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RESUMEN 

La presente Tesis Doctoral aborda una detallada reconstrucción paleoclimática en el Pirineo 

Central durante el Holoceno a partir del estudio palinológico de dos secuencias lacustres 

localizadas a diferentes altitudes y que representan dos pisos de vegetación muy bien 

diferenciados: en primer lugar, la Basa de la Mora, localizado en el piso subalpino y, en 

segundo lugar, en el lago de Estaña, en piso basal del Pre-Pirineo. Además, se ha 

seleccionado el Holoceno Medio para estudiar la fiabilidad de los modelos climáticos a la hora 

de reconstruir los climas del pasado en el Mediterráneo, a partir del análisis de la expresión 

estacional de los climas en las simulaciones del Coupled Model Intercomparison Project 

(CMIP5).  

El estudio multiproxy (polen, sedimentología, geoquímica, quironómidos y microcarbón) de 

alta resolución de la secuencia de la Basa de la Mora (BSM) (42º32’ N, 0º19’ E, 1914 m 

s.n.m) muestra una marcada variabilidad ambiental en el Pirineo Central durante el 

Holoceno. El robusto modelo de edad, basado en 15 dataciones radiocarbónicas, respalda la 

primera reconstrucción precisa de cambios climáticos rápidos durante el Holoceno en esta 

área. En el Holoceno temprano se registra una cuenca altamente arbolada, con unos niveles 

lacustres altos y procesos intensos de run-off en la cuenca favoreció la existencia de 

comunidad de quironómidos dominados por taxones no lacustres (Orthocladiinae) 

relacionados con la entrada de arroyos fluviales. Este escenario es coherente con la alta 

estacionalidad en latitudes medias en el Hemisferio Norte causada por la configuración de los 

parámetros orbitales durante el Holoceno Temprano, que provocaría un aumento en la 

acumulación de nieve en las cumbres pirenaicas durante el invierno así como unas altas 

tasas de fusión de la nieve durante el verano. Entre 9.8 y 8.1 cal yr BP, se reconoce una 

gran inestabilidad climática debido al registro de profundos cambios en la cubierta vegetal y 

de una alta fluctuación en los procesos de erosión en la cuenca. Las variaciones entre 

coníferas y mesofitos has revelado la ocurrencia de al menos cuatro eventos rápidos y de 

corta duración registrados aproximadamente a 9.7, 9.3, 8.8 y 8.3 cal Ka BP. Entre 8.1 y 5.7, 

durante el Holoceno Medio, un clima más estable con abundante precipitación dio lugar a los 

máximos niveles lacustres, la expansión del bosque de caducifolios, la retirada de las 

coníferas y la intensificación de los fuegos. Hacia el 5.7 cal Ka BP un cambio climático hacia 

condiciones más secas contribuyó al declive regional de los arboles caducifolios, la expansión 

de los pinos y Juniperus y un descenso notable de los niveles del lago. A pesar de las 

condiciones más secas, la actividad del fuego se redujo debido a una disminución de la 

biomasa disponible. Dos intervalos especialmente áridos tuvieron lugar entre 2.9 y 2.4 cal Ka 

BP y entre 1.2 y 0.7 cal Ka BP (800-1300 AD). El segundo coincide con la Anomalía Climática 

Medieval y en la secuencia BSM se registra como unos de los periodos más áridos del 

Holoceno. La actividad antrópica es escasa e incluso nula durante la mayor parte del 

Holoceno, hasta al menos los últimos 700 años, cuando se reconocen los primeros signos de 

deforestación. La Pequeña Edad de Hielo se registra por un aumento de los niveles lacustres 



y por lun abandono de las actividades humanas debido a las condiciones frías en las cumbres 

pirenaicas.  

El registro palinológico del lago de Estaña (EST) (670 m s.n.m., 42°02’N, 0°32’E) 

proporciona la primera reconstrucción Holocena de la vegetación en piso basal de los 

Pirineos. La presente Tesis Doctoral presenta una comparación de la secuencia de Estaña con 

otras secuencias polínicas pirenaicas localizadas en pisos de vegetación más altos, 

permitiendo ilustrar el papel de los cambios en temperatura y precipitación que dieron lugar 

a un ajuste vertical de los pisos de vegetación en los Pirineos durante el Holoceno. Durante 

el comienzo del Holoceno, una estacionalidad alta y unas condiciones extremadme áridas 

dieron lugar a un paisaje estépico en Estaña, impidiendo las expansión del bosque en altitud. 

Entre 9.2 y 8.2 cal Ka BP, un aumento de las temperaturas de invierno junto a una mayor 

disponibilidad hídrica permitieron la expansión de los taxones arbóreos, principalmente 

Corylus, en Estaña. Este paisaje dominado por taxones mesófilos sugiere una distribución 

uniforme de la precipitación a lo largo del año en el piso basal de los Pirineos. Sin embargo, 

contrasta con un patrón de precipitación con una estación seca establecido en cotas más 

altas del Pirineo, indicando la existencia de un patrón hidrológico muy complejo en la región 

durante este periodo. Entre 8.2 y 6 cal Ka BP, la ocurrencia de inviernos cálidos y 

condiciones muy húmedas con una distribución de la precipitación uniforme, dio lugar al 

desarrollo de un bosque de tipo Mediterráneo, formado por Quercus semi-caducifolios, en 

Estanya y favoreció la expansión en altitud del bosque de caducifolios, el cual pudo 

establecerse en el piso subalpino. El periodo entre 6 y 4.8 cal Ka BP fue una fase de 

transición a nivel regional en el que se empezó a establecer una estacionalidad en la 

precipitación caracterizada por la existencia de una estación árida. Dado el carácter 

mediterráneo de la vegetación en Estaña, este cambio en el patrón de la vegetación sólo 

afecto a la vegetación mesófila del piso subalpino. El establecimiento final de unas 

condiciones áridas en torno al 4.8 cal Ka BP, causó la desaparición de importantes masas de 

árboles caducifolios en el área y favoreció la expansión de Quercus semi-caucifolio y 

perennifolio en Estaña y la expansión de Pinus a mayores altitudes. Los primeros signos de 

actividad antrópico en Estaña se registran hacia el años 3.1 cal Ka BP con la ocurrencia de la 

primera fase de deforestación y la aparición de polen de tipo Cerealia. El aumento del 

manejo del paisaje se produjo en torno al 0.8 cal ka BP debido a la expansión de las 

actividades agrícolas y ganaderas.  

Además, en la presente Tesis Doctoral también se ha analizado la expresión estacional de los 

climas del Mediterráneo y norte de África en las simulaciones del Coupled Model 

Intercomparison Project (CMIP5) para el Holoceno-Medio y el periodo Pre-Industrial. Las 

observaciones climáticas actuales muestran cuatro tipos distintos de regímenes de 

precipitación caracterizados por una distribución estacional y una cantidad total de 

precipitación diferente: una banda ecuatorial, caracterizada por un pico doble en la 

precipitación; la zona del Monzón, caracterizada por la concentración de la lluvia en verano; 

el desierto, caracterizado por una baja estacionalidad y cantidad total de lluvia; y la zona del 



Mediterráneo, caracterizado por sequía estival. En las simulaciones para el periodo Pre-

Industrial, la mayoría de los modelos simulan adecuadamente la posición de los climas del 

Mediterráneo y del ecuador pero sobrestiman la extensión de la influencia del monzón y 

subestiman la expansión del desierto. Sin embargo, la mayoría de los modelos fallan a la 

hora de reproducir la cantidad total de precipitación en cada zona. En las simulaciones para 

el Holoceno-Medio, los modelos simulan una reducción de la precipitación de invierno en la 

zona ecuatorial, y una expansión hacia el norte del monzón con un aumento significativo de 

la precipitación de verano y otoño. La precipitación aumenta ligeramente en el desierto, 

principalmente en verano y otoño, debido a una expansión hacia el norte del monzón. Por su 

parte los cambios en el Mediterráneo son muy pequeños, aunque hay un ligero aumento de 

la precipitación en primavera consistente con los datos paleoclimáticos que muestran una 

expansión de los arboles caducifolios y por tanto un aumento de la precipitación en la 

estación de crecimiento durante el Holoceno Medio. La comparación con las reconstrucciones 

también sugieren que la mayoría de los modelos subestiman los cambios anuales en 

precipitación durante el Holoceno Medio en todas las zonas salvo en la banda ecuatorial. 

 



SUMMARY 

The present PhD Thesis addresses a detailed paleo-climate reconstruction for the Central 

Pyrenees during the Holocene through the study of two lacustrine sequences placed at 

different altitudes, representing two marked different vegetation belts:Lake Basa de la Mora 

located in the subalpine belt and Lake Estaña placed in the basal belt of the Pre-Pyrenean 

Ranges. Additionally, this Thesis has also analyzed the simulations from the fifth phase of the 

Coupled Model Intercomparison Project (CMIP5) of Mediterranean climates for the mid-

Holocene (midHolocene, 6 ka) and compare with available pollen-based climate 

reconstructions. 

High resolution multiproxy data (pollen, sedimentology, geochemistry, chironomids and 

charcoal) from the Basa de la Mora (BSM) lake sequence (42º32’ N, 0º19’ E, 1914 m a.s.l.) 

show marked climate variability in the central southern Pyrenees throughout the Holocene. A 

robust age model based on 15 AMS radiocarbon dates underpins the first precise 

reconstruction of rapid climate changes during the Holocene from this area. During the Early 

Holocene, increased winter snowpack and high snowmelt during summer, as a consequence 

of high seasonality, led to higher lake levels, a chironomid community dominated by non-

lacustrine taxa (Orthocladiinae) related to higher inlet streams, and a forested landscape 

with intense run-off processes in the watershed. From 9.8 to 8.1 cal ka BP, climate instability 

is inferred from rapid and intense forest shifts and high fluctuation in surface run-off. Shifts 

among conifers and mesophytes reveal at least four short-lived dry events at 9.7, 9.3, 8.8 

and 8.3 cal ka BP. Between 8.1 and 5.7 cal ka BP a stable climate with higher precipitation 

favoured the highest lake levels and a forest expansion, with spread of mesophytes, 

withdrawal of conifers and intensification of fires, coinciding with the Holocene Climate 

Optimum. At 5.7 cal ka BP a major change leading to drier conditions contributed to a 

regional decline in mesophytes, expansion of pines and junipers, and a significant lake level 

drop. Despite drier conditions, fire activity decreased as a consequence of biomass reduction. 

Two arid intervals occurred between 2.9 and 2.4 cal ka BP and at 1.2-0.7 cal ka BP (800-

1300 AD). The latter coincides with the Medieval Climate Anomaly and is one of the most 

arid phases of the Holocene in BSM sequence. 

The Holocene palynological record from Lake Estanya (EST) (670 m a.s.l., 42°02’N, 0°32’E) 

provides the first Holocene vegetation reconstruction from the basal belt of the southern 

Pyrenees. The present Thesis presents a comparison of the Estanya sequence with other 

Pyrenean pollen sequences placed at higher altitudes that illustrates the role of temperature 

and precipitation changes as main drivers of the altitudinal vegetation shifts in the southern 

Pyrenees during the Holocene. High continentality and dry conditions during the onset of the 

Holocene (11.4 and 9.8 cal ka BP) resulted in a landscape dominated by steppe vegetation in 

Estanya and a limited forest expansion in altitude. Between 9.2 and 8.2 cal ka BP, increase 

in winter temperature and in moisture conditions allowed the expansion of the arboreal taxa, 



mainly Corylus, in Estanya. This deciduous-dominated landscape suggests an evenly-

distributed precipitation pattern in the basal level of the Pyrenees. However, it contrasts with 

the well-established dry season at higher altitudes and underlines a complex hydrological 

pattern in the region during this period. Between 8.2 and 6 cal ka BP, warm winters and 

more humid conditions with evenly-distributed precipitation led to the establishment of a 

well-developed Mediterranean forest in Estanya and favoured the upward expansion of the 

deciduous forest, which reached the subalpine belt. The period between 6 and 4.8 was a 

regional transition phase characterized by a shift in the precipitation seasonality with the 

establishment of a dry season. Given the Mediterranean-nature of the vegetation of Estanya, 

this shift affected exclusively the higher vegetation belts characterized by a larger presence 

of mesophytes. The final establishment of drier conditions at 4.8 cal ka BP caused the 

disappearance of important deciduous masses in the area and favoured the spread of semi-

deciduous and evergreen Quercus in Estanya and Pinus at higher altitudes. The first signs of 

anthropogenic activity in Estanya are recorded at 3.1 cal ka BP with the occurrence of a 

deforestation phase and the appearance of Cerealia type. Increasing landscape management 

took place at 0.8 cal ka BP through the spread of grazing and farming practices.  

Additionally, this Thesis has also analyzed the spatial expression of seasonal climates of the 

Mediterranean and northern Africa in pre-Industrial (piControl) and mid-Holocene 

(midHolocene, 6 ka) simulations from the fifth phase of the Coupled Model Intercomparison 

Project (CMIP5). Modern observations show four distinct precipitation regimes characterized 

by differences in the seasonal distribution and total amount of precipitation: an equatorial 

band characterized by a double peak in rainfall, the monsoon zone characterized by summer 

rainfall, the desert characterized by low seasonality and total precipitation, and the 

Mediterranean zone characterized by summer drought. Most models correctly simulate the 

position of the Mediterranean and the equatorial climates in the piControl simulations, but 

over-estimate the extent of monsoon influence and underestimate the extent of desert. 

However, most models fail to reproduce the amount of precipitation in each zone. Model 

biases in the simulated magnitude of precipitation are unrelated to whether the models 

reproduce the correct spatial patterns of each regime. In the midHolocene, the models 

simulate a reduction in winter rainfall in the equatorial zone, and a northward expansion of 

the monsoon with a significant increase in summer and autumn rainfall. Precipitation is 

slightly increased in the desert, mainly in summer and autumn, with northward expansion of 

the monsoon. Changes in the Mediterranean are small, although there is an increase in 

spring precipitation consistent with palaeo-observations of increased growing-season rainfall. 

Comparison with reconstructions shows most models under-estimate the mid-Holocene 

changes in annual precipitation, except in the equatorial zone. Biases in the piControl have 

only a limited influence on midHolocene anomalies in ocean-atmosphere models; carbon-

cycle models show no relationship between piControl bias and midHolocene anomalies. 

Biases in the prediction of the midHolocene monsoon expansion are unrelated to how well 

the models simulate changes in Mediterranean climate. 
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Introduction 

 

Outline 

Knowledge of Earth's past climates is essential to understand modern variability and forecast 

future Earth's climate. The window to past climate reconstruction is paleoenvironmental and 

paleoclimate analyses. The Pyrenees is a unique region to study past climate environments 

in north-eastern Iberia and the western Mediterranean because its geographic location and 

detailed, high-resolution reconstructions provide a regional framework to test climate 

models.   
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1.1. SCIENTIFIC CONTEXT 

1.1.1. Looking back to look forward 

The current climate change as a result of the increasing atmospheric greenhouse gases and 

particularly CO2 levels caused by anthropogenic emissions is one of the most relevant 

scientific issues of our times (IPCC 2001, 2007). The atmospheric CO2 concentration has 

increased from 270 ppm (parts per million) in the Pre-Industrial Age (late 19th century) to 

393.66 ppm in October 2013 (http://co2now.org). At geological scales, the CO2 

concentration reached levels  similar  to present about 3 Myr ago (Beerling and Royer, 2011) 

but since then, atmospheric CO2 levels have remained lower and never had such a high 

increase rate as during the last centuries (Pearson and Palmer, 2000). Consequently, 

scientific and social concerns about the short- and long-term consequences of the current 

change of the atmosphere composition have grown during the last decades.  

The effects of climate change are particularly worrying in the Mediterranean -southern 

Europe and northern Africa-, characterized by the typical Mediterranean summer drought 

and annual water deficit. The frequency of drought events has increased over recent times in 

this region (European Environmental Agency, 2012; Hoerling et al., 2012) and is expected to 

intensify in the near future (Meehl et al., 2007; Nikulin et al., 2011), posing a direct threat to 

population living in the region, which relies on water availability for all human-related 

activities such as agriculture, industry, tourism or urbanization. A large number of climate 

simulations try to assess the hydrological consequences of climate change and to design the 

adaptation to the likely long-term imbalance between supply and demand in the 

Mediterranean region (Giorgi and Lionello, 2008; Ducrocq et al., 2013). 

The General Circulation Models (GCM) are the essential tool to simulate and predict the 

short- and long-term climate evolution resulting from the current atmosphere modification 

(Donner et al., 2011). Climate models are based on mathematic equations that represent the 

physic-chemical processes governing the coupled atmospheric-ocean circulation. They are 

able to simulate important aspects of the current climate at large-scales, but in general they 

still need improving their resolution at smaller scales where regional geographic features 

along with biological and chemical processes determine high spatial variability in regional and 

local climates (Hewitson and Crane, 1996; Gutiérrez et al., 2013). This is particularly evident 

in the precipitation projections for the Mediterranean region, where rainfall is linked to a 

number of climate component, such as the strength of the Afro-Asian monsoon system, the 

North Atlantic Oscillation Index (NAO), the Mediterranean Sea Surface Temperature, or the 

mean annual temperature -especially the summer temperature-, resulting in a high year-to-

year variability hard to predict by climate models (Rodwell and Hoskins, 2001; Trigo et al., 

2002; López-Moreno et al., 2011; Gaetani et al., 2011).  

http://co2now.org/
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To assess the reliability of climate models to reproduce accurately the climate system and, 

subsequently, to predict the expected climate change, models are evaluated according to 

their ability to reproduce the distant past, when climate features were significantly different 

from present conditions (Braconnot et al., 2012). Thus, detailed and quantified past changes 

in temperature and precipitation are crucial to test climate models. The knowledge of past 

climates results from the study of archives of past ecosystems, which contain information 

about past temperatures and precipitation conditions under which they developed. In this 

regard, lakes provide a unique opportunity to obtain continuous records of environmental 

changes in terrestrial areas (Last and Smol, 2001). Lacustrine records from Mediterranean 

lakes play a central role to understand the nature and evolution of the Mediterranean climate 

with a longer perspective than that provided by the instrumental records (Moreno and 

Valero-Garcés, 2011; Lionello, 2012).  

1.1.2. Paleoclimate data 

1.1.2.1. Holocene Pyrenean sequences as past climate windows  

The study of Holocene sequences in the Pyrenees is of particular interest for paleo-climate 

research because of several reasons, related to the unique characteristics of the Holocene 

and also the geographic location of the Pyrenees.  

The Holocene is a highly interesting period in Earth´s climate history because of its 

uniqueness:  

 In the first place, it provides the temporal framework to study variations in temperature 

and precipitation during the most recent past when boundary conditions have not 

changed dramatically compared to glacial stages. Although the Holocene’s climate has 

been traditionally believed to be fairly stable compared to the previous glacial era, 

marked climate shifts have occurred, some of which have been particularly fast and 

abrupt (Bond, 1997; Mayewski et al., 2004). At a millennial scale, the Holocene climate 

evolution has been greatly determined by changes in the incoming energy -solar 

insolation- resulting from fluctuations in the orbital parameters (Bond et al., 2001). 

Orbitally-derived changes in the latitudinal temperature gradient determine the ocean-

atmosphere circulation, which is the main earth’s climate driver (Bridgman et al., 2006). 

However, at centennial and decadal scales and super-imposed to the long-term climate 

trend, the Holocene has undergone fast and short climate shifts, sometimes as brief as 

decades, known as Abrupt Climate Changes (Mayewski et al., 2004; Steffense et al., 

2008). Although the causes of these climate shifts have not been clearly established 

(National Academies Press, 2002), changes in the currents caused by internal oceanic 

dynamics, disruption or at least weakening of the Atlantic Meridional Overturning 

Circulation (AMOC), as a consequence of large inputs of freshwater into the North 

Atlantic from partial melting of the Ice Sheets, millennial - scale changes in insolation 

among other have been recognized as important triggers (Wanner et al., 2008). .  
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 The second reason is that the Mid-Holocene time interval from 8.2 to 6 ka represents a 

key period to compare paleo-climate simulations with paleo-data (Steig, 1999). At 

around 6 ka BP the ice-land-ocean configuration was similar to today but the climate was 

significant different (Braconnot et al., 2007) – e.g., more humid condition across the 

Mediterranean region (Prentince and Jolly., 2000) - suggesting that the atmosphere-

ocean circulation patterns were different (Shin et al., 2006) Therefore, Mid-Holocene 

palaeo-data provide an opportunity to check the ability of models to simulate past 

precipitation scenarios resulting from different configuration in the atmospheric-ocean 

coupling (Braconnot et al., 2012). This information is crucial to evaluate the ability of 

climate models to simulate past climates and therefore provide a frame to measure our 

confidence in models to forecast future climate scenarios. 

 A third reason for Holocene´s interest is that climate changes are intrinsically related 

with our own history as human beings. Since the development of agricultural and grazing 

techniques and the widespread use of fire to open the landscape, ancient cultures were 

able to manage their immediate environment for their own benefit. Nevertheless, the 

degree of human disturbance on the vegetation since the first Neolithic settlements is 

still controversial. In the Iberian Peninsula, many authors support that from the Mid-

Holocene, even at the end of the Early Holocene in some cases, a more continuous fire-

use and land-management determined, along with the climate, the evolution of the 

vegetation in many places giving rise to “cultural landscapes” (Burjachs et al., 1997; 

Riera et al., 2004; Vannière et al., 2008; Sadori et al., 2011; Magyari et al., 2012; 

Gassiot et al., 2012; Berrocal et al., 2012). Conversely, in other cases, the vegetation 

seems to adapt mainly to climatic conditions until the most recent times when 

anthropogenic activities turned into the most important control (Carrión et al., 2001: 

Villaverde sequence; Aranbarri et al., 2014: Villarquemado palaeolake; Morales-Molino 

and García-Antón, 2013: Ayoó de Vidriales). Actually, past climate shifts were 

responsible of relevant human migrations in search of better conditions (Cullen et al., 

2000; Hoelzmann et al., 2001; Nuñez et al., 2002; González-Sampériz et al., 2009) 

illustrating how human populations have been largely subjected to weather. The 

Holocene sequences provide information to assess the human landscape management 

history and its subordination or not to climate factors during the last 11,700 years. 

The Pyrenees is a compelling region for paleo-climate studies because of its unique 

geographic location. The Pyrenees are a high mountain range placed in mid-latitudes and 

situated between the Eurosiberian and the Mediterranean biogeographic regions of Europe 

(fig.1.1). These particular geographical features made them extremely sensitive to changes 

in: 

 Temperature. As a consequence of its location in mid-latitudes and their steep altitudinal 

gradient, the Pyrenees are characterized by a high temperature gradient from lowlands 

to highlands (fig. 1.2a) that results in a highly diverse altitudinal zonation of the 

vegetation (fig. 1.3b) (see Appendix for a detailed vegetation map of the Pyrenees). A 
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recent study has demonstrated that some cold-adapted plant species are being 

outcompeted by more warm-adapted species in high altitudes as a result of the current 

global warming (Gottfried et al., 2013). This thermophilization process, as called by the 

authors, points out the high sensitivity and the fast response of the vegetation in the 

Pyrenees to temperature changes. 

 Precipitation. The Pyrenees are bounded by the Mediterranean Sea to the east and the 

Atlantic Ocean to the west. The precipitation regime, mostly linked to the strength of the 

Atlantic fronts (fig. 1.2b), determines the east-west limit between the Atlantic humid 

forest and the Mediterranean dry forest (fig. 1.3b; supplementary material). This feature 

occurs exclusively in the southern slopes of the Pyrenees, which is not affected by the 

Foehn winds.  

 Anthropogenic activities. In mountainous regions such as the Pyrenees, low altitude 

areas are much more prone to have been continually occupied than high altitude zones, 

where climate is more severe and could hinder temporally the presence of human 

settlements and activities. The comparison and integration of sequences placed at 

different altitudes provides information about how humans have interacted with their 

environment, to what extent anthropogenic activities are responsible for large vegetation 

shifts and, whether the occupation patterns are somehow influenced by environmental 

stress.  

 
Figure 1.1. Location map of the Pyrenees. Map plotted by Miguel Sevilla Callejo. 

Figure 1.1. 

Location map of 

the Pyrenees. 
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1.1.2.2.  Previous studies: what we know and what is missing  

Our knowledge of Holocene vegetation dynamics in the Pyrenees has greatly improved 

during the last decade, as many studies based on lake sediments have been published 

(Aubert et al., 2004; Guiter et al., 2005; Pla and Catalan, 2005; González-Sampériz et al., 

2006; Miras et al., 2007, 2010; Pèlachs et al., 2007; Ejarque et al., 2009, 2010; Morellón et 

al., 2009; Bal et al., 2011; Corella et al., 2010; Rull et al., 2011; Pérez-Obiol et al., 2012; 

Rius et al., 2012; Cunill et al., 2013).  

Most of these studies have focused mainly on palynological reconstructions that have 

documented the evolution of the vegetation. But they have also provided sedimentological 

and biological proxies about the evolution of the limnological systems and the watersheds, 

the paleohydrology, and reconstructions of different aspects of past climate dynamics. 

 

Figure 1.2.  a) Temperature map of the Pyrenees. b) Precipitation map of the Pyrenees. Source: Atlas 

Climático Digital de la Península Ibérica. Map plotted by Miguel Sevilla Callejo. 
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Palaeo-environmental studies available in the southern face of the Pyrenees are summarized 

in figure 1.3. According to these studies the expansion of the forest in altitude was delayed 

at least ca. 1000 since the beginning of the Holocene due to yet severe climate conditions 

(Miras et al., 2007; Cunill et al., 2012), although the forest spread easily afterwards. During 

the Early Holocene increase in humidity was much pronounced in the Atlantic-influenced 

area, where it took place a large expansion of mesophytes (Montserrat-Martí, 1992; 

González-Sampériz et al., 2006), than in the Mediterranean-influenced area, where pine was 

the main forest component (Miras et al., 2007; Pérez-Obiol et al., 2012). Nevertheless, 

during the Mid Holocene, even the highest and most eastern sequences recorded some 

increase in mesophytes due to more humid environmental conditions (Miras et al., 2007; 

Pèlachs et al., 2007). Approximately after ca 5 cal ka BP, deciduous trees decreased 

probably as a result of the onset of a trend to drier conditions that, in general, has continued 

until the present (Miras et al., 2007). Conversely, at this time Abies expanded considerably, 

although whether this expansion was climate-driven or, responded to migratory paths from 

the glacial refugia is controversial (Montserrat-Martí, 1992; Pèlachs et al., 2009, 2011). 

Another subject of much debate is the spread of Fagus from ca 4 cal ka BP (Montserrat-

Martí, 1992; Pèlachs et al., 2009). The expansion of this tree coincides with an increasing 

presence of anthropogenic signals, indicating that beech spread could be favored by humans 

(Miras et al., 2007, Pèlachs et al., 2011). In general terms, the impact of the anthropogenic 

activities rose during the Roman Times and gained momentum during the middle ages.   

Although we know the main vegetation pattern changes during the Holocene, there is still an 

important lack of information regarding: 

 Shifts in vegetation belts as a result of changes in temperature.  

Most of the sites are located at altitudes above 1600 m. a.s.l., hindering the comparison 

of migration and time-evolution of the vegetation belts (fig. 1.3a). Up to now, there are 

only two sequences located below 1200 m. a.s.l.: Paul the Bubal, but it only has one 

radiocarbon date for the Holocene (Montserrat-Martí, 1992); and Montcortés, but the 

published pollen record only covers the last 1000 years (Rull et al., 2011). Consequently, 

there is a shortage of data from the low altitude vegetation belts in the Pyrenees that 

could complete the altitudinal transects and shed light about changes in species 

distributions related to temperatures shifts during the Holocene.  

 Vegetation dynamics as a result of changes in precipitation.  

Most palynological studies are located in the Eastern Pyrenees while fewer sites are from 

the Western area (fig. 1.3a). In general, the eastern lacustrine sequences are the most 

recent studies, achieving better resolution and chronological control. Conversely, the 

scarce western-central sequences either lack a good temporal framework (Montserrat-

Martí, 1992) or do not cover the whole Holocene (González-Sampériz et al., 2006). As a 

result, detailed comparisons between eastern and western areas in order to investigate 

variations in the limit of the Atlantic and Mediterranean forests related to changes in the 

precipitation regimen, are not possible. Furthermore, the eastern sequences are placed 
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too far from the Atlantic influence to have recorded more oceanic conditions even during 

past periods of stronger westerlies.  

 The relationship between climate and hydrological balance 

Palynological studies from Pyrenean sites have not been systematically integrated with 

sedimentological and paleolimnological studies (Pla and Catalan, 2005; Miras et al., 

2007, 2010; Ejarque et al., 2010; Pérez-Obiol et al., 2012), missing an opportunity to 

integrate regional vegetation dynamics with local environmental conditions in order to 

capture common climate signals. The reconstruction of past lake level changes can 

characterize or constrain the features of the precipitation patterns inferred from the 

vegetation composition. The Quaternary Global Change research team from the Pyrenean 

Institute of Ecology (IPE-CSIC, http://www.ipe.csic.es/cambios-globales/) has been a 

pioneer team in Spain that systematically applies a multiproxy strategy to paleoclimate 

studies based on lake sediments. 

 Rapid and abrupt changes during the Holocene. 

Because of the low sample resolution or/and because of their location in a more stable 

environment, available palaeo-environmental sequences from the Pyrenees do not 

provide evidence of the forest response to the abrupt climate changes occurred during 

the Holocene.  

 Differences in patterns of human occupation between lowlands and highlands. 

Evidence of anthropogenic activities in the Pyrenees is ancent. Signs of human activity in 

the subalpine belt of central and eastern Pyrenees can be traced back to ca 8 cal ka BP 

(Miras et al., 2007; Ejarque et al., 2010) and can be recognised sporadically through the 

whole Neolithic period (Pèlachs et al., 2007; Miras et al., 2010; Cunill et al., 2012; 

Pérez-Obiol et al., 2012). On the other hand, in spite of the accessibility of the central 

Pyrenean lowlands and their more suitable climate than the highlands, there is a 

completely lack of information of human activities in these areas from sedimentary 

archives (fig. 3a). Up to now, there are only two lacustrine sequences located under 

1200 m a.s.l in this region: Paul the Bubal (Montserrat-Martí, 1992) and Montcortés, 

(Rull et al., 2011). Some archaeological sites have provided pollen data too but they only 

cover short chronological periods (González-Sampériz, 2004). 
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1.1.3. Paleoclimate models for the Mediterranean region  

The Mid-Holocene (8.2 - 6 ka BP) provides an opportunity to examine climate-model 

performance in the Mediterranean region. Palaeo-environmental evidence suggests that 

during the Mid-Holocene the Mediterranean region was wetter than today. A more positive 

balance and a change in rainfall seasonality during this period is supported by the rise in lake 

levels (Kohfeld and Harrison, 2000; Magny et al., 2002; Roberts et al., 2008) and the 

expansion of deciduous trees (Prentice et al., 1996; Roberts et al., 2004; Carrión et al., 

2010) recorded across the region.  

However, given the high complexity of interactions involved in the Mediterranean climate 

(Xoplaki et al., 2003; Luterbacher et al., 2006; Lionello, 2012), models have been unable to 

reproduce the observed MH patterns of rainfall in the Mediterranean during the Holocene. 

This was identified as a problem in the atmosphere-only simulations made during the first 

phase of the Palaeoclimate Modelling Intercomparison Project (PMIP1: see e.g. Masson et al., 

1999; Guiot et al., 1999; Bonfils et al., 2004), coordinated by the Working Group on Coupled 

Modeling (WGCM), and also in the coupled ocean-atmosphere simulations made during 

PMIP2, where the spatial extent and the magnitude of the changes were not well captured 

(Brewer et al., 2007) 

A new suite of climate simulations from Coupled Model Intercomparison Project (CMIP5, 

Taylor et al., 2012) has been launched recently and are being analyzed as part of the third 

phase of the Palaeoclimate Modelling Intercomparison Project (PMIP3: Braconnot et al., 

2012). The CMIP5 experiments represent a new opportunity to assess the ability of the 

climate models to reproduce past and present precipitation changes in the Mediterranean 

region in a better way.  

1.2. OBJECTIVES 

The present PhD dissertation hast three overarching objectives. 

Given the high potential of the Holocene Pyrenean sequences to provide past environmental 

informations, this PhD dissertation aims: 

 to investigate past precipitation and temperature changes in the Pyrenees based on 

vegetation dynamics and lake level variations through multi-dimensional and multi-proxy 

studies from sequences placed at different altitudes, in order to get a thorough 

understanding of the long-term climate evolution and the impact of the abrupt climate 

changes in the Western Mediterranean during the Holocene. 

Additionally, given the concerns of the precipitation over the Mediterranean region, the 

present thesis also aims: 
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 to check the ability of climate models from the CMIP5 to simulate the reconstructed more 

humid conditions in the Mediterranean region during the Mid-Holocene in order to 

measure their reliability on future climate scenarios. 

Finally, given the presence of human populations in the area since at least the Early 

Holocene, the last objective of this work is: 

 to describe the timeline of the human activities in the Pyrenees in order to find out 

patterns of occupation, landscape modifications and effects of climate events on 

populations. 

1.3. OUTLINE 

This PhD dissertation embraces two different research fields with specific methodologies: i) 

reconstruction of paleoclimates and palaeo-environments based on field and laboratory work 

and ii) evaluation of models analyses, based on mathematical calculations. For these 

reasons, methodology is described in each chapter instead of constituting an independent 

section.  

The present PhD thesis is divided in 6 chapters. The first one is the Introduction where the 

scientific context of the study and the main goals of the research are described Chapters 2 

and 3 cover the first objective (climate reconstruction in the Pyrenees from two lake 

sequences). Chapter 4 includes the second objective (evaluation of Mid-Holocene model 

simulations). Each of them includes an introduction to the subject, the methodology, the 

results obtained, a general discussion of the results, and some conclusions.  

Chapter 5 comprises a summary and a brief discussion of all the results accomplished in 

previous chapters. The third objective is accomplished in this chapter.  

Finally, chapter 6 summarizes the main conclusions of this thesis. 

Next, there is an explanation of the road map followed to achieve the objectives of the 
present thesis.  

1. First objective    

To study the past precipitation-temperature interactions in the Pyrenees, two lake sequences 

placed at two different altitudinal vegetation zones in the central part of the Pyrenees and 

Pre-Pyrenees were selected. The main reasons for the particular location of the sequences 

were: 
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 An altitude gradient. Different altitude means different climate conditions and, 

consequently, different vegetation composition. The comparison between vegetation 

dynamics in highlands and lowlands allows inferences on the evolution of the altitudinal 

belts as a response to a common change in temperature. In addition, the comparison 

between lake levels evolution at different altitudes provide a regional understanding of 

paleo-hydrological evolution. 

 Atlantic and Mediterranean influences. The central part of the Pyrenees is close to the 

present limit between the Atlantic and Mediterranean climate boundary. The evolution of 

the Atlantic- and Mediterranean-related taxa allowed to investigate past changes in the 

precipitation regimen related to strengthening or weakening of the Atlantic humid fronts.  

The selected sequences are the following: 

 Basa de la Mora (BSM) (42º32’N, 0º19’E), at 1914 m. a.s.l. in the subalpine belt, was 

selected because likely would report changes in the treeline as a result of temperature 

variations. In addition, it is also located half-way between the Atlantic Ocean and the 

Mediterranean Sea, so that it is particularly sensitive to changes in precipitation regimen 

as a result of shifts in the strength of the Atlantic fronts. 

 Estaña (EST) (42º02’N, 0º32’E), at 670 m. a.s.l., in the Pre-Pyrenean Range, provides 

the first Holocene vegetation reconstruction in the basal belt. In addition, it is located in 

direct contact with the semi-desert regimen of the Central Ebro Basin, so that it is rather 

susceptible to variability in water availability as a result of changes either in direct 

precipitation or in supplies from the Pyrenees.  

Both sequences fill a relevant palaeo-climate gap in the Pyrenees, as shown in figure 3a. 

Methods 

The study of the BSM sequence included pollen, sedimentology, geochemistry, charcoal and 

chironomid analyses, and it is the first multiproxy high-resolution study to provide climate 

reconstructions in the sub-alpine belt of the Pyrenees. Charcoal and chironomids data have 

been obtained in collaborations with other researchers from the Pyrenean Institute of 

Ecology and University of Barcelona respectively(Dr. Graciela Gil Romera, Laura Lasheras, 

Dr. Maria Rieradevall and Pol Tarrats). They have been used to support and put in a context 

the rest of analyses, but they are not a direct contribution from this thesis. 

The study of the EST sequence included exclusively pollen but a previous palaeo-hydrological 

reconstruction based on sedimentological and geochemical indicators carried out by Dr. 

Morellón, (2009) was used to integrate vegetation dynamics and lake evolution. 
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Each sequence is described in a different chapter. In chapter 2 we focus on the sequence 

located in the highlands (Basa de la Mora), while in chapter 3 we discuss the sequence 

located in the lowlands (Estaña). These chapters are the base of the climate reconstruction 

achieved in this work and hence constitute the main body of the present thesis. 

2. Second objective  

The achievement of the first objective made it clearer the different climate conditions that 

prevailed during the Mid-Holocene in the Central Pyrenees in terms of humidity.. This 

inspired the investigation on climate simulations for the Mid-Holocene. We focused on 

precipitation simulations because it is the most characteristic factor of Mediterranean 

climate, and water availability is a growing concern with large social implications. 

Area of interest 

The area analyzed to assess the reliability of the precipitation simulations over the 

Mediterranean during the Mid-Holocene included not only the Pyrenees, but the whole 

southern Europe and North Africa. The reason is that the position of the Inter Tropical 

Convergence Zone (ITCZ) may influence the position of the NAO centers -Azores High and 

Iceland Low- (Marshal et al., 2001; Souza and Cavalcanti, 2009). Given that the ITCZ is the 

main responsible for the monsoon precipitation over north Africa and the position of the NAO 

centers determines the strength of the North Atlantic westerlies -and consequently the 

precipitation over Europe-, the models will explore how changes in humid conditions over the 

Mediterranean region during the Mid-Holocene may be related to changes in the African 

monsoon and teleconnections with North Atlantic dynamics.  

