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Resumen

La mayoŕıa de los problemas en f́ısica e ingenieŕıa se modelan mediante ecuaciones en

derivadas parciales. Algunos de los modelos más representativos seŕıan, por ejemplo, las

ecuaciones de Maxwell, el problema de la elasticidad o las ecuaciones de Navier-Stokes.

Generalmente, la resolución de las ecuaciones en derivadas parciales se basa en el

uso de métodos numéricos que comienzan con un proceso de discretización y finalizan

con la resolución de un gran sistema de ecuaciones algebraicas que puede llegar a

ser muy costosa. El desarrollo de métodos eficientes para esta última tarea es muy

importante pues repercute en la posibilidad de realizar más ensayos con un menor

costo computacional, y es el principal objetivo de esta tesis.

Hay dos grandes grupos de métodos numéricos para la resolución de estos sistemas

de ecuaciones, los métodos basados en los subespacios de Krylov, y los métodos multi-

malla. En aplicaciones especialmente dif́ıciles, es habitual combinar ambas metodoloǵıas,

ya sea usando un método multimalla como precondicionador de un método basado en

un subespacio de Krylov o este último como suavizador en el método multimalla. Esta

tesis se va a centrar en los métodos multimalla.

Los métodos multimalla (4), que son conocidos por ser métodos muy rápidos para

la resolución de problemas de tipo parabólico y eĺıptico (49), se pueden clasificar en dos

familias. Los geométricos que tienen un bajo consumo de memoria, pero solo pueden

aplicarse sobre dominios regulares y mallas estructuradas, y los métodos multimalla

algebraicos, que requieren más memoria pero se pueden aplicar a dominios de cualquier

complejidad. Una alternativa que pretende obtener lo mejor de ambos métodos es el

uso de métodos multimalla geométricos en mallas semi-estructuradas. Esta se basa en

considerar una malla inicial no estructurada que se adapte a la geometŕıa del dominio,

para posteriormente refinar regularmente esta malla inicial hasta obtener una malla

suficientemente fina en la que podamos obtener una solución con la precisión deseada.
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De esta manera, obtenemos una malla que se adapta al dominio, y que es localmente

estructurada, donde podemos aplicar métodos multimalla geométricos. Se han aplicado

estos métodos sobre mallas rectangulares y triangulares, en estas últimas considerando

discretizaciones centradas en los vértices (20, 21).

Las mallas de Delaunay son ampliamente utilizadas para la triangulación de domin-

ios debido a sus buenas propiedades. La malla dual de una triangulación de Delaunay

es conocida como malla de Voronoi. Entre otras buenas propiedades, se cumple que

las rectas que unen los nodos de la malla de Voronoi son perpendiculares a los lados

de la triangulación de Delaunay. Por tanto, su uso para la discretización de ecuaciones

en derivadas parciales es muy interesante, ya que para discretizar las derivadas en la

dirección normal basta con un cociente de diferencias. Vamos a considerar triangula-

ciones acutángulas, por lo que el punto de Voronoi siempre estará dentro del triángulo

correspondiente. Sin embargo, su posición cambia en función de la forma del triángulo,

lo cual puede dar lugar a grandes anisotroṕıas debidas al mallado y no al problema.

Uno de los componentes más importantes de los métodos multimalla es el suavizador.

El estudio de suavizadores para discretizaciones centradas en celdas es escaso, y nulo

para mallas semi-estructuradas. Por tanto, el diseño de nuevos suavizadores es uno

de nuestros principales objetivos. Para ello, deberemos estudiar las caracteŕısticas del

problema y diseñar nuevos suavizadores que sean capaces de tener en cuenta dichas

caracteŕısticas aśı como de tratar con las posibles anisotroṕıas inducidas por la malla.

A la vez que desarrollamos un método multimalla genérico para dichas discretiza-

ciones, nos centraremos en la resolución del modelo Darcy-Oberbeck-Boussinesq (42),

el cual se puede escribir de forma adimensional como sigue:

∇ · u = 0, (1)

u = −(∇P − Cz), (2)
∂C

∂t
= −u · ∇C +

1

Ra
∆C, (3)

donde z es el vector (0,−1) en coordenadas cartesianas, y Ra denota el parámetro de

Rayleigh, el cual establece la dominancia de la difusión o la convección.

Comenzaremos con el diseño de un método multimalla para discretizaciones de prob-

lemas escalares en mallas de Voronoi asociadas a triangulaciones semi-estructuradas,

más concretamente consideraremos el problema de Laplace. Tras obtener un multimalla

eficiente para este problema, iremos añadiendo complejidad al modelo, materiales no
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homogéneos, convección dominante, y finalmente el problema de evolución dado en la

ecuación (3).

Sin embargo, para la resolución del modelo de Darcy-Oberbeck-Boussinesq, hay

que tener en cuenta además el sistema de ecuaciones acopladas dado por (1) y (2), con

incógnitas de presión, P , y velocidad, u. Para ello, localizaremos las proyecciones de la

velocidad en los puntos medios de los lados de los triángulos y la presión en los puntos

de Voronoi. En cuanto al diseño del método multimalla correspondiente tenemos dos

opciones, el uso de suavizadores de tipo Vanka, que involucran la resolución de un

sistema de ecuaciones para cada punto de la malla, o suavizadores de tipo distributivo.

A lo largo de esta tesis, analizaremos el comportamiento de ambos tipos de suavizadores.

El modelo Darcy-Oberbeck-Boussinesq es un modelo que se utiliza para calcular el

comportamiento de flujos en medios porosos saturados, los cuales se mueven debido

a diferencias de densidad dentro del fluido. Este modelo puede ser utilizado para la

simulación del problema de almacenaje de CO2 en acúıferos salinos. Notemos que la

velocidad y la concentración están acopladas, haciendo que el problema sea altamente

no lineal. De hecho, al poco tiempo del comienzo del proceso se crean inestabilidades

(“fingering”) dif́ıcilmente modelizables que exigen pasos de tiempo muy pequeños.

Más concretamente esta tesis está dividida en los siguientes caṕıtulos:

En el Caṕıtulo 2 comenzaremos con un problema simple, el problema de Laplace,

para desarrollar un método multimalla para discretizaciones sobre mallas de Voronoi

asociadas con mallas triangulares semi-estructuradas. Primero, discretizaremos el prob-

lema, luego desarrollaremos un método multimalla en mallas estructuradas y analizare-

mos su comportamiento para diferentes geometŕıas de la malla, diseñando nuevos

suavizadores cuando sea requerido. Tras este proceso, desarrollaremos un análisis

local de Fourier para comprobar que estos nuevos componentes funcionan correcta-

mente. Finalmente, aplicaremos esta metodoloǵıa en mallas semi-estructuradas en dos

experimentos, uno para el problema de Laplace, y otro para un problema de convección-

difusión con difusión dominante. Además, explicaremos la estructura de datos utilizada

para trabajar con nodos centrados en celdas aśı como algunos detalles para extender

un método multimalla sobre mallas estructuradas a una malla semi-estructurada.

En el Caṕıtulo 3, vamos a añadir complejidad al problema de Laplace. Primero, nos

enfrentaremos con materiales no homogéneos, para lo cual deberemos usar el método de

Galerkin para la discretización en las mallas bastas. En la siguiente sección, añadiremos
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un término de convección dominante, el cual discretizaremos mediante un esquema up-

wind, y luego comprobaremos la buena convergencia del método multimalla. Final-

mente, añadiremos un término dependiente del tiempo para resolver la ecuación de

advección. Tras ser capaces de resolver la ecuación de advección, en el Caṕıtulo 4 nos

centraremos en la Ley de Darcy acoplada con la ecuación de conservación de masa:

u = −(∇P ′ − Cz), (4)

∇ · u = 0. (5)

Para ello, extenderemos la metodoloǵıa desarrollada en el caso de mallas centradas en

celdas a mallas decaladas, donde las proyecciones de la velocidad son almacenadas en

los puntos medios de los lados y la presión en los centros de las celdas. Sin embargo, la

extensión directa de estos métodos a mallas decaladas no nos proporciona un método

multimalla tan eficiente como deseamos, por ello, desarrollaremos un suavizador dis-

tributivo que se mostrará muy rápido y eficaz.

Finalmente, en el Caṕıtulo 5, tras haber comprobado que hemos desarrollado unos

métodos de resolución robustos y estables, nos enfrentaremos al modelo Darcy-Oberbeck-

Boussinesq para simular el almacenamiento de CO2 en diferentes dominios. Estudiare-

mos las inestabilidades que aparecen dependiendo de la importancia del término difusivo

frente al convectivo. Para resolver el modelo, usaremos un método de punto fijo para

desacoplar las ecuaciones.

El Apéndice A contiene una introducción básica de los métodos multimalla, sus

componentes (suavizadores, operadores de transferencia y el operador en las mallas

bastas), tipos de ciclos y también se proporciona una pequeña explicación del análisis

local de Fourier.
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Chapter 1

Introduction

The majority of the problems in physics and engineering are modelled by using partial

differential equations. Some representative models are Maxwell equations in electro-

magnetism, elasticity equation in deformable solid theory and Navier-Stokes equations

in fluid dynamics.

Usually, the solution of partial differential equations is based on the use of numerical

methods that start with a discretization process and finish with the resolution of a large

system of algebraic equations, which can be very costly. The development of efficient

methods for this latter task is fundamental since affects the possibility of performing

complex simulations with a low computational cost. That is the main objective of

this thesis. There are two main groups of numerical methods for the resolution of

these systems of equations, the Krylov subspace methods, and the multigrid methods.

In some difficult applications, it is usual to combine both methodologies, a multigrid

method can be used as preconditioner of a Krylov subspace method or this latter as

smoother for a multigrid method. This thesis will be focused on multigrid methods.

Multigrid methods (4) are known to be fast solvers for solving parabolic and elliptic

problems (49). They can be classified in two families. Geometric multigrid methods

that have a low memory consumption but with the drawback that they can only be

used in regular domains with a structured mesh, and algebraic multigrid methods that

require more memory but they can be used in any kind of domain, no matter its

complexity. One alternative taking the best of both approaches is the use of geometric

multigrid methods in semi-structured meshes. This methodology consists in creating

an initial unstructured mesh that fits the geometry of the domain, and after to refine
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1. INTRODUCTION

it in a regular way to reach a target fine grid. In this way, we obtain a mesh that fits

the geometry of the domain and is locally structured, in which we can apply geometric

multigrid methods. This methodology has been successfully apply on rectangular and

triangular meshes, this latter by using vertex-centred discretizations (20, 21).

Delaunay grids are widely used to triangularize a domain due to their good prop-

erties. The dual of the Delaunay mesh is known as Voronoi grid. The edges between

the vertexes of the Voronoi mesh are perpendicular to the edges of the Delaunay tri-

angulation. Therefore, its use to discretize PDEs is very interesting, as to discretize

the flux across the boundaries of a triangle it is enough to use a difference quotient

between Voronoi nodes. We will use acute Delaunay triangulations, so the Voronoi

points will always fall inside the corresponding triangles. Nevertheless, the position

of the Voronoi points varies depending on the shape of the triangles, which may yield

strong anisotropies based on geometrical facts and not due to the differential problem.

One of the key components in multigrid methods is the smoother. The study of

smoothers for cell-centred discretizations is almost missing in the literature. Therefore,

the design of new relaxation methods is one of our main objectives. For that, we will

have to design new smoothers capable to deal with the peculiarities of the problem and

with the anisotropy introduced by the mesh.

As a final application of the numerical solvers previously developed, we focus our-

selves in the resolution of the Darcy-Oberbeck-Boussinesq model (42), which can be

written in nondimensional form as follows:

∇ · u = 0, (1.1)

u = −(∇P − Cz), (1.2)
∂C

∂t
= −u · ∇C +

1

Ra
∆C, (1.3)

where z is the vector (0,−1) in cartesian coordinates and Ra denotes the Rayleigh

parameter, which establishes the dominance of the diffusion or the convection. Suitable

boundary conditions must be added to close the model.

We will start with the development of a multigrid method for the discretization of

scalar problems on Voronoi grids associated with a semi-structured triangulation, more

concretely we will consider Laplace problem. After obtaining an efficient multigrid

method for this problem, we will add more complexity to the model, non-homogeneous
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materials, and the parabolic problem given in equation (1.3). Nonetheless, for the

solution of the Darcy-Oberbeck-Boussinesq, it is necessary to take also into account

the coupled system of equations given by (1.1) and (1.2), with the pressure P and the

velocity u as unknowns. For that, we will locate the normal components of the velocity

at the midpoints of the edges of the triangles and the pressure at the Voronoi points.

Regarding the design of the corresponding multigrid method, we have two possibilities,

the use of Vanka-type smoothers, which have to solve a system of equations for each

point of the grid, or distributive smoothers. Throughout this thesis, we will compare

their behaviour.

Let us remark that the Darcy-Oberbeck-Boussinesq model is a model used to cal-

culate the behaviour of density driven flows inside saturated porous media. This model

can be used in the simulation of CO2 storage in saline aquifers (24). Note that the

velocity and the concentration are coupled, making the problem non-linear. In fact,

after a small period of time some instabilities start to grow (“fingering”), which are

very difficult to model and require the use of small time steps.

The synopsis of the structure of the thesis is as follows. In Chapter 2, we will

use a simple model problem, Laplace equation, in order to develop a good multigrid

method for discretizations on Voronoi grids associated with triangular semi-structured

meshes. First, we will discretize the problem, next we will develop a multigrid method

in structured meshes and we will analyse the influence of different triangular geome-

tries, developing new smoothers whenever it is necessary. After this process, we will

develop a Local Fourier Analysis to check whether these new methods work properly or

not. Finally, we will apply this methodology to semi-structured grids for two different

problems, a Laplace problem and a convection-diffusion problem in which the diffusion

is dominant. Besides, we will explain the data storage used to work with cell-centred

discretizations on triangular grids and also some details to extend the structured multi-

grid methods to a semi-structured mesh.

In Chapter 3, we will add complexity to the initial model problem. First, we will

consider non-homogeneous materials. For that, we will have to use the Galerkin ap-

proach as discretization on coarser meshes. In the next section, we will add a dominant

convective term, which we will discretize using the upwind scheme, and we will test the

performance of the multigrid method. Finally, we will add a time dependent term to

solve the transient convection diffusion equation.

3



1. INTRODUCTION

After solving the advection model, in Chapter 4 we will focus on the Darcy Law

coupled with the continuity equation:

u = −(∇P ′ − Cz), (1.4)

∇ · u = 0. (1.5)

For this problem, we will extend what we developed in the case of semi-structured

cell-centred multigrid in Voronoi meshes to a staggered triangular grid, where the pro-

jections of the velocities are located at the midpoints of the edges and the pressure

at the Voronoi points. Nevertheless, the simplest extension of these methods will not

provide an efficient multigrid method. For that, we will develop a distributive smoother

that will result to be a very efficient smoother.

Finally, in Chapter 5, after having tested that we have developed robust and stable

methods, we will confront the Darcy-Oberbeck-Boussinesq model in different domains.

We will study the instabilities that appear depending on the dominance of the diffusive

term or the convective term. In order to solve the problem, we will use a fixed point

method to solve the equations.

Appendix A contains a basic introduction to multigrid, the components of multigrid

(smoothers, inter-grid transfer operators and operator in coarser meshes), kinds of

cycles and also an introduction to the local Fourier analysis.
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Chapter 2

Scalar Multigrid methods on

semi-structured Voronoi grids

Although algebraic multigrid can also handle very easily cell-centred discretizations

on unstructured grids (18), the focus on this work is to consider geometric multigrid

methods. Not many authors have applied geometric multigrid methods on cell-centred

discretizations and most of these works have been done in rectangular grids. Histori-

cally, the pioneer work is due to Wesseling (55), where a multigrid method for interface

problems was constructed to simulate oil reservoir problems. This work started a chain

reaction of papers focused on this subject, see (28, 29, 30, 31, 53, 54, 56). The W-cycle

convergence of these multigrid methods, in the case of natural injection as prolonga-

tion, was theoretically analyzed by Bramble et al. (3), and in the case of V-cycle, the

convergence was proved by Kwak et al. in (34) using certain weighted prolongation

operators. Furthermore, on triangular grids, Kwak et al. (36, 37), proposed a new

multigrid method, extending their previous works.

For an irregular domain, it is very common to apply regular refinement to an un-

structured input grid. In this way, a hierarchy of locally structured grids is generated.

To perform this refinement, each triangle is divided into four congruent ones by con-

necting the midpoints of their edges. In this way, a hierarchy of grids is obtained, where

transfer operators between two consecutive levels can be defined. These grids provide

a suitable framework for the implementation of a geometric multigrid algorithm, per-

mitting the use of stencil-based data structures, see (2), requiring only a few stencils

to represent the discrete operator for piece-wise constant coefficient problems, reducing
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drastically the memory required. Here, very simple local inter-grid transfer operators

have been chosen to make easier the communication between different input blocks.

For this reason, to overcome the weakness of the coarse-grid correction, the design of

powerful smoothers results mandatory, since standard relaxation does not provide sat-

isfactory results in most of the cases. Then, here different novel smoothers suitable for

the considered cell-centred discretization are introduced. These smoothers are used on

each input block of the initial unstructured grid, depending on their shape, to overcome

possible anisotropies of the arising Voronoi mesh. Notice that these smoothers could

not be implemented on a pure unstructured grid, what involves an advantage of the

geometric multigrid method presented here against the algebraic multigrid approach.

We are speaking about, for example, the line-type smoothers, very necessary in the

case of anisotropic problems.

2.1 Discretization of an homogeneous diffusion problem

on Voronoi grids

In this section, the finite volume discretization on Voronoi meshes of a diffusion problem

is presented. Such discretization is introduced for unstructured as well as for structured

triangular meshes. However, we want to remark that in the numerical experiments

section a convection-diffusion problem will be considered, and its corresponding dis-

cretization will be obtained following the same steps as for the pure diffusion problem,

as we will specify at that point.

2.1.1 Discretization on unstructured triangular grids

We are going to construct a finite volume discretization scheme on the Voronoi mesh

associated with a Delaunay triangulation for the following boundary value problem:

−∆v = f, in Ω, (2.1)

v = 0, on ∂Ω. (2.2)

Firstly, we suppose to have a Delaunay triangulation T on the domain Ω, that satisfies

the usual admissibility assumption (see (9)), i.e. the intersection of two different tri-

angles is either empty, a vertex, or a whole edge. Besides, we restrict ourselves to an

acute triangulation, since the use of non-acute triangles makes the Voronoi points to
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fall outside their corresponding triangle.

A Voronoi mesh asociated with a triangulation T, see Figure 2.1, is defined by the cen-

Figure 2.1: Unstructured mesh and its associated Voronoi grid.

tres of the circumscribed circles of the triangles in T. Moreover, the segment connecting

two neighboring Voronoi points goes trough the midpoint of the common edge of their

corresponding triangles, being also perpendicular to it. This latter property allows us

to approximate the derivative in the normal direction, by the difference quotient on

both Voronoi points. Using the divergence theorem on a triangle T of the triangulation

T, the following balance equation holds:

−
∫
l1

∇v · n1 dl1 −
∫
l2

∇v · n2 dl2 −
∫
l3

∇v · n3 dl3 =

∫
T
f(x) dx. (2.3)

where ni is the unit outward normal vector to the corresponding edge li of triangle T.

Now, each of these line integrals is approximated as the length of the corresponding

edge multiplied by the flux evaluated in the midpoint of the edge. Afterwards, we

approximate such fluxes using the Voronoi points. With regard to the integral in the

right-hand side, we consider the following approximation:∫
T
f(x) dx ≈ meas(T ) f(xc), (2.4)

where xc denotes the Voronoi point of triangle T, and where meas(T ) is the area of T.

Denoting x1, x2, x3 the Voronoi points of the triangles adjacent to T with com-

mon edges l1, l2 and l3, respectively, and di the distance between points xc and xi,

7



2. SCALAR MULTIGRID METHODS ON SEMI-STRUCTURED
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Figure 2.2: Notation for neighbouring Voronoi points on an unstructured grid.

di = dist(xc,xi), with i = 1, 2, 3, (see Figure 2.2), we finally obtain the equation corre-

sponding to node xc :

− 1

meas(T )

3∑
i=1

(
meas(li)

vh(xi)− vh(xc)

di

)
= f(xc), (2.5)

where vh is the grid function approximating the solution of the continuous problem

on the Voronoi points. This scheme is first order accurate in a discrete H1−norm,

whereas it is computationally observed that second order is achieved in L2−norm. The

theoretical analysis of this approach can be seen in (26, 41, 52).

2.1.2 Discretization on structured triangular grids

Now, we are going to consider the particular case of the discretization of problem (2.1)

on a structured triangular grid. In this kind of grids, it is very usual to work in stencil

notation because it takes advantage of the structured ordering of the unknowns which

contribute in the discretization of a fixed grid-point. In a structured grid, any point

is surrounded by the same grid-pattern, and using a suitable numbering of the grid-

points it is easy to capture this pattern in a small matrix or “stencil” which stores the

contributions of the neighbouring unknowns. Then, first of all, a suitable numbering of

the grid-points is needed. In triangular grids, a unitary basis of R2, {e1, e2}, where e1,

and e2 are unit vectors defining the oblique coordinate system, is considered fitting the

geometry of the triangle, as can be seen in Figure 2.3 (a). Hence, a local numeration

8



2.1 Discretization of an homogeneous diffusion problem on Voronoi grids

(a) (b)

Figure 2.3: (a) New basis in R2 fitting the geometry of a uniform triangular grid, and

local numeration for the regular Delaunay grid obtained on a triangular domain. (b)

Corresponding Voronoi mesh.

can be fixed according to the definition of the spatial basis. In this way, a manner of

numbering nodes very convenient for identifying the neighbouring nodes can be defined.

We consider a triangular grid arising on a triangular domain by applying a fixed number

of regular refinement steps `. This is done in the way that, on each refinement step every

triangle is divided into four congruent ones by connecting the midpoints of their edges.

Then, we can define the corresponding grid in the following way:

G` = {x = k1h1 e1 + k2h2 e2 | k1 = 0, . . . , 2`, k2 = 0, . . . , k1}, (2.6)

where h = (h1, h2) is the grid spacing associated with the refinement level ` (h1 is the

grid spacing in the direction of e1, and h2 in the direction of e2), so that the grid G` can

also be denoted by Gh. Thus, for a refinement level `, a local numeration with double

index (k1, k2), k1 = 0, . . . , 2`, k2 = 0, . . . , k1, is used in such a way that the indexes

of the vertices of the triangle are (0, 0), (2`, 0), (2`, 2`), as it can also be observed in

Figure 2.3(a) for ` = 2.

On the other hand, the considered discretization is based on the dual Voronoi mesh,

represented in Figure 2.3(b). In the particular case in which a structured grid as con-

sidered here is used, the obtained finite difference scheme becomes different depending

on the grid-point. More concretely, one-half of the grid-points, those corresponding to

an up-oriented triangle, have the same equation and the other half, those correspond-

ing to a down-oriented triangle, have a “mirror image stencil”, see Figure 2.4. In this

9
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Figure 2.4: Stencils corresponding to two different grid-points: one associated with an

up-oriented triangle and the other with a down-oriented triangle.

sense, the Voronoi mesh, denoted by Vh could be split up into two sub-grids V u
h (as-

sociated with the up-oriented triangles) and V d
h , (corresponding to the down-oriented

triangles), as seen in Figure 2.3(b). These sub-grids can be defined from the grid Gh,

in the following way:

V u
h = {xuk1,k2 = (k1 + δ1)h1 e1 + (k2 + δ2)h2 e2 | k1h1 e1 + k2h2 e2 ∈ Gh}, (2.7)

V d
h = {xdk1,k2 = (k1 + δ′1)h1 e1 + (k2 + δ′2)h2 e2 | k1h1 e1 + k2h2 e2 ∈ Gh}, (2.8)

where δi, δ
′
i, with i = 1, 2, are suitable scalar values to reach Voronoi points from the

primal ones following the considered local coordinate system, see Figure 2.5. Then, a

grid-function, vh, defined on the Voronoi mesh Vh, could be split up into two different

sub-grid functions, vuh and vdh, associated with sub-grids V u
h and V d

h , respectively. In

this way, given an arbitrary pair (k1, k2) associated with a node of Gh, the equations

corresponding to the two Voronoi points xuk1,k2 and xdk1,k2 , are given by

Luuh vuh(xuk1,k2) + Ludh v
d
h(xdk1,k2) = fuh (xuk1,k2), (2.9)

Lduh v
u
h(xuk1,k2) + Lddh v

d
h(xdk1,k2) = fdh(xdk1,k2), (2.10)

where these “scalar” operators are given in stencil form as:

10



2.1 Discretization of an homogeneous diffusion problem on Voronoi grids

Figure 2.5: Voronoi mesh split into two sub-grids, and corresponding values of δi and δ′i.

