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Resumen 

Durante estos últimos años, los materiales que responden a uno o varios 

estímulos externos, conocidos como materiales ‘inteligentes’, han despertado 

un gran interés en la comunidad científica. Una de las principales razones es la 

posibilidad de utilizarlos en aplicaciones en campos tan diversos como la 

electrónica o la medicina, entre otros. De todos los posibles, la luz es 

probablemente el estímulo más interesante ya que es posible controlar la 

respuesta del material tanto espacial como temporalmente. Existen numerosos 

grupos orgánicos en los que la luz puede provocar una variación reversible en 

sus propiedades físicas y/o químicas pero el azobenceno es sin ninguna duda 

el grupo fotocrómico más estudiado en la preparación de materiales que 

respondan a la luz. Las aplicaciones de los materiales basados en azobenceno 

derivan de la fotoisomerizacion reversible entre los isómeros trans y cis que 

experimentan. 

En el grupo de investigación de Cristales Líquidos y Polímeros se han 

estudiado en profundidad polímeros y copolímeros con unidades azobencenos 

en la cadena lateral para aplicaciones ópticas, tales como el almacenamiento 

óptico de información. En los últimos años, el estudio se ha centrado en nuevas 

arquitecturas poliméricas, en concreto, copolímeros bloque dendrítico-lineales.   

Partiendo de los resultados previos del trabajo del grupo, en esta tesis doctoral 

se planteó obtener materiales con fotorrespuesta principalmente basados en 

azopolímeros con arquitecturas poliméricas alternativas a las convencionales 

basadas en estructura de cadena lateral. Los objetivos planteados para el 

desarrollo de esta tesis doctoral son los siguientes 

- Síntesis y caracterización de copolímeros bloque dendrítico-lineales 

compuestos por un bloque dendrítico funcionalizado con dieciséis 

unidades cianoazobenceno y diferentes bloques lineales, poliestireno y 

poli(metacrilato de etilo) y los análogos con poli(metacrilato de metilo) 

(Capítulo 2). 

 

- Síntesis y estudio del autoensamblaje en agua de nuevos copolímeros 

bloque dendrítico lineales anfífilos compuestos por un bloque lineal de 



polietilenglicol y un dendron de tipo poliéster funcionalizado bien con 

dieciséis unidades  4-isobutiloxiazobenceno o bien codendrones con 

diferentes proporciones de 4-isobutiloxiazobenceno y cadenas 

hidrocarbonadas distribuidas aleatoriamente en la periferia. Estudio de la 

aplicación de estos materiales como nanotransportadores de moléculas 

orgánicas y liberación fotoestimulada de las mismas (Capítulos 3 y 4). 

 

- Síntesis y estudio del autoensamblaje en agua de nuevos copolímeros 

anfífilos de tipo ‘miktoarm’ AB3, así como su respuesta al irradiar con luz 

UV. Estos copolímeros están compuestos por un azopolímero y tres 

ramas idénticas de PEG o un polímero termosensible como la poli(N-

etilacrilamida). Estudio de la respuesta a la luz, en el caso del polímero 

con PEG, y de la respuesta dual, luz y temperatura, en el de los 

polímeros con poli(N-etilacrilamida) de los ensamblados poliméricos 

(Capítulos 5 y 6). 

 

- Preparación de superficies fotosensibles funcionalizadas con unidades 

azobenceno utilizando luz como estímulo externo tanto para la 

funcionalización cómo para el control de las propiedades de la superficie 

(Capítulo 7). 
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1.1 Photoresponsive Materials 

Stimuli responsive materials have been widely studied in the last years. These 

materials play an important role in a broad range of fields including biomedicine, 

microelectronics, optics or sensors among others.1-4 Nevertheless, the design 

and synthesis of new materials with controlled and predictable properties is still 

a challenge. Most of the materials reported in literature are polymers due to 

their versatility and processability.1-3 Photoresponsive polymers have one or 

more properties that can be significantly changed in a controlled fashion on 

receiving an external stimulus. The most widely investigated stimuli are pH, 

temperature, light as well as magnetic fields among others. Light is an 

especially attractive stimulus allowing temporal and spatial control. The light 

response of a material can be achieved by incorporation of photochromic 

moieties, which can reversibly switch between two states with different 

absorption spectra upon light irradiation. During this process, other properties 

as refractive index, dielectric constant, redox potential and molecular geometry 

can also be modified. Some organic molecules in which this photochromic effect 

has been observed are collected in Scheme 1.1. This effect can be due to 

either photoinduced reactions or isomerisation.5  

 

Scheme 1.1. Photochromic moieties: a) spiropyrans and spirooxazines, b) fulgides, c) 
diarylethenes and d) azobenzenes 
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However, the most studied photoresponsive moiety is the azobenzene.10 Upon 

irradiation, azobenzene suffers a reversible trans-to-cis isomerisation (Figure 

1.1), this photoisomerisation is accompanied by a fast change in the geometric 

shape and polarity of the molecule. For most azobenzene compounds, the trans 

isomer is thermodynamically more stable than the cis isomer. The wavelength 

at which azobenzene isomerisation occurs depends on the particular structure 

of each azo molecule.11 Usually, azobenzene exhibits a low intensity n-π* 

absorption in the visible region, and a much higher intensity π-π* absorption in 

the UV region(see spectra in Figure 1.1). 

 

 

Figure 1.1 Azobenzene isomerisation (left) and a representative UV spectra of the two 
isomers of an azobenzene (right) 

 

The incorporation of these moieties into polymers makes them promising 

candidates in potential application in different fields ranging from data storage to 

photomechanical actuators among others (see Section 1.3). 
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1.2 Azopolymers: Structrure & Synthesis 

1.2.1 Azobenzene Homopolymers 

Azopolymers are polymers containing azobenzene moieties. These moieties 

can be incorporated into a polymeric structure in three different ways: a) host-

guest systems, b) main chain azobenzene polymers and c) side chain 

azobenzene polymers, as it is schematically represented in Figure 1.2. 

 

Figure 1.2 Schematic representation of different azobenzene containing polymers: a) 
host-guest system, b) main chain azobenzene polymer and c) side chain azobenzene 
polymer 

 

Host-guest systems are formed by low molecular weight azobenzene molecules 

dispersed in a polymer matrix. This approach is the easiest strategy to prepare 

azobenzene based polymers (Figure 1.2a). It allows to keep the processability 

and the mechanical stability characteristics of the polymeric host material while 

the optical properties can be, to some extent, modulated by tuning of the 

composition of the mixture.12-14 Nevertheless, macroscopic segregation of the 

chromophore and the matrix might occur, which is the major drawback. An 

alternative to circumvent this problem is the linkage of azobenzene moieties to 

a polymer. Azobenzene moieties can be incorporated either in the main chain 

(Figure 1.2b) or in the side chain as pendant groups (Figure 1.2c). Several 

main chain azobenzene polymers have been prepared and studied as liquid 

crystal actuators.15,16 Nevertheless, azobenzene side chain polymers have been 

widely explored, especially poly(acrylates) and poly(methacrylates) derivatives. 

It is in the latter type of polymers in which we will focus this section. 

a) b)

c)
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1.2.1.1 Synthesis of Azobenzene Homopolymers by Direct Polymerization 

There are two synthetic approaches for the preparation of azobenzene side 

chain homopolymers which are direct polymerization of an azomonomer and 

azobenzene postfunctionalization of a polymer previously synthesised. Scheme 

1.2 shows a representation of both possibilities. 

 

Scheme 1.2 Different strategies for the preparation of azobenzene homopolymers: a) 
direct polymerization, b) azobenzene postfunctionalization 

 

The main advantage of the direct polymerization of a monomeric azobenzene is 

that the obtained polymers posses a well controlled composition having an 

azobenzene moiety per repeating unit. Hvilsted and coworkers have reported 

the synthesis of different series of liquid crystalline polyesters by step 

polymerization.17-19 Nevertheless, the vast majority of the reported azopolymers 

are polyacrylates and polymethacrylates. Traditionally, these azobenzene 

acrylates and methacrylates derivatives have been polymerized by free radical 

polymerization in solution using conventional experimental conditions (e.g. 

AIBN as thermal initiator in dry organic solvents such as DMF, THF or dioxane).  

The main drawback of this strategy is that the polymerization process of 

azobenzene (meth)acrylates is limited by the radical transfer reaction promoted 

by the azo group that seems to be associated to the formation of hydrazyl 

radicals20,21 and azopolymers can be obtained with uncontrolled and low 

molecular weights.  

In the last decades, different controlled radical polymerization (CRP) 

techniques22,23 have been employed to obtain azopolymers, including atom 

a)

b)
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transfer radical polymerization (ATRP) and reversible addition fragmentation 

chain transfer polymerization (RAFT) among others.  

ATRP was first reported by the groups of Matyjaszewski and Sawamoto in 

1995.24-26 This polymerization process is based on the transfer of an atom 

(usually an halogen) from a ‘dormant’ initiator or polymeric chain to a transition 

metal complex. The transition metal is oxidised when the halogen atom is 

transferred and a free radical is generated. Polymerization is propagated by the 

addition of monomer molecules to the thus generated free radicals (Scheme 

1.3). Since the dormant state of the polymer is preferred in this equilibrium, side 

reactions including undesired termination are suppressed and a well control in 

the molecular weight and polydispersity of the polymers is achieved. ATRP can 

be mediated by a variety of transition metals from which copper is the most 

widely employed.  