Methods 

We analysed outputs from 12 General Circulation Models from the fifth phase of the Coupled 

Modelling Intercomparison Project (CMIP5) (Taylor et al., 2012). Analyses included firstly, 

Mid-Holocene simulations and comparison with palaeo-data recollected across the whole 

studied region and, secondly, simulations for present climate in order to explore whether 

past simulations are somewhat influenced or linked to the ability of models to simulate 

modern conditions.  We want to know if some climate models are more reliable than others 

for the Mediterranean region.  

The second objective is accomplished in chapter 4. 
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3. Third objective  

After a thorough reconstruction of vegetation dynamics in an altitudinal transect in the 

Pyrenees was completed as part of the first objective, we explored trends in land uses 

through the analyses of indicators related to human activities in the BSM and EST sequences. 

In addition, having done a detailed and multiproxy palaeo-climate reconstruction in chapters 

2 and 3, we explored whether vegetation changes could have been somewhat influenced by 

anthropogenic pressure, or whether, conversely, climate events may have challenged or 

changed human activities. 

Approach to study human activities in the Pyrenees 

Agriculture, grazing and deforestation are the three main human activities able to change the 

landscape since long time ago. In sedimentary sequences, agricultural activities are recorded 

through the presence of cultivated taxa such as cereal, olive tree, vine or cannabis; grazing 

activities are recorded through the presence of pastoral-related taxa such as nitrophilous 

plants; and, finally, deforestation phases are recognized through marked drops in the 

arboreal component (Li et al., 2008). We examined the evolution of these three main 

indicators in BSM and EST sequences in order to find differences in time and use of the 

landscape regarding the altitude and climate conditions. 

The details of vegetation dynamics related to human activities are described in chapters 2 

and 3 along with the general description and interpretation of pollen taxa. The main results 

and a general discussion about this third objective is accomplished in the Discussion part 

(chapter 5) but it does not constitute an independent chapter of the present thesis.  

1.4. REARCH WOK AND CONTRIBUTIONS 

The present PhD dissertation is based on the following research work: 

Research papers 

Pérez-Sanz, A., González-Sampériz, P., Morellón, M., Valero-Garcés, B.L., Gil-Romera, G., 

Fontaneda-Ríos, S. Holocene altitudinal vegetation shifts at the Southern Central 

Pyrenees (Spain): the mid-montane site Lake Estanya. To be submitted. 

Pérez-Sanz, A., Li, G., González-Sampériz, P., Harrison, S.P. Evaluation of modern and Mid-

Holocene seasonal precipitation of the Mediterranean and Northern Africa in the 

CMIP5 simulations. Clim. Past., 2014. 

Pérez-Sanz, A., González-Sampériz, P., Moreno, A., Valero-Garcés, B., Gil-Romera, G., 

Rieradevall, M., Tarrats, P., Lasheras-Álvarez, L., Morellón, M., Belmonte, A., 

Sancho, C., Sevilla-Callejo, M., Navas, A. Holocene climate variability, vegetation 
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dynamics and fire regime in the central Pyrenees: the Basa de la Mora sequence (NE 

Spain). Quat. Sci. Rev. 73, 149–169, 2013. 

Pérez-Sanz, A., González-Sampériz, P., Valero-Garcés, B., Moreno, A., Morellón, M., Sancho, 

C., Belmonte, A., Gil-Romera, G., Sevilla, M., Navas, A. Clima y actividades humanas 

en la dinámica de la vegetación durante los últimos 2000 años en el Pirineo central: 

el registro palinológico de la Basa de la Mora (Macizo de Cotiella). Zubía 23, 17–38, 

2011. 

Congress contributions 

Pérez-Sanz, A., et al., Paleoenvironmental reconstruction of Basa de la Mora glacial lake 

(Central Pyrenees) during the last 13 ka cal yr. BP: a high resoluton palynological 

study. XVIII INQUA Meeting, Bern. Quaternary International 279-280, 375, 2012 

(poster contribution). 

Pérez-Sanz, A., et al., Reconstrucción paleoambiental de la Basa de la Mora (Pirineo 

Central): estudio multiproxy de alta resolución. XIII Iberian Quaternary Meeting 

(AEQUA), Andorra la Vella. Abstract book 91-92, 2011. (poster contribution). 

Pérez-Sanz, A. et al., Palaeoenvironmental reconstruction of Basa de la Mora glacial lake 

(Central Pyrenees) during the Holocene: preliminary results from palynological 

analyses. EGU General Assembly. Geophysical Research Abstracts 12, EGU2010-

8076, 2010 (poster contribution). 

Pérez-Sanz, A., et al., Reconstrucción paleoambiental del Ibón de la Basa de la Mora 

(Pirineos centrales, NE Iberia): primeros resultados del análisis palinológico. VII 

Iberian Quaternary Meeting (AEQUA), Faro. Abstract book  255-258, 2009 (poster 

contribution). 

Research stays 

Jan. 2013 – Jul. 2013: Maquarie University, Sydney, Australia.  

Supervisor: Prof. Sandy Harrison. 

In addition, data from the present Thesis has also contributed to the next research works: 

Lasheras-Álvarez, L., Pérez-Sanz, A., Gil-Romera, G., González-Sampériz, P., Sevilla-

Callejo, M., Valero-Garcés, B.L., 2013. Historia del fuego y la vegetación en una 

secuencia holocena del Pirineo central: la Basa de la Mora. Cuad. Investig. 

Geográfica 39, 77–95. 

Morellón, M., Pérez-Sanz, A., Corella, J.P., Büntgen, U., Catalán, J., González-Sampériz, P., 

González-Trueba, J.J., López-Sáez, J.A., Moreno, A., Pla-Rabes, S., Saz-Sánchez, M. 

á., Scussolini, P., Serrano, E., Steinhilber, F., Stefanova, V., Vegas-Vilarrúbia, T., 

Valero-Garcés, B., 2012. A multi-proxy perspective on millennium-long climate 

variability in the Southern Pyrenees. Clim. Past 8, 683–700. 
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Moreno, A., Morellon, M., Martín-Puertas, C., Firgola, J., Canals, M., Cacho, I., Pérez, A., 

Belmonte, Á., Vegas-Vilarrúbia, T., González-Sampériz, P., Valero-Garcés, B., 2011. 

Was there a common hydrological pattern in the Iberian Peninsula region during the 

Medieval Climate Anomaly? PAGES News 19, 16–18. 

Moreno, A., Pérez, A., Frigola, J., Nieto-Moreno, V., Rodrigo-Gámiz, M., Martrat, B., 

González-Sampériz, P., Morellón, M., Martín-Puertas, C., Corella, J.P., Belmonte, Á., 

Sancho, C., Cacho, I., Herrera, G., Canals, M., Grimalt, J.O., Jiménez-Espejo, F., 

Martínez-Ruiz, F., Vegas-Vilarrúbia, T., Valero-Garcés, B.L., 2012. The Medieval 

Climate Anomaly in the Iberian Peninsula reconstructed from marine and lake 

records. Quat. Sci. Rev. 43, 16–32. 

Valero-Garcés, B., Morellón, M., Moreno, A., Corella, J.P., Martín-Puertas, C., Barreiro, F., 

Pérez, A., Giralt, S., Mata-Campo, M.P., 2014. Lacustrine carbonates of Iberian 

Karst Lakes: Sources, processes and depositional environments. Sediment. Geol. 

299, 1–29. 
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2 

La Basa de la Mora sequence. Climate 
at high altitudes 

 

Outline 

The Basa de la Mora sequence provides the most robust and complete Holocene palaeo-

environmental reconstruction carried out in the Pyrenees up to now. Placed in the sub-alpine 

belt of the Central Pyrenees at 1914 m a.s.l., this lake has witnessed relevant climate 

changes throughout the last 10,000 yr cal BP. Its sediments reveal a fascinating history of 

vegetation and lake-level changes that proves the high sensitivity of the Pyrenees to climate 

changes.  
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2.1. INTRODUCTION 

Long-term climate evolution during the Holocene has been strongly modulated by orbitally-

forced insolation trends which determine heat distribution throughout the planet. In the 

northern Hemisphere, summer insolation sets limits on the position and strength of the Inter 

Tropical Convergence Zone (ITCZ), which controls the position of the north-hemisphere cell 

atmospheric system (Wanner and Brönnimann et al. 2012). In particular, the location of the 

Azores High and the Iceland Low pressure centres determines the latitudinal position and 

intensity of the North Atlantic Westerlies and the storm tracks, which largely govern rainfall 

distribution in the Western Mediterranean area (Greatbatch, 2000, Marhsall et al. 2002). 

During the Early Holocene, the maximum summer insolation in the Northern Hemisphere led 

to a rapid northward displacement in the ITCZ and its associated rain belt (Fleitmann et al., 

2007). This northern position of the ITCZ was responsible for bringing moisture to the 

current world-largest desert in North Africa (Sahara and Sahel) (deMenocal et al., 2000). As 

the summer insolation decreased the ITCZ displaced southward, the monsoon system 

weakened and in south-western Europe the climate followed a general trend to an 

increasingly aridity since the Mid Holocene that led to decreased lake levels (Magny et al., 

2007, 2011; Valero-Garcés and Moreno, 2011) and major shifts in the vegetation 

composition (Fletcher and Zielhofer, 2011; Roberts et al., 2011). 

However, beyond this general climate trend, many recent studies have documented the 

existence of rapid climate variability during the Holocene (Bond et al., 1997, 2001; Mayewski 

et al., 2004). Although the nature and mechanisms of these abrupt climate changes still 

remain unclear, weakening in the thermohaline circulation as consequence of meltwater 

inputs in the North Atlantic or changes in the Ocean´s dynamics has been recognised as one 

of the most important triggers (Renssen et al., 2007; Wanner et al., 2008). Furthermore, 

fluctuations in solar activity have also been responsible for climate shifts (Wanner et al., 

2011). These short-living episodes of climate variability had a large impact over most of 

Europe, as it has been recorded in many continental palaeoclimate archives as lacustrine 

sediments (Magny et al., 2007), glacial deposits (Davis et al., 2009), and pollen records 

(Bordon et al., 2009; Magyari et al., 2012).  

Holocene climate reconstructions for the North Atlantic region involve mainly changes in 

temperature (Brooks and Birks, 2001). However, in the Mediterranean area Holocene 

variability is mostly related to changes in water availability as it is documented in vegetation 

distribution (Jalut et al., 2009; Sadori et al., 2011), lake levels (Magny et al., 2011) and 

stalagmite growth (Fleitmann et al., 2007; Spötl et al., 2010). 

The Iberian Peninsula climate integrates subtropical, Mediterranean and Atlantic influences 

due to its geographical location between the Mediterranean Sea and the Atlantic Ocean 

(Lionello et al., 2006). Moreover, the Iberian Peninsula has proven to be particularly 

sensitive to short-term climate shifts during the Holocene (Moreno et al., 2012a). Lakes 

experienced noteworthy variations in response to precipitation and evaporation shifts during 

the Holocene (Valero-Garcés et al., 2000; González-Sampériz et al., 2008; Martín-Puertas et 
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al., 2008; Morellón et al., 2009). Changes in sea surface temperatures (Cacho et al., 2001) 

and deepwater formation (Frigola et al., 2007) in the Western Mediterranean show a fast 

response to the North Atlantic dynamics. Other Iberian continental records highlight  large 

Holocene variability. For example, the isotope record in the Kaite Cave stalagmite 

(Domínguez-Villar et al., 2008) reflects variations in the amount of precipitation related to 

North Atlantic dynamics and fluctuations in palaeoflood activity of Tagus River, in Central 

Spain have been related to changes in prevailing atmospheric circulation patterns (Benito et 

al., 2003). Although vegetation is a very good indicator of past climate variability, there are 

only a few high-resolution pollen studies from the Iberian Peninsula (e.g. Carrión et al., 

2010; Fletcher et al., 2013a, Jiménez-Moreno and Anderson, 2012), documenting the fast 

response of vegetation to abrupt climate changes (decadal- to centennial-scale) during the 

Holocene. 

A recent study has proved the high-sensitivity to current global warming of middle-latitude 

high mountain ranges in general, and the Pyrenees in particular, documenting an speeding 

up of the replacement of cold-adapted plants by thermophilic species (Gottfried et al., 2012). 

Past climate changes during the Holocene should have also affected the flora and landscape 

of the Pyrenees. Furthermore, the southern slopes of the Pyrenees are not affected by Foehn 

winds, and the present climate is rather complex, influenced by a progressive west-to-east 

decrease in precipitation, due to weakening of the Atlantic humid fronts inland. Thus, the 

southern Pyrenees experience both Atlantic and Mediterranean climate regimes within a 

relatively short distance of less than 450 Km between the Cantabrian and Mediterranean 

seas. The Pyrenean vegetation reflects these climate conditions, varying from humid-Atlantic 

forests, dominated by oak and beech, in the west, to Mediterranean forests, dominated by 

mainly pine and drought-resistant taxa, in the central and eastern regions. Due to these 

particular geographical features the Central Pyrenees play a key role in providing information 

about past E-W shifts of the boundary between both regimes as a result of shifts in the 

atmospheric components and, particularly, shifts in the Westerlies strength. 

In Western Europe, human disturbances in the landscape can be traced back to the Neolithic 

period and the climate signal is often masked by anthropogenic activities during the most 

recent times (Olfield, 2005; Carrión et al., 2007). Discriminating anthropogenic from natural 

forcings in landscape evolution has been subject of much debate during recent years 

(Carrión et al., 2010; Catalán et al., 2013). High-altitude sites are more useful than low-

altitude sites for detecting climate signals, since more inhospitable climate conditions limit 

intense human landscape intervention.  

2.1.1. Objectives 

The main objective is to obtain a paleo-environmental reconstruction of climate, vegetation 

and fire dynamics from a lacustrine sequence located in the central part of the southern 

Pyrenees: the Basa de la Mora sequence. With this reconstruction we will tackle questions 

concerning: i) how the Atlantic and Mediterranean regimes have progressed along the 
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Holocene in the Pyrenees, ii) identification and timing of rapid episodes of climate change, 

and iii) elucidation of high mountain land-use system during last millennia. 

2.2. STUDY AREA 

2.2.1. Geological and geomorphological setting 

Lake Basa de la Mora (BSM) (42º 32’ N, 0º 19’ E, 1914 m a.s.l.) is a small, shallow glacial 

lake located on the north-facing slope of the Cotiella Peak (2912 m a.s.l.), the highest 

summit of the Cotiella Massif in the central southern Pyrenees (fig.2.1). The Cotiella Massif 

belongs to the homonymous nappe, located in the western part of the South Pyrenean 

Central Unit (Seguret, 1972).  

 

Figure 2.1. Location map of Lake Basa de la Mora in the Central Pyrenees (Spain). Map plotted by 

Miguel Sevilla Callejo. 
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Figure 2.2. Geomorphological map of Lake Basa de la Mora in the Central Pyrenees (Spain). From 

Belmonte, in prep. 
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The landscape surrounding the lake results from intense karstic and glacial activity. Lake 

Basa de la Mora occupies a glacial over-deepened basin enclosed by a frontal moraine 

(Belmonte, 2004) and surrounded by steep limestone walls (fig. 2.2). The catchment 

consists of Mesozoic limestones and sandy limestones affected by several thrust sheets 

(reverse faults). Triassic marl and evaporite formations crop out at the base of the thrust 

sheets, providing a hydrological seal for the lake and favouring localized surface drainage 

into the lake along some creeks. Triassic ophite formations in the watershed are the source 

of highly characteristic sediments (hematite and other Fe- mineral with high magnetic 

susceptibility) within the lake deposits. 

The Basa de la Mora basin belongs to the watershed of the Cinca River, one of the main 

tributaries of the Ebro River. The lake has smooth margins, a relatively small watershed (209 

ha) and a total lake surface of ca. 3 ha (fig. 2.3). It is characterized by large seasonal water-

level fluctuations: the maximum depth varies from ca. 2.5 to 4.5 m seasonally. The lake is 

fed by precipitation, surface runoff, ephemeral creeks and several small springs located on 

the southern margin. Water losses take place through a surface outlet to the north and 

evaporation. The substrate, made up of non-permeable Triassic material, greatly restricts 

groundwater losses. 

 

Figure 2.3. Lake Basa de la Mora panoramic view. 
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2.2.2. Climate and vegetation 

The Pyrenees is a mountain range in south-western Europe that extends from the Atlantic 

Ocean in the west to the Mediterranean Sea in the east, leading to a diverse climate and 

plant community along a W-E transect. The precipitation in the Pyrenees results from two 

different mechanisms: precipitation in the east is linked to cold fronts and some summer 

convection storms, while precipitation in the west comes from Atlantic frontal systems (Millán 

et al., 2005). The Atlantic influence extends as far as the Ordesa Valley (García-Ruiz et al., 

2001), ca. 150 km from the Atlantic coast and 22 km west of the BSM. Both systems are 

directly related to the North Atlantic Oscillation (NAO) that principally determines winter 

precipitation in western Europe (Trigo et al., 2002). 

 

Figure 2.4. a) Temperature map of the Pyrenees. b) Precipitation map of the Pyrenees. Source: Atlas 

Climático Digital de la Península Ibérica. Map drawn by Miguel Sevilla Callejo. 

The climate of the study area is sub-Mediterranean with continental features. Rainfall (annual 

average = 1360 mm) peaks during spring and autumn, following the Mediterranean pattern 

(García-Ruiz et al., 1985). However, summers are not as dry as is typical of the 
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Mediterranean because of frontal and convective precipitation which affects the mountainous 

areas in July and August. Mean air temperatures range from 0.5 to 15ºC between the coldest 

(January) and warmest (July) months, respectively (fig. 2. 4). 

The vegetation cover shows a characteristic contrast between south and north facing slopes: 

the southern slopes are characterised by mediterranean-type components with 

sclerophyllous shrubland and evergreen Quercus communities, while the northern slopes 

have mixed conifer/deciduous taxa forests, including Pinus sylvestris, Pinus uncinata, Abies 

alba, Betula alba, Corylus avellana, Fagus sylvatica, Quercus faginea and Quercus petraea 

(fig. 2.5). 

The altitudinal gradient between the valley bottoms and the Cotiella Peak, from 550 to 2900 

m a.s.l., gives rise to an altitudinal distribution of vegetation, typical of mountain 

environments. Lowlands are occupied by crops and valley bottoms by riparian corridors 

(Fraxinus excelsior, Populus spp., and Salix spp.). Forests occur from the base of the foothills 

up to ~ 2000 m a.s.l. Below 1700 m a.s.l., the dominant species are determined by moisture 

availability and temperature range, mostly controlled by the slope orientation. From 1700 to 

2000 m a.s.l. the forest is mainly composed of Pinus uncinata mixed with Juniperus 

communis shrubland and Rhododendron ferrugineum at the treeline. Above 2000 m a.s.l., 

steep rock formations and harsh climate prevent forest development, leading to a scrub-

dominated landscape formed by dwarf junipers (Juniperus communis sbsp. nana), and alpine 

grassland (Nardus stricta, Festuca eskiae, Caricion davallianae and Cynosurus cristatus). 

Lake Basa de la Mora (BSM) is located in the subalpine belt, near the treeline, so the 

vegetation surrounding the lake is alpine grassland, Pinus uncinata forest and Juniperus 

communis-Rhododendron ferugineum shrublands.  

 

Figure 2.5. 3D regional vegetation map. In order to better discern the topography, the North is plotted 

at the bottom of the figure. The star marks the location of the Lake Basa de la Mora. Map plotted by 

Miguel Sevilla Callejo. 
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2.3. METHODOLOGY 

The composite sequence of Basa de la Mora (BSM08-1A-1U) is based on two parallel cores 

retrieved from the deepest part of the lake (fig. 2.6) in summer 2008 (fig. 2.7). The longest 

core was taken with an Uwitec coring system and platform from the Pyrenean Institute of 

Ecology (IPE-CSIC). Two gravity cores were taken to recover the uppermost part of the 

sequence and the sediment/water interface. One of the short cores (BSM08-1A-1G) was sub-

sampled every 1 cm in the field for 210Pb and 137Cs analyses and the other core (BSM08-1B-

1G) was used to complete the upper part of the sequence. The cores were correlated 

applying sedimentological and geochemical criteria. The total length of the composite 

sequence is 12.10 meters. An additional littoral core (BSM-2A-1U) was taken in order to 

compare lacustrine depositional environments (fig. 2.5). 

 

Figure 2.6. Location of cores BSM08-1A-1U and BSM08-2A-1U. 

The cores were split lengthwise into two halves, imaged with a DMT Core Scanner and 

analyzed with a Geotek Multi-Sensor Core Logger (MSCL) at 5 mm intervals to characterise 

the sediment physical properties at the Limnological Research Center at the University of 

Minnesota (USA). Elemental geochemical composition was analyzed using the Itrax XRF Core 

Scanner at the Large Lakes Observatory (LLO) at the University of Minnesota (USA) at 0.5 

cm resolution using 30-s count times, 30 kV X-ray voltage, and an X-ray current of 20 mA. 

These measurements provide estimates of relative element concentrations. The cores were 

sub-sampled at 2 cm resolution for Total Organic Carbon (TOC) and Total Inorganic Carbon 

(TIC) and analysed with a LECO144DR elemental analyser at the IPE-CSIC laboratory of 

Zaragoza (Spain). Sedimentary facies were defined by macroscopic characteristics including 

colour, grain-size, sedimentary structures, fossil content and by microscopic smear slide 

observations (Schnurrenberger et al., 2003). The sedimentological descriptions are 
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supported by Scanning Electronic Microscopic (SEM) observations of selected samples made 

at the University of Zaragoza (Spain). Up to 11 samples representing the main facies were 

analysed for grain size distributions using a Malvern Laser Sizer (Mastersizer 2000) after 

removing the organics by H2O2 and using a dispersant agent to disaggregate the samples. 

Additionally, 36 samples were analysed for their mineralogical content by X-Ray Diffraction 

using an automatic Siemens D-500 X-ray diffractometer: Cu ka, 40 kV, 30mA and graphite 

monochromator. Identification and quantification of the different mineralogical species 

present in the crystalline fraction were carried out following a standard procedure (Chung, 

1974). Sedimentary facies and physical properties (density, magnetic susceptibility) were 

also obtained for the littoral core (BSM-2A-1U).  

 

Figure 2.7. Core drilling campaign in Lake Basa de la Mora (2008). 

Samples for pollen analyses were obtained every 5 cm on both the BSM08-1A-1U and 

BSM08-1B-1G cores. This record covers the whole sedimentary record, except the base of 

the sequence (1209 - 1165.5 cm depth), which was sampled at higher resolution (1 cm) 

since the sedimentation rate was extremely low (see below). Sediment samples were 

prepared following the standard protocol described by Faegri and Iversen (1964) or Moore 

and Webb (1978), with some modifications (Dupré, 1988) including HCl, and KOH, mineral-

organic particles separation with Thoulet solution (2.0 gr/cm3 density) and sieving with 212 

and 10μm mesh. Lycopodium spores in a known concentration were added in order to 

calculate the pollen concentration in the sediment and to test the laboratory procedures 

(Stockmarr, 1971). Pollen was identified using an optical microscope, with help of the 

reference collection of the IPE-CSIC and identification keys (Moore et al., 1991; Reille and 

Lowe, 1995). Counts were made to obtain a pollen sum, excluding aquatics and exotics, of at 
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least 300 grains from a minimum of 20 taxa (fig. 2.8). The results have been plotted using 

PSIMPOLL 4.27 (Bennett, 2009). Additionally, 19 fresh moss samples were collected in order 

to analyse the current pollen rain. Samples were selected across a distant transect from the 

lake shore up to 1km-distance, in order to test differences in pollen rain with distance to the 

lake (fig. 2.9). Only 8 samples of them have been analysed in the present work. Samples 

were prepared following a similar process that fossil pollen samples but including acetolysis 

method as a first step. 

 

Figure 2.8. Photomicrographs of pollen grains. From left to right: a) Pinus, b) Olea europaea, c) 

Quercus sp., d) Poaceae, e) Betula sp., f) Corylus and g) Chichorioideae. 

 

Figure 2.9. Location of the moss samples recolected through a transect from Lake Basa de la Mora. 

Only 8 of them (T1, T3, T5, T7, T9, T11 and T13) have been analyzed in this work. 
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Correlation analyses were made on smoothed data, after testing for normality (Shapiro-

Wilk), using Pearson or Spearman correlation tests. Analysis have been performed by the R 

software package (Venables et al., 2008). Pairwise comparison was performed between MS 

and geochemical parameters, to help in the facies description, and then between MS (as a 

high-resolution sedimentological proxy) and the pollen data, to assess possible links between 

sedimentary changes and vegetation.  

Sedimentary micro-charcoal particles 

were identified on pollen slides by 

optical microscopy (fig. 2.10). Only 

charcoal particles over 10 µm were 

counted in the same smear-slides 

than pollen grains and these were 

easily identified as black, angular and 

opaque particles (Clark, 1988). 

Charcoal influx (mm2/cm3) was 

estimated after Tinner and Hu 

(2003). No Lycopodium spores were 

found in some of the slides, so 

charcoal influx values were obtained 

by linear interpolation between the 

adjacent samples. 

Chironomid samples were collected 

every 20 cm along the entire core, 

except at the top of the sequence 

(2.5-50 cm depth) where the sample 

interval was increased to 5 cm. The 

samples were processed following the 

standard procedure (Hofmann, 1986): 

10% KOH digestion at 70º and 300 

rpm for 20 minutes, followed by 

sediment sieving (90 μm). 

Chironomidae larvae head capsules 

(fig. 2.11) were examined under 

stereo microscope using a Bolgorov 

tray, picked out manually and 

dehydrated in 96% ethanol, before 

being mounted ventral side upwards 

in Euparal® as permanent slides. 

Taxonomic identification was carried 

out using an optical microscope (Olympus CX41) at 40x magnification and Cell B Imaging 

Software for Life Science Microscopy (Olympus). The larval head capsules were identified to 

 

Figure 2.10. Photomicrograph of pollen and microcharcoal 

slides of representative samples. 1: Pinus grain; 2: 

Microcarcoal particle. 

 

Figure 2.11. Photomicrograph Chironomus larvae head 

from BSM samples. 
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the lowest taxonomic level possible using several specialized guides (Wiederholm, 1983; 

Rieradevall and Brooks, 2001; Brooks et al., 2007).  

The chronology of the sequence is based on 15 calibrated AMS radiocarbon dates from the 

long core BSM08-1A-1U and 137Cs and 210Pb dating from the short core BSM08-1B-1G (fig. 

2.12). Most of radiocarbon dates are based on terrestrial macrofossils and charcoal and they 

were analysed at Poznan Laboratory (Poland) (table 2.1). Bulk sediment and pollen 

concentrates were dated in the lowermost part of the sequence because of the paucity of 

organic remains. Dates have been calibrated using CALIB 6.0 software and the INTCAL09 

curve (Reimer et al., 2009). The 2σ probability distribution interval was chosen. The age 

model was constructed by linear interpolation between the median ages of the probability 

distribution of adjacent calibrated dates. The 210Pbex and 137Cs activity in the upper samples 

was measured by gamma-ray spectrometry, using a high-resolution low-energy coaxial HPGe 

detector coupled to an amplifier at the Estación Experimental de Aula Dei. The chronology 

based on 210Pbex was estimated by applying the constant rate of supply  (CRS) model by 

Appleby (2001). The resulting age model provides a robust chronological framework for the 

high resolution paleo-environmental reconstruction presented in this work.  

2.4. RESULTS 

2.4.1. Chronology 

Despite the existence of 15 AMS radiocarbon dates (table 2.1, fig. 2.12), the final age-depth 

model has been made with only 13 of them because the two lowermost dates (at 11.98 and 

12.06 m depth) were not considered reliable. These basal samples are the only ones not 

based on terrestrial macrofossils (table 2.1). When these two dates (12628 ± 100 and 15828 

± 600 cal yr BP) are included in the age model, they force a change from consistently high 

sedimentation rates (1.2 mm/yr) between 0-11.67 m depth to extremely low rates (0.064 

mm/yr) at the base (11.67-12.09 m depth). Given that these basal dates point out to the 

Late Glacial period, we attempted to characterize this zone by increasing the pollen sampling 

resolution. However, the pollen record did not show changes indicative of the last glacial-

interglacial transition (LGIT, see section 4.3, zone BSM-0). Since there is no sedimentary 

evidence for a depositional hiatus, and no major change in the vegetation composition has 

been recorded, these two dates and the sediment interval in between were not used in the 

final age model.  

The age model excluding the two basal dates indicates that the 11.67 m long record spans 

the last ca. 9.8 cal yr BP (fig. 2.12). Thus, the final age-depth model is based on 13 

calibrated AMS radiocarbon dates, 11 on macrofossils and two on charcoal remains. 
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The short core, that includes the most recent period, has been dated by 210Pb and 137Cs 

activities. Two well-defined 137Cs peaks are recorded at the uppermost part of the sequence 

providing markers for the 1954-1959 and the 1963 maximum atmospheric nuclear bomb 

testing. The chronology based on 210Pbex compares fairly well with the 137Cs peaks (fig. 

2.10). 

2.4.2. Sedimentary facies, geochemistry and lithological units 

Six sedimentary facies were identified based on visual description, microscopic observations, 

grain-size data and mineralogical and geochemical composition (table 2.2). The sediments 

consist of either: i) carbonate – poor (< 2 % TIC), with lower TOC and high MS, organized in 

laminated or banded intervals, or ii) carbonate-rich (2 – 7 % TIC) with variable, but higher 

organic matter content (1-3 %) and low magnetic susceptibility, arranged in massive to 

banded deposits. The grain-size data indicates finer (mode at 6-7 µm) and better-sorted 

sediments in the silicate-rich, carbonate- poor facies, and coarser and more poorly sorted 

material in the carbonate-rich sediments. 

 

Figure 2.12. a) Age-depth model for the composite sequence of Basa de la Mora based on 15 AMS 14C 

dates and 210Pb and 137Cs activity at top.  b) 210Pb-based age model and 137Cs profile obtained for the top 

50 cm. 
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(b) Lab Code Depth 

(cm) 

Sample type 
14C 

age (yr BP) 

Calibrated 

age, 2σ (yr cal 

BP) 

Median  

probability (yr 

cal BP) 

Poz-29744 60 Terrestrial macrorest 385 ± 30 426-507 456 

Poz-35854 172 Terrestrial macrorest 1335 ± 30 1231-1304 1276 

Poz-29745 230 Terrestrial macrorest 2100 ± 30 1995-2146 2072 

Poz-35853 269 Terrestrial macrorest 2615 ± 30 2718-2777 2749 

Poz-35852 337 Terrestrial macrorest 3200 ± 30 3368-3469 3419 

Poz-35804 422 Terrestrial macrorest 3815 ±35 4089-4299 4206 

Poz-29743 502 Terrestrial macrorest 5185 ± 35 5893-6002 5942 

Poz-35803 562 Terrestrial macrorest 5840 ± 40 6533-6745 6657 

Poz-35802 677 Terrestrial macrorest 6450 ± 40 7288-7430 7367 

Poz-29746 795 Charcoal 7330 ± 50 8014-8214 8125 

Poz-35801 943 Terrestrial macrorest 7930 ± 50 8628-8983 8778 

Poz-29747 1011 Charcoal 7950 ± 50 8640-8990 8817 

Poz-29779 1167 Terrestrial macrorest 8780 ± 50 9581-9941 9798 

Poz-35856 1198 Bulk sediment 10710 ± 60 12547-12743 12627 

152235 1206 Pollen concentrates 13080 ± 100 15181-16476 15828 

Table 2.1. AMS radiocarbon dates from core BSM08-1A-1U. Rejected dates are shown in brown and italics. 

 

Figure 2.13. SEM image from Facies 5 of the BSM sediment core. A) authigenic crystals of carbonate partially 

disolved. B) authigenic crystals of gypsum and a diatom . C) detrital carbonate grains and diatom remains. D) 

detrital carbonate grains and authigenic grains of carbonate and gypsum. 



2. Basa de la Mora sequence. Climate at high altitudes 

 

41 
 

The first group of sediments (Facies 1, 2 and 3) are banded to laminated silicate and 

carbonate fine silts dominated by clay minerals (20-30 %) and quartz (5-15 %) with minor 

amounts of calcite (< 25 %) and with presence of hematite, pyrite and clinochlorite. Facies 3 

has the highest MS, and relatively high carbonate content. Facies 1 and 2 are more silicate-

rich, but Facies 2 is finer, with lower MS, better-defined lamination and higher TOC content 

than Facies 1. The second group (Facies 4, 5 and 6) is dominated by massive carbonates (ca. 

6% TIC; 60-80% calcite). Facies 5 and 6 have mottled textures and abundant gastropods, 

indicating littoral deposition. These facies dominate the littoral core (BSM-2A) almost 

entirely. Facies 4 has a higher TOC content (up to 3%) dominated by macrophyte and 

terrestrial remains. Facies 5 contains authigenic crystals of carbonate and gypsum, partially 

dissolved, pointing to deposition in ephemeral lake conditions with rapid fluctuations of lake 

level and salinity (fig. 2.13). Diatoms (pennate, benthic) only occur in the carbonate-rich 

Facies 5. Facies 6 has a slightly banded texture and lower TOC content than the other 

carbonate facies. 

The BSM sequence has been divided into three main sedimentary units according to 

sedimentary facies, MS, TIC and TOC percentages and the mineralogical and geochemical 

composition (XRF) (fig. 2.14).  

i. Unit 3 (1168-491 cm depth; 9800-5700 cal yr BP) corresponds to the lowermost part 

of the sequence and it is characterized by banded carbonate – poor sediments with 

high values of MS and relatively low TOC percentages (Facies 1, 2 and 3). TIC 

percentages and Ca, Sr and S values are low throughout Unit 3 while Si, K, Ti values 

(and particularly Fe and Mn) are high. The lowermost Sub-unit 3b (1168-690 cm 

depth, 9800-7450 cal yr BP) is composed of laminated Facies 1 and a thin interval of 

Facies 3. Magnetic Susceptibility (MS) reach the highest values of the sequence and 

are positively correlation with Mn (table 2.3). The high MS values are related to the 

presence of paramagnetic minerals eroded from ophite outcrops. Values of Ca and 

TIC are relatively low, but also display a strong positive correlation with MS. TOC 

percentages are the lowest in the sequence while TOC/N ratios are the highest. Sub-

unit 3a (690-491 cm depth, 7450-5700 cal yr BP) is composed of Facies 2 and has 

finer lamination, lower MS and higher TIC and TOC values. Sub-unit 3a MS values 

are still high but decrease progressively. MS is significantly positively correlated with 

Mn and Fe (table 2.3). Ca values are very low and not significantly correlated with 

MS. TOC percentages increase, showing a significant negative correlation with MS, 

while TOC/N ratios decreases. 
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ii. Unit 2 (491-93 cm depth; 5700-680 cal yr BP) is made up of carbonate-rich Facies 5 

and 6 with intercalations of organic-rich Facies 4. Thus, Unit 2, although highly 

variable, is characterized by the lowest values of MS and the highest content in TIC 

of the whole sequence. The high values of TIC in Unit 2 (up to 8%) are related to 

precipitation of authigenic carbonates. Sr and S elements increase considerably in 

this unit. TOC percentages also vary greatly during this period but, in general, they 

are relatively high and increase upwards. Relatively low TOC/TN values (< 12) 

indicate the dominance of lacustrine organic matter (Meyers, 2003). Si, Ti, Fe and 

Mn show parallel trends to MS (table 2.3). Unit 2 can be subdivided into three sub-

units, following the facies association. Thus, BSM 2c (491-350 cm depth; 5700-3540 

Facies Facies description 

Clastic, laminated facies 

1  Gray banded to laminated quartz and carbonate silts. Mostly composed by clay minerals (45 

%), calcite (17 %) and, quartz (7 %) and low organic matter (<1%). High MS (100 SI). 

Laminated intervals are composed of up to 1 cm thick couplets of (1) black, carbonate silty-

sands with high quartz content, abundant hematites, chlorite and maphic minerals and 

occasional terrestrial and macrophyte remains and (2) gray carbonate silts with lower 

silicate minerals content and rare organic matter.  

2  Dark gray laminated carbonate silts. Mineralogical composition similar to Facies 1, but 

better laminated higher organic content (1-2 %) and lower MS (average 40 SI). Couplets 

composed of mm- thick laminae of (1) black, carbonate silty-sands with abundant terrestrial 

and macrophyte remains and (2) brown carbonate silts with less siliciclastic minerals and 

lower organic matter.  

3  Light gray banded carbonate silts. Dominant carbonate content (TIC, X %; calcite, 40 %); 

quartz (6 %) and significant amounts of hematites, pyrite, clinochlorite, other maphic. Low 

organic matter (1%). Very high MS (>150 SI). 

Interpretation 
Clastic dominated deposition in distal, deeper setting. Laminated facies reflect flooding 

episodes reaching the centre of the lake. More abundant carbonate (Facies 3) or organic 

matter (Facies 2) reflects changes in watershed and littoral environments. 

 

Carbonate and organic-rich facies 

4  Black, massive, carbonate silts. Composition is dominated by calcite (45 %), quartz (10 %), 

clay minerals (10 %) and organic matter (>2%) of terrestrial and macrophyte origin. 

Abundant pyrite and rare hematites. Low MS (25 SI). Occasional presence of pennate 

diatoms. 

5  Light gray, massive, carbonate silts. Composition is dominated by calcite (70 %), with 

relatively low quartz and clay minerals (7 %) and organic matter (<2%); occasional pyrite 

and rare hematites. Low MS (25 SI). Organic matter is terrestrial, macrophyte and 

lacustrine origin. Mottling is common. Abundant gastropods and presence of pennate 

diatoms.  