Luuh =
1

meas(T )


0 0 0

0
3∑
i=1

li
di

0

0 0 0

 , Ludh =
1

meas(T )


0 0 0

0 − l1
d1
− l3
d3

0 − l2
d2

0

 ,

Lduh =
1

meas(T )


0 − l2

d2
0

− l3
d3
− l1
d1

0

0 0 0

 , Lddh =
1

meas(T )


0 0 0

0

3∑
i=1

li
di

0

0 0 0

 .

2.1.2.1 Stencil depending on two angles characterizing the triangular grid.

An important feature to take into account in a stencil is the strength of the connections

between the involved unknowns. Each entry of the stencil defines the coefficient of the

corresponding unknown in the equation associated with the central point. Then, if

some coefficient is large relative to the other coefficients in the same equation, then a

small change in the value of the associated unknown has more effect on the value of

the unknown at the central point, and therefore, we will say that these both unknowns

are strongly connected, see (7).

In order to know a priori the strong and weak connections between neighbouring

unknowns depending on the grid geometry, we are going to rewrite the stencils as a

function of some parameters characterizing the grid, that is, two angles, α and β, and

the length l, of one edge of an arbitrary triangle of the grid, see Figure 2.6. As we will
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see, this is going to be very useful for the design of smoothers for different geometries,

taking into account the strong connections appearing in the stencils. Therefore, we are

going to describe in detail the computation of the stencil for a Voronoi grid-point, asso-

ciated with an arbitrary down-oriented triangle, xdk1,k2 in V d
h . Since all the parameters

involved in the stencil (area, distances between Voronoi points and lengths of the edges)

are independent of the chosen coordinate system, for simplicity, the coordinates of the

points involved in such stencil can be computed in the Cartesian coordinate system

with respect to the origin, see Figure 2.6. And, in terms of the previously explained

geometric parameters, they result in the following:

xdk1,k2 =
l

2

(
2 cosα sinβ

sin(α+ β)
+ 1,

2 sinα sinβ

sin(α+ β)
+ cot(α+ β)

)
, (2.11)

xuk1,k2 =
l

2
(3,− cot(α+ β)) , (2.12)

xuk1−1,k2 =
l

2
(1,− cot(α+ β)) , (2.13)

xuk1,k2+1 =
l

2

(
2 cosα sinβ

sin(α+ β)
+ 1,

2 sinα sinβ

sin(α+ β)
− cot(α+ β)

)
. (2.14)

Figure 2.6: Notation for neighbouring Voronoi points on a structured grid, characterized

by angles α and β.

Due to the fact that the area of an arbitrary triangle T is given in terms of the

12



2.1 Discretization of an homogeneous diffusion problem on Voronoi grids

geometric parameters as

meas(T ) =
l2 sinα sinβ

2 sin(α+ β)
, (2.15)

and the lengths of the sides of T are l2 = l, l1 =
l sinβ

sin(α+ β)
, and l3 =

l sinα

sin(α+ β)
, after

computing di i = 1, 2, 3 from (2.11)-(2.14), we can finally obtain the stencils:

Lduh =
2 sin(α+ β)

l2 sinα sinβ

 0 tan(α+ β) 0
− tanα − tanβ 0

0 0 0

 , (2.16)

Lddh =
2 sin(α+ β)

l2 sinα sinβ

 0 0 0
0 − tan(α+ β) + tanα+ tanβ 0
0 0 0

 . (2.17)

As previously commented, for a Voronoi grid-point, associated with an arbitrary up-

oriented triangle, xuk1,k2 in V u
h the stencil would be the “mirror image stencil” of (2.16)-

(2.17), that is,

Luuh =
2 sin(α+ β)

l2 sinα sinβ

 0 0 0
0 − tan(α+ β) + tanα+ tanβ 0
0 0 0

 , (2.18)

Ludh =
2 sin(α+ β)

l2 sinα sinβ

 0 0 0
0 − tanβ − tanα
0 tan(α+ β) 0

 . (2.19)

Notice that depending on the angles characterizing the grid, some strong connec-

tions appear between some unknowns. In particular, in Figure 2.7 we show the vari-

ability of the stencil weights, for a Voronoi point xdk1,k2 associated with a down-oriented

triangle, depending on one of the angles of the triangulation. More concretely, we dis-

play the ratios between the three extra-diagonal coefficients in the equation and the

central term, that is, sdu00/s
dd
00, s

du
01/s

dd
00, and sdu−10/s

dd
00, (see notation in Figure 2.4) for two

different situations in which angle α is fixed and angle β varies among all its possible

values satisfying the requirement of an acute triangulation. In Figure 2.7(a), α is 60o,

and we can see that when β = 60o, that is for an equilateral triangle, the strength of

the three connections in the stencil is the same. When angle β is small or large enough,

we observe that two of the connections are weak whereas the other one is very strong.

On the other hand, in Figure 2.7(b), α is fixed as 88o. We can see that for almost the

whole range of values of β one of the connections in the stencil is strong and the other
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(a) (b)

Figure 2.7: Variability of the ratios between the coefficients of a stencil associated with

triangles with (a) α = 60o or (b) α = 88o, and β varying among all its possible values

satisfying the requirement of an acute triangulation.

ones are much weaker, whereas when β is either very small or very large, then two of

the connections in the stencil are of equal strength. These strong connections between

the unknowns involved in a stencil will have to be taken into account in the design of

the smoothers in a geometric multigrid method, as will be discussed in next section.

2.2 Multigrid method

In this section we are going to present the multigrid components that we are going to

use. For a basic explanation of multigrid methods, we refer the reader to Appendix A.

The performance of geometric multigrid methods is strongly dependent on the choice

of adequate components to the considered problem. The main components are the

smoother Sh, inter-grid transfer operators: restriction I2hh and prolongation Ih2h, and the

coarse-grid operator L2h. These components have to be chosen so that they efficiently

interplay with each other in order to obtain a good connection between the relaxation

and the coarse-grid correction. In the following subsections the proposed cell-centred

multigrid algorithm is described. All the attention is focused in the detailed explanation

of the considered smoothers and the special features appearing due to the cell-centred
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2.2 Multigrid method

character of the discretization.

Although the presentation of such components is done on a regular structured grid,

our purpose is to apply the proposed multigrid method in the framework of semi-

structured grids. Therefore, the choice of the corresponding components is done also

with a view to this application. In this case, we will use a block-wise multigrid algo-

rithm, where each triangle of the coarsest grid is treated as a different block with regard

to the smoothing process. This block-wise strategy is suitable thanks to the possibility

of choosing different smoothers for triangles having different geometries, thus resulting

in an improvement of the characteristics of our algorithm. Besides, we will have to take

care in the communication among the triangles of the coarsest triangulation. Next, we

are going to describe the components of the algorithm that we are going to consider

throughout all this chapter.

2.2.1 Coarse-grid correction

In the application of geometric multigrid, a hierarchy of grids is needed in order to

accelerate the convergence of the smoother, by using solutions obtained on the coarser

meshes as corrections. In order to obtain such hierarchy of grids, we divide the initial

triangles into four congruent ones by connecting the midpoints of the edges, and so forth

until the mesh has the fine scale to obtain the desired approximation of the solution.

Once the hierarchy of grids is defined, we have to choose suitable inter-grid transfer

operators as well as the corresponding discrete operators on the coarse grids. Regarding

the coarse-grid approximation, a direct PDE discretization has been used.

When vertex-centred discretizations are considered on triangular grids, grid-points

lying on coarser grids also belong to the finer grids, giving rise to a so-called nested

hierarchy of grids. However, when the considered cell-centred discretizations are used, it

is worth to note that except in the case of equilateral triangles, the grid hierarchy results

to be non-nested, see Figure 2.8. This makes the interplay between smoothing and

coarse-grid correction specially difficult, requiring the design of new smoothers or new

inter-grid transfer operators. With a view to the application of the proposed multigrid

method on semi-structured grids, our proposal is to consider very simple inter-grid

operators, since this will facilitate the communication between the blocks composing

these grids. In particular, injection operator is considered as the prolongation, and its
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adjoint is chosen as the restriction, resulting in the fact that only the four fine-grid

points surrounding a coarse-grid point contribute to its restriction.

Figure 2.8: Nested (left) and non-nested (right) hierarchies.

More concretely, the considered restriction operator, I2hh , is given in the following

way

I2hh =

 (I2hh )uu (I2hh )ud

(I2hh )du (I2hh )dd

 , with



(I2hh )uu =

 0 0 0

0 1/4 0

0 0 0

 , (I2hh )ud =

 0 0 0

0 1/4 1/4

0 1/4 0

 ,

(I2hh )du =

 0 1/4 0

1/4 1/4 0

0 0 0

 , (I2hh )dd =

 0 0 0

0 1/4 0

0 0 0

 ,
(2.20)

as shown in Figure 2.9, and the corresponding prolongation fulfils Ih2h = 4 I2hh .

The choice of these inter-grid transfer operators leads us to make an effort in the

smoothing process. Then, we must design efficient smoothers capable of taking charge

of the remaining components of the error, which cannot be eliminated by the coarse-

grid correction part of the algorithm. Actually, the design of suitable smoothers for

cell-centred grids is a challenge in this context.

2.2.2 Smoothers

The smoother usually plays an important role in multigrid algorithms, mainly in the

geometric approach. The choice of a suitable smoother is an important feature to
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Figure 2.9: Restriction operator.

guarantee the efficiency of these methods. Moreover, as previously commented, in

the framework we are working with, this choice is even more relevant. Due to the

general observation that errors become smooth if strongly connected unknowns are

collectively updated, see (5, 49), appropriate smoothers have been designed depending

on the magnitude of the coefficients of the stencils, given in (2.16)-(2.19). The following

smoothers have been considered and tested in order to fulfil the previous requirement.

Jacobi smoother: For almost-equilateral triangles, the magnitude of all the entries

of the stencils is similar, and therefore a point-wise smoother is enough to satisfactorily

reduce the high-frequency components of the error. The easiest smoother to perform

is a Jacobi type smoother, which consists of computing the approximation of each

unknown, by using non-updated values of the rest of the unknowns. Notice that this

implies that the order in which the grid-points are visited makes no difference, what

makes Jacobi scheme well-suited for parallel processing. However, for difficult problems,

usually this smoother does not give enough satisfactory results, and some variants have

to be considered. As is the case for Jacobi smoother presented here, some standard

smoothers are based on a decomposition on the positive and negative parts of the

operator, which correspond to the updated and non-updated unknowns before the

current step, see (49). That is, any discrete operator Lh can be split in the following

way Lh = L+
h + L−h , where the choices of the positive and negative parts give rise to

different classical iterative methods. Here we are going to present the corresponding

decomposition for Jacobi smoother. In order to do this, only the positive part of the
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operator is displayed. Taking into account that only the diagonal blocks of the operator

contribute in this positive part, it holds

(Luuh )+ = Luuh , (Lddh )+ = Lddh . (2.21)

Red-Black smoother: Due to the fact that unknowns related to up or down-oriented

triangles have no direct connection with each other, it seems natural to simultaneously

update all unknowns associated with equally oriented triangles, giving rise to a pattern

relaxation scheme. Since two different types of grid-points are distinguished, a two-

color relaxation process, called here red-black smoother, is considered. More concretely,

one iteration of this relaxation scheme consists of two partial steps. In the first one,

unknowns corresponding to up-oriented triangles are updated, and in the second step

those associated with the down-oriented triangles are relaxed by using the updated

values. Thus, the complete smoothing operator Sh is given by the composition of two

partial step operators, Suh and Sdh, which correspond to apply a Jacobi step on each

type of grid-points, that is, Sh = Sdh Suh. These partial step operators are characterized

by a different decomposition than the previous Jacobi over all the grid-points, in the

way that for Suh, for example, the positive parts of the scalar operators are:

(Luuh )+ = Luuh , (Lddh )+ = Ih, (2.22)

and if Sdh is considered, the identity operator will correspond to (Luuh )+, and (Lddh )+ =

Lddh .

Diamond smoothers: For almost-right triangles, a strong connection between only

two nodes involved in the stencil appears, due to the anisotropy of the Voronoi mesh.

Therefore, since the common lore claims that smoothing must be done in the direction

of the strong connection, in this case, both unknowns will have to be simultaneously

relaxed. These unknowns are associated with the closest Voronoi points corresponding

to different-oriented triangles, as seen in Figure 2.10(a). Therefore, a small (2 × 2)-

system must be solved for each of these pairs of unknowns. Different orderings can be

chosen to visit these blocks. We have chosen the lexicographic one, but of course, many

orderings are possible.

In triangular grids, three different diamond smoothers, associated with the three

edges of a triangle, can be defined. If a triangle characterized by angles α and β is

considered, we can assign a different color to each of its vertex, in the way that, for
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example, black color is associated with the vertex corresponding to angle α, green

color with that vertex associated with β, and red color corresponds to vertex of angle

180o − (α + β). In this manner, each diamond smoother can be named with the color

corresponding to the vertex opposite to the edge across which the strong coupling

appears. Following this rule, diamond smoother appearing in Figure 2.10(a) is called

green-diamond smoother.

(a) (b)

Figure 2.10: (a) Green-diamond smoother and (b) Red-wormy smoother.

This smoother is based on a decomposition of positive and negative parts of the

operator. Although three different diamond smoothers can be considered, the corre-

sponding decomposition can be done analogously. Then, in order to do this description,

we consider the green-diamond smoother, which can be seen in Figure 2.10(a). The

positive parts of the involved scalar operators are given as follows:

(Luuh )+ = Luuh , (Ludh )+ =

 0 0 0
0 sud0,0 0

0 sud0,−1 0

 , (Lduh )+ =

 0 0 0
sdu−1,0 sdu0,0 0

0 0 0

 , (Lddh )+ = Lddh .

(2.23)

Wormy smoothers: When a very small angle characterizes the triangulation, the
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strong coupling appears between the Voronoi points associated with the triangles sit-

uated in the direction of the edge opposite to the vertex corresponding to this small

angle, see Figure 2.10(b). Therefore, all those points have to be simultaneously up-

dated and a tridiagonal system must be solved for each of these “wormy-lines”. For

this reason, this smoother will be called wormy smoother.

Similarly to the previous case of the diamond smoother, in triangular grids, three dif-

ferent wormy-smoothers can be defined, associated with the three edges of a triangle,

and they can be named with the color corresponding to the vertex opposite to such

edge. Following this criterion, wormy smoother appearing in Figure 2.10(b) is called

red-wormy smoother. Notice that these smoothers can be performed by visiting the

“lines” in a lexicographic order, from vertex to edge or, on the contrary, from edge to

vertex, and this latest is the chosen option, as it is represented by the arrow in Fig-

ure 2.10(b). From the description of this smoother, we can obtain the decomposition of

the discrete operator which gives rise to wormy smoother. Analogously to the diamond

smoother, three different wormy smoothers can be defined, whose decomposition can

be obtained in a similar way. In order to present the corresponding decomposition of

the operator, the red-wormy smoother, displayed in Figure 2.10(b), is considered. In

this way, the positive parts of the scalar operators result as follows:

(Luuh )+ = Luuh , (Ludh )+ =

 0 0 0
0 sud0,0 sud1,0
0 sud0,−1 0

 , (Lduh )+ =

 0 0 0
sdu−1,0 sdu0,0 0

0 0 0

 , (Lddh )+ = Lddh .

(2.24)

Concluding, we can say that each of these wormy-smoothers will be suitable when

the angle corresponding to the vertex of its color is small, and as we will see in next

section, any possible triangulation will have associated a wormy smoother giving a

satisfactory convergence factor.

2.2.3 Results of the proposed multigrid method on structured grids

In order to see the suitability of the introduced smoothers in the design of an efficient

multigrid algorithm, we present some experiments comparing their behaviour in regular

structured grids. In particular, model problem (2.1)-(2.2) is solved in the structured

grid arising from the regular refinement of a triangular domain, characterized by two

of their angles. Unless stated otherwise, homogeneous Dirichlet boundary conditions,
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a random initial guess, and a zero right-hand side are considered in the numerical

experiments to avoid round-off errors. Initially, an F-cycle is considered since it is

cheaper than a W-cycle, and more robust than a simple V-cycle (49). However, in

the section of numerical experiments its behaviour will be compared to that of a V-

cycle. Regarding the number of smoothing steps, we have fixed two pre- and two

post-smoothing steps.

We begin by considering an equilateral triangular domain. Since any anisotropy

arises from the grid resulting of a regular refinement, it could be seen natural to think

in applying a simple point-wise smoother, like Jacobi or lexicographic Gauss-Seidel, to

this kind of triangulations. However, as previously commented, for this situation a pat-

tern relaxation scheme could be more appropriate. Thus, we are going to present some

convergence results on a regular equilateral grid, comparing the behaviour of multi-

grid by considering: undamped Jacobi smoother, red-black smoother, ω−red-black

smoother (with ω = 1.15) and diamond smoother. In Figure 2.11(a), we show the

history of the convergence on a grid obtained after eight refinement levels, and by con-

sidering as stopping criterion to reduce the maximum residual until 10−8. First of all,

(a) (b)

Figure 2.11: (a) Comparison of smoothers on an equilateral triangular grid. (b) History of

the convergence for different numbers of refinement levels by using ω−red-black smoother.

a rather surprising observation could be concluded from this figure: undamped Jacobi

appears to be a satisfactory choice as smoother for cell-centred discretizations on trian-

gular grids (as also seen for other type of discretizations on triangular grids (20), and in

the context of full-multigrid on rectangular grids (44)), despite the well-known lack of

smoothing property of this iterative scheme. Notwithstanding this unusual behaviour,

the obtained Jacobi results are largely improved by red-black smoother and diamond
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smoother. At the same time, the convergence factors provided by both smoothers are

enhanced by the red-black smoother with relaxation parameter ω = 1.15, which has

been obtained by experimental tests. This improving effect by using a relaxation pa-

rameter was pointed out in (43) for cell-centred discretizations on rectangular grids,

where it was also validated by a local Fourier analysis. Moreover, the good behaviour

of the multigrid based on the ω−red-black smoother is confirmed in Figure 2.11(b),

where its robustness with regard to the discretization parameter is shown. In this fig-

ure, the history of the convergence of the method is displayed for different numbers of

refinement levels, resulting to be independent. Therefore, we conclude from this ex-

periment that ω−red-black smoother seems to be a good choice for almost-equilateral

triangulations. However, this good behaviour deteriorates quickly when the shape of

the triangle tends to be rectangular or is characterized by a very small angle.

In the case of almost-right triangles, point-wise smoothers are not suitable anymore

due to the anisotropy of the Voronoi mesh. On the other hand, diamond smoother

results in a very efficient smoother when this kind of grids are considered. As an

example, a triangular domain characterized by angles α = 45o and β = 85o is fixed. In

Figure 2.12(a), the history of the multigrid convergence by using different smoothers is

displayed. More concretely, red-black, ω−red-black and diamond smoothers are used in

this comparison. In all cases, the finest grid results by applying eight refinement levels

to the initial triangular domain. As we can observe, very bad rates are obtained when

(a) (b)

Figure 2.12: (a) Comparison of smoothers on an almost-right triangular grid. (b) History

of the convergence for different numbers of refinement levels by using diamond smoother.

both red-black smoothers are considered, whereas the convergence factors provided by

the new diamond smoother are very satisfactory, achieving the convergence in only
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eleven cycles. Besides, in Figure 2.12(b), where the history of the convergence is shown

for different numbers of refinement levels, the robustness of this smoother with respect

to the space discretization parameter is demonstrated. Although convergence factors

provided by diamond smoother are very satisfactory for many grid configurations, when

a triangulation characterized by a very small angle is used, this smoother gives rise to

poor rates. This behaviour can be seen in Figure 2.13, where asymptotic convergence

factors of the diamond smoother based multigrid are shown for a wide range of pairs

of angles (α, β) characterizing the grid.

Figure 2.13: Experimentally computed convergence factors for the diamond smoother

based multigrid and four smoothing steps, for different triangles in function of two of their

angles.

To overcome these troubles appearing when the primal mesh is anisotropic, wormy

smoother in the direction of the anisotropy is a suitable smoother, largely improving

the convergence factors provided by the rest of point-wise or block-wise smoothers. To

validate this statement, we are going to compare the multigrid convergence by using

each one of the smoothers proposed in this work, when an isosceles triangle with a

small angle of 10o is considered as domain of our problem. With this purpose, in

Figure 2.14(a), the multigrid convergence provided by using ω−red-black, diamond

and wormy smoothers is depicted for eight refinement levels. From this picture, it is

clear that wormy smoother is the best choice for this type of triangulations. Moreover,

an h−independent convergence is also shown in Figure 2.14(b).
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Equilateral Right-Triangle Sharp triangle

(ω−red-black) (Diamond smoother) (Wormy smoother)

Levels Unknowns Cycles Time (s) Cycles Time (s) Cycles Time (s)

6 4096 7 0.03 8 0.03 6 0.04

7 16384 7 0.09 9 0.10 6 0.13

8 65536 7 0.35 9 0.39 7 0.58

9 262144 7 1.35 9 1.55 7 2.28

10 1048576 7 5.76 9 6.81 7 9.66

Table 2.1: Number of cycles necessary to reduce the initial residual in a factor of 10−10,

by using an F-cycle and the corresponding CPU-times.

(a) (b)

Figure 2.14: (a) Comparison of smoothers on an isosceles triangular grid with smallest

angle 10o. (b) History of the convergence for different numbers of refinement levels by using

wormy smoother.

From the results presented in this section, it seems that a reasonable strategy to

follow would be to apply the point-wise ω−red-black smoother for almost-equilateral

triangles, the collective diamond smoother for almost-right triangles, and finally the

appropriate block collective wormy smoother when triangulations with a small angle

appear. To summarize, in Table 2.1 we show for the three considered representative tri-

angles the results corresponding to the best smoother for each geometry. In particular,

for different numbers of refinement levels, the number of cycles necessary to reduce the

initial residual in a factor of 10−10, and the CPU-time are shown. As we can observe, a

convergence independent on the number of unknowns is obtained in all the three cases.
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From the practical point of view, for any given triangular geometry it would be nice

to be capable of choosing a suitable smoother in order to reach a desired convergence

factor. Moreover, for semi-structured grids, it is imperative to know the smoother to

use for each triangle of the input grid to achieve a local desired convergence factor

(45). In order to reach this, a set-up phase has been implemented in the multigrid

code; it consists of reading an already calculated database containing the most efficient

strategy depending on the angles of the triangle. That is, taking into account that

wormy smoother is about twice expensive than ω−red-black smoother, and diamond

smoother is about ten per cent more expensive than this latter, we choose for each

triangle the cheapest smoother which gives a convergence factor below a desired one.

Following this strategy, the corresponding guideline to reach a global convergence factor

about 0.1 is shown in Figure 2.15.

Figure 2.15: Guideline to choose suitable smoothers to reach an asymptotic convergence

factor about 0.1 on different triangles.

2.3 Local Fourier analysis

As we have seen in previous sections, the design of an efficient multigrid method may

not be easy. The necessity of a good smoothness, and its interplay with the coarse-grid
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correction is essential to achieve a satisfactory convergence rate. Up to this point, we

have been working with numerical experiments, which means that we had to code the

whole multigrid method in order to know whether it works or not. Taking into account

the amount of work that this requires, it seems logical to try to know a priori if what

we are going to perform is a good strategy. For that reason, the Local Fourier analysis,

LFA, was initially developed by Brandt in (4) and afterwards extended by him in (6).

