated to obtain desired bilayers on the FKB membrane. 

All samples were prepared at room temperature and the duration of each deposition step was 

considered as 30 minute. In each deposition step membrane sample kept as vertical and 

rinsing water was replaced by new after two times rinsing. Several sets of sample were 

prepared up to 7
th

 bilayer. The prepared sample was stored in 0.5M NaCl solution. 
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3.2.2 Preparation of the polyelectrolyte multilayer by PDADMAC- PSBMA-PSS 

 

The preparation method was same as described in the section 3.2.1. The difference is an 

additional deposition step was employed in between the PDADMAC and PSS; deposition of 

PSBMA which is a zwitterionic polymer, exhibits both positive and negative charge in the 

molecule. To prepare the solution 1g/L polymer was dissolved in the 0.2M NaCl solution. 

Vigorous stirring was dene until the polymer completely dissolves. Dissolving PSBMA took 

longer time then PDADMAC and PSS. The other condition of the deposition such as salt type 

and its concentration, deposition time kept as constant. After PDADMAC-PSBMA-PSS 

deposition, the sample considered as one trilayer. In this PEM sample preparation, PSBMA 

layer is sandwiched in between the PDADMAC-PSS layers. 

Figure 15 shows a scheme of the polyelectrolyte multilayer with zwitterion polymer PSBMA 

where at first step PDADMAC is deposited and successively PSBMA and PSS deposition 

war performed. Sample considered as PDADMAC terminated and PSS terminated layers. 

Sample was prepared up to seven trilayers.  

 

 

 

 

 

 

 

 

 

 

Figure 15: Scheme of polyelectrolyte multilayer (PDADMAC-PSBMA-PSS) by LbL by dip 

coating. 
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Deposition of PEM on the FKB membrane was conducted at the salt concentration 0.2M 

NaCl because at salt concentration 0.2M, PDADMAC/PSBMA the layer deposition is 

observed as most stable [104]  

 

3.2.3 UV-Vis measurement 

 

The UV-Vis was measured by the spec: USB 2000+Miniature fiber optics from Ocean 

Optics, Inc, USA.  

The UV-Vis set up consist a UV source (Deuterium light), optical fiber connections, 

membrane holding cell, detector and recorder (Ocean plus software). Absorption occurred in 

the membrane holding cell where the membrane was placed. During measurement UV light 

was allowed to passes through the optical fiber line to the membrane holding cell. Another 

optical fiber was connected from the membrane holding cell to the detector. After absorption 

in the cell the detector responses are recorded by the Ocean plus software that gives a UV-Vis 

profile with a characteristic peak. UV-Vis measurement was conducted for several sets of 

membranes.  

First of all PDADMAC/PSS polyelectrolyte multilayers (PEM) were deposited on the 

negatively charged quartz glass surface. Before layer deposition, quartz glass was cleaned by 

the acid piranha solution. Acid piranha is a 3:1 mixture of concentrated sulphuric acid 

(H2SO4) with hydrogen peroxide (H2O2). The methodology adopted from 

http://www.lamp.umd.edu/Sop/Piranha_SOP.htm. Each bilayer formation on the quartz glass 

was conducted by following the same procedure as described in section 3.2.1. After each 

bilayer deposition, the sample was dried under a stream of N2 and then UV absorbance was 

measured. Up to seven bilayers UV-Vis profile were measured and recorded.  

Referring to the section 3.2.1 and 3.2.2, two other sets of sample (FKB modified by 

PDADMAC/PSS and PDADMAC/PSBMA/PSS) up to seven bilayers were prepared and 

dried under N2 stream before the experiment.  

Ultraviolet visible spectroscopy is a quantitative measurement technique of characterization 

based on the Beer-Lambert law (Equation 4).  

A = log10 (I0/I) = εcL         (4) 
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Where A is absorbance in AU, I0 is the intensity of the incident light at the given intensity 

and I is the transmitted intensity, ε is the molar absorptivity i.e. often called extinction co-

efficient, c is the absorbed species concentration and L is the path length through the sample. 

An example of UV-Vis absorption spectra is shown in figure 16.  

 

Figure 16: UV-Vis absorption spectra of PDADMAC/PSS block- VN multilayer [78]. 

It was reported that PSS gives absorption band at 228 nm and PDADMAC absorption is 

negligible in the spectroscopic region. Nevertheless there is no distinct maximum for PSS and 

one can observe in the range of 280-320 nm [102].  

 

3.2.4 Contact angle measurement 

 

The contact angle (CA) was measured by the Data Physics OCA20, Germany.  

The equipment is a telescope-goniometer in which a horizontal stage is used to mount a solid 

sample; a micrometre syringe was used to form a water liquid drop (ultrapure water as a 

probe liquid), an illumination source, and a telescope with camera.  

Before CA measurement, the membrane sample was dried overnight in the vacuum oven at 

30°C to get a dry membrane surface. Then the membrane was placed as flat as possible on 

the horizontal stage. The micrometre syringe (filled with ultrapure water) was in vertical 

position on the membrane. The illumination source and the camera focus were adjusted to 
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have the vision of the membrane surface. OCA 20 software allows making a precise water 

droplet of 1μl and dispenses it on the membrane surface. Then a snapshot was taken and CA 

was measured. For a single sample, three to five droplet were dispensed in different position 

of the surface and corresponding snapshot were recorded which were used to measure contact 

angle.  taken for each sample and in different place of the membrane and corresponding 

contact angle was measured.  

After dispensing water droplet (1μl) on the membrane, five second waiting time was 

considered for the consistency.  

Contact angle measurement gives the information of the hydrophilicity/hydrophobicity and 

surface energy of PEM. Small contact angles (<<90°) correspond to high wettability, while 

large contact angles (>>90°) correspond to low wettability. An example of water contact 

angle vs. number of PDADMAC/PSS multilayer on Si substrate is shown in figure 17. [64] 

 

Figure 17: Dependence of PDADMAC/PSS films formed at various pH of solution on Si. [64] 

It was reported that PDADMAC/PSS multilayer on Si substrate does not show any pH 

dependency however PDADMAC terminated layers give higher contact angle then PSS 

terminated. Nevertheless CA value differs significantly from substrate to substrate which 

gives the information of surface dominated characteristic of PEM [64,103]. Films terminated 

by polycation layers are more hydrophobic. Also amplitude of layer-to-layer contact angle 

oscillations and average hydrophobicity depends on the polyelectrolyte adsorption conditions. 
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3.2.5 Measurement of electrical resistance and current voltage curve 

 

The electrical resistance was measured in a six cell electrodialysis unit (Figure 18).in which 

two outer compartments contain two working electrodes; the anode and the cathode. These 

electrodes were used to apply an electric field though the membrane. In the middle there were 

two central compartments with Haber-Luggin capillaries. A shielding compartment in 

between each electrode and main compartment was used. The membrane under investigation 

was placed in between Haber-Luggin capillaries. 

Other cell membranes (often called principle auxiliary membranes) of the figure 18 were 

used to prevent transport of water dissociation product from electrode to main compartment. 

The Haber-Luggin capillaries were filled with 1 M KCl solution which was connected to 

calomel reference electrode (Schott B2810) by silicon tubing. The reference electrode was 

connected with Autolab potentiostats/galvanostats, which allowed controlling the current 

level and measures corresponding voltage drop in the test cell. 

 

Figure 18: Schematic drawing of the six cell setup. [1] 

In electrode compartments 0.5 M Na2SO4 (2L) and in other compartments 0.5 M NaCl (2L 

for shielding and 2L for central compartment) were pumped at a rate of 450ml/min and 

temperature was maintained as 25°C. The Haber-Luggin capillary tip of each electrode was 

placed as close as possible to the membrane but not in contact with the test membrane to 
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avoid the interference of the electric field. All salt solutions were allowed to circulate for 10-

15 minutes to obtain a stable condition for electrical resistance measurement.  

Current was applied in the range of zero to 135 mA with stepwise increase (15mA/step). For 

each step of current increase, corresponding voltage were measured and recorded. Current-

voltage data were further calculated and plotted as current density (mA/cm
2
) vs. voltage drop 

(mV). A linear relation was found and the slope was calculated which eventually gave the 

electrical resistance, R (Ω.cm
2
).  