6  Light brown, banded, carbonate silts. Composition is dominated by calcite (30 %), clay 

minerals (15 %) and relatively low quartz (9 %) and organic matter (<2%) mostly 

terrestrial and macrophyte remains.  

Interpretation 
Carbonate dominated deposition in littoral environments with higher carbonate and organic 

productivity (Facies 5) deeper, with more frequent anoxic conditions (Facies 4) and 

transitional (Facies 6).  

Table 2.2. Facies description and interpreted depositional environment of BSM sequence. 
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cal yr BP) is constituted by the alternation of cm-thick intervals of Facies 4 and 6 and 

displays an upward TIC increase (up to 8%). TOC percentages are highly variable but 

generally low (1-2 %). BSM 2b (350-240 cm depth; 3540-2200 cal yr BP) represents 

a 1 m-thick interval of Facies 5 with the highest TIC, Ca and calcite values and the 

lowest TOC and MS of the sequence (fig. 2.14). Higher Sr values occur as a result of 

more abundant biogenic aragonite. Finally, BSM 2a (240-93 cm depth; 2200-700 cal 

yr BP) comprises rhythmic sequences of about 20 cm-thick composed of thin layers 

of Facies 1->, Facies 4 -> Facies 5 (detrital- organic-carbonate).   

iii. Unit 1 (93-0 cm depth; 698 cal yr BP-2007 AD) comprises carbonate – poor Facies 1 

and organic-rich Facies 4. As a consequence, all geochemical indicators show high 

variability. Facies 1 lamination is less well defined than in Unit 3. MS values increase 

again and show strong positive correlation with Si, Ti, Mn and Fe, while the 

correlation with Ca and TIC and TOC is strongly negative (table 2.3). TOC/N ratios 

increase at the base of the unit and decrease towards the top: TOC percentages 

show the opposite pattern. 

 
Unit 1 (0-93 cm) 

 
Unit 2 (93-491 cm) 

 
Sub-unit 3a (491-690 

cm) 
Sub-unit 3b (690-

1168) 

 MS MS MS MS 

    r     p    r       p       r        p          r      p 

Si 0.726 < 0.001 0.546 < 0.001 0.146 0.148 -0.346 < 0.001 

Ti  0.699 < 0.001 0.688 < 0.001 0.280 0.005 -0.388 < 0.001 

Mn 0.688 < 0.001 0.545 < 0.001 0.543 <0.001 0.451 < 0.001 

Fe 0.806 < 0.001 0.582 < 0.001 0.643 < 0.001 0.162 0.013 

Ca -0.660 < 0.001 -0.564 < 0.001 0.179 0.075 0.671 < 0.001 

TIC -0.700 < 0.001 -0.591 < 0.000 0.404 <0.001 0.689 < 0.001 

TOC -0.746 < 0.001 -0.409 < 0.001 -0.609 < 0.001 -0.494 < 0.001 

Table 2.3. Correlation values between Magnetic Susceptibility and other geochemical parameters in the 

different sedimentary units. 
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2.4.3. Modern pollen rain 

The modern pollen rain results agree largely with the regional vegetation around the Lake 

BSM. Despite the different distance to the lake (from 0 to 500 m), 7 out of 8 samples 

present stunning similar percentages of pollen highlighting the homogeneity of the pollen 

rain composition and its dispersal. Furthermore, the mean values of the modern pollen-rain 

samples compares fairly well with pollen percentages from the core-topmost sample 

(BSM08-1B-1G-1,12-13) (fig. 2.15). The AP values represent around 70% of the total, with 

Pinus accounting from approximately 60% in agreement with the dominance of this tree in 

the area and its high pollen productivity. Despite the distance of current formations to the 

lake (more than 5 km) (fig. 2.5 and Appendix I, fig A2.1), all types of Quercus are present in 

the pollen rain with values up to 5%. The mesophytes (Betula, Corylus and other Mesophytes 

grouo) show very low values or are even absent in some samples in agreement with their 

position in the bottom of the valleys. Regarding the main anthropogenic species it is 

remarkable the presence of Olea, with values ranging from 1 to 5%, and the occasional 

appearance of Vitis, in spite of the distance of the olive and wine fields to the lake, indicating 

the long-distance transport of these two species, particularly Olea (Cañellas-Boltá et al., 

2009). Conversely, there is a large underestimation of all herbaceous species. The spare 

sample (T15) shows an overrepresentation of Pinus, reaching almost 85%, and an 

underrepresentation of the rest of trees. Nevertheless, this sample is located the farthest 

from the lake (500 m) and in any case, those values disguise the real vegetation 

 

Figure 2.15. Modern pollen rain from 8 mosses samples collected across a distant transect from the 

lake shore to up 500 m. Sample highlighted in orange represents the core-topmost sample. Other 

Mesophytes group includes: Alnus, Carpinus, Salix, Ulmus, Populus, Acer, Fraxinus and Juglans. 

Deciduous forest group includes: Betula, Corylus, deciduous Quercus Alnus, Carpinus, Salix, Ulmus, 

Populus, Acer, Fraxinus, Fagus, Tilia and Juglans. Nitrophilous group includes: Plantago and Rumex. 
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composition. Despite the current grazing activity recognized in the area, only Urticaceae, 

Rumex and Plantago proportions (nitrophilous taxa) appear significant, while Artemisia 

values are remarkably low or even absent. This taxon is usually considered as anthropogenic 

indicator also in Late Holocene records, but in the case of the BSM sequence it seem not be 

related to the occurrence ofrecent human pressure given that, depite the current moderate 

grazing activities in the area, it is absent in current vegetation formations. Additionally, 

coprophilous fungi, other usual indicator of human pressure in pollen diagrams (López-

Merino et al., 2011; Morales-Molino, 2013) are not a relevant component of the modern 

pollen rain.  

In general, these results suggest that in the BSM sequence, tree values around 5% seem 

represent middle distance presence while tree values under 5% represent long-distance 

presence. They also suggest that the grazing activity cannot be directly related to the 

presence of Artemisia nor coprophilous fungi as often used in palynological interpretations, 

but to the presence of nitrophilous (like Rumex or Plantago) plants instead.  

The matching values between the modern pollen rain and the vegetation present in the area 

validate the fossil pollen rain as representative of local, nearby and relatively regional past 

vegetation landscapes.  

2.4.4. Pollen and charcoal data 

The pollen record can be divided into six zones (BSM-0 to BSM-V: fig. 2.16). In BSM-I to 

BSM-V (9.8 ka cal BP-present), the 5 cm-resolution pollen analyses provide a temporal 

resolution of 22 to 150 years per sample. Statistical results for pairwise comparison between 

vegetation and geochemical parameters are shown in table 2.4. The maximum number of 

charcoal particles counted was 3098, with a mean of 307 and a SD of 453. The patterns of 

charcoal influx are consistent with the pollen zones. Appendix I (figs A.2.2, A2.3 and A2.4), 

located at the end of the thesis, shows all taxa found for the BSM sequence. 

BSM-0 (1209-1167.5 cm depth; before 9800 cal yr BP) 

This zone is characterised by scarce representation of the herbaceous component 

(NAP) and particularly the steppe taxa group (Artemisia, Chenopodiaceae, 

Helianthemum, Plantago, Rumex, which rarely exceed 5-10 %), and abundant 

representation of arboreal pollen (AP), dominated by conifers (mainly Pinus) and 

deciduous forest taxa (Betula, Corylus, Alnus, Salix, Ulmus, Populus, Acer, Fraxinus, 

Fagus, Tilia and deciduous Quercus), with values around 25-30 % (fig. 2.16). 

Representation of Poaceae and aquatics (Cyperaceae, Ranunculus, Myriophyllum and 

Potamogeton) in this zone is not significantly different to the rest of the sequence. 

The pollen spectra of this zone are not consistent with a pre-Holocene deposit as 

would be inferred from the two dates (15.8 cal ka BP and 12.6 cal ka BP) from this 

interval. Pollen content, together with the lack of sedimentological evidences for a 

hiatus, indicates that these dates are too old, due to a possible reservoir effect. Both 
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palynological and sedimentological data suggest these are Holocene sediments, but 

given the absence of chronological control the record from this zone is not further 

considered in this study. 

BSM-I (1167.5-815 cm depth; 9800-8200 cal yr BP) 

Arboreal pollen varies between 60 and 80% of the total pollen abundance, and in 

some cases it exceeds 85%. Pinus is the main arboreal taxon, but deciduous taxa are 

well represented by Betula, Corylus and deciduous Quercus, with some significant 

fluctuations in Betula. Juniperus is also present with percentages above 6%. 

Evergreen Quercus and Mediterranean shrubs (Pistacia, Rhamnus, Phillyrea, Buxus, 

Sambucus, Ephedra fragilis and E. distachya) are present in relatively low but 

continuous percentages. The first Tilia appearance is recorded at 870 cm depth 

(8500 cal yr BP); this timing is consistent with other records from the region 

(Montserrat-Martí 1992; González-Sampériz et al., 2006; Miras et al., 2007; Pèlachs 

et al., 2007). Poaceae dominates the herbaceous stratum, while the abundance of 

Helianthemum significantly declines and Artemisia decreases in importance. 

Myriophyllum is the dominant aquatic. A significant change is found towards at the 

end of the zone (860 - 815 cm depth; 8400-8200 cal yr BP) characterized by a sharp 

decline in Betula, Corylus and deciduous Quercus, the virtual disappearance of Other 

Mesophytes (fig. 2.16) and the total absence of Tilia. Pinus increases to its maximum 

in the whole sequence, reaching 75%, and Helianthemum reappears at this time. 

This is a phase of high variability in fire activity, although charcoal counts are very 

low. Pinus and Juniperus show a positive correlation with MS within this zone, while 

Betula, Corylus, Quercus faginea, evergreen Quercus and Myriophyllum are 

negatively correlated with MS (table 2.4). Thus, MS is correlated negatively with 

moisture-adapted and temperate taxa, but positively with more drought-resistant 

taxa such as Pinus and Juniperus.  

BSM-II (815-491 cm depth; 8200-5700 cal yr BP) 

After the short, abrupt vegetation change previously described, forest contracts 

slightly but there is considerable compositional variability. Pinus decreases to 35% 

and Juniperus is also highly reduced in abundance. Deciduous taxa, mainly Betula, 

Corylus and deciduous Quercus, show large and more continuous expansion reaching 

their maximum values in the sequence (fig. 2.16). Tilia reappears and is constantly 

present at moderate levels throughout the zone. Evergreen Quercus declines to its 

minimum values, while Mediterranean Shrubs fluctuate in abundance. The first 

isolated appearance of Abies occurs at 646 cm (7200 cal yr BP). The NAP is mainly 

composed by Poaceae, Artemisia and Lamiaceae, as in the rest of the record. Aquatic 

plants are well represented by Cyperaceae, Pedicularis, Ranunculus and 

Potamogeton, although Myriophyllum is dominant and reaches its highest values in 

the sequence. Deciduous Quercus and Tilia abundances show a strong negative 

correlation with MS (table 2.4). There is an increasing trend of fire activity, although 

the variability is high (Lasheras et al., 2013). 
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BSM-III (491-389 cm depth; 5700-3900 cal yr BP) 

The beginning of this zone is characterized by a steep decline in deciduous forest 

taxa, mainly Betula (abruptly reduced by nearly 60%) and deciduous Quercus. In 

contrast, Pinus expands rapidly and Juniperus and evergreen Quercus increase 

slightly (fig. 2.16). Fagus appears for the first time, chronologically fitting the 

regional expansion (Montserrat-Martí, 1992; Pla and Catalán, 2005). The base of the 

zone is characterised by the permanent presence of Abies in the area, after its initial 

appearance shortly before. Poaceae, Artemisia, Lamiaceae and Chenopodiaceae are 

still the main NAP taxa and Rumex rises. No significant changes are recorded on the 

aquatic component except a decrease in Myriophyllum and a short-term 

disappearance of Potamogeton at the base of the zone. The conifer/mesophyte ratio 

is inverted at the top of the zone, just before the transition from Sub-unit 2c into 

Sub-unit 2b. Fire activity reaches a maximum towards the end of this zone. 

BSM-IV (389-93 cm depth; 3900-700 ca yr BP) 

The beginning of this zone is characterized by a change in forest composition. Pinus 

recovers and becomes the dominant arboreal taxon, Abies reaches its maximum 

abundance and Betula exhibits its minimum values (fig. 2.16). Juniperus and 

evergreen Quercus increase, but Corylus and Other Mesophytes only experience a 

slight increase. Tilia decreases progressively and disappears at top of the zone. In 

contrast, Fagus reaches its highest levels, at a time consistent with other records 

from the region (Pla and Catalán, 2005; Pérez-Obiol et al., 2012). A sudden and 

abrupt rise of Artemisia and further decrease in mesophyte taxa accompany the 

Pinus-dominant landscape. The NAP, of which Poaceae and Artemisia constitute the 

main elements, accounts for 40% of the pollen sum. There are two peaks of 

Artemisia in this zone, the most modern (ca. 1000-1300 A.D) of which (when 

Artemisia reaches its maximum value in the whole sequence) coincides with the 

disappearance of Abies and Tilia. The aquatic component is markedly reduced in 

 BSM III & BSM IV (93-491 cm) BSM II(491-815 cm) BSM I (815-1168 cm) 

 MS MS MS 

                r              p         r p         r          p 

Pinus 0.453 0.003   0.444 0.006 0.464 0.001 

Juniperus 0.351 0.023 ― ― 0.339 0.021 

Betula -0.573 < 0.001 ― ― -0.517 < 0.001 

Corylus ― ― ― ― -0.292 0.049 

Tilia ― ― -0.537 0.002 ― ― 

Dec. Quercus ― ― -0.528 0.001 ― ― 

Quercus fag. -0.401 0.009 ― ― -0.373 0.018 

Ever. Quercus -0.378 0.014 ― ― -0.505 < 0.001 

Artemisia ― ― -0.433 0.007 ― ― 

Cyperaceae ― ― 0.414 0.017 ― ― 

Myriophyllum ― ― ― ― -0.592 < 0.001 

Table 2.4. Correlation between MS and pollen taxa in the different pollen zones. 
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abundance, with low values of Myriophyllum and the absence of Potamogeton during 

the most of the zone contrasting with an increase in Cyperaceae. Cultivated taxa like 

Olea, Vitis, Castanea and Cerealia type appear more continuously. Although there are 

some marked peaks of Pinus in this zone, the general trend is for relatively stable 

pine forest during the last phase of sedimentary Sub-units 2b and 2a. An abrupt 

decrease in charcoal concentration lasting several centuries was followed by a new 

abrupt increase in fire activity at the end of the zone. 

BSM-V (93-0 cm depth; 700 cal yr BP-present, 1250-2008 cal AD) 

This zone is characterized by important changes in both pollen and sedimentological 

records (Unit 1). The most relevant feature is the increase in Olea and Fraxinus. 

Pinus increases up to the 70%, but with very short episodes of were abundance is 

much lower (40%). The expansion of pine is coincident with the decline of Abies, 

Betula, Corylus and Other Mesophytes (fig. 2.16). Deciduous Quercus and, especially 

evergreen Quercus increase in abundance in the topmost part of the sequence. The 

NAP is still dominated by Poaceae, but Artemisia drops dramatically while Asteraceae 

and Chenopodiaceae reach their maximum values. Myriophyllum becomes less 

important and Cyperaceae dominates the aquatic assemblage. Variations in MS at 

this time are not correlated with vegetation composition changes. Fire activity is very 

high during most of the zone, but ceases in the top part of the record.  

2.4.5. Chironomids 

A total of 6422 chironomid head capsules were picked up, individually mounted and 

identified from 71 samples of the core BSM08-1A by Pol Tarrats and Maria Rieradeval 

(Universidad de Barcelona) (Tarrats, 2011). Total chironomid biodiversity was represented 

by 18 taxa (up to 9 taxa per sample), belonging to three chironomid subfamilies: 

Tanypodinae, Orthocladiinae and Chironominae. Tanytarsus gr. lugens was the most 

abundant all through the core, followed by Procladius, Chironomus and Paratanytarsus. 

Chironomus or Paratanytarsus are not shown in the diagram (fig. 2.17) because they are 

present through the entire sequence and show no clear pattern of changes through the 

Holocene. The chironomid assemblage indicates that the lake has been always relatively 

shallow and oligotrophic, although relatively rich in organic matter. Quantitative analysis of 

the Chironomidae allows the sequence to be divided into 4 zones: 

CHZ-1: Chironomid Zone 1 (1168.5-491 cm depth; 9895 - 5700 cal yr BP) 

Low values characterize this zone. Tanytarsus gr. lugens abundance is relatively low 

although with some fluctuations. Procladius reaches its maximum relative abundance 

within the core (30-60%), whereas Pentaneurini tribe appears through the entire 

zone although with a highly fluctuating distribution. The Orthocladiinae tribe is quite 

diverse, with an early representation of Psectrocladius gr. limbatellus and 

Corynoneura and a moderate representation of Orthocladiinae indet. (5-7%), which 

include several taxa related to water runoff and seepages (e.g. Smittia). 
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CHZ-2: Chironomid Zone 2 (491-357 cm depth; 5700 - 3600 cal yr BP) 

The abundance of Tanypodinae subfamily taxa (Procladius and Pentaneurini) 

reduced, whereas Tanytarsus gr. lugens increase and remains relatively high values 

throughout the zone (50-60%). Chironomid content values increase, although 3 

samples from the base of the zone were almost sterile.  

CHZ-3: Chironomid Zone 3 (357-56 cm depth; 3600 - 350 cal yr BP) 

High chironomid content occur, although decreases towards the top of the zone. The 

main difference from the previous zone is the presence of Psectrocladius gr. 

limbatellus throughout the zone with relatively high abundances (up to 20%). 

Procladius reaches relatively high abundance (10-20%), although it does not reach 

previous values. 

CHZ-4: Chironomid Zone 4 (56-0 cm depth; 350 cal yr BP - present; 1600 - 2008 

AD) 

The uppermost zone is characterized by a strong increase of Psectrocladius gr. 

limbatellus, together with Pentaneurini and Corynoneura, and a reduction in 

Tanytarsus gr. lugens. Percentage values, particularly of Procladius, fluctuate, 

although its abundance is similar to the previous zone.  

2.5. DISCUSSION 

2.5.1. The Early Holocene (9800-8150 cal yr BP): strong Mediterranean influence 
and high climate variability 

During the Early Holocene, the Atlantic regions of Iberia were dominated by deciduous 

broadleaf trees (Santos et al., 2000; Muñoz-Sobrino et al., 2005, 2007; Moreno et al., 2011) 

while the Mediterranean, mountain and inland areas were covered mainly by dense pine 

forest (Carrión et al., 2010; Franco-Múgica et al., 2000; Rubiales et al., 2010 Morales-Molino 

et al., 2012). The southern Pyrenees record both climate regimes in a relative small area: 

the Atlantic climate to the west and the Mediterranean climate to the east. These particular 

geographical features led to some marked differences in plant communities between the two 

regions at the onset of the Holocene. Increasing humidity was much pronounced in the 

Atlantic-influenced area, with a large expansion of mesophytes (Montserrat-Martí 1992; 

González-Sampériz et al., 2006), while pine was the main tree taxon in the Mediterranean-

influenced region (Miras et al., 2007; Pérez-Obiol et al., 2012). This suggests a stronger W-E 

precipitation gradient in the southern Pyrenees at the onset of the Holocene, with stronger 

influence of humid fronts in the west and persistent summer drought in the east. 

In the BSM sequence, located at the modern transition between the Atlantic and 

Mediterranean climate regimes, the Early Holocene is characterized by the dominance of 

conifers over mesophytes (BSM-I) (fig. 2.17). High values of pines and Juniperus reflect a 

continental Mediterranean-climate influence during this period. The fire regime is not 
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characterised by either frequent or virulent fires, probably because of fuel limitation as pine-

dominated forests are less flammable than broadleaf woodlands. The dominance of Pinus 

over deciduous taxa suggests the existence of extreme seasonal temperatures and marked 

summer drought during the Early Holocene. However, deposition of carbonate-poor 

laminated Facies 1 and 3 indicates permanent and relatively high lake levels with abundant 

sediment delivery by run-off. High values of MS are related to the presence of paramagnetic 

minerals eroded from ophite outcrops and are consistent with high-energy transport to the 

lake. High correlation between MS and Ca and TIC is indicative of the detrital origin of 

carbonate minerals and supports high erosion rates during this period. The high abundance 

of non-lacustrine Orthocladiinae taxa, related to inlet streams, in this zone supports the idea 

of increased runoff due to high rainfall. The Procladius genus has been reported to be 

important in the Early Holocene in other European regions (Heiri et al., 2003) and its high 

abundance is consistent with higher lake levels because it inhabits fine sediments in the 

profundal zones of lakes (Saether, 1979; Prat et al., 1992).  

The Early Holocene maximum in seasonality in the Northern Hemisphere may have been 

responsible for particularly cold winters and hot summers in mid latitudes. In the southern 

Pyrenees, this would have led to increased snow accumulation in winter and subsequent 

large snowpack melt during the warmer summer months leading to higher run-off. 

Evapotranspiration and low precipitation during summer drought periods would be largely 

compensated by increased melting water, leading to higher lake levels. The negative 

correlation between moisture-adapted taxa and MS supports the idea that run-off would be 

likely linked to melt processes rather than direct precipitation. Furthermore, positive 

correlation between MS and drought-resistant taxa such as Juniperus and Pinus confirms that 

run-off is related to increased continentality during this period. 

The relatively dry and cold Early-Holocene climate of the Basa de la Mora (BSM) is in 

agreement with many studies from western Europe (Leira and Santos, 2002; Bjune et al., 

2005;) and North America (Shuman et al., 2001; Zhao et al., 2010), which have inferred a 

cooler and drier climate probably related to weakened ocean conveyor circulation as the 

rapid, global increase in temperature provoked large input of freshwater from the Laurentide 

sheet into the North Atlantic, weakening Labrador Sea deep convection (Kaplan and Wolfe, 

2006; Renssen et al., 2009, 2012). 

Superimposed on the long-term insolation-driven climate trend, the BSM sequence shows 

significant short-term (submillennial) shifts in pollen percentages and sedimentological 

features during the Early Holocene. Such shifts occurred at 9.7, 9.3, 8.8 and 8.3 cal ka BP 

and are mainly characterized by short-term expansion of pine, accompanied by large 

reductions in all deciduous taxa but most particularly in Betula, implying a substantial 

reduction in humidity. The highest MS values of the whole sequence are also recorded during 

these events, indicating that these periods are characterised by particularly intense run-off 

and sediment delivery from the catchment (fig. 2.17). Cold and relatively humid winters with 

large amount of snow accumulation, and the subsequent snowpack melt and runoff could be 

responsible for increased erosion in the catchment. This interpretation is supported by the 
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sharp and discontinuous presence of rheophilous and non-strictly lacustrine chironomid taxa 

during these short-events. Low percentages of TOC and low TOC/N ratio also point to 

reduced vegetation in the catchment (fig. 2.17). Phases of reduced forest may be due to a 

downward displacement of the treeline, supporting the occurrence of cooler temperatures. 

These events were as short-lived periods of drier and cooler conditions. Sedimentary phases 

with particularly high sedimentation rates associated with arid conditions have been 

recognised in the Central Ebro Basin complex during this period (Sancho et al., 2008; 

Gómez-Paccard et al., 2013). The strong response of the vegetation and hydrology at BSM 

indicates that climate instability was characteristic of the Early Holocene. Similar evidences 

for Early Holocene climatic oscillations have been widely recognised throughout the North 

Atlantic region (O´Brien et al., 1995; Alley et al., 1997; Mayewski et al., 2004; Bond et al 

1997, 2001; Frigola et al., 2007). 

The first Early Holocene cold event is recorded just at the beginning of the BSM sequence at 

9.8-9.7 cal ka BP. Since the BSM record starts at 9.8 cal yr BP, we suggest that this may be 

coincident with the short-lived 9.95 ka cold anomaly detected in the NGRIP record 

(Rasmussen et al., 2007). The impact of this anomaly has been previously noted in the 

western Mediterranean as a phase of forest decline (Fletcher et al., 2010b), as in BSM 

sequence. A global event centred in 9.3 ka cal BP has been widely recorded in many 

sequences from the North Atlantic and Europe (Haas et al., 1998; Rasmussen et al., 2007; 

Fletcher et al., 2013b). In the BSM sequence, this interval coincides with an expansion of 

pine forest and decline in mesophyte taxa but there is no sedimentological change. The next 

cold and arid event occurs at 8.8 ka cal BP. In BSM sequence, this event is resulted in major 

shifts in vegetation and sediment deposition and the apparent disappearance of chironomids. 

This phase coincides with the only occurrence of Facies 3 and the high TOC/TN ratios 

characteristic of this unit suggest a well-vegetated watershed, dominated by Pinus. The 8.8 

ka cal BP cool event is reported in the Artic by Ebbesen et al., (2007) but has not previously 

been reported in southern Europe.  

The next event is recorded at 8.3 ka cal BP. This is the most remarkable vegetation shift in 

the BSM record, with Pinus reaching its highest values and Betula dropping to its minimum. 

Taking into account the age-depth model uncertainties for this period (8300 ± 100 cal yr 

BP), this event could be synchronous with the 8.2 ka cool event (Alley and Agustsdottir, 

2005; Rasmussen et al., 2007), triggered by a large freshwater discharge from former glacial 

Lake Agassiz into the North Atlantic Ocean, causing a reduction of the Atlantic Meridional 

Overturning Circulation (AMOC) (Hoffman et al. 2012). The high-resolution study carried out 

in BSM sequence for this period indicates a minimum timing of 150 years and maximum of 

200 years for the 8.2 ka event. This timing agrees with the precise characterization of the 

8.2 ka event obtained from trapped air in a Greenland ice core (GISP2) (Kobashi et al. 

2007). The abrupt increase in pine in BSM matches the spread of Pinus recorded in the Alps 

(Blarquez et al., 2009), Switzerland (Tinner and Lotter, 2001) and northern Spain (Muñoz 

Sobrino et al., 2007), suggesting a widespread impact in mountain/alpine regions. The 8.2 

event is widely recorded in the north-eastern of the Iberian Peninsula, where human 
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settlements located in a particular harsh region of the Central Ebro basin moved towards 

more humid areas during this interval (González-Sampériz et al., 2009).   

The rapid response of the vegetation to these short climate shifts, related to changes in the 

North Atlantic, seems to be amplified in the BSM sequence because of its ecotonal location 

for some species. The highly responsive nature of the vegetation record highlights the 

climate sensitivity of high altitude transitional areas to environmental changes, as previously 

demonstrated for the central Pyrenees during the Lateglacial period in El Portalet sequence 

(González-Sampériz et al., 2006).  

2.5.2. The Mid-Holocene (8100-5700 cal yr BP): the Climatic Optimum 

The Mid-Holocene is the period with the greatest forest development in Europe, when 

treeline moved upward and reached its maximum elevation in most mountain regions (David 

1993; Ali et al.2003; Ortu et al., 2008; Carnelli et al., 2004; Favilli et al., 2010; Talon et al., 

2010; Cunil et al., 2011; Magyari et al., 2012). In northern Europe, forest expansion is 

related to higher summer temperature (Davis et al., 2003; Bjune et al., 2005; Nesje et al., 

2006), while in southern Europe this is an interval of increased humidity (Carrión et al., 

2010; Colonese et al., 2010; Spötl et al., 2010; Stoll et al., 2013). 

There is a marked shift in the vegetation composition after ca 8.2 ka BP in the BSM 

sequence, (fig. 2.17). Betula, Corylus and deciduous Quercus became the dominant AP 

elements, Tilia and other mesophytes were present, and conifers declined to their minimum 

values, with pine oscillating between 20-30 % and juniper between 2-3% (fig. 2.17). This 

assemblage is very different from that of a dense conifer community near the lake (Court-

Picon et al., 2005). The high values of Betula (up to 26%) in the BSM sequence compare 

fairly well with similar high values recorded in the Pyrenean sequence of El Portalet peatbog 

(González-Sampériz et al., 2006), located at 1802 m a.s.l, Lake Burg (Pèlachs et al., 2007), 

located at 1821 m a.s.l. or Tramacastilla lake, at 1682 m a.s.l., where birch accounted for 

40% of the total pollen (Montserrat-Martí, 1992). The similarity between these sequences 

indicates that Betula grew at higher altitude, in the upper part of the montane belt and 

probably reaching the subalpine belt. The rise of birch and the consequent drop of pine at 

BSM could result from either an increase in annual precipitation or reduced evaporation, as a 

consequence of decreased continentality, favouring water-demanding taxa. High charcoal 

values indicate increased regional fire activity (Lasheras et al., 2013). An increase in 

moisture does not necessarily imply reduced fire activity; the expansion of mesophytes, 

which are more flammable than most mountain pines (Blarquez and Carcaillet, 2010), 

provides high amounts of fuel at an altitudinal zone normally devoid of large forest to be 

burnt. Only minimal changes in summer climate or lightning would be required to promote 

large and virulent fires, leaving a sizeable imprint in the charcoal record. In addition Betula is 

a pioneer taxum that spreads well after fire disturbances (Blanco, 1997; Morales-Molino et 

al., 2012; Gil-Romera et al., accepted). This pattern has been also found in El Portalet 

sequence and in many other Holocene records from the European mountains (Tinner et al., 
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1999; Colombaroli et al., 2008; Vannière et al., 2008) as well as in current patterns of fire 

occurrence (Pausas and Paula, 2012). 

The interval from 8100-5700 cal yr BP was characterized by stable environmental conditions 

in the BSM catchment, as inferred from the stable vegetation composition and the lack of 

marked decreases in any tree taxon despite the high fire activity. Sedimentological and 

geochemical indicators point out a stable, relatively deep lacustrine environment. The 

laminated nature of Facies 2 is consistent with high lake level and the activity of several 

inflow streams. The finer grain size of Facies 2, in comparison to laminated Facies 1 and 3, 

indicates even higher lake levels. Low values of TIC and Ca suggest dilute water, and the 

lack of a significant correlation between Ca and MS indicates that delivery of carbonates from 

the catchment through run-off was negligible. Moreover, the decrease in MS and TOC/N 

along with the increase in TOC suggests a more vegetated environment that would limit the 

erosive effect of precipitation. High and constant Myriophyllum values and the chironomid 

association also reflect a well-established, deeper lacustrine environment; as genus 

Procladius presents its highest abundances along the sequence and Tanytarsus gr. lugens is 

also important in the chironomid assemblage. Moreover, the increase of littoral and 

macrophyte-related taxa such as Corynoneura or Pentaneurini tribe (e.g. Brodersen et al., 

2001) during this period, reflects the greater development of aquatic vegetation in the lake 

favored by milder climate conditions. 

The Mid-Holocene warmer conditions occurred when the flux of meltwater from the 

Laurentide ice sheet stopped and deep convection in the Labrador Sea led to enhanced 

transport heat over the Atlantic-influenced area (Renssen et al., 2009, 2012). Increased 

meridional circulation in the North Atlantic as the Laurentide sheet waned could bring 

warmer conditions to the Iberian Peninsula. Changes in the SST and shifts in insolation 

triggered reorganization of the atmosphere circulation and strengthened meridional 

atmosphere circulation. A northward shift of the monsoon system and its associated rainfall 

belt gave rise to particularly humid conditions in the Sahara and Sahel (deMenocal et al., 

2000; Hély et al., 2009). Enhanced westerlies could bring increased summer humidity over 

the Iberian Peninsula, as inferred from the spread of broad-leaf taxa in this region 

(Pantaleón-Cano et al., 2003; Carrión et al., 2001, Carrión, 2002). 

Although this interval (8.2-5.7 cal ka BP) is the most humid period recorded at BSM, high MS 

and a slight expansion of Pinus indicates a short-lived arid event around 7.5 cal ka BP. 

However, mesophytes only decrease slightly suggesting this interval was less pronounced 

than in previous arid intervals. This event is broadly coincident with the arid 7.4 event 

detected in southern Spain (Jalut et al., 2000) that has been related to the emergence of the 

Neolithic in southern Iberia (Cortés Sánchez et al., 2012), and also correlates with a phase of 

forest decline detected in the western Mediterranean (Fletcher et al., 2010a). In the central 

southern Pyrenees, this phase does not represent a dramatic change in moisture supply and 

vegetation recovers rapidly.  
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2.5.3. The end of the Middle Holocene (5700-3900 cal yr BP): transition phase 

The evolution of the landscape in southern Europe from 6 ka (or even earlier) onwards has 

been widely assumed to be influenced by both climate and human forcings (Oldfield and 

Dearing, 2003; Vannière et al., 2008; Roberts et al., 2011, Sadori et al., 2011). Many 

palynological studies show a clear increase of anthropogenic indicators from the Middle 

Holocene, pointing to an intensification of human activities and a subsequent change in the 

vegetation composition related to forest clearance for pastures and agriculture fields (Jalut et 

al., 2009). However, some of these taxa are naturally found in xeric Mediterranean 

ecosystems (De Beaulieu et al., 2005) and this makes it difficult to discriminate between 

climate and anthropogenic forcings. The spread of xeric vegetation across the Mediterranean 

region during Middle-Holocene does not necessarily imply anthropogenic degradation of the 

landscape (Collins et al., 2012). In addition, fire activity in Mediterranean areas increased 

significantly at this time and its impact on vegetation composition has to be taken into 

consideration (Colombaroli et al., 2007, 2008, 2009; Vannière et al., 2008, 2011). Increased 

fire activity can result from anthropogenic activities but also reflects the climatic shift 

towards arid conditions (Carrión et al., 2001a, 2010; Fernández et al., 2007; Fletcher and 

Sánchez-Goñi 2007; González-Sampériz et al., 2008; Morellón et al., 2008; Jalut et al., 

2009; Corella et al., 2010; Anderson et al., 2011). The expansion of heliophytes (like 

Artemisia, Chenopodiaceae, Asteraceae, Rumex, Plantago, and Poaceae Mediterranean 

species similar to Cerealia type) observed during this period is favoured by increased fire, 

increased aridity, and anthropogenic activity. Overall, the complex changes found in 

Mediterranean areas at the end of the Mid-Holocene are not necessarily related to intense 

human pressure, but could equally well be explained by the trend towards drier conditions.  

There is a sharp change in the vegetation cover and sedimentological features in the BSM 

sequences at 5.7 cal yr BP. The pollen record in BSM-IV (fig. 2.17) is characterized by a 

pronounced increase in pine and decrease in mesophytes, mainly Betula, in combination with 

a rise in Juniperus, deciduous and evergreen Quercus and heliophytes (Artemisia and 

Chenopodiaceae). The replacement of mesophytes by conifers suggests a change from 

humid to drier conditions or, at least, a significant shift in the seasonal distribution of the 

precipitation since reduced summer rainfall is unfavourable to the broad-leaf taxa. The 

sedimentary shift is defined by an increase in carbonates, indicating lower lake levels (Sub-

unit 2c). Lower values of MS suggested reduced sediment transport as consequence of lower 

run-off and inflow streams, which in turn indicates reduced precipitation or meltwater inputs. 

The decrease in allochthonous sediments is reflected in lowered sedimentation rates and 

deposition of carbonate Facies 6, which reflects high carbonate productivity in a littoral 

setting with low and fluctuating water level. The decline in Myriophyllum is consistent with a 

reduction in water level (figs. 2.16 and 2.17). Moreover, the sharp decrease in Procladius 

and the near disappearance of non-lacustrine Orthocladiinae taxa also indicates reduced 

runoff and stream inflow during this period. The increase in chironomid abundances, mainly 

Tanytarsus, could indicate increased decomposition rates in the sediments. 
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Both biological and sedimentological indicators are consistent with a trend to increased 

aridity and a persistent arid phase between 5.6 to 4.6 cal ka PB (fig. 2.15). Similar 

vegetation changes have been recognised in other Pyrenean sequences (Pelachs et al., 

2007), in southern Spain (Jiménez-Moreno and Anderson, 2012) and in Mediterranean 

records (Carrión et al., 2010). Fletcher et al., (2013b) have identified a major phase of 

deforestation in the Western Mediterranean during this period. The coincidence between 

lowered lake levels and forest decline supports the idea of climate as the main forcing. A 

major climate shift has been recognised in many other regions at this time, including the end 

of wet conditions in the Sahara between 6 and 5.5 cal ka BP (deMenocal et al., 2000; 

Kröpelin et al., 2008), and lake-level and vegetation changes indicating drier conditions in 

eastern North America (Shuman et al., 2001; Zhao et al., 2012; Menking et al., 2012). The 

similarities in climate changes between such different geographic areas during the Mid-

Holocene suggest broad-scale changes in the coupled ocean-atmosphere circulation. This 

large-scale and synchronous climate shift may be related to changes in global atmospheric 

circulation. The weakened summer insolation in North Hemisphere led to a southward shift in 

the Inter Tropical Convergence Zone (ITCZ) and thus, the summer Asian monsoon also 

weakened considerably (Wanner and Brönnimann, 2012). Readjustment of these two main 

climatic system drivers led to the establishment of similar conditions to present atmospheric 

tele-connections (ENSO) since ca 5.5 ka (Wanner et al., 2008; Carré et al., 2012; Fletcher 

and Moreno 2012). Southward movement of the ITCZ favoured southward shift of the sub-

tropical North Atlantic high pressure and led to increased summer aridity in the Iberian 

Peninsula (González-Sampériz et al., 2008; Morellón et al., 2009; Corella et al., 2010; 

Valero-Garcés et al., 2011; Carrión et al., 2010; Valero-Garcés and Moreno, 2011). As the 

North Atlantic high-low pressure system moved away, westerlies became weaker and lost 

their capacity to penetrate inland. 