 

Scheme 1.3 ATRP polymerization mechanism. X = Halide, L = Ligand 

 

Alkyl bromides such as 2-bromoisobutyrate derivatives (R-X) as the initiator and 

Cu(I) metal salts (CuBr or CuCl) in combination with nitrogen ligands such as 

N,N,N’,N’’,N’’-hexamethyltriethylenetetramine (HMTETA), N,N,N',N’’,N’’-penta 

methyldiethylenetriamine PMDETA or bipyridine ligands are the most commonly 

catalytic systems used for the ATRP polymerization of azobenzene 

(meth)acrylates. Keller and coworkers obtained the first azopolymer by ATRP27 

and since then, the technique has been large described for the preparation of 

azopolymers for different purposes (Scheme 1.4).  
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Scheme 1.4 Examples of azopolymers obtained by ATRP27,28 

 

RAFT polymerization was discovered at Commonwealth Scientific and Industrial 

Research Organisation (CSIRO) in 1998.29,30 In this polymerization, 

thiocarbonylthio compounds (RAFT agents), such as dithioesters, 

thiocarbamates, and xanthates, are employed to mediate the polymerization via 

a reversible chain-transfer process. The accepted mechanism of the RAFT 

process consists of a sequence of addition-fragmentation equilibria as it is 

shown in Scheme 1.5.  Initiation is achieved by decomposition of an initiator 

and subsequent propagation. In the early stages of the polymerization, addition 

of a propagating radical to the thiocarbonylthio compound is followed by 

fragmentation of the intermediate radical into a polymeric thiocarbonylthio 

compound  and a new radical (R·). Addition of R· to the monomer forms a new 

propagating radical (Pm·). A rapid equilibrium, i.e. main equilibrium, between 

the propagating radicals (Pn· and Pm·) and the dormant species results in an 
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equal probability for all chains to grow and enables the production of narrow 

dispersity polymers with a thiocarbonylthio end group. 

 

Scheme 1.5 Accepted mechanism of the RAFT polymerization 

 

In order to have a good control of the polymerization for a specific monomer, 

the choice of a suitable RAFT agent is required. Both the R and Z groups of a 

RAFT agent should be carefully selected (Table 1.1). Generally, R· should be 

more stable than Pn· in order to have an efficient fragmentation and initiation of 

the polymerization. The structure of the Z group is equally important. Stabilising 

Z groups such as phenyl moieties are efficient in styrene and methacrylate 

polymerization, but they retard polymerization of acrylates and inhibit 

polymerization of vinyl esters. On the other hand, very weakly stabilizing 

groups, such as –NR2 in dithiocarbamates or –OR in xanthates, are good for 

vinyl esters but inefficient for styrene.  
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Table 1.1 Compatibility of common RAFT agents with different monomers  

 

 

As an example, Scheme 1.6 shows a well defined azobenzene homopolymer 

reported by Zhu and coworkers synthesised via RAFT polymerization in anisole 

and using 2-cyanoprop-2-yl 1-dithionaphthalate as the RAFT agent and AIBN 

as the initiator.33 

 

Scheme 1.6  Examples of an azopolymer obtained by RAFT33 
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In summary, azomonomers have been successfully polymerized either by 

ATRP27,28,31,32 or more recently by RAFT33-35 polymerizations. In some cases, 

these monomers not only have been used for the preparation of homopolymers 

but also for the preparation of copolymers as it will be described in the next 

section. 

 

1.2.1.2 Synthesis of Azobenzene Homopolymers by Postfunctionalisation 

The second approach to achieve azopolymers consists of azobenzene 

postfuncionalization of an homopolymer having reactive groups in the repeating 

unit. In this case, highly effective and reliable reactions are required for 

obtaining polymers having well defined and reproducible macromolecular 

structure. High yield reactions as azocoupling, esterification and the Schotten-

Baumann reaction are some of the reactions employed for azopolymers by 

postfunctionalisation of polymeric skeletons (Scheme 1.7).36-39 

O
X
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N

OH OH
O

X
O

N

OH OH
+N2 R

N
N

R
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a)

b)

O Cl

O
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N
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Scheme 1.7 Examples of preparation of azopolymers by employing a) azocoupling 
reaction36 or b) Schotten-Baumann reaction39 
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Recently, ‘Click chemistry’ reactions have opened up new possibilities in 

Materials and Polymer Science. ‘Click chemistry’ is the term that was introduced 

by K. B. Sharpless in 2001 to describe reactions which are responding to 

several criteria.40 These reactions must be modular, wide in scope, give very 

high yields and be stereospecific (but not necessarily enantioselective). 

Furthermore, reaction conditions should be simple and purification, if required, 

must be by nonchromatographic methods. There are several types of reaction 

which fulfill these criteria, including the copper(I) catalysed azide/alkyne 

cycloaddition (CuAAC) reaction,40,41 thiol-ene,42-44 Diels-Alder,45 as well as 

selected examples of Michael additions45 (Scheme 1.8). CuAAC is one of the 

most widely employed click reactions to date.46-48 Scheme 1.9 shows an 

example of the preparation of an azobenzene homopolymer by 

postunctionalization of poly(propargyl methacrylate) employing CuAAC click 

reaction.38  

 

Scheme 1.8  Examples of click reactions: a) CuAAC, b) thiol-ene, c) Michael adition, d) 
Diels-Alder 
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Scheme 1.9 Example of preparation of an azopolymer by employing CuAAC38 

 

  

1.2.2 Azobenzene Linear Copolymers 

A very simple strategy to control the properties of the final material by 

copolymerization where the feed molar ratio and structure of the comonomers 

can be adjusted. Different statistical copolymers which contain, in addition to 

azobenzene repeating units, monomers of different nature as well as block 

copolymers (refer to next section) have been prepared for different purposes 

(Figure 1.3). 

 

Figure 1.3 Schematic representations of azobenzene containing a) statistical 
copolymers and b) block copolymers 

 

As a representative example, Figure 1.4 depicts a copolymer described by 

Ikeda and coworkers.49 They have successfully prepared random copolymers 

a) b)
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with azobenzene and biphenyl or tolane mesogenic moieties, and methyl 

methacrylate.49,50 The incorporation of liquid crystalline comonomers as tolane 

increases th birefringence values achieved by photoorientation of the 

azobenzene moieties.  

 

Figure 1.4 Example of an azobenzene containing random copolymer reported by Ikeda 
and coworkers49 

 

Preparation of azobenzene containing statistical copolymers does not imply 

additional synthetic strategies since the polymerization process is conducted 

under the same experimental conditions than for homopolymers.  In the case 

that the comonomers have similar reactivity, a good agreement between the 

feed comonomers ratio and the copolymer composition is reached.51,52 

Nevertheless, the preparation of copolymers having a block architecture usually 

requires a well designed polymerization sequence as it will be shown in the next 

section.  

 

1.2.2.1  Azobenzene Linear-Linear Block Copolymers 

It is well know that BCs are able to undergo microphase separation at the 

nanoscale leading to well defined morphologies is the solid state. Generally, 

diblock copolymers can form in the solid state spheres, cylinders, lamellaes or 
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continues phases. These microstructures can be tuned by adjusting the relative 

volume fraction of each block (f), Flory-Huggins interaction parameter (χ), and 

the degree of polymerization (N). Figure 1.5 shows a typical phase diagram of 

a coil-coil diblock copolymer. Furthemore, amphiphilic BC are able to self-

assemble in solution forming different nanostructures such as micelles, 

nanospheres, vesicles among others (see Section 1.3.2).53-58  

 

Figure 1.5 Schematic diblock copolymer phase diagram: f= volume, χ= Flory-Huggins 
interaction parameter and N=  degree of polymerization (top). Different nanostructures 
formed by BCs: S= spheres, C=cylinders, G= gyroid and L=lamellar. (Image adapted 
from ref.57)  

 

Azobenzene containing BCs can combine in the same material light responsive 

properties with self-assembly abilities making the resulting nanostructures of 

interest in nanotechnology (see Section 1.3). 

Linear-linear azobenzene BCs can be approached by several general strategies 

as it is collected in Scheme 1.10. Direct polymerization of azomonomers by 

using a macroinitiator composed of a non azopolymer is the strategy most 

widely used for the preparation of these BCs (Scheme 1.10a). More 

specifically, ATRP macroinitiators based on poly(ethylene glycol) (PEG)59,60, 
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poly(methyl methacrylate) (PMMA)61-63, poly(n-butyl methacrylate) (PBA)64 as 

well as polystyrene (PS)65-67 among others, have been employed for the 

polymerization of azomonomers (Figure 1.6). Besides, the alternative strategy, 

i.e the use of an azopolymer as the macroinitiator for the polymerization of 

conventional monomers, usually lead to poor results as it was reported by our 

research group.61 More recently studies have employed RAFT polymerization 

for the preparation of these BCs by using a macromolecular chain transfer 

agent composed either poly(acrylic acid)68 or poly(N-isoporopylacrylamide) 

(PNIPAM)69 to obtain the BCs shown in Figure 1.7. 

 

Scheme 1.10 General synthetic approaches for the synthesis of azobenzene 
containing BC: a) direct polymerization by using a macroinitiator b) 
postfunctionalization of a conventional BC and c) coupling of preformed building blocks 

a)

b)

c) +
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Figure 1.6  Examples of azobenzene BCs prepared by ATRP polymerization42-50 

 

 

Figure 1.7  Examples of azobenzene BCs prepared by RAFT polymerization68-69 
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Azobenzene units can also be also introduced in a BC architecture by a 

postfunctionalisation reaction (Scheme 1.10b). For this purpose, the previously 

synthesised BC should contain one block with reactive groups. By this 

approach, Gronski et al. prepared the first liquid crystal BC.70 Some years later, 

the same strategy was used by Schmidt and coworkers for the preparation of 

azobenzene containing block copolymers (Scheme 1.11).66 Firstly, the 

polybutadiene block was converted in a polyalcohol by hydroboration and finally 

the hydroxyl groups were functionalised with azobenzene units by an 

esterification reaction.  