Before the measurement, the membrane sample was preconditioned overnight in 0.5M NaCl 

solution to be stabilized. The measurement with the sample membrane gives a total resistance 

of membrane and solution. Therefore a blank run (without any membrane sample) was 

conducted to measure the resistance contribution of the salt solution. 

Rmembrane = Rmembrane+solution- Rsolution 

The electrical resistance of an electrical conductor is the opposition to the passage of an 

electric current through that conductor. The electrical resistance of ion-exchange membranes 

is one of the factors which determine the energy requirements of electrodialysis processes. 

The resistance (R) of an object is defined as the ratio of voltage across it (V) to current 

through it (I), 

Thus R=V/I            (3) 

The specific membrane resistance is usually reported as [Ω cm
2
] or [Ω m

2
]   

3.2.6 Limiting current density  

  

The limiting current density (ilim) was measured with the same set up as described in section 

3.2.5 however higher level of current was used to determine ilim so that ohmic, limiting and 

over limiting region can be obtained  

From the experiment current (mA) and corresponding voltage drop (V) data was obtained 

which further calculated and plotted to obtain a current density (mA/cm
2
) vs. voltage (V) 

curve. For each measurement, two fresh samples were considered to confirm the 

reproducibility of the results.  
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An example of current-voltage graph is shown in figure 19. In the first region resistance of 

the cell is fairly constant, i.e. the current density is increasing linearly with the applied 

voltage according to Ohm's law. When a certain current density is reached, the cell resistance 

increases drastically which is the plateau region. This transition point is called as the limiting 

current density (ilim). Further increase of current density lead to over limiting region though 

over limiting current density is not yet completely understood. A certain amount of the 

current in the over limiting current density region is transported by the protons and hydroxyl 

ions generated by electrodialytic water dissociation at the ion-exchange membrane. [1,4-

7,100,101]. 

 

 

 

 

 

 

 

 

Figure 19: Experimentally determined current vs. voltage curve measured in a laboratory 

electrodialysis stack with a 0.05 M NaCl-solution [101]. 

The current- voltage behaviour is related with the concentration polarization. In ion exchange 

membrane feed mixture components permeate at different rates and thus results a 

concentration gradient in the fluids and on the both side of the membrane which is termed as 

the concentration polarization. In the feed side depletion of the permeating solute and in the 

permeate side enrichment of the permeating solute occurs. At a current load salt 

concentration on a desalting surface of the membrane is decreased and reduced to zero at 

limiting current density. This leads to a drastic increase of the voltage drop across the 

boundary layer and results high energy consumption as well as water dissociation [1, 4-7]. 
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3.2.7 Ion flux measurement by diffusion experiment 

 

The ion flux was measured by a standard glass diffusion cell as shown in figure 20  

The standard glass diffusion cell consists a feed compartment and a receive compartment 

separated by the test membrane. The membrane area was 3cm
2
 and polyelectrolyte membrane 

surface was faced to the feed compartment. Polymeric gaskets with two teflon plate were 

used around the membrane to prevents leakage during the measurement. Both feed and 

receiving compartment had equal volume (70ml) and magnetic stirrer was used for vigorous 

mixing. The test membrane was kept in the salt solution overnight to be stabilized for the 

diffusion dialysis experiment (same as the experimental salt concentration). 

Prior to the experiment both the feed and the receiving compartment was washed several 

times by demiwater and homogenized by the salt solution.  

 

 

                                                                                                                 

 

 

 

Figure 20: Schematic standard glass diffusion cell. 

The feed compartment was used for the salt solution (KCl or LiCl or the mixture of both) and 

receive compartment for the equal concentration and amount of the acid (HCl). Thus 

neutrality of Cl
-
 in both cell were maintained. Salt ion (K

+
 or Li

+
 or the mixture of both) 

neutrality was balanced by the H
+
. Therefore we achieve the cation concentration difference 

in feed and receiving compartment.  

Due to the ion concentration difference in both feed and receive compartment, ion transport 

occurred through the membrane according to the Equation 2 (1st term of the Nernst Plank 

flux equation i.e. Ficks law). In every 15 min, 0.3ml sample was taken from both feed and 

receiving compartment by micropipette. The duration of one experiment was considered for 

90 minute. Several experiments were conducted with different salt concentration, PEM 

modified sample and FKB base membrane.  
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The sample withdrawn during an experiment was further diluted 10 times by demiwater. The 

concentration was measured by the BWB flame photometer. Prior to analyse the sample, the 

photometer was calibrated for precise concentration (The calibration method and the scheme 

of basic BWB Flame photometer are given in Appendix A. 1.). 

Each sample concentration was measured in mmol/l and plotted as concentration vs. time. 

Mostly a linear increase ion concentration in the receiving side as well as concentration 

decrease in feed side was found. Using the slope of the receiving side linear fit, flux was 

calculated according to equation 5. Reproducibility of the each experiment was confirmed by 

repeating the same experiment with fresh membrane. Volume change in both compartments 

due to the sample withdrawal was considered negligible.  

The flux is the amount of moles transported through the effective membrane area per unit 

time, thus flux can be calculated by the equation 5.  

  
 

 

  

  
           (5) 

V is the total volume of the compartment [cm
3
], C is the concentration of the compartment at 

time t [mmolm
-3

], t is the time [s], A is the Effective membrane area [cm
2
] 

3.3 Data analysis. and calculation  

 

Origin Pro 9.1 was used for all the data calculation and graph. For electrical resistance 

current supply and corresponding voltage drop was calculated and measured by. Nova 

Autolab 1.10. Spectra Suite software allowed to record the UV-Vis profile and contact angle 

snapshot was measure by the OCA 20 in sessile drop mode  
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4. Result and discussion 

4.1 Membrane Characterization 

4.1.1 Characterization by UV-Vis spectroscopy 

 

The UV-Vis spectroscopy technique was used to observe the polyelectrolyte multilayer and 

their deposition trend. The UV-Vis spectra of PDADMAC-PSS multilayers on FKB 

membrane and PDADMAC-PSBMA-PSS modified FKB membranes are shown in this 

section.  

4.1.1.1 UV-Vis spectra for PDADMAC-PSS modified FKB  

 

The UV-Vis spectra of PDADMAC/PSS bilayers on quartz glass are shown in figure 21(a) 

and the spectra of PDADMAC/PSS bilayers on FKB membrane are shown in figure 21(b). 

Zapotoczny et al (2005) [65] has reported the UV-Vis absorbance of PSSS-block-VN at 228 

nm though the absorption peak can be found in the range of 280-320nm. PDADMAC 

absorption was reported as negligible in the spectroscopic region. Based on this study we 

have assigned the absorption band at 280nm for PSS and found more/less clear peak of 

bilayers on quartz substrate. The steady increase of the absorbance was observed with the 

increase of number of bilayers.  

The spectra of bilayers on FKB membrane did not give any distinct peak but shows the 

spectra in an approximate range of 270-350nm. FKB is a polyether ether ketone (PEEK) 

reinforced membrane and PEEK gives the absorbance peak at around 335nm, though 

contradicts with some other literature [109]. In fact there might be an effect of absorbance by 

PEEK in the FKB membrane. Considering the effect of PEEK on UV-absorbance, the spectra 

is shown in figure 22(b), we can say that the peak range 270-350nm may be a result of two 

peaks in the spectrum. Since we were interested to observe the PEM layer deposition trend 

therefore 280nm was also assigned for figure 22(b). Though the assumption is not very 

straight forward however a steady increase of absorbance with number of bilayers is also 

observed.  