It was focused on rectangular grids and recently, it was extended to triangular meshes

in (20). This tool calculates the asymptotic convergence rate of a multigrid algorithm.

To do that, it requires some assumptions: it neglects the effect of boundary conditions,

by considering the discrete operator to be defined on an infinite grid, and also if the

equation is non-linear or it has non-constant coefficients it must be locally linearized

(49). Despite these limitations, this method is a very useful tool to design efficient

multigrid methods for new problems. Also, it can be used to test if a multigrid code

has any bugs, since LFA predicts the asymptotic convergence rate that the code should

provide, see Figure 2.16. In Appendix A, we have included a basic introduction to the

smoothing analysis.

Figure 2.16: The Local Fourier Analysis and the multigrid code should provide the same

asymptotic convergence rate.

Local Fourier analysis cannot be straightforwardly applied to discretizations on

regular Voronoi meshes, since two different stencils appear for different grid-points,

depending on the orientation of the corresponding triangles. This latter, together with

the fact that triangular meshes are considered, make this analysis different from the

usual one. Regarding the extension to triangular meshes, the key is to write the Fourier

transform using coordinates in non-orthogonal bases fitting the structure of the grid,

as in Section 2.1.2. For local Fourier analysis, a regular infinite grid is assumed. With

this purpose, we extend the definition of grid Gh in (2.6) to the corresponding infinite

26
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grid in the following way:

Gh = {xk1,k2 = k1h1 e1 + k2h2 e2 | k1, k2 ∈ Z}, (2.25)

as seen in Figure 2.17. In this way the associated Voronoi mesh is also extended

to an infinite grid Vh, which can be decomposed again into two infinite sub-grids as

Vh = Vuh
⋃
Vdh. Now, we must extend the discrete problem to the whole infinite grid Vh.

Figure 2.17: Infinite triangular Delaunay grid with the associated infinite Voronoi mesh

and the basis fitting the grid

However, for this purpose, we have to take into account that equations at points on Vuh

and Vdh are different. Thus, we can define the application of the discrete operator to a

grid-function vh on Vh as:

Lh vh(x) =


∑

(i,j)∈Iuu
suui,j vh(xuk1+i,k2+j) +

∑
(i,j)∈Iud

sudi,jvh(xdk1+i,k2+j), x = xuk1,k2 ∈ Vuh,∑
(i,j)∈Idu

sdui,jvh(xuk1+i,k2+j) +
∑

(i,j)∈Idd
sddi,jvh(xdk1+i,k2+j), x = xdk1,k2 ∈ Vdh,

(2.26)

where the coefficients in (2.26) are

sdu0,1 =
2 sin(α+ β)

l2 sinα sinβ
tan(α+ β), sdu−1,0 = −2 sin(α+ β)

l2 sinα sinβ
tanα,

sdu0,0 = −2 sin(α+ β)

l2 sinα sinβ
tanβ, sdd0,0 = −(sdu0,0 + sdu1,0 + sdu0,−1).

(2.27)

Due to the geometric relations between an up- and a down-oriented triangle, it is easy

to see that the coefficients satisfy sud0,−1 = sdu0,1, s
ud
1,0 = sdu−1,0, s

ud
0,0 = sdu0,0, s

uu
0,0 = sdd0,0.
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and the subsets Iuu, Iud, Idu, and Idd give the connections of Voronoi points associ-

ated with up-oriented triangles with themselves and with those associated with down-

oriented triangles, and vice versa. In particular, in our case we have Iuu = {(0, 0)},

Iud = {(0, 0), (1, 0), (0,−1)}, Idu = {(0, 0), (−1, 0), (0, 1)}, and Idd = {(0, 0)}.

A local Fourier analysis is based on the Fourier modes, which have the following form:

ϕh(θ,x) = eıθ·x/h = eı(θ1x1/h1+θ2x2/h2), with θ = (θ1, θ2) ∈ Θh = [−π, π)2, and where x

is a grid-point. For node-based problems, these Fourier modes turn out to be eigenvec-

tors of grid operators that can be represented by a single stencil, see (4, 57). However,

for the analysis that we want to develop, ϕh(θ,x) is not directly useful, and we have

to define the corresponding “Fourier modes”, taking into account that we consider a

cell-centered discretization on Vh, and the fact that the discrete operator cannot be

represented by a single stencil. Then, we define the following grid-functions:

φh(θ,x) = αuφuh(θ,x) + αdφdh(θ,x), x ∈ Vh, αu, αd ∈ C, (2.28)

where

φuh(θ,x) =

{
ϕh(θ,x), x ∈ Vuh
0, x ∈ Vdh

, and φdh(θ,x) =

{
0, x ∈ Vuh
ϕh(θ,x), x ∈ Vdh

. (2.29)

This splitting in (2.28) is a direct consequence of the fact that the stencils for the points

on Vuh and Vdh are different. In this way, these grid-functions will play the same role in

the LFA for the discretizations considered here as the Fourier modes ϕh(θ,x) in the

LFA of standard node-based discretizations. Then, we define the following space of

grid-functions:

F(Vh) = {φh(θ, ·) = αuφuh(θ, ·) + αdφdh(θ, ·), αu, αd ∈ C, θ ∈ Θh}, (2.30)

which will play the role of our “Fourier space”. In this way, we can prove that any

discrete operator as in (2.26) leaves invariant subspace F(Vh). In fact, if we apply op-

erator Lh to a grid-function φh ∈ F(Vh), depending on the grid-point and taking into

account definitions in (2.7)-(2.8) the following holds:
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(Lhφh(θ, ·))(xuk1,k2) = αu
∑

(i,j)∈Iuu
suui,jφ

u
h(xuk1+i,k2+j) + αd

∑
(i,j)∈Iud

sudi,jφ
d
h(xdk1+i,k2+j)

= e
ıθ·xu

k1,k2
/h

αu ∑
(i,j)∈Iuu

suui,j e
ı(θ1i+θ2j) + αd

∑
(i,j)∈Iud

sudi,je
ı(θ1(i+δ′1−δ1)+θ2(j+δ′2−δ2))

 ,

(Lhφh(θ, ·))(xdk1,k2) = αu
∑

(i,j)∈Idu
sdui,jφ

u
h(xuk1+i,k2+j) + αd

∑
(i,j)∈Idd

sddi,jφ
d
h(xdk1+i,k2+j)

= e
ıθ·xd

k1,k2
/h

αu ∑
(i,j)∈Idu

sdui,je
ı(θ1(i+δ1−δ′1)+θ2(j+δ2−δ′2)) + αd

∑
(i,j)∈Idd

sddi,je
ı(θ1i+θ2j)

 .

Then, from these expressions we obtain

(Lhφh(θ, ·)) = Lh
[
φuh φdh

] [ αu
αd

]

=

αu ∑
(i,j)∈Iuu

suui,j e
ı(θ1i+θ2j) + αd

∑
(i,j)∈Iud

sudi,je
ı(θ1(i+δ′1−δ1)+θ2(j+δ′2−δ2))

φuh

+

αu ∑
(i,j)∈Idu

sdui,je
ı(θ1(i+δ1−δ′1)+θ2(j+δ2−δ′2)) + αd

∑
(i,j)∈Idd

sddi,je
ı(θ1i+θ2j)

φdh

=
[
φuh φdh

]
L̃h(θ)

[
αu

αd

]
=
[
φuh φdh

] [ βu
βd

]
, (2.31)

from which the invariance property is demonstrated, and where

L̃h(θ) =


∑

(i,j)∈Iuu
suui,j e

ı(θ1i+θ2j)
∑

(i,j)∈Iud
sudi,je

ı(θ1(i+δ′1−δ1)+θ2(j+δ′2−δ2))

∑
(i,j)∈Idu

sdui,je
ı(θ1(i+δ1−δ′1)+θ2(j+δ2−δ′2))

∑
(i,j)∈Idd

sddi,je
ı(θ1i+θ2j)

 ,
(2.32)

is the representation of Lh in F(Vh). Notice that in this case, this representation is a

2× 2−matrix.

In the particular case of the discretization considered for our model problem, the Fourier

domain representation of the discrete operator depending on the angles characterizing

the triangular grid reads

L̃h(θ) =
1

meas(T )

[
tα + tβ − tαβ E(tαβe

−ıθ2 − tβ − tαeıθ1)
E−1(tαβe

ıθ2 − tβ − tαe−ıθ1) tα + tβ − tαβ

]
(2.33)

where the following abbreviations have been used: tα = tan(α), tβ = tan(β), tαβ =

tan(α+ β), and E = eı(θ1(δ
′
1−δ1)+θ2(δ′2−δ2)).
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2.3.1 Smoothers and their representations in the Fourier space

In this work some classical smoothers will be considered together with some novel

smoothers which have been appropriately designed to deal with the particular anisotropies

that can appear in the Voronoi meshes. All these smoothers are based on a splitting

of the discrete operator Lh as Lh = L+
h + L−h , that is, a decomposition on the positive

and negative parts of the operator which correspond to the updated and non-updated

unknowns before the current step, see (49). Next, each smoother is described and the

corresponding Fourier domain representation is given. For the sake of simplicity, only

the positive part of the operator is displayed.

2.3.1.1 Jacobi

First, we consider the damped Jacobi iteration. In this case, L+
h is just equal to

the diagonal part of operator Lh, denoted by Dh, and the iteration matrix of this

smoother is given by Sh = Ih − ωD−1h Lh, where Ih is the identity operator and ω is

a relaxation parameter. The Fourier domain representation of operator Sh, S̃h(θ), is

S̃h(θ) = Ĩh(θ) − ωD̃h(θ)−1L̃h(θ), where Ĩh(θ) is the 2 × 2−identity matrix, L̃h(θ) is

given in (2.33), and

D̃h(θ) =
1

meas(T )

[
tα + tβ − tαβ 0

0 tα + tβ − tαβ

]
.

2.3.1.2 Gauss-Seidel

Next, we consider the lexicographic Gauss-Seidel method, in which the grid-points are

updated with an order dictated by the numbering of the Voronoi points. Since two

Voronoi points are associated with the same pair of indexes (k1, k2), first the Voronoi

point associated with a down-oriented triangle is relaxed and then that associated

with the up-oriented triangle is updated. Figure 2.18 illustrates the update order.

Considering this order, the Fourier representation of the positive part of the splitting

is in this case

L̃+
h (θ) =

1

meas(T )

[
tα + tβ − tαβ E(tαβe

−ıθ2 − tβ)
−E−1tαe−ıθ1 tα + tβ − tαβ

]
. (2.34)
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Figure 2.18: Update order in Gauss-Seidel smoother for a Voronoi point associated with

a down-oriented triangle (left) and a Voronoi point associated with an up-oriented triangle

(right).

2.3.1.3 Red-black smoother

Now, we consider a point-wise pattern relaxation that will be very efficient for equilat-

eral triangulations. Since the Voronoi grid is naturally subdivided into two sub-grids

Vuh and Vdh, we can consider a scheme which updates first the grid-points in Vuh, and

secondly those points in Vdh. Thus, this scheme consists of two partial relaxation steps,

in the first one the Voronoi points associated with up-oriented triangles are relaxed,

and in the second one those grid-points associated with down-oriented triangles are up-

dated. In this case, the Fourier representation of the positive part of the decomposition

reads

L̃+
h (θ) =

1

meas(T )

[
(tα + tβ − tαβ)/ωu 0

E−1(tαβe
ıθ2 − tβ − tαe−ıθ1) (tα + tβ − tαβ)/ωd

]
, (2.35)

where ωu and ωd are relaxation parameters associated with each one of the partial

steps.

2.3.1.4 Diamond smoother

Here we introduce a novel block-wise smoother suitable for one type of the Voronoi

anisotropic grids arising when almost-right triangular grids are considered, see Fig-

ure 2.19. It consists of simultaneously relaxing two Voronoi points, each one associated

with a different oriented triangle. This smoother will be efficient when these two points

are very close. For instance, in the case of the almost-right triangulation displayed in

Figure 2.19, the coupling of the Voronoi points will be as shown in Figure 2.20 (a), and

then the Fourier domain representation of the positive part of the operator is

31



2. SCALAR MULTIGRID METHODS ON SEMI-STRUCTURED
VORONOI GRIDS

Figure 2.19: Voronoi anisotropy appearing when almost-right triangular grids are con-

sidered.

L̃+
h (θ) =

1

meas(T )

[
tα + tβ − tαβ E(tαβe

−ıθ2 − tβ − tαeıθ1)
−E−1tβ tα + tβ − tαβ

]
. (2.36)

(a) (b)

Figure 2.20: (a) Diamond smoother and (b) wormy smoother on infinite grids.

2.3.1.5 Wormy smoother

We finish the description of the smoothers with the so-called wormy-smoother. As

in the previous case, this is a block-wise smoother, and as will be seen in the results

section it will be very efficient for the remaining case of Voronoi anisotropic meshes,

that is, in the case of triangulations with a very small angle. This smoother consists of

simultaneously updating all the Voronoi points associated with the triangles situated
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Jacobi Red-Black

ν ρ2g ρh ρ2g ρh

1 0.75 0.71 0.53 0.52

2 0.56 0.55 0.24 0.23

3 0.41 0.42 0.13 0.13

4 0.31 0.31 7.2× 10−2 7.0× 10−2

5 0.23 0.22 4.1× 10−2 4.0× 10−2

Table 2.2: LFA two-grid convergence factors, ρ2g, and measured two-grid convergence

rates ρh for an equilateral triangular grid.

in the direction of the edge opposite to the vertex corresponding to this small angle,

see Figure 2.20 (b). Notice that in this case, tridiagonal systems must be solved and

therefore it is more expensive than the other previously considered smoothers. However,

in some situations it is mandatory. For this smoother, the Fourier representation of the

positive part of the operator is given by

L̃+
h (θ) =

1

meas(T )

[
tα + tβ − tαβ E(tαβe

−ıθ2 − tβ − tαeıθ1)
−E−1(tβ + tαe

−ıθ1) tα + tβ − tαβ

]
. (2.37)

2.3.2 Results of local Fourier analysis

Now, we are going to compare the results from the multigrid experiments and those

obtained by the LFA in order to validate both. Hence, we have chosen the same

inter-grid transfer operators presented in Section 2.2.1. For the first experiment we will

consider an equilateral triangular grid and we will use Jacobi, and red-black smoothers.

In Table 2.2 we show the asymptotic convergence factor predicted by the LFA and

the one computationally obtained by the multigrid code. From this table, we can

observe that the convergence factors are very well predicted by the LFA in all the

cases. Using this analysis we have looked for the damping parameters to improve the

considered smoothers. For example, if three smoothing steps are used, we have found

that in the case of Jacobi, the use of a relaxation parameter ω = 0.9 improves the

two-grid convergence factor to ρ2g = 0.34. For the red-black smoother if we use optimal

relaxation parameters ωu = 1.2 and ωd = 1.1, the improvement is more than half,

reducing the convergence factor from 0.13 to 0.06.
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Red-Black (ωu, ωd)-Red-Black Diamond

ν ρ2g ρh ρ2g (ωu, ωd) ρh ρ2g ρh

1 0.97 0.96 0.96 (1.3, 0.6) 0.95 0.45 0.45

2 0.90 0.90 0.36 (7.35, 1) 0.36 0.20 0.20

3 0.84 0.83 0.27 (1.05, 5.1) 0.27 9.2× 10−2 9.0× 10−2

4 0.78 0.78 0.24 (1.1, 3.55) 0.23 4.1× 10−2 4.0× 10−2

5 0.73 0.72 0.21 (1.15, 2.85) 0.20 2.6× 10−2 2.4× 10−2

Table 2.3: LFA two-grid convergence factors, ρ2g, and measured two-grid convergence

rates ρh for an almost-right triangular grid.

Next, we deal with an almost-right triangle. In Table 2.3 we show the behaviour of

diamond smoother together with the red-black and the (ωu, ωd)−red-black smoothers.

For different number of smoothing steps, the two-grid convergence factors predicted

by LFA are provided together with the experimentally computed asymptotic two-grid

convergence factors. As we can observe, the LFA tool results very useful since the

prediction of the analysis matches very accurately the computational results. In the

case of the diamond smoother, the use of an extra-relaxation parameter is not useful

at all, hence we do not include any results for the relaxed variant. On the other hand,

since the results obtained by red-black smoother give significant improvements in the

case of equilateral triangulations, we wonder if this can be still useful for this type of

anisotropic grids. Then, in Table 2.3, we have included for each number of smoothing

steps, the optimal relaxation parameters predicted by LFA and the corresponding two-

grid convergence factors. We can observe a very large improvement in all the cases

by using very high values for the relaxation parameters. Anyway, despite this big

improvement in the behaviour of the red-black smoother, diamond smoother is by

far more suitable, and therefore we still recommend this smoother for this type of

anisotropic grids.

Finally, we focus on the wormy smoother and to test its behaviour we will use a

sharp isosceles triangle with two angles of 85o . In Table 2.4, three different smoothers

are considered: diamond, wormy and a relaxed variant of this latter. Again, the two-

grid convergence factors predicted by LFA are compared with those experimentally

computed factors for different numbers of smoothing steps. Notice that the introduc-
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Diamond Wormy ω-Wormy

ν ρ2g ρh ρ2g ρh ρ2g ρh

1 0.97 0.96 0.57 0.52 0.46 0.46

2 0.94 0.94 0.33 0.29 0.21 0.20

3 0.92 0.90 0.19 0.19 9.4× 10−2 8.7× 10−2

4 0.89 0.88 0.11 0.10 4.3× 10−2 4.6× 10−2

5 0.86 0.85 6.2× 10−2 5.6× 10−2 1.9× 10−2 2.1× 10−2

Table 2.4: LFA two-grid convergence factors, ρ2g, and measured two-grid convergence

rates ρh for an almost-right triangular grid.

tion of the relaxation parameter ω = 0.9 yields to big improvements. However, this

parameter ω highly depends on the triangle shape.

Next, we want to analyse the behaviour of a V-cycle. Therefore, we will perform

a three-grid analysis for the three illustrative triangular configurations, using the rec-

ommended smoother in each one. In Table 2.5, with two pre- and two post-smoothing

steps, the three grid convergence factors predicted by the LFA and the experimen-

tally computed factors by using a V-cycle with three and nine levels (the finest grid

is obtained by applying nine refinement levels) are shown. From these results we can

see that if the recommended smoother is chosen, a V-cycle results an efficient strat-

egy. However, we have observed that if the chosen smoother is not strong enough,

the V-cycle provides convergence factors depending on the number of levels used in

the calculations. In Figure 2.21, for three different triangular domains, we display

the experimentally computed asymptotic convergence rates obtained by using different

number of levels. The first picture corresponds to a triangle with angles α = 60o and

β = 75o, and the results for red-black and wormy smoothers are presented. Whereas

the wormy smoother provides convergence factors independent of the used number of

levels, the convergence factors of the other smoothers get worse. Notice that in this

latter case, even divergence is achieved. In the second picture, a triangle with angles

α = 45o and β = 55o is considered. For this case, red-black and diamond smoothers are

analysed, resulting the convergence factors provided by diamond smoother independent

on the number of used levels. Again, red-black smoother yields even divergence in some

cases. The last picture corresponds to a triangle with angles α = 70o and β = 85o,
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equilateral almost-right isosceles 85o

(RB) (Diamond) (Wormy)

ρ3g 7.2× 10−2 4.2× 10−2 0.11

ρ3h 8.1× 10−2 4.2× 10−2 9.8× 10−2

ρ9h 0.11 4.1× 10−2 9.5× 10−2

Table 2.5: LFA three-grid convergence factors, ρ3g, and experimentally computed factors

using three and nine multigrid levels (the number of nodes is the same).

and in this case the analysed smoothers are diamond and wormy. Whereas if diamond

is considered, we observe a deterioration with regard to the number of levels, wormy

smoother provides very good results. We can conclude that the V-cycle can be used in

practice whenever a strong enough smoother is considered.

Figure 2.21: Experimentally computed asymptotic convergence factors of a V-cycle by

using different numbers of levels, for three different triangular configurations.

2.4 Numerical experiments on semi-structured grids

In this subsection, we consider two model problems: a Laplace problem in an A-shaped

domain, and a convection-diffusion problem in a square domain. The strategy shown

in Figure 2.15 has been applied to perform the numerical experiments. Throughout all

the thesis, aCute software (15, 16), which is based on Triangle (47, 48), has been used

to generate the initial unstructured acute Delaunay triangulation.
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2.4.1 Laplace problem in an A-shaped domain

In the first numerical experiment, model problem (2.1) is solved in an A-shaped domain,

as shown in Figure 2.22. To this purpose, an initial unstructured grid composed of 201

triangles is considered, as depicted in Figure 2.22(a). From this mesh, a hierarchy

of grids is built by applying regular refinement on each coarse triangle, and the grid

resulting after one refinement step is shown in Figure 2.22(b), as an example.

(a) (b)

Figure 2.22: (a) Coarsest unstructured grid. (b) Grid obtained after one regular refine-

ment level.

Following the guideline displayed in Figure 2.15, we have chosen the most efficient

smoother for each triangle of the input unstructured triangulation. Selected smoothers

can be seen in Figure 2.23. It is important to remark that to achieve the desired

global convergence factor, an extra relaxation on Voronoi nodes close to the internal

boundaries of the initial coarsest grid, has been necessary.

After applying the proposed strategy by using a F (2, 2)−cycle, the number of cycles

necessary to reduce the initial residual in a factor of 10−10 and the CPU-time, together

with the asymptotic convergence factors are shown in Table 2.6 for different numbers

of refinement levels. It is observed that the convergence is independent of the space

discretization parameter h, and that in few iterations the residual is reduced as desired.

Moreover, an asymptotic convergence factor about 0.12 is obtained. In order to know
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Figure 2.23: Different smoothers for the triangles composing the initial triangulation of

the A-shaped domain.

the behaviour of the V-cycle, in the same table, we have also added the results corre-

sponding to a V (2, 2)−cycle, following the same strategy than for the F-cycle, that is,

the guideline shown in Figure 2.15. From these results, we can observe a slight deterio-

ration in the asymptotic convergence factors with respect to the number of unknowns.

This degradation of the convergence may be due to the fact that the accuracy of the

transfer operators is insufficient to fulfil the well-known rule of thumb, see (5, 25),

mP +mR > m,

where mP and mR are defined as the highest degree plus one of the polynomials that

are interpolated exactly by the prolongation and the restriction respectively, and m is

the order of the partial differential equation to be solved. Here, injection is considered,

and then, mP and mR are both equal to one. Since the order of the equation is two,

the strict inequality is not satisfied. Thus, it is not possible to guarantee efficient

convergence rates due to the weakness of the coarse-grid correction. Anyway, from the

practical point of view, it could be interesting the use of V-cycles for solving this type

of problems, since in very few iterations the desired convergence is achieved.
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V(2,2) F(2,2)

Levels Unknowns Cycles ρh Time (s) Cycles ρh Time (s)

4 51456 9 0.16 1.78 8 0.09 3.27

5 205824 9 0.19 3.62 8 0.11 6.32

6 823296 10 0.21 10.16 9 0.11 15.96

7 3293184 11 0.23 34.69 9 0.12 43.66

8 13172736 11 0.26 123.65 9 0.12 142.52

Table 2.6: Number of iterations to reduce the initial residual in a factor of 10−10, corre-

sponding asymptotic convergence rates and CPU-times for different numbers of refinement

levels, by using a V-cycle and an F-cycle.

2.4.2 Convection-diffusion problem on a square domain

The strategy proposed can be applied to more complex problems as, for example

convection-diffusion, which can be written as:

−∇ · (∇v + b v) = f, in Ω, (2.38)

where b(x) is a given velocity field, whose divergence is assumed to be zero. In order to

obtain a difference scheme by the cell-centred finite volume method, we follow the same

approach that we have explained in detail in Section 2.1, by using a central difference

scheme to approximate the convective term, see (41). In this numerical experiment an

square domain of unit length and Dirichlet boundary conditions are considered, and a

constant vector b = (1, 0) is fixed in the whole domain. Thus, the following equation

on each of the grid-nodes xc results:

− 1

meas(T )

3∑
i=1

(
meas(li)

(
vh(xi)− vh(xc)

di
+ b · ni

vh(xi) + vh(xc)

2

))
= f(xc).