 

Scheme 1.11 Synthesis of an azobenezene BC by postfunctionalization66 

 

The last possibility consists of the coupling of two blocks previously prepared 

(Scheme  1.10c). This strategy requires the synthesis of polymers containing 

complementary end-chain group allowing the subsequent coupling. Although 

this is the most versatile synthetic approach, it relies on the availability of highly 
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efficient and selective chemistry under mild conditions, which are the main 

features of the ‘click chemistry’ reactions. Combination of controlled radical 

polymerization that allows the synthesis of polymers with reactive ending 

groups, and ‘click chemistry’ is the best option for this approach as was recently 

demonstrated in the example collected in Scheme 1.12. On one hand, PMMA 

was synthesised by using an ATRP initiator containing an azide group, and on 

the other hand an azopolymer was also prepared by ATRP but using an initiator 

containing a complementary alkyne group. Both blocks were finally coupled by 

CuAAC reaction. 
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Scheme 1.12 Synthesis of an azobenzene BC by CuAAC71 
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1.2.3 Other Azobenzene Macromolecular Architectures 

Most of the reported azopolymers possess a linear structure. Nevertheless, 

other azobenzene macromolecular architectures have also been studied 

(Figure 1.8). In the next sections, a general overview about dendritic structures, 

linear-dendritic BC (LDBC) and miktoarm star polymers will be presented since 

they are connected (in particular linear-dendritic BC and miktoarm) with the 

materials aimed in this thesis. 

 

Figure 1.8 Azobenzene containing macromolecular structures: a) dendrimer, b) linear-
dendritic BC and c) miktoarm star polymer 

 

1.2.3.1 Dendritic Structures 

Dendritic structures like dendrimers and dendrons are one of the most 

promising polymeric structures and have been the object of a growing number 

of publications. 72-75 Dendrimers are highly branched monodisperse molecules 

with a nanometric size. Their unique nature, shape and size make them ideal as 

for interesting applications in different field as catalysis, biology and materials 

science.72,73  Numerous dendritic structures have been synthesised and studied, 

including poly(amidoamine), poly(amide), poly(phenyl ether), and 

carbosilanes.74,75 

a) b)

c)
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During the last years, photoresponsive dendrimers have also been studied as 

an alternative to conventional linear azopolymers due to their potential 

applications. There are several reviews focused in these materials, including 

azobenzene functionalised dendrimers.76-78 The azobenzene moieties can be 

located in different positions of the dendritic structure. However, dendrimers 

having azobenzene moieties linked to periphery is the most frequent case. 

Poly(propilenimine) (PPI) is the most employed dendrimer for the preparation of 

azodendrimers (Figure 1.9).79-82 Due to the presence of amino groups at the 

periphery of these dendrimers, azobenzene moeites can be incorporated  via  

amide linkages in most of the cases. Bifunctional codendrimers containing alkyl 

chains as well as other functional moieties as biphenyl or naphtyl have also 

been prepared.80,82 

 

Figure 1.9 Examples of azobenzene functionalizated PPI dendrimers79-82 

 

Other families of dendrimers such as poly(amidoamine) (PAMAM) have also 

been used for the preparation of azobenzene containing dendrimers.83,84 

Similarly to PPI dendrimers, azobenzene units were incorporated into the 

dendrons via amide bond formation. In some cases, the resulting azobenene 

containing dendrimer was not fully functionalised.84  
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In general, one of the main advantage of dendrimers is that the number of 

functional units introduced in the dendritic structure is better controlled than in 

the case of linear polymers. Dendritic and linear macromolecules can be 

combined in BCs containing both architectures. These new materials will be 

briefly reviewed below. 

 

1.2.3.2 Linear-Dendritic Block Copolymers 

Linear-dendritic BCs (LDBC) are hybrid structures composed of a linear 

polymer block and a dendritic block. This new architecture was first introduced 

by Gitsov and Fréchet85-87 and might leads to substantial changes in some 

properties, such as solubility, intrinsic viscosity or microphase segregation 

among others, in comparison with the conventional linear-linear BC.89 

There are three strategies used for the synthesis of these copolymers:87 ‘chain-

first’ route, ‘dendron-first’ route and the coupling of the preformed blocks, as it is 

collected in Scheme 1.13. 

 

Scheme 1.13  Synthetic approaches for the preparation of LDBC: a) ’chain-first’ 
strategy, b) ’dendron-first’ strategy and c) coupling strategy 

+

a)

b)

c)
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The ‘chain-first’ route consists in the synthesis of a linear polymer having a 

reactive end group polymer that can be used for a divergent dendron 

construction (Scheme 1.13a). One of the first examples was reported by Meijer 

et al. by combining anionic polymerization and the divergent synthesis of PPI 

dendrimers.88 Similarly, Hammond et al. prepared LDBC by using the amino 

group terminated methoxy-poly(ethyleneglycol) to grow Tomalia type dendrons 

on the linear chain.89 Although the first examples were prepared following this 

strategy, it is not the most common strategy employed for the synthesis of these 

copolymers. 

The ‘dendron-first’ route implies that the dendron acts as the initiator for the 

polymerization of the linear block (Scheme 1.13b) and it is the most widely 

employed strategy so far. This concept was developed by Matyjaszewski as 

well as Hawker and Fréchet by using polyether dendrons as macromolecular 

initiators for the controlled free radical polymerization of vinyl monomers. In 

particular, polyether dendrons containing a benzylic 2,2,6,6-tetramethyl-1-

piperidinyloxy (TEMPO) group at their focal point have been used for the 

nitroxide mediated polymerization of styrene (Scheme 1.14).90 The ring opening 

polymerization (ROP) of lactones initiated by dendrons was also explored by 

several groups.91,92  

 

Scheme 1.14 Example of the synthesis of a LDBC by employing the ‘dendron-first’ 
strategy90 
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The coupling strategy requires the previous synthesis of the linear and 

dendron segments, followed by their coupling through complementary functional 

groups located at the end position of the linear chain and the focal point of the 

dendron (Scheme 1.13c).  Although this seems to be the most versatile 

synthetic approach for the preparation of LDBCs, it relies on the efficiency of the 

coupling reaction.  Initially, Williamson as well as palladium catalysed reactions 

were used for the coupling of different preformed blocks.93,94 The first reported 

example was based on the reaction of ‘living’ poly(styrene) dianion with aryl 

ether dendrons having a benzyl bromide group at the focal point.95 During the 

last years, the intense research in ‘click chemistry’ reactions rendered more 

effective coupling reactions for the preparation of these LDBCs.96,97 Scheme 

1.15 shows an example of the synthesis of LDBC following this strategy. A 

dendritic block with a clickable alkyne group was first synthesised by ROP of ε-

caprolactone monomer using a propargyl focal point dendrons and coupled by a 

click reaction with azide functionalised PEG. 

 

 

Scheme 1.15 Example of the synthesis of a LDBC by employing the coupling 

strategy96 
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As it was alrealy mentioned, one of the main advantages of the dendritic 

structure is the possibility of including functional moieties at the periphery. By 

incorporating azobenzene moieties at the periphery of a dendron, a very precise 

control can be exerted on the number of the photoresponsive units introduced in 

the macromolecule. Furthermore, using this approach the radical polymerization 

of azomonomers is avoided. In the last years, our research group has studied a 

series of photoresponsive LDBCs with azobenzene units by coupling the first 

four generations of dendritic aliphatic polyesters based on 2,2-

di(hydroxymethyl)propionic acid (bis-MPA) functionalised at the periphery with 

4-cyanoazobenzene moieties to either PEG or PMMA linear segments (Figure 

1.10).97-99 The LDBCs were successfully obtained by a CuAAC reaction 

between the azodendron bearing an azido group at the focal point and the 

alkyne terminated linear block. Recently, similar amphiphilic LDBCs were also 

reported by Shi et al. by combining PEG as the linear block and different 

generations of 4-octyloxyazobenzene functionalised PPI dendrons.100,101 

 

Figure 1.10 Chemical structure of the azobenzene containing LDBCs described 97-101 

(G represents the generation of the dendron) 
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1.2.3.3 Miktoarm Star Polymers 

Star branched polymers are defined as polymers having more than three 

polymer segments (arm segments) radiating from a core.102 Their globular 

shape with multiple chain ends is responsible for their unique properties. Star 

polymers possess lower glass transition temperature, higher solubility and lower 

viscosity compared to linear analogous with the same molecular weights.102-104 

Miktoarm star polymers, also known as miktoarm polymers, have a relatively 

new polymeric architecture containing two or more arm species with different 

chemical compositions and/or molecular weights. Similar to BC, miktoarm star 

polymers are expected to self-assemble due to their immiscible different arm 

segments making them promising candidates for different applications. 

There are several approaches that can be employed for the synthesis of star 

polymers such as ‘arm-first’, ‘core-first’ and coupling strategy. In the case of 

miktoarm star polymer, the preparation of the polymer is strongly dependent of 

the number of arms of the polymer as well as the number of different polymers 

of which is composed. In Scheme 1.16 two general methods for the preparation 

of AB2 miktoarm star polymers are shown as an example.   