It is also often reported that PEM (for strong polyelectrolyte pair ) growth depends on the 

nature of substrate and also termed sometime as substrate dominated PEM growth [33-38,41] 

which contradicts according to AFM results reported by Zapotoczny et al [65]. Nevertheless 
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our UV experiment shows different absorbance value for bilayers when substrate is different 

for example absorbance values of bilayers on FKB are higher than the absorbance in quartz 

glass.  
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Figure 21: UV-Vis spectra for PDADMAC/PSS bilayers on (a) Quartz glass (b) FKB 

cation exchange membranes; n= number of bilayers from zero to seven 
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The UV-Vis absorbance (at 280nm) vs. number of bilayers shows a linear trend which gives 

the information of layer growth. Thus we have successfully deposited PDADMAC-PSS 

multilayer on both quartz glass and FKB substrate (spectra) and the linear trend (insert) 

shows that in each dipping cycle same amount of the polyelectrolyte was deposited. Thus 

multilayers were formed in a regular manner.  

Nestler et al (2013) [110] showed that when molecular weight of PSS is >25kDa and 

PDADMAC is >80 kDa the PEM growth is observed linear. In our experiment, we used 

PDADMAC, Mw = 150 kDa and PSS, Mw = 100kDa, thus a linear fit for the figure 21 is 

logical. Also the asymmetric model (section 2.3.2) suggests the linear growth of the 

PDADMAC/PSS multilayer on Si substrate when layer number is < 10-12. [41]. 

Though the nature of the linearity is kind of scattered distribution for both cases however can 

be hypothetically co-relate with the roughness and/or thickness variance in different points. It 

can be assumed from the data point’s distribution (insert of figure 21) that PEM on FKB 

exhibits rougher structure then PEM on quartz glass.  

4.1.1.2 UV-Vis spectra for PDADMAC-PSBMA-PSS modified FKB  

 

The UV-Vis spectra for PDADMAC-PSBMA-PSS trilayers are shown in Figure 22.  
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Figure 22: UV-Vis absorbance spectra for PDADMAC-PSBMA-PSS multilayer and 

absorbance vs. number of trilayer at 280nm (inset). 
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The absorbance spectra are quite similar to the figure 21(b). The absorbance peak was 

assigned at 280 nm and the range of the absorbance peak (figure 22) could be a result of 

absorption of PSS (peak range 280-320 nm) and PEEK.(around 335nm) as explained before 

(section 4.1.1.1) [65,109]. A steady increase of the absorbance peak was found with the 

increase of number of trilayers which means that the trilayer growth on FKB membrane by 

PDADMAC-PSBMA-PSS was successful. The absorbance vs. number of trilayer at 280 nm 

gives a linear trend. Thus we can say that the multilayer deposition was stoichiometric. 

Comparing with figure 21(b) and figure 22, the absorbance for base membrane (n=0) and 

linear trend were found same but the slope of inset figures are different. Hypothetically we 

can say that PSBMA layer influences the deposition trend and thickness. PSBMA is 

zwitterionic and growth of PEM may not solely rely on charge-charge interaction [104].  

Nevertheless, for PDADMAC/PSS layer thickness linearity depends on molecular weight 

along with other variables [110] but for PDADMAC-PSBMA-PSS, more literature 

investigation and experiments are required to have the idea about the layer thickness and 

other characteristics.  

4.1.2 Characterization by contact angle  

 

The contact angle measurement was used to characterize the polyelectrolyte modified 

membrane by its hydrophilic/hydrophobic behaviour. The water contact angle of 

PDADMAC-PSS multilayers on FKB membrane and PDADMAC-PSBMA-PSS modified 

FKB membranes are shown in this section.  

4.1.2.1 Contact angle measurement for PDADMAC-PSS modified FKB 

 

The contact angle (CA) vs. number of bilayer is shown in figure 23 in which bilayer 0 is for 

the FKB membrane without any modification. Other than bilayer 0 each (+) marked data 

shows the CA of PDADMAC terminated layers and (-) marked ones are for PSS terminated 

layers. (Appendix B for contact angle values)  

An oscillating change of the contact angles upon alternating deposition of PDADMAC and 

PSS can be observed from figure 23. In general, all membrane samples show hydrophilic 

behaviour except the 0.5 bilayer which is slightly hydrophobic. An odd/even and 

hydrophilicity/hydrophobicity trend is observed from figure 23. 



 

40 

 

0 1 2 3 4 5 6 7 8

30

40

50

60

70

80

90

100

-, PSS terminated

+, PDADMAC terminated

+
++

++

+

--

---

-
-C

o
n

ta
ct

 a
n

g
le

 (


)

Number of bilayers

-

+

FKB

 

Figure 23: PDADMAC/PSS Contact angle vs. number of bilayers. 

This odd-even trend is explained by the polar surface properties of PEM multilayers [103]. 

The polarity reverts with each monolayer deposition. Also we can draw attention to the 

charge reversal phenomenon of polyelectrolyte multilayer (described in section 2.3.2). Thus 

in each PDADMAC deposition step the surface become positive and shows higher CA value 

and in each consecutive PSS deposition step the surface become negative which gives lower 

CA value. In other words each PDADMAC terminated layer shows more hydrophobic nature 

then PSS terminated layers and contact angle values are dependent on outermost layer [59].  

We also can observe that layer to layer oscillation is in between 20 -40°. Köstler et al (2005) 

[103] reported about CA odd-even trend when PDADMAC-PSS multilayer was deposited on 

PTFE and PET substrate but CA oscillation differs from substrate to substrate, for example 

PDADMAC-PSS multilayer on Si gives a CA oscillation about 10° whereas on PTFE gives 

around 20° for same electrolyte pair. The reason of such behaviour can be explained by the 

low surface energy character. It has been reported that PTFE has a low surface energy 

character and gives high layer to layer oscillation; in contrast Si has comparably high surface 

energy and gives low CA oscillation [65,103]. From this study we can say that our FKB 

might have a low surface energy character and thus gives a high contact angle oscillation.  

We can draw a contradiction here; if the outermost layer and underlying substrate are solely 

responsible for contact angle oscillation then CA for all PDADMAC terminated layers and 



 

41 

 

CA for all PSS terminated layers are expected to be same but the experimental results shows 

that for each PDADMAC and PSS terminated layers, contact angle values decreases with 

increasing the layer number. We can say that there might be an effect of underlying 

polyelectrolyte layer. Hsieh et al (1997) [111] has reported that water contact angles for same 

polyelectrolyte pairs exhibits different values depending on the underlying polyelectrolyte 

layers which suggests a high degree of layer interpenetration. Another study of Faibish et al 

(2002) [112] suggests that the contact angle value is related with the coating density. For first 

few layers the coating can be assumed as incomplete. As the layer number increase, coating 

density also increases which may can contribute to lowering the contact angle values.  

Nevertheless a high degree of interpenetration of polyelectrolyte gives a very thin layer and 

PEM in contact of water swells immediately and polymer become hydrated which increases 

the thickness. It means the reduction of degree of interpenetration at swollen state [113]. 

Hence water contact angle can be assumed to be affected only by the outermost layer. 

Meanwhile hydrophbization effect is relevant since the contact angle exhibits different value 

with different drying protocol [59,65,103]. 

We can summarise that the odd-even and hydrophilic/hydrophobic effect occurs because of 

the polarity change with each layer deposition. The FKB substrate contributes to significant 

effects on the oscillation together with the outermost layer. As the number of bilayer 

increases higher degree of layer interpenetration becomes gradually effective with an 

increasing coating density therefore the contact angle value decreases with increasing the 

layer number (considering the CA trend separately for all PDADMAC terminated and PSS 

terminated layers) i.e. increases the hydrophilicity with increasing the layer numbers while 

exhibiting the same odd-even trend.  

In general we can say that-as the number of bilayer increase (PDADMAC-PSS modified 

FKB membrane), no matter whether the membrane is PDADMAC terminated or PSS 

terminated, the hydrophilicity of the membrane increases with the number of bilayers. 