A change towards wetter conditions is observed in the BSM sequence between 4.5 and 3.9 

cal ka BP, marked by increased abundance of mesophytes, and the recovery of Betula and 

deciduous Quercus values (fig. 2.17). This humid period corresponds well with a phase of 

increased storm activity recorded in the Gulf of Lion (Sabatier et al., 2012), suggesting 

stronger and southward migration of the westerlies. However, the total AP decreases during 

this phase. This reduction of the arboreal pollen in the BSM sequence occurs at the same 

time as the first deforestation phase recognised in the Pyrenean sequence of Tramacastilla at 

ca. 4000 BP (Montserrat-Martí, 1992). However, no other indicator of anthropogenic 

pressure was found during this period in the BSM sequence suggesting that the vegetation 

shift was mainly climate driven. The high regional fire activity detected during this period is 

the culmination of a previous trend. Although there was an initial dry phase when fire 

occurrence was linked to the presence of pine forest, higher charcoal influx values during this 

subsequent humid phase are linked with the spread of mesophyte forest. The fact that fire is 

high during both humid and arid spells, reflects on the one hand more permanent drying 

conditions than any time before in the Holocene leading to frequent fire-conducive conditions 

coupled with relatively high fuel availability from mesophyte vegetation, and on the other 
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hand, the strengthening of fire activity during any interval of mesophyte forest expansion 

when fire-conducive conditions occur (Lasheras et al., 2013).  

2.5.4. The Late Holocene (3700-700 cal yr BP): aridity crises 

Complex societies developed across the Mediterranean during the Late Holocene and  human 

pressure on the landscape intensified and expanded (Carrión et al., 2007, Bal et al., 2011; 

Finné et al., 2011; Magyari et al., 2012). High altitude palaeoenvironmental records, where 

anthropogenic activities would have been limited due to both severe weather and difficult 

access, provide an opportunity to isolate the climate signal influencing vegetation evolution 

in recent times (Pérez-Sanz et al., 2011). 

The BSM sequence reveals a well forested landscape during most of the late Holocene (AP 

abundance around 70%, BSM-IV), indicating negligible anthropogenic pressure until ca 1150 

cal yr BP, when the first evidence of forest management is found. The trend towards 

increased aridity that started during the Mid-Holocene transition intensified considerably at 

3700 cal yr BP. The pollen record (BSM-V) is characterized by a sharp fall of Betula and the 

disappearance of birch from this area (fig. 2.15). The expansion of conifers (Pinus and 

Juniperus, which reaches its maximum proportions of the whole record), indicates either 

reduction in annual mean precipitation or a significant change in the seasonal distribution of 

precipitation (Franco-Mugica et al., 2000). The Pinus expansion in BSM is coeval with an 

expansion in other high altitude Pyrenean sites (Pèlachs et al., 2011), which suggests it is 

more likely to be controlled by changed climate  than by human action. At ca. 2900 cal yr 

BP, Artemisia starts to spread rapidly and Myriophyllum decreases strongly (BSM-V). 

Traditionally, the Artemisia expansion has been explained by an increase in pastoral activity 

during the Late Holocene. However, as we have indicated before, in reference to current 

pollen rain data in BSM area, modern values of Artemisia rarely reach 2% even though there 

is moderate pastoral activity in the BSM area (figs. 2.15). Given that there is no evidence for 

major deforestation at the time of the Artemisia expansion, it seems unlikely that this 

represents an interval of more intense anthropogenic activity than today. This suggests that 

the Artemisia expansion at the Basa de la Mora site indicates a climatically-induced 

expansion of dry steppe. There is evidences for a period of intensified aridity across the 

Mediterranean at around 2900-2400 cal yr BP (Jalut et al., 2000).  

The deposition of carbonate-rich massive Facies 5, characterized by the presence of 

authigenic calcite crystals, gastropods, pennate diatoms (fig. 2.13) and mottling textures, 

indicative of bioturbation, provides evidence for lowered lake levels and the development of a 

larger palustrine area at the time of the expansion of dry steppe. Facies 5 characterises most 

of littoral core BSM-2A-1U, supporting our interpretation of the depositional environment. 

The presence of partially dissolved authigenic crystals of calcite and gypsum in Facies 5 

suggests the lake was ephemeral and may have desiccated at times. The strong negative 

correlation between MS and TIC (table 2.3) indicates that decreased runoff, and thus 

reduced external water supply into the lake, led to increased concentration of the lake water 
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and authigenic carbonate precipitation. Furthermore, the negative correlation between MS 

and drought-resistant taxa such us Pinus and evergreen Quercus and the positive correlation 

between MS and Betula strengthen the link between lack of run-off and precipiation deficit 

(table 2.4). Intercalation of organic Facies 4 supports the development of a palustrine area 

with high accumulation of organic matter. In addition, the high percentages of TOC and low 

TOC/N ratio indicate increased lacustrine productivity, consistent with shallower conditions. 

This expansion of littoral areas is consistent with the very high abundance of Cyperaceae 

while Myriophyllum values remain relatively unchanged (Fig. XX). The higher percentages 

(up to 20%) of Psectrocladius gr. Limbatellus (Fig. XX) than in previous zones also indicates 

an increase lacustrine productivity, as this genus is associated with productive environments 

and/or littoral areas with abundance of biofilm primary production on stones or macrophytes 

(Rieradevall et al., 1999; Brodersen et al., 2001).  

There is no charcoal in the BSM between 3.2-1.5 cal ka BP (Lasheras et al., 2013). An 

interval of two millennia without fire is highly unusual as fire activity is registered in most 

southern European sequences during this time (Colombaroli et al., 2010; Tinner et al., 2005: 

Vescovi et al., 2007; Vannière et al., 2008). Arid pulses could prevent forest development at 

high altitudes and, therefore, limiting charcoal production through fires but, considering the 

absence of any other clear biotic or abiotic indicators, it seems more likely that the lack of 

microcharcoal is linked to taphonomical issues affecting charcoal preservation during oxic 

periods and/or short sub-aerial exposure events (Facies 5). Failure in laboratory procedures 

linked to the use of Thoulet solution differential flotation processes may have played a role in 

the absence of microcharcoal in these samples . Currently, new analyses are in progress in 

order to establish the presence of charcoal in this interval. 

There is a common pattern to the evolution of vegetation across the Western Mediterranean 

(including southern Iberia, northern Africa and Italy) during this interval. A general phase of 

forest decline has been recorded in marine record MD95-2043 from the Alborán Sea between 

3.7 and 2.9 cal ka BP (Fletcher et al., 2013b). In Zoñar sequence, low values of AP (< 10%) 

and an expansion of steppe taxa occurred between 4 – 2.9 cal ka BP (Martín-Puertas et al., 

2008). At Sierra de Gádor (Carrión et al., 2003), Pinus and evergreen oak expand at the 

expense of deciduous Quercus after 3940 cal yr BP. In Sierra de Baza, there was a 

replacement of mesophytic by more xeric taxa around 3800 cal yr BP (Carrión et al., 2007), 

while in El Cañizar de Villarquemado, mesophytes and deciduous Quercus decreased and 

steppe herbs increased between 4000-3800 cal yr BP (Aranbarri et al., 2014). A similar 

pattern has been recorded in Italian sequences, with an expansion of sclerophyllous taxa 

between 3.9-3.4 ka (Sadori et al., 2010). These changes can all be attributed to both drier 

climate conditions and human activities, especially considering that several civilizations 

collapsed at ca. 4000 cal yr BP (i.e., Akkadians: Cullen et al., 2000). 
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Figure 2.18. Selected records from Central and Mediterranean Iberia covering last 2000 years that 

indicate variations in aridity. From top to bottom: A) Zr/Al ratio from AlgerianeBalearic basin core; B) 

Rb/Al ratio from Zoñar Lake; C) Sr (cps) from Arreo Lake; D) the aridity reconstruction of Estanya Lake 

(axis 2 from the Principal Component Analyses applied to the XRF dataset in two cores); E) the number 

of paleoflood events in Taravilla Lake; F) Si (cps) from Basa de la Mora Lake; G) the number of detrital 

layers per year from Montcortès Lake and H) Fe (cps) from the Tagus prodelta. Note that all records are 

plotted to indicate arid conditions towards the bottom. RP: Roman Period; DA: Dark Ages; MCA: 

Medieval Climate Anomaly; LIA: Little Ice Age. From Moreno et al., 2012. 
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Peaks in Artemisia and high TIC percentages in BSM record (fig. 2.17) mark two periods of 

increased aridity at 2.9-2.4, and at 1.2-0.7 cal ka BP (800-1300 AD). Both episodes are 

characterized by high TIC and TOC percentages and low TOC/TN ratios suggesting high 

precipitation of carbonates and high bioproductivity and content of autochthonous organic 

matter. These episodes are separated by a relative humid period between 2.1 and 1.5 cal ka 

BP (fig. 2.17). The arid phase between 2.9-2.4 ka cal BP is synchronous with a dry episode 

recorded in both western (Ferrio et al., 2006; Aguilera et al., 2012) and eastern Iberia, that 

led to a prominent decline in deciduous Quercus pollen in the Amposta sequence (Pérez-

Obiol et al., 2011). Increased water level can be inferred from the significant reduction of 

TIC percentages between 2.1 and 1.5 cal ka BP. An episode of more humid conditions has 

been recognized in Iberia (Corella et al., 2010; Martín-Puertas et al., 2008, 2009; Currás et 

al., 2012), coinciding with the Iberian civilization and the Roman occupation and thus is 

called the Iberian-Roman Humid Period (IRHP). The NW Mediterranean region also registers 

an intensification of rainfall reflected by higher storm activity in the Gulf of Lion (Sabatier et 

al., 2012). However Fletcher et al., (2013b) report another phase of forest decline in 

Western Mediterranean at this time (fig. 2.17). Since wetter conditions should have 

positively affected forest development in the Mediterranean, where water is the greatest 

limiting factor, it is possible that depletion in tree mass could be related in some areas of 

Iberia to higher land use by the Romans (García-Bellido, 1985). However, we do not observe 

great exploitation of the subalpine belt at BSM suggesting that the vegetation composition, 

which runs in parallel with sedimentological features, is still primarily controlled by climate in 

this area. 

The second arid period recorded in BSM sequence matches the well-known Medieval Climate 

Anomaly (MCA: 900-1300 AD), a period of aridity recognized in most of south-western 

Europe (Seager et al., 2007; Mann et al., 2009) which led to notable agro-economic crisis in 

medieval societies. In Spain, it resulted in a major water deficit leading to lower lake levels 

and expansion of thermophytes and steppe taxa (Moreno et al., 2012b) (fig. 2.18). In the 

BSM sequence, this phase coincides with the first signal of deforestation, indicated by abrupt 

decreases in pine percentages (fig. 2.17). Charcoal influx increased ca. 1700 cal BP, most 

likely because of either warmer conditions or strengthened regional fire activity in the 

lowlands (Lasheras et al., 2013).  

Both episodes of depleted water availability correspond with maxima in reconstructed North 

Atlantic Oscillation (NAO) indexes (fig. 2.17). This indicates that there is a fast response of 

palaeoenvironmental changes in the BSM record to changes in the North Atlantic. The 

persistence of a positive NAO index during 2.9-2.4, and at 1.2-0.7 cal ka BP, led to 

maximum winter precipitation in Scandinavia and to minimum winter precipitation in the 

Iberian Peninsula (Trouet et al., 2009).  
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2.5.5. The last centuries (700 cal yr BP-present): anthropogenic impact 

In contrast to most Pyrenean studies that indicate intensified human disturbance during at 

least the last two millennia (Riera et al., 2004; Pèlach et al., 2011; Guiter et al., 2005), the 

effects of anthropogenic pressure are only detected in the BSM sequence during the last 700 

cal yr BP (Pérez-Sanz et al., 2011) (fig, 2.19, BSM-V-A). As seen in figures 2.16, 2.17 and 

2.19, the increase in Olea marks an expansion of agricultural practises in the lowlands 

(Cañellas-Boltà et al., 2009) whereas large, short-term reductions in Pine indicate phases of 

deforestation and expansion of grazing lands at higher altitudes (fig. 2.19, BSM-V-B). Parallel 

to Olea, Fraxinus also spreads. Fraxinus has traditionally been used in the region for 

hedgerows (Gómez and Fillat, 1981). Its parallel expansion to Olea marks the regional 

establishment of modern and intense agro-pastoral activities. The drop in Artemisia 

synchronous with clear evidence of increasing anthropogenic pressure in the highlands 

supports the idea that Artemisia is not an indicator of human activities in the BSM sequence. 

The expansion of Olea and Fraxinus ceased, and deforestation temporarily stopped, between 

1600 and 1850 AD (fig. 2.19; BSM-V-C) coinciding with the second half of the Little Ice Age. 

This interval is characterized by the coldest conditions in the southern Pyrenees (González-

Trueba et al., 2008; Morellón et al., 2012) (fig. 2.20). In BSM sequence a sharp decrease in 

evergreen Quercus coincides with these colder conditions. The rapid recovery of pine after 

intervals of deforestation emphasizes the fact that human disturbance at high altitudes was 

not strong and climatic conditions were the main determinant of vegetation changes.  

High values of MS and strong negative correlation with TIC during this period (fig. 2.19; 

BSM-V-C) indicate increased sediment delivery to the lake and decreased carbonate 

productivity, both indicative of higher lake levels and increased runoff. The abundance of 

allocthonous organic matter, shown by low TOC and high TOC/N ratios, also supports the 

inference of high sediment delivery from the catchment. Fire activity was high for most of 

this period, confirming the occurrence of either regional fires linked to husbandry or local 

fires correlated with the occasional pine deforestation (Lasheras-Álvarez et al., 2013). 

Although it is difficult to distinguish between human and climate-induced fires in this period, 

all other records indicate an intensification of anthropogenic activities after 700 yrs BP. A 

general decrease in temperature coinciding with the Little Ice Age (LIA i.e. 1300-1850 AD) 

has been recorded throughout Europe. Higher storm activity occurred in the NW 

Mediterranean, (Sabatier el al., 2012) (fig. 2.17) while stronger climatic variability has been 

recognised in Iberia, although generally cold and humid conditions dominated (Benito et al., 

2003; Valero-Garcés et al., 2008; Morellón et al., 2012; Moreno et al, 2008, 2012b) (fig. 

2.20).  
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Figure 2.20. Selected records from the Southern Pyrenees reviewed in this paper, from top to bottom: 

Capdella tree-ring based mean annual rainfall (30× moving average) (Saz Sánchez, 2003), GER-SOB 

summer temperature tree-ring based reconstruction (original data and 20× moving average) (Büntgen 

et al., 2008), diatom alkalinity-based summer–autumn temperature and chrysophyte-based winter–

spring temperatures reconstruction in Lake Redon (Pla and Catalán, 2005; Catalan et al., 2009), phases 

of advance and retreat of the Pyrenean glaciers (González Trueba et al., 2008), calcite sublayering 

(Fine–Coarse (F–C) or Coarse–Fine (C–F)) (Corella, 2011) and diatom C:P ratio (Scussolini et al., 2011) 

in Lake Montcortés, Si (cps) content in Lake Basa de la Mora (original data and 30× moving average) 

(Moreno et al., 2012), Sr (cps) content in Lake Arreo sequence (original data and 30× moving average) 

(Corella, 2011) and XRF-based salinity reconstruction and humid/arid phases in Lake Estanya (Morellónn 

et al., 2011). (B) Supplementary regional and global records, from top to bottom: NH temperature 

reconstruction (Mann and Jones, 2003), solar irradiance (Steinhilber et al., 2009), and NAOms 

reconstruction (Trouet et al., 2009). Vertical yellow bars represent the chronology of the grand sunspot 

minima and temporal divisions Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Industrial Era 

(IND. ERA) are also indicated at the uppermost part of the figure. From Morellón et al. 2012. 
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A significant expansion of Olea associated with a marked phase of deforestation of the pine 

forest occurred right after the LIA (1880 AD) (fig. 2.19, BSM-V-D). The Industrial Revolution 

in the 17th century brought major advances in agricultural techniques that resulted in 

increased efficiency and production and led to increased supply of food and raw materials. As 

result of the improvement of the agricultural sector the population rose and demographic 

pressure in the southern Pyrenees increased up to its maximum at the end of 19th and the 

early 20th century (García-Ruiz and Valero-Garcés, 1998).  

After 1960 AD pine forest recovered, AP increased up to 65% and there was a reduction in 

trees (Olea, Fraxinus) related to anthropogenic activities (fig. 2.19, BSM-V-E). During the 

mid-20th century, social and economic changes in Spain forced population to migrate from 

villages into cities as the industrial sector developed. In Spain, and more specifically in the 

southern Pyrenees, mass migration took place in the last third of the 20th century, resulting 

in abandonment of the rural lands and gradual recovery of forests (Lasanta-Martínez et al., 

2005). We observe a steep drop in fire activity during this phase, most likely as consequence 

of rural abandonment (fig.2.19, BSM-V-E). Geochemical proxies suggest a decrease of 

average lake level during the last 50 years. TIC percentages reach the highest values of the 

entire sequence, exceeding the values recorded during the MCA. Particularly high 

bioproductivity is shown by high TOC values, along with TOC/TN ratios and an increase of 

macrophyte-related taxa, such as Corynoneura and Pentaneurini, and especially 

Psectrocladius gr. Limbatellus (Tarrats et al., 2014). Increases in bioproductivity in the 

recent period may be linked to the presence of cow stockbreeding near the lake. However, 

stockbreeding has taken place in this area at least since the last century (Lucio, 1982) but 

the increase in bioproductivity only occurs during the last 30 years. One possible explanation 

is that enhanced bioproductivity during the last decades reflects increased water 

temperatures. A global warming trend has been widely recognised over recent decades 

(IPCC, 2007) and an increase in temperature is also evident in the Mediterranean area 

(Brunetti et al., 2004; Vargas-Yáñez et al., 2008; Camuffo et al., 2010) and in north-eastern 

Spain (El Kenawy et al., 2012). Climate change in the Mediterranean area involves not only 

increased temperature but often decreased precipitation. A decrease in snowpack depth, 

snow cover and direct precipitation has been detected in the southern Pyrenees during the 

most recent period (López-Moreno 2005; López-Moreno and Stähli, 2008). The recent drop 

in level at Basa de la Mora could be linked to the reduction in water availability in the 

southern Pyrenees, while the increase in bioproductivity could be related to the occurrence of 

warmer waters. The impact of the recent climate conditions on the lake sediments confirms 

the high sensitivity and rapid response of Basa de la Mora record to short-term climate 

shifts. 

2.6. CONCLUSIONS 

i. The multi-proxy sequence of Basa de la Mora (BSM) has recorded significant climate 

variability during the last ca. 10 cal ka BP. Consistent shifts in vegetation, fire activity, 
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depositional environments and aquatic communities throughout the sequence can be 

correlated with other regional and global reconstructions. 

ii. Higher seasonality between 10 and 8.2 cal ka BP caused high snow accumulation in 

winter and subsequent melt during warmer summers resulted in high lake levels. As a 

consequence of this high seasonal contrast, Pinus spread while mesophytes were 

restricted to watercourses.  

iii. High climate instability during this period is illustrated by the occurrence of four short arid 

intervals at 9.7, 9.3, 8.8 and 8.3 cal ka BP, each characterized by a decrease in 

mesophytes and increased runoff. The most intense event occurred at 8.3 ± 0.1 cal ka 

BP, when vegetation diversity and abundance dropped to a minimum.  

iv. The most humid period in BSM sequence occurred between 8.2 and 5.7 cal ka BP. During 

this period, mesophytes expanded, conifers retreated and the highest lake level was 

recorded. As a consequence of increasing biomass, fire activity also intensified.   

v. The end of the Mid-Holocene marks the transition from a significant Atlantic influence 

(before ca. 5.7 cal ka BP) into a typical Mediterranean climate with summer drought.  

vi. A long-term trend towards increasing aridity, with decreasing lake levels and decreasing 

abundance of mesophytes started at 5.7 cal ka BP and intensified after ca. 3.9 cal ka BP.  

vii. During this period and until 700 cal yr BP human exploitation of the subalpine belt was 

minor and the vegetation composition was primarily controlled by climate.  

viii. The BSM record shows that the Central Pyrenees are particularly sensitive to climate 

changes due to its geographical position between the Mediterranean and the Atlantic 

climate regimes.  
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3 

The Estanya sequence. Climate at low 

altitudes 

 

Outline 

The palynological record from Lake Estanya constitutes the first Holocene vegetation 

reconstruction from the basal belt of the southern Pyrenees. Comparison with other 

Pyrenean pollen sequences located at higher altitudes reveals the dynamics of the altitudinal 

shift of the Pyrenean vegetation belts during the Holocene, and provides a climate 

framework at a regional scale. 
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1.1. INTRODUCTION 

The impact of the current climate change in the Mediterranean basin is high, as the 

frequency of drought events has increased during recent times (Hoerling et al., 2012) and it 

is expected to continue and possibly to intensify in the near future (Meehl et al., 2007; Giorgi 

and Lionello, 2008; Nikulin et al., 2011). The expected changes in the hydrological cycle in 

the Mediterranean region have drawn the attention of the international research community, 

as future precipitation projections and climate scenarios for this region are requested by 

government agencies and the public (MedCORDEX initiative, ref). However, the simulation of 

the Mediterranean hydrological cycle is not easy because the precipitation displays a complex 

pattern due to the influence of a number of climate sub-systems (Xoplaki et al., 2003; 

Luterbacher et al., 2006; Rodwell and Hoskins, 2001; Raicich et al., 2003; Gaetani et al., 

2011; Lionello, 2012). In order to better simulate the Mediterranean hydrological cycle, 

attention must be paid to the reconstruction of the hydrological cycle in the past through the 

analysis of paleodata.  

During the Holocene, ecosystems in the Mediterranean region underwent marked shifts as a 

result of long-term climate variations triggered mainly by changes in the atmosphere-ocean 

circulation and changes in the solar insolation (Mayewski et al., 2004). Palaeo-environmental 

archives provide the needed information to understand past climate changes and their 

subsequent variation in the hydrological cycle resulting from shifts in the climate components 

(Roberts et al., 2004). 

The Pyrenees, as a mid-latitude high-mountain range, presents a great altitude gradient and 

consequently the temperature and humidity range in the northern and southern slopes is 

high.  Furthermore, as we have described before in the Introduction of this Thesis (Chapter 

1), this region displays numerous ecosystems related to the different temperature and 

precipitation regimens (Domínguez-Llovería and Puente-Cabeza, 2003) providing a unique 

opportunity to investigate the evolution of Mediterranean climate evolution. The vegetation is 

particularly versatile at low and middle altitudes, where small changes in precipitation 

prompt changes in the flora composition, while the uppermost forest, close to the treeline, is 

mainly limited by the low temperatures (Ninot et al., 2007). In addition, the southern slope 

of the central Pyrenees (NE Spain) is in contact with the northernmost semi-arid region of 

southern Europe, the central Ebro Basin, adding the presence of xerophytic vegetation 

communities (Domínguez-Llovería and Puente-Cabeza, 2003). The proximity of such a 

number of different ecosystems in a relatively small area turns the Pyrenees into an 

extraordinary sensitive place to climate changes, as it has been proven by a recent work that 

highlights an ongoing vegetation shift as a response to the current global warming (Gottfried 

et al., 2012). This sensitivity to both temperature and precipitation fluctuations provides an 

exceptional chance to study and understand abrupt past climate changes, as those occurred 

during the Holocene.  
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1.1.1. Objectives 

This chapter aims to investigate the altitudinal vegetation shifts in the southern Central 

Pyrenees in order to evaluate the role of temperature and humidity as main drivers of the 

vegetation dynamics during the Holocene. In order to achieve this goal, we present the first 

Holocene pollen sequence from the lowermost vegetation belt of the southern Pyrenees: the 

Lake Estanya sequence (670 m a.s.l.) (fig 3.1). The Estanya results are compared with the 

available regional palaeoenvironmental data from high mountain areas in the region 

(Montserrat-Martí, 1992; Pla and Catalan, 2005; González-Sampériz et al., 2006; Miras et 

al., 2007; Pèlachs et al., 2007; Ejarque et al., 2009; Rull et al., 2011; Pérez-Obiol et al., 

2012; Pérez-Sanz et al., 2013) (fig 3.1) in order to reveal the altitudinal vegetation shifts in 

the central southern Pyrenees during the Holocene and the possible mechanisms beyond 

those changes.  

 

Figure 3.1. Geographical position of Lake Estanya and the rest of sequences from northern Spain named in 

the text. The red square marks the area represented in figure 2. Sequences from west to east are: 1: Las 

Pardillas (Sánchez-Goñi and Hannon, 1999); 2: Villarquemado (Aranbarri et al., 2014); 3: Portalet (González-

Sampériz et al., 2006); 4:  Tramacastilla (Montserrat-Martí, 1992); 5 : Paul de Bubal (Montserrat-Martí, 

1992); 6: Chiprana (Valero-Garcés et al., 2000); 7: Basa de la Mora-BSM (Pérez-Sanz et al., 2013); 8: Redo 

(Pla and Catalan, 2005); 9: Montcortés (Rull et al., 2011);  10:  Burg (Pèlachs et al., 2007); 11: Estanilles 

(Pérez-Obiol et al., 2012); 12: Pradell (Ejarque et al., 2009); 13: Planels de Perafita-PDP(Miras et al., 2010) 

14: Bosc dels Estanyons-BDE (Miras et al., 2007); 15: Riu dels Orris (Ejarque et al., 2010). Map plotted by 

Saul Fontaneda.  
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1.2. SETTINGS 

Lake Estanya is a low altitude karstic lake (fig. 3.2) placed in the Southern Pre-Pyrenees 

(42°02’N, 0°32’E, 670 m a.s.l.), in the Mediterranean bioclimatic regime (fig. 3.1). Mean 

temperature variation ranges from 4°C in the coldest month (January) to 24° C in the 

warmest (July). The scarce mean annual precipitation (470 mm/year) is seasonally 

distributed with a long dry season during the summer. Additionally, Lake Estanya is located 

in a transition zone between the nearby semi-desert area of the Ebro River Basin, (350 m 

a.s.l.) and the high peaks of the Pyrenees (up to 3400 m a.s.l.). As a result of this sharp 

altitudinal gradient both temperature and precipitation varies greatly in a relative small area, 

from 14°C and less than 350mm/yr at the Ebro Basin, to around 5°C and more than 

2000mm/yr at 2000 m asl. 

The Lake Estanya surrounding vegetation is formed by Mediterranean communities, 

represented by Quercus rotundifolia, Buxus sempervirens and Juniperus oxycedrus, and by 

submediterranean associations, dominated by Quercus faginea and Quercus cerrioides. 

These communities are mixed with patches of cereal crops. The lake is bordered by a 

hygrophyte band formed by Phragmites australis, Typha angustifolia, Juncus spp., and 

Scirpus spp. 

 

Figure 3.2. Lake Estanya panoramic view.  
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Given its position in the lowermost altitudinal zone of the Pyrenees, Estanya sequence 

provides vegetation information from both the basal (up to 700 m a.s.l.) and part of the 

submontane belt (700-1100 m a.s.l.) (fig.3.3 a, b).  
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1.3. MATERIAL AND METHODS 

The fieldwork (coring and sampling), sedimentological and geochemical analyses and age-

depth model for Lake Estanya sequence have been previously published in Morellón et al., 

2009a. In the present Thesis radiocarbon dates for the Holocene have been calibrated with 

the INTCAL09 curve (Reimer et al., 2009) (table 3.1). Sedimentological and paleo-

hydrological evolution of Lake Estanya for the last 22 cal ka BP has been published elsewhere 

(Morellón et al., 2009b) (fig. 3.4). The pollen sequence of the last 800 years was included in 

Morellón et al., 2011. The Lateglacial diatom-vegetation relationships have been considered 

in a recent work (Vegas-Vilarrúbia et al., 2013) (fig. 3.5). Here we present the palynological 

data concerning the whole Holocene period from the same set of cores used by Morellón et al 

(2009, 20119. Previous sedimentological, geochemical, biological and pollen studies in short 

cores from Estanya cover the last 2000 years (Riera et al., 2004)  

The palynological analyses of the whole sequence were carried out every 10 cm, and 

laboratory procedures followed the classic chemical method (Moore et al., 1991), modified 

according Dupré (1992), including use of HCl, KOH, HF digestion and gravitational separation 

with Thoulet solution (2.0 gr/cm3 density). Lycopodium clavatum tablets were added to 

calculate pollen concentrations (Stockmarr, 1971). Pollen sum was always higher than 300 

terrestrial grains and taxa number not less than 20. Aquatic plants, ferns and algal remains 

were excluded of percentages calculation. Pollen diagrams included in this paper only 

concern the Holocene sequence and have been drawn using GRAPHER 4® and graphic design 

software ADOBE ILLUTRATOR CS4®. 

 

Lab Code Depth 

(cm) 

Sample type 
14C 

age (yr BP) 

Calibrated 

age, 2σ (yr cal 

BP) 

137Cs 14   -13 

Poz-24749 28.5 Phragmites stem  155 ±30 198 ± 32 

Poz-12245 54.5 Terrestrial macrorrest  405 ±30 472 ± 43 

Poz-12246 170 Terrestrial macrorrest 895 ±35 823 ± 88 

Poz-15972 189.5 Bulk organic matter 2120 ± 30 1175 ± 242 

Poz-12247 233 Salix leave 3315 ±3 3572 ± 324 

Poz-12248 330 Gramineae seed 5310 ± 60 6097 ±116 

Poz-15973 349 Bulk organic matter 6230 ± 40 6195 ± 289 

Poz-15974 393 Bulk organic matter 8550 ± 50 8647 ± 345 

Poz-9891 432 Wood fragment 8510 ± 50 9497 ± 49 

Poz-17190 493 Plant macroremain 8830 ± 50 9834 ± 136 

Poz-17191 564 Bulk organic matter 10 680 ± 60 11443 ± 384 

Table 3.1. AMS radiocarbon dates from Lake Estanya core. Dates have been updated from Morellón 

et al., 2009b with the INTCAL09 curve. 
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1.4. RESULTS 

The Holocene Estanya pollen record shows great variety of arboreal, herbaceous and aquatic 

taxa. Pinus, semi-deciduous Quercus, Corylus, evergreen Quercus, and Juniperus are the 

main components of the arboreal pollen (AP) (fig. 3.6). The herbaceous taxa (NAP) are 

 

Figure 3.5. Diatoms-vegetation relationship fin Lake Estanya during the Late Glacial. From Vegas-Vilarúbia et 

al. 2013. 

 

Figure 3.4. Sedimentological, compositional and mineralogical profiles; depositional environments and lake 

level fluctuation of the Lake Estanya sequence for the last 22 cal ka BP. From Morellón et al. 2009b. 
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widely represented by Poaceae, Artemisia, Chenopodiaceae and increasing Ruderals in recent 

times (see fig. 3.6 for taxa included in the vegetation groups). The aquatic component, 

including hydrophytes and hygrophytes, keeps relatively low values; Potamogeton is rather 

remarkable at some levels, and Cyperaceae and Ranunculus rise at the top of the sequence 

reaching up to 20%. Based on major changes on tree taxa, six main pollen zones have been 

described (fig. 3.6). Correlation with the sedimentological units defined by Morellón et al., 

(2009a) is also shown in figure 3.6. Appendix II (figs A.3.1, A3.2 and A3.3), located at the 

end of the thesis, shows all taxa found for the BSM sequence 

EST-I (570–490 cm; 11.700-9800 cal yr BP cal BP) 

This zone is dominated by Juniperus (up to 55%). Other significant taxa within the 

AP are Pinus, semi-deciduous and evergreen Quercus and Betula. The most 

noticeable taxa on the herbaceous component are Poaceae, Artemisia and 

Chenopodiaceae (fig. 3.6). Both the hygrophytes and the hydrophytes display the 

minimum values of the Holocene.  

EST-II (490–385 cm; 9800-8200 cal yr BP )  

The onset of this zone is characterized by a sharp decline of Juniperus while Corylus 

and Pinus spread. Semi-deciduous Quercus, evergreen Quercus, Other Mesophytes 

and Mediterranean Shrubs also increase at this moment while Tilia and Fagus appear 

for the first time. In the NAP, Poaceae expands and reaches its maximum along the 

sequence (up to 20%) while Artemisia compared to the previous zone. The aquatic 

components increase their presence, particularly Cyperaceae and Potamogeton (fig. 

3.6). 

EST-III (385–320 cm; 8200-6000 cal yr BP) 

The decline of Corylus and increase of semi-deciduous Quercus, evergreen Quercus 

and Pinus define this period. The herbaceous component is reduced and experiences 

some significant changes (fig. 3.6). Poaceae decreases to less than 10% and 

Artemisia and Chenopodiaceae contents strongly vary, reaching both their maxima 

and minima within this zone. The aquatic component reflects the drop of 

Potamogeton, which even disappears in some intervals. 

EST-IV (320-260 cm; 6000-4800 cal yr BP) 

This zone is defined on the basis of the expansion of semi-deciduous and evergreen 

Quercus, and Abies, while a decrease in Pinus and a further reduction in Corylus and 

Other Mesophytes are also recorded. In the herbaceous component Poaceae and 

Artemisia are reduced while in the aquatic component the hydro and hygrophytes 

curves barely change (fig. 3.6).  
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EST-V (260-170 cm; 4800-800 cal yr BP) 

Thermophilous taxa such as semi-deciduous Quercus and evergreen Quercus reach 

the maximum expansion of the Holocene in this zone. Conversely, mesophytes such 

as Betula and Corylus keep decreasing and Tilia disappears (fig. 3.6). Nevertheless 

Fagus peaks at this time. The herbaceous component is characterized by the 

sequence’s minima of Poaceae and Artemisia, and, more interesting, the first 

appearance of Juglans, Cerealia and Vitis and the continuous presence of Rumex. The 

Hydrophytes keep low values and the Hygrophytes decrease towards the middle of 

the zone and increase upwards. 

EST-VI (170-0 cm; 800-0 cal yr BP, 1150-1950 AD) 

This zone is characterized by a decrease in the AP values and the large expansion of 

the anthropic component such as Olea, Vitis, Juglans, Cerealia and Cannabis related 

to agricultural practises and Rumex, Urticaceaea and Plantago related to pastoral 

practises. All of them reach the maximum values in the 100-top cm. On the aquatic 

component is remarkable the expansion of Ranunculus, Cyperaceae and 

Potamogeton. A charcoal–rich layer found at 110 cm depth -and previously identified 

by Morellón et al., (2009a) - has resulted sterile - white band in figures 6 and 7- 

likely due to differential pollen conservation (Morellón et al., 2011) (fig. 3.7).  

1.5. DISCUSSION 

The comparison between the vegetation changes in the Lake Estanya sequence and the 

vegetation changes recorded in other Pyrenean sequences placed at higher altitudes 

illustrates the vertical vegetation shifts in the southern Pyrenees and allow us to infer the 

regional climate evolution during the Holocene.  

 

Figure 3.7. Selected pollen taxa from Lake Estanya sequence of the last 800 years. From Morellón et 

al. 2011. 
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1.5.1. The onset of the Holocene (11.700-9800 cal yr BP): high continentality 

Extremely high values of Juniperus and Artemisia and scarcity of temperate trees such as 

semi-deciduous and evergreen Quercus characterize the beginning of the Holocene in Lake 

Estanya (fig. 3.8). The absence or low presence of temperate trees is also observed both in 

inner continental Iberian sequences like Villarquemado (Aranbarri et al., 2014), Ayoó de 

Vidriales (Morales-Molino and García-Antón, 2013), Fuentillejo, (Vegas et al., 2010), or 

Espinosa del Cerrato (Franco-Múgica et al., 2001) among others, and higher altitude 

sequences located in the eastern part of the Pyrenees like Estanilles (Pérez-Obiol et al., 

2012) or La Pouretère (Aubert et al., 2004), which are characterized by the dominance of 

conifers (mainly Pinus but also Juniperus). 

The large proportion of junipers in Estanya and the limited expansion of the temperate forest 

at higher altitudes, in contrast to more Atlantic-influenced sequences from northern Spain 

like El Portalet (González-Sampériz et al., 2006), Enol lake (Moreno et al., 2011) or Monte 

Areo (López-Merino et al., 2010) among others, point to severe climate conditions in the 

region at the beginning of the Holocene. Current Juniperus thurifera communities in Iberia, 

including those from the nearby area of the central Ebro Basin, are found under harsh 

environmental conditions characterized by extreme temperatures, low precipitation and poor 

soil development (Blanco-Castro, 2005). The environmental conditions recorded at the onset 

of the Holocene in Estanya and other inner continental sequences (Carrión et al., 2010 and 

references therein) show some similarities to the current juniper community niche. Firstly, 

the onset of the Holocene was characterized by a maximum in summer and a minimum in 

winter insolation in the Northern Hemisphere (Kutzbach and Webb, 1993), resulting in 

extremely high continentality with maximum contrast between summer and winter 

temperatures. Secondly, linked to the high summer temperature, high evaporation-rates 

were likely to occur resulting in strong summer water deficits. Thirdly, the long-lasting glacial 

period produced gelifraction processes causing a lack of well-developed soil horizons at the 

Holocene onset. Analogue vegetation composition with dominance of Juniperus and Artemisia 

has been also recognised in other sequences from the semi-arid Central Ebro Basin 

(González-Sampériz et al., 2008; Davis and Stevenson, 2007) highlighting the widespread 

severe climate conditions in extensive areas of North-Eastern Iberia.  

Particularly cold winter temperatures affecting the Pyrenees at this time are supported firstly, 

by the absence of temperate trees both in Estanya and at higher altitude sequences (i.e. La 

Paul de Bubal by Montserrat, 1992: fig. 3.3 (find references therein)), and secondly by the 

downwards shift of the treeline as observed in the Estanilles sequence (2250 m a.s.l.) 

(Pérez-Obiol et al., 2012) (fig. 3.3), where pine proportions reached the lowest values at the 

beginning of the Holocene. Further evidence of limited forest expansion in altitude in the 

Pyrenees is also provided by the absence of pine stomes in the Bosc del Estanyons sequence 

(BDE hereafter) (2200 m a.s.l.) (Miras et al., 2007) (fig. 3.3) and by the absence of wood 

charcoals until ca 10.5 cal ka BP in Plaus de Boldís-Montarenyo area (2000-2200 m a.s.l.) 