 

 

Scheme 1.16 Synthetic approaches for the preparation of AB2 miktoarm star polymers: 
a) ‘core-first’ strategy and b) coupling strategy 

 

a)

b)
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The “core first” strategy consist of the synthesis of a multifunctional initiator 

which will act as the core (Scheme 1.16a). The arms can be grown by a 

combination of different polymerization techniques, such as living anionic 

polymerization, CRP or ROP. In this method, orthogonality plays an important 

role in the design of the multifunctional initiator. By using this strategy, several 

AB2 miktoarm star polymers combining ROP and ATRP have been 

synthesised.105 

The coupling method (Scheme 1.16b) consists of the coupling of a polymeric 

arms containing a functional end group to a multifunctional core by using highly 

efficient reactions. Orthogonality also plays an important role in this strategy. 

Many different click reactions, such as CuAAC, thiol-ene and Diels-Alder 

reactions, has been used.106,107 

Only a few examples of azobenzene containing photoresponsive miktoarm 

polymers have been reported so far (Figure 1.11). He et al. described novel 

liquid crystalline miktoarm polymers composed of PEG, PS and azobenzene 

side chain poly(methacrylate) of various lengths [MPEG-b-PS-

(PMMAZO)2].
108,109 Firstly, a PEG macroinitiator was used for the synthesis of 

MPEG-b-PS by ATRP. Then, the bromo end groups of the resulting BCs (a 

consequence of the ATRP technique) were substituted in order to introduce two 

ATRP initiating points. In the final step, the azobenzene containing monomer 

was polymerized to form the target miktoarm polymers. Recently, the same 

authors have also reported similar photoresponsive ABC miktoarm terpolymers 

(MPEG)(PS)(PMMAZO).110  
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Figure 1.11 Examples of azobenzene containing miktoarm polymers108-110 
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1.3 Azopolymers: Photoresponsive Properties & Applications 

1.3.1 Photoresponsive Properties in Bulk 

Photoinduced isomerisation of azobenzenes can lead to a molecular 

reorientation by using linearly polarised light (LPL).  In this situation, the 

probability of isomerisation is proportional to cos2α, being α the angle between 

the light polarisation vector and the transition moment, which is parallel to the 

long axis of the azobenzene molecule. Consequetly, only azobenzene units 

having a parallel component to the polarisation direction of the excitation light 

will be excited by the incident light and the probability of isomerisation of 

azobenzene units that are perpendicular to the polarisation direction will be null. 

Since trans-to-cis back isomerisation is equal in all directions, after several 

cycles of trans-cis-trans isomerisation, azobenzene units are preferably oriented 

in a perpendicular plane to the polarisation direction of the excitation light 

producing optical anisotropy. This effect is known as Weigert effect and it is in 

the origin of the photoinduced dichroism and birefringence of azomaterials 

(Figure 1.12). 

 

Figure 1.12 Schematic representation of azobenzene alignment by Weigert effect 

 

When azobenzene is incorporated into a polymer, the photoisomerisation can 

provoke an increase in the orientation of the photoresponsive moieties.10 This 

property leads to several applications such as optical storage or photochemical 

actuators among others as it will be briefly presented in the next sections. 

 

LPL
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1.3.1.1 Optical Storage 

Over the last decades, development in digital technologies has required the use 

and storage of large amounts of data. Different technologies are being used for 

data storage, although optical data storage has had a great impact on our daily 

life. Compact disc (CD), digital versatile disc (DVD) and Blue-ray disc (BD) are 

broadly extended. A promising way to increase storage capacity is holographic 

storage.111-116 With this method is possible to record information in a 

photosensitive media by recording an optical interference pattern. Several 

polymeric materials such as photopolymers or photorefractive polymers117,118 

have been proposed for these application although photochromic polymers and 

in particular, azopolymers have been widely investigated.114,115  

A variety of homopolymers with azobenzene units has been prepared and good 

values of photoinduced birefringence were achieved. Nevertheless, an essential 

requirement of materials for optical holographic storage is the preparation of 

thick films having hundreds of microns. Due to the high absorption of the 

chromophore, films with a high content of azobenzene have a large absorption 

and the recording light cannot penetrate more than few micrometers through the 

film making these materials not suitable for volume holography. To circumvent 

this problem, dilution of the azobenzene content has been done by different 

strategies such as the random copolymerization with monomers (Figure 1.13a), 

either non mesogenic or mesogenic ones, that do not absorb the recording light 

or the preparation of block copolymers (Figure 1.13b) with a photoresponsive 

block and a non absorbing one.  
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Figure 1.13 a) Statistical copolymers containing azobenzene and a non absorbing 
monomer or mesogenic group and b) block copolymers 

 

Statistical polymers composed of azobenzene and non absorbing monomers 

like methyl methacrylate have been prepared.62,121  However, the main 

drawback of this approach is the lack of stability of the photoinduced 

birefringence, due to the lack of cooperative interactions between the 

azobenzene units. An alternative strategy, also based in statistical 

copolymerization, is the use of non absorbing mesogenic comonomers (Figure 

1.13a). Bieringer and coworkers prepared a series statistical copolymers from 

azobenzene and mesogenic phenyl ester monomers (Figure 1.14).122 Other 

examples using different mesogenic moieties like tolane (Figure 1.4) and 

biphenyl (Figure 1.14) have been also employed for the exploration of this 

approach.49,50 The presence of these mesogenic groups does not contribute to 

the absorption at the same wavelength as azobenzene, but they can be 

oriented because of cooperative motions helping to increase the stability of 

photoresponse. Thick films with low absorption and good optical response have 

been prepared although the liquid crystalline character of the materials can give 

problems associated to light scattering. 

a)

b)

azobenzene
group

mesogenic
group
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Figure 1.14 Examples of random copolymers containing azobenzene units for optical 
data storage50,122 

 

A promising strategy is the use of BCs, in which one of the the block contains 

azobenzene units while the other one contains units that do not absorb at the 

recording/writing wavelength (Figure 1.13b).  As it was noted above, BCs are 

able to undergo phase segregation. The advantage of this segregation is that 

azobenzene moieties are confined in nanometric regions preserving 

cooperative interactions between chromophore units. These domains are 

smaller than the recording wavelength and light scattering can be avoided. The 

expected behaviour of the chromophores in the BCs should be similar to the 

photoresponse of the corresponding homopolymers as it was demonstrated by 

our research group.61 Most of the reported azobenzene BCs are copolymers 

where the non absorbing block is either PMMA61,63 or PS (Figure 1.15).66,67 The 

photoresponsive block can be composed of an azobenzene hompolymer or a 

random copolymer containing azobenzene unit and non absorbing 

groups.61,63,66,123 The influence of the morphology of the microdomains as well 

as the length of the block in the photoinduced response has been investigated 

in these materials as optical storage media.114,115 Volume holograms with high 

efficiency and good stability have been recorded in this materials or blends from 

these BCs in an attempt to achieve photoresponsive materials with very low 

contents of photochromic units.66,71 
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Figure 1.15 Examples of linear-linear BC with azobenzene and mesogenic monomers 
61,63,66 

 

Recently, our research group explored a novel architecture, i.e. LDBCs allowing 

to combine the segregation ability of BCs and an exact control of the number of 

azobenzene units introduced per macromolecule. Several photoresponsive 

LDBCs have been prepared composed of dendritic aliphatic polyesters based 

on bis-MPA functionalised at the periphery with 4-cyanoazobenzene moieties 

and PEG or PMMA (Figure 1.10).97,98  

 

1.3.1.2 Photomechanical Actuators 

Another application of interest in azopolymers is the preparation of 

phomechanical actuators. It is well known that nematic elastomers are able to 

change their shape due to the nematic to isotropic transition in the material. By 

incorporating azobenzene moieties into an elastomer, photoinduced 

contractions/expansions have been observed.124  Upon UV irradiation, 

azobenzene nematic elastomers suffer a reduction in alignment order as a 

result of the trans-to-cis isomerisation. While the rodlike trans-azobenzene 

moieties stabilise the liquid crystalline alignment, the bent cis forms can provoke 

a nematic to isotropic transition being the motor of the macroscopic contraction 

(Scheme 1.17). This deformation is reversible upon cis-to-trans back 

isomerisation. 
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Scheme 1.17 Schematic representation of a photoinduced deformation in an 
azobenzene elastomeric film 

 

Pioonering studies of Finkelmann and coworkers demonstrated experimentally 

and theoretically that large shape changes in azobenzene containing 

polysiloxanes based elastomers can be generated by UV irradiation.125 Keller 

and coworkers first reported the synthesis of nematic azobenzene side chains 

elastomers by photopolymerization.126 The polymeric films showed a fast (less 

than 1 min) photoinduced contraction up to 18% by irradiation with UV light 

(Figure 1.16).  

 

 

Figure 1.16 Schematic representation of the elastomer prepared from a mixture of an 
azobenzene monomer, a liquid crystal monomer and 1,6-hexanediol diacrylate as 
crosslinker (left). Photographic frames (right) of the film (25%azo) a) before UV 

irradiation b) under UV irradiation (130s)126 

 

Ikeda and coworkers have also been intensively working in this field.124,127,128 As 

an example, in a pioneering work they reported the preparation of  films by 

LIGHT

a)

b)
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thermal polymerization of a liquid crystalline monomer and a diacrylate 

crosslinker both of which possessed azobenzene moieties.129 Upon UV 

irradiation (366 nm), the film bent towards the direction of light with the bending 

occurring parallel to the direction of light polarisation. When the bent film were 

exposed to visible light (540 nm), the film was able to recovered its initial flat 

state (Figure 1.17). 