(2.39)

We consider an initial unstructured grid, composed of 96 triangles, as seen in Fig-

ure 2.24, in which, for illustration, the dual Voronoi mesh has been displayed. The

hierarchy of grids is obtained by regular refinement. As the convective part of the

problem is not dominant, and its derivatives are of lower order, the behaviour of the

multigrid will be similar to that obtained for a pure diffusive problem. Therefore we

will follow the guideline given in Figure 2.15 to choose the suitable local smoother

on each input triangle, and this selection is displayed in Figure 2.25. The proposed
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Figure 2.24: Coarsest unstructured grid together with the associated Voronoi mesh.

geometric multigrid method is applied to solve the corresponding large sparse linear

system of equations. First, an F (2, 2)−cycle is used to test the independence of the

multigrid convergence with regard to the discretization parameters. In Table 2.7, for

different numbers of refinement levels, the asymptotic convergence rate, ρh, and the

number of iterations necessary to reduce the initial residual in a factor of 10−10, are

displayed together with the CPU-time. Similarly to the previous numerical experiment,

the results corresponding to apply a V (2, 2)−cycle are also shown in this table. Again,

a deterioration of the asymptotic convergence factor is observed, but the application of

this cycle can be interesting due to the small number of iterations necessary to reach

the convergence.

2.5 Implementation

In this section, we are going to go deeper into the details of programming a multi-

grid algorithm for cell-centred discretizations on Voronoi meshes associated with semi-

structured triangular grids.

The semi-structured approach requires the use of a connectivity array for the un-

structured triangulation. Nevertheless, the triangles resulting from the regular refine-
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Figure 2.25: Different smoothers considered on each triangular block of the input grid.

ment of this initial unstructured mesh, have a structure ordering and therefore, the

connectivity matrix is unnecessary. Hence, its use for all the triangles would result in a

waste of resources, and stencils are used for that purpose. However, storing information

about triangles is a challenge by itself since the data structures use to have a square

shape.

Also, we will comment how to overcome the problems that appear in the application

of multigrid on semi-structured grids, by using extra-relaxation processes. And more

specifically, the particular case in which the domain is composed of two extremely sharp

triangles connected.

2.5.1 Data storage for cell-centred discretizations on structured tri-

angular grids

In all the numerical methods for the solution of partial differential equations, it is

necessary to read data from the memory several times, apart from performing many

mathematical operations. While the mathematical operations are done extremely fast,

the access to the memory is slow and strongly depends on the data structure. Therefore,

the way in which we store the information as well as the speed to read and write data

from the memory will be a key point in the performance of the overall code. Thus,

41



2. SCALAR MULTIGRID METHODS ON SEMI-STRUCTURED
VORONOI GRIDS

V(2,2) F(2,2)

Levels Unknowns Cycles ρh Time (s) Cycles ρh Time (s)

4 24576 9 0.19 0.74 8 0.09 1.19

5 98304 10 0.20 1.76 8 0.09 2.54

6 393216 10 0.21 4.54 8 0.09 6.07

7 1572864 11 0.22 15.53 8 0.09 17.11

8 6291456 11 0.22 55.16 8 0.09 56.33

Table 2.7: Number of iterations necessary to reduce the initial residual in a factor of

10−10, corresponding asymptotic convergence rates and CPU-times for different numbers

of refinement levels, by using a V-cycle and an F-cycle.

we can improve or reduce the performance of the algorithm depending on the used

data structure. A desired data structure must be easy to use by the user and suitable

for the performance of the computer. Therefore, one has to design a user friendly

data structure depending also on the peculiarities of the programming language. In

the particular case of this thesis, Fortran90 was the chosen language. In Fortran, the

natural order of storage is column-major. Not following this order may make the data

access time three times slower (11).

Many programmers that need to solve PDEs claim that the most efficient way to

store the data is by using a simple one-dimensional array. This is commonly used when

rectangular grids are considered. In this case, each row has the same number of nodes,

which makes easy the use of one dimensional arrays. To access to the data in column

x, one just need to read from the memory position (x − 1) ∗ (size(column)) + 1 to

x ∗ size(column). However, in the case of triangles, the size of the column is not fixed.

Therefore, to obtain the information from a certain column, one needs to use a formula

instead of a constant to know the beginning and the end of that column.

Due to the already mentioned difficulties, we propose a simpler data structure based

on 2-dimensional arrays. The storage of triangles have the complication that, if one

wants to keep the logical structure of the triangle, this means that each row of a triangle

is in a different column of the array, that array would be half empty, see Figure 2.26.

This way of storage leaves a lot of empty space, and therefore it is undesirable.

Nonetheless, if we add an extra row in the upper part of the array, then we have the

same number of empty places, where we can store, for example, the right hand side of
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Figure 2.26: A triangle structure stored in an array, keeping the row and column coher-

ence

the equation. However it is still not easy to move through nodes. For example, triangle

number two is just below triangle number eight but in the array that coherence is not

kept. Besides, to access to the right hand side data there is no a simple way. For

example, node 1, that would be stored in the position (1, 2) of the array, would have

its right hand side in position (4, 7). Despite possible, this way of storing is not easy

and therefore likely to make mistakes. Hence, we will consider a new data structure.

If we have a look to Figure 2.26, we can distinguish two sorts of triangles. Some

of them are up-oriented triangles and the rest are down-oriented triangles. Each up-

oriented triangle is surrounded only by down-oriented triangles and vice-versa. This

means, that to access to the neighbouring triangles the up-oriented triangles will only

need information from the down-oriented triangles and the other way around. In this

way, a new possible data structure, a modification of the previous one, arises in a

natural way, to store each kind of triangles in a different array. However, we still have

the problem of the inherent difficulty to access to the right hand side data. Regarding

this latter, one solution is to keep the diagonal of the array empty, and to store the

data of the right hand side in a symmetrical fashion, making simpler the access to the

right hand side data, since the solution and the right-hand side data corresponding to

the same node will have a symmetric numbering. For example: following Figure 2.27

the position of node 1 is (1, 2) and its right hand side is stored in (2, 1), which is much
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easier to find than in the previous case, were both position had nothing in common.

Also, the access to those triangles that are surrounding a concrete one is very easy. For

example, if we want to find the neighbours of the up-oriented triangle number 10, whose

storage position is (2, 4), we just have to go to the array of down-oriented triangles and

get the nodes corresponding to (2, 4), (2, 3) and (1, 3), nodes 11, 9 and 4 respectively.

That is, the way to access to the neighbours is more or less the same as graphically we

can observe, the left triangle is also in the left position in the array, the down triangle

is also below and only in the right node one has to remember that it is stored in the

same position of the other array. Similarly, for a down-oriented triangle, the method

to obtain the neighbours is symmetric. That is, considering triangle 9 in the position

(2, 3) of the down-oriented triangles array, the neighbours, 8 (left), 10 (right) and 13

(up), are stored in the up-oriented triangles array in positions (2, 3), (2, 4) and (3, 4)

respectively.

Figure 2.27: A triangle structure stored in two arrays, one for up-oriented triangles and

another for down-oriented triangles.

On the other hand, there is still memory that is not going to be used. More

concretely, the amount of useless memory is exactly of the size of the length of the

array, lenght(array), whereas the total amount of data is lenght(array)2. Hence, the

memory that we are not going to use is almost irrelevant compared with the total

amount of used memory.

Regarding the storage of data corresponding to Dirichlet boundary conditions, the

idea is to modify the down-oriented triangles array, by adding space to store the bound-

ary data. We should store it in the places where we would look for neighbours from

the up-oriented triangles that are touching the boundaries. For that, it is necessary to

make the down-oriented array bigger, then it has to start from node (0, 0), while the
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up-oriented one must begin from (1, 1). In this way, taking into account the boundary

data will be as natural as accessing the neighbouring triangles. For example, for tri-

angle 1, in position (1, 2), we would look for neighbours in the positions (1, 2), (1, 1)

and (0, 1) in the down-oriented triangles array. Therefore, the natural way to store the

boundary data is to use the diagonal and also to add a column before the first one and

an extra row after the last one that we can see by applying the same idea to node 7,

see Figure 2.28.

Figure 2.28: A triangle structure stored in two arrays, one for up-oriented triangles and

another for down-oriented triangles, with boundary data storage, B.

Finally, we have obtained a data storage which does not differentiate from boundary

nodes to internal ones and keeps the logical structure of a triangle. It has the problem

that one needs to store the data by pairs (left side of the diagonal and right side of

the diagonal), and that one will always work with two different arrays. Nevertheless,

these two drawbacks are not a big problem in the solution of PDEs. The information

is usually required by pairs: solution and right hand side, residual and previous step

time solution. Regarding the use of two arrays, it may affect the performance if we are

not cautious. Thus, we will always try to work first with one kind of triangles and later

with the other one.

2.5.2 Extra-relaxation process in semi-structured grids

The idea of applying multigrid on semi-structured grids is very simple. We will treat

differently all the triangles that form the initial unstructured triangulation, see Fig-

ure 2.29. Nonetheless, we have to communicate them. The natural way is to con-

sider each triangle to have Dirichlet boundary conditions, where these boundary con-

ditions contain the overlap from neighbouring triangles, see Figure 2.30. However,
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these “boundaries” have to be updated after every modification of their values, see

Figure 2.31, for example, after the smoothing process and the prolongation update.

Nevertheless, this methodology some times yields some problems that will require the

use of an extra-relaxation process.

(a) (b)

Figure 2.29: (a) Initial unstructured grid of a domain. (b) Semi-structured grid obtained

after one refinement level.

Figure 2.30: Three isolated triangles after a virtual splitting.

The first reason of considering an extra-relaxation process can be easily seen when

considering the red-black smoother. To perform this method, we subdivide all the

triangles in the grid, and therefore, the nodes into two different types: up- and down-

oriented triangles, each of which can be updated simultaneously since each one only

uses information from the other one. This means that, if we have two triangles of

the initial grid sharing a common edge, and we want to apply a red-black smoother
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Figure 2.31: Overlapping update process.

we should keep the coherence across the triangles, see Figure 2.32 (a). Nevertheless,

this can be very difficult if we consider not two triangles but hundreds of them. The

splitting of the nodes for the red-black smoother applied on two coarse triangles is

depicted in Figure 2.32 (b). We can see that the nodes at the overlapping regions

belong to the same group (Black nodes). This means that one is not carrying out a

true red-black smoother in the whole domain since the rule that defines a red-black

smoother is not fulfilled by all the nodes. Hence, we are performing an “almost” red-

black smoother, which, in the best case scenario will be as good as the true red-black

smoother. Nonetheless, it seems that for the considered cell-centred discretizations we

obtain a worse performance.

(a) (b)

Figure 2.32: (a) Red-Black smoother in two triangles keeping the coherence between

them. (b) Practical red-black smoother.

The second reason comes from the error smoothness that we obtain in the whole

domain after smoothing each triangle by its own. We obtain a smooth error on the
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triangles, but it seems not to be smooth enough at the nodes close to the common edges

between the triangles. This effect is due to the fact that, as each triangle is treated

separately, we obtain a smooth error on each single domain, but there can be a jump

in the values from one triangle to its neighbours, which is sufficient to affect to the

multigrid convergence factor. This behaviour can be easily appreciated in Figure 2.33,

where we have depicted the error after two smoothing steps. The error on the whole

domain seems smooth, but at the common edges of the triangles non smooth lines

appear, deteriorating the convergence rate from a theoretical value of 0.10 to about

0.90. However, this effect can be even more dramatic, making the multigrid even to

diverge in more complicated geometries. As conclusion, this issue must be solved in

order to obtain an optimal method.

Figure 2.33: Error after two smoothing steps, following the relaxation strategy presented

in Figure 2.15.

In order to get global smooth error it seems a good idea to apply a strong smoother

in the nodes of the triangles that are close to the internal boundaries. In our case,

the strongest considered relaxation scheme is the wormy smoother. Nevertheless, we

would like to simultaneously update all the nodes, from both triangles, that are close

to their common edge. Thus, we can consider a variant of the wormy smoother which

smooths the lines at both sides at the same time, see Figure 2.34. However, we obtain

a block-tridiagonal system of equations to solve, which makes this method really costly.

Nonetheless, since the amount of nodes to be smoothed by this extra-relaxation process

is of the order of
√
Totalnodes, the required amount of time to do that is small compared
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with the cost of the rest of the multigrid process, which is proportional to the total

number of nodes.

Figure 2.34: Wormy smoother extended to two lines of two different triangles at the same

time.

Nevertheless, it is not always enough to perform the extra-relaxation of the error at

the common edges of the triangles. The nodes closest to the vertexes of the triangles

composing the initial grid are more complicated to smooth. To overcome this difficulty

we could apply the same idea as before to those points, this means to simultaneously

smooth all the nodes closest to a vertex. However, in our experience, we have realized

that it is more robust to apply to each edge of the triangle a wormy smoother after the

extra-relaxation process. This is more expensive from a computational point of view

but its cost is still affordable.

In order to show the efficiency of this methodology, we have performed again the

previous example given in Figure 2.33, by applying the extra-relaxation method. The

result is presented in Figure 2.35, where we can see that now the error is smooth over

the whole domain.

2.5.3 The case of extremely sharp triangles

We have previously commented the necessity of the extra-relaxation to overcome the

smoothing problems derived from the use of cell-centred discretizations on semi-structured

meshes. In the majority of the times, the presented approach is more than enough.

However, there is a special case for which it is not enough. This concrete situation

appears when two extremely-sharp triangles are in contact by the edge that is in the

direction of the high anisotropy. In this case, the explained extra-relaxation is not

enough to obtain the expected convergence factor predicted by the analysis. This is
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Figure 2.35: Error after two smoothing steps, following the relaxation strategy presented

in Figure 2.15, and applying the extra-relaxation process.

due to the strong coupling between the two triangles. Theoretically, these two triangles

should be smoothed together. The application of this smoothing strategy would lead

to the same results obtained by the LFA. However, this would go against the essence

of the semi-structured approach. Therefore, in order to keep the possibility of working

with isolated triangles, in this section we are going to present two different possibilities

to face this problem.

Since this problem seems to be caused by the splitting of a smoother in two, one

option is to overlap the smoother of both triangles so the interchange of information

is somehow kept. To this purpose, we are going to create a wormy smoother that will

use some nodes of the other triangle, see Figure 2.36. However, in order to reduce the

interchange of data between triangles to its bare minimum, it will not update the values

from the neighbouring triangle. We will perform this smoother on both triangles so in

this way, we have to take information from the other triangle but we do not modify its

values. Hence, it is a compromise between the semi-structured strategy and the search

for a good performance.

In Table 2.8, we show the convergence factors obtained with this smoother, by

using an overlapping of just one node, for two sharp isosceles triangles. We compare

the experimentally obtained convergence rate with the predictions by the LFA and

we also consider a standard wormy smoother in the comparison. The improvement is

significant for the first three cases, whereas for the last one both methods works very
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bad. The solution for this latter is to extend further the overlap, for example by using

two or more nodes from the neighbouring triangle. As we increase the number of nodes

from the other triangle used in the overlap, we are approaching to the optimal solution

that will correspond to smooth both triangles together.

Figure 2.36: Extended wormy smoother, with an overlap of one node.

α ω LFA Wormy modified Wormy

85o 1 0.1 0.1 0.20

86.5o 1.5 0.1 0.12 0.25

87o 1.5 0.11 0.2 0.33

88.5o 1.5 0.11 0.45 0.56

Table 2.8: Convergence rates using the modified wormy and a the standard one, with

different relaxation parameters and for different very sharp isosceles triangles.

Another different approach would be to use a more complex extra-relaxation method,

that is, instead of performing the extra-relaxation explained in Section 2.5.2, to use a

bigger one with four nodes deep, see Figure 2.37. The use of extra-relaxations allows us

to keep the essence of the semi-structured approach better than the previous method.

Nonetheless, we will have to solve a block tridiagonal system of 4× 4 blocks, which is

very expensive, and as a consequence the time spent on the extra-relaxation increases

dramatically, requiring more time than the whole smoothing process. Nevertheless,

the obtained results are satisfactory, as we can see in Table 2.9. In this table, we can

appreciate that the experimentally computed convergence factors stay close to those

predicted by the LFA up to a triangle with base angle of 87.6 degrees. In the case

of an isosceles triangle with bases angle of 88.5 degrees the convergence deteriorates,

although the convergence rate is still acceptable. Regarding the time consumption, one

can always apply this special extra-relaxation smoother to the particular case of these
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two connected triangles and the cheaper strategy to the rest of the triangles of the

domain.

Figure 2.37: Four nodes deep extra-relaxation.

α ω LFA Code

86.8o 1 0.11 0.09

87.6o 1 0.11 0.16

88.5o 1.5 0.12 0.26

Table 2.9: Convergence rates using the special extra-relaxation method for three very

sharp isosceles triangles.

Finally, as a conclusion we recommend the use of the modified wormy smoothers

whenever possible instead of the extended extra-relaxation method. The algorithm is

faster, and also the programming is much easier than the extended extra-relaxation

method, where debugging is more complicated.
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Chapter 3

Extension to more complex

models

3.1 Multigrid methods with discontinuous coefficients

Elliptic equations with discontinuous coefficients arise from many areas of application,

such as heat conduction through heterogeneous materials, flow in porous media with

different porosities, etc. Consequently, the development of robust and efficient numer-

ical algorithms for the solution of such problems has been an active area of research,

and still remains a very important challenge of computational mathematics. Among

the numerical methods approximating elliptic equations with jump discontinuities, we

consider a cell-centred finite difference scheme on triangular grids. This latter can be

derived from the simplification of the lowest order Raviart-Thomas mixed finite element

method, as done in (17).

The diffusion equation with discontinuous coefficients is widely used in numerical

simulation, and it has been established as a benchmark problem in books dedicated to

multigrid methods (49, 56). It is known that when standard multigrid is applied for

solving equations with highly varying discontinuous coefficients, a deterioration in the

convergence of the method can appear, and even divergence can be observed. Then,

many authors have intended to construct inter-grid transfer operators adequate to deal

with rough coefficients, for example Wesseling and Khalil (31) and Kwak et al. (35, 37).

In the case of vertex centred approximations, in (12, 14) it is suggested to use matrix-

dependent transfer operators. The interpolator is motivated by the continuity of the
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flux, and following this idea, some prolongators based on the flux continuity have been

successfully applied to accelerate the convergence of multigrid algorithms (1, 36, 39).

However, the implementation of these methods requires additional storage and prelim-

inary work, and can be fairly costly. In the case of cell-centred finite volume schemes,

the main idea is to use Galerkin coarse-grid approximation. The disadvantage usually

observed when using this approach is that the stencils of the coarse-grid operators are

often larger than the corresponding fine-grid stencil, what is problematic especially in

three dimensions. However, the use of simple transfer operators preserves the size of

the fine-grid stencil.

Most of the existing geometric multigrid techniques to solve two-dimensional ellip-

tic equations with discontinuous coefficients are only applied on simple domains and

mainly on rectangular grids, and therefore, the design of geometric multigrid methods

for complex domains is missing in the literature. To close this gap, in this section we

will propose a block-wise multigrid algorithm for cell-centred discretizations on semi-

structured triangular grids, which is suitable for relatively complex domains. Notice

that many of the applications modelled by the diffusion equation with discontinuous

coefficients deal with composite materials whose components have nearly constant diffu-

sivity, but vary between them by several orders of magnitude. In these cases, it is quite

common to idealize the diffusivity by a piecewise constant function. Semi-structured

grids are suitable for capturing these piecewise functions, in the way that an initial

unstructured input grid is considered fitting both the geometry of the domain and the

piecewise diffusion coefficient.

In this section, very simple local inter-grid transfer operators are considered to

make easier the communication between different input blocks. The accuracy of these

transfer operators is insufficient to fulfil the rule of thumb, see (5, 25),

mP +mR > m,

where mP and mR are defined as the highest degree plus one of the polynomials that

are interpolated exactly by the prolongation and the restriction respectively, and m is

the order of the partial differential equation to be solved. Here, injection operator is

considered as the prolongation and its adjoint is chosen as the restriction, and then,

mP and mR are both equal to one. Since the order of the equation is two, the strict

inequality is not satisfied. Thus, it is not possible to guarantee efficient convergence
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rates due to the weakness of the coarse-grid correction. Anyway, from the practical

point of view, we will see that, in combination with strong smoothers, we will obtain

very efficient multigrid methods.

3.1.1 Discretization on semi-structured grids of a diffusion problem

with discontinuous coefficients

We deal with the solution of the following diffusion equation:

−∇ · (κ(x, y)∇v) = f, in Ω, (3.1)

v = g, on Γ, (3.2)

where Ω is an open bounded domain, Γ is its boundary, f is a source term, g gives

the Dirichlet boundary condition and κ(x, y) is the diffusion coefficient, that may be

discontinuous. In particular, here we are interested in problems where κ is piecewise

constant.

As done in Chapter 2, here we consider here a cell-centred finite volume discretiza-

tion of problem (3.1)-(3.2) on a semi-structured grid. Firstly, we construct an acute

Delaunay triangulation T on the domain Ω, as the coarsest unstructured grid. We

assume this triangulation to be fairly coarse, resolving the large-scale features of the

domain, that is, this triangulation is taken fitting the geometry of the domain and the

discontinuities of the diffusion coefficient in the way that on each triangle the value of κ

remains constant. Secondly, we apply a regular refinement process to the triangles of T,

that is, every triangle is divided into four congruent ones by connecting the midpoints

of their edges, and so on until getting the desired fine scale to approximate the solution

of the problem.

Now, we are going to obtain the equation on the Voronoi point xc corresponding to

a triangle T of the triangulation T, see Figure 2.2. Note that T is connected with three

different triangles at most, T1, T2 and T3. We denote by κc the diffusion coefficient on

the present triangle T, and by κi those coefficients on Ti. Using the divergence theorem

on equation (3.1) at triangle T , we obtain

−
∫
∂T

(κ(x, y)∇v) · n dl =

∫
T
f(x) dx,

where n is the unit outward normal vector to ∂T and ∂T = l1∪l2∪l3. Then, by splitting

the integral on the left-hand side into the sum of line integrals corresponding to edges
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l1, l2 and l3, and by approximating them as the length of the corresponding edge, li,

multiplied by the flux evaluated in the midpoint of the edge, we obtain the left-hand

side of the equation. Regarding the right-hand side integral, it is replaced by the area

of the triangle multiplied by the value of f at the Voronoi point. Finally, the equation

reads:

− 1

meas(T )

3∑
i=1

(
κHi meas(li)

vh(xi)− vh(xc)

di

)
= f(xc), (3.3)

where x1, x2, x3 are the Voronoi points of the triangles adjacent to T with common

edges l1, l2 and l3, respectively, and di the distance between points xc and xi, with

i = 1, 2, 3, (see Figure 2.2). The coefficients κHi appearing in (3.3) are the harmonic

average between the corresponding diffusion coefficients, given by:

κHi =
2κcκi
κc + κi

, (3.4)

which is the most accurate method of known techniques of averaging (46, 56).

Next, we are interested in obtaining the equations for the Voronoi points on the

structured patches of the semi-structured grid. These equations follow from (3.3)

by properly choosing the coefficients and using a double indexing for the notation

of Voronoi points, more appropriate when structured grids are dealt with.

Following the notation introduced in Section 2.1.2, given an arbitrary pair (k1, k2)

associated with a node of Gh, the equations corresponding to the two Voronoi points

xuk1,k2 and xvk1,k2 are given by

Luuh vuh(xuk1,k2) + Ludh v
d
h(xdk1,k2) = fuh (xuk1,k2), (3.5)

Lduh v
u
h(xuk1,k2) + Lddh v

d
h(xdk1,k2) = fdh(xdk1,k2), (3.6)

where operators Luuh , Ludh , L
du
h and Lddh can be obtained from equation (3.3), and are

given in stencil form as:
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3.1 Multigrid methods with discontinuous coefficients

Luu
h =

1

meas(T )


0 0 0

0

3∑
i=1

κHi
li
di

0

0 0 0

 , Lud
h =

1

meas(T )


0 0 0

0 −κH1
l1
d1

−κH3
l3
d3

0 −κH2
l2
d2

0

 ,

Ldu
h =

1

meas(T )


0 −κH2

l2
d2

0

−κH3
l3
d3

−κH1
l1
d1

0

0 0 0

 , Ldd
h =

1

meas(T )


0 0 0

0

3∑
i=1

κHi
li
di

0

0 0 0

 ,

where the distances d1, d2, d3 and the lengths l1, l2, l3 are defined depending on the

orientation of the triangle, as seen in Figure 3.1. For example, for an up-oriented

triangle d2 is defined as the distance between xuk1,k2 and xdk1,k2−1, and l2 as the length

of the edge between those Voronoi points.