Extrapolating the hydrophilic behaviour it also can be assumed that at higher bilayer number 

PDADMAC terminated layer can be sufficiently hydrophilic and may be able to influence ion 

transport behaviour.  
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4.1.2.2 Contact angle measurement for PDADMAC-PSBMA-PSS modified FKB 

 

The contact angle (CA) of the PDADMAC-PSBMA-PSS vs. number of trilayer is shown in 

the figure 24  
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Figure 24: Contact angle vs. number of trilayers 

Contact angle for FKB base membrane and first monolayer gives the higher values than other 

trilayers. A significant decrease of CA can be observed at first trilayer and then an alternating 

trend of CA is observed. It can be noted that first PDADMAC terminated layer refers to a 

single monolayer on the surface and trilayer 1 forms with a PSBMA layer in between 

PDADMAC and PSS layers. At this point the effect of PSBMA can be noticed by comparing 

with Figure 23 which suggests that PSBMA make the membrane more hydrophilic and also 

reduces the layer to layer oscillation to 10° to 15°, similar to the PDADMAC-PSS multilayer 

on a Si [65,103]. Also we can say that PSBMA can change the hydrophilicity/hydrophobicity 

of the PDADMAC/PSS multilayer system and the surface charge characteristics.  

PSBMA grafting on hydrophobic surface can reduces contact angle about 15° reported by 

Chang et al (2011) [118]. Taking into account the effect of PSBMA we can say that the first 

PDADMAC terminated layer was found slightly hydrophobic. Later contact angle decreases 

significantly because of PSBMA and PSS layer (CA of trilayer 1). Comparing with Figure 

22, it seems like the contact angle reduces due to the contribution made by PSBMA because 

the substrate, other polyelectrolytes and deposition condition was same. From trilayer 1 to 7, 
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the similar oscillating behaviour can be observed. We can assume that; at PSS terminated 

trilayer 1, surface charge density is already influenced by the PSBMA which affects the next 

PDADMAC deposition step and so on.  

Nevertheless substrate effect on PEM is reported as significant for PDADMAC/PSS system 

[111] whereas PDADMAC/PSBMA is substrate independent [104] however PSBMA affects 

the charge reversal process [119]; also can be understood by the UV-Vis linear trend 

comparison between figure 21(b) and figure 22. Thus hydrophilicity/hydrophobicity 

controlling by PSBMA could be an interesting aspect to investigate in future.  

4.2 Membrane performance 

4.2.1 Membrane electrical resistance  

 

The electrical resistance (R) of the membrane was measured by a direct current method in 

0.5M NaCl salt solution. A current-voltage relation was measured in ohmic region which 

gives the membrane electrical resistance. Polyelectrolyte multilayer on cation exchange 

membrane and determining their electrical resistance behaviour were the primary focus. The 

membrane electrical resistance is significant because it can give information about the 

membrane characterization and performance. The electrical resistance of PDADMAC-PSS 

multilayers on FKB membrane and PDADMAC-PSBMA-PSS modified FKB membranes are 

shown in this section.  

4.2.1.1 Electrical resistance for PDADMAC-PSS modified FKB 

 

The membrane electrical resistance (R) vs. number of bilayer is shown in figure 25  

Bilayer 0 represents the FKB membrane without any polyelectrolyte layer. Other than bilayer 

0 each (+) marked points are the resistance of PDADMAC terminated layers and (-) marked 

points are the resistance for PSS terminated layers. As the number of bilayer increases an 

alternating trend of resistances are observed.  

Considering all PDADMAC and PSS terminated layers separately, the membrane resistance 

increases with the increase of bilayer which is opposite to the contact angle values. 

Comparing figure 23 with figure 25 we can see that membrane electrical resistance increases 

as the number of bilayer increases whereas contact angle decreases i.e. hydrophilicity of the 

membrane increases.  
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Figure 25: Electrical Resistance vs. number of bilayers. 

FKB cation exchange membrane, by nature it has a negative surface (See appendix C1 for the 

properties of the FKB cation exchange membrane). According to charge reversal process 

(described in section 2.3.2) each PDADMAC deposition step convert the surface from 

negative to positive which gives a high R value; in contrast each PSS deposition step make 

the surface as negative which gives lower R value. [27,28]  

The alternating deposition of PDADMAC-PSS thus gives a zig-zag trend of electrical 

resistances. This behaviour exhibits more likely an odd-even trend (similar to the contact 

angle result shown in figure 22). The reason can be the surface potential of the outer layer. 

The odd-even effect is defined as the reversible variations with the sign of charges of the 

terminating layer [106]. As evidence, ζ-potential of PDADMAC/PSS has been reported as 

reversibly alternating [105]. Thus one hypothesis can be the surface potential changes with 

every layer deposition results the odd-even electrical resistance trend [107]. When surface 

become positive due to the PDADMAC terminated layer, it contributes to repeal the cation to 

pass though i.e. Donnan exclusion may become dominant which can also contribute to 

increase the resistance.  

For the base membrane the electrical resistance was found as 3.98±0.24 ohm.cm
2
 which is an 

agreement with the supplier information, <4 Ω.cm
2
 (at 0.5M NaCl). At this point we can 
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comment that the membrane was correctly preconditioned and was in H
+
 level for the 

deposition of the polyelectrolyte. With a PDADMAC monolayer the resistance was found as 

13.01±0.34 ohm.cm
2
. In successive PSS deposition steps the R value come back as 

5.45±0.74. (Appendix C.2 for resistance data). In general monolayer thickness is reported as 

0.5 nm to 5 nm (Table 3) and the FKB membrane thickness was 80-100 μm (appendix C.1).  

The thickness of monolayer on FKB membrane is very small compare to the original 

membrane thickness. We can say that the thickness of PEM layer solely should not contribute 

to high resistance rather a combination of surface potential, cation Donnan exclusion and 

thickness due to swelling behaviour can be assumed. Taking into account the asymmetric 

model for PSS/PDADMAC system which suggests a PEM with PDADMAC terminated layer 

has many positive sites and thickness increment is linear (<10-12 bilayers) [40]. 

Taking into account all information above; we can mention about several possibilities of the 

resistance zig-zag behaviour. First of all alternating surface potential occurs due to each 

monolayer deposition which gives the zig-zag resistance trend. Though each monolayer 

thickness is considerably small but the complexity of the structure obtained from each 

monolayer cannot be avoided at higher number of layers. Hence it can contribute to increase 

the resistances. Higher resistance values for PDADMAC terminated layer originates because 

of the swollen thickness and surface potential along with the Donnan exclusion as 

PDADMAC terminated layer has many positive sites according to the asymmetric model.  

Again taking into account the contact angle results shown in figure 23 it was assumed that as 

the number of bilayer increases the layer interpenetration and coating density increases which 

reduces overall contact angle however; the coating density and layer interpenetration also can 

give surface complexity which may can increases the overall resistance (Figure 23).  

Nevertheless the resistance measurement in a direct current method gives not only the 

membrane resistance but also include resistance of membrane-solution interface i.e. diffusion 

boundary layer and electrical double layer [101]. Therefore it could be an assumption that 

resistance of polyelectrolyte multilayer can be influenced by the electrical double layer and 

diffusion boundary layer, when exposed in the solution. 
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4.2.1.2 Electrical resistance for PDADMAC-PSBMA-PSS modified FKB 

 

The electrical resistance (R) vs. number of trilayers of PDADMAC-PSBMA-PSS modified 

FKB membranes are shown in the Figure 26.  
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Figure 26: Electrical resistance vs. trilayers. 

The layers which are PDADMAC terminated show higher resistances then PSS terminated 

layers and resistance changes alternatively with each monolayer deposition. The reason can 

be explained by the surface charge reversal. Though in every trilayer there is a PSBMA 

zwitterion layer in between, even so resistances zig-zag trend is comparable with the figure 

23 which primarily gives the assumption of charge inversion due to cationic and anionic 

terminated layer depositions. [27,28]. From this comparison it seems that PSBMA layer does 

not effect on the electrical resistance. 

It should be noted that for first few PSS terminated layer R was found smaller than the FKB 

base membrane which ideally should not happen. Considering the increase of layer thickness 

with the increase of the number of trilayers (as shown in figure 22); it was expected to see the 

resistance increasing trend (considering R separately for all PDADMAC or PSS terminated 

layers) with the increase of the number of trilayers (similar results as shown in figure 25). 