 

 

Figure 1.17 Schematic representation of the azobenzene containing elastomer 
employed for preparation of the film (top) and photographic frames of the film bending 
in different directions (down) in response to irradiation by LPL of different angles of 
polarisation (white arrows) at 366 nm, and being flattened again by visible light at 540 
nm128 
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1.3.1.3 Photopatterning of Nanostructures in Block Copolymers 

As mentioned above, one of the most important properties of BCs is their ability 

to segregate and give rise to different nanostructures (see section 1.2.2). By 

incorporation of azobenzene moieties in one of the blocks, photoalignment of 

the microdomains has been achieved.129 

Ikeda and coworkers demonstrated this phenomenon by using a liquid 

crystalline BC composed of PEG and an azobenzene containing block, which is 

able to self-assemble in a nanostructure composed of PEG cylinders into an 

azobenzene containing matrix.130 BC films of about 100 nm thickness were 

prepared on a glass substrate and were irradiated with LPL and annealed at 

140ºC, temperature at which the BC posses a liquid crystalline behaviour. The 

PEG cylinders were perfectly aligned orthogonal to the polarisation of the light 

by the supramolecular cooperative motions of the ordered azobenzene block 

(Figure 1.18).  

 

Figure 1.18 Chemical structure of the azobenzene BC employed by Ikeda and 
coworkers (left). AFM images of the photooriented nanostructures (right): a) before 
irradiation, PEO cylinders are perpendicular to the substrate and b) after irradiation with 
LPL, the cylinders are aligned perpendicularly to the polarization direction of light 
(Image adapted from ref.130) 

 

LPL

a)

b)
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Similarly, Seki and coworkers studied the photoaligment of a BC composed of 

PS and azopolymer which self-assembly into a PS nanocylinder structure.131 

Again, films with a thickness of about 100 nm were prepared on a glass 

substrate and were irradiated with LPL with different angles. Annealed non 

irradiated films provided PS cylinders in the upright orientation after annealing, 

while after irradiation with LPL cylinders were perfectly oriented in the 

orthogonal direction to the light. The initial situation was recovered by irradiation 

with non polarised light (Figure 1.19). 

 

Figure 1.19 Chemical structure of the BC employed by Seki and coworkers and AFM 
images of the photooriented nanostructures after irradiation with LPL (436 nm) with 
different angles followed by annealing (Image adapted from ref.131) 

 

 

1.3.2 Photoresponsive Properties in Solution 

Photoinduced isomerisation of azobenzenes can also be used to promote 

changes in macromolecular self-assemblies dispersed in a liquid media, such 

as micelle dissociation or vesicle deformation. These photoresponsive 

properties are promising for applications in different areas as it will be discuss 

below. 

 

1.3.2.1 Amphiphilic Block Copolymers: Self-assembly and their 

Applications as Controlled Delivery Systems 

One of the most interesting properties of amphiphilic BCs is their ability to form 

in water different nanostructures like micelles and vesicles among others. In the 
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last years, amphiphilic BCs have received considerable attention due to the 

variety of applications in different fields ranging from biomedicine to catalysis.53-

58 Morphology and size of the self-assemblies can be modulated by controlling 

the hydrophilic/hydrophobic balance, which can be tuned by adjusting the length 

of the blocks and their chemical nature. On increasing volume fraction of the 

hydrophobic blocks, it has been observed a general evolution from spherical 

micelles to vesicles according to Figure 1.20.  

 

Figure 1.20 Different morphologies found for amphiphilic BCs in aqueous media 

 

Polymeric micelles consist of a core formed by the hydrophobic blocks and  a 

corona or shell formed by the hydrophilic blocks.56 These micelles can be used 

as nanocarriers since hydrophobic drugs can be encapsulated in the core and 

transported at concentrations that can exceed their intrinsic water solubility. On 

the other hand, polymeric vesicles, also known as polymersomes, contains an 

inner volume enclosed by a thin membrane composed of a polymeric bilayer.58 

Vesicles are of particular interest as drug nanocontainers because of their 

internal hydrophilic cavities and robust hydrophobic membranes which can 

encapsulate both hydrophobic and hydrophilic molecules. 

The incorporation of stimuli responsive moieties in amphiphilic BC makes them 

potentially useful as controlled delivery systems.132-135 The majority of the 

reported stimuli responsive materials are sensitive to a few common triggers, 

including pH, temperature and light.1-4 As mentioned before, the advantage of 

using light as external stimulus is the possibility to apply a temporal and spatial 

VesicleMicelle Cylindrical Micelle

Hydrophilic
block

Hydrophobic
block
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control in the material response. Light responsiveness can be introduced in 

amphiphilic BCs in different ways. The most common strategy for the 

preparation of photocontrolled delivery systems is the incorporation of 

photochromic moieties in the one of the blocks of the BC (Scheme 1.18a). 

Upon UV irradiation, an alteration of the hydrophobic/hydrophobic balance due 

to the photoinduced reaction takes place leading to a deformation or even 

disruption of the self-assemblies and subsequent release of encapsulated 

substances. Several photochromic systems including azobenzene,68,69,99,101,136-

143 spiropyran,144-147 dithienylethene and diazonaphthoquinone148,149 have been 

study for this purpose. As an example, Mezzenga and coworkers reported the 

first spiropyrane functionalised amphiphilic BCs (Figure 1.21) which were able 

to form micellar aggregates in a mixture of water and ethanol. They 

demonstrated that the self-assemblies were able to undergo a reversible 

aggregation-dissolution-aggregation process in water in response to irradiation 

with a suitable wavelength. In the next section, several examples of amphiphilic 

azobenzene containing BCs will be detailed. 

 

Scheme 1.18 Schematic representation of photoresponsive BCs: a) photochromic 
containing BCs and b) photodegradable BCs 

UV

UV

a)

b)

Photochromic
group

Photocleavage
group

before
UV

After
UV 
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Figure 1.21 Chemical structure of the spyropyrane functionalised amphiphilic BCs 
studied (left). Schematic representation of the photoresponsive micellization/dissolution 
process of the BCs upon irradiation (right) (Image adapted from ref.147) 

 

On the other hand, incorporation of photocleavage groups into the BC is also an 

interesting strategy to prepare controlled delivery systems (Scheme 1.18b). 

The most popular photocleavable moieties are o-nitrobenzyl-based derivatives. 

Burdick and coworkers prepared a BC composed of PEG and 

poly(caprolactone) and the photolabile 2-nitrophenylalanine as the linker of the 

two blocks (Figure 1.22).150 This BC self-assembled into vesicles in water. 

Upon irradiation, a gradual collapse of the vesicles membrane took place due to 

the photoinduced cleavage of the linker. In comparison with photochromic 

containing systems, irreversibility of this light induced process is one of the 

disadvantages  

 

Figure 1.22 Chemical structure of a BC composed of PEG and poly(caprolactone) and 
the photolabile 2-nitrophenylalanine as the linker of the two blocks (left) and Cryo-TEM 

images (right) of the vesicles before a) and after b) irradiation150 

 

 

a) b)
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1.3.2.2 Amphiphilic Azobenzene Block Copolymers 

It is well known that UV irradiation provokes trans-to-cis isomerisation in 

azobenzenes and consequently, an increase of polarity accompanied by a 

morphological change of the chromophores. The changes occurred during UV 

irradiation might lead to deformation or even disruption of self-assemblies in 

amphiphilic BC containing this type of chromophores. Due to the promising 

properties of these systems as photocontrolled delivery systems, azobenzene 

containing amphiphilic BCs have been recently investigated.143  

Wang et al. described a series of amphiphilic BCs based on azobenzene with 

conjugated amino (electron donor) and cyano (electron withdrawing) groups in 

one of the blocks.151 The BCs consisted of a PEG block and an azobenzene 

containing PMMA block of different polymerization degrees giving rise to 

different hydrophobic/hydrophilic ratios. A ‘multimorphological’ aggregation 

behaviour in water was found depending on the hydrophobic/hydrophilic ratio 

(Figure 1.23). The BC with the higher hydrophilic/hydrophobic ratio -31/69- 

formed spherical micelles in water consisting of a PEG corona and an 

azobenzene  core. Nevertheless, when the length of the azobenzene block was 

increased, more complicated morphologies were observed. For the BCs with a 

hydrophilic/hydrophobic ratio of 20/80 rod like aggregates were found, while the 

BC with a ratio 11/89 presented hollow nanotubes accompanied by other 

complicated nanostructures. On the other hand, the BC with the higher 

hydrophilic/hydrophobic ratio –6/94- self-assembled in water into colloidal 

spheres bigger in size than the spherical micelles. A similar transition from 

spherical micelles to rodlike aggregates and hollow nanotubes to colloidal 

sphere on increasing the hydrophobic ratio was also observed for amphiphilic 

BCs composed of PS and poly(acrylic acid).152  
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Figure 1.23 Chemical structure of amphiphilic azobenzene BCs (left) and TEM images 
of the different self-assemblies in water (right): a) spherical micelles, b) rod-like 
aggregates, c) hollow nanotubes, d) colloidal spheres134 

 

Spherical micelles are the most common morphology obtained from 

azobenzene amphiphilic BCs. In most of the cases, the azopolymer is the 

hydrophobic block forming the core of the micelles, while the other hydrophilic 

block formes the corona or shell, being PEG the most commonly employed 

hydrophilic polymer. As an example, Yu and coworkers reported an amphiphilic 

BC consisting of PEG and a copolymer of azobenzene containing methacrylate 

and N-isopropylacrylamide (Figure 1.24).140 This novel BC was able to self-

assemble into spherical micelles in water. Although, the obtained micelles were 

not disrupted by the irradiation with light, it was found that the size of the 

micelles is dependent on the temperature.  

x Phobic/Philic
Ratio (wt%)