(a) (b)

Figure 3.1: Notation used to construct the stencil on a Voronoi point at (a) an up-oriented

triangle or at (b) a down-oriented triangle.

3.1.2 Block-wise Multigrid

For this type of problems, the same methodology considered in the previous chapter

will be used. That is, a block-wise multigrid in which different smoothers are chosen

for the triangles of the coarsest grid, is considered. Due to the fact that a different

diffusion coefficient does not affect the anisotropies of the grid, we will follow the

guideline depicted in 2.15 for the choice of the smoothers. Regarding the coarse-grid

correction, as in the previous chapter, simple and local inter-grid transfer operators
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3. EXTENSION TO MORE COMPLEX MODELS

have been chosen in order to reduce to the bare minimum the communication between

the coarsest triangles. In particular, the natural injection is selected as the prolongation

operator Ikk−1; in fact, this is the only possible operator that is local for cell-centred

discretizations, and the restriction is chosen as the adjoint of the prolongation. In this

way, only the four fine-grid points surrounding a coarse-grid point are related to it by

both inter-grid transfer operators. We would like to remark that the choice of these

operators preserves four-point stencils when Galerkin approach is applied, which is very

convenient for the simplicity of the connections between the triangular blocks of the

grid.

When large jumps in the diffusion coefficient κ occur in the domain, a direct dis-

cretization on coarse grids may not work properly (49, 56). However, in most of the

multigrid methods proposed for discontinuous coefficient problems, the Galerkin ap-

proach has provided satisfactory results. This means that the coarse-grid operator is

defined in terms of the fine-grid operator, Lk, the restriction, Ik−1k and the prolongation,

Ikk−1, in the following way:

Lk−1 = Ik−1k LkI
k
k−1. (3.7)

However, when simple injection is selected for the inter-grid transfer, the Galerkin

operator (3.7) results to be inconsistent with the differential operator, and it must be

replaced by the following expression:

Lk−1 =
1

2
Ik−1k LkI

k
k−1. (3.8)

This modified Galerkin approach provides better multigrid convergence rates than the

original Galerkin operator (3.7), see (32, 40, 59).

3.1.3 Numerical experiments

In this section, we are going to present two numerical experiments to demonstrate

the efficiency of the proposed block-wise multigrid algorithm based on the modified

Galerkin approach.

In the first experiment, problem (3.1) is solved on the unit square with two different

distributions of diffusion coefficients. In the second one, the same problem is solved

on a more complex domain. In the first numerical experiment, the proposed multigrid

algorithm is applied by using an F-cycle with two pre- and two post-smoothing steps,
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3.1 Multigrid methods with discontinuous coefficients

whereas in the second one the influence of the type of cycle and the number of pre-

and post-smoothing steps on the performance of the multigrid algorithm will be inves-

tigated. The computer used for the timing results in the subsequent experiments is an

AMD at x2 at 2.9 GHz.

3.1.3.1 Diffusion problem on the unit square with discontinuous coeffi-

cients

In the first experiment, we solve problem (3.1)-(3.2) on the unit square with differ-

ent diffusion coefficients defined piecewise on two subdomains of different shapes, as

shown in Figures 3.2(a) and 3.3(a). It consists of a benchmark problem taken from

the literature (56). More concretely, in the first test case, the inner subdomain has a

rhombus shape with a 0.5 side length, see Figure 3.2(a); whereas the second one con-

sists of an hexadecagon with diameter 0.5 simulating a circle, see Figure 3.3(a). The

right-hand side is defined as f(x, y) = xy, the Dirichlet boundary conditions are given

by g(x, y) = x2 + y2, and the diffusion coefficient values are κ = 0.333 × 105 for the

internal subdomains and κ = 2 for the rest of the domain, see Figures 3.2(a) and 3.3(a).

In the same figures the corresponding coarsest grids are also represented.

(a) (b)

Figure 3.2: (a) Coarsest unstructured mesh for the first test case, and distribution of

diffusion coefficients: κ = 0.333×105 at the yellow region and κ = 2 at the green part. (b)

Different smoothers for the triangles of the coarsest grid: white corresponds to red-black

smoother, diamond smoother is represented by red, and wormy smoother by blue.
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(a) (b)

Figure 3.3: (a) Coarsest unstructured mesh for the second test case, and distribution of

diffusion coefficients: κ = 0.333×105 at the yellow region and κ = 2 at the green part. (b)

Different smoothers for the triangles of the coarsest grid: white corresponds to red-black

smoother, diamond smoother is represented by red, and wormy smoother by blue.

The proposed block-wise multigrid method has been applied to solve both test

cases. Red-black, wormy and diamond smoothers have been used for different triangles

of the coarsest grid, as shown in Figures 3.2(b) and 3.3(b). Regarding the obtained

multigrid convergence, in Table 3.1, the number of iterations necessary to reduce the

initial residual in a factor of 10−10 are shown for both test cases. We observe an h-

independent convergence for both problems, and although these results are slightly

worse than those obtained in the case of constant diffusion coefficients. As expected,

the method shows a very satisfactory convergence. On the other hand, when direct

discretization is used on coarse grids, a very poor convergence rate is obtained.

3.1.3.2 Diffusion problem on a composite material

In the second experiment, problem (3.1)-(3.2) is solved on a rectangular domain com-

posed of two different materials with different diffusion coefficients: κ = 1 and κ =

0.001, as we can see in Figure 3.4(a). The considered coarsest grid is shown in the

same figure, and also we can observe that it is composed of triangles with very dis-

parate shapes. For this reason, different smoothers are considered for the different

triangles of the coarsest triangulation. In particular the smoothers chosen for these
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3.1 Multigrid methods with discontinuous coefficients

Levels Unknowns Rhombus Circle

4 6912 8 8

5 27648 8 9

6 110592 8 9

7 442368 8 9

8 1769472 9 9

Table 3.1: Number of iterations to reduce the initial residual in a factor of 10−10 for

both test cases: the inner rhombus subdomain (Figure 3.2) and the inner circle subdomain

(Figure 3.3).

triangles are shown in Figure 3.4(b). In this way, the proposed block-wise multigrid is

used for solving this problem.

(a) (b)

Figure 3.4: (a) Coarsest unstructured mesh and distribution of diffusion coefficients for

the second experiment. Yellow color represents κ = 0.001 and green κ = 1. (b) Different

smoothers for the triangles of the coarsest grid: white corresponds to red-black, diamond

smoother is represented by red and wormy smoother by blue.

Firstly, we want to compare the behaviour of the multigrid algorithm by considering

both, direct discretization on coarse grids and the Galerkin approach. For this purpose,

in Figure 3.5, the history of the convergence of the method by using an F(2,2)-cycle, for

different numbers of refinement levels, is displayed. The stopping criterion is chosen as

the final maximum residual to be less than 10−7. We can see that the method based on

direct discretization leads to divergence, while that based on Galerkin approach yields

very satisfactory and robust results. Moreover, we observe that the convergence is

independent of the discretization parameter, and with only twelve/thirteen cycles the

residual reaches the desired value. Note, that in this experiment the use of Galerkin

coarse-grid operator becomes mandatory.

Next, we want to investigate the performance of the block-wise multigrid method
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3. EXTENSION TO MORE COMPLEX MODELS

Figure 3.5: Comparison between direct discretization and Galerkin approach for different

numbers of refinement levels.

proposed here, depending on the type of cycle and the number of smoothing steps.

Varying these parameters, the number of iterations necessary to reduce the initial

residual in a factor of 10−10 and the CPU time, together with the asymptotic con-

vergence factor are shown in Table 3.2, for different number of refinement levels. In

the case of an F-cycle, it is observed that the convergence is independent of the space

discretization parameter, and that in few iterations the residual is reduced as desired.

Regarding the behaviour of the V-cycle, it is clearly observed a very quickly deterio-

ration in the asymptotic convergence factor with respect to the size of the mesh, even

achieving divergence in some cases. This degradation of the convergence in the case of

a V-cycle may be due to the lack of accuracy of the chosen inter-grid transfer operators.

Notice that the price of obtaining an h-independent convergence rate is the use of an

F-cycle. On the other hand, very simple inter-grid operators are used facilitating the

communication between two connected patches, as well as strong and cheap smoothers

are carefully chosen depending on the shape of the triangle.

3.2 Dominant convection

The combination of diffusion and convection processes is extensively used. For instance,

we can find many examples related to flow in porous media, including oil recovery, track-

ing of contaminants in groundwater flows and nuclear waste storage. Many schemes

are known to fail if the convection is dominant, yielding solutions which are physically

meaningless. The main difficulty comes from the interplay of the convection, a large

scale effect, and diffusion, that comes from the Brownian motion which is a small scale
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3.2 Dominant convection

5 levels 6 levels 7 levels 8 levels

it (ρ) CPU it (ρ) CPU it (ρ) CPU it (ρ) CPU

2
V 31(0.71) 17.29 131(0.95) 167.39 - - - -

F 16(0.30) 19.59 16(0.30) 39.51 16(0.32) 96.99 17(0.32) 306.64

3
V 13(0.58) 10.03 21(0.78) 36.90 - - - -

F 11(0.17) 17.98 11(0.18) 36.77 11(0.19) 90.11 11(0.18) 277.02

4
V 9(0.48) 8.88 16(0.65) 35.70 35(0.83) 217.04 - -

F 8(0.15) 16.36 9(0.14) 37.99 9(0.15) 92.85 9(0.15) 273.17

Table 3.2: Number of iterations to reduce the initial residual in a factor of 10−10, cor-

responding asymptotic convergence rates (between brackets) and CPU-time for different

numbers of refinement levels, by using a V-cycle and an F-cycle, and different numbers of

smoothing steps ν = 2, 3, 4. The symbol − indicates divergence of the method.

effect. Among all the numerical methods to stabilize the convection-diffusion problems

we will use the simplest one, which is the upwind discretization.

An overview of multigrid methods for dominant convection problems can be seen in

(19, 49), where the authors point out some inherent problems that multigrid has when

the convection is dominant, and also how to overcome those difficulties.

3.2.1 Discretization on unstructured triangular grids

In the numerical experiment presented in Section 2.4.2, we presented a convection-

diffusion model, discretized by a central difference scheme, which was solved for a dom-

inant diffusion situation. Nevertheless, it is more common to face a physical phenomena

where the convection is dominant over the diffusion. In this case, the discretization used

in Section 2.4.2 requires the use of very fine grids to obtain a physically acceptable so-

lution, making its resolution prohibitive (49). On the other hand, the central difference

scheme is a second order discretization, which is a desirable property for a scheme.

However, in practice, this scheme is not always possible to use. When the convection

is dominant, the discretization must be coherent with the direction of the flow. Using

central differences, we consider all the directions to have the same importance, which

is not true when there is a velocity field. As an alternative, we use an upwind dis-

cretization for the convective term, that despite having only first order, it will make

the method stable no matter how big is the convective term.

The equation for the convection-diffusion model written in divergence form is:
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∇ · (∇v − b v) = f, in Ω, (3.9)

where b(x) is a given velocity field, whose divergence is assumed to be zero.

We will use the same finite volume strategy used in the previous chapter. By using

the divergence theorem on a triangle T of the triangulation T, the following balance

equation holds:∫
l1

(∇v−bv) ·n1 dl1 +

∫
l2

(∇v−bv) ·n2 dl2 +

∫
l3

(∇v−bv) ·n3 dl3 =

∫
T
f(x) dx. (3.10)

where ni is the unit outward normal vector to the corresponding edge li of triangle

T. Each of these line integrals can be split in two parts, the diffusion one, and the

convective term. The diffusion part can be approximated as we did in Section 2.1.1.

Regarding the convective part, we have the following line integral:

−
∫
li

bv · ni dli, (3.11)

which can be approximated by the length of the edge multiplied by an approximation

of bv · ni at the midpoint of the edge i. In this case, to approximate the value of v, an

average between the values stored in the two triangles that share that common edge can

be considered. This approach yields a second order approximation. However, it will

not work when convection is dominant. In order to perform an upwind discretization,

we have to approximate v by using only the value from one of those two triangles,

following the direction of the flow. We can define a general formula for the upwind

discretization:

− bi( ξ vh(xc) + (1− ξ) vh(xi)) meas(li),

{
ξ = 1, if bi > 0

ξ = 0, if bi ≤ 0
, (3.12)

where bi is the evaluation of b·ni at the midpoint of edge i, xc is the node of the triangle

in which we are currently discretizing, and xi is the node of the neighbouring triangle

touching the corresponding edge, and ξ is a parameter which is one or zero depending

on the direction of the velocity. If we assemble the whole equation, we obtain:

1

meas(T )

3∑
i=1

[
meas(li)

(
vh(xi)− vh(xc)

di
− bi( ξ vh(xc) + (1− ξ) vh(xi))

)]
= f(xc),

with ξ defined as:

{
ξ = 1, if bi > 0

ξ = 0, if bi ≤ 0
,

(3.13)
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where meas(T ) is the area of triangle T , meas(li) the length of the edge i and di the

Voronoi distance between the corresponding Voronoi points xc and xi. This formula

has second order for the diffusion term and the right-hand side and first order for the

convective part, and then the resulting scheme has first order accuracy.

3.2.2 Discretization on structured triangular grids

In this subsection our intention is to obtain a stencil form of equation (3.13) for struc-

tured triangular grids. Starting with equation (3.13) and following the notation and

the explanation carried out in Section 2.1.2, we can obtain the stencils for a structured

triangular mesh as follows:

Luuh =
1

meas(T )


0 0 0

0 −
3∑
i=1

meas(li)(
1

di
+ biξi) 0

0 0 0

 ,

Ludh =
1

meas(T )


0 0 0

0 meas(l1)

(
1

d1
− b1(1− ξ1)

)
meas(l3)

(
1

d3
− b3(1− ξ3)

)
0 meas(l2)

(
1

d2
− b2(1− ξ2)

)
0

 ,

Lduh =
1

meas(T )


0 meas(l2)

(
1

d2
− b2(1− ξ2)

)
0

meas(l3)

(
1

d3
− b3(1− ξ3)

)
meas(l1)

(
1

d1
− b1(1− ξ1)

)
0

0 0 0

 ,

Lddh =
1

meas(T )


0 0 0

0

3∑
i=1

meas(li)(
1

di
+ biξi) 0

0 0 0

 .
In these formulae the values of ξ1, ξ2 and ξ3 follow the rule defined in equation (3.12).

Regarding the anisotropy related to the convective part of the equation it is im-

portant to remark that, as we are using an upwind discretization, the effect of the

anisotropy does not only depend on the mesh itself, but also on the direction of the

flux and the orientation of the mesh.
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3.2.3 Multigrid results on structured grids

We are going to present some numerical experiments on structured triangular grids by

using multigrid methods. The inter-grid transfer operators and the smoothers are the

same that those presented in Section 2.2. However, in this situation, we should expect

different results depending on the velocity field. In order to analyse the convergence

rate, we will use an initial random guess, and a right-hand side equal to zero in order to

avoid round-off errors. Also, in order to study better the effects of the convection, we

will add a parameter ε multiplying the diffusion term, so we can reduce its dominance

in the experiment:

∇ · (ε∇v − b v) = f, in Ω. (3.14)

In order to show the importance of the direction of the flow and the updating or-

dering, we performed some experiments for the same geometry with different velocity

fields. The corresponding results are shown in Table 3.3. The most remarkable con-

vergence factors are those that have a reduction of seven orders of magnitude in each

step. This effect is due to the fact that the updating ordering is coherent with the

direction of the flow. When the convection is very dominant, the problem is almost

hyperbolic, and if the updating process follows the direction of the flow, the smoother

is almost an exact solver. As an illustrative example, we can see that the red wormy

smoother has the best and worst convergence factors for the velocity vectors b = (0, 1)

and b = (0,−1) respectively. This is because the considering updating ordering goes

in the direction (0, 1).

Regarding the red-black smoother, it has a very bad convergence rate in all the

cases. On the other hand, the convergence rate of diamond smoother depends on the

relation between the updating ordering and the direction of the flow.

Please note that the theory says that the worst multigrid convergence rate should

be around 0.5 due to the bad approximation of the convective term on coarse meshes

(49). However, that theoretical prediction does not take into account the boundaries,

which are crucial in these cases. Then, these predictions can be very pesimistic, since

the effect of boundary conditions can improve the convergence rate.
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b = (0, 1) b = (0,−1) b = (1, 1) b = (−1,−1)

Green diamond 0.15 0.28 0.29 0.21

Red diamond 0.47 1.2× 10−6 0.28 7, 2× 10−2

Black diamond 0.15 0.28 8.4× 10−7 0.45

Green wormy 0.16 4.3× 10−7 2.7× 10−7 8.3× 10−2

Red wormy 5.3× 10−7 0.27 2.6× 10−7 0.21

Black wormy 0.16 4.3× 10−7 0.28 4.8× 10−7

Red-Black 0.29 0.53 0.50 0.30

Table 3.3: Convergence factors for different smoothers using a V(1,1)-cycle with different

flow directions.

3.2.4 Multigrid results on semi-structured grids

Finally, to finish this section we are going to show the behaviour of multigrid on semi-

structured grids. We are going to consider again the same domain as in the experiment

in Section 2.4.2, so we can compare only the effect of dominant convection, avoiding the

influence of the domain. Therefore, an unstructured grid of 96 triangles is considered,

see Figure 2.25. Since the effect of the convective part depends on the direction of

the flow and the geometry of the triangles, we decided to follow the strategy that

only depends on the geometry and not on random information. Hence, we will use

the strategy proposed in Figure 2.15 to choose the smoothers. Regarding the velocity

field considered in the experiment, in order to make the experiment more realistic, we

impose a circulatory flow b defined by:

b = (− sin(πx) cos(πy), sin(πy) cos(πx)). (3.15)

Thus, the streamlines of the flow are depicted in Figure 3.6. In Table 3.4, we can see

the asymptotic convergence rate, the number of cycles to reduce the initial residual in

ten orders of magnitude, and the CPU time used to achieve the desired convergence

by using an AMD athlon X2 at 2.9 GHz. For this experiment, we have used the

smoothers depicted in Figure 2.25 and ε = 10−3. The results for the F-cycle are very

similar to those obtained for the case of non-dominant convection by using central

differences. Regarding the computational cost, it is higher in this case due to the
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Figure 3.6: Streamlines of the circulatory flow in the square domain.

dynamic calculation of the stencil that we have to perform to correctly apply the

upwind discretization.

Focusing on the V-cycle, the results are much worse. Not only the value of the

asymptotic convergence rate is worse, but also it shows a dependence on the number

of nodes. Hence, a V-cycle does not seem recommendable.

V(2,2) F(2,2)

Levels Unknowns Cycles ρh Time (s) Cycles ρh Time (s)

4 24576 14 0.11 1.86 14 0.12 3.97

5 98304 16 0.23 5.19 14 0.12 8.7

6 393216 23 0.36 21.2 13 0.12 19.5

7 1572864 34 0.53 102.8 11 0.12 48.7

8 6291456 48 0.65 549.7 10 0.12 222.4

Table 3.4: Number of iterations to reduce the initial residual in a factor of 10−10, corre-

sponding asymptotic convergence rates and CPU-times for different numbers of refinement

levels, using a V-cycle and an F-cycle.

However, we see in Table 3.3 that the wormy smoothers handle well the dominant

convection. Therefore we have repeated the experiment by only using wormy smoothers.
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Remember that for any triangle there is always a wormy smoother that can be used to

obtain an optimal convergence rate. Thus, in Table 3.5 results for a V-cycle but using

only wormy smoothers are displayed. In this case, the necessary number of iterations

is reduced, and also the CPU time and the convergence rate.

In order to see the importance of the influence of the dominant convection on the

obtained results, we perform an experiment by considering ε = 10−5 and by using F-

cycle. Seven refinement levels are considered and both strategies, only wormy smoothers

and the usual smoothing strategy with different smoothers, are tested. We obtain

that by using only wormy smoothers the asymptotic convergence rate is about 0.16,

whereas, the usual strategy leads to divergence. Hence, the use of wormy smoothers is

recommended for dominant convection problems.

V(2,2)

Levels Unknowns Cycles ρh Time (s)

4 24576 13 0.10 1.8

5 98304 17 0.20 6.0

6 393216 19 0.27 20.0

7 1572864 24 0.37 86.8

8 6291456 29 0.43 404.9

Table 3.5: Number of iterations to reduce the initial residual in a factor of 10−10, corre-

sponding asymptotic convergence rates and CPU-times for different numbers of refinement

levels, and by using only wormy smoothers.

3.3 Time dependent convection-diffusion problem

3.3.1 Discretization on unstructured triangular grids

In this section, we consider the time dependent case of the model presented in Section

3.2, that is:
∂v

∂t
−∇ · (ε∇v − b v) = f, in Ω, (3.16)

where b(x) is a given velocity field, whose divergence is assumed to be zero.

Regarding the diffusion and convective terms, the discretization is exactly the same

that we did previously in their respective sections. Now, we have to decide how to
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3. EXTENSION TO MORE COMPLEX MODELS

approach the time dependent term. To this purpose we can consider θ−methods, with

θ equal to zero (explicit Euler), 1/2 (Crank-Nicolson) or one (implicit Euler). The

advantages of using explicit Euler are that it is easy to implement and its application

is faster, since it only depends on old values. On the other hand, the use of explicit

methods is restricted to very small time steps that makes their use almost prohibitive.

Therefore, we are not interested in this method. Using an implicit method (Crank-

Nicolson or implicit Euler) means that a system of equations must be solved in each

time step, which is very time consuming. Nonetheless, in (49) it is stated that the use

of implicit methods increases the value of the diagonal of the system, making easier

its resolution. Therefore, we have two possibilities, the use of Crank-Nicolson which

has second order, or implicit Euler, that has only first order. Nevertheless, by using

Crank-Nicolson, there is a restriction for the time step that assures that the method

possesses the max-min property (23). Also, second order methods are known to be more

unstable than first order methods, and as we will see, the Darcy-Oberbeck-Boussinesq

model will be very sensitive to instabilities. Therefore, we will use the implicit Euler

method. Now, we discretize our equation obtaining:

vn+1
h (xc)− vnh(xc)

τ
− ε

meas(T )

3∑
i=1

meas(li)

(
vn+1
h (xi)− vn+1

h (xc)

di

)
+

1

meas(T )

3∑
i=1

meas(li)
(
bi( ξ v

n+1
h (xc) + (1− ξ) vn+1

h (xi))
)

= fn+1(xc),

{
ξ = 1, if bi > 0

ξ = 0, if bi ≤ 0
,

(3.17)

where τ is the time-discretization step, and vnh(xi) denotes the approximation at time

tn = nτ of v at the point xi.

As we have used implicit Euler, we have a first order discretization in time, and

note that our scheme is of first order in space because although the diffusion term is

discretized by a second order scheme, the convective term is discretized by an upwind

scheme which is a first order discretization.

3.3.2 Multigrid results on structured grids

In order to see the influence of the time-dependent term on the multigrid performance,

we repeat the experiment done in Section 2.2.3 for an almost-right triangular grid and

a triangular grid characterized by a small angle. For this experiment, we consider

70



3.3 Time dependent convection-diffusion problem

b = 0 and ε = 1. We use a random initial guess and a zero right hand side to avoid

round-off errors. Regarding the rest of the multigrid components, we have used the

same inter-grid transfer operators presented in Section 2.2.1, direct discretization on

coarse grids and two pre- and two post-smoothing steps. Since we want to compare

the efficiency of the method, we will perform the experiments with only one time step.