(Cunill et al., 2012). These cold conditions still recorded in the Pyrenees are in agreement 



3. Estanya sequence. Climate at low altitudes 
 

 

97 
 

with the Alborán SST reconstruction curve from Cacho et al., 2001 (fig. 3.8c), supporting the 

role of low temperatures in both ocean and atmosphere to avoid forest development across 

inner Iberia during the first millennia of the Holocene. 

In addition, the dense juniper landscape at lowlands indicates a year-round water shortage 

accompanying the high seasonal contrast. Nevertheless, rainfall reconstructions during the 

first stages of the Holocene show a large variability: while Lake Estanya displays the lowest 

lake levels of the Holocene (Morellón et al., 2009b), the river discharge into the western 

Mediterranean seems to have reached very high values at this time, according to the highest 

values of the K/Al recorded in the marine sequence MD99-2343 (fig. 3.8b) by Frigola et al., 

2007. Particularly dry conditions have been also recognised across the northern 

Mediterranean coast during the first millennium of the Holocene (Magny et al., 2013). This 

water shortage was responsible for a long delay on the establishment of well-developed 

forests across the region. The increased runoff into the Mediterranean (Frigola et al., 2007) 

may be a result of the scarce vegetation in the watersheds as well as of melting processes in 

the Late Glacial-inherited Pyrenean glaciers, rather than a direct increase in the precipitation.  

Hence, the absence of a forested landscape in Estanya may be a result of a combination of 

factors such as high continentality, low effective humidity and absence of well-developed 

soil, as well as in many areas of Mediterranean Iberia (Carrión et al., 2010). 

1.5.2. The Early Holocene (9800-8200 cal yr BP): increasing humidity 

The expansion of the forest in Estanya took place at ca. 9.8 cal ka BP and was characterized 

by a marked increase in broad-leaf taxa (mainly Corylus) and a slight increase in Quercus 

species and Mediterranean shrubs (fig. 3.6). The marked shift from a continental steppe 

landscape, dominated by Juniperus and Artemisia, toward a wooded landscape, dominated 

by Corylus, suggests both more humid conditions and an increase in winter temperatures. 

The presence of deciduous taxa in higher altitude sequences in the Pyrenees like i.e., Paul de 

Bubal, El Portalet, Lake Burg, BSM, Lake Racou, BDE or Estanilles (figs. 3.1 and 3.3: 

references therein) is also relevant during this period, indicating the upwards treeline shift 

due to the occurrence of milder temperatures. In addition, both the chrysophyte cysts-based 

temperature anomaly curve from the Pyrenean Lake Redo (figs. 3.1, 3.3 and 3.8d) and the 

SST reconstruction from the Alboran Sea (fig. 3.8c), reflect the fast increase in mean annual 

temperatures at the western Mediterranean area, likely as a result of meaningful warmer 

winters.  

The large spread of deciduous taxa in Estanya sequence and the palaeohydrological 

reconstruction carried out by Morellón et al., (2009a) showing a water level rise at this 

moment (fig. 3.8h), indicate that the precipitation would have increased significantly. In 

agreement with increased water availability, in altitude, the palaeohydrological 

reconstruction from Lake Basa de la Mora (BSM) (fig. 3.2) highlights the occurrence of high 

lake levels at this moment too (Pérez-Sanz et al., 2013). Accordingly, more humid conditions 
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have been recognised across the Mediterranean area during this period (Magny et al., 2013). 

Nevertheless, the distribution of the precipitation throughout the year and whether there was 

summer drought or not is a subject of much debate. According to Magny et al., 2013, until 

ca. 4.5 ka, there was contrasting precipitation seasonality in the central Mediterranean with 

humid winters and dry summers north of 40°N and humid winters and humid summers south 

of ca 40°N. In our study site, placed at ca 42°N in the western Mediterranean, the signals 

are also opposite. The vegetation composition at highlands, i.e. BSM, Estanilles or Redo 

sequences (fig. 3.3), with dominance of conifers and low values of mesophytes (fig. 3.8f) 

supports the occurrence of an unevenly-distributed precipitation throughout the year, in 

agreement with the seasonal pattern for north of 40°N in the Central Mediterranean (Magny 

et al., 2013). However, the large presence of Corylus in Estanya suggests the absence of 

summer drought and would indicate a contrasting pattern with the BSM precipitation 

seasonality. Nevertheless, due to the location of our study site in the basal level of a great 

mountain range such as the Pyrenees, the spread of deciduous taxa in the lowlands (like in 

Estanya area) could be related to riparian formations (fig. 3.3b) that could have been 

favoured by increased river flows resulting from high rates of snow melting. In fact, the 

highest values of the magnetic susceptibility curve (fig. 3.8e) and the chironomid 

assemblage obtained from the BSM record, point out intense runoff processes and indicate 

that water inputs into the lake were dominated by snowpack melting (Pérez-Sanz et al., 

2013). Therefore, summer water supplies into the lowlands could have been higher than 

during the previous stage and responsible for large deciduous formations associated to 

riparian environments. Nevertheless, the seasonal precipitation pattern in Lake Estanya and 

indeed in the whole Pyrenean region and North-eastern Iberia cannot be unequivocally 

inferred. 

1.5.3. The Mid Holocene (8200-6000 cal yr BP): the Climatic Optimum 

A relevant shift in the vegetation landscape composition took place in Estanya after 8.2 cal 

ka BP. The semi-deciduous and evergreen Quercus replaced the broad-leaf taxa (mainly 

Corylus) (fig. 3.6) suggesting a relevant increase in winter temperatures, as Quercus taxa in 

the Iberian Peninsula are better adapted than mesophytes to warmer winters. The vegetation 

shifts recorded at higher altitudes in the Pyrenees also support warmer winters. Deciduous 

forests replaced pinewoods in Tramacastilla (1682 m asl) (fig. 3.3) and BSM (1914 m asl) 

(fig. 3.8f) indicating that broad-leaf taxa could occupy the middle altitudes and even reach 

the subalpine belt in some parts of the Pyrenees. Although with lower proportions, higher 

altitude sequences such as BDE (2180 m a.s.l.), Redo (2240 m a.s.l.) or Estanilles (2247 m 

a.s.l.) (fig. 3.3) also record a peak in broad-leaf taxa at this moment, proving the upward 

expansion of the deciduous forest, probably reaching the treeline. The spread of deciduous 

trees at high altitudes as a result of warmer winters is in agreement with the winter 

temperature anomaly reconstruction carried out in the Pyrenean Lake Redo (fig. 3.8d). In 

general, this period witnessed an overall warming trend clearly reflected in the high SST 
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recorded in the Western Mediterranean during more than 2000 years within this period (fig. 

3.8c).  

A well-developed deciduous forest at high altitude requires, not only rise in temperature but 

also, a change in the precipitation regime with a more evenly distributed rainfall. In this 

 

Figure 3.8. Comparison between the Estanya pollen-record and others Holocene climate indicators 

from the Pyrenees and the Mediterranean area. a) Seasonal precipitation in Valencia region, western 

Mediterranean (Aguilera et al., 2012). b) Freshwater discharge into the Menorca Sea, Western 

Mediterranean, from Iberian rivers (Frigola et al., 2007). c) Sea Surface Temperature from the Alboran 

Sea, south-western Mediterranean (Cacho et al., 2001). d) Altitude anomaly in winter temperatures 

from Pyrenean Lake Redo (Pla and Catalan, 2005). e) Runoff activity in the Pyrenean Lake Basa de la 

Mora-BSM (Pérez-Sanz et al., 2013). f) Pollen evolution from the BSM lake (Pérez-Sanz et al., 2013). g) 

Vegetation evolution from Lake Estanya (present study). h) Lake level changes from Lake Estanya 

(Morellón et al., 2009a). f) Likely climate conditions inferred in this study for Lake Estanya during the 

Holocene. Note that chronological framework is plotted from past on the left to present on the right.  
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regard, both Estanya and BSM lakes record one of their highest lake levels during the Mid-

Holocene (fig. 3.8h). Giving the fast response to inter-annual changes in precipitation in both 

BSM and Estanya lakes (Morellón et al., 2009b, Tarrats et al., 2014), permanent high lake 

levels at this time could only be supported by increasing precipitation and the absence of a 

long-lasting dry season (fig. 3.9). In addition, lower MS values in BSM sequence (fig. 3.8e) 

indicate reduced activity of the streams and more diffuse run-off. This could reflect a higher 

contribution of rainfall versus snowmelt in the hydrological cycle, hence, an evenly 

distributed rainfall throughout the year. Highest Holocene lake levels have also been 

recorded during this time in Lake Racou, at the Eastern Pyrenees (Guiter et al., 2005). 

According to these data, water would not be a limiting factor to deciduous trees to survive in 

Estanya and therefore the replacement of broad-leaf taxa by semi-deciduous and evergreen 

Quercus in this area support the rise in winter temperatures as the main reason for this 

altitudinal vegetation shift. More humid conditions in the Pyrenees with increased lake levels 

agree with the long-lasting period of high river discharges into the Menorca Sea recognised 

by Frigola et al., 2007 (fig. 3.8b) and are in agreement with high lake level reconstruction 

across de Mediterranean region (Harrison and Digerfeldt, 1993; Magny et al., 2002) and with 

recurrent flood events in the River Tagus watershed in the central part of the Iberian 

Peninsula (Benito et al., 2003). Nevertheless, these results for the Pyrenees, placed at ca 

42°N, contrast with the precipitation pattern recorded in Italy during this period with the 

occurrence of dry summers in areas placed north of 40°N (Magny et al., 2013) pointing out 

the complex precipitation pattern of the Mediterranean region during the Mid-Holocene.  

 

Figure 3.9. Comparison between humid (top) and dry (bottom) seasons in Lakes Estanya (left) and Basa de 

la Mora (right).  
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1.5.4. The end of the Mid-Holocene (6000-4800 cal yr BP): transition phase 

The vegetation record from Estanya barely experienced any important change at this period, 

apart from a slight decrease in Pinus. In contrast, at higher altitudes, the BSM sequence (fig. 

3.8f) underwent a sharp change, characterized by a marked replacement of mesophytes by 

Pinus which in turn became the most relevant tree. A decrease in mesophytes is also 

recorded in other high-altitude sequences in the Pyrenees such as Estanilles, Redo or Lake 

Burg (fig. 3.3). This situation suggests a shift in the water budget with a decrease in annual 

precipitation or at least a significant change in the seasonal distribution of rainfall with the 

establishment of a dry season. Regarding the latter possibility, in a study based on carbon 

isotope composition (δ13C) of archaeobotanical remains, Aguilera et al., (2012) found that a 

phase of particular sharp decrease in the autumn precipitation took place between 6 and 5 

cal ka BP (fig. 3.8a). The onset of a sustained dry season could have been responsible of 

deep changes in the vegetation altitudinal zones, especially where water-demanding taxa 

were widespread such as in BSM (Pérez-Sanz et al., 2013). In contrast, conifer communities 

are relatively more drought-tolerant, thus, changes in the treeline altitude, mainly formed by 

pines, were more unnoticed (Miras et al., 2007, 2010; Ejarque et al., 2010; Pérez-Obiol et 

al., 2012). The establishment of a longer dry season would have given place to an important 

spread of drought-resistant taxa across Iberia (Pérez-Obiol and Juliá, 1994; Jalut et al., 

2000; Carrión, 2002; de Bealieau et al., 2005; Fernández et al., 2007; Anderson et al., 

2011; Carrión et al., 2010; Pérez-Obiol et al., 2011; Aranbarri et al., 2014). Nevertheless, 

high lake level in Estanya and relative high input of river discharge into the Menorca Sea (fig. 

3.8b), at least until ca 5.5 cal ka BP, suggest that the total amount of annual rainfall could 

be still significant. This situation is in agreement with humid conditions recorded in the 

central Mediterranean for this period (Magny et al., 2013) and supports that the vegetation 

changes recognised at high altitudes in the Pyrenees –decrease in deciduous trees- may be 

linked to shifts in the precipitation seasonality rather than to a sharp decrease in year-round 

rainfall. This change in the distribution of the precipitation would not affect the pine and 

semi-deciduous oak formations at lowlands, as i.e. in the Estanya sequence, well adapted to 

a dry season. 

Finally, this period is also characterized by the onset of a worldwide long-term cooling trend, 

starting at ca 5.5 cal ka BP (Marcott et al., 2013). In agreement with this global temperature 

trend, the regional SST in the western Mediterranean records a marked drop just at 5.5 cal 

ka BP (fig. 3.8c). However, winter temperatures in the Pyrenees seem to hardly have 

changed in comparison with the previous period (fig. 3.8d) supporting that the mentioned 

shifts recorded in the Pyrenean vegetation belts may be mainly explained by changes in the 

precipitation regimen with the installation of a long-lasting dry season. 
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1.5.5. The Late Holocene (4800-800 cal yr BP): aridity trend and onset of the 

anthropogenic activities 

The Late Holocene in Estanya was characterized by a marked spread of semi-deciduous 

Quercus, a slight increase in evergreen Quercus and a reduction in Pinus, while mesophytes 

kept low values similarly to previous periods. At higher altitudes, broad-leaf taxa continued 

to withdraw in those sequences that recorded this contraction beforehand (BSM, Estanilles, 

Redo or Lake Burg) (fig. 3.3) and started to drop in the rest of eastern sequences (RDO, BDE 

and PDP) (fig. 3.3). Taking into account that in the previous stage (6-4.8 cal ka BP) took 

place the establishment of the occurrence of a dry season in the hydrological cycle, the 

expansion of drought-resistant taxa at lower altitudes along with the reduced presence of 

broad-leaf taxa in middle altitudes at this moment, indicates a likely yearly reduction in 

precipitation. Decreased in annual rainfall is supported by rapid changes in water levels 

recorded in Lake Estanya (Morellón et al., 2009a, 2009b), Lake Montcortés (fig. 3.3: Corella 

et al., 2010) or BSM lake (Pérez-Sanz et al., 2013) at this time. Indeed, the BSM Lake 

registers the lowest MS values (fig. 3.8a) and precipitation of endogenig crystals of calcite 

and gypsum, and periods of total desiccation (Pérez-Sanz et al., 2013). The K/Al record for 

the Menorca Sea shows a marked decreasing trend in river discharge into the western 

Mediterranean (fig. 3.8b) supporting the decline in runoff because of a sharp decrease in 

total precipitation. This drought trend recognised in Iberia agrees with the pronounced 

hydrological change toward much drier condition registered in Italy at ca 4.5 ka (Magny et 

al., 2013). 

Along with decreased moisture availability, pollen indicators also suggest a general decrease 

in temperature. A decreasing trend in the pine pollen content at this time in Estanilles (fig. 

3.3) indicates a downward movement of the treeline. Furthermore, an expansion trend of 

Juniperus is recorded in BSM too (fig. 3.8f), as well as in Estanya, suggesting the increasing 

presence of a juniper understory as a consequence of a likely forest opening at different 

altitudes. Both the treeline movement to lower altitudes and reduction of forest density are 

in agreement with the cooling trend in winter temperatures recorded in Lake Redo, 

particularly after ca 3 cal ka BP (fig. 3.8d). General drop in mean annual temperatures are 

also supported by the lowest SST in the Alborán Sea (fig. 3.8c).  

1.5.6. Anthropogenic activity 

Additionally, during this period the Estanya sequence witnessed the first evidence of 

agricultural and deforestation practises (at 3.1 cal ka BP, 1150 BC) with the appearance of 

Cerealia type (fig. 3.5 and fig. 3.10) and the occurrence of a slight drop in AP values. During 

the Iberian-Roman and Visigoth Times (200 BC - 750 AD) a slight intensification of the 

agricultural activities as pointed by the appearance of Vitis and an increase in Olea 

percentages, occur in Estanya, although nitrophilous plants are not relevant at this moment 

(fig. 3.10).  
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During the Medieval Climate Anomaly (MCA: 900-1300 AD), signals of human activities 

steadily increased, coinciding with the establishment of the Muslims in the region. Cultivated 

taxa, namely Vitis, Olea and Cerealia type rose significantly as well as it began a marked 

expansion of the nitrophilous plants while the AP proportions underwent a marked drop (fig. 

3.10), suggesting human activities as main forcing of vegetation landscape composition as 

already documented by (Riera et al., 2004) in a study of short cores. However, an increase 

in the presence of Juniperus and heliophytes such as Artemisia and a decrease in the 

presence of deciduous trees (fig. 3.10), could indicate that the vegetation in Lake Estanya 

was also influenced by the drier conditions reconstructed for the MCA in northeaster Iberia 

(Moreno et al., 2012) (fig. 3.11). In agreement with these drier conditions, lower lake levels 

 

Figure 3.10. Evolution of the different anthropogenic indicators in the Estanya sequence during the 

last 4000 years. The selected taxa to represent the agricultural activities are Olea, Vitis, Cerealia and 

Cannabis. On the other hand, the nitrophilous plants representing the pastoral activities include Rumex 

and Plantago. The scale for the AP is located at the left side of the plot. The scale for the selected taxa 

is placed in the right side and multiplied by three in order to amplify their evolution. 
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and higher water salinity were recorded in Estanya at this time (Morellón et al., 2011), as 

well as in other regional sequences (Morellón et al., 2012). 

 

Figure 3.11. Reconstructed dry conditions for the MCA from Iberian records. A) Zr/Al ratio from 

Algerian–Balearic basin core; B) Rb/Al ratio from Zoñar Lake; C) Sr (cps) from Arreo Lake; D) the 

aridity reconstruction of Estanya Lake (axis 2 from the Principal Component Analyses applied to the 

XRF dataset in two cores); E) the number of paleoflood events in Taravilla Lake; F) Si (cps) from Basa 

de la Mora Lake; G) the number of detrital layers per year from Montcortès Lake and H) Fe (cps) from 

the Tagus prodelta. From Moreno et al. 2012. 
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Nevertheless, apart from the last stage of this period when the landscape underwent some 

human-related changes, in general, the vegetation changes recorded in Estanya sequence 

between 4800 and 800 cal yr BP are in agreement, firstly, with the palaeohydrological 

reconstruction carried out in the same lake by Morellón et al., (2009b), and secondly, with 

changes observed in other environmental reconstructions from higher altitudes in the 

Pyrenees (Pérez-Sanz et al., 2011), indicating that, despite some human influence, 

vegetation shifts were primarily climate-driven during this period. 

1.5.7. The last centuries (800-0 cal yr BP / 1150-1950 AD): crossing a threshold in 

landscape management 

Increasing landscape management in Estanya took place at 0.8 cal ka BP through the spread 

of grazing and farming practices (Riera et al., 2004; Morellón et al., 2011). The sharp 

increase in Olea and in ruderal and nitrophilous plants such as Rumex, along with the 

appearance of Cannabis and a sharp decline in the AP values (fig. 3.10, EST-VI), marks a 

threshold in the agro-pastoral activities at this moment, coinciding with the origin of the 

Crown of Aragon and the beginning of the Middle Ages (Carreras-Ares, 1996). This marked 

human-induced vegetation change has been documented in other Pyrenean sequences 

(Pèlachs et al., 2007; Miras et al., 2010; Ejarque et al., 2010), indicating a massive use of 

the forest at all levels in order to open the landscape for extensive agro-pastoral systems. 

However, despite the mentioned increase of human activities, some vegetation sequences 

also show imprints of the colder and more humid conditions that characterized the latter half 

of the Little Ice Age (LIA: 1500-1850 AD) in the Pyrenees (Morellón et al., 2012) (fig. 3.10). 

Firstly, in the lowlands, though the Estanya sequence records the highest expansion of Vitis 

and Cerealia type and the intensification of Cannabis and Olea cultivation at this point, it also 

shows an increase in mesophytes and in the aquatic component, in contrast to the drop in 

these taxa and the increase in Juniperus recorded during the MCA (fig. 3.6 and 3.10). This 

increase in water-demanded taxa coincides with a more positive water balance in the lake 

(Morellón et al., 2011; Morellón et al., 2012) in agreement with more humid conditions. On 

the other hand, pollen sequences placed at higher altitudes show a partial recovery of the 

forest and a decrease in cultivated taxa (Pérez-Obiol et al., 2012; Pérez-Sanz et al., 2011, 

2013) indicating a decline in human pressure on the highlands. During the LIA, the Pyrenees 

recorded a remarkable development of glacial systems pointing out a drop in temperatures 

and an increase in moisture (González-Trueba et al., 2008; Chueca-Cía et al., 2005). These 

cold conditions could be responsible for a temporal abandonment of human activities in the 

highlands (Pérez-Sanz et al., 2011), which indeed intensified in the lowlands, likely further 

favoured by an increase in water availability. These facts prove that both humans and 

climate forcings have been always implied in the vegetation shifts occurred in the Pyrenees, 

even during the last centuries. 

Since the onset of the 20th century and especially during the second half of that century, it 

took place an important change in the social organization in Spain that led to a major 



3. Estanya sequence. Climate at low altitudes 
 

 

106 
 

migration from the villages into the cities (Lasanta-Martínez et al., 2005). The Estanya pollen 

sequence only records de first half of the 20th century but it shows evidence of this major 

socio-economical shift. Agricultural-related taxa such as Olea, Cerealia type and Vitis 

decreased considerably since their maximum values recorded between the 17th and 19th 

centuries (fig. 3.10). Additionally, the AP values increased slightly in agreement with less 

agricultural pressure in the region. However, both nitrophilous plants and Cannabis increase 

(fig. 3.10) pointing out yet some important anthropogenic activity in the area. At a more 

regional scale, higher altitude sequences of the southern Pyrenees show a progressive 

increase in forest recovery (Ejarque et al., 2009; Cunill et al., 2012; Pérez-Obiol et al., 2012; 

Pérez-Sanz et al., 2013) indicating the spread of pine formations in the subalpine belt in 

agreement with reduced anthropogenic pressure also in the highlands. Nevertheless, recent 

works have demonstrated that the upwards migration of the treeline and the increase in tree 

density, that the subalpine forest of the Pyrenees have been experiencing lately, is also a 

result of the current Global Change and the recent rise in temperatures (Camarero and 

Gutiérrez, 2004; Batllori and Gutiérrez, 2008). This fact proves the fast response of the 

Pyrenean forests to climate changes, particularly under low-degree anthropogenic pressure, 

supporting the climate-driven vegetation shifts reconstructed in this chapter for the regional 

Holocene evolution.  

1.6. CONCLUSIONS 

i. The synchrony and consistency of the altitudinal vegetation shifts indicates that the 

vegetation dynamic in the Pyrenees has been climate-driven during most part of the 

Holocene until approximately 0.8 cal Ka BP (1150 AD), when the anthropogenic activities 

caused high-degree degradation on the landscape. 

ii. Severe climate conditions characterized by extremely seasonal contrast and water deficit 

determined the presence of steppe communities in the lowlands and limited the forest 

development at high altitudes from the onset of the Holocene until 9.8 cal ka BP.  

iii. After 9.8 cal ka BP, the mesophyte communities spread in the lowlands. This expansion 

during a period of wet and cold winters but relative dry summers could have been 

favoured by high water inputs as snowmelt from the Pyrenees 

iv. Between 8200 and 6000 cal yr BP, an increase in winter temperatures along with a 

change in the regimen precipitation with a more evenly distribution of the rainfall 

favoured the vegetation belts to rise in altitude, leading to the establishment of a well-

developed Mediterranean forest in the lowlands and a deciduous forest in the subalpine 

belt.  

v. A change in the precipitation pattern with a development of a dry season was responsible 

for the substitution of the deciduous forest of the subalpine belt by pine-dominant 

formations at ca. 6 cal Ka BP. The Mediterranean forest located in the lowlands was 
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hardly affected until 4.8 cal ka BP, when a trend toward drier conditions along with a 

moderate decrease in winter temperatures resulted in semi-deciduous Quercus in 

Estanya and the opening of the pine forest at higher altitudes.  

vi. The first signs of anthropogenic activities are recognised at ca. 3.1 cal ka BP with the 

appearance of Cerealia type and a likely deforestation phase. The large spread of agro-

pastoral activities are recorded at ca 0.8 cal ka BP, when the expansion of grazing and 

farming-related taxa and a sharp decrease in the forest cover indicate a threshold in 

sustainable land management.  

vii. Climate has secondarily controlled altitudinal vegetation shifts during the periods of most 

intense anthropogenic pressure, as it has also determine the location and intensity of 

human activities in the lowlands and highlands. 
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4 

Climate models. Mid-Holocene and 

modern precipitation simulations 
over the Mediterranean. 

 

Outline 

Climate models are outstanding tools to inform us about the potential future climate 

changes. Confidence in models is based on their performance to simulate modern and past 

climates. Thus, palaeoclimate research is essential not only to know the evolution of the 

climate but also to provide the ground truth, i.e. the climate reconstructions to compare with 

the climate model outputs so we can assess their ability to simulate different climate 

scenarios. The Mid-Holocene was characterized by much more humid conditions than present 

as it has been recognized in BSM and EST sequences (previous chapters) and across the 

whole Mediterranean region. Mid-Holocene climate simulations and paleo-data provide an 

opportunity to understand the climate mechanisms driven such deep changes in the 

precipitation regimen in the Mediterranean and to check the reliability of different simulations 

to reproduce past climates. Comparison of CMIP5 model precipitation outputs against actual 

and Mid Holocene observations in the Mediterranean region underlines that current state-of-

the-art General Circulation Models still fail to simulate both past and present climates in an 

accurate way at a regional level. 
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4.1. INTRODUCTION 

Currently, the Mediterranean area, including southern Europe and northern Africa, is 

characterized by a highly seasonal climate with summer drought and a wet season between 

October and March (Mehta and Yang, 2008). The generally low precipitation and marked 

seasonality gives rise to drought-adapted, sclerophyllous vegetation that is highly susceptible 

to wildfire during the dry season (Moreira et al., 2011). The Mediterranean region has 

experienced warming and increased drought in recent years (Camuffo et al. 2010; Hoerling 

et al. 2012; European Environment Agency, 2012) and has been identified as highly 

vulnerable to future climate changes (Giorgi, 2006). Model projections indicate large 

increases in temperatures and a reduction in mean annual precipitation (e.g. Meehl et al., 

2007; Giorgi and Lionello, 2008; Nikulin et al., 2011), both of which would lead to large 

changes in vegetation cover and exacerbate wildfires (Amatulli et al., 2013). Given the high 

socio-economic costs of such changes, it is important to assess the reliability of model 

projections. Measures of how well the models simulate modern climate do not provide a 

measure of whether the simulation of climate changes is realistic. However, the evaluation of 

model performance in the past does provide a way of making such an assessment 

(Braconnot et al., 2012; Schmidt et al., 2013). 

Not every period of past climate change is adequate to compare with model outputs. The 

Mid-Holocene constitutes a key period to determine the ability of models to reproduce 

climate states that are different from those of today and to increase our understanding of 

climate changes (Braconnot et al., 2007). This is because the climate was different from 

today´s, particularly in the Mediterranean area, but the atmospheric composition was 

analogous to the pre-Industrial times and the land-ocean-ice configuration was similar to 

present conditions (i.e., the extent of the ice caps had reduced significantly since the Late 

Glacial reaching present values). As a result, changes in the climate during the Mid-Holocene 

are mainly related to shifts in the seasonal and latitudinal distribution of incoming solar 

radiation (insolation) caused by changes in orbital parameters. Since the values of the 

seasonal insolation are well-known, the Mid-Holocene climate simulations allow us evaluate 

the ability of climate models to transfer properly those changes in the external forcing into 

the atmospheric and ocean circulations that are responsible for the Earth’s climate at a large-

scale.  

Palaeoenvironmental evidence demonstrates that, 6000 years ago, during the Mid-Holocene, 

the climate was much different. Lake levels across the Mediterranean region were higher 

than present (Kohfeld and Harrison, 2000; Magny et al., 2002; Roberts et al., 2008), 

indicating a more positive balance between precipitation and evaporation. Speleothem 

records also indicate increased precipitation compared to present (Roberts et al., 2011). The 

observed expansion of deciduous trees across the region (Prentice et al., 1996; Roberts et 

al., 2004; Carrión et al., 2010) indicates that there was a change in rainfall seasonality with 

increased summer rainfall (Prentice et al., 1996). The observed decrease of fires in lowland 

areas in the northern Pyrenees and an increase at higher elevations, has been explained as a 
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reflection of generally more humid conditions that would suppress fires in the already 

forested lowlands but allow them to increase as forests expanded into higher elevation areas 

(Vannière et al., 2011). The changes in climate were spatially complex (Roberts et al., 

2011), but pollen-based climate reconstructions (e.g. Cheddadi et al., 1997; Davis et al., 

2003; Bartlein et al., 2011) show that most of the Mediterranean region was characterized 

by an increase in plant-available moisture.  

These regional palaeo-climate data from the Mediterranean area during the Mid-Holocene are 

in agreement, as we have described before, with the results obtained in the present PhD 

dissertation from the BSM and EST sequences (chapters 2 and 3 respectively). According to 

the palaeo-environmental reconstructions accomplished in the previous chapters, the Mid-

Holocene in the Pyrenees was a period of particularly mild climate conditions characterized 

by warm winters and humid conditions that lead to the establishment of a Mediterranean-

forest type dominated by semi-deciduous Quercus in the lowlands (EST sequence, chapter 

3), and a well-developed deciduous forest dominated by Betula, Corylus and deciduous 

Quercus in the highlands (BSM sequence, chapter 2), reaching up to the treeline (fig.4.1).   

 

Figure 4.1. Vegetation and lake level reconstructions for lakes Estanya and Basa de la Mora. The Mid 

Holocene is highlighted in yellow. The lake level reconstruction for Lake Estaña has been published by 

Morellón et al. (2009). 
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Such changes in precipitation and temperature compared to today require large-scale shifts 

in atmospheric and oceanic patterns. Nevertheless, though palaeo-climate data allow us to 

know the evolution of the climate in the past, the mechanisms beyond those changes cannot 

be easily deduced. To this purpose, climate models attempt to simulate past climates 

mechanisms based on prescribed Earth’s physico-chemical parameters such as solar 

insolation, orbital configuration, atmosphere composition, ocean temperature or ice-sea 

extent among others. Considering climate features in the Mediterranean region during the 

Mid-Holocene are relatively well-know at a regional scale, this period provides an opportunity 

to examine climate-model performance.  

Systematic comparisons with observations have shown that global climate models are unable 

to reproduce the observed MH patterns of rainfall changes in the Mediterranean. In 

particular, they do not show a sufficiently large increase in summer rainfall to explain the 

shift towards deciduous vegetation. This was identified as a problem in atmosphere-only 

simulations of the mid-Holocene made during the first phase of the Palaeoclimate Modelling 

Intercomparison Project (PMIP1: see e.g. Masson et al., 1999; Guiot et al., 1999; Bonfils et 

al., 2004). Coupled ocean-atmosphere simulations made during PMIP2 were able to simulate 

the types of climate changes seen in the Mediterranean, but the geographic placement of 

these climate types, the spatial extent and the magnitude of the changes were not well 

captured (Brewer et al., 2007). In particular, the simulated changes in precipitation are small 

and insufficient to explain the observed expansion of deciduous forests in the region.  

The Mediterranean climate involves a complex interaction between different processes acting 

at several different spatio-temporal scales (Xoplaki et al., 2003; Luterbacher et al., 2006; 

CLIVAR, 2010; Lionello, 2012). However, interannual variability in Mediterranean summer 

precipitation is linked to variability in the strength of the Afro-Asian monsoon system 

(Rodwell and Hoskins, 2001; Raicich et al. 2003; Gaetani et al 2011). Analyses of climate 

model simulations of the present day suggest that Mediterranean summer precipitation is 

suppressed during years when the Afro-Asian monsoon system is strong. This results from 

intensification of the Hadley cell and enhanced subsidence in the subtropics (i.e. 

strengthening of the Azores High), leading to high pressure over the eastern Mediterranean 

which results in decreased rainfall (Gaetani et al., 2011). However, when monsoon 

intensification is accompanied by northward movement of the intertropical convergence 

zone, as model simulations indicate occurred in the mid-Holocene (Braconnot et al., 2007a; 

Marzin and Braconnot, 2009), the Azores high is also displaced northeastward and weakened 

(e.g. Harrison et al., 1992). This has been shown to have a significant impact on 

precipitation in the eastern North America (Forman et al., 1995; van Soelen et al., 2012) and 

could potentially lead to increased summer rainfall in the Mediterranean region. 

The PMIP2 simulations show a significant enhancement and northward expansion of the 

African monsoon during the Mid-Holocene in response to changes in insolation forcing 

(Braconnot et al. 2007a). However, comparisons with pollen-based estimates of the change 
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in mean annual precipitation (Joussaume et al., 1999; Bartlein et al., 2011) show that the 

models underestimate the increase in precipitation by between 20 and 50% (Braconnot et al. 

2007a; Braconnot et al., 2012). Most models fail to produce a sufficient northward expansion 

of the monsoon. This underestimation of monsoon expansion is also present in the CMIP5 MH 

simulations (see e.g. Harrison et al., 2013). It is possible that this bias in the simulation of 

the African monsoon is linked to the failure to simulate the MH Mediterranean climate 

accurately, since larger shifts in the position of the monsoon are produced by models 

incorporating land-surface feedbacks and/or with higher spatial resolution (Levis et al., 

2004; Wohlfahrt et al., 2004; Bosmans et al., 2012). 

MH model simulations, made with the same models that are used for future projections, have 

been made as part of the fifth phase of the Coupled Model Intercomparison Project (CMIP5: 

Taylor et al., 2012) and are being analysed as part of the third phase of the Palaeoclimate 

Modelling Intercomparison Project (PMIP3: Bracconnot et al., 2012).  

Kelley et al. (2012) have shown that the simulation of the seasonal cycle of precipitation in 

the Mediterranean region under modern conditions is reasonable, although as in earlier 

versions of the models the amplitude of the cycle is more muted than observed with too little 

rain in winter and too much rain in summer (Brands et al., 2013). However, evaluation of 

CMIP5 model performance against modern observations suggests that some aspects of the 

simulation of the Afro-Asian monsoons (see e.g. Monerie et al., 2012; Roehrig et al., 2013; 

Sperber et al., 2012) are improved compared to earlier versions of the models, although 

preliminary assessments of the CMIP5 model indicate that improvements in the modern 

simulations do not translate into improvements in the simulation of the MH monsoon climate 

(Harrison et al., 2013), and thus, given the dynamic links between the monsoon and 

Mediterranean precipitation, in MH Mediterranean climate changes.  

4.1.1. Objectives 

In this chapter, we examine the performance of the CMIP5 models for modern and MH 

climates, and compare the simulated climates with modern and palaeo-observations from 

Bartlein et al., (2011) data base. This allows us to assess whether biases in the control 

simulations influence the MH simulations and to investigate whether regional biases in the 

simulation of MH monsoon changes influence model performance in the Mediterranean. 

4.2. METHODS 

We present analyses of the pre-Industrial (piControl) and MH (midHolocene) made by 12 

coupled ocean-atmosphere models from the fifth phase of the Coupled Climate Modelling 

Intercomparison Project (CMIP5). In order to investigate whether biases in the control 

simulation influence the realism of the midHolocene climates, we first evaluate the piControl 
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simulation. We use modern observations from the CRU TS3.1 data set, in the absence of 

climate reconstructions from northern African for the piControl interval. The piControl 

simulation is driven by boundary conditions appropriate for 1850 AD, but comparisons with a 

subset of transient historical simulations show that the spatial patterns and magnitudes of 

seasonal climates are very similar. In order to evaluate whether models capture the spatial 

expression of specific seasonal patterns, we define a number of climate types using the 

modern observations and apply these definitions to delimit these climate types in the 

piControl and midHolocene simulations. We evaluate the midHolocene simulations using 

quantitative climate reconstructions derived from a global data base of pollen records which 

still not include the BSM and EST data presented in this Thesis. 

Although there are many kinds of palaeorecord that indicate that northern Africa and the 

circum-Mediterranean region were wetter during the mid-Holocene, including e.g. lake-level 

and archaeological records, these other sources of information do not provide quantitative 

estimates of the change in precipitation. Comparisons of simulated and observed climates 

are based on the simulated precipitation both within climate zones and within geographic 

zones. 

4.2.1. Data sources: CMIP5 simulations 

We examine precipitation changes between a MH (midHolocene, 6000 yr B.P) equilibrium 

simulation and a control simulation representing pre-industrial conditions (piControl) using 

12 models from the fifth phase of the Coupled Modelling Intercomparison Project (CMIP5). 

Both the midHolocene and piControl are equilibrium simulations. We use the midHolocene 

and piControl simulations in the CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html) 

archive as of 15th August 2012 (table 4.1). Seven of these simulations are made with ocean-

atmosphere (OA) models, and the other 5 models include an interactive carbon cycle (OAC). 

The piControl simulation has boundary conditions (insolation, greenhouse gas 

concentrations) appropriate for 1850 CE. The midHolocene experiment shows the response 

to changes in the seasonal and latitudinal distribution in insolation 6000 years ago; 

greenhouse gas concentrations are set at piControl levels (for details of the experimental 

protocol see Taylor et al., 2012; Braconnot et al., 2012). To assess whether the piControl 

state differs from recent observed climates, we used outputs from a historical simulation 

(historical: 1850 to 2005 CE) available for 6 of the models. The historical simulation is forced 

by time-varying changes in solar, volcanic, and greenhouse gases (Taylor et al., 2012; 

Braconnot et al., 2012).  

The output from each model was interpolated to a common grid (0.5 ) using bilinear 

interpolation to facilitate comparisons and the calculation of zonal averages. Long-term mean 

monthly, seasonal, and annual precipitation values were obtained by averaging the last 100 

years of the piControl and midHolocene simulations, except in the case of HADGEM2-CC 

where only 35 years of midHolocene simulated outputs are available. Long-term means of 
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the six historical simulations were obtained by averaging the last 30 years of each 

simulation. All averages were areally-weighted (by the area of the model grid cells). 