24 39/61

62 20/80

129 11/89

224 6/94

a) b)

c) d)
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Figure 1.24 Chemical structure of the amphiphilic azobenzene BC reported by Yu and 
coworkers140 

 

There are also several examples of azobenzene BCs wich are able to self-

assemble into vesicles. Zhang and coworkers described an amphiphilic BC 

composed of poly(acrylic acid) as the hydrophilic block and an azobenzene 

poly(acrylate) as the hydrophobic block, which self-assembled into giant 

vesicles (micrometric scale) in a mixture of water and THF.68 The 

photoresponsive behaviour of the vesicles was studied by irradiation with light 

at 365 nm in order to provoke trans-to-cis isomerisation of the azobenzene 

moieties. During this process, a photoinduced deformation of the vesicles was 

found, changing from a spherical shape to an ear-like shape (Figure 1.25) The 

same authors also reported an study with an amphiphilic composed of poly(N-

isopropylacrylamide) (PNIPAM), a thermoresponsive block and the same 

azobenzene containing block as before.69 The BC was also able to self-

assembled into giant vesicles in a mixture of water and THF and upon 

irradiation with light of 365 nm, fusion of the vesicles was observed (Figure 

1.26) 
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Figure 1.25 Chemical structure an amphiphilic BC composed of poly(acrylic acid) and 
an azobenzene poly(acrylate) (left) and photomicrographs of the self-assemblies in a 
80:20 H2O:THF mixture under UV irradiation for different times (right)68 

 

 

Figure 1.26 Chemical structure an amphiphilic BC composed of PNIPAM and an 
azobenzene poly(acrylate) (left) and photomicrographs of the self-assemblies in a 
50:50 H2O:THF mixture under UV irradiation for different times (right): a) 0s, b) 16s, c) 

33s, d) 42s, e) 58s and f) 80s69 

 

Yu and coworkers described photoresponsive vesicles from an amphiphilic BC 

composed of PEG and an azopyridine poly(methacrylate) in a mixture of water 

and THF.138 During the irradiation process with UV light, these vesicles suffered 

a photoinduced process involving fusion, disruption, disintegration and 

rearrangement (Figure 1.27). The authors proposed that the changes produced 

during the irradiation are expected to increase the permeability of the 

membrane being good candidates as controlled delivery systems. 

UV  irradiation Time

a) b) c)

d) e) f)
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Figure 1.27 Chemical structure an amphiphilic BC composed of PEG and an 
azopyridine poly(methacrylate) (left) and optical micrographs of the self-assemblies in a 
55:45 H2O:THF mixture under UV irradiation for different times (right): a) 0s, b) 2s, c) 
4s, and d) 6s138 

 

Recently, a series of amphiphilic LDBCs composed of PEG of different 

molecular weights and dendrons based on bisMPA functionalised at the 

periphery with 4-cyanoazobenzene moieties have been studied in our research 

group.99 A diversity of aqueous assemblies (cylindrical, sheet-like micelles and 

tubular micelles, as well as polymer vesicles) were exhibited by tuning the 

length of the hydrohophilic block as well as the generation of the dendron 

(Figure 1.28). Polymeric self-assemblies were observed for 

hydrophilic/hydrophobic ratios ranging from 67/33 to 20/80. As the size of the 

hydrophobic dendritic block was increased, a morphological transition from 

cylindrical micelles to sheet-like micelles and eventually to polymeric vesicles 

was observed. In order to study the photoreponsive behaviour of the vesicles, 

they were irradiated with UV light and distortion of the vesicles was found due to 

trans-to-cis isomerisation of azobenzene. These experimental observations 

have been recently supported by simulation studies.153 Sheng and coworkers 

employed mesoscopic simulations to study the self-assemblies formed by these 

azobenzene LDBCs. By varying polymer concentration and lengths of the 

blocks, morphological phase diagrams and internal structures of the resulting 

aggregates were obtained (Figure 1.29). These simulations also proved that 

upon UV irradiation, an increase of the membrane permeability takes place. 

This increase of the permeability is mainly caused by the structural change of 

the azobenzene layer and makes these systems potentially useful as controlled 

delivery systems. 

a) b) c) d)
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Figure 1.28 Chemical structure of the azobenzene containing LDBC (top) and TEM 
images of the different self-assemblies in water (bottom): a) nanofibers, b) sheet-like 
aggregates, c) tubular micelles (indicated by the white arrow) in coexistence with 
sheet-like micelles (indicated the black arrow), d) polymeric vesicles.99 G=generation of 
the dendron being 2n the number of peripheral photochromic units 

 

Figure 1.29 Simulation results of the self-assemblies derived from the LDBC first 
described by del Barrio et al. in selective solvents (Image adapted from ref.153) 

a) b) c) d)

G Phobic/Philic
Ratio (wt%)

1 33/67

2 50/50

3 67/33

4 80/20

G=1        Cylindrical Micelles G=2          Sheet-like Micelles

G=3         Bowl-like Micelles G=4                Vesicles

G=5                   Vesicles
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Closely related amphiphilic LDBCs were also reported by Shi et al. by 

combining PEG and different generations of 4-octyloxyazobenzene poly(amido 

amine) (PPI) dendrons where this generation dependent self-assembling 

behaviour was also observed (Figure 1.30).100 These authors reported on the 

reversible photoinduced trans-to-cis isomerisation in solution but not on the 

photoresponse of the aqueous self-assemblies. 

 

Figure 1.30 Chemical structure of the amphiphilic LDBCs reported by Shi et al. (top) 
and TEM images of the different self-assemblies in a 17:83 dioxane:water 
mixture(bottom): a) nanofibers, b) nanospheres in coexistence with nanosheets 
(indicated by the white arrow) c) polymeric vesicles and d) large micelles100 

  

a) b) c) d)

G Phobic/Philic
Ratio (wt%)

0 33/67

1 52/48

2 70/30

3 82/18
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1.4 Photoresponsive Surfaces 

Responsive smart surfaces have recently attracted significant attention because 

of their associated interesting applications such as biosensors, intelligent 

membranes or microfluidic devices.154-156 During the last years, the study of 

surfaces with controllable wettability has emerged as a major focus of interest in 

responsive surface field,155 especially photoresponsive surfaces prepared from 

inorganic oxides and/or photoresponsive organic molecules.157-160 

Photoresponsive organic surfaces are based on photochromic moieties such as 

azobenzene, spiropyrans, fulgides among others.157,161 The photoresponsive 

moieties are usually incorporated in a suitable platform, usually a small 

molecule or a polymer, to form self-assembled monolayers (SAMs) or polymer 

based surfaces. SAMs are spontaneously formed by adsorption of an active 

surfactant into solid surfaces. Thiol and silane derivates are examples of two 

widely used organic groups to functionalise inorganic surfaces. The 

photoswitching of SAM modified surfaces is normally based on chemical or 

conformational changes of the photoresponsive group. As an example, Rosario 

et al. reported photoresponsive surfaces by covalently bound spiropyran to a 

glass surface.162 The surface modification was carried out by reaction of the 

corresponding organic silanes with silicate surfaces to form Si-O-Si bonds. The 

relatively nonpolar spiropyran can be reversibly switched to a polar, zwitterionic 

merocyanine isomer that has a much larger dipole moment by UV light, and 

back again by visible light (Figure 1.31). The light induced changes observed in 

the surface energy were correlated to the switching of the surface bound 

spiropyran molecule between polar and nonpolar forms by means of 

fluorescence spectroscopy. 
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Figure 1.31 Spiropyran functionalised surface and the behaviour of a water droplet a) 

under Vis irradiation and b) under UV irradiation162 

 

On the other hand, polymer films can be prepared on substrate surfaces using 

several deposition techniques as well as chemical reactions. One of the 

simplest techniques of applying thin films onto substrates is either casting or 

spin coating of a polymer solution. As an example, spiropyrane photoresponsive 

polymeric films were prepared by Sumaru and coworkers.163 A polymer blend of 

an spiropyran containing polymer and PMMA was dissolved in 1,2-

dichloroethane and poured onto a glass substrate, which had been 

hydrophobicised with dichlorodimethylsilane and dried in air for 3 days. Due to 

the photocontrolled change in the polarity of the surface, a reversible cell 

adhesion control was achieved.  

 

1.4.1 Azobenzene Functionalised Surfaces 

Azobenzene functionalised surfaces have also attracted much attention.  As 

mentioned, the modification the dipole moment of the molecule due to trans-to- 

cis isomerisation gives the possibility to prepare surfaces with photocontrolled 

wettability (Scheme 1.19). 
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Scheme 1.19 Photoinduced isomerisation of azobenzene moieties in a surface 

 

Pioneering studies on photoresponsive azobenzene surfaces were reported by 

Ichimura and coworkers using a flat surface modified with a 

calix[4]resorcinarene containing four pendant azobenzene units that was 

irradiated with a gradient in light intensity achieving light driven motion of liquids 

(Figure 1.32).164,165 The asymmetrical irradiation caused a gradient in the 

surface free energy because of the photosiomerisation azobenzene moieties 

generating CA hysteresis on both edges of the droplet. This induced tension led 

to a directional motion of the droplet. 

UV

Vis

Dipolar 
moment0D 3D
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Figure 1.32 Chemical structure of the azobenzene containing calix[4]resorcinareno 
reported by Ichimura and coworkers and light driven motion of an olive oil droplet under 
asymmetrical irradiation164 

 

Selected examples in compact monolayers containing azobenzene moieties 

prepared on silicon substrates were described by Delorme et al. as well as 

Hamelmann et al. (Figure 1.33).166,167 These photoresponsive surfaces were 

prepared either by covalent grafting of azobenzene moieties onto a surface 

previously functionalised with an isocyanate monolayer or direct grafting of 

silane containing azobenzene. These studies provided evidence of controlled 

photoisomerisation of the azobenzene moieties in the surface and subsequently 

a photocontrolled change in the CA of the surface. 