However, the reason could be the experimental error during the measurement and partial 

decomposition of the PSBMA layer in the 0.5M NaCl solution. PSBMA is reported as an 
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ionic strength responsive polymer and at 0.5M NaCl solution it suffers melting off from the 

surface [104] 

4.2.2 Limiting current density  

 

The limiting current density (ilim) of different membrane samples has been measured. First of 

all a typical current-voltage curve is shown in figure 27  
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Figure 27: Current-voltage curve for the relation between current through a membrane and 

corresponding voltage drop over the membrane and its boundary layer. (Measured at 50mM 

KCl and LiCl) 

We can distinguish three regions from the current-voltage relationship, a sharp linear increase 

of current density with voltage drop which is namely ohmic region. After the sharp increase a 

plateau region is observed where slow increase of current density occurs due to the 

concentration polarization. In plateau region, concentration in the dilute boundary layer 

decreases and therefore the resistance increases; which results a deviation in the linear 

behaviour. Finally again a sharp increase can be observed (over limiting region). In this 

region electro-convection occurs [1,2,8,101,102]  

The current-voltage relation gives important information about resistances against ion 

transport and boundary layer. [101]. Also ilim value indicates the operating current level for 

electrodialysis (ED) because in ED, it is unexpected to have the concentration polarization 
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(CP).since concentration polarization is directly related to the ED operating efficiency with 

power consumption. Thus ilim value gives the idea about the maximum operating current level 

at certain salt concentration.  

We have considered FKB base membrane, bilayer 6 and 6.5.membranes for ilim measurement. 

These samples were selected based on the previous characterization and resistance results. 

Previously measured UV-Vis, contact angle and electrical resistance shows that lower 

number of bilayers may have lower surface coverage, lower thickness and lower 

polyelectrolyte density. Therefore higher number of the layers was preferentially selected and 

considered for ilim measurement. For each individual sample current density (mA/cm
2
) vs. 

voltage drop was plotted from which the ilim value was calculated.  

The ilim of base membrane, PSS terminated (-) bilayer 6 and PDADMAC terminated (+) 

bilayer 6.5 were measured at salt concentration of 50mM KCl, 50 mM LiCl and mixture of 

50 mM KCl and LiCl. These salt concentrations were selected because ion transport 

experiments were conducted with the same salt and same concentration.  

The changes of limiting current density with number of bilayers are shown in figure 25 
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Figure 28: Limiting current density behaviour with different bilayer. 

In general, ilim values decrease with the increase of number of bilayers. Different monovalent 

salt gives different ilim value (at certain concentration) which signifies valuable information to 
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select an approximate operating current in case of involving these polyelectrolyte membranes 

in ED. (ilim data is given in appendix D.1).  

FKB base membrane shows higher ilim when measured in the mixed salt solution compare to 

the ilim values in single salt. In both single and mixture of salts, the concentration was used as 

same however for the same volume; number of ions in the mixed salt solution was double 

then the number of ions in the single salt. Therefore high ilim is logical when measured in the 

mixed salt. Also ilim is proportional to the concentration of the salt solution [114].  

The limiting current density (ilim) of base membrane in .KCl shows higher value then LiCl; 

which could be related to ion transport number and salt diffusion co-efficient. It was reported 

for CMX membrane that the counterion transport number and salt diffusion co-efficient are 

higher for K
+
 then Li

+
. Also the ilim value of CMX was found higher in KCl than LiCl when 

measured in the same salt concentration [1]. Therefore the ilim values of the base FKB 

membrane differs due to the salt type and the concentration of the solution, ion transport 

number and salt diffusion co-efficient.  

Bilayer 6 membranes are PSS terminated and have (-) surface (from the contact angle and the 

resistance data shown in figure 23 and 25). Thus the Bilayer 6 gives more/less similar ilim 

value though a slight decrease can be noticed which could be the effect of PEM on the FKB 

membrane. .  

At the bilayer 6.5, the important observation is the steep decrease of the ilim for KCl in single 

salt whereas ilim for LiCl and ilim for mixed salt shows the same trend. It worth to mention that 

the bilayer 6.5 is PDADMAC terminated, have a positive surface and also exhibits higher 

electrical resistance (R) and higher contact angle (CA) (Figure 23 and 25). If we account high 

R and comparably hydrophobic nature as primary reasons, a steep decrease of ilim could be 

expected for all the three cases which do not agree with the results that we obtained (bilayer 

6.5 at figure 25). However, ilim is proportional to the salt diffusion co-efficient and inversely 

proportional to the boundary layer thickness [1,101]. In lower concentration boundary layer 

thickness could be considered as less effective [101,102]. Thus we can assume that ilim at 

bilayer 6.5 in KCl (single salt) decreases significantly than ilim at bilayer 6 because 

polyelectrolyte multilayer on FKB reduces the KCl salt diffusion co-efficient in the 

membrane phase due the modification.  
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We can summarise that ilim value decreases at bilayer 6 due to the polyelectrolyte multilayer 

on FKB membrane and at bilayer 6.5, surface charge reverts to positive. Therefore KCl 

receives high Donnan exclusion and also salt diffusion co-efficient may be reduces 

significantly. As a result ilim of bilayer 6.5 at KCl decreases significantly.  

Nevertheless the surface positive charge of bilayer 6.5 and thus the Donnan repulsion may be 

able to affect the boundary layer even at lower concentration and also influence the salt 

diffusion coefficient at membrane phase. Ionic and hydration radii (for ionic radii K
+
>Li

+
, 

hydration radii Li
+
>K

+
) also can play a vital role on ilim. 

4.2.3 Membrane performance for PDADMAC-PSS modified FKB 

 

The diffusion experiment for K
+
, Li

+
 and a mixture of K

+ 
and Li

+ 
is shown in the section 

4.2.3.1, 4.2.3.2.and 4.2.3.3. The salt concentration was considered as 50 mM for each 

experiment. The Cl
-
 ion and the cation electronutrality was balanced by involving the 

equivalent amount of HCl. Hence we obtained ion transport behaviour of K
+
 and Li

+
 in FKB 

membrane and also in polyelectrolyte modified FKB membranes. Figure 29-31 shows the ion 

diffusion experiment results for the base FKB membrane, bilayer 6 and 6.5. In each diffusion 

experiment we can see that; as the feed concentration decreases, the receiving concentration 

increases which is logical according to the Fick’s law (1
st
 term of equation 2). Feed and 

receive concentration changes with time are shown in all left side figures of section 4.2.3.1 to 

4.2.3.3.  

The flux of each ion was calculated from concentration changes vs. time in the receiving side 

and using the equation 5. Thus ion concentration changes vs. time in receiving side for each 

experiment is separately shown (right side graphs of figure 29-31.  

In every experiment a linear increment of concentration with time is observed, hence we can 

say that the diffusion experiment time (90 min) is not sufficient enough to reach Donnan 

equilibrium at the considered initial ion concentration difference (50mM) between feed and 

receiving compartment. However the effect of different bilayers, ion types (both single and 

mixed), and effect of ion concentration differences can be primarily understood from the ion 

diffusion experiment i.e. concentration vs. time plot shown in figure 29-31.  

The concentration vs. time plot was further used to calculate the flux and selectivity is shown 

in section 4.2.4 
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4.2.3.1 Diffusion experiments for K
+ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Diffusion of K
+
 in Base, (top), bilayer 6 (middle) and bilayer 6.5 (bottom).left side 

figures are the overall profile and right side ones for receiving compartment profile. 
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4.2.3.2 Diffusion experiments for Li
+
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Diffusion of Li
+
 in Base, (top), bilayer 6 (middle) and bilayer 6.5 (bottom). Left 

side figures are the overall profile and right side ones for receiving compartment profile. 
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4.2.3.3 Diffusion experiments for mixture of K
+
 and Li

+ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Diffusion of mixed salt experiment(50mM KCl and 50mM LiCl) i.e. K
+
 and Li

+
 in 

Base, (top), bilayer 6 (middle) and bilayer 6.5 (bottom). Left side plots are overall profile and 

right side ones for receiving compartment profile. 
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4.2.4 Flux and selectivity  

 

Individual ion flux in different membranes were calculated from figure 29-31 and using the 

equation 5. The ion flux vs. number of bilayers is shown in figure 30.and the selectivity 

K
+
/Li

+
 vs. number of bilayers is shown in figure 31. 
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Figure 32: Different ion flux vs. bilayers.  