The time discretization parameter is fixed as τ = 0.01. The spatial grid is composed of

16384 triangles. In Table 3.6, we can see the results for an almost-right triangular grid

and for a triangular grid characterized by a small angle. In all the cases the results

are better than those obtained in Section 2.2.3. Despite the fact that the improvement

is small, it is enough to realise that the convergence rate now also depends on the

time discretization step. More concretely, it depends on the relation between τ and

the space discretization parameter. From this and considering the fact that the time

discretization step can only improve the performance of the multigrid method, we can

conclude that the strategy presented in Figure 2.15 to choose suitable smoothers is also

valid for the time dependent convection-diffusion equation, since the steady problem

would be the worst case.

Right-Triangle Sharp triangle

Smoother F(2,2) V(2,2) F(2,2) V(2,2)

Red-Black 0.55 – 0.93 0.94

w-Red-Black 0.43 – 0.91 0.91

Diamond 3.6× 10−2 3.7× 10−2 0.87 0.88

Wormy 6.3× 10−2 6.6× 10−2 2.7× 10−2 2.7× 10−2

Table 3.6: Asymptotic convergence rates for an almost right triangular grid characterized

by angles (45, 85), and for an isosceles triangular grid characterized by angles (85,85), by

using four different smoothers. The time discretization is τ = 0.01 and a grid with 16384

nodes is considered.

Now, we are going to consider an equilateral triangular grid. The same experiment

as presented in Table 3.3 is performed for the time dependent convection-diffusion

equation, with τ = 0.01. The corresponding results are shown in Table 3.7, and one

can see that in all the cases the results have improved.
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b = (0, 1) b = (0,−1) b = (1, 1) b = (−1,−1)

Green diamond 4.3× 10−2 0.10 0.13 9.5× 10−2

Red diamond 0.19 5.3× 10−8 0.12 2, 7× 10−2

Black diamond 4.2× 10−2 0.10 4.6× 10−8 0.22

Green wormy 4.2× 10−2 1.3× 10−8 1.2× 10−8 2.9× 10−2

Red wormy 1.7× 10−8 0.10 1.2× 10−8 9.3 10−2

Black wormy 4.2× 10−2 1.3× 10−8 0.13 2.0× 10−8

Red-Black 0.10 0.20 0.24 0.13

Table 3.7: Convergence factors for different smoothers using a V(1,1)-cycle with different

flow directions and τ = 0.01.

3.3.3 Multigrid results on semi-structured grids

Finally we are going to show the suitability of the proposed multigrid when semi-

structured triangular grids are considered. To this purpose, we solve equation (3.16) in

a polygonal domain with three isolated holes inside. We have considered the circulatory

flow given in equation (3.15). For these experiments we will fix ε = 1. The coarsest

mesh is formed by 108 triangles with different geometries, and it is shown in Figure 3.7.

The choice of the smoothers has been done by using the guide shown in Figure 2.15, and

they are displayed in the same figure. In order to test the effects of the time dependent

term, we will consider two different time discretization steps. In Table 3.8 we show

the results for τ = 0.01 and in Table 3.9 for τ = 0.00001. We present the number of

iterations to reduce the initial residual in ten orders of magnitude, the necessary CPU-

time by using an AMD X2 at 2.9 GHz and the asymptotic convergence rates. When

τ = 0.01, F-cycle presents an h-independent convergence rate, while that of V-cycle

deteriorates as we increase the number of nodes. Despite this effect, the application of

V-cycle seems to be more interesting as it requires less computational cost. Regarding

the case in which τ = 0.00001, we observe that the convergence rate for V- and F-cycles

is pretty similar. Thus, the use of the F-cycle seems completely unnecessary for small

time steps.
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3.3 Time dependent convection-diffusion problem

(a) (b)

Figure 3.7: (a) Grid after two refinement levels (b) Different smoothers for the triangles

of the coarsest grid: white corresponds to red-black, diamond smoother is represented by

red and wormy smoother by blue.

V(2,2) F(2,2)

Levels Unknowns Cycles ρh Time (s) Cycles ρh Time (s)

4 27648 10 0.12 1.7 9 0.10 1.7

5 110592 10 0.13 3.8 9 0.10 4.5

6 442368 11 0.15 11.8 9 0.11 13.7

7 1769472 11 0.17 39.5 9 0.12 44.7

8 7077888 11 0.18 190.8 9 0.12 221.4

Table 3.8: Number of iterations to reduce the initial residual in a factor of 10−10, corre-

sponding asymptotic convergence rates and CPU-times for different numbers of refinement

levels, by using V-cycle and F-cycle, where τ = 0.01.
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V(2,2) F(2,2)

Levels Unknowns Cycles ρh Time (s) Cycles ρh Time (s)

4 27648 4 6.3× 10−4 0.6 4 6.3× 10−4 0.8

5 110592 6 1.3× 10−2 2.3 5 1.3× 10−2 3.1

6 442368 8 5.3× 10−2 8.4 8 5.3× 10−2 12.1

7 1769472 9 0.11 32.2 9 0.10 45.2

8 7077888 10 0.12 161.2 9 0.11 207.6

Table 3.9: Number of iterations to reduce the initial residual in a factor of 10−10, corre-

sponding asymptotic convergence rates and CPU-times for different numbers of refinement

levels, by using V-cycle and F-cycle, where τ = 0.00001.
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Chapter 4

Multigrid methods on staggered

grids

Until this chapter we have only considered scalar equations. Nevertheless, this is very

limited, since in many areas the use of scalar fields is insufficient. Consider, for example,

computational fluid dynamics where the velocity is represented by vectors. Moreover,

we may be more interested in the interaction between the velocity of a fluid and other

variables like the pressure, or the concentration of a contaminant.

Therefore, in this chapter we are going to deal with the use of vectors and scalar

values together. Besides, we will also have to deal with the anisotropy created by the

meshes. For that, we will adapt the multigrid components that we have developed for

scalar equations to work with staggered grids.

4.1 Discretization on unstructured triangular grids

In this section, a discretization for the following system of equations is presented:

u + OP = f
O · u = 0

, in Ω, (4.1)

u · n = 0, on ∂Ω, (4.2)

where u is the velocity field, and P a scalar value denoting the pressure. We will

approximate the normal component of the velocity at the midpoint of the edges, see

Figure 4.1, while the scalar variables will be approximated at the Voronoi points. For
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4. MULTIGRID METHODS ON STAGGERED GRIDS

the normal components of the velocity, we will use the same notation as in Section 3.2.

Regarding the properties of the triangulation, we assume the same restrictions estab-

lished in Section 2.1.1.

Figure 4.1: Unstructured mesh and its associated Voronoi grid with dots for the scalar

values, and squares denoting the places where the projection of the vector values are stored.

For the continuity equation, we will use the discretization technique called VAGO,

presented in (50). In this way, the resulting discretization for any triangle T reads as:

1

meas(T )

3∑
i=1

(meas(li)ui) = 0, (4.3)

where ui is the numerical approximation of the outward normal component of the

velocity on edge i. Once we have discretized the scalar equation, now we deal with

Darcy’s law, whose discretization at the midpoint of edge i of triangle T is:

ui +
P (xi)− P (xc)

di
= fi. (4.4)

Here, ui is the normal projection of the velocity on edge i, P (xc) is the pressure at the

Voronoi point of triangle T, P (xi) the pressure corresponding to the Voronoi point xi,

and fi is the normal projection of the right hand side evaluated in the middle point of

the edge i.

As seen in (50),the resulting scheme is a first order discretization.
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4.2 Multigrid method

4.2 Multigrid method

4.2.1 Coarse-grid correction

In this subsection we are going to deal with the prolongation and restriction for dis-

cretizations based on edges. For cell-centred nodes we have used the same transfer

operators introduced in Section 2.2.1. In order to define the restriction and the pro-

longation for discretizations based on edges, we are going to distinguish three different

type of nodes, one for each edge. Then the restriction and prolongation for each type

of node only involves grid-points of its same type.

4.2.1.1 Restriction

We considered a six-point restriction operator with weights of 1
4 or 1

12 depending on

the relative location of the nodes, see Figure 4.2 (a). For example, for the grid-points

located at edges of type L1:

rc(xic,jc) = (3rf (xi,j) + 3rf (xi,j+1) + 3rf (xi+1,j+1) + rf (xi,j−1)
+rf (xi+1,j) + rf (xi+2,j+1))/12,

(4.5)

where rc and rf are the residual grid functions defined on the coarse and fine grid

respectively, and the coarse indices ic and jc are related to those on the fine grid by

the following expressions: i = 2ic − 1 and j = 2jc − 1.

4.2.1.2 Prolongation

Regarding the prolongation, given a fine-grid node belonging to an up-oriented coarse

triangle, we apply a simple injection from the coarse-grid point located at the same

coarse triangle. In other case, we apply an average of the three closest coarse-grid

points, see Figure 4.2 (b).

4.2.2 Smoothers

Since the considered system is a saddle point problem, it is well known that standard

smoothers do not provide good convergence, and then more sophisticated smoothers

have to be considered. More concretely, Vanka type smoothers (51), as well as dis-

tributive smoothers (58), are common choices for these type of problems. Next, we

develop novel Vanka type smoothers adapted to staggered discretizations on structured
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(a) (b)

Figure 4.2: (a) Restriction for a L1 type node (circles), where the red nodes have a weight

of 1
4 and the green ones of 1

12 . (b) Prolongation for a L1 type node, where some nodes are

updated by injection, whereas others, like the orange node, need to be calculated from the

three coarse grid surrounding nodes.

triangular grids. Due to the properties of the discrete operators considered here, we

can also design a suitable distributive smoother.

4.2.2.1 Vanka type smoothers

In general, Vanka type smoothers consist of simultaneously updating a set of unknowns.

Of course, these blocks can be updated in different orderings. As a generalization of

the smoothers introduced in Chapter 2, next we are going to present three different

Vanka type smoothers.

Vanka red-black smoother: For this smoother a block of four unknowns belonging

to the same triangle is updated. In particular, the three velocity unknowns located

at the edges, denoted here as v1, v2, v3, and the scalar unknown associated with the

Voronoi point, represented by P, are simultaneously updated.
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4.2 Multigrid method

Following the idea of a red-black ordering, we first update all the blocks correspond-

ing to up-oriented triangles, and secondly all the blocks associated with down-oriented

triangles. Notice, that the unknowns located at the edges are relaxed twice per smooth-

ing step, see Figure 4.3.

Figure 4.3: Vanka red-black smoother for staggered triangular grids.

The application of this smoother requires us to solve for each triangle the following

small 4× 4 system of equations:


1 0 0 1

dv1

0 1 0 1
dv2

0 0 1 1
dv3

l1
meas(T )

l2
meas(T )

l3
meas(T ) 0



δv1
δv2
δv3
δP

 =


r1
r2
r3
rs

 , (4.6)

where ri is the residual on the node corresponding to the edge i and rs the residual

corresponding to the scalar unknown.

Vanka diamond smoother: In a Vanka diamond smoother we have to update si-

multaneously all the unknowns located at two neighbouring triangles. In this case, we

have to solve a 7× 7 system of equations for each block:
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

1 0 0 1
dv1

0 0 0

0 1 0 1
dv2

0 0 −1
dv2

0 0 1 1
dv3

0 0 0

l1
meas(T )

l2
meas(T )

l3
meas(T ) 0 0 0 0

0 0 0 0 1 0 1
dv5

0 0 0 0 0 1 1
dv4

0 − l2
meas(T ) 0 0 l5

meas(T )
l4

meas(T ) 0





δv1

δv2

δv3

δP1

δv4

δv5

δP2


=



r1

r2

r3

rs1

r4

r5

rs2


.

(4.7)

Vanka wormy smoother: In this case, we have to update simultaneously the un-

knowns located at a row of triangles. This means that, whereas a tridiagonal system

had to be solved in the scalar case, now a block tridiagonal system must be solved,

which means that the computational cost will be very high.

4.2.2.2 Distributive smoother

In this kind of smoother, the idea is to decouple the system of equations by introducing

a right preconditioner in the smoothing procedure, in order to apply fast smoothers to

the decoupled system, see Figure 4.4. More concretely it consists of two steps:

• Predictor step: After decoupling the system, we smooth the new variables by

smoothing the scalar and vector unknowns separately.

• Corrector step: The final step consists in updating the original variables by using

the values obtained in the predictor step.

Next, we are going to describe the concrete distributive smoother for our system:(
Ih Gh

Dh 0

) (
Uh

Ph

)
=

(
fh

0

)
. (4.8)

By introducing the new variables(
Uh

Ph

)
=

(
Ih Gh

0 −Ih

) (
U ′h

P ′h

)
, (4.9)

the new decoupled system yields:
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Figure 4.4: Process of a distributive smoother.

(
Ih 0

Dh 4h

) (
U ′h

P ′h

)
=

(
fh

0

)
. (4.10)

In the new system (4.10), we obtain the discrete laplacian operator because the dis-

cretization scheme obtained by the VAGO method is consistent with the properties

of the differential operator (50) and then DhGh = 4h. Since the obtained system

is decoupled, we can use the appropiate smoothers for the Laplace discrete operator

extensively studied in Chapter 2. Regarding the vector unknowns, the smoothing pro-

cess is very simple since only an identity operator appears in the equation. Note that

the distributive smoother has an inconvenient: there are no boundary conditions for

the new variables. However, this problem can be overcome if after the distributive

smoother we perform a wormy smoothing step at the boundaries.

4.3 Results of the proposed multigrid method on struc-

tured grids

In this section, we are going to see how well the smoothers perform for different struc-

tured triangular grids. Again, we will test the three characteristic triangles that we

have been using throughout the thesis. In all the cases, we will also test the distribu-

tive smoother, in which we use the smoother recommended by the guide shown in

Figure 2.15 to relax the transformed system. However, since the computational cost
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Time (s)

Vanka red-black 2.9

Vanka diamond 3.3

Vanka wormy 15.2

Distributive 1.0

Table 4.1: CPU time to perform 100 iterations of the relaxation scheme by using a grid

composed of 65536 triangles.

will affect our final decision for the choice of the smoother, we first compare the effi-

ciency of the smoothers. The test consists of performing 100 iterations of the relaxation

scheme by using a grid composed of 65536 triangles. For these calculations, we have

used an AMD athlon X2 at 2.9 GHz. The results can be seen in Table 4.1. Now the

difference between the computational cost of the smoothers is higher than in the scalar

case. For example, the Vanka wormy smoother is five times more expensive than the

Vanka red-black smoother. The distributive smoother has a very good performance,

is about three times faster than the Vanka red-black smoother. In the distributive

smoother we have used a point-wise red-black smoother to relax the scalar equation of

the decoupled system. Of course, the behaviour of the distributive smoother depends

on the choice of the smoother used for the scalar equation of the transformed system.

For example, if we use a wormy smoother the required time is about twice more expen-

sive. Without taking into account the convergence factor, it seems that the distributive

smoother would be the best choice, if it would be able to deal with the anisotropies of

the grid.

Once that we have compared the computational cost of all the smoothers, we are

going to study their behaviour depending on the geometry of the grid. In all these

experiments, we have used an F-cycle with two pre- and two post-smoothing steps, a

random initial guess and a zero right-hand side. We have used 8 refinement levels,

which corresponds to a grid with 65536 triangles. The chosen stopping criterion con-

sists of reducing the maximum residual until 10−8. When the distributive smoother is

considered, we have included the Vanka wormy extra-relaxation in the boundaries.

First, we compare the behaviour of the four considered smoothers for an equilateral

triangular grid. In Figure 4.5, we show the maximum residual versus the number of
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cycles. All the smoothers provide a convergence factor lower than 0.10, and therefore,

all of them provide very satisfactory results. Taking into account the computational cost

of the smoothers, the recommended smoother is the distributive relaxation, since its

slightly slower convergence rate with that of the Vanka wormy smoother is compensated

by far by the fact that the distributive smoother is much faster.

Figure 4.5: History of the convergence for different smoothers in an equilateral triangular

grid composed of 65536 triangles.

We have just seen that the distributive smoother is the best choice when there is

no anisotropy. Now we are going to see what happens when almost right triangular

grids are considered. In Figure 4.6, we can see the performance of three smoothers in

an almost right-triangular grid characterized by the angles, α = 45o and β = 85o. The

Vanka red-black smoother diverges in this case, and therefore it is not considered. Again

all the smoothers show a convergence factor lower than 0.10. The Vanka diamond is

the best smoother, whereas the Vanka wormy smoother and the distributive relaxation

have a similar behaviour. Since, the distributive smoother can handle this anisotropy,

we also recommend for this case the use of the distributive smoother.

The final case is to test the behaviour of the smoothers on a very sharp triangular

domain characterized by the angles, α = 85o and β = 85o. In this case, all the smoothers

except the Vanka wormy smoother diverge. Please note that depending on the strategy

used in the boundaries the distributive smoother would be able to provide a better

convergence rate. The recommended smoother is then the Vanka wormy relaxation,

which shows a behaviour very similar to that presented in the scalar case. In Figure 4.7,

the history of convergence of such smoother for different numbers of refinement levels

is displayed. As it can be seen, an independent convergence with respect to the space
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Figure 4.6: History of the convergence for different smoothers in an almost right-

triangular grid composed of 65536 triangles.

discretization paramter is obtained.

Figure 4.7: History of the convergence for the wormy smoother with different number of

refinement levels.

However, due to the high computational cost of the Vanka wormy smoother we

prefer to use it only when it is strictly necessary. Hence, being the distributive smoother

the cheapest one, we want to analyse which degree of anisotropy it is able to handle.

For that, we perform some tests for different isosceles triangular grids. The results

are plotted in Figure 4.8, where we can see that in the case of α = β = 70o the

smoother has a satisfactory convergence, whereas the sharper the triangular domain

is, the worse the convergence rate becomes. To see if the distributive smoother has an

h-independent convergence rate, we perform a test for a triangular grid characterized

by angles, α = β = 80o, for different number of refinement levels. Figure 4.9, shows the

independence of the convergence rate with respect to the number of refinement levels.

Finally, we show in Figure 4.10 a new strategy to choose suitable smoothers for
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Figure 4.8: History of the convergence for the distributive smoother for different isosceles

triangular grids.

Figure 4.9: History of the convergence for the distributive smoother for different numbers

of refinement levels.

different staggered triangular grids characterized by two angles, α and β to achieve a

convergence factor about 0.10.

4.4 A numerical experiment on semi-structured grids

We are going to design a block-wise multigrid on semi-structured staggered triangular

grids to solve the problem (4.1). We consider the domain Ω as shown in Figure 4.11, in

which, we can also observe the initial coarsest grid. If we use the guideline in Figure 4.10

to choose the suitable smoother for each triangle of the coarsest grid, the result would

be that we would have to apply a distributive smoother on all the triangles. In this

case we have two options. The first one would be to apply the distributive smoother

locally on each triangle of the coarsest grid, whereas, in the second option we could

apply the distributive smoother globally on the whole domain. In this latter, on each

smoothing step we have to relax a scalar equation on the complete domain following
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Figure 4.10: Guideline to choose suitable smoothers to reach an asymptotic convergence

factor about 0.1 for different triangular grids characterized by two angles, α and β.

the methodology explained in Chapter 2. Notice that different smoothers will be used

depending on the shape of the coarsest triangles. We have observed that this second

alternative provides better results, and therefore, we will choose this strategy to perform

the numerical experiments.

In this experiment, we have used an AMD athlon X2 at 2.9 GHz. The right-hand

side is zero and the initial guess is random. The stopping criterion is to reduce the initial

residual by a factor of 10−10. In Table 4.2, for different numbers of refinement levels

we show the number of cycles necessary to reach the convergence, the corresponding

asymptotic convergence factors and the CPU time in seconds. Two different types of

cycles are considered in this experiment V- and F-cycles and two pre- and two post-

smoothing steps are fixed. As we can observe, the proposed multigrid method based

on distributive smoothers results in a very fast solver because only about ten cycles

are necessary to reach the desired convergence. Besides, an h-independent convergence

rate is achieved. Comparing the performance of V- and F-cycles, we see that the choice

of V-cycle is preferable.

As Vanka smoothers are widely used for these type of saddle point problems, it is

worth to analyse a block-wise multigrid strategy only based on Vanka type smoothers.

To this end, we will use the appropriated Vanka smoothers for each triangle of the

coarsest triangulation. Figure 4.11 shows the smoothers considered for this experiment.
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Figure 4.11: Different smoothers for the triangles of the coarsest grid: diamond smoother

is represented by red, and wormy smoother by blue.

In Table 4.3 results similar to those presented in the previous experiment are shown.

Again very good results are obtained in this case, which makes this strategy also suitable

in practice.

Finally, as we expected from the study performed on the previous section, the

strategy based only on distributive relaxation is prefered due to its lower computational

cost. Therefore, this methodology will be used in next chapter for solving the most real

problem considered in this thesis.
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V(2,2) F(2,2)

Levels Unknowns Cycles ρh Time (s) Cycles ρh Time (s)

3 24192 10 0.12 18.3 9 8.9× 10−2 25.6

4 96768 10 0.13 45.2 9 8.9× 10−2 61.8

5 387072 11 0.12 148.6 10 9.0× 10−2 174.3

6 1548288 11 0.12 491.7 10 9.8× 10−2 528.4

7 6193152 11 0.12 1710.4 11 9.7× 10−2 1879.1

Table 4.2: Number of cycles, asymptotic convergence factors and CPU times for different

type of cycles and different numbers of refinement levels, by using the global distributive

smoother.

V(2,2) F(2,2)

Levels Unknowns Cycles ρh Time (s) Cycles ρh Time (s)

3 24192 14 0.25 25.7 11 0.16 31.6

4 96768 14 0.23 80.6 12 0.16 96.8

5 387072 14 0.23 207.5 12 0.16 203.5

6 1548288 14 0.23 718.3 12 0.14 727.7

7 6193152 14 0.22 2399.7 13 0.16 2512.2

Table 4.3: Number of cycles, asymptotic convergence factors and CPU times for different

type of cycles and different numbers of refinement levels, by using the smoothers depicted

in Figure 4.11.
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Chapter 5

Multigrid method on

semi-structured grids for the

resolution of the

Darcy-Oberbeck-Boussinesq

model

5.1 Density driven flows

Density driven flows are flows carried out by differences in the density of the fluid

(27). These flows may appear in all the situations in which there is a variation of

density or when there are two immiscible fluids with a different density. Also, if there

is only one phase, density variations across the fluid may be produced by a gradient

of temperatures or a concentration of a solute. These types of flows appear frequently

in porous media, where the speed of the stream is characterized by Darcy’s law. More

concretely, when underwater bears are used to store hot water in summer to be pumped

out in winter. The introduced water, that is in steady state, has a different temperature

and therefore, a gradient of temperatures will appear creating a slow flow driven by the

different densities. Another example of density driven flow in porous media appears in

the storage of a chemical waste underground. The presence of the chemical material

in the underwater bear creates a flow due to the variation of its concentration, which
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may lead to a leakage of the residual. Clean coal technologies are another example of

density driven flows in porous media. This technology consists in introducing the CO2

produced by the combustion in underwater saline aquifers.

Nevertheless, not in all the cases where there is a variation of the density a density

driven flow models the behaviour of the process. To consider a density driven flow,

the distribution of the density must be coupled with the velocity of the flow. As the

density is directly related with the temperature or with the concentration of a solute,

then we consider this variable the variable of interest.

5.1.1 The Darcy-Oberbeck-Boussinesq model

In order to model density driven flows, we are going to work out the Darcy-Oberbeck-

Boussinesq model, DOB from now on, by using the basic equations to model a fluid.

We start with Navier-Stokes equations:

ρ
Dv

Dt
= −∇P + µ∇2v + ρgz, (5.1)

∂ρ

∂t
+∇ · (ρv) = 0, (5.2)

where ρ is the density of the fluid, P is the pressure, g the gravity force, µ the vis-

cosity, v the velocity field, z is the vector (0,−1) in Cartesian coordinates, and D
Dt

denotes the material derivative. Now, we consider the usual assumptions to achieve

the Stokes equation, incompressibility, creeping flow and also stationary. Then, the

material derivative of the left side of equation (5.1) and the derivative of ρ are equal

to zero, and then we obtain the Stokes equations:

− µ∇2v +∇P = ρgz, (5.3)

∇ · v = 0. (5.4)

We can consider the fluid to have an almost constant volume, which means that as-

suming the divergence of the velocity to be zero, condition (5.4), is acceptable even

though we are going to consider variations of density later. In (8), it is shown that the

variation of the volume is very small for the majority of the fluids, below 10−3.