 

Figure 1.33 Azobenzene functionalised surfaces prepared by covalent grafting of 
azobenzene moieties166,167 

t=0

t=35s

t=80s

UV light blue lightOlive oil droplet
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Recently, rough surfaces with a good photoresponsiveness fabricated via layer-

by-layer deposition were also reported. For example, Zhou et al. prepared a 

switchable surface changing from a slippery to a sticky state when the 

azocompound assumes trans or cis conformation, respectively (Figure 1.34).168  

The coating consists of a siloxane elastomer containing trifluoromethoxy 

azobenzene moieties. Cho et al. also prepared fluorinated azobenzene modified 

nanoporous substrates.169  Upon UV irradiation, the surface was reversibly 

switched between superhydrophobic and superhydrophilic states. These studies 

evidenced that the presence of nanostructures strongly enhanced the wettability 

changes resulting from azobenzene isomerisation in comparison with 

monolayers. This improvement could be attributed to a increase in the available 

space for the isomerisation in the case of rough surfaces. 

 

Figure 1.34 Azobenzene functionalised surfaces containing trifluoromethoxy-
azobenzene moieties (left) and the shape of a water droplet upon UV and Vis 

irradiation (right)168-169 
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2.1 Introduction and Aims 

Photoresponsive polymers having azobenzene moieties in the side chain have 

been widely studied as smart materials in the field of optical applications. Most 

of these applications are based on the azobenzene molecular reorientation 

induced by irradiation with LPL.1-7 In particular, azobenzene containing 

polymers have been actively investigated as volume holographic optical 

storage media, which has been briefly described in Chapter 1. The reason 

behind is that azopolymers are easy to fabricate, good quality thin films can be 

obtained with an initial isotropic distribution of the chromophores, and after 

irradiation with LPL a large birefringence can be created.  However, volume 

holography requires of thick films of azopolymers as was noted before, and BC 

architecture brings about the opportunity of reducing the azobenzene content 

within the film maintaining the photoinduced cooperative motions into the 

microsegregated phases. 

Most of the azobenzene BCs reported for optical applications are linear-linear 

diblock copolymers where the non-absorbing block is either PMMA8,9 or PS.10,11 

These BCs are efficiently prepared by controlled radical polymerization 

techniques that allowed a good control over the polymerization process 

although the number of azobenzene chromophores by macromolecule is 

difficult to accurately control. Recently, a series of photoresponsive linear-

dendritic block copolymers (LDBCs) with azobenzene units was described by 

our research group. These LDBCs were synthesised by coupling the first four 

generations of dendritic aliphatic polyesters based on bis-MPA functionalised at 

the periphery with 4-cyanoazobenzene moieties to either PEG or PMMA as 

linear segments.12-14  In these studies, it was found that using PEG in a LDBC 

based on the dendron having sixteen azobenzene units (fourth-generation) a 

stable photoinduced anisotropy was achieved by irradiating at 488 nm. 

However, PEG is not appropriate for optical applications due to its high 

crystallinity and low glass transition. Optical applications better require 

amorphous linear blocks and in this way, PMMA was used which confers 

processability and transparency to the LDBCs although photoinduced 

anisotropy was lower than in PEG-azodendron LDBCs. 
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To extend the study about the influence of the linear block on the properties of 

LDBCs, the investigation of new series of LDBCs containing a poly(ethyl 

methacrylate) (PEMA) or PS linear block linked to a liquid crystalline aliphatic 

polyester dendron functionalised with sixteen cyanoazobenzene moieties as 

planned, as well as the analogous with PMMA as reference (Figure 2.1).  The 

main aim of this work was then the preparation and characterisation of these 

LDBCs for the subsequent study of the optical properties of films processed 

from these materials. It should be noticed that the dendron used in the 

synthesis of these materials has a 6-azidohexyl group at the focal point in 

contrast to the 2-azidoethyl group used in previous work.12 This structural 

change was merely motivated because it implies the manipulation of 6-azido-1-

hexanol, instead of the more dangerous 2-azido-1-ethanol (very recently 

Polymer Factory started the commercialisation of dendrons having the same 

azidohexyl group at the focal point).  PEMA was selected because it has a 

chemical structure that is closely related to that of PMMA but has a lower Tg. 

PS, which is easily synthesised by ATRP, was investigated because it has a 

similar Tg to PMMA but different polarity than PMMA and it is aromatic in 

character as the azobenzene, which should have influence on the microphase 

segregation properties. As mentioned, the LDBC having a PMMA linear block 

of similar degree of polymerization was synthesised as reference to establish 

straight comparisons. 

This work was carried out in collaboration with the Department of Condensed 

Matter Physics. Morphological and optical studies of the LDBCs were 

performed in the laboratories of the group of Prof. Rafael Alcalá. 
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2.2 Tasks and Methods 

- Synthesis of the dendritic block consisting of a fourth-generation polyester 

dendron based on the bis-MPA acid functionalised with sixteen 4-

cyanoazobenzene moieties linked through a decamethylenic spacer and an 

azido functional group at the focal point.  

 

- Synthesis of alkyne functionalised PMMA, PEMA and PS having two 

different average molecular weights of approx. 10000 and 20000 g/mol by 

ATRP. 

 

- Synthesis of the proposed LDBCs accomplished by coupling of preformed 

blocks using CuAAC (Figure 2.2).  

 

Figure 2.2 Synthetic approach for the synthesis of the LDBCs 

 

- Structuctural characterisation of the building blocks and by FTIR, NMR, MS 

as well as elemental. Thermal characterisation using POM, TGA and DSC. 

 

- Morphological characterisation of the LDBCs in bulk by TEM and optical 

studies of the LDBCs (carried out by the group of Prof. Rafael Alcalá). 

  

+
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2.3. Results and Discussion 

2.3.1 Synthesis and Characterisation  

The LDBCs were obtained by coupling an alkyne terminated linear blocks -

PMMA, PEMA or PS- and the azide functionalised azodendron by CuAAC as it 

is shown in Scheme 2.1. This implies the synthesis of two separated blocks 

containing the azido and alkyne complementary functional groups. As noted 

above, the azido group was introduced at the focal point of the dendritic block 

and the alkyne in one of the end groups of the linear polymeric chain. 

 

 

Scheme 2.1 Synthesis of the investigated LDBCs 
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The azido functionalised polyester dendron was synthesised according to a well 

known double stage convergent approach using bis-MPA as starting material 

which it is summarised in Scheme 2.2.15 This strategy allows the preparation of 

the fourth generation dendron in high yields by alternating two efficient 

reactions, i.e esterification reaction and acetonide deprotection. The 

esterification reactions were performed using N,N-dicyclohexylcarbodiimide 

(DCC) and 4-(dimethylamino)pyridinium p-toluenesulfonate (DPTS) as catalyst 

obtaining relatively high yields. Deprotection of acetonide groups was carried 

out by employing the common acid resin Dowex® in a quantitative manner. 

Thus, the hydroxyl goups of bis-MPA were protected by reaction with 2,2-

dimethoxypropane giving compound (1). Protected bis-MPA (1) was then 

esterified using 6-azidohexanol (2) to give compound (3), which rendered the 

azido derivative (4) after deprotection of the hydroxyl groups. The subsequent 

reaction of compound (4) with the protected bis-MPA (1) in a 1:2 stoichiometric 

ratio, and acetal deprotection, gives the second generation dendron generation 

(6) having an azido group in the focal point. On the other hand, the carboxylic 

group of the bis-MPA was protected using benzyl bromide to yield compound 

(7), that reacts with protected bis-MPA (1) to give the second-generation 

dendron (9) once the benzyl ester was deprotected. In the final step, the 

esterification of dendron (6) with dendron (9)  in a 1:4 stoichiometric ratio gives 

the target azido functionalised dendron (d16OH) after deprotection of the 

hydroxyl groups.  

Finally, the target azobenzene functionalised dendron (d16AZO) was obtained 

by esterification of the hydroxyl groups at the periphery with an excess of 11-[4-

(4’-cyanophenylazo)phenyloxy]undecanoic acid (AZO) (synthetic details of AZO 

are given in the Experimental section)  using DCC (Scheme 2.3). Evolution of 

the reaction was followed by MALDI-TOF MS until and the reaction was 

mantained until fully functionalisation of the dendron was observed. The 

product was purified by column chromatography and d16AZO was obtained in 

55% yield.  
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Scheme 2.2  Synthesis of the fourth generation polyester dendron bearing an azide 
group in the focal point: a) 2,2-dimethoxypropane, TsOH, acetone, b) BnBr, KOH, 
DMF, c) DCC/DPTS, CH2Cl2, d) Dowex®, CH3OH and e) Pd(C) 20%, AcOEt 

 

For the preparation of the alkyne functionalised linear chains, ATRP was 

selected as polymerization method (Scheme 2.4). Alkyne functionality can be 

introduced in either by utilizing functionalised initiators or a postpolymerization 

end group modification (bromine substitution in the case of ATRP). While the 

first procedure ensures complete functionalisation of all polymer chains, in the 

latter incomplete functionalisation due to the lost of the bromine group in the 

ATRP may occur. Following the strategy reported by van Hest and coworkers,16 
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an initiator with a trimethylsilyl protected alkyne group was prepared by 

esterification of α-bromoisobutyryl bromide with trimethylsilyl propargyl alcohol 

and employed for ATRP.   