4.2.2. Data sources: Modern and mid-Holocene climate data 

Observations of the modern climate are taken from the CRU TS3.1 data set (Harris et al., 

2013), which provides monthly precipitation values on a 0.5º grid for the interval 1850 to 

2006. We have created a monthly precipitation climatology using data from January 1961 

through to December 1990. Zonal averages are constructed by areally-weighting the gridded 

values. 

Bartlein et al. (2011) provide quantitative reconstructions of mean annual precipitation 

(MAP), expressed as anomalies from the present, from a global data base of pollen and plant 

macrofossil records. The original site-based reconstructions were averaged to provide 

gridded values on a 2x2º grid, and differences between the site reconstructions within each 

grid were used to provide an estimate of reconstruction uncertainty (as a pooled estimate of 

the standard error). The data set provides mid-Holocene estimates of MAP anomalies for 62 

cells (out of a possible 397 cells) within the area of interest (latitude: 0ºN-45ºN, longitude: 

20ºW-30ºE).  

Model name Type 

Resolution 

 (number of gridcells:  

latitude, longitude) 

Year 

length 

Simulations 

Atmosph Ocean Sea Ice  

Mid 

Holocene 

PI  

Control 

hist 

BCC-CSM1-1 OAC 64, 128 232, 360 232, 360 365 X X  

CCSM4 OA 192, 288 320384 320384 365 X X X 

CNRM-CM5 OA 128, 256 292, 362 292, 362 365-366 X X  

CSIRO-Mk3-6-0 OA 96, 192 189, 192 96, 192 365 X X  

CSIRO-Mk3L-1-2 OA 56, 64 128, 225 56, 64 365 X X  

GISS-E2-R OA 90, 144 90, 144 90, 144 365 X X X 

HadGEM2-CC OAC 145, 192 216, 360 216, 360 360 X X  

HadGEM2-ES OAC 145, 192 216, 360 216, 360 360 X X  

IPSL-CM5A-LR OAC 96, 96 149, 182 149, 182 365 X X X 

MIROC-ESM OAC 64, 128 192, 256 192, 256 365 X X X 

MPI-ESM-P OA 96, 192 220, 256 220, 256 365-366 X X X 

MRI-CGCM3 OA 160, 320 360, 368 360, 368 365 X X X 

Table 4.1. Characteristics of the CMIP5 models used in these analyses. 
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4.2.3. Definition of climate regions 

Precipitation regimes can be characterized by a combination of the form of the seasonal 

cycle, seasonal concentration, and magnitude. We determined these characteristics of 

modern precipitation (using the CRU TS3.1 data set) for zonally averaged 5º latitude bands 

between 0 and 45ºN. The seasonal cycle of precipitation in each 5º latitude band was 

characterized according to the number of distinct rainfall peaks present in the 12-month 

precipitation climatology, using the R package “pastecs” to determine whether there was a 

significant ‘pit’ or ‘peak’ in any month. A pit or peak is considered significant if the probability 

of turning points occurring in a random series is <0.05, given by: 

  ( )  

where n is the number of observations at time t (Ibanez, 1982).  

We calculated the total precipitation in each season (spring: March, April, May; summer: 

June, July, August; autumn: September, October, November; winter: December, January, 

February) and for the whole year. A measure of seasonal concentration was calculated 

following Kelley et al. (2013), where the magnitude of precipitation in each month is 

represented by the length of a vector in the complex plane and the direction of the vector 

represents the timing (with January set to 0º).  The length of the mean vector divided by the 

annual precipitation provides an index of seasonal concentration (C), where C is 1 when the 

precipitation is concentrated in a single month and 0 when it is evenly distributed throughout 

the year. 

We applied these definitions to determine the position of different precipitation regimes in 

the piControl and midHolocene simulations. Comparison of the observed limits and those 

identified in the piControl allows us to examine (a) whether the models produce these 

distinctive precipitation regimes and (b) how well they simulate their placement 

independently of whether they simulate the correct magnitude of precipitation. Comparison 

of the piControl and midHolocene limits allows us to characterize shifts in precipitation 

regimes, again independent of changes in precipitation magnitude. 

4.2.4. Analyses of the Model Simulations 

We evaluate model performance for piControl simulation in two steps. First we examine 

whether the models reproduce the spatial extent of different precipitation regimes, and then 

we examine whether they reproduce the magnitude of total annual and of seasonal 

precipitation. Long-term means for the period 1961-1990 from the CRU TS3.1 data set 

(Harris et al., 2013) are compared with long-term averages for the last 100 years of the 

piControl. The standard deviation (SD) of the observations provides a measure of the 

significance of the difference between observations and simulations. We examine the 
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differences between simulated and observed climate for the latitude band corresponding to a 

given precipitation regime in the observations. We also compare the differences in the 

amount of precipitation for the geographic region identified as falling within a specific 

precipitation regime in each model, which may be less/more extensive than the region 

identified in the observations. 

We also examine the change in precipitation in the mid-Holocene in two steps. First we 

identify the spatial extent of each precipitation regime in the midHolocene simulations and 

compare this with the spatial extent shown in the piControl simulation of the same model. 

This allows us to identify whether there have been shifts in the precipitation regimes. We 

then examine the magnitude of the precipitation change in the latitude band characterized by 

a specific regime in both the piControl and the midHolocene simulations for each model. This 

allows us to identify whether there has been a change in precipitation in situ. We use the 

standard deviation of the piControl simulation for each model to determine whether the 

change between midHolocene and piControl is significant.  

We examine whether the biases in simulated precipitation (both the bias in spatial extent of 

a given precipitation regime and the bias in the magnitude of the simulated precipitation) 

influence the simulated change in precipitation between piControl and midHolocene. The bias 

and anomaly values have been obtained firstly for discrete geographical zones (the zones 

characterized by different rainfall regimes today, as defined from the CRU data set) and 

secondly for the model-defined regions of these different rainfall regimes (e.g. the region 

where the simulated rainfall is of the monsoon type). We use linear regression to examine 

the relationship between precipitation biases and anomalies for all models, and for the OA 

and OAC classes of models. 

The realism of the simulated change in precipitation (midHolocene-piControl) is assessed by 

comparing with reconstructions of mean annual precipitation (MAP) from the Bartlein et al. 

(2011) data set. Comparisons are made by averaging the simulated precipitation for the grid 

cells where there are observations within each 5º latitude band. There are sufficient data in 

most of the 5º latitude bands to make robust comparisons. 

4.3. RESULTS 

4.3.1. Modern observed climate 

The modern climate of the region can be divided into four distinct latitudinal zones, 

differentiated by marked differences in the seasonal distribution and amount of rainfall (fig. 

4.2). In the south, the equatorial band is characterized by high rainfall (~1800 mm) 

throughout the year (fig. 4.3) but with peaks in precipitation in spring (~ 460 mm) and 

autumn (~600 mm) and less rainfall in summer. This pattern reflects the seasonal migration 
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north and south of the inter-tropical convergence zone. The “double-peak” rainfall pattern 

(hereafter DP) occurs between 0 to 5ºN. The region further north (5-20 ºN) is characterized 

by summer monsoonal rainfall and dry winters. The amount of rainfall declines progressively 

from ca 650 mm in summer (June, July, August) in the south to less than 100 mm in the 

north. The desert area (20-30ºN) is characterized by low rainfall (<100 mm/yr). There is no 

pronounced seasonal differentiation in rainfall in the desert, although southern regions tend 

to have slightly more rain in summer than winter and northern regions slightly more rainfall 

in winter than summer. The Mediterranean zone (30-45ºN) is characterized by higher 

rainfall, increasing from 200 mm/year in the south band to 780 mm/year in the north. The 

rainfall is concentrated in the winter half-year, with a pronounced summer drought.  

 

Figure 4.2: Observed seasonal 

cycle of precipitation in each of 

the defined climate zones, using 

the CRU T3.1 data set (Harris et 

al., 2013). The mean 

precipitation each month (mm) 

is shown by the black line, with 

the standard deviation shown 

by the bars. The grey shading 

shows the maximum and 

minimum rainfall experienced 

within the observation period 

(1961 to 1990). Note that the 

scale for the desert region 

differs from that used for the 

other regions. Months are 

numbered consecutively from 

January (1) through to 

December (12). 
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4.3.2. PiControl simulations 

These four rainfall regimes can generally be identified in the piControl simulations, although 

two of the models (CNRM-CM5, MRI-CGCM3) fail to reproduce the DP pattern in the 

equatorial zone. However, several models represent the spatial extent of the regimes poorly. 

Thus 5 out of the 12 models show monsoon penetration further north than observed (fig. 

4.4a). Most models place the northern limit of the desert correctly, but two models (CSIRO-

 

Figure 4.3: Observed 

and simulated modern 

and palaeo-precipitation 

patterns. The total 

summer (June, July, 

August) and winter 

(December, January, 

February) precipitation 

from the CRU T3.1 data 

set (Harris et al., 2013) 

are compared to 

ensemble averages of 

the piControl outputs of 

the 12 CMIP5 models. 

The simulated change in 

precipitation between 

the Mid-Holocene and 

piControl simulations  

(midHolocene-piControl) 

is shown based on the 

ensemble average of the 

midHolocene outputs of 

the 12 CMIP5 models. 

The observed anomalies 

in mean annual 

precipitation (MAP) 

between the mid-

Holocene and the 

present day are average 

values for 2x2º grids 

from the Bartlein et al. 

(2011) data set. 
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Mk3L-1-2, IPSL-CM5A-LR) show the area of low rainfall and low rainfall seasonality extending 

further north than observed.  

 Season 
Anomaly 

BCC-
CSM1.1 

 

CCSM4 CNRM-
CM5 

CSIRO-
Mk3-6-0 

CSIRO-
Mk3L-1-2 

GISS-E2-
R 

Mediterranean 

annual 15.0 24.4 32.6 -21.2 8.4 75.7 

spring 13.9 3.7 16.1 13.0 4.2 28.4 

summer -4.3 2.7 4.7 -10.7 -2.4 20.5 

autumn -0.4 10.5 14.0 -21.6 6.6 20.3 

winter 5.8 7.4 -2.3 -1.9 0.0 6.5 

Desert 

annual 7.7 29.5 32.7 -18.5 4.6 22.8 

spring 0.1 0.6 3.6 0.8 1.3 10.6 

summer 0.8 14.3 9.6 -7.4 3.2 7.7 

autumn 2.8 13.9 18.5 -11.5 0.9 3.9 

winter 4.1 0.6 1.0 -0.5 -0.8 0.7 

Monsoon 

annual 47.4 148.6 155.8 -53.5 47.2 116.1 

spring -11.2 -2.6 -7.4 -2.6 -2.7 -7.5 

summer 33.6 80.4 97.2 -20.3 21.5 91.6 

autumn 29.8 76.6 78.7 -28.3 32.9 41.4 

winter -4.7 -5.9 -12.6 -2.3 -4.5 -9.4 

DP 

annual -76.7 -13.3 - -208.8 -36.4 2.8 

spring -41.3 0.5 - -12.7 -0.6 -56.2 

summer 1.1 43.8 - -68.1 33.9 87.1 

autumn 29.1 53.1 - -106.8 63.2 71.0 

winter -65.5 -110.7 - -21.1 -132.9 -99.1 

 

 Season 
Anomaly 

HadGEM2
-CC 

HadGEM2
-ES 

IPSL-
CM5A-LR 

MIROC-
ESM 

MPI-ESM-
P 

MRI-
CGCM3 

Mediterranean 

annual 30.9 9.2 40.1 30.8 14.3 15.4 

spring 14.5 13.0 22.2 11.6 17.6 10.4 

summer 40.6 -8.8 14.0 0.8 3.5 -2.8 

autumn -40.9 2.9 8.0 6.0 -3.9 -5.9 

winter 16.7 2.1 -4.1 12.4 -2.9 13.8 

Desert 

annual 4.5 4.4 6.8 26.1 14.3 7.7 

spring 0.6 2.1 1.8 4.2 2.1 0.1 

summer 3.4 4.2 2.8 12.3 6.7 0.8 

autumn 2.1 -1.3 2.3 10.1 5.1 2.8 

winter -1.7 -0.5 -0.1 -0.4 0.4 4.1 

Monsoon 

annual 207.6 210.4 202.4 182.1 219.9 88.5 

spring -39.1 19.3 6.0 -19.7 17.5 -1.9 

summer 15.4 122.8 110.0 142.4 132.8 68.3 

autumn 233.6 72.5 89.6 72.2 70.2 23.7 

winter -2.2 -4.3 -3.2 -12.7 -0.7 -1.5 

DP 

annual 123.0 142.0 - -244.4 14.3 - 

spring -100.9 -1.7 - -87.2 -32.0 - 

summer -1.8 8.6 - 29.3 38.7 - 

autumn 154.9 168.9 - -9.6 55.6 - 

winter 70.7 -33.9 - -176.9 -48.1 - 

Table 4.2. Summary of area-averaged climate anomalies (midHolocene minus piControl) for individual 

models for individual seasons and for mean annual precipitation. Bold font indicates values that are 

significantly different from the interannual variability of the modern observations. The seasons are 

spring: March, April, May; summer: June, July, August; autumn: September, October, November; 

winter: December, January, February. 
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Since there are no reconstructions of pre-industrial climate, we evaluate how well the models 

reproduce the magnitude of seasonal precipitation within each precipitation regime by 

comparing to observations for the period 1961-1990. Comparison of the piControl and 

historical simulations (fig. 4.5), for the six models where both runs are available, shows that 

differences in the simulated patterns and amount of precipitation between the two 

simulations are small. Differences between the two simulations are generally much smaller 

than the difference between the simulated and observed climate.  

Comparison of the piControl with modern observations shows that most models fail to 

reproduce the magnitude of the precipitation (fig. 4.6). Only two models (CSIRO-Mk3L-1-2, 

MPI-ESM-P) correctly reproduce the amount of rainfall in the DP band, while 6 models 

overestimate the rainfall by between 350 and 790 mm/yr.  Although some models 

overestimate the amount of precipitation in every season, the positive biases are largest in 

spring (75-290 mm), autumn (90-325 mm) and winter (50-290 mm). Only two models 

(GISS-E2-R, CNRM-CM5) simulate the correct magnitude of mean annual precipitation in the 

monsoon zone. Seven models underestimate, and three models overestimate, the mean 

annual rainfall in the monsoon zone. The bias ranges from 280 mm less than observed to 

270 mm more than observed. Models that underestimate the total amount of rainfall in the 

monsoon zone (e.g. BBC-CSM1.1, CSIRO-Mk3L-1-2, HadGEM2-CC, HadGEM2-ES, IPSL-

 

Figure 4.4. a) The location of the four precipitation zones in the CMIP5 pre-industrial (piControl) 

simulations compared to the limits defined using the CRU TS3.1 data set (Harris et al., 2013). The 

precipitation regime was characterised using zonally-averaged long-term means for 5º latitiude 

bands. b) The location of the four precipitation zones in the CMIP5 mid-Holocene (midHolocene) 

simulations compared to the limits defined using the CRU TS3.1 data set (Harris et al., 2013). The 

precipitation regime was characterised using zonally-averaged long-term means for 5º latitude 

bands. 
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CM5A-LR, MPI-ESM-P and MRI-CGCM3) do so because of simulating too little precipitation in 

summer and autumn, i.e. because the simulation of the monsoon is too weak. However, 

models that overestimate the total precipitation in this zone (e.g. CCSM4, CNRM-CM5, 

CSIRO-Mk3-6 and MIROC-ESM), generally overestimate the rainfall in all seasons of the 

year. Seven models simulate too much precipitation in the desert zone (10-55 mm/yr), with 

too much rainfall in spring, summer and autumn. Given that the desert zone is by definition 

confined to regions with <100 mm precipitation, the overestimation of rainfall in this zone is 

large. Four models underestimate the Mediterranean precipitation (by between 35 to 90 

mm/yr), because of underestimation of the autumn and winter rainfall, although they 

overestimate the summer rainfall.  However, the IPSL-CM5A-LR and GISS-E2-R models 

overestimate total precipitation in this region: GISS produces too much rainfall in spring (45 

mm), summer (100 mm) and autumn (60 mm), while IPSL-CM5A-LR simulates too much 

rainfall (130 mm) in summer only. Comparison of results from models that correctly simulate 

the location of each regime (compared to the observations) and those in which the area 

characterized by a given regime is too extensive or too small, show that the biases in 

simulated precipitation are not related to whether models reproduce the spatial location of 

each regime correctly. 

4.3.3. Mid-Holocene simulations 

The location of the DP regime does not change between the piControl and midHolocene 

simulations of most (9) of the models (fig. 4.4b). The two models (CNRM-CM5, MRI-CGCM3) 

that failed to simulate a DP pattern in the equatorial zone in the piControl, nevertheless 

simulate this pattern in the midHolocene experiment. However, in the IPSL-CM5A-LR 

midHolocene simulation, the precipitation in the equatorial zone is more monsoon-like than 

in the model’s piControl simulation.  Most of the models (6) show no change in the northern 

limit of the monsoon; four models (CCSM4, IPSL-CM5A-LR, MRI-CGCM3, CNRM-CM5) show a 

northward displacement of the northern limit of the monsoon, while two models (BCC-

CSM1.1, MRI-CGCM3) show a southward displacement of the northern limit of the monsoon 

as a result of southward expansion of the desert regime. Only two models (BBC-CSM1.1, 

MRI-CGCM3) show a northward displacement of the northern limit of the desert zone. Thus, 

in most of the midHolocene simulations, the desert regime occupies either a similar (5 

models) or a slightly contracted area (4 models) compared to the piControl. Only one model 

(GISS-E2-R) shows a southward expansion of the Mediterranean precipitation regime; 

otherwise, this zone occupies the same position as in the piControl simulations.  
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Figure 4.5.  Comparison of the mean annual and mean seasonal precipitation (mm) between the CRU 

data and historical simulations for each 5 latitude band. Because there is a very small amount of 

precipitation is some latitude band, the axis scale starts at 0 but differs in the maximum value 

depending on the total rainfall values. Only six models have historical simulations. For these models we 

also present the piControl simulations. The historical simulations are shown in color while the piControl 

simulations for each model are shown by a dash line. The grey bars represent one standard deviation of 

the mean annual and mean seasonal precipitation from observations. The seasons are defined as spring 

(March, April, May), summer (June, July, August), autumn (September, October, November) and winter 

(December. January, February). 



4. Climate models 

133 
 

 

  

 

F
ig

u
r
e
 

4
.6

: 
C
o
m

p
a
ri
s
o
n
 

o
f 

s
im

u
la

te
d
 

a
n
d
 

o
b
s
e
rv

e
d
 

m
e
a
n
 

a
n
n
u
a
l 

a
n
d
 

m
e
a
n
 

s
e
a
s
o
n
a
l 

p
re

c
ip

it
a
ti
o
n
 (

m
m

) 
fo

r 
e
a
c
h
 o

f 
th

e
 

d
e
fi
n
e
d
 

p
re

c
ip

it
a
ti
o
n
 

re
g
im

e
s
 

(M
e
d
it
e
rr

a
n
e
a
n
, 

d
e
s
e
rt

, 
m

o
n
s
o
o
n
, 

d
o
u
b
le

 
p
e
a
k
).

 
T
h
e
 

s
im

u
la

te
d
 

p
re

c
ip

it
a
ti
o
n
 
(m

e
a
n
 
a
n
d
 
s
ta

n
d
a
rd

 

d
e
v
ia

ti
o
n
) 

is
 
s
h
o
w

n
 
fo

r 
b
o
th

 
th

e
 

c
li
m

a
te

 
z
o
n
e
 

a
s
 

d
e
fi
n
e
d
 

b
y
 

th
e
 

o
b
s
e
rv

a
ti
o
n
s
 

(s
o
li
d
 

li
n
e
) 

a
n
d
 

a
s
 

d
e
fi
n
e
d
 i
n
 t

h
e
 p

iC
o
n
tr

o
l 
s
im

u
la

ti
o
n
 

it
s
e
lf
 
(d

o
tt

e
d
 
li
n
e
).

 
T
h
e
 
d
if
fe

re
n
c
e
 

b
e
tw

e
e
n
 
th

e
s
e
 
tw

o
 
li
n
e
s
 
fo

r 
e
a
c
h
 

m
o
d
e
l 

p
ro

v
id

e
s
 
a
 
m

e
a
s
u
re

 
o
f 

th
e
 

d
e
g
re

e
 

to
 

w
h
ic

h
 

in
c
o
rr

e
c
t 

p
la

c
e
m

e
n
t 

o
f 

a
 

g
iv

e
n
 

c
li
m

a
te

 

a
ff

e
c
ts

 t
h
e
 z

o
n
a
l 

m
e
a
n
s
. 

T
h
e
 g

re
y
 

b
a
rs

 
re

p
re

s
e
n
t 

o
n
e
 

s
ta

n
d
a
rd

 

d
e
v
ia

ti
o
n
 o

f 
th

e
 m

e
a
n
 a

n
n
u
a
l 

a
n
d
 

m
e
a
n
 
s
e
a
s
o
n
a
l 

p
re

c
ip

it
a
ti
o
n
 
fr

o
m

 

o
b
s
e
rv

a
ti
o
n
s
. 

T
h
e
 

s
e
a
s
o
n
s
 

a
re

 

d
e
fi
n
e
d
 

a
s
 

s
p
ri
n
g
 

(M
a
rc

h
, 

A
p
ri
l,
 

M
a
y
),

 
s
u
m

m
e
r 

(J
u
n
e
, 

Ju
ly

, 

A
u
g
u
s
t)

, 
a
u
tu

m
n
 

(S
e
p
te

m
b
e
r,

 

O
c
to

b
e
r,

 
N

o
v
e
m

b
e
r)

 
a
n
d
 

w
in

te
r 

(D
e
c
e
m

b
e
r.

 J
a
n
u
a
ry

, 
F
e
b
ru

a
ry

).
  

 



4. Climate models 

134 
 

We necessarily confine our comparisons of the magnitude of changes within each 

precipitation regime to those models that simulate a given regime in both the piControl and 

midHolocene simulations. 

The changes in the DP regime are not consistent and in general do not exceed the variability 

shown by the piControl. Only two models (CSIRO-Mk3-6-0, MIROC-ESM) show a significant 

reduction in precipitation (of 200 and 250 mm respectively) in the midHolocene compared to 

the piControl (fig. 4.7; table 4.2). In the case of the CSIRO-Mk3-6-0 model, this is the result 

of a large decrease in autumn precipitation but in the case of the MIROC-ESM the decrease is 

concentrated in the spring. 

The monsoon zone is characterized by a significant increase in precipitation, except in the 

case of the CSIRO-Mk3-6-0 model.  The anomalies range from +50 to +200 mm/year, 

reflecting large increases in summer (15-140 mm) and autumn (20 to 250 mm) rainfall. 

Changes in winter and spring precipitation in winter and spring are not significant. 

Most models show an increase in mean annual precipitation in the desert regime (5 to 35 

mm) as a result of increased summer and autumn rainfall, but the change only exceeds 

piControl variability in three cases (CCSM4, GISS-E2-R and MIROC-ESM). 

Most of the models (11) show an increase in mean annual precipitation (10 to 75 mm) in the 

Mediterranean regime, although this increase only exceeds the piControl variability in the 

case of the GISS-E2-R model. The simulated increase in mean annual precipitation in the 

GISS-E2-R model results from an increase in spring, summer and autumn and a negligible 

change in winter. All of the models show an increase in spring precipitation, and two models 

(IPSL-CM5A-LR, HADGEM2-CC) show an increase in summer rainfall accompanied by either a 

small increase or no change in winter.  
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4.3.4. Comparison of mid-Holocene simulation mid-Holocene observations 

Reconstructions of the change in mean annual precipitation in the mid-Holocene (fig. 4.7) 

show somewhat drier conditions (ca 40 mm/year) in the equatorial zone (0-5º N), an 

increase in precipitation of between 300-400 mm/year between 10-30º N, and an increase of 

between 100-150 mm/year in the Mediterranean (35-45º N). The simulated changes lie 

within the observed range between 0-5º N, with only 3 of the models lying outside the 25-

75% range. Several models simulate changes within the range of the observed increase in 

precipitation between 10-15 º N (e.g. MRI-CGCM3, HADGEM2-CC, HADGEM2-ES, MIROC-

ESM, IPSL-CM5a_LR, CCSM4). However, none of the models simulates the observed increase 

in precipitation (mean of ca 390 mm/year) between 15-30 º N or indeed simulate changes 

within the range of the observations (fig. 4.8). This is true even in the southernmost zone 

(15-20º N), although in this zone some of the models (e.g. MIROC-ESM) simulate a change 

of ca 50% of the observed mean change in precipitation. Models underestimate the 

reconstructed change in precipitation in the Mediterranean zone (35-45º N), although most 

models lie within the extremes of the observational range. The highest simulated change in 

precipitation is ca 50 mm/year (GISS-E2-R) compared to the reconstructed mean change of 

between 100-150 mm/year.   

 

Figure 4.8: Comparison of simulated and reconstructed changes in mean annual precipitation in the 

mid-Holocene for 5º latitude bands between 0 and 45º N. The reconstructions are from the Bartlein 

et al. (2011) data set. The mean, 25-75% range and full range of the reconstructions are shown (for 

those latitude bands with sufficient data points). The model results are averages for the grid cells 

with observations.  
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4.3.5. Comparison between bias and anomaly 

Comparison of the piControl bias and midHolocene anomaly suggests that model 

performance in the control simulations directly affects model performance in the 

midHolocene simulations in the DP, desert and Mediterranean regions (fig. 4.9). In the DP 

region, there is a significant negative significant correlation (fig. 4.9), all models, black line: 

slope=-0.23, R2=0.74, p=0.0) between the bias and the anomaly: models that overestimate 

precipitation in the piControl show the largest reductions in precipitation in the midHolocene 

simulations (e.g. BCC-CSM1.1, CSIRO-Mk3-6-0 and MIROC-ESM). The overall relationship is 

driven by the OAC simulations (red line: R2=0.88, p=0.02); the slope for the OA models is 

not significant (blue line; R2=0.37, p=0.2). Indeed, as examination of these relationships in 

model-defined DP regions shows, the negative relationship shown by the OA models in the 0-

5º N is driven by the two models that simulate monsoon-like regimes in this zone in the 

piControl. 

There is no relationship between the piControl bias and the midHolocene anomaly in the 

monsoon zone (fig. 4.9), whether this is defined geographically (slope=0.00, R2=0.0, 

p=0.98) or using the model-based regimes (slope=0.08, R2=0.05, p=0.49). Thus, the ability 

to simulate the correct magnitude of modern precipitation appears to have no influence on 

the magnitude of the response of the monsoon to changed forcing. However, the OA and 

OAC models appear to show opposite tendencies: the OA models show a weakly positive 

relationship between the bias and the anomaly (models that simulate less rainfall than 

observed in the piControl produce smaller MH anomalies) whereas the OAC models show a 

(very) weakly negative relationship. 

There is a significant positive correlation between the piControl bias and midHolocene 

anomaly in the desert region (fig. 4.9). This is true whether the region is defined 

geographically (slope=0.32, R2=0.58, p=0.01) or using the model-defined desert regimes 

(slope=0.32, R2=0.48, p=0.02). Models that produce a reasonable simulation of modern 

rainfall in this region fail to produce a significant enhancement in the midHolocene simulation 

(CSIRO-Mk3L-1-2, HadGEM2-CC, IPSL-CM5A-LR) whereas models that are too wet in the 

piControl produce large changes in the midHolocene (CCSM4, GISS-E2-R and MIROC-ESM). 

However, these relationships are driven by the OA simulations; the OAC simulations do not 

show any significant relationship between the piControl bias and the midHolocene anomaly.  

There is also a significant positive correlation between bias and anomaly in the 

Mediterranean region (fig. 4.9), whether the region is defined geographically (slope=0.14, 

R2=0.58, p=0.01) or using the model-defined regimes (slope=0.15, R2=0.48, p=0.02).  

Models that underestimate precipitation in this zone in the piControl show only small 

increases in the midHolocene (BCC-CSM1.1, CCSM4 and MPI-ESM) while models with 

positive bias (GISS-E2-R and IPSL-CM5A-LR) produce larger changes in precipitation. 

However, the relationship for the OAC simulations is again non-significant. 
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Even in those regions where there are significant relationships between piControl bias and 

the midHolocene anomaly, the R2 value ranges from 0.48 to 0.75 Thus, the bias in the 

piControl is not the only factor that determines whether the simulated magnitude of the MH 

climate change is correct. Furthermore, biases in the piControl appear to have less (or no) 

influence on the simulated midHolocene anomaly in the OAC simulations, except in the DP 

zone. 

4.4. DISCUSSION 

Our analyses suggest that the CMIP5 models fail to reproduce key aspects of both the 

modern and MH climate of the northern Africa and Mediterranean region. 

Although the models generally reproduce the four characteristic seasonal patterns of 

precipitation, they do not always simulate these patterns in the correct place. They also tend 

to underestimate the magnitude of seasonal changes in precipitation. For example, they 

underestimate the amount of winter rainfall and overestimate the summer rainfall in the 

Mediterranean region. This is consistent with previous analyses of Mediterranean climates in 

both the CMIP3 (Giorgi and Lionello, 2008) and CMIP5 (Kelley et al., 2012) simulations. The 

models overestimate the precipitation in the DP zone, again a feature identified from 

previous analyses (Roehrig et al. 2013). Previous analyses of the CMIP5 models (e.g. 

Roehrig et al. 2013; Brands et al., 2013) have suggested that there is a tendency for models 

to underestimate precipitation in the Sahel zone. While our analyses confirm this, with 8 out 

of 12 models showing less summer precipitation than observed, some of the models (e.g. 

CSIRO−Mk3L−1−2, BCC−CSM1.1) show a distinct improvement when the comparison is 

made between regions defined by precipitation regimes rather than geographically (fig. 4.6). 

Furthermore, the temporal interval used for comparison also plays a role: MIROC-ESM, for 

example, simulates summer precipitation correctly but annual rainfall is too large because 

the simulated monsoon season is too long. Our evaluations are based on the assumption that 

the difference in climate between the piControl (1850 AD) and the 1961-1990 modern 

climatology is small. Comparisons of the piControl and historical simulations (fig. 4.5) for a 

sub-set of the models appear to support this assumption: the differences between the 

simulations are smaller than the difference between the simulated and observed climates. 

There is no synthesis of data for the pre-industrial era from northern Africa, but a data-base 

from the Mediterranean region, despite it is incomplete, does not suggest substantial 

differences (e.g. Davis et al., 2003). 

The models produce a northward shift and amplification of monsoon precipitation in the MH 

in response to insolation forcing. While the broad-scale patterns of change are consistent 
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with the observations, the magnitude of these changes is significantly underestimated (fig. 

4.8). The failure to simulate a sufficiently large expansion of the African monsoon has been a 

major criticism of previous generations of climate models (Joussaume et al., 1999; Coe and 

Harrison, 2002; Braconnot et al., 2007a; Brayshaw et al. 2011; Zhao and Harrison, 2011; 

Braconnot et al., 2012). Comparisons between CMIP5 and PMIP2 models (fig. 4.10) show 

that the two ensembles are indistinguishable in terms of simulated changes over this study 

region. Global comparisons of these two sets of simulations (e.g. Harrison et al., 2013) 

appear to confirm that the CMIP5 models are no better at simulating climate changes than 

previous generations of models. It was originally suggested that the underestimation of 

monsoon expansion reflected the failure to include feedbacks associated with climate-

induced changes in land-surface characteristics, including wetter and more organic soils, the 

replacement of desert by grassland and shrubland, and the expansion of lakes and wetlands. 

Indeed, simulations in which the impacts of changes in land-surface characteristics were 

prescribed through changing albedo produced much larger monsoons (Street-Perrott et al., 

1990; Kutzbach et al., 1996; Coe and Bonan, 1997; Broström et al., 1998). 

However, this effect is not as pronounced in asynchronously-coupled climate-vegetation 

simulations (Claussen and Gaylor, 1996; Texier et al., 1997; Braconnot et al., 1999), models 

with dynamic vegetation from PMIP2 (Braconnot et al., 2012), or indeed coupled carbon-

climate models in CMIP 5 (Harrison et al., 2013). In general, these models produce a 

strengthening of the monsoon in situ and only a minor northward expansion of the zone of 

monsoon rainfall. If we assume that the coupled models are behaving reasonably, this shows 

that the changes to the energy budget produced by the prescribed changes in albedo are 

compensated by changes in the partitioning between latent and sensible heating through 

increased evapotranspiration. This implies that some other mechanism, for example 

associated with changes in circulation, is required to produce the observed expansion of 

rainfall in the Sahara. 

Our MH model evaluation is based on pollen-based global data base reconstructions of mean 

annual precipitation. Although the increase in monsoon precipitation is large (300-400 mm 

between 5 and 30º N) and spatially coherent, there are some zonal bands where the number 

of reconstructions is limited (see fig. 4.8). However, other sources of palaeoenvironmental 

data, including vegetation (Hoelzmann et al., 1998; Prentice et al., 2000; Watrin et al., 

2009; Niedermeyer et al., 2010), lake-level reconstructions (Kohfeld and Harrison, 2000; 

Tierney et al., 2011), and archaeological evidence (Kuper and Kröpelin, 2006; Dunne et al., 

2012), show that the magnitude of the reconstructed precipitation changes in these zones is 

plausible. Furthermore, the reconstructions of climate conditions in the Mediterranean region 

are based on a much larger number of individual data points (Bartlein et al., 2011), despite 

Iberian records, for example, are not specially abundant. Nevertheless, the discrepancies 

between the model simulations and the observations are not simply a result of lack of 

regional information. 
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Figure 4.10. Comparison of 

simulated and observed summer 

and winter precipitation in each 

of the four precipitation regimes 

(Mediterranean, Desert, 

Monsoon, Double Peak).  The 

observations (black) are the 

average for the period 1961-

1990 from the CRU T3.1 data set 

(Harris et al., 2013). The 

simulated mean and standard 

deviation of precipitation from 

the CMIP5 models (blue) is 

based on the last 100 years of 

the piControl. These simulations 

can be compared with results 

from coupled ocean-atmosphere 

simulations made during the 

second phase of the 

Palaeoclimate Modelling 

Intercomparison Project (PMIP2: 

Braconnot et al., 2012; shown in 

red). The PMIP2 results are the 

mean and standard deviation 

based on the last 100 years of a 

piControl, except in three cases 

where only 50 years of data 

were available. Model results are 

calculated for each precipitation 

regime based on the observed 

geographic extent characterized 

by these regimes, as defined 

using the CRU TS3.1 data set. 

Summer is defined as June, July, 

and August; winter is December, 

January, February. 
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It would be possible to use the qualitative information about changes in water balance 

provided by lake-level records and isotope data to constrain pollen-based climate 

reconstructions (see e.g. Cheddadi et al., 1997). In this regard, the study carried out in the 

BSM sequence (chapter 2) and the comparison with the EST sequence (chapter 3) confirms 

the great opportunity to reconstruct seasonal precipitation patterns through multi-proxy and 

multi-dimensional studies. These multidisciplinary studies provide information of past 

climates parameters and help to understand our knowledge of likely climate mechanisms 

required to trigger such climate conditions. This could provide more robust reconstructions of 

the observed change in precipitation. However, for northern Africa the number of 

observations would still necessarily be limited to sites where both pollen and lake-level 

records are available, which is not abundant. Model inversion provides an alternative 

approach to use lake-level data for climate reconstruction (see e.g. Vassiljev et al., 1998), 

and one that has already been successfully used with pollen data (Wu et al., 2007). 

However, changes in lake water-balance can be brought about by changes in multiple 

climate parameters (temperature, precipitation, seasonality of precipitation, cloudiness, 

vapour pressure, wind speed) and the magnitude of the lake-level changes that occur in 

response to changes in catchment water-balance are influenced by morphometric factors 

(lake depth and shape, lake size relative to catchment size) (Harrison et al., 2002), and the 

methodology for taking account of all these factors has not yet been developed. 

The simulated increase in mean annual precipitation in the Mediterranean region is small 

and, in comparison with the variability already present in the piControl, is not significant. 

However, although just half of the models show an increase in summer, all of them show an 

increase in precipitation in spring and some of them also show an increase in autumn. Thus, 

some of the models produce an increase in growing season moisture that, although too 

small, is consistent with the expansion of deciduous forest in this region during the mid-

Holocene. Temperate deciduous forests occur in mid-latitude regions with > 700 mm of 

annual precipitation, spread throughout the year (see Harrison et al., 2010). Temperate 

deciduous forest occurs, for example, around Lake Banyoles in eastern Spain, where mean 

annual precipitation is ca 800 mm and nearly half of this falls in spring and summer (Soler et 

al., 2007). According to the mid-Holocene simulations for the Mediterranean area, the largest 

increase in growing-season precipitation is ca 30 mm in spring and 40 mm in summer (GISS-

E2-R and HadGEM2-CC respectively), and the overall change in mean annual precipitation is 

<75 mm (GISS-E2-R). This is less than the increase required for deciduous trees to grow. 

Nevertheless, these simulations point to mechanism that could help to explain the observed 

vegetation changes in the Mediterranean. Furthermore, if the absence of a significant 

increase in summer rainfall in the Mediterranean is linked to underestimation of the 

northward migration of the African monsoon, then improvements in the simulation of 

monsoonal changes should also lead to a more realistic simulation of Mediterranean climate. 

We have shown that there is a significant relationship between the bias in the control 

simulation and the magnitude of the simulated MH changes in precipitation for the DP, desert 
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and Mediterranean zones, although no such relationship is present in the monsoon zone. 