Regarding the viscosity term, if we consider an isotropic porous media, an approxi-

mation of this expression can be done by considering a linear response of the viscous

term:

µ∇2v = −µφv

κ
, (5.5)
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in which φ is the porosity, and κ the permeability.

In order to obtain the “Darcy velocity”, we multiply the porosity by the velocity field:

u = φv. (5.6)

Introducing equations (5.5) and (5.6) into equation (5.3), we obtain the Darcy’s law:

u = −κ
µ

(∇P − ρgz). (5.7)

Darcy’s law was formulated by Henry Darcy after some experiments about the flow of

water through sand, and it was published in (10).

The change of the density of a fluid can be produced by a variation of the tem-

perature, pressure or concentration of a solution. We will consider only the variation

of concentration as our intention is to model the sequestration of CO2. Therefore, the

next equation to consider is the advection equation:

DC

Dt
= D∇2C. (5.8)

In this equation, D is the diffusion coefficient relative to the concentration C. Next, we

proceed to expand the material derivative:

∂C

∂t
+ v · ∇C = D∇2C. (5.9)

Substituting v in equation (5.9), by using equation (5.6), we obtain the desired equa-

tion:

φ
∂C

∂t
= −u · ∇C + φD∇2C. (5.10)

Despite the fact that we have considered an incompressible fluid, we must take into

account the variations of density in the buoyancy term carried out by the variation of

concentration of a solute. Then, the variation of density follows the equation:

ρ = ρ0 + δρC, (5.11)

where the density ρ is a linear function of concentration in which ρ0 is the density of

the lighter fluid and δρ is the difference between the density of the two fluids.
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5.2 The Darcy-Oberbeck-Boussinesq model in CO2 stor-

age

We are going to focus on the use of the DOB model in the simulation of storage of CO2

in underwater saline aquifers. Hence, the variation of the density of the flow will be

due to the dissolution of a solute, CO2, in the water.

Firstly, we want to explain the clean coal technology, so we can understand its

interest. Next, we will adapt the DOB model to this particular case.

5.2.1 The CO2 sequestration process

The carbon capture and storage is a process that consists of obtaining the CO2 from

a source, usually from an important source like a power plant. After that the CO2 is

compressed, transported and finally stored.

5.2.1.1 Carbon capture

There are three capturing processes: Post-combustion, pre-combustion and oxy-fuel.

The first, post-combustion, is the simplest one. This method burns the fuel in the

old-fashion way. After the combustion, there is a process to capture the CO2 from

the flue gases. This method is very interesting because it is an external procedure

to the burning process, which means that the old power stations can be upgraded

with this technology to turn them into clean power stations. Pre-combustion consists

in capturing the CO2 before the fuel is burned. In this process, initially the fuel is

partially oxidized, turning the fuel into carbon monoxide, hydrogen and water. The

separation before the combustion yields cleaner gases to deal with, and also the gases

can be compressed, making this last process simpler. However, this method cannot

be applied to old power stations. The third option, oxy-fuel combustion, consists in

burning the fuel directly with oxygen instead of air. The resulting flue gases only

contain CO2 and water. Therefore, all the gases can be treated after the process, not

only a fraction of the total flue gases, as it was the case in the first method.

5.2.1.2 Compression and transport

Once the CO2 is obtained from the flue gases, it must be compressed to a super-critical

state to facilitate its transportation. The compression means that part of the energy
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obtained in the power station will have to be spent in that process. The amount of

necessary energy is about the 40% of the energy produced. Hence, the cost of the

electricity will be increased in an important factor. However, it is believed that this

percentage can be reduced to 20%.

After the compression of CO2, it has to be transported. For this part of the process,

many existing pipelines, which are already in use for other purposes, can also be used

to pump CO2.

5.2.1.3 Storage mechanisms

The final step of the sequestration process is to store the CO2. For that there are

many possibilities. One possibility is to dissolve CO2 in the oceans, however, the

introduction of CO2 in the water changes its acidity. We could consider storing it in

tanks, however, this would lead to a situation close to the storage of nuclear waste,

since these residuals, despite not being so dangerous are long-living as well. Also, there

is always the possibility of these tanks to explode. A better option which has been used

since many years, is to store CO2 in the reservoirs where the oil is stored. Introducing

CO2 in the reservoirs started in order to facilitate the extraction of oil. Despite the

fact that this method could be considered as an option, the main problem is that not

all countries have oil and hence such reservoirs to store the CO2. Another option is

to store CO2 underground, in other kind of places. Among all the possible places, the

most interesting is the use of saline aquifers. Saline aquifers have been already used

to store industrial wastes, since they are of no use for humankind and also they are

very extended, making easy the transportation. The use of saline aquifers is also very

interesting because the use of water to dilute CO2 means that after the necessary time

the CO2 will turn into a mineral, making the storage permanent. However, before this

final storage, the CO2 have to be saved for several years. In that time, the CO2 must

be stored without leakages to the surface. To understand better the effectiveness of the

storage method, we are going to see in more detail the way in which the CO2 is stored.

Firstly, the CO2 is pumped into the saline aquifer. Here, there are four mechanisms

that avoid the CO2 to return to the surface:

• Structural trapping: The CO2 may try to scape to the surface, however, it is

stored due to the walls of the formation.
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• Dissolution trapping: The CO2 can be dissolved in the water. When this happens,

the density of the water is changed making the water rich in CO2 to go to the

bottom.

• Residual trapping: This trapping occurs when pumping the CO2. The porous

rock acts like a sponge, then the supercritical CO2 displaces the fluid stored in

the rock. However, after that initial displacement, the fluid returns, displacing

the majority of the CO2, but leaving behind some residual CO2 stored in the

pores of the rock.

• Mineral trapping: This trapping process is the slowest one, but it is permanent.

When the CO2 is dissolved into water, it creates carbonic acid. After a long time,

this carbonic acid reacts with the rocks of the boundaries to form a mineral, finally

trapping the CO2.

5.2.2 Nondimensionalization of the Darcy-Oberbeck-Boussinesq model

We present the nondimensionalization of the Darcy-Oberbeck-Boussinesq model:

u = −κ
µ

(∇P − ρgz), (5.12)

φ
∂C

∂t
= −u · OC + φD∆C, (5.13)

∇ · u = 0, (5.14)

ρ = ρ0 + δρC. (5.15)

For the nondimensionalization of this model, we are going to follow the process

presented in (24). Firstly, we need to define the basic parameters to be used in the

nondimensionalization : µ, u, H (the domain width), κ, φ and δρ.

After selecting the basic parameters, we define the dimensionless parameters:

• u∗ =
κ[m2]δρ[Kg

m3 ]g[m
s2

]

µ[Kgsm ]

• P ∗ =
µ[Kgsm ]u[ms ]H[m]

κ[m2]
= δρgH

• t∗ =
φ[−]H[m]

u[ms ]
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• ρ∗ = δρ[
Kg

m3
]

Using these parameters we can define new variables:

Pn =
P

P ∗
, un =

u

u∗
, tn =

t

t∗
, xn =

x

H
, zn =

z

H
. (5.16)

The final step is to introduce the nondiomensional variables into the original system.

We begin with equation (5.12):

unu∗ = −κ
µ

(
∇n

H
(PnδρgH)− ρgz), (5.17)

and after some algebraic manipulations we obtain the following equation:

un = − κ

µu∗
δρg(

∇n

H
(PnH)− ρ0 + δρC

δρ
z). (5.18)

As δρg =
µu∗

κ
we can modify the equation as follows:

un = −(∇nPn − ρ0z

δρ
− Cz). (5.19)

Finally, if we regroup all the terms affected by the gradient in a new variable P ′ =

Pn − ρ0z
n

δρH
, where we have introduced the variable zn in the gradient in order to keep

the equation the same, we obtain the following dimensionless equation:

un = −(∇nP ′ − Cz). (5.20)

Next step is the nondimensionalization of the equation (5.13), by substituting the old

variables by the dimensionless ones:

φ
∂C

∂tn
u∗

φH
= −unu∗

∇nC
H

+ φD
∆n

H2
C. (5.21)

Multiplying the equation by H/u∗ we can remove the coefficients of almost all terms:

∂C

∂tn
= −un∇nC +

φD

u∗H
∆nC. (5.22)

Equation (5.22) can be simplified to contain a single parameter, since φD
u∗H is equal to

the inverse of the Rayleigh parameter. Therefore, the final equation reads:

∂C

∂tn
= −un∇nC +

1

Ra
∆nC. (5.23)
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It is very easy to get the dimensionless equivalent of equation (5.14):

∇n

H
· u

n

u∗
= 0 = ∇n · un. (5.24)

If we finally assemble all the equations, we obtain the desired dimensionless equation

system:

∂C

∂tn
= −un∇nC +

1

Ra
∆nC, (5.25)

un = −(∇nP ′ − Cz), (5.26)

∇n · un = 0. (5.27)

5.3 Solver strategy

In this section, we explain the numerical strategy that we have used to solve the DOB

model. Regarding the discretization methods used to discretize the equations of the

model, we have used the techniques explained in previous chapters.

Regarding the non-linearity in the term −un∇nC, we use a fixed point method. Thus,

we will split the system into two sub-systems:

∂C

∂tn
= −unold∇nC +

1

Ra
∆nC, (5.28)

and

un = −(∇nP ′ − Coldz) (5.29)

∇n · un = 0. (5.30)

The fixed point method follows the next scheme, also represented in Figure 5.1:

• Using the multigrid method explained in Section 3.3, the parabolic equation (5.28)

is solved using an old guess of un. In this way, a new approximation of C is

calculated.

• Next, using the already calculated C we solve the system of equations (5.29) and

(5.30) with the multigrid method that we presented in Section 4.

• After obtaining a new velocity, we will repeat the process until the concentration

does not change its value more than 1% from one step to the next one.
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Note that as we are using the same multigrid methods that we used in previous chapters,

their behaviour is same as we already presented.

Regarding the fixed point method, to advance one time step, we have to perform about

100 iterations for the first time step, whereas for the next steps two fixed point iterations

are sufficient.

Figure 5.1: Flowchart showing the fixed point method.
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5.4 Numerical experiments

In the CO2 sequestration process, we have two physical phenomena competing. The

diffusion and the convection processes. Initially, the diffusion effect rules the evolution

of the experiment. However, it rapidly becomes unstable creating some “fingers” that

will drive the rest of the process. These “fingers” are columns of fluid with a higher

density due to the dissolved CO2. The higher density makes them to weigh more than

water, making them to fall, creating streams that grow by absorbing more CO2 from

the upper boundary or by ingesting other fingers.

This instability created by the fingers means that the numerical experiments cannot

represent exactly the reality (24). Since we are going to consider averaged parameters

of permeability, viscosity and diffusion, we cannot consider small perturbations of the

parameters across the domain. For instance, a higher permeability in one zone of the

domain would increase the chances of a finger to start to grow there, making the result

different from the one calculated. Nevertheless, although the finger would appear in a

different position, the behaviour of the process would be similar. Therefore, the interest

is not to perfectly match the reality but to be able to model and understand the general

behaviour of the process.

Unless stated otherwise, the initial and boundary conditions are going to be the

same for all the experiments. Regarding the initial condition, we will always consider

that the experiment starts from a rest state. Concerning the boundary conditions for

the concentration, we will consider an upper layer of concentration equal to one, as the

representation of the super-critical CO2 that is intended to be stored. This layer will

remain constant during all the process. In (38) it is stated that this approximation is

physically and mathematically acceptable. Since our intention is to consider a closed

domain, we will impose to the other frontiers mirror Neumann boundary conditions,

∇C · n = 0. The boundary conditions for the velocity will be Dirichlet boundary

conditions, where the normal direction of the velocity u with regard to the frontier is

zero. In the solver, in all the experiments we have used a V-cycle with two pre- and two

post-smoothing steps for the resolution of both, the scalar equation and the staggered

system of equations. Regarding the discretization parameters, we have considered a

time step of 0.001, and 4096 triangles per coarse triangle of the initial unstructured

triangulation. Concerning the smoothers used, for the resolution of the Darcy problem
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we have used the previously introduced distributive smoother in the whole domain,

whereas for the resolution of the advection equation the strategy depicted in Figure 2.15

is considered.

5.4.1 Numerical experiments in homogeneous media

In this section, we perform two numerical experiments for different geometries where

the physical properties of the media are equal in all the domain.

5.4.1.1 Rectangular domain

In these experiments our domain is a rectangle, whose dimensions are 1 width and 0.5

high. First, we analyse the influence of the mesh on the obtained results. Next, we

increase the Rayleigh number in order to analyse the connection between the number

of fingers and this parameter. Also, for this latter experiment, we consider the effect

of the artificial diffusion induced by the mesh in the solution.

Rayleigh number equal to 1000

Due to the inherent instabilities of the physical problem, the results are very sensitive to

small perturbations in the physical conditions and of course also to the errors introduced

by the numerical method. In order to show this effect induced by the numerical part,

we consider the results obtained by two very unlikely initial unstructured triangulations

that create approximation errors of diverse magnitude in different parts of the domain.

As we will present, this fact creates solutions that are quantitatively different, but they

present a similar qualitative behaviour. This is typical in all the “fingering” processes

in saturated and not saturated porous media. In this field, it is normally enough to

obtain a comparable number of fingers and a similar velocity (22, 24).

In Figure 5.2, we have depicted the two initial unstructured triangulations for that

rectangular domain that we are going to consider. We keep the coherence in the other

figures, that is, all the figures (a) are associated with the triangulation showed in

Figure 5.2 (a) and the same for figures (b).
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(a) (b)

Figure 5.2: Initial unstructured meshes.

As we want to analyse the differences due to the unstructured mesh, we are inter-

ested in the unstable part of the experiment. Since up to 0.5 dimensionless seconds

the behaviour of the model is driven by the diffusivity, we start our analysis from that

moment. Figure 5.3 shows that two fingers appear close to the boundaries of the do-

main for both cases. When one dimensionless second has passed the diffusion frontier

becomes unstable creating fingers in both experiments, see Figure 5.4. In this case, the

difference is very small, but in Figure 5.5 the distribution of the fingers start to be more

different. Nevertheless, it is important to remark that the size of the fingers and the

total number of them is very similar. In Figures 5.6, 5.7 and 5.8, we can appreciate how

the behaviour of both numerical experiments become more different. However, from a

qualitative point of view, both experiments show an almost alike response. Finally, in

Figure 5.9, after almost 10 dimensionless seconds, the domain has only one finger in

both cases. In the (a) case it has two ingestion sources but they do not go as deep as

the ingestion source of the finger we can see in the (b) case. Note that a dimensionless

second corresponds to an average situation to a scale of 10 or 100 years.
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(a) (b)

Figure 5.3: CO2 concentration after 0.53 dimensionless seconds for the two considered

meshes.

(a) (b)

Figure 5.4: CO2 concentration after 1.02 dimensionless seconds for the two considered

meshes.

(a) (b)

Figure 5.5: CO2 concentration after 1.52 dimensionless seconds for the two considered

meshes.
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(a) (b)

Figure 5.6: CO2 concentration after 2.01 dimensionless seconds for the two considered

meshes.

(a) (b)

Figure 5.7: CO2 concentration after 2.51 dimensionless seconds for the two considered

meshes.

(a) (b)

Figure 5.8: CO2 concentration after 3.01 dimensionless seconds for the two considered

meshes.
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(a) (b)

Figure 5.9: CO2 concentration after 9.97 dimensionless seconds for the two considered

meshes.

Rayleigh number equal to 10000

In this experiment, we increase the Rayleigh number in one order of magnitude. Hence,

we expect a result driven more by the convection than by the diffusion process. The

mesh used is shown in Figure 5.2 (a). In this case, as we reduce the diffusion term, we

must be careful with the artificial diffusion introduced by the discretization method. If

it becomes bigger or similar to the real diffusion, then the obtained results will not be

acceptable. In order to know whether the artificial diffusion may modify our results or

not we study the order of magnitude of the artificial and real diffusion. As it is known,

the introduced artificial diffusion is proportional to the space discretization parameter.

In our case, the initial unstructured triangulation contains 24 triangles, and each one

contains 4096 scalar nodes. This means that the total amount of scalar nodes is about

105. As the Rayleigh number is 104 and the domain measures are 0.5 high and 1 width,

then we can say that the space discretization is about 10−5. Therefore, we can conclude

that the artificial diffusion is of one order of magnitude smaller than the real diffusion.

Now, we proceed to study the behaviour of the experiment. In this case, after 0.07

dimensionless seconds, we can see in Figure 5.10 (a) that some fingers appear in the

boundaries and also in the centre of the domain. Therefore, we can conclude that the

instabilities have started earlier than for the previous case. Besides, more fingers are

created, see Figure 5.10 (b).
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(a) (b)

Figure 5.10: (a) CO2 concentration after 0.07 dimensionless seconds. (b) CO2 concen-

tration after 0.25 dimensionless seconds.

In this experiment, the bigger fingers do not ingest the small ones so easily. Thus,

after 0.39 dimensionless seconds, we can see in Figure 5.11 (a) that the majority of the

fingers are growing. Nonetheless, some have been absorbed reducing the initial number

of fingers, see Figure 5.11 (b) and Figure 5.12 (a). In the last picture, Figure 5.12 (b),

some fingers have already reached the bottom. Also we can observe that some fingers

are almost detached from the upper boundary. Nevertheless, the connection is still

kept, although it is weak.

(a) (b)

Figure 5.11: (a) CO2 concentration after 0.39 dimensionless seconds. (b) CO2 concen-

tration after 0.68 dimensionless seconds.
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(a) (b)

Figure 5.12: (a) CO2 concentration after 1.22 dimensionless seconds. (b) CO2 concen-

tration after 2.50 dimensionless seconds.

5.4.1.2 Pipe shape domain

Finally, we perform two experiments in a pipe-shape domain in order to test the in-

fluence of the shape of the domain in the creation of fingers. In the first experiment,

we impose a low Rayleigh value, making the behaviour of the test to be driven by the

diffusivity. In the second experiment, a Rayleigh value of 5000 is considered. A domain

with a curve part on the boundary is considered in order to see how the shape of the

domain influences the CO2 absorption process. In Figure 5.13 the smoothers used for

the resolution of the advection equation are depicted.

Figure 5.13: Different smoothers for the triangles of the coarsest grid: white corresponds

to red-black, diamond smoother is represented by red and wormy smoother by blue.

Rayleigh number equal to 100

In this example, we expect a high diffusion component since the Rayleigh number is very
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low and the instabilities appear for a Rayleigh number higher than 380 (27). Looking

at Figures 5.14, 5.15 and 5.16, we can see that in this case, a single finger has been

created.

(a) (b)

Figure 5.14: (a) CO2 concentration after 0.03 dimensionless seconds. (b) CO2 concen-

tration after 1.00 dimensionless seconds.

(a) (b)

Figure 5.15: (a) CO2 concentration after 2.08 dimensionless seconds. (b) CO2 concen-

tration after 2.51 dimensionless seconds.
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(a) (b)

Figure 5.16: (a) CO2 concentration after 5.02 dimensionless seconds. (b) CO2 concen-

tration after 9.99 dimensionless seconds.

Rayleigh number equal to 5000

Again, we face a high Rayleigh value. As expected, several fingers appear, see Fig-

ure 5.17. Later, they start to grow and merge between themselves, see Figure 5.18.

Finally, due to the shape of the domain a large finger is created that ingest all the new

fingers that have been created, see Figure 5.19.

(a) (b)

Figure 5.17: (a) CO2 concentration after 1.02 dimensionless seconds. (b) CO2 concen-

tration after 2.08 dimensionless seconds.
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(a) (b)

Figure 5.18: (a) CO2 concentration after 3.00 dimensionless seconds. (b) CO2 concen-

tration after 4.02 dimensionless seconds.

(a) (b)

Figure 5.19: (a) CO2 concentration after 6.07 dimensionless seconds. (b) CO2 concen-

tration after 8.02 dimensionless seconds.

5.4.2 Numerical experiments in heterogeneous media

This section deals with domains where different layers of soil are considered. We per-

form two experiments in which we will study the effect of these layers in the absorption

of CO2.

5.4.2.1 Hourglass shape domain

In this first experiment, we consider an hourglass shape domain in which the layer at

the middle of the hourglass has a Rayleigh number value of 8000, while the rest of

the domain has a value of 1000, see Figure 5.20. The considered smoothers for the

resolution of the advection equation are depicted in Figure 5.20 (b).
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(a) (b)

Figure 5.20: (a) Rayleigh number values in the considered domain. Blue stands for a

Rayleigh number of 1000 and red for a number of 8000. (b) Different smoothers for the

scalar case: white corresponds to red-black, diamond smoother is represented by red and

wormy smoother by blue.

Before the fingers reach the layer at the centre of the domain, the behaviour of

the experiment is similar to the homogeneous media experiments, see Figure 5.21.

Nevertheless, once the fingers are approaching the centre layer, they start to reduce

their speed,see Figure 5.22 (a), and even they retract themselves until a bigger finger is

created, see Figure 5.22 (b). Finally, once a finger of CO2 has reached the other section

of the hourglass, Figure 5.23 (a), the stream of CO2 is stable and a single finger of CO2

goes through the rest of the domain, Figure 5.23 (b).

(a) (b)

Figure 5.21: (a) CO2 concentration after 1.09 dimensionless seconds. (b) CO2 concen-

tration after 2.47 dimensionless seconds.
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(a) (b)

Figure 5.22: (a) CO2 concentration after 3.56 dimensionless seconds. (b) CO2 concen-

tration after 5.01 dimensionless seconds.

(a) (b)

Figure 5.23: (a) CO2 concentration after 7.02 dimensionless seconds. (b) CO2 concen-

tration after 9.99 dimensionless seconds.

5.4.2.2 Strata domain

Now, we want to analyse the behaviour of the process when many different layers are

considered in the domain. The jump in the Rayleigh number between the layers is

different in all the cases. Figure 5.24 (a) shows the four different layers. The light

green area has a Rayleigh value of 100 (diffusive response), the blue one has a value of

1000, the red zone a value 5000 and the yellow of 8000. For this experiment, we have

used 1024 scalar nodes per coarse triangle, and a time step of 0.0001, while the rest of

the parameters are the same as before. For the advection equation, the smoothers used

are depicted in Figure 5.24 (b). In Figure 5.25 (a), we see an initial stable layer of CO2.

However, once the CO2 reaches the zone of a higher Rayleigh value, Figure 5.25 (b),
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(a) (b)

Figure 5.24: (a) Rayleigh numbers in the considered domain. Light green represents

a Rayleigh number of 100, Blue stands for 1000, red for 5000 and yellow for 8000. (b)

Different smoothers for the scalar case: white corresponds to red-black, diamond smoother

is represented by red and wormy smoother by blue.

many fingers start to grow, which continue growing, as we seen in Figure 5.26 (a). In

this case, when the fingers reach the layer with a Rayleigh number value of 5000, the

fingers continue their movements without any visible effect, Figure 5.26 (b).

In order to study whether the layer with a Rayleigh number value of 5000 actually

modifies the results or not, we decided to run this experiment with only two layers,

that with a Rayleigh value of 100 was kept unchanged while the other three layers were

merged into a single one with a Rayleigh number value of 1000. Comparing those two

experiments, some differences in the behaviour of the fingers appeared. In the case of

four layers, the fingers tended to reduce their number, but on the other hand they were

bigger. In Figure 5.27 (a) and (b) the fingers have reached the bottom of the domain;

some plumes of low concentration start to appear close to the boundaries. Finally, in

Figure 5.28 (a) and (b) we can see that as the domain is almost full, the dissolution of

CO2 becomes slower.
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(a) (b)

Figure 5.25: (a) CO2 concentration after 0.33 dimensionless seconds. (b) CO2 concen-

tration after 0.83 dimensionless seconds.

(a) (b)

Figure 5.26: (a) CO2 concentration after 1.17 dimensionless seconds. (b) CO2 concen-

tration after 2.33 dimensionless seconds.