 

 

 

 

 

 

 

Figure 33: selectivity (K
+
/Li

+
) vs. bilayers. 

The ion transport behaviour and the effect of bilayers shows that as the number of bilayer 

increases the ion flux decreases but in a different rate. 
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The flux of K
+
 decreases more than the flux of Li

+
 which affects the selectivity of K

+
/Li

+
 

(Figure 33) 

The flux of K
+
 and Li

+
 (both single ion and mixed ion experiment) in base and bilayer 6 

shows more/less same behaviour. However comparing fluxes of base and bilayer 6, the K
+
 

flux decreases with the increase of bilayers but Li
+
 flux stays almost similar, though a small 

increase for mixed ion experiment can be observed. At bilayer 6.5, flux values for both single 

ion and mixed ion decreases. For K
+
, flux decreases significantly then Li

+
 (Figure 32). Thus 

the selectivity of the K
+
/Li

+
 also decreases with increasing the layer number (Figure 33). In 

Table 5 and Table 6 flux and selectivity results are given.  

Table 5: K
+
 and Li

+
 flux in FKB and PEM by LbL.  

Type of 

Membranes 

JK+(single ion 

experiment) 

[mol/cm
2
.s]x10

-8
 

JLi+(single ion 

experiment) 

[mol/cm
2
.s]x10

-8
 

JK+(mixed ion 

experiment) 

[mol/cm
2
.s]x10

-8
 

JLi+(mixed ion 

experiment) 

[mol/cm
2
.s] x 10

-8
 

FKB Base  3.51±0.41 2.56±0.02 3.41±0.65 1.20±0.14 

Bilayer 6 3.30±0.07 2.40±0.26 3.34±0.39 1.58±0.05 

Bilayer 6.5 1.64±0.09 2.11±0.13 2.13±0.05 1.43±0.12 

 

Table 6: Selectivity of K
+
/Li

+
 for single ion and mixed ion experiments.  

Type of Membranes K+/Li+ (single ion experiment) K+/Li+ (mixed ion experiment) 

FKB Base  1.37±0.17 2.82±0.21 

Bilayer 6 1.39±0.18 2.12±0.31 

bilayer 6.5 0.78±0.01 1.49±0.08 

 

The Li
+
 has lower ionic radius but higher hydration shell then the K

+
 [117] and the bilayer 6 

membrane is more hydrophilic (water contact angle 35.05±3°) then base membrane (Section 

4.1.2.1). Bilayer 6.5 membranes is PDADMAC terminated and has a positive surface, 

exhibits the water contact angle 74.4±3.7° and electrical resistance as 17.68±0.92 ohm.cm
2
 

(Figure 23 and 25). From these characterization values we can say that bilayer 6.5 bears the 

opposite surface characteristics then bilayer 6 in terms of the surface charge and conductivity. 

Therefore both K
+
 and Li

+
 receive stronger Donnan exclusion in bilayer 6.5 and as a result 

lower flux values was obtained [115] 
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If Donnan exclusion is solely responsible for lower flux of K
+
 and Li

+
 at higher bilayer 

numbers; then the flux changes is expected to show the same trend at bilayer 6.5 for either 

ion but we obtained the flux of K
+
 decreases significantly then Li

+
. Therefore the Donnan 

exclusion is not solely responsible but partially influencing the flux behaviour. As a second 

consideration thickness at swollen state and hydrated cation radius become important.  

PEM theory describes that the thickness increment occurs with every monolayer deposition 

which is approximately 3-5 nm when linear increment is observed [110]. Also we have found 

a linear increment trend for our sample, showed in figure 21(b). The thickness increment 

contributes significantly in swelling of the membrane in the salt environment [55]. Apart 

from it the FKD fumasep membrane (similar to FKB) exhibits approximately 30% degree of 

swelling. [100]. Therefore we can consider that thickness of our membrane is much higher at 

swollen state than in the dry state. Due to the higher membrane thickness in swollen state and 

approximate barrier properties from the PEM complexity, flux values of the K
+
 could be 

smaller than base membrane. The charge complexation is a related phenomenon with PEM 

growth where intrinsic and extrinsic charges make the membrane to have a highly complex 

structure [41] (also explained in section 2.3.2). Taking into account this complex structure we 

can comment that K
+
 is partially hindered in the membrane phase so that the flux of K

+
 is 

significantly low at bilayer 6.5 but not the Li
+
. It also affects notably in the K

+
/Li

+
 selectivity. 

Therefore one hypothesis could be the change of diffusion coefficient in the membrane phase 

due to the complex PEM structure, surface charge and significant thickness increment in 

swollen state. show the low K
+
 flux then Li

+
 at the bilayer 6.5.  

Jingyi et al [3] has demonstrated competitive diffusion based on ion size (smaller size 

exhibits higher mobility). Since Li
+
 has smaller ionic radii then K

+
, thus the permeation 

behaviour of Li
+
 and K

+
 could be affected differently due to the PEM layer. Regarding to the 

transport behaviour by diffusion, Stachera et al [116] demonstrated about a three phase model 

that describes the transport through hydrophobic polymer phase, active phase including ion 

exchange fixed sites and membrane interstitial phase where hydrated cation moves 

preferentially following a hopping and dragging mechanism. Bilayer 6.5 has a positive 

surface and comparably hydrophobic then the base FKB and bilayer 6. Thus K
+
 flux 

decreases more at bilayer 6.5 then Li
+
 due to the different hydrated radius (Li

+
>K

+
) and 

Donnan repulsion. Also the hydrophobic polymer phase transport in the three phase model 

might become effective to facilitate Li
+
 more than then the K

+
.  



 

57 

 

Hence we can compare the result obtained in ilim behaviour (figure 28). At bilayer 6.5, ilim at 

KCl and K
+ 

ion flux both decreases significantly and almost synergic result can be observed. 

Taking into account the effect of Donnan exclusion, the hydrated radius of K
+ 

and the surface 

charge of bilayer 6.5; it seems that due to the Donnan exclusion overall K
+
 flux reduces at the 

bilayer 6.5 but because of the bigger cation size of K
+
 than Li

+
, K

+
 is partially hindered and 

therefore it retains more than Li
+
 at bilayer 6.5.  

For monovalent cation selectivity Balster et al [117] has reported about the effect of water 

uptake and low charge density behaviour which describes that at a low charge density favours 

to increase monovalent selectivity. In our contact angle results we observed an oscillation of 

20-40 ° which partially gives the information of low surface energy character [65,103] 

therefore could be a possibility for different flux values at bilayer 6 and 6.5.  

It worth to mention that in the diffusion dialysis experiment salt electronutrality was 

maintained by the equal amount of HCl and H
+
 exhibits higher mobility (from receiving to 

feed side) then K
+
 and Li

+
 (from feed to receiving side). Thus the actual mobility of K

+
 and 

Li
+
 is partially influenced by H

+
 to maintain electronutrality. At lower concentration diffusion 

boundary layer is less pronounced [100], however need to be considered. Counterion 

transport number of K
+
(0.49)>Li

+
 (0.32) and salt diffusion coefficient for KCl is higher than 

LiCl in CMX membrane[1] which also could be comparable for FKB and signifies to conduct 

more related experiments for clearer explanation of ion transport in the PDADMAC-PSS 

modified FKB membrane .  
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5. Conclusion 

 

The layer by layer technique was applied to modify cation exchange membrane (FKB) to 

improve the monovalent ion selectivity of the membrane. Cationinc polyelectrolyte 

PDADMAC, anionic polyelectrolyte PSS and zwitterionic polymer PSBMA were used to 

modify FKB cation exchange membrane. Two approaches such as PDADMAC-PSS 

modified and PDADMAC-PSBMA-PSS modified FKB membranes were considered for the 

sample preparation. For two polyelectrolytes modified membrane both the characterization 

and performance were conducted while three polyelectrolytes modified membranes were 

considered for characterization. Several techniques were used for this purpose namely 

measurement of the electrical resistances, UV-Vis spectroscopy, water contact angle and 

limiting current density. Membrane performance was investigated by diffusion dialysis.  