However, the relationship in the desert and Mediterranean zones is only apparent in the OA 

models; the piControl bias does not seem to affect the midHolocene anomaly in the OAC 

models. The OA models also show a weakly positive (though non-significant) relationship 

between piControl bias and midHolocene anomaly in the monsoon region. Thus, the 

apparently significant relationships between bias and anomaly found when considering all the 

models are not a consistent feature of these simulations. Even in the DP, desert and 

Mediterranean zones, the bias in the OA piControl simulations only explains part of the 

variability in simulated climate changes. Previous studies have also had difficulties in finding 

consistent relationships between control biases and MH changes in precipitation. Comparison 

of control and MH atmosphere-only simulations made in the first phase of the  

Palaeoclimate Modelling Intercomparison Project (PMIP1) showed that inter-model 

differences in the position of the intertropical convergence zone in the control simulation was 

reflected in the inter-model differences of its position in the MH simulation (Joussaume et al., 

1999). However, there was no clear relationship between the amount of precipitation in the 

control and the increase in precipitation in the MH (Braconnot et al., 2002). Braconnot et al. 

(2007b), analysing OA simulations from PMIP2, showed that the relationship between the 

simulated precipitation in the control to the ratio of the change in precipitation between MH 

and control was negative: models that simulated very little rainfall tended to produce larger 

changes at the MH. However, this relationship was clearly driven by only three models, and 

the remaining models show no trend between the precipitation in the control simulation and 

the ratio of change in the MH. Thus, this seems to be consistent with our analyses. It is hard 

to escape the conclusion that improvements to the simulation of modern climate (see e.g. 

Haerter et al. 2011) will not guarantee that climate changes will be correctly simulated. 

In this chapter, we have analysed the realism of simulated climates both in terms of climate 

regimes and by comparing specific geographic bands. The use of climate regimes places less 

stringent requirements on model performance, allowing an assessment for example of 

whether a model can simulate changes in seasonality independent of location. One reason 

for adopting this approach is the concern that model resolution, particularly in regions of 

complex topography, could affect geographic patterning (see e.g. Brewer et al., 2007). 

However, it can be difficult to find objective criteria for the definition of these climate 

regimes. Although we have been able to distinguish DP from monsoon, and monsoon from 

desert, climates solely on the basis of precipitation seasonality, it is not possible to use this 

type of criterion to distinguish desert and Mediterranean climates. Brewer et al. (2007) used 

k-means clustering to define climate regimes in Europe. Although this is an approach that 

needs to be further explored, it involves some arbitrary decisions about the climate variables 

used for clustering as well as the number of clusters considered. 

Many of the large-scale features characteristic of projected climate changes are a feature of 

past climate changes, and comparison with palaeo-observations shows that current models 
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reproduce these features in a realistic way (e.g. Braconnot et al., 2012; Izumi et al., 2013; 

Schmidt et al., 2013; Li et al., 2013).  Models, as we confirm here for northern Africa and 

the Mediterranean region, are also able to simulate precipitation regimes and shifts in these 

regimes in a realistic way (Joussaume et al., 1999; Braconnot et al., 2007a; Brewer et al., 

2007). However, there are still important discrepancies between the simulated and observed 

magnitude of changes in precipitation, despite the increasing complexity and resolution of 

the CMIP5 models compared to earlier generations of models. Given that the ability to 

simulate the magnitude of MH changes in seasonal climates does not appear to be 

systematically related to biases in the control simulations, focusing on improving the 

simulation of modern climate will not ensure that future projections or retrodictions of the 

climate of the Mediterranean and northern Africa will be more reliable. This is of concern 

given the environmental problems associated with recent climate changes in the 

Mediterranean and the importance of monsoonal rainfall for agriculture in northern Africa.  

4.5. CONCLUSIONS 

i. A detailed knowledge of modern and past climates is required to check the ability of 

climate models to reproduce the earth’s climate system. While present conditions are 

sufficiently monitored, increasing number of well-constrained past climate 

reconstructions is still needed. This is particularly important in the Mediterranean area, 

when the seasonality of the precipitation is essential to understand the environmental 

changes and to investigate the likely climate mechanisms beyond them.  

ii. The CMIP5 models fail to reproduce key aspects of both the modern and MH climate of 

the northern Africa and Mediterranean region, including the correct geographical location 

of zonal precipitation regimes in the pre-industrial simulation and the magnitude of MH 

changes in these regimes.  

iii. Although biases in the OA simulations explain part of the variability in simulated climate 

changes, a similar relationship is not found for the OAC simulations. Thus overall, biases 

in the control simulations cannot explain the failure to reproduce MH changes in 

precipitation.  

iv. As in previous generations of model simulations, the CMIP5 simulations underestimate 

the northward shift and the magnitude of observed changes in the northern African 

monsoon. 

v. In the Mediterranean region, the simulations show a tendency for increased growing-

season precipitation. Such a shift is required to explain observed vegetation changes in 

this region in the MH, but the simulated shift is much too small. We speculate that this is 

linked to the underestimation of changes in the northern African monsoon, suggesting 

that improved simulation of Mediterranean climates is linked to improvements in 

simulating the climate of northern Africa.  

vi. The failure to simulate observed mid-Holocene changes in the northern Africa monsoon 

and the potentially linked failure to simulate the observed shift in rainfall seasonality in 
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the Mediterranean raises concerns about the reliability of model projections of future 

climates in these regions. 
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OUTLINE 

The aim of this chapter is to summarize, integrate and point out the implications of the main 

results described in previous chapters in order to outline how the questions raised in the 

introduction have been answered. 

To focus the discussion it is worth remembering the main objectives of the present PhD 

dissertation proposed in the Introduction (chapter 1): 

 To investigate past precipitation and temperature changes in the Central Pyrenees based 

on vegetation dynamics and lake level variations through multi-dimensional and multi-

proxy analyses, in order to improve our understanding of the long-term climate evolution 

and the impact of the abrupt climate changes in the Western Mediterranean during the 

Holocene. 

 To check the ability of climate models from the CMIP5 to simulate the recognized more 

humid conditions in the Mediterranean region during the Mid-Holocene in order to 

measure their reliability on future climate scenarios. 

 To study the timeline of the human activities in the Pyrenees in order to find out patterns 

of occupation, landscape modifications and effects of climate events on populations. 

To accomplish its goal, this chapter consists of three main sections: 

 The first section (Holocene environmental changes in the Pyrenees: climate implications 

and model evaluation) covers the two first objectives of the thesis.  

o Based on the results obtained from the Basa de la Mora (chapter 2) and Estanya 

(chapter 3) sequences, this section establish relative changes in both 

precipitation and temperature through the Holocene in the Central Pyrenees, 

integrating the data with the possible climate mechanisms beyond those 

changes.  

o Additionally, results from precipitation simulations for the Mediterranean region 

in the Mid Holocene (chapter 4) are discussed in order to examine the ability of 

climate models to simulate the precipitation shift required to explain the 

environmental changes recognised in the Central Pyrenees during the Mid 

Holocene. 

 The second section (Anthropogenic impact in the southern Pyrenees) covers the third 

objective of the thesis based on the analyses of the anthropogenic indicators found in 

BSM and EST sequences and comparison with other Pyrenean sites.  

 The third section summarises the main results of this PhD thesis, about the evolution 

during the Holocene of the altitudinal vegetation belts in the Central Pyrenees transect. 
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5.1. HOLOCENE ENVIRONMENTAL CHANGES IN THE PYRENEES: CLIMATE 

IMPLICATIONS AND MODEL EVALUATION 

Given the vulnerability of the Mediterranean region to the current Global Changes, climate 

projections have largely increased during the last decades in order to investigate and 

implement mitigation and adaptation strategies. Therefore, confidence in climate simulations 

is essential to this purpose. Nevertheless, regional projections for the Mediterranean basin 

are extremely difficult because of the complexity and natural variability of the climate in the 

region. Paleo-climate research allows us to investigate the climate mechanism operating in 

the Mediterranean at large scales providing us with a deeper Knowledge and vision of the 

evolution of the climate in the area as result of changing some key components of the 

Earth’s climate system.  

This thesis contributes to palaeo-climate research in the Mediterranean region with two new 

and valuable sequences located in the key area of the Pyrenees, providing with a detailed 

regional Holocene climate reconstruction with particular stress on seasonal changes in 

precipitation and temperatures.     

The multi-proxy study (pollen, sedimentology, geochemistry, chironomids and charcoal) 

carried out in the Basa de la Mora sequence (BSM) provides us with the most robust 

Holocene palaeo-environmental and palaeo-climate reconstruction in the Pyrenees up to 

date. Due to the key position of the BSM Lake in the subalpine belt of the Central Pyrenees 

(2000 m a.s.l.), its study allows us to evaluate the fluctuating Mediterranean and Atlantic 

influences in the Pyrenees throughout the Holocene. The basis for this reconstruction comes 

from the ecotonal shifts between the deciduous forest, which is typical of the Atlantic 

formations, and the conifers forest, which is more typical of the Mediterranean dry areas. 

The shifts between both ecosystems in the Central Pyrenees inform about the dominance 

and/or prevalence of one or another climate regimen across time. Besides, sedimentological 

changes and lake-level variations interpreted in the BSM sequence further helped to 

disentangle the patterns of precipitation changes occurred in the Central Pyrenees along the 

Holocene associated to the vegetation variability.  

In addition, the reconstruction of the vegetation evolution carried out in the Estanya 

sequence (EST), placed at 670 m a.s.l. in the Mediterranean area of the Pre-Pyrenean range, 

provides us with detailed information about the Holocene forest dynamics in the colline belt 

of the Pyrenees. Thus, these new palynological data complete the regional available 

information about Holocene vegetation history. The comparison of both, BSM and EST 

sequences allow us to detect shifts in the vegetation belts in the southern Pyrenees providing 

further climatic information related, not only to precipitation shifts due to changes in large –

scale climate patterns but also to temperature changes due to altitudinal features.  
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According to the main environmental changes detected in both sequences, the Holocene 

climate evolution affecting the Central Pyrenees can be divided in five main periods. This 

section is structured according to these five stages:  

 The onset of the Holocene, from 11.7 to 9.8 ka BP  

 The Early Holocene, from 9.8 to 8.2 cal yr BP.  

 The Mid Holocene, from 8.2 to 6 ka BP.  

 A transition phase from the Mid Holocene to the Late Holocene, from 6 to 4.8 ka BP. 

 The Late Holocene, from 4.8 to 0.8 ka BP. This period ends at 0.8 cal ka BP due to the 

high-degree of human disturbances detected since then, that easily mask the climate 

signal in both sequences and in most Pyrenean sites.  

Having in mind the results obtained in chapters 2 and 3, this section attempt to establish 

relative changes in both temperature and precipitation in the Central Pyrenees for each of 

periods defined previously. Additionally, the section that refers to the Mid-Holocene (8.2-6 

ka) includes a broad analysis of the climate model simulations carried in chapter 4 for the 

precipitation regimen in the Mediterranean region during the Mid Holocene.  

5.1.1. The onset of the Holocene: 11.700- 9800 cal yr BP 

In this Thesis, the first two millennia of the Early Holocene are only covered by the Lake 

Estanya sequence due to the lack of well-dated sediment record in Basa de la Mora until ca 

9.8 cal ka BP. Hence, new data about vegetation evolution for this period come exclusively 

from the lowland sequence, but it can be placed in a regional framework due to previous 

studies in other sites by other researchers (see chapter 3). 

Sequences from continental areas in NE Spain (highlands of the Iberian Range) (i.e., Las 

Pardillas: Sánchez-Goñi and Hannon, 1999; Montes Universales: Stevenson, 2000; 

Villarquemado paleolake: Aranbarri et al., 2014) show an onset of the Holocene in Iberia 

characterized by dry and cold or cool conditions. During the beginning of the Holocene, Lake 

Estanya displays very high pollen values of Juniperus and Artemisia and low of temperate 

trees such as semi-deciduous and evergreen Quercus (fig. 5.1). Such vegetation composition 

of large steppe community and absence of temperate trees, as we have described in detail in 

chapter 3, points out to harsh climate conditions with high seasonal contrast and likely very 

cold winter temperatures. However, though high continentally could explain this vegetation 

composition by itself, shortage of water could be an added environmental factor causing 

extended steppe communities and hindering tree growth. In fact a phase of extreme low 

water levels in Estanya even with desiccation events, was identified by sedimentological and 

geochemical indicators from 11.6 to 9.4 cal ka BP (Morellón et al. 2009) and demonstrates 

the prevalence of arid conditions during the beginning of the Holocene. These results are in 

agreement with the dry and cold conditions displayed by the inner Iberian sequences, 
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supporting and highlighting the strong impact of higher seasonality and continentality in the 

regional vegetation dynamics and the water balance during the beginning of the Holocene.   

Due to variations in the orbital parameters, the Northern Hemisphere experienced a 

maximum difference between winter and summer insolation during the onset of the 

Holocene, with minimum values for winters and highest for summers. This led to a high 

seasonal contrast or continentality. The cold winter temperatures would be one of the main 

causes for the absence of temperate trees while the hot summer temperatures could have 

favoured high rates of evaporation avoiding the development of water-demanded taxa 

(Kutzbach and Webb, 1993). 

The impact of this water deficit in vegetation during the early Holocene has been 

documented in the whole Mediterranean region. Relatively dry conditions prevented the 

deciduous forest expansion in many parts of southern Europe, particularly over the eastern 

Mediterranean (Lawson et al., 2004) and some zones of the central Mediterranean (Magny et 

al., 2011; Calò et al., 2012). In the western Mediterranean, and more specifically in the 

eastern/southeastern part of the Iberian Peninsula, trees could develop although their 

sclerophyll nature also point to water as limiting factor (Dormoy et al., 2009; Carrión, 2002; 

Pons and Reille, 1988; Jalut et al., 2009; Carrión et al., 2010). Marine pollen record from 

Alboran Sea, which reflect wide pollen source area for southern Spain and northern Morocco, 

reveals restricted expansion of the temperate Mediterranean forest as consequence of limited 

moisture availability during the known as “Preboreal oscillation” (11.7-10.6 cal ka BP) 

(Combourieu-Nebout et al., 2009; Fletcher et al., 2010). 

5.1.2. The Early Holocene: 9800-8200 cal yr BP 

Most Mediterranean Iberia sequences show the development of varied forest formations (not 

only conifers) during the second part of the Early Holocene (Carrión et al., 2010 and 

references therein). As we have described in this Thesis, the Estanya sequence was 

characterized by a marked shift from a steppe landscape dominated by Juniperus and 

Artemisia toward a more forested scenery, characterised by the sharp development of 

Corylus and a slight increase in Quercus species (both evergreen and semi-deciduous types) 

(fig. 5.1). The spread of the forest along with the appearance of temperate trees indicate 

ameliorated winter temperatures.  

In contrast, the BSM sequence was still characterized by the dominance of conifers over 

mesophytes and relatively high values of Juniperus (fig. 5.1), reflecting a continental 

Mediterranean-climate influence with a significant summer drought during this period. 

However, these Mediterranean-like conditions coincide with relatively higher lake levels in 

BSM as indicated by clastic and laminated sedimentary facies. These apparently opposite 

climate signals can be explained by the different altitude of both sites. In BSM, large 

snowpack accumulation during the winter would supply the needed water to maintain high 
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lake levels during the summer drought. This hypothesis of significant seasonal water and 

sediment delivery to the lake is further supported by the high values of magnetic 

susceptibility of the sediments and the type of chironomid communities composed mainly of 

inlet-related taxa such as Orthocladiinae. Both sedimentological and biological evidence point 

to high-energy transport and intense run-off processes in the watershed likely related to 

permanent and ephemeral creek activity. Lake Estanya also indicates more humid conditions 

during this period by the abrupt drop of junipers, and maximum percentages of Mesophytes 

(15-20%) as well as the increase in both hygrophytes and hydrophytes. A rapid lake level 

increased was recognised by Morellón et al., (2009) at 9.4 cal ka BP.  

Although the difference between winter and summer insolation was steadily decreasing 

during the Early Holocene, the seasonality was still high during the whole Early Holocene. 

This high seasonality has been largely recognised in others vegetation studies in the 

Pyrenees. The presence of Viscum album - a rather tolerant species to cold winter 

temperatures and to warm summers according to Iversen (1944) - in Tramacastilla and 

Bubal sequences was related to high seasonal thermal contrast (Montserrat-Martí, 1992). 

Furthermore, chrysophyte-based anomaly-temperature reconstruction carried out by Pla and 

Catalán (2005) in the Lake Redo also points out to great seasonality during this period. To 

sum up, ecological and sedimentological evidence from available Early Holocene Pyrenean 

sites underpin the high seasonal contrast with cold and humid winters, conducive to large 

amount of snow accumulation in the Pyrenean summits that would be providing water to fed 

lakes and rivers during the hot and dry summers and favouring the expansions of deciduous 

forests in the lowlands, particularly along the main Pyrenean rivers serving as meltwaters 

collectors. 

5.1.2.1. Abrupt climate changes 

Superimposed on the long-term insolation-driven climate trend, sub-millennial climate 

variability has been recognised for the Early Holocene in both North Atlantic and 

Mediterranean areas, mainly in marine sequences (O’Brien et al., 1995; Alley et al., 

1997; Mayewski et al., 2004; Bond et al., 2001; Frigola et al., 2007; Fletcher et al., 

2012). The identification of these abrupt changes in continental records is not always 

evident due to, i.e., local factors, poor chronological control or low resolution.. In this 

Thesis, we have identified in the BSM sequence significant short-term shifts in pollen 

percentages and sedimentological features that point out to the impact of the 

mentioned high climate instability during this period. Such shifts occurred at 9.7, 9.3, 

8.8 and 8.3 cal ka BP and are mainly characterized by short-term expansion of pine, 

accompanied by large reductions in all deciduous taxa but most particularly in Betula 

(fig. 5.1), implying a substantial reduction in humidity. The most intense event 

occurred at 8.3 ± 0.1 cal ka BP, when vegetation diversity and abundance dropped to 

a minimum. This event is likely to correspond with the 8.2 ka event (Alley and 

Agustsdottir, 2005; Rasmussen et al., 2007). The high-resolution study carried out in 

BSM sequence for this period indicates a minimum timing of 150 years and maximum 
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of 200 years for the 8.2 ka event. This timing agrees with the precise characterization 

of the 8.2 ka event obtained from trapped air in a Greenland ice core (GISP2) (Kobashi 

et al., 2007).  

Episodes of forest decline related to drier atmospheric conditions have also reported in 

the Western Mediterrnean (Fletcher et al. 2012). The shutdown or slowdown of the 

AMOC as a result of large inputs of freshwater into the North Atlantic may be behind 

the origin of most of these climate events (Wanner et al., 2008).  Although the source 

of the water is thought to come mainly from disintegration of the Laurentide Ice Sheet 

as a result of increased temperatures, the 8.2 ka event seems to be a consequence of 

a particularly large input of freshwater that could come from the drainage of the Lake 

Agassiz, an especially large proglacial lake formed in North America as a result of the 

retreat of the Laurentide ice sheet (Hoffman et al., 2012).  

A previous study carried out in El Portalet peatbog (González-Sampériz et al., 2006), 

have already identified a high climate variability during the Lateglacial in the subalpine 

belt of the Central Pyrenees. The occurrence of abrupt changes in the highlands of the 

Pyrenees during the Early Holocene (BSM sequence) further suggests a strong link 

between Pyrenean climate variability at centennial scale and the North Atlantic events. 

The identification of similar climate variability impacts on vegetation has not been 

possible in the EST sequence palynological study carried out in this Thesis. Thus, it is 

still under discussion if the absence of abrupt changes in the lowlands is the result of a 

relatively low-resolution work (at around 200 years/sample) or the different sensitivity 

between lowlands and high altitude areas.  

5.1.3. The Mid-Holocene: 8200-6000 cal yr BP   

The mid-Holocene in the Pyrenees witnessed a large change in vegetation dynamics and 

landscape configuration, greatly illustrated by the spread of deciduous trees (Montserrat- 

martí, 1992; González-Samperiz et al., 2006). Both Estanya and Basa de la Mora sequences 

recorded a marked landscape change at 8.2 cal ka BP. In Estanya this rapid shift was 

characterized by the replacement of mesophytes by temperate trees, such as semi-

deciduous Quercus, Pinus and evergreen Quercus. In La Basa de la Mora Pinus was replaced 

by deciduous taxa, mainly Betula, deciduous Quercus and Corylus (fig. 5.1). The spread of 

Mediterranean-like forest in the lowlands and the deciduous forest in higher altitudes would 

have been favoured by an increase in winter temperatures. Neither semi-deciduous Quercus 

nor evergreen Quercus tolerate well the cold temperatures. In fact, the growth of Q. ilex in 

Padul sequence during the Late Glacial for example, has been attributed to periods of 

temperature improvement (Pons and Reille, 1988). Thus, we can consider the rapid Quercus 

expansion in Lake Estanya as good indicator of ameliorations of cold winter temperatures. 

Additionally, the rise of mesophytes to the subalpine belt surely point out to higher winter 

temperatures. 
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Figure 5.1.Comparison of main pollen taxa, and lake level reconstructions for lakes Estaña and Basa de 

la Mora.  

The sharp expansion of the mesophytes, such as Betula, Corylus and deciduous Quercus, in 

BSM requires not only higher winter temperatures but also a significant increase in the water 

availability with a change in the precipitation regimen toward more precipitation during the 

summer leading to a reduction of the dry season. These humid conditions with increase in 

the year-round precipitation are further supported by the lake level reconstructions for both 

BSM and EST lakes. The sedimentary facies in BSM suggest that during this period lake 

levels were even higher than during the Early Holocene, but, conversely, lower values in 
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magnetic susceptibility indicates lower sediment delivery from the watershed suggesting 

lower stream activity and run-off but more positive water balances in the lake. High lake 

levels in Estanya also point out to more positive hydrological balance in the lake during this 

period (Morellón et al., 2009) 

More humid conditions in northern Spain during the mid-Holocene are a reflection of global 

climate changes. More humid conditions in the Central Pyrenees could have been favored by 

stronger Westerlies that could penetrate further inland and changes in SST. While the 

reconstruction of sea water temperatures is easier, the reconstruction of the atmospheric 

patterns results more problematic.  Warmer SST in the Bay of Biscay –Cantabrian Sea- 

during the Mid-Holocene is well documented by the presence of planktonic foraminifera 

species related to subtropical gyres -Globorotalia truncatulinoides- in marine sediments 

(Mojtahid et al., 2013). In addition, the presence in caves of the Cantabrian coast of bones 

of a temperate water monk seal (Monachus monachus), currently only in the Mediterranean 

Sea and southern latitudes of the North Atlantic, indicates that this animal was consumed by 

the local populations (Marín et al., 2011). Both lines of evidence support the existence of 

warm water advections in the Bay of Biscay. Warmer SST in the Bay of Biscay would have 

caused higher water content in the atmosphere as a result of higher rates of evaporation. 

Under these circumstances, the Westerlies could have brought humid condition farther east 

in the Pyrenees leading to a stronger Atlantic influence in the Central part of the Pyrenees. In 

addition, northern Spain would have been benefited from the thermoregulation effect of 

warmer waters leading to less seasonal contrast with warmer winters and less hot summers.   

The atmospheric circulation pattern during the Mid-Holocene was significantly different to 

today’s. The ITCZ was undoubtedly placed further north as the monsoon precipitation 

penetrated into the Sahara-Sahel desert resulting in the development of vegetation and 

perennial lakes over North Africa (deMenocal et al., 2000; Gasse, 2000). The northward 

displacement of the ITCZ along with warmer waters in the North Atlantic would have resulted 

in significant variations of the North Atlantic atmospheric circulation, which is one of the 

main responsible of the climate in Western Europe (Marshall et al., 2001). Given the 

difficulty to reconstruct the atmospheric patterns through palaeo-climate data, climate 

models attempt to simulate past large-scale features of circulation, temperature, and 

precipitation patterns through the prescription of some physical parameter well known, such 

as the solar insolation, the atmospheric composition of the SST (Taylor et al., 2012). 

5.1.3.1. Mid-Holocene precipitation simulations for the Mediterranean region 

Though the humid conditions recognized in the Central Pyrenees might be primarily 

explained by the increase in SST in the North Atlantic and the Cantabrian Sea, global, 

larger-scale mechanisms have to be invoked to explain the development of humid 

conditions in the whole Mediterranean region during the Mid-Holocene (Roberts et al., 

2011). Despite numerous studies for the last decades produced interesting data 

(Sadori et al., 2011; Pérez-Obiol et al., 2011; Ocakoglu et al., 2013), the final causes 
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of this particular climate conditions in the Mediterranean Basin are not so easily 

reconstructed. Obviously, if the easternmost part of the Mediterranean Basin also 

recorded at this time much more humid conditions than today (Kohfeld and Harrison, 

2000; Roberts et al., 2011), a large scale forcing mechanisms including atmospheric 

and oceanic circulations and teleconnections must have been in place (Roberts et al., 

2011; Fletcher et al., 2012). Given that summer drought and annual water deficits are 

characteristic of the Mediterranean climate, the mid-Holocene effective moisture 

increase has drawn many climate simulations in order to understand the climate 

mechanisms driving such deep changes in the precipitation regimen during the last 

6000 years.  

The spread of deciduous trees that took place in the Pyrenees but also across the 

whole Mediterranean region during the Mid-Holocene (Prentice et al., 1996; Roberts et 

al., 2004; Carrión et al., 2010) requires a significant increase in precipitation during 

the growing season, that is, during the spring, and likely also a shorter dry season, 

that is, wetter summers. However, though the CMIP5 precipitation simulations carried 

out in the present thesis show a tendency for increased growing-season precipitation, 

the amount of precipitation simulated is far from enough to have produced the 

vegetation changes observed in the palaeo-data.  

The Mediterranean climate is driven by a combination of several processes (Lionello et 

al., 2012), including North Atlantic dynamics and tropical variability such as the ITCZ 

shifts, which determines the area of influence of the Africa and Asian monsoon 

(Marshall et al., 2001). At a large scale, the ITCZ position is determined by the 

summer insolation. Due to higher solar insolation, the ITCZ was placed further north 

and the monsoon was strengthen during the Early and Mid-Holocene, resulting in 

particularly humid conditions in the Sahara and Sahel during this period (deMenocal et 

al., 2000; Hély et al., 2009). Could this northward movement be ultimately responsible 

for the precipitation increase over the Mediterranean? In agreement to changes in the 

insolation forcing, most CMIP5 models produce the expected northward shift and 

amplification of monsoon precipitation in the Mid-Holocene but this movement does 

not go deep enough into the north, indicating that the ITCZ shift was not a direct 

responsible for the increase in precipitation in the Mediterranean region during the 

Mid-Holocene, as it was in the Sahara-Sahel region. However, at a larger scale, 

changes in tropical dynamics could be ultimately responsible via oceanic and 

atmospheric teleconnections to large humidity changes in the Mediterranean (Lionello 

et al., 2012). 

Why do models fail to reproduce past humidity changes in the Mediterranean? Though 

CMIP5 models are able to simulate the correct shift in the large-scale mechanisms, 

such as the ITCZ, they are unable to simulate the total amount of precipitation over 

the Mediterranean resulting from such changes. So, clearly there must be some other 
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feedbacks and synergies playing a key role in the amount of precipitation. There has 

been considerable investigation of the possibility that land-surface feedbacks, including 

vegetation, soil moisture, freshwater lake and marshes, could be responsible for 

enhanced monsoon and increased precipitation in the Sahel and Mediterranean, but so 

far, modelling work has not confirmed that this is indeed the case (Kutzbach et al., 

1996; Joussaume et al., 1999; Ghienne et al., 2002; Levis et al., 2004; Bracconot et 

al., 2007; Liu et al., 2007), highlighting that there is still relevant uncertainty 

regarding the mechanisms beyond the observed changes in the Mid-Holocene. 

Changes in the North Atlantic atmospheric circulation patterns could be responsible –or 

at least play a significant role– for the increase in precipitation recorded across the 

Mediterranean during the Mid-Holocene since, currently the North Atlantic Oscillation –

NAO- exerts a dominant influence on winter precipitation and temperatures over 

western Europe and to some extent to the Mediterranean (Trigo et al., 2002). Past 

climate changes in Europe and the Mediterranean, particularly during the Holocene 

have been related to long-term shifts in the dominant state of the NAO modes (Nesje 

et al., 2000; Magny et al., 2013a; Simonneau et al., 2013; Vannière et al., 2013; 

Fletcher et al., 2012). Presently the location of the NAO centers is largely controlled by 

the North Atlantic Ocean Circulation (AMOC) and its associated pole–equator 

temperature gradient, and also by the position of the ITCZ among others (Marshall et 

al., 2001). A stronger AMOC, which would be in agreement with the warmer waters 

recorded in the Bay of Biscay (Marín et al., 2011; Mojtahid et al., 2013), would have 

increased the magnitude of the pole–equator temperature gradient over the Atlantic 

sector, leading to the strengthening of the mid-latitude jet stream, that is, enhancing 

the penetration of the westerlies into Europe (Renssen et al., 2005).  

To sum up, the main reason for the discrepancies between precipitation amounts 

projected by models and reconstructed by paleodata in the Mediterranean, and 

particularly the western region, seems to be the inability of models to reproduce the 

atmospheric patterns expected over the North Atlantic as a result of shifts in the AMOC 

and in the ITCZ.   

5.1.4. Transitional phase: 6000-4800 cal yr BP   

Around 6 cal ka BP took place a marked global climate shift as a result of a worldwide 

reorganization of the ocean and atmosphere circulations. Regarding the atmosphere, the 

most noticeable change, at least in the Northern Hemisphere, was the southward migration 

of the ITCZ, which resulted in the end of the African Humid Period (deMenocal et al., 2000). 

Additionally the ocean circulation also experienced a shift in the Northern Hemisphere with 

the weakening of the AMOC starting at ca 6.5 cal ka BP (Hoogakker et al., 2011).  
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These large global changes are differently recorded in the two sections studied in this Thesis. 

The BSM sequence is characterized by a sharp change in the vegetation at around 6 ka, but 

the EST sequence does not show any significant shift. In BSM the forests changed from 

deciduous-dominated to pine-dominated forest in altitude (fig. 5.1), suggesting a change in 

the distribution of the precipitation with a more marked summer drought. This vegetation 

change is accompanied by significant palaeohidrological fluctuations in Basa de la Mora 

record. The lower MS values and the almost disappearance of the non-lacustrine and stream-

related Orthocladiinae taxa suggest reduced sediment transport as a consequence of lower 

precipitation or meltwater inputs. The deposition of carbonated facies and a decline in 

Myriophyllum, indicate a reduction in the lake level and suggest that the longer dry season 

would have contributed to a year-round reduction in the precipitation.  

Interestingly, the Lake Estanya does not show any relevant change, neither in the vegetation 

composition nor in the lake levels (Morellón et al., 2009). If colder winter temperatures have 

occurred during this period, it would have resulted in reduction of the temperate taxa and 

maybe a downward movement of the mesophytes belt that would have caused an increased 

presence of broad-leaf taxa in Estanya. If winter temperatures would have been warmer, 

they could have favored the expansion of the temperate trees. The absence of any 

vegetation trends suggests that no significant changes in temperature occurred at the end of 

the Mid Holocene. In addition, since lake levels maintained during this transitional phase in 

the lowlands, the reduction in precipitation in the highlands would have been also slight, 

since the lowlands, which gather incoming water from multiple Pyrenean sources, did not 

undergo relevant hydrological changes. Annual water budgets would have remained similar, 

and the main change in the precipitation regimen would have been in the seasonal 

distribution of the rainfall.  

Around 6 cal ka BP took place a marked global climate shift as a result of a worldwide 

reorganization of the ocean and atmosphere circulations. Regarding the atmosphere, the 

most noticeable change, at least in the Northern Hemisphere, was the southward migration 

of the ITCZ, which resulted in the end of the African Humid Period (deMenocal et al., 2000). 

Additionally the ocean circulation also experienced a shift in the Northern Hemisphere with 

the weakening of the AMOC starting at ca 6.5 cal ka BP (Hoogakker et al., 2011).  

The marked changes in global climate at the end of the mid Holocene are related to the 

evolution of the orbital parameters (insolation), that led to lowered temperature gradients 

between the tropical and the north-latitude waters and between the ocean and the land air 

surface temperatures (deMenocal et al., 2000; Hoogakker et al., 2011). Although the 

decrease in the insolation was gradual, the regional climate and environmental impact was 

abrupt in some records (deMenocal et al., 2000) while it was more gradual in others 

(Kröpelin et al., 2008). The mid-holocene transition shows the complexity of the climate 

system and the unpredictable consequences of crossing boundary conditions.  
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The main consequence of the new organization of the climate elements was a global cooling 

trend (Marcott et al., 2013). The surface water of the Bay of Biscay recorded the onset of the 

cooling trend around 6.6 cal ka BP (Mojtahid et al., 2013) indicating the weakening of the 

AMOC and the heat transport in the North Atlantic. The cooling of the surface water in the 

Bay of Biscay would have resulted in lowered water vapor content in the atmosphere leading 

to a reduction in the intensity of the humid Atlantic fronts into the Pyrenees and thus 

resulting in an extended influence of the Mediterranean climate in the Central Pyrenees. At a 

regional scale, the effects of cooling trend were unnoticed in the Central Pyrenees until 4.8 

cal ka BP, as reflected by the stability of the temperate taxa, the most sensible to 

temperature changes in BSM sequence. Furthermore, a chrysophyte -based temperature 

anomaly reconstruction does not show any significant change in winter temperature 

compared to the mid Holocene (Pla and Catalan, 2005). Shifts in the Central Pyrenean 

vegetation belts may be mainly explained by changes in the precipitation regimen with the 

installation of a longer summer drought as a result of a reduced influence of the Atlantic 

fronts, while changes in temperature seems to be less important during this period.  

5.1.5. The Late Holocene: 4800-800 cal yr BP   

An aridity trend has been widely recognized in southern Europe during the late Holocene by 

the large decrease in mesophytes across the Mediterranean region (Carrión et al., 2003, 

2007; Colombaroli et al., 2007; González-Sampériz et al., 2008; di Rita and Magri, 2009; 

Mercuri et al., 2011; Anderson et al., 2011; Pérez-Obiol et al., 2011; Jiménez-Moreno and 

Anderson, 2012) and lowered lake levels (Magny et al., 2002; Morellón et al., 2009; Corella 

et al., 2010).  

The onset of the Late Holocene in the Estanya sequence shows the most marked change in 

the vegetation composition, with a sharp expansion of semi-deciduous oaks, a slight increase 

in evergreen oaks and the decrease of pines (fig. 5.1), suggesting a drop in water availability 

year around. This shift in vegetation cover occurred synchronously to a marked decrease in 

the water level at 4.8 cal ka BP documented by facies and geochemical indicators (Morellón 

et al., 2009) and with lowered percentages in aquatic taxa. The BSM sequence also favour 

drier conditions during this period, as Juniperus and Artemisia increased, deciduous taxa 

decreased and lake levels dropped with the occurrence of some periods of total desiccation 

(fig. 5.1). This low lake levels are inferred from the deposition of carbonate-rich massive 

facies, characterized by the presence of authigenic calcite crystals, gastropods, pennate 

diatoms and mottling textures, indicative of bioturbation and subaerial exposure.  

The establishment of a well-developed Mediterranean forest in Estanya and the decreasing 

trend in mesophytes in BSM along with a marked drop in the lake levels in both lakes point 

out an evident decrease in the annual water availability as a result of less precipitation. 

Neverthelees, this period is also characterized by a cooling trend at a global scale (Marcott et 

al., 2013). However in the Mediterranean region and more concretely in Spain, this 
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temperature trend is difficult to recognise since there is a large expansion of temperate trees 

such as semi-deciduous and evergreen Quercus, which do not support significant decrease in 

temperatures. However, the opening of the forest at higher altitudes (BSM) could be also a 

result of decreased winter temperatures. Nevertheless, in a temperate area such as the 

Mediterranean region, the expected changes in temperature could have had lower effects 

than moisture changes and the expansion of temperate tress could be a main consequence 

of decreased precipitation.  

At a global scale, lower seasonal insolation differences, a weakening in the thermohaline 

circulation (Mojtahid et al., 2013) and changes in the Western Mediterranean Sea (Frigola et 

al., 2007) could have played a role in the decreased precipitation pattern recognized in the 

western Mediterranean region during the Late Holocene. Additionally, a pervasive negative 

NAO-like mode with strong westerlies has been also proposed as responsible for the decline 

in mesophytes across the Mediterranean (Fletcher et al., 2012).  

Two main climate phases have occurred during the last two millennia: the Medieval Climate 

Anomaly (MCA) and the Little Ice Age (LIA) (Bradley et al., 2003). As summarized in the 

next sections, both sequences studied in this Thesis document large changes in vegetation 

dynamics in the high and low lands synchronous to both phases. 

5.1.5.1. The Medieval Climate Anomaly: 900-1300 Ad 

The higher human impact and the relatively low sample resolution carried out in Lake 

Estanya, precluded the identification of clear evidence of the Medieval Climate 

Anomaly (MCA) impact on the vegetation in the lowlands. Nevertheless, a previous 

work in Lake Estanya found evidence of the impact of the MCA in the lake level, which 

lowered considerably, as well as in the vegetation composition, wchich experienced a 

decrease in deciduous taxa (Riera et al., 2004). However, in the BSM sequence, due to 

its higher altitude with less human impact, and its higher sample resolution, a clearer 

signal of the impact of this climate anomaly in both lake level and vegetation 

formations has been observed. The BSM shows particularly arid conditions coinciding 

with the MCA as indicated by the deposition of carbonate, organic-rich facies during 

low lake level phases and a wide expansion of the steppe taxa Artemisia and the 

increase in Juniperus (fig. 5.1). 

Relatively arid conditions during the MCA have widely recognized in other part of the 

Iberian Peninsula by lowered lake levels (Martín-Puertas et al., 2010; Morellón et al., 

2012; Corella et al., 2012), expansion of xerophitic  vegetation (Moreno et al., 2012), 

less flood events in the Tagus River basin (Benito et al., 2003; Moreno et al., 2008) 

and less river discharge in the Portugal coast (Lebreiro et al., 2009; Alt-Epping et al., 

2009). The final causes of the MCA remain under discussion, although a role in north 

Atlantic atmosphere dynamics with prevailing positive North Atlantic Oscillation 
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indexes (NAO) (Björck et al., 2006; Trouet et al., 2009) and increase in solar 

irradiance (Mann et al., 2009) have been postulated. 