(a) (b)

Figure 5.27: (a) CO2 concentration after 3.33 dimensionless seconds. (b) CO2 concen-

tration after 4.99 dimensionless seconds.
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(a) (b)

Figure 5.28: (a) CO2 concentration after 6.66 dimensionless seconds. (b) CO2 concen-

tration after 9.99 dimensionless seconds.
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Chapter 6

Conclusions

In this thesis, we have shown the viability of multigrid methods for discretizations on

Voronoi meshes associated with semi-structured Delaunay triangulations. The use of

semi-structured grids allows us to use geometric multigrid methods in relatively complex

domains, obtaining a fast solver in domains where the direct application of a geometric

multigrid method is not possible. The methodology presented in this thesis has been

already successfully applied for finite element discretizations on rectangular and trian-

gular grids (20, 21). This thesis is focused on the use of cell-centred discretizations,

which has not been widely studied, except some works in which equilateral triangular

grids were considered (35). Besides, the use of the Voronoi points as nodes yields a

very simple discretization of the flux, whenever it is possible to obtain an acute trian-

gulation, which is mathematically proved for two-dimensional domains (33). In order

to overcome the anisotropies induced by the mesh, we have developed novel relaxation

schemes like diamond and wormy smoothers and their Vanka-type versions. Moreover, a

special local Fourier analysis has been developed taking into account the particularities

of these discretizations on Voronoi grids.

The use of semi-structured grids allows us to choose the proper smoother depending

on the geometry of each triangle of the coarsest grid, in the way that we can locally

obtain a desired convergence rate. By considering the block-wise multigrid that uses

these smoothers for the different triangles, the desired convergence rate can be globally

obtained in the whole domain.

For the coarse-grid operators, we usually consider the direct discretization of the

PDE on such grids. However, for the case of heterogeneous materials, we have to use

115



6. CONCLUSIONS

the Galerkin operator, which yields very good results, and it does not produce a bigger

stencil due to the choice of the inter-grid transfer operators, making its use very easy.

For solving the Darcy problem, in which vector and scalar unknowns appear, we

have extended the methods developed for the scalar problem, obtaining very good

results. Besides, for our particular problem, we have also proposed a distributive

smoother that permits us to solve the system of equations with a better performance

than the usual Vanka strategy, and also with a lower computational cost.

Finally, we have shown the good behaviour of this methodology by solving the

Darcy-Oberbeck-Boussinesq problem that models density driven flows in porous media

and can be used in the simulation of CO2 sequestration in underwater saline aquifers.

Despite the apparent simplicity of the model, it is very unstable and sensitive to small

perturbations, and then it has to be handled carefully in order to obtain physically

correct solutions.

As final conclusion, we can say that we have obtained a very robust and stable

multigrid method that has proved its efficiency by solving standard model problems

like the Laplace, convection-diffusion and the Darcy problems. Also, a more complex

model, the Darcy-Oberbeck-Boussinesq model has been solved by using this method.

Many results from this thesis have been published in different international journals:

• P. SALINAS, C. RODRIGO, F.J. GASPAR, F.J. LISBONA: “Multigrid meth-

ods for cell-centered discretizations on triangular meshes” in Numerical Linear

Algebra with applications, DOI: 10.1002/nla.1864, 2012.

• P. SALINAS, C. RODRIGO, F.J. GASPAR, F.J. LISBONA: “An efficient cell-

centered multigrid method for problems with discontinuous coefficients on semi-

structured triangular grids” in Computer and Mathematics with Applications,

Volume 65, 1978–1989, 2013.

• C. RODRIGO, P. SALINAS, F.J. GASPAR, F.J. LISBONA: “Local Fourier anal-

ysis for cell-centered multigrid methods on triangular grids” in Journal of Com-

putational and Applied Mathematics, DOI: 10.1016/j.cam.2013.03.040, 2013.

Regarding the material shown in Chapters 4 and 5, our intention is to publish a

paper after the submission of this thesis.
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En esta tesis hemos mostrado la eficiencia de los métodos multimalla para discretiza-

ciones sobre mallas de Voronoi asociadas con triangulaciones de Delaunay semi-estructu-

radas. El uso de mallas semi-estructuradas permite aplicar métodos multimalla geom-

étricos en dominios relativamente complejos, obteniendo un buen factor de convergencia

junto con una gran velocidad de resolución en dominios donde la aplicación directa del

multimalla geométrico no es posible. La metodoloǵıa presentada en esta tesis ya ha

sido aplicada anteriormente con éxito para discretizaciones por elementos finitos so-

bre mallas tanto rectangulares como triangulares (20, 21). En este trabajo nos hemos

centrado en discretizaciones centradas en celdas, lo cual apenas ha sido investigado,

salvo en algunos trabajos en los que consideraban mallas de triángulos equiláteros (35).

Además, el uso de los centros de Voronoi como nodos proporciona una discretización

muy simple del flujo, siempre que sea posible obtener una triangulación formada por

triángulos acutángulos, lo cual esta matemáticamente demostrado para dos dimensiones

(33). Para superar las dificultades inducidas por las anisotroṕıas originadas por el tipo

de malla, nos hemos visto obligados a desarrollar nuevos suavizadores como diamond,

wormy y sus versiones de tipo Vanka. Además, el uso de discretizaciones sobre los pun-

tos de Voronoi, ha implicado el desarrollo de un análisis de Fourier especial, teniendo

en cuenta las particularidades de estas discretizaciones.

El uso de mallas semi-estructuradas nos permite escoger el suavizador más ade-

cuado dependiendo de la geometŕıa de cada triángulo, pudiendo elegirlo de forma que

localmente en ese triángulo podemos obtener el factor de convergencia deseado.

Para llevar a cabo la discretización en las mallas bastas, normalmente usamos la dis-

cretización directa, sin embargo cuando se consideran materiales heterogéneos, hemos

observado que el uso del operador de Galerkin no solamente proporciona muy buenos
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resultados, si no que además, no da lugar a una molécula más compleja, haciendo su

uso muy simple.

Para el problema de Darcy, hemos extendido los métodos desarrollados para un

problema escalar, obteniendo muy buenos resultados. Además, para nuestro prob-

lema concreto, hemos propuesto también un suavizador distributivo que nos permite

resolver el sistema de ecuaciones con un rendimiento superior al obtenido mediante los

suavizadores de tipo Vanka, y además con un menor costo computacional.

Finalmente, hemos comprobado el buen rendimiento de este método mediante la

resolución del modelo Darcy-Oberbeck-Boussinesq que modela flujos inducidos por den-

sidad en medios porosos y que puede aplicarse a la simulación del almacenamiento de

CO2 en acúıferos subterráneos salinos. A pesar de la aparente simplicidad del modelo,

es un problema muy inestable y muy sensible a pequeñas perturbaciones. Éste debe de

ser tratado cuidadosamente para obtener soluciones f́ısicamente razonables.

Como conclusión final, podemos afirmar que hemos obtenido un método multimalla

robusto y estable que ha probado su eficiencia mediante la resolución de problemas

estándar como el problema de Laplace, de convección-diffusión y el problema de Darcy.

Y finalmente ha sido aplicado a un modelo más complejo, esto es el problema de Darcy-

Oberbeck-Boussinesq.

Muchos de los resultados obtenidos en esta tesis han sido publicados en diferentes

revistas internacionales:

• P. SALINAS, C. RODRIGO, F.J. GASPAR, F.J. LISBONA: “Multigrid meth-

ods for cell-centered discretizations on triangular meshes” en Numerical Linear

Algebra with applications, DOI: 10.1002/nla.1864, 2012.

• P. SALINAS, C. RODRIGO, F.J. GASPAR, F.J. LISBONA: “An efficient cell-

centered multigrid method for problems with discontinuous coefficients on semi-

structured triangular grids” en Computer and Mathematics with Applications,

Volume 65, 1978–1989, 2013.

• C. RODRIGO, P. SALINAS, F.J. GASPAR, F.J. LISBONA: “Local Fourier anal-

ysis for cell-centered multigrid methods on triangular grids” en Journal of Com-

putational and Applied Mathematics, DOI: 10.1016/j.cam.2013.03.040, 2013.
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En relación al material presentado en los Caṕıtulos 4 y 5, nuestra intención es

publicar un art́ıculo tras la presentación de esta tesis.
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Appendix A

Basic multigrid

The efficient numerical solution of many real problems modelled by partial differential

equations strongly depends on the resolution of the corresponding large linear systems

resulting from their discretization. Since their development in the 60’s, multigrid meth-

ods have been proved to be among the most efficient numerical algorithms for solving

this kind of systems, achieving asymptotically optimal complexity at least for elliptic

problems. That is, the required computational work to solve a discrete problem is of

the order of the number of unknowns of the corresponding system. These methods are

iterative solvers with a characteristic property: the convergence of a multigrid method

is independent of the discretization grid size. Multigrid methods are mainly based on

the acceleration of the convergence of common iterative methods by using solutions

obtained on coarser meshes as corrections. Most basic relaxation schemes suffer when

smooth components are present in the error, however these components become high

frequency components on a coarser grid, so that it makes sense to go down to such a

grid and relax directly on the error by using the residual equation. We then return to

the fine grid to correct the approximation obtained there with the correction from the

coarser grid. Two principles are involved in the development of multigrid methods: the

first one is the fact that some classical iterative methods have a strong smoothing effect

on the components of the error corresponding to the high frequencies (high oscillating

error components). This effect is due to the fact that relaxation schemes (as iterative

methods are known in the multigrid context) basically average neighbouring discrete

values, leading to a reduction of the oscillating character of the error. However, when

the error is mainly composed of low frequency components, the differences between
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neighbouring discrete points are small and this leads to a slowdown in the convergence

of these methods (7). In Figure A.1 this behaviour is shown, by choosing a random

initial guess and applying some iterations of a classical iterative method, in particular,

a Gauss-Seidel method. It is observed that in a few iterations the oscillating character

of the algebraic error, is reduced resulting in a very smooth error. Notice that although

the error is smooth, it is not significantly reduced in magnitude. The components as-

Initial error Error after 10 iterations

Figure A.1: Gauss-Seidel smoothing effect on the error.

sociated with the low frequencies are annihilated by relaxation methods in a very slow

way. When the error becomes smooth, the convergence of these methods gets worse. In

order to avoid this, the second fundamental idea of these methods is employed, which

is that a smooth error can be well represented on a coarser grid, where all the compu-

tations can be done faster because of the reduction of the number of grid-points. This

strategy can be applied in a recursive way using coarser and coarser grids until a level

of refinement is reached on which the application of an exact solver would be feasible.

Consequently, multigrid methods are based on using a hierarchy of grids in order to

eliminate all the different components of the error.

There are two possibilities to achieve an efficient interplay between the smoothing and

the coarse–grid correction, which give rise to two different approaches to multigrid al-

gorithms: geometric and algebraic. Algebraic multigrid (AMG) appears suitable for

problems on unstructured grids. The use of semi-structured grids appears as an alter-

native to the use of AMG for unstructured grids for relatively complex domains, since

these grids allow the efficient implementation of a geometric multigrid algorithm.
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A.1 Multigrid components

Defining a sequence of grids G0, G1, . . . , Gl, characterized by grid sizes h0 > h1 > . . . >

hl, the multigrid iteration operator, Mk, can be recursively defined as follows:

M0 = 0,

Mk = (Sk)
ν2Ck(Sk)

ν1 , k = 1, . . . , l, where (A.1)

Ck = Ik − Ikk−1(Ik−1 − (Mk−1)
γ)L−1k−1I

k−1
k Lk,

where Sk is the smoother on grid Gk, Ck represents the coarse-grid correction part of the

algorithm, and the fact that the coarse grid equation is approximately solved by apply-

ing γ iterations of a multigrid cycle, is indicated by the term (Ik−1−(Mk−1)
γ)L−1k−1 (49).

For defining (A.1), a discrete operator Lk : G(Gk) → G(Gk) approximating Ll, and

a suitable relaxation process Sk : G(Gk) → G(Gk) must be defined on each grid

k = 0, . . . , l − 1, and the corresponding transfer grid operators between consecutive

grids are denoted by

Ik+1
k : G(Gk) → G(Gk+1), (A.2)

Ikk+1 : G(Gk+1) → G(Gk). (A.3)

The idea of using a sequence of grids permits us to process them in different ways. These

manners of processing the grids are determined by the cycle index γ, which indicates

the number of multigrid steps to perform on coarser grids. The value γ = 1 yields the

V-cycle, which is the easiest recursive definition of a multigrid cycle. By increasing the

number of times coarser grids are processed, other type of cycles can be defined. For

example, γ = 2 yields the so-called W-cycle, and another type of cycle, as the F-cycle,

is also commonly used. The F-cycle consists of going down to the coarsest grid and

recursively interpolating to the next finer grid and applying a V-cycle until the finest

mesh is reached (49). The different types of cycles are represented in Figure A.2.

From the definition of the multigrid operator (A.1), it is deduced that many details

are open for discussion and decision. All its components, that is, the smoother, inter-

grid transfer operators (restriction and prolongation), the choice of the coarser grids

and the operators on them, the type of cycle and the number of pre- and post-smoothing
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Figure A.2: Types of cycles.

steps, have to be properly chosen. For each concrete problem they have to be specified,

and although for some problems the components which give good results are known,

when dealing with new applications it is always a challenge to find the most suitable

ones.

The coarsening strategy defines the hierarchy of grids necessary for the implementa-

tion of the geometric multigrid algorithm. Different ways of building the coarser grids

can be considered, the more standard being the strategy of doubling the mesh size from

Gk to Gk−1, that is, hk−1 = 2hk.

Once the hierarchy of grids has been built, suitable discrete operators Lk on each

coarse grid Gk, k = 0, . . . , l − 1 have to be chosen approximating the fine-grid dis-

crete operator Ll. The most natural way to define these operators is to use the direct

discretization of the equations on each coarse grid, and it is known as discretization

coarse-grid approximation (DCA). This choice usually gives rise to reasonable approxi-

mations to Ll, ensuring the overall consistency of the discrete problem. An alternative

choice of Lk is the so-called Galerkin coarse-grid approximation (GCA), which consists

of using the inter-grid transfer operators, Ik+1
k and Ikk+1, to define Lk from Lk+1, that

is,

Lk = Ikk+1Lk+1I
k+1
k . (A.4)

When Galerkin coarse-grid operators are used, the restriction and the prolongation are

often selected to be adjoint to each other for symmetric positive definite operators.

This approximation is necessary for problems with discontinuous coefficients, and also

in the application of algebraic multigrid, for example.

The choice of inter-grid transfer operators is, of course, closely related to the

coarsening strategy. Transfer of information between two consecutive grids Gk, and

Gk+1 is done by the restriction and prolongation operators, Ikk+1 and Ik+1
k , which map
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(k+ 1)−grid functions on k−grid functions and k−grid functions on (k+ 1)−grid func-

tions, respectively.

The simplest way to define a prolongation operator is through linear interpolation.

Other possible choices for the prolongation can be chosen, like high-order interpola-

tions, for example. More sophisticated interpolation methods are sometimes helpful,

depending on the problem and on the quantity to be transferred. For instance, matrix-

dependent prolongations (13, 14), whose construction is based on the discrete operator

under consideration, are useful for problems with discontinuous coefficients and in the

algebraic multigrid framework.

On the other hand, the simplest restriction operator which comes into mind is the injec-

tion operator. Injection is easily programmed, but restriction operators which define a

coarse-grid value by a certain averaging of neighbouring fine-grid values provide robust

algorithms for more general problems. The full-weighting restriction is commonly used.

The smoother usually plays an important role in multigrid algorithms, above all in

the geometric approach. From the early stages of multigrid development until now, a

wide variety of smoothing procedures has been investigated apart from the standard

ones like Jacobi and Gauss-Seidel type relaxations in all their varieties. Smoothers

as ADI- or CG-type methods, the incomplete LU-decomposition (ILU), distributive

relaxations, Vanka-type smoothers, and so on, have been widely used in the multigrid

framework, and this list could be extended with many more, (49).

A.2 Local Fourier Analysis

The local Fourier analysis (LFA), introduced by Brandt in 1977 (4), is a quantitative

analysis for multigrid algorithms, in the sense that it provides accurate predictions

of the asymptotic convergence rates of such methods. This analysis is based on the

Fourier transform theory, and a good introduction can be found in the books by Trot-

tenberg et al. (49), and Wienands and Joppich (57). A k-level local Fourier analysis

is a very useful tool to predict the convergence rate of a multigrid algorithm. The

main idea of this analysis is formally to extend all multigrid components to an infi-

nite grid, neglecting the boundary conditions, and to restrict the analysis to discrete

linear operators with constant coefficients. Despite these restrictions, if boundary con-
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ditions are appropriately treated, in general this analysis matches the numerical results

satisfactorily.

In this Appendix, our intention is just to explain the easiest application of LFA,

that is, the smoothing analysis. This analysis is enough to study the performance of

the smoothers and to understand the LFA concept. Nevertheless, it is not enough

to simulate the multigrid behaviour. For that, at least a two-grid analysis has to be

carried out. For a deeper understanding of this analysis we refer the reader to (57),

where LFA is explained in detail.

A.2.1 Smoothing analysis

In order to explain the smoothing analysis, we will consider the standard finite difference

discretization of Laplace operator on a Cartesian grid. LFA is based on the idea that a

discrete grid function can be written as a formal linear combination of Fourier modes.

ϕ(θ,x) = eιθ·x/h, (A.5)

where x is a point of the grid and θ is a frequency in (−π, π]2.

It is well-known that for each frequency the corresponding Fourier mode is an

eigenfunction of the discrete Laplace operator, with corresponding eigenvalue, called

symbol in this context,

L̃h(θ) =
1

h2
(4− eιθ1/h − eιθ2/h − e−ιθ1/h − e−ιθ2/h). (A.6)

Any standard smoothing operator can be described by a splitting of the discrete

operator Lh = L+
h + L−h . Then, the symbol of any relaxation operators is given by

S̃h(θ) = −
L̃−h (θ)

L̃+
h (θ)

. (A.7)

Since the idea of smoothing analysis is to study how the smoother eliminates the

high-frequency components of the error, we will only consider S̃h(θ), for θ being a high

frequency, see Figure A.3. Then, the smoothing factor is defined as the maximum of

the modulus of these values. For example, Gauss-Seidel method provides a smoothing

factor of 0.5 which is obtained for the frequency (θ1, θ2) = (π/2, 0.6435).

The smoothing analysis is a good start to know a priori the behaviour of a method.
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Figure A.3: High and low frequencies, grey and white areas respectively, for standard

coarsening.
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demic Press, 2001. iii, 1, 17, 21, 26, 30, 53, 58, 63, 66, 70, 125, 127

[50] P.N. VABISHCHEVICH: “Finite-difference approximation of mathematical physics prob-

lems on irregular grids” in Comp. methods in applied mathematics, Volume 5, 294–330,

2005. 76, 81

[51] S.P. VANKA: “Block-Implicit Multigrid solution of Navier-Stokes equations in primitive

Variables” in Journal of computational physics, Volume 65, 138–158, 1986. 77

[52] P.S. VASSILEVSKI, S.I. PETROVA, and R.D. LAZAROV: “Finite difference schemes on

triangular cell-centered grids with local refinement” in SIAM J. Sci. Stat. Comput., Volume

13, 1287–1313, 1992. 8

[53] P. WESSELING: “Cell–centered multigrid for interface problems” in J. Comput. Phys.,

Volume 79, 85–91, 1988. 5

134



BIBLIOGRAPHY

[54] P. WESSELING: “Cell–centered multigrid for interface problems” in New York: Marcel

Dekker, Volume 110, 631–641, 1988. 5

[55] P. WESSELING: “A multigrid method for elliptic equations with a discontinuous coef-

ficient” in Proceedings of the First International Conference on Industrial and Applied

Mathematics, Volume 87, 173–183, 1988. 5

[56] P. WESSELING: “An introduction to multigrid methods”. Chichester: John Wiley, 1992.

5, 53, 56, 58, 59

[57] R. WIENANDS, W. JOPPICH: “Practical Fourier analysis for multigrid methods”. Chap-

man and Hall/CRC Press, 2005. 28, 127, 128

[58] G. WITTUM: “Multi-grid methods for Stokes and NavierStokes equations with transform-

ing smoothers: algorithms and numerical results”in Numer. Math., Volume 54, 543–563,

1989. 77

[59] I. YAVNEH: “Coarse-Grid Correction for Nonelliptic and Singular Perturbation Problems”

in SIAM J. Sci. Comput., Volume 19, 1682–1699, 1998. 58

135


	540.pdf
	List of Figures
	List of Tables
	1 Introduction
	2 Scalar Multigrid methods on semi-structured Voronoi grids
	2.1 Discretization of an homogeneous diffusion problem on Voronoi grids
	2.1.1 Discretization on unstructured triangular grids
	2.1.2 Discretization on structured triangular grids
	2.1.2.1 Stencil depending on two angles characterizing the triangular grid.


	2.2 Multigrid method
	2.2.1 Coarse-grid correction
	2.2.2 Smoothers
	2.2.3 Results of the proposed multigrid method on structured grids

	2.3 Local Fourier analysis
	2.3.1 Smoothers and their representations in the Fourier space
	2.3.1.1 Jacobi
	2.3.1.2 Gauss-Seidel
	2.3.1.3 Red-black smoother
	2.3.1.4 Diamond smoother
	2.3.1.5 Wormy smoother

	2.3.2 Results of local Fourier analysis

	2.4 Numerical experiments on semi-structured grids
	2.4.1 Laplace problem in an A-shaped domain
	2.4.2 Convection-diffusion problem on a square domain

	2.5 Implementation
	2.5.1 Data storage for cell-centred discretizations on structured triangular grids
	2.5.2 Extra-relaxation process in semi-structured grids
	2.5.3 The case of extremely sharp triangles


	3 Extension to more complex models
	3.1 Multigrid methods with discontinuous coefficients
	3.1.1 Discretization on semi-structured grids of a diffusion problem with discontinuous coefficients
	3.1.2 Block-wise Multigrid
	3.1.3 Numerical experiments
	3.1.3.1 Diffusion problem on the unit square with discontinuous coefficients
	3.1.3.2 Diffusion problem on a composite material


	3.2 Dominant convection
	3.2.1 Discretization on unstructured triangular grids
	3.2.2 Discretization on structured triangular grids
	3.2.3 Multigrid results on structured grids
	3.2.4 Multigrid results on semi-structured grids

	3.3 Time dependent convection-diffusion problem
	3.3.1 Discretization on unstructured triangular grids
	3.3.2 Multigrid results on structured grids
	3.3.3 Multigrid results on semi-structured grids


	4 Multigrid methods on staggered grids
	4.1 Discretization on unstructured triangular grids
	4.2 Multigrid method
	4.2.1 Coarse-grid correction
	4.2.1.1 Restriction
	4.2.1.2 Prolongation

	4.2.2 Smoothers
	4.2.2.1 Vanka type smoothers
	4.2.2.2 Distributive smoother


	4.3 Results of the proposed multigrid method on structured grids
	4.4 A numerical experiment on semi-structured grids

	5 Multigrid method on semi-structured grids for the resolution of the Darcy-Oberbeck-Boussinesq model
	5.1 Density driven flows
	5.1.1 The Darcy-Oberbeck-Boussinesq model

	5.2 The Darcy-Oberbeck-Boussinesq model in CO2 storage
	5.2.1 The CO2 sequestration process
	5.2.1.1 Carbon capture
	5.2.1.2 Compression and transport
	5.2.1.3 Storage mechanisms

	5.2.2 Nondimensionalization of the Darcy-Oberbeck-Boussinesq model

	5.3 Solver strategy
	5.4 Numerical experiments
	5.4.1 Numerical experiments in homogeneous media
	5.4.1.1 Rectangular domain
	5.4.1.2 Pipe shape domain

	5.4.2 Numerical experiments in heterogeneous media
	5.4.2.1 Hourglass shape domain
	5.4.2.2 Strata domain



	6 Conclusions
	Appendices
	A Basic multigrid
	A.1 Multigrid components
	A.2 Local Fourier Analysis
	A.2.1 Smoothing analysis


	Bibliography