UV-Vis measurement gives the information of the layer formation trend with the multilayer 

propagation on the FKB. We obtained a linear absorbance increment with the increase of 

bilayers for the both two polyelectrolyte modified and the three polyelectrolyte membrane 

which suggests a stoichiometric layer growth on substrate. Thus we deposited PEM 

multilayer successfully on FKB substrate.  

The membrane electrical resistances and the water contact angle (CA) values showed a zig-

zag alternating trend (PDADMAC-PSS modified FKB) because of the surface potential 

change of outermost layer with each monolayer deposition. Oscillating water contact angle 

was found for our samples which gives the hydrophobicity/hydrophilicity behaviour due to 

the surface charge reversal process in each monolayer deposition. Also one important 

observation was the hydrophilicity increases for higher bilayer number which ultimately 

tunes the PEM membrane surface properties. An alternating surface charge with the effect of 

hydrophilicity/hydrophobicity was observed. The resistance trend and the contact angle trend 

suggest a higher degree of layer interpenetration and higher coating density when bilayer 

number is high. At the same time when bilayer number is high it gives a high resistance and 

more hydrophilic behaviour then the base membrane. A good barrier property with a 

hydrophilic nature thus can be expected which can improve the ion selectivity when bilayer 

number is high.  

For three polyelectrolyte system several effects of PSBMA was observed comparing with the 

characterization results with two polyelectrolyte system. The three polyelectrolyte system 
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was considered keeping the PSBMA deposition step in between PDADMAC-PSS deposition. 

The membrane UV-Vis spectra and the linear trend suggest a stoichiometric increment of the 

layer thickness but slope of the linear fit was found different than that of two PE systems. 

This means PSBMA affect the layer thickness. The contact angle oscillation for three PE 

systems was observed low as 10° which was 20°-40° for two polyelectrolyte system. Thus 

PSBMA influence the nature of the outermost layer and increases the hydrophilicity. The first 

PSBMA deposition step (after a PDADMAC monolayer) on FKB made the membrane 

significantly hydrophilic and it suggest that we can use PSBMA to tune the hydrophilicity of 

the membrane. Also contact angle trend suggest a stable oscillation behaviour which was 

different then the two polyelectrolyte system. We can say that the layer interpenetration also 

decreases when PSBMA is used in between PDADMAC-PSS.  

The resistance for the three PE systems gives the alternating trend with the trilayer 

propagation but for some PE trilayer the R was smaller than the base membrane. It was 

suggested that at 0.M NaCl, PSBMA suffers internal melting thus more experiment with 

PSBMA need to consider.  

The limiting current densitiy (ilim) values are indicative for future research to explore in 

migration transport. We have found that ilim of bilayer 6.5 decreases significantly when 

measured at 50 mM KCl salt environment. The strong possibility is the Donnan exclusion 

because of the positive surface. Also bilayer 6.5 may be able to give the barrier properties due 

to the high layer interpenetration as shown in contact angle and resistance data trend.  

Ion transport experiment of single ion and mixed ion (K
+
 and Li

+
) by diffusion dialysis was 

conducted and found that at bilayer 6.5, flux of the K
+
 decreases significantly then Li

+
 which 

ultimately lowers the K
+
/Li

+
 selectivity. In other word we can say that the Li

+
 selectivity is 

improved at bilayer 6.5. Donnan exclusion and strong barrier property due to the highly 

interpenetrated layer formation seems logical for such behaviour. We can say from the R and 

CA values of bilayer 6.5 that membrane resistance and hydrophilic nature increases with the 

bilayer number thus gives a strong barrier to K
+
 but not to the Li

+
  Thus a cation and it’s 

hydrated radius becomes more effective to improve the monovalent selectivity for PEM 

membrane.   

The results obtained from diffusion experiments have been used to calculate flux and 

selectivity of the ions and their effect on polyelectrolyte multilayer. Finally flux of different 

ions and PEM have optimized with in the experimental boundary. The important finding from 
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diffusion experiment is cationic multilayer (Bilayer 6.5) influence the flux value as such K
+
 

flux decreases more than the Li
+
, apparently selectivity of either compound can be changed 

by PEM multilayer on a cation exchange membrane. The important result we have found that 

at bilayer 6.5 K
+
 decrease significantly than Li

+
 which occurs due to the combination of 

Donnan exclusion, hydrated ionic radius of K
+
 and Li

+
 along with the membrane surface 

charge.  

From this work several insights have been obtained which are briefly given the following 

discussion section.  
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6. Recommendation 

 

1. Rinsing volume for LbL by dip coating 

The layer by layer (LbL) by dip coating is a simple modification technique to obtain 

numerous surface properties and remarkably potential method to influence characteristics of 

the object; from nanoscale to the bulk [45]. However this simple technique becomes critical 

when specific properties are targeted. While preparing the FKB-PEM sample by LbL, 

polyelectrolyte and rinsing water volume was used as 1:1. Electrical resistance trend of those 

samples were found as alternating but shows remarkably big error margin (not shown in this 

report). Thus data reproducibility became a question to consider. A root cause analysis 

suggests that deposition time, PE and salt concentration was maintained carefully and for 

achieving stable layer, therefore rinsing water could be the possibility.  

With this instance, rinsing water volume was increased couple of times for new sample 

preparation and resistances were found as reproducible standard. It was also reported by 

Decher et al (2011) [45] that amount of rinsing volume is often ignored in LbL modification 

and one of the guiding principles of the LbL. The term dilution factor thus addressed which 

can be defined by dividing the volume of the first rinsing bath by the estimated volume of the 

adhering liquid. The number and volume of the rinsing baths should be chosen such that the 

overall dilution factor is at least 1:10
6
. We can recommend that -To obtain reproducible 

results from LbL modified FKB (PDADMAC/PSS) sample; it has found quite important to 

choose right rinsing volume and it also leaves behind a scope of determining the dilution 

factor by a model with some approximation like PE concentration change with each 

adsorption step, surface charge density, adhering PE volume, membrane surface coverage to 

effective PE volume in deposition bath etc.  

2. Tuning the surface properties of PEM  

We used 0.2 M NaCl to prepare our PEM sample. It was explained that PEM surface 

properties can be tuned by varying its vast deposition condition. (Table 4), however salt 

concentration, pH, type of ion, polyelectrolyte pairs, type of substrate can be considered as 

most important which influences the layer growth as well as the surface properties. By 

varying either of the parameter we can have different properties of PEM which suggest a very 

big research scope in with PDADMAC-PSS polyelectrolyte system with a particular focus on 



 

62 

 

improving Li
+
 selectivity. We can assume from our results that PDADMAC-PSS multilayer 

of higher order may be able to give highly hydrophilic behaviour with a high barrier 

properties, however also can be tuned with varying the above mentioned deposition condition 

and thus can be recommended for further research on PDADMAC-PSS multilayer by varying 

deposition condition and substrate specially for Li
+
 selectivity.  

3. Membrane surface and charges 

Our LbL dip coating fabrication was designed in such a way that one side of the membrane 

was exposed to the PE solution and other side is hindered by the glass support. It can be 

assumed that after depositing the cationic layer on to it, a possibility is to obtain a bipolar like 

membrane which can be named as for instance a quasi-bipolar membrane as shown in the 

following figure 

  

 

 

 

 

 

 

Scheme for the FKB membrane after PDADMAC coating 

Here we can argue that after each PDADMAC deposition steps on FKB, the membrane 

become positively charged on the one side but the other side of the membrane which was 

hindered from the PE solution is still bears the negative charge. If this phenomenon is 

considered as logical then each PDADMAC terminated layer should make the membrane as 

quasi bi-polar like membrane and the properties investigated could resemble the property of 

bipolar membrane.  

Though the FKB membrane thickness is 80-100 μm and each monolayer gives a 3-5 nm 

thickness increment however for higher number of bilayers and the swollen state thickness of 

the membrane cannot be overlooked.  
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 May be if we coat both side of the FKB membrane in a single deposition step by 

PDADMAC, probably it will make the whole surface positive. One comparative study could 

be done by preparing different samples by coating on single side and double side of the 

membrane and comparing the evaluated properties with bipolar membrane.  