5.1.5.2. The Little Ice Age: 1300-1850 AD  

The LIA was characterized by colder and fluctuating moister conditions in the Pyrenees 

(Morellón et al., 2011). During the LIA, more than 20 different mountain systems 

developed glacial activity in the Pyrenees (González-Trueba et al., 2008) and some 

glaciers reached their maximum extent during the late Holocene around the first half 

of the XIX century (Chueca-Cía et al., 2005), supporting the occurrence of particularly 

cold and humid conditions in the Pyrenean submits. 

Both Estanya and Basa de la Mora sequences show an intensification of the 

anthropogenic activities in the area during the last 8 centuries. The increase in the 

land management was particularly severe in the case of Estanya, when it took place a 

massive deforestation phase in order to expand the agro-pastoral activities (fig. 5.1) 

(Riera et al., 2004; Morellón et al., 2011) Nevertheless, despite the high 

anthropogenic pressure, the impact of the Little Ice Age can be recognized in both 

sequences. 

Higher water availability in the EST sequence is supported by an increase in 

mesophytes and in the aquatic component and a more positive water balance in the 

lake as deduced from facies deposition and salinity reconstructions (Morellón et al., 

2011; Morellón et al., 2012). In agreement with more humid condition, the BSM 

sequence shows a rise of the lake levels, supported by increased sediment delivery to 

the lake and decreased carbonate productivity The abundance of allocthonous organic 

matter, shown by high TOC/TN ratios, supports the increase of sediment delivery from 

the catchment as a result of more intense snow melting during summers (fig. 5.1). 

In addition, the BSM sequence shows evidences of an abandonment of the 

anthropogenic activities in the watershed with the recovery of the pine forest (fig. 

5.1), while the EST sequence displays an increase in the human pressure. This 

suggests a migration of the populations from the cold highlands into the milder 

lowlands of the Pyrenees. For a more detailed explanation of the anthropogenic 

activities in EST and BSM sequences during the last centuries, see section 6.2.5 of this 

chapter.  

5.2. CHRONOLOGY OF THE ANTHROPOGENIC IMPACT IN THE SOUTHERN 

PYRENEES 

Human occupation in Northeastern Spain can be traced back to the middle Palaeolithic (i.e., 

Montes-Ramírez et al., 2006; Carbonell and Rodríguez, 2007; Barandiarán et al., 20012). 
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However, until the early appearance of agriculture and farming, the human presence was 

exclusively related to hunter-gathered activities resulting in seasonal exploitation of local 

resources (González-Sampériz et al., 2009; Allué et al., 2012; Ejarque et al., 2010). 

Therefore the real impact of these ancient nomadic communities over the landscape can be 

considered as negligible at regional scales. Here we focus on the last 4000 years, when first 

important and permanent signs of sedentary agricultural practises are recognised in lowland 

Pyrenees (Estanya lake sequence).  The first clear evidence of anthropogenic impact in high 

altitudes (Basa de la Mora) is found much later.  

The comparison of both records and its contextualization with other Pyrenean lacustrine 

sequences allow us to assess the evolution of the human impacts in vegetation formations 

across an altitudinal transect in the southern Pyrenees.  

To identify the different land uses we have focused on the presence of: 

 agriculture-related taxa - cereal, olive tree, vine or cannabis- 

 grazing-related taxa - nitrophilous plants, i.e. Rumex and Plantago- and finally;  

 relevant deforestation phases.  

Although the recent literature focuses on some non-pollen palynomorphs (NPP’S) as 

excellent indicators of anthropogenic activities (Van Geel, 1978; Ejarque, 2011; López-

Merino et al., 2010; Morales-Monilo, 2013), the content of coprophilous fungi was negligible 

in BSM record. Furthermore, the presence of these fungi was particularly low in the modern 

pollen rain collected in Basa de la Mora area (see chapter 2, section 2.4.3) despite the 

occurrence of moderate grazing activity in current times. In addition, the existence of wild 

ungulates in the mountainous areas of the Pyrenees since ancient times could have caused 

the presence of some coprophilous fungi not related to human activities. For these reasons 

the coprophilous fungi content has not be considered as an indicator of anthropogenic 

activities in this Thesis. 

5.2.1. 2000-500 BC (4-2.5 cal ka BP): first intensification of human impact in 
lowlands 

Estanya sequence records the first clear evidence of anthropogenic deforestation at 3.7 cal 

ka BP, prior to the beginning of a continuous Cerealia curve at ca. 3.1 cal ka BP. The 

clearance affected largely the semi-deciduous Quercus forest (fig. 5.2). Nevertheless, 

nitrophilous plants are no recorded at this moment, probably indicating the dominance of 

agricultural activities in the area. Though the spread of agriculture in the Iberian Peninsula is 

documented at least from 7 cal ka BP during the Neolithic (Zapata et al., 2004; Stika et al., 

2005; Carrión et al., 2010), in Estanya lacustrine sequence it is not clearly recognised until 

approximately 2 millennia later, during the Bronze Age. 
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Conversely, crop taxa or nitrophilous plants are absent in Basa de la Mora during this period, 

pointing out to negligible human activities in the subalpine belt of the Central Pyrenees. 

Similarly, other high-altitudinal sequences like Estanilles also shows negligible values of 

agricultural and pastoral-related taxa (Pérez-Obiol et al., 2012) supporting the absence of 

general, continuous and intense anthropogenic impact in highlands before 2 ka cal BP. 

Nevertheless, according to other authors, anthropogenic disturbances in some localities of 

the subalpine belt of the Pyrenees can be traced back to the Early and Mid-Holocene (Miras 

et al., 2007, 2010; Ejarque et al., 2010) and intensified in the Late Holocene after 3.6 cal ka 

BP (Miras et al., 2007; Pèlachs et al., 2007; Ejarque et al., 2010; Cunill et al., 2012). 

Nevertheless, those phases of interpreted increased human activities do not match with 

stages of significant and persistent forest decline as it happens in Estanya at 3.7 ka cal, 

indicating that the real impact of these activities on the landscape early in the Holocene was 

local, intermittent, uneven and slight. 

5.2.2. 500 BC-750 AD (2.5-1.2 cal ka BP): expansion  of agricultural activities in 
lowlands during the Iberian-Roman and Visigoth Times 

The Lake Estanya sequence recorded the intensification of cereal cultivation, the first slight 

increase of Olea and the appearance of Vitis ca. 500 BC. Nevertheless, the presence of 

nitrophilous plants is still irrelevant, suggesting that stockbreeding and grazing were poorly 

developed in the area. The highest values of Cerealia type are found around 2 cal ka BP, 

coinciding with the Roman period (fig. 5.2). Similarly, a previous study in Lake Estanya 

carried out by Riera et al., (2004) also found the spread of olive trees and cereals during the 

Late Roman times supporting the diversification of the agricultural activities during that 

period. The progressive Romanisation in Iberia brought a complex system of land 

management that involved several changes in the landscape. During this period, clearance 

phases for agricultural production have been widely recognised in many sites (Carrión, 2002; 

Carrión et al., 2007, 2010; Muñoz-Sobrino et al., 2005; González-Sampériz et al., 2008; 

Martín-Puertas et al., 2008; Corella, 2011; Gil-Romera et al., 2010). The location of most of 

these places, mainly in middle and lower elevations across all Spain, illustrates the wide land 

management of the lower montane belts and foothills during this period.   

In contrast, a lower-degree of anthropogenic impact is still recorded at highland locations. 

The Basa de la Mora sequence does not show cultivation, stockbreeding or deforestation 

signals during this period (fig. 5.2). The same results are found in the nearby sequence of 

Estanilles (Pérez-Obiol et al., 2012) supporting a low-degree impact of human activities.  

However, some studies from the eastern Pyrenees point to anthropogenic perturbations in 

the subalpine zone, suggesting more intense pastoral activities and forest retreat (Miras et 

al., 2007; Ejarque et al., 2010) followed by phases of forest renewal (Ejarque et al., 2010, 

Miras et al., 2010). However, none of those sequences show a clear sharp decrease in AP 

during this period, at least until 500 AD (1450 cal yr BP) suggesting a low local grazing 

pressure. 
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Figure 5.2. Comparison of main anthropogenic indicators between the Estaña and Basa de la Mora 

pollen records. 
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5.2.3. 750-1150 AD (1.2-0.8 cal ka BP): rise of grazing practises in lowlands and 

increasing impact in highlands during the Muslim period  

During this period, the Estanya sequence records the beginning of a marked expansion of the 

nitrophilous plants and a rise in cultivated taxa, namely Vitis, Olea and Cerealia type, while 

the AP proportions underwent a marked drop (fig. 5.2). This forest clearance coincides with a 

maximum in charcoal concentration detected by Riera et al., (2004) in Lake Estanya between 

the 9 and 11th centuries indicating that the anthropogenic landscape management included 

increased frequency of burning.  This period corresponds with the Muslim period in the 

region, characterized by an increase in agricultural and pastoral activities and an intense 

trade including alimentary products and also textile elements such as fur and wool. In 

addition, construction, based on wood materials, was another major element of Muslim’s 

economy (Carreras-Ares, 1996 ; Remie-Constable, 1996) resulting in major deforestation 

processes in the mid-mountain (Muñoz-Sobrino et al., 2005; López-Sáez et al., 2009; Rull et 

al., 2011).  

The growing demand for construction materials and land dedicated to cultivation and 

livestock also resulted in anthropogenic disturbances at higher altitude in the Pyrenees, 

though the intensity of the forest decrease was lower than in the lowlands (Ejarque et al., 

2010; Cunill et al., 2012; Pérez-Obiol et al., 2012). . The existence of deforestation phases, 

the expansion of grassland and the increase in nitrophilous and cultivated-related plants 

recorded across an altitudinal transect in the Pyrenees, and in general northern Spain, can 

be attributed to the land-use change prompted by the arrival of Muslims that led to an 

intensification and diversification of agricultural and pastoral activities in the lowlands and 

increased pressure in the highlands. Nevertheless, though the Basa de la Mora sequence 

records the aforesaid increase in cultivation and livestock taxa in the lowlands, there was no 

decrease in AP values during this period (fig. 5.2), suggesting that the deforestation impact 

in the subalpine belt was uneven across the Pyrenees.  

5.2.4. 1150-1650 AD (0.8-0.3 cal ka BP): threshold in land management in low and 
highlands during the Middle Ages  

During this period, the Estanya record witnessed the most intense and sharp change in the 

vegetation cover characterized by a marked clearance phase with AP values lower than 30% 

(fig. 5.2). Synchronously, the nitrophilous plants reach their maximum values as well as all 

cultivated taxa increase sharply, including Cannabis, which appears for the first time and 

spread rapidly. In a previous study carried out also in Lake Estanya, Riera et al., (2004) had 

already documented the spread of cultivated taxa, mainly olive tree and hemp, during this 

period in Lake Estanya. During the 12th century the region witnessed the wars between the 

Christian and Muslim Kingdoms and the origin of the Crown of Aragon, and large social 

changes as a result of the emergence of the Feudalism (Carreras-Ares, 1996). The 

population rose, the economy grew and it took place major technological advances in 

methods of production such as the rotation system for crops. All these facts resulted in deep 
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changes with significant consequences in the vegetation landscape (Montserrat-Martí, 1992; 

Riera et al., 2004; Rull et al., 2011).  

In agreement with these profound land-use changes, vegetation at higher altitudes, which 

were less disturbed until now, started to show evidences of management. Increase in 

human-related taxa is recognised in Basa de la Mora with the expansion of Olea and large, 

short-term reductions in Pinus (fig. 5.2). Olea and Fraxinus also spread. Fraxinus has 

traditionally been used in the region for hedgerows (Gómez and Fillat, 1981). Its parallel 

expansion to Olea marks the regional establishment of modern and intense agro-pastoral 

activities. Other Pyrenean high altitude sequences also witness the intensification of the 

expansion of olive trees during this period (Pèlachs et al., 2007; Miras et al., 2010; Ejarque 

et al., 2010; Pérez-Obiol et al., 2011). Modern Pyrenean pollen rain data demonstrate that 

maximum values of Olea are found in the subalpine belt, while the olive tree is commonly 

located under 800 m a.s.l. (Cañellas-Boltá et al., 2009). These data point out that the 

occurrence of this taxon in the high-altitude sequences of the Pyrenees marks the presence 

of the tree in the lower vegetation belts.  

The expansion of farming and grazing-derived plants along with the reduction of the forests 

in low and highlands underlines the cross of a threshold in agro-pastoral activities during the 

middle ages, characterized by a massive use of the forest at all altitudes in the central 

Pyrenees. The particular increase in livestock-taxa agrees with the great development of the 

transhumance –Mesta-, an extensive sheep pastoral system that was the base of the 

economy in Spain during the Middle Ages (Pascua-Echegaray, 2012). It must be also 

remarked that the 16th century coincides with the maximum expansion of the Spanish 

Empire and its struggle to dominate overseas that led to further clearance of the forests, i.e., 

in order to use the wood to build the fleet. This deforestation phase is easily recognised in 

other Pyrenean sequences like Estanilles (2247 m asl, Pérez-Obiol et al., 2012), Montcortés 

(1027 m asl, Rull et al. 2011), Valencia d’Aneu (1150 m asl, Ejarque, 2011) or lake Burg 

(1821 m asl, Pèlachs et al. 2007) (to further geographical setting see figs. 1.3 and 3.1) with 

different impact but showing, as well as in EST and BSM, an important decrease of the AP 

proportions. As a result of the deforestation processes in the Pyrenees, soil erosion in the 

slopes rose sharply, and an important phase of the development of the Ebro River Delta 

occurred (García-Ruiz et al., 2005).  

This marked human-induced vegetation landscape across the Pyrenees also coincide with an 

increased regional use of fire. The intensification of the fire frequency in order to open or to 

maintain the open landscapes has been widely recognised in the Pyrenees during the 

Medieval Ages (Esteban-Amat et al., 2003; Ejarque et al., 2009; Bal et al., 2011; Rius et al., 

2012; Pérez-Obiol et al., 2012). . Nevertheless, the impact in the highlands had significant 

regional differences.  A comparatively more moderate forest clearance in BSM, which 

coincides with an expansion of Olea (regional) but low presence of grazing-related taxa 

(local), would indicate a lower human use of this valley compared to other in the Pyrenees. 
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5.2.5. 1650-1800 AD (0.3-0.15 cal ka BP): concentration of human activities in 

lowlands during the second half of the Little Ice Age   

The Estanya sequence records the highest expansion of Vitis and Cerealia type and the 

intensification of Cannabis and Olea cultivation (fig. 5.2), pointing to intense agricultural 

management of the catchment area; the decrease in nitrophilous plants suggests lower 

pastoral pressure. Riera et al., (2004) documented a peak in hemp cultivation at this 

moment too. The 17th and first half of 18th centuries were characterized by an important 

economic decline in Spain as a consequence of overseas and internal succession wars, 

leading to social disruption and deep transformation of the agro-pastoral system with a 

reduced role of transhumance. During this period, most of the population was dedicated to 

agricultural production. Similar agriculture-dedicated land-use with a sharp increase in olive 

and hemp cultivation is recognised in the nearby sequence of Montcortés (Rull et al., 2011), 

highlighting a regional change in the production system. 

Differently to EST and Montcortés sequences, the Basa de la Mora shows a decrease in Olea 

and Fraxinus cultivation and a temporal cease of deforestation (fig. 5.2). Other high altitude 

sequences also showed a decrease in cultivated taxa and a partial recovery of the forest 

(Pérez-Obiol et al., 2011) during the 17th-19th centuries. This period corresponds to the 

second phase of the Little Ice Age (LIA), which was characterized by particularly cold 

conditions in the Pyrenees (see section 6.1.5.2. of the present chapter). Colder conditions 

during the LIA would have hindered human activities in some places at high altitudes, where 

climate conditions would have been especially adverse, favouring the movement and 

concentration of populations into the lowlands.  

5.2.6. 1800-1950 AD (0.15-0 cal ka BP): spread of extensive agriculture practises 
after the Industrial Revolution   

The Estanya sequence recorded outstanding values of Olea, reaching almost 20%, along with 

the expansion of Cannabis and a new decline in AP values, at the onset of the 19th century 

(fig. 5.2).  This period illustrates another intense phase of regional deforestation and olive 

and hemp cultivation. According to Riera et al., (2004) this period would have witnessed the 

maximum forest degradation. However, according to our data, though this period records the 

highest values in some cultivated taxa, the evolution of AP values suggests that the 

strongest impact in the forest cover would have taken place earlier the 14 and 16th centuries. 

During the 19th century it took place the most profound reform of the agrarian system in 

Spain. The agrarian reform limited the Mesta privileges, re-distributed the land and 

supported and encouraged the internal trade within Spain through economic societies. 

Additionally, as a result of the technical advantages brought by the Industrial Revolution, 

there was an outstanding improvement of the cultivation techniques that led to increased 

food production and a fast demographic expansion. The effects of the boost in the 

agricultural sector can be also recognised in different regional records like the nearby 

sequence of Montcortés (Rull et al., 2011).  
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At higher altitudes (BSM sequence) a significant expansion of Olea associated with a marked 

phase of deforestation of the pine forest occurred (fig. 5.2). Other high altitude sequences in 

the Pyrenees also record peak values in Olea during this period (Ejarque et al., 2009; Miras 

et al., 2010; Pérez-Obiol et al., 2011) marking the start of olive and crop production at large 

scale in north-eastern Spain, and growing regional exports of olive oil and crops to northern 

Europe (Harrison, 1990). The intensification of the agricultural activities in the highlands is 

further supported by strong phases of forest clearance (Pérez-Obiol et al., 2011). The rise of 

new and more sophisticated agricultural technologies along with better climate conditions 

after the end of the LIA favoured people to moved back to the highlands, in order to exploit 

the resources giving rise to the maximum occupation of the Pyrenees since the end of the 

19th and till the mid-20th century (Lasanta, 1988; García-Ruiz and Valero-Garcés et al., 

1998).  

5.2.7. Current times 

The studied Estanya sequence lacks the latter half of the XX century. Nevertheless, the BSM 

sequence presents a good resolution for this period. 

The Basa de la Mora sequence shows the recovery of the pine forest as well as a reduction in 

trees related to anthropogenic activities (Olea, Fraxinus) (fig. 5.2). The latter half of the XX 

century was characterized by a new social and economic change in Spain that led to a major 

migration from the villages into the cities (Lasanta-Martínez et al., 2005). As a consequence 

of the abandon of the rural land, the forest definitely recovered at all altitudes of the 

Pyrenees as seen in different sequences (Ejarque et al., 2009; Cunill et al., 2012; Pérez-

Obiol et al., 2012) and in documentary archives (Lasanta-Martínez et al., 2005). This 

abandonment of the rural lands and gradual recovery of forests is also supported by the 

increase in AP proportions and a steep drop in fire activity in Basa de la Mora (Lasheras-

Álvarez et al., 2013).  

In addition, a decrease in the lake level, recognized by the highest TIC percentages of the 

whole sequence, is recorded in BSM during the last 50 years (fig. 5.2). In addition, high 

bioproductivity is also recorded during the second half of the 20th century as it can be 

recognised by high TOC values along with an increase of macrophyte-related taxa. 

Stockbreeding around the lake has taken place in this area at least since the last century 

(Lucio, 1982) but the increase in bioproductivity only occurs during the last 30 years 

suggesting that the higher bio productivity may be related to warmer water rather than to 

human activities (Tarrats et al., 2014). This drop in lake levels along with the rise in water 

temperature may be linked to the global warming trend recognised over recent decades 

(IPCC, 2013), which, indeed, is having relevant effects in the Pyrenees such as decrease in 

snowpack depth, snow cover and direct precipitation (López-Moreno, 2005; López-Moreno 

and Stähli, 2008) and changes in the vegetation composition (Gottfried et al. 2012), pointing  
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5.3. TIMING AND DYNAMICS OF VEGETATION BELT CHANGES IN THE CENTRAL 

PYRENEES  

A thorough multi-proxy study in Lake Basa de la Mora (BSM) (1914 m a.sl) and Estaña (EST) 

(670 m a.s.l) based on vegetation dynamics and lake level variations has reported changes 

in the amount and in the seasonality of the precipitation during the Holocene in an altitudinal 

transect in the Central Pyrenees. Given the key area where the Lake Basa de la Mora is 

placed, in the Central Pyrenees, halfway between the Mediterranean Sea and the Atlantic 

Ocean, the dynamics between the Mediterranean-like Pinus forest and the Atlantic-like 

deciduous forest has proven the succession of different precipitation patterns in the area. 

Additionally, the study of the sedimentary facies has displayed relative lake level changes 

and the analyses of the lake sediment properties have allowed distinguishing between two 

main water sources: direct rainfall and melting inputs. The integration of all these data have 

resulted in a precise reconstruction of the precipitation in the Central Pyrenees during the 

Holocene having recognized three main stages with different rainfall patterns. During the 

second part of Early Holocene (9.8-8.2 cal Ka BP) (the BSM lacks the onset of the Holocene) 

the annual water budget was very high but there was a dry season. During this period the 

snowpack melting played a relevant role providing water during the summer. During the Mid 

Holocene dominated an Atlantic-like precipitation patter with absence of a dry season and a 

very high annual water budget. Through the Late Holocene it established a drier climate, 

firstly with the installation of a dry season and later with an increasing trend to less annual 

precipitation.  

Additionally, comparison of the vegetation dynamics between the BSM sequence, placed in 

the subalpine belt of the Pyrenees, and the Estanya sequence (EST), placed in the lowermost 

vegetation belt of the Pre-Pyrenean Range (670 m asl) has allowed to investigate the role of 

the seasonal temperature as main driver of the altitudinal vegetation belt shifts during the 

Holocene. Particularly cold winters and hot summers took place at the onset of the Holocene 

(11.7-9.8 cal ka BP) avoiding the development of the forest. An increase in winter 

temperatures led to the establishment of arboreal taxa in the area during the second part of 

the Early Holocene (9.8-8.2 cal ka BP). During the Mid Holocene (8.2-4.8 cal ka BP) the most 

mild winter temperatures of the Holocene favored the vegetation belts to rise to higher 

altitudes. Finally during the Late Holocene (4.8 cal yr BP-present), vegetation changes seems 

to more related to precipitation changes than to temperature shifts.  

The integration of the precipitation and the temperature interpretations has resulted in an 

exhaustive regional climate reconstruction for the Pyrenees during the Holocene.  

The onset of the Holocene (11.7-9.8 cal Ka BP) was characterized by the occurrence of cold 

winters as well as a likely shortage in water availability. These harsh climate conditions 

resulted in the dominance of steppe taxa and avoided the development of any short of tress 

in the lowlands. Though the BSM sequence lacks this period, other high altitude sequences in 

the Pyrenees have shown the existence of lowered treeline in agreement with cold winter 
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conditions. These climate features are likely related to the characteristics of the solar 

insolation, which was minimum in winters and maximum in summers at this time. The 

maxima summer values of the solar insolation could result in high rates of evaporation what 

definitely hinder the spread of arboreal taxa in regions such as the lowlands of the Pyrenees 

where water is not a surplus.   

The second part of the Early Holocene (9.8-8.2 cal Ka BP) was characterized by high 

continentality with a marked contrast between winters and summers as well as by the 

occurrence of a dry season but a high amount of water availability due to summer glacier 

and snowpack melting. This led to the development of a pine forest in the subalpine belt but 

the expansion of the deciduous taxa in the lowlands due to less harsh winters and high rates 

of water supply from the Pyrenean peaks. Higher altitude sequences in the Pyrenees show 

well-developed forests of pine in the case of the eastern records, and of deciduous taxa in 

the case of the western sequences. Overall it means a general increase of winter 

temperatures that allowed the upward expansion of the forest. Conversely the precipitation 

regimen contrasts significantly between the western and the eastern parts of the Pyrenees 

with Mediteranean-like precipitation pattern in the east and Atlantic-like precipitation pattern 

in the west. Given the similarity of the vegetation in the Central part (BSM sequence) and 

the eastern part of the Pyrenees, it seems that the Mediterranean pattern was prevailing at 

this time and also that the east-west humidity gradient was stonger than today since there 

are no presence of such dense deciduous forests currently in the subalpine belt of the 

western Pyrenees.   

Besides, superimposed on these long-term climate conditions during the Early Holocene, the 

BSM sequence has proven the existence of at least four short-living and abrupt climate shifts 

centered at 9.7, 9.3, 8.8 and 8.3 cal ka BP.  These climate events are characterized by the 

occurrence of dry condition. They coincide with events recorded in the North Atlantic which 

origins are linked to perturbations of the Atlantic Overturning Meridional Circulation (AMOC) 

through meltwater pulses. Agreement between the climate events recorded in the North 

Atlantic and in the Pyrenees indicates that variations in the northern latitudes could trigger 

changes in the middle latitudes of Western Europe almost synchronously.  

The Mid Holocene (8.2-6 cal Ka BP) was characterized by an increase in winter temperatures 

and the occurrence of an Atlantic-like precipitation pattern with high rates of rainfall and 

absence of a dry season, at least in the highlands, that resulted in the rise of the vegetation 

belts, with the establishment of a mixed Mediterranean forest in the lowlands and a 

deciduous forest at high altitudes reaching up to the treeline. As a result of these humid 

conditions both lakes reached their highest lake levels during this period. The humid 

conditions of the Mid Holocene have been recognized across the whole Mediterranean region 

through the spread of deciduous taxa and increase in lake levels. Reinforcement of the AMOC 

and warmer Atlantic waters in the middle latitudes could be responsible for increased 

evaporation and thus water-content in the air. Additionally, different atmospheric circulation 
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pattern with stronger westerlies and a prevailing negative NAO-like mode in the North 

Atlantic resulted from the northward migration of the ITCZ and the shifts in the AMOC could 

be behind the arrival of abundant rainfall over the Mediterranean.  

During the Late Holocene (6 cal Ka BP-present) it took place a progressive decrease in the 

water availability that led to the establishment of the modern-like precipitation pattern. This 

shift in the precipitation pattern took place in two main steps: firstly by the establishment of 

a dry season (6-4.8 cal ka BP) that resulted in the substitution of the deciduous forest by a 

pine forest in the subalpine belt and, secondly by an increasing trend toward drier conditions 

characterized by a drop in the annual water budget (4.8 cal Ka BP-present) that favored the 

expansion of evergreen Quercus at lowlands and that led to an increase in the heliophytes 

such as Artemisia.  
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CONCLUSIONS 

Climate dynamics in north-eastern Spain during the Holocene  

The comparison between the multi-proxy study (including pollen, sedimentology, 

geochemistry, chironomids and charcoal) carried in lacustrine sequence of Lake Basa de la 

Mora and the vegetation reconstruction from the lacustrine sequence of Lake Estaña has 

allowed inferring seasonal changes in temperature and precipitation in north-eastern Spain 

during the Holocene. 

i. The onset of the Holocene (11.7-9.8 cal Ka BP) was characterized by the occurrence of 

high seasonality, characterized by cold winters and hot summers, and low water 

availability. These climate conditions led to the expansion of steppe communities 

dominated by Juniperus and Artemisia in the lowlands (EST) and limited the expansion of 

the forest upwards. 

ii. The second part of the Early Holocene (9.8-8.2 cal Ka BP) was characterized by still high 

continentality but increased water availability and likely milder winter temperatures that 

allowed the expansion of the arboreal taxa in the lowlands and favored the rise of the 

forest upwards.  

 However, the nature of the vegetation in Estaña and in Basa de la Mora points 

out different precipitation patterns during this period with steadily distributed 

rainfall, deduced from Corylus-dominated landscape, in the lowlands, and a 

Mediterranean-like pattern, with the occurrence of a dry season, deduced from a 

conifer-dominated landscape, in the highlands.  

 The multi-proxy study of Basa de la Mora indicates that great part of the water 

source during this period was related to the melting of glaciers and snowpack, 

contributing to the arrival of large amount of water into the lowlands during the 

summer.   

 Superimposed on these long-term climate conditions during the Early Holocene, 

the BSM sequence has proven the existence of at least four short-living and 

abrupt climate shifts centered at 9.7, 9.3, 8.8 and 8.3 cal ka BP and 

characterized by dry conditions.  

 These episodes coincide with climate events triggered in the North Atlantic and 

indicate the high sensibility of the Pyrenees to shifts in the northern latitudes.  

iii. The Mid Holocene (8.2-6 cal Ka BP) was characterized by an increase in winter 

temperatures and in the precipitation with the occurrence of an Atlantic-like precipitation 

pattern with high rates of rainfall and absence of a dry season that led to the upward 

migration of the deciduous forest, which could establishes in the subalpine belt.  
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iv. At ca 6 cal Ka BP, it took place a change toward drier and similar-to-present conditions. 

This change took place in two main steps. 

 Between 6 and 4.8 cal Ka BP, it established a Mediterranean-like pattern with the 

occurrence of a dry season that resulted in the substitution of the deciduous 

forest by a pine forest in the subalpine belt. 

 From 4.8 cal Ka BP, it took place a progressive decline in the total amount of 

annual rainfall that led to a reduction in the presence of mesophytes and an 

expansion of semi-deciduous and evergreen Quercus.  

v. During the last millennium, the imprints of the Medieval Climate Anomaly and the Little 

Ice Age can be recognized in both sequences by changes in the vegetation and in the 

lake levels.  

The impact of the anthropogenic activities in the Pyrenees 

vi. The first signs of agricultural activities took place in EST at 3.1 cal ka BP while the upper 

vegetation belt does not show important deforestation phases.  

vii. From 3 to 1.2 cal ka BP (1050 BC- 750 AD) agriculture was the main activity and was 

mainly concentrated in the lowlands. 

viii. Between 750  and 1150 AD (1.2 and 0.8 cal ka BP) took place the spread of the grazing 

activities along with the diversification of the agricultural practises in the lowlands and 

the anthropogenic pressure over the subalpine belt increased. 

ix. The greatest impact of human activities over landscape took place between 1150 and 

1650 AD (0.8 and 0.3 cal ka BP) and its effects could be noticed across the southern 

central Pyrenees regardless the altitude, but some zones were less modified than others. 

x. Between 1650 and 1800 AD (0.3-0.15 cal ka BP), human activities were concentrated at 

low altitudes while high-lands were partially abandoned as a likely result of increasing 

colder conditions during the Little Ice Age. 

xi. After 1800 AD (0.15 cal ka BP) the anthropogenic pressure increased in the higher 

vegetation belts as a result of the increasing population and the ameliorated climate 

conditions after the end of the LIA. 

xii. The forest definitely recovered at all altitudes and the treeline ascended during the 

second half of the 20th century as a result of rural land abandonment and the recent 

increase in temperatures.  
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PiControl and Mid-Holocene climate model simulations  

xiii. The CMIP5 models fail to reproduce key aspects of both the modern and MH climate of 

the northern Africa and Mediterranean region, including the correct geographical location 

of zonal precipitation regimes in the pre-industrial simulation and the magnitude of MH 

changes in these regimes.  

xiv. In the Mediterranean region, the simulations show a tendency for increased growing-

season precipitation. Such a shift is required to explain observed vegetation changes in 

this region in the MH. However the simulated shift is much too small to trigger those 

changes. 

xv. The failure to simulate observed mid-Holocene changes in the Mediterranean raises 

concerns about the reliability of model projections of future climates in these regions. 
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CONCLUSIONES 

Dinámica del clima en el noreste de España durante el Holoceno  

La comparación entre el estudio multi-proxy (incluyendo polen, sedimentología, geoquímica, 

quironómidos y carbones) llevado a cabo en la secuencia lacustre de la Basa de la Mora y la 

reconstrucción de la vegetación realizada en el sondeo lacustre del lago de Estaña ha 

permitido inferir cambios en la estacionalidad de la precipitación y de la temperatura in el 

Noreste de España durante el Holoceno.  

i. El comienzo del Holoceno (11.7-9.8 cal Ka BP) se caracterizó por la ocurrencia de una 

alta continentalidad, caracterizada por inviernos muy fríos y veranos muy cálidos, y una 

baja disponibilidad hídrica. Estas condiciones climáticas dieron lugar a la expansión de 

comunidades estépicas dominadas por Juniperus y Artemisia en Estaña y limitó la 

expansión del bosque en altitud. 

ii. La segunda parte del Holoceno Temprano (9.8-8.2 cal Ka BP) se caracterizó por la 

existencia todavía de una alta continentalidad pero con un aumento de la disponibilidad 

hídrica y de las temperaturas de invierno que permitieron la expansión de los taxones 

arbóreos en Estaña y favorecieron es ascenso de los bosques en altitud. 

 Sin embargo, la naturaleza de la vegetación en Estaña y en la Basa de la Mora 

apuntan a la existencia de patrones de precipitación diferentes durante este 

periodo, con una distribución anual de la lluvia uniforme en Estaña, deducido de 

la dominancia de Corylus, y un patrón de precipitación de tipo mediterráneo con 

la ocurrencia de una estación seca en la Basa de la mora, deducido de la 

dominancia de Pinus.  

 El estudio multi-proxy de la Basa de la Mora indica que el origen de gran parte 

del agua de este periodo estaría relacionado con la fusión de los mantos de nieve 

y glaciares durante el verano, lo que contribuiría al aporte de gran cantidad de 

agua hacia las zonas más bajas de los Pirineo.  

 Superpuesta a estas condiciones climáticas durante el Holoceno Temprano, la 

secuencia de la Basa de la Mora ha mostrado la existencia de al menos cuatro 

eventos climáticos abruptos y de corta duración registrados en los años 9.7, 9.3, 

8.8 y8.3 cal ka BP y caracterizados por condiciones climáticas áridas.  

 Estos episodios coinciden con eventos originados en el Atlántico Norte e indican 

la gran sensibilidad de los Pirineos a los cambios en latitudes septentrionales.  

iii. El Holoceno Medio (8.2-6 cal Ka BP) se caracterizó por un aumento de las temperaturas 

y de la precipitación, con el establecimiento de un patrón de precipitación de tipo 

atlántico con tasas altas de lluvia y ausencia de una estación seca que dio lugar a la 
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migración del bosque de caducifolios hacia cotas altitudinales mayores hasta su 

establecimiento en el piso subalpino de los Pirineos.  

iv. Hacia el año 6 cal Ka BP tuvo lugar un cambio hacia condiciones más áridas, similares a 

las actuales. Este cambio tuvo lugar en los pasos principales. 

 Entre 6 y 4.8 cal Ka BP se estableció un patrón de precipitación tipo 

mediterráneo con la ocurrencia de una estación seca que originó la substitución 

del bosque de caducifolios por un bosque de pino en el piso subalpino. 

 A partir del año 4.8 cal Ka BP tuvo lugar una disminución progresiva de la 

precipitación anual total que resultó en l reducción de la presencia de árboles 

caducifolios y la expansión de Quercus marcescente y perennifolio.  

v. Durante el último milenio, las huellas de la Anomalía Climática Medieval y de la Pequeña 

Edad de Hielo pueden reconocerse en ambas secuencias por cambios tanto en la 

vegetación como en los niveles de los lagos.  

El impacto de la actividad antrópogénica en los Pirineos 

vi. Los primeras señales de actividad agrícola se reconocen en Estaña en el año 3.1 cal yr 

BP mientras que los pisos de vegetación más altos no muestras indicios de fases de 

deforestación. 

vii. Entre los años 1050 AC y 750 DC (3-1.2 cal ka BP) la agricultura fue la principal 

actividad antrópica y se concentró principalmente en cotas bajas.  

viii. Ente 750 y 1150 DC (1.2-0.8 cal ka BP) tuvo lugar la expansión de las actividades 

ganaderas junto con la diversificación de los cultivos en las cotas bajas y la presión 

antrópica en pisos de vegetación más altos aumentó. 

ix. El mayor impacto humano sobre el paisaje tuvo lugar entre 1150 y 1650 AD (0.8-0.3 cal 

ka BP) cuando se produjo un procesos de deforestación masiva. Sus efectos pudieron 

notarse en todos los pisos de vegetación aunque algunas zonas fueron menos afectadas 

que otras. 

x. Ente 1650 y 1800 AD (0.3-0.15 cal ka BP) la actividad antropogénica se concentró en 

cotas bajas mientras que el piso subalpino fue parcialmente abandonado como resultado 

probable de la ocurrencia de condiciones muy frías durante la Pequeña Edad de Hielo. 

xi. Después de 1800 AD (0.15 cal yr BP) la presión antropogénica aumento en el piso 

subalpino como resultado de la creciente población en el área y las condiciones climáticas 

más suaves. 
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xii. El bosque se recuperó definitivamente en todos los pisos de vegetación durante la 

segunda parte del siglo XX como resultado del éxodo rural. 

Simulaciones de modelos climáticos para el periodo Pre-Industrial y el Holoceno-
Medio 

xiii. Los modelos climáticos del CMIP5 fallan a  la hora de reproducir aspectos claves del 

clima tanto del presente como del Holoceno Medio en la región del Mediterráneo y Norte 

de África. Estos fallos incluyen la correcta posición geográfica de las zonas de 

precipitación en las simulaciones del periodo Pre-Industrial y la magnitud de la 

precipitación en el Holoceno Medio. 

xiv. En la región mediterránea, las simulaciones para el Holoceno-Medio muestran una 

tendencia al aumento de precipitación en primavera de acuerdo con el cambio de 

precipitación necesario para explicar la expansión de los caducifolios en el Mediterráneo 

durante el Holoceno Medio. Sin este aumento es extremadamente pequeño como para 

haber podido desencadenar tales cambios en la vegetación. 

xv. El fallo a la hora de simular las condiciones de precipitación necesarias para explicar los 

cambios ambientales que tuvieron lugar en Mediterráneo durante el Holoceno Medio 

suscita preocupaciones sobre la fiabilidad de los modelos en las proyecciones climáticas 

futuras para la región.  
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