4. Combined PEM of PDADMAC/PSS and PDADMAC/PSBMA 

Grooth et al (2014) [104] demonstrated the ionic strength responsive PEM which was 

prepared by the PDADMAC/PSBMA polyelectrolyte. At 0.5 M NaCl such PEM suffers 

internal melting. One of our PEM systems were considered with PSBMA and electrical 

resistance (R) was measured at 0.5M NaCl. Thus it can be assumed that while measuring the 

R we partially lost some layer in the salt medium which might have affected our consecutive 

characterization as well as the resistances itself. Therefore measurement of R for PSBMA 

contained PEM should be done at <O.5M NaCl. We can measure R at three or four 

concentration <0.5M and extrapolating the R vs C (concentration) relation to obtain standard 

resistance value.at 0.5M NaCl.  

Also PSBMA was found to adsorb on PDADMAC layer but not onto PSS layer because of its 

selective interaction behaviour [120] which means preparing PDADMAC/PSBMA/PSS 

sample leaves behind a doubt to be a coherent approach because there is a possibility of not 

having PSS layer at all on the PSBMA. Rather PEM by combining PDADMAC/PSS and 

PDADMAC/PSBMA could be logical and interesting since it exhibits ionic strength 

responsive behaviour [104]. 

 

5. Electrical Impedance Spectroscopy (EIS) 

Electrical resistance (R) was measured in direct current method which gives not only the 

resistance of membrane but also includes electrical double layer resistance and diffusion 

boundary layer resistance.[101] And the boundary layer thickness in a two compartment 

system was found as 350μm [121] therefore cannot be avoided. To obtain the actual 

membrane resistance Electrical Impedance Spectroscopy (EIS) can be considered. EIS is 

regarded as a powerful technique for evaluating functional and structural characteristics along 

with membrane resistance [100]. Therefore EIS spectroscopy measurement for PEM could be 

highly effective to know the PEM modified IEM membrane in detail.  
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6. UV-Vis, reflectrometry and elipsometry 

UV-Vis measurement gives the co-relation of layer thickness in terms of absorbance in UV-

Vis region, however the intensity absorbed by the material at the exposure point can be 

regarded to understand and evaluate the thickness however, to determine the thickness we 

need extinction co-efficient which is not very straight forward for measuring the absorbed 

amount. Therefore to quantify the membrane thickness is rather difficult. Instead/along with 

of UV-VIS, reflectometry and elipsometry measurement could be recommended 

predominantly to quantify the adsorbed amount and % swelling of PEM.  

7. Contact angle, ξ potential and streaming potential 

Contact angle measurement (CA) was considered to obtain the hydrophilicity/hydrophobicity 

of the membranes and nature of the surface. However CA values of same sample largely 

depends on the drying protocol. A small change in drying condition gives different CA values 

for PDADMAC/PSS [65,103]. Along with CA measurement ξ potential and streaming 

potential measurement could be recommended for comprehensive understanding of the 

surface.  

8. Diffusion dialysis and electrodialysis:  

Diffusion experiment was conducted for K
+
 and Li

+
 in which ionic neutrality was maintained 

by the HCl.to obtain ion flux. It was found that the PEM bilayer decreases the K
+
 more than 

Li
+
, in other word we have achieved the higher selectivity of Li

+
 which put two future work 

possibility.  

From our experimental result we have obtained that K
+
 reduced significantly whereas the Li

+
 

stays more/less same at bilayer 6.5. Extrapolating this behaviour we can say that there is a 

strong possibility that we may be able to achieve a good improvement in Li
+
 selectivity when 

the layer number will be high enough. Thus PEM of higher bilayer number can be 

recommended to prepare and investigate under diffusion dialysis. According to the hydrated 

ion radius value (K
+
>Na

+
>Li

+
) [1], thus Li

+
 and Na

+
 effective separation might be possible at 

higher layer PEM number. Though ξ potential of higher order membrane does not show 

alternating charge behaviour and also swelling/deswelling [14] effect makes the resistance 

alternation diminished. A contradiction might be possible about the properties that can be 

predicted from the lower bilayer results; even though new interesting behaviour might appear 



 

65 

 

at higher order PE. However we can have particular attention on it to separate Li
+
 in this 

regard.  

Since diffusion dialysis (DD) is comparably a slow process then electrodialysis (ED), 

however the same condition of the diffusion experiment can be easily translated to the ED 

with a current load and migration under current would be interesting to obtain considerable 

flux and Li
+
 selectivity. As primary information for such experiment, resistances and ilim 

values were measured. We also can co-relate ilim to the transition time (time to reach to the 

plateau region in current-voltage relation) to obtain the transport number [101].  

A combined method of diffusion and electrodialysis thus could be predominantly 

recommended to achieve effective Li
+
 separation.  
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Appendix 

 

A. Flame photometer calibration and basic scheme of the BWB flame photometer.  

A.1. Flame photometer calibration 

For the calibration of the Flame photometer, five concentrations points were considered 

depending on the approximate concentration of the ion at the start of the diffusion 

experiment. For example let’s say 

Initial K
+
 ion concentration (at the start of the experiment) = 50mM 

Sample considered = 0.3 mL/ 15 min.  

Dilution factor = x10  

Thus after dilution the concentration of initial sample becomes= 5 mM.  

Based on this above mentioned information 5 concentration points were considered for the 

calibration keeping the concentration ranges above and below then the initial sample 

concentration  

Thus the calibration for the BWB flame photometer was conducted with 0.5, 1, 2.5, 5, 10 mM 

KCl solution.  

The same method was used for all the diffusion measurement.  

A.2. Basic component of BWB Flame photometer:  

 

 

 

 

 

 

Basic component of BWB flame photometer (left) and the process involved in flame 

photometry (right). [http://www.bwbtech.com/] 
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B. Contact angle changes with different bilayers on the FKB membrane.  

 

 

Number of bilayer Water contact angle(ϴ)° 

0 73.1±2.01 

0.5 95.88±1.3 

1.0 52.13±5.7 

1.5 86.7±0.8 

2.0 58.1±2.5 

2.5 78.9±2.1 

3.0 42.35±4.2 

3.5 77.48±1.7 

4.0 42.48±1.1 

4.5 70.68±3.3 

5.0 42.41±1.2 

5.5 70.93±3.3 

6.0 35.05±3.0 

6.5 74.38±3.7 

7.0 34.46±2.2 

Number of bilayers and the corresponding contact angle value  

 

 

 

 

0 0.5 1 1.5 2.0 2.5 

3 3.5 4 4.5 5.0 5.5 

6.0 6.5 7 
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C. FKB membrane properties and polyelectrolyte membrane properties.  

C.1 Physical and chemical data of FKB cation exchange membrane 

 

Physical and chemical data of FKB cation exchange membrane. 

[http://www.fumatech.com/NR/rdonlyres/58CD330B-882C-426F-8399-

C856BC481FC3/0/fumasepFKB.pdf] 

C.2 Membrane electrical resistance (Direct current method)  

Number of layers  

Average Resistance* 

(Ω.cm
2
) 

0 3.99±0.35 

0.5 13.01±0.35 

1 5.46±0.75 

1.5 14.68±0.23 

2 5.23±0.67 

2.5 16.40±1.07 

3 4.53±0.12 

3.5 17.31±0.12 

4 7.16±0.27 

4.5 18.10±1.17 

5 6.26±1.83 

5.5 18.66±0.23 

6 9.64±0.38 

6.5 17.69±0.78 

7 11.20±1.23 

*each data is the average of three sample measurement. 



 

79 

 

 

D.1 ilim values for different PDADMAC/PSS bilayers in different salt solution 

Sample* 
ilim 

50mM 1:1 KCL+LiCl 

ilim,  

50mM(KCl) 

(ilim,  

50mM(LiCl) 

FKB base 12.33±0.237 7.907±0.116 4.57±0.12 

Bilayer 6 11.32±0.236 7.485±0.233 4.239±0.114 

Bilayer 6.5 9.651±0.225 3.81±0.707 4.065±0.12 

*each sample data point refers to the 3-5 fresh sample measurement.  

 

  

 

 

 

 

 

 

 

 

 

 

 