 

 

Scheme 2.3  Synthesis of the azobenzene containing dendron (d16AZO) 

 

Linear blocks of PMMA, PEMA and PS with two different average molecular 

weights of approx. 10000 and 20000 g/mol were prepared.  The 

polymerizations were performed in bulk at 90ºC (PMMA and PEMA) or 110ºC 

(PS) and employing CuBr and N,N,N',N’’,N’’- pentamethyldiethylenetriamine 

(PMDETA) as the catalyst system, according to procedures reported in the 

literature for PMMA and PS.13,17 Polymerization times were adjusted to obtain 

different molecular weights. Number average molecular weights, Mn, of the 

linear blocks were determined by end group analysis of the TMS ended 

polymers by 1H-NMR using the relative integral of the –Si(CH3)3 and –COOCH3 

of PMMA, –COOCH2–  of PEMA or aromatic protons of PS. Figure 2.3 shows 

the 1H-NMR of PEMA2-TMS indicating the signals used for Mn calculation. All 

data are gathered in Table 2.1. Molecular weight distribution were also 

determined by size exclusion chromatography (SEC) using PMMA standars in 

the case of PMMA and PEMA and PS standards for PS. SEC traces of linear 

blocks showed monomodal molar mass distributions.  Low polydispersities (ĐM 
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<1.1) were determined for PMMA and PS homopolymers and slightly higher 

(ĐM ≈1.2) for PEMA ones. This increment in the molecular weight distribution of 

PEMA could arise from uncontrolled termination processes.18 In general, 

average molecular weights obtained by 1H-NMR and SEC are very similar 

except for PEMA, although it should be taken account that data are referenced 

to PMMA standards. Finally, the trimethylsilyl protected alkyne functionalised 

linear blocks were deprotected with tetrabutylammonium fluoride (TBAF). 

Molecular masses of the deprotected polymers were also studied by SEC and 

the results are, as expected, very similar to those for the protected precursors. 

 

Scheme 2.4  Synthesis of the alkyne terminated linear homopolymers (see Table 2.1 
for the corresponding Mn) 

 

Figure 2.3 1H-RMN spectrum of the PEMA2-TMS in CDCl3 (400 MHz) showing the 
signals used for Mn calculation  
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Table 2.1.  Molecular weight of the synthesised polymers 

Polymer Mn  Mn [c] ĐM [c]

PMMA1-TMS 10300[a] 11800 1.05 

PMMA1 - 12100 1.04 

PMMA2-TMS 19800[a]  19100 1.05 

PMMA2 - 20200 1.04 

PEMA1-TMS 9120[a] 11500 1.26 

PEMA1 - 11800 1.22 

PEMA2-TMS 18240[a]  23600 1.16 

PEMA2 - 22800 1.20 

PS1-TMS 10504[a]  10900 1.04 

PS1 - 11100 1.04 

PS2-TMS 20488[a]  19100 1.05 

PS2 - 19500 1.05 

PMMA1-b-d16AZO 18417[b]  16200 1.08 

PMMA2-b-d16AZO 27917[b]   21600 1.09 

PEMA1-b-d16AZO 17237[b]   20900 1.14 

PEMA2-b-d16AZO 26357[b]   32400 1.19 

PS1-b-d16AZO 18621[b]   16700 1.08 

PS2-b-d16AZO 28695[b]   23500 1.08 

[a] Number average molecular weight (Mn) calculated by 1H-NMR (see 
text). [b] Calculated by the sum of the linear block Mn calculated by 1H-
NMR and the molecular weight of d16AZO. [c]Mn and ĐM of PMMA and 
PEMA homopolymers and their corresponding BCs were determined by 
SEC using PMMA standars. Mn and ĐM of PS homopolymers and their 
corresponding BCs were determined by SEC using PS standars. 
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In the final synthetic step, the azido functionalised dendritic block and the 

alkyne functionalised polymers were coupled by CuAAC using DMF as solvent 

and CuBr and PMDETA as the catalytic system (Scheme 2.1). A slight excess 

of the alkyne ended linear block was employed to ensure the completeness of 

the reaction and was eventually removed using an azido functionalised 

polystyrene resin.   The efficiency of the coupling was asserted by SEC 

analysis.  For PMMA and PEMA containing LDBCs, evidence of residual 

azodendron was not observed in SEC traces.  This was not the case of PS 

containing LDBCs, where a very small peak corresponding to residual 

azodendron was detected in the SEC curve that indicates a less effective 

coupling (Figure 2.4a). Therefore, preparative SEC was used in order to purify 

completely the LDBC. Figure 2.4b collects the SEC curves corresponding to 

the precursor blocks and the PS2-b-d16AZO once purified. As can be 

observed, CuAAC coupling of the precursor blocks gives rise to a shift of the 

molar mass distribution peak towards lower retention times that indicates LDBC 

formation. Further evidence for the formation of the BCs was gained from the 

IR spectra, as can be seen for PS2-b-d16AZO in Figure 2.5 as a 

representative example, where the band at 2100 cm-1 due to the azido group of 

the azodendron has disappeared upon coupling.  The 1H-NMR spectra of the 

LDBCs also confirm the coupling, as is shown in Figure 2.6 for PEMA1-b-

d16AZO as an example. Relative integration of azobenzene aromatic protons 

signals and the corresponding ones to the linear block protons (–COOCH3 of 

PMMA at 3.60 ppm, –COOCH2 of PEMA at 4.02 ppm or aromatic protons of the 

PS at 6.50 ppm) is in good agreement with the LDBCs structure, and confirms 

that there is not excess of any of the blocks. Furthermore, new peaks 

corresponding to the formed triazol ring appeared at 8.56 ppm (see peak 

labelled as ‘o’ in Figure 2.6), and at 5.15 and 4.10 ppm corresponding to the 

methylenic protons linked to it (see protons ‘n’ and ‘p’ labelled in Figure 2.6).  
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Figure 2.4 SEC traces of d16AZO (black line) and PS2 (dashed line) and PS2-b-
d16AZO (grey line): a) before and b) after purification 

 

Figure 2.5 FT-IR spectra in KBr of the LDBC PS2-b-d16AZO and the corresponding 
azodendron d16AZO and linear block PS2 (bottom to top) 
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Figure 2.6 1H-RMN spectrum of the PEMA1-b-d16AZO in CDCl3 (400 MHz) showing 
the signals used for Mn calculation  

 

 

2.3.2 Thermal Characterisation and Morphological Study 

Thermal stability of the LDBCs as well as of the isolated blocks was studied by 

thermogravimetric analysis (TGA) under nitrogen atmosphere up to 600ºC using 

powdered samples.  Weight losses associated to the presence of residual 

solvents or water were not detected.  From the TGA curves, significant 

differences were observed for PMMA, PEMA and PS containing LDBCs (Table 

2.2). PMMA and PEMA LDBCs showed major weight losses associated to 

sample decomposition above 315ºC. PS imparted superior thermal stability with 

major weight losses associated to sample decomposition above 390ºC. 
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Thermal transitions were studied by combining differential scanning calorimetry 

(DSC) and polarised optical microscopy (POM).  Relevant data are collected in 

Table 2.2. The azodendron d16AZO is a vitreous material that exhibits a 

mesomorphic phase above glass transition, Tg.  The DSC curve of the 

azodendron d16AZO presented a glass transition at 22ºC and a peak at 141ºC 

corresponding to a mesophase-to-isotropic transition (Figure 2.7). POM 

images of the azodendron showed fan shaped textures characteristic of a 

smectic A mesophase as can be seen in Figure 2.8a.  The linear blocks were 

essentially amorphous materials. DSC curves showed a clear baseline jump 

corresponding to the glass transition with Tg values of around 115ºC for PMMA, 

70ºC for PEMA and 100ºC for PS.  

The investigated LDBCs exhibited DSC curves where two glass transitions 

were detected indicating microphase segregation of blocks. The lowest Tg, at 

33-34ºC, corresponds to the glass transition of the azodendron block even if 

the calculated values are slightly higher (about 10ºC) than that of d16AZO.  

The highest Tg corresponds to the linear block and calculated values are also 

slightly higher than those of the corresponding homopolymers. All the LDBCs 

showed a peak corresponding to the mesophase-to-isotropic transition. The 

comparison between DSC curves of the azodendron, a linear block PS-2 and 

the corresponding LDBC PS2-b-d16AZO is shown in Figure 2.7.  For PMMA 

LDBCs, the higher Tg (at around 115ºC) overlaps the mesophase-to-isotropic 

transition. PEMA containing LDBCs circumvent this problem due to the lower Tg 

(at around 70ºC) of the linear block. All these LDBCs show liquid crystalline 

behaviour, although under POM they exhibited poorly defined textures which do 

not allow a clear identification of the mesophase (Figure 2.8b).  
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Table 2.2. Thermal properties of the LDBCs and their building blocks 

 TGA[a]   DSC[b]   

Polymer Td   Tg(1)  Tg(2) Ti  ∆Hi 

d16AZO 313  22 - 141 78.8 

PMMA1 342  - 115 - - 

PMMA2 361  - 113 - - 

PEMA1 252  - 69 - - 

PEMA2 271  - 66 - - 

PS1 390  - 97 - - 

PS2 390  - 98 - - 

PMMA1-b-d16AZO 341  32 116[c] 135[c] 63.4[c] 

PMMA2-b-d16AZO 354  36 116[c] 134[c] 67.4[c] 

PEMA1-b-d16AZO 326  33 70 134 64.9 

PEMA2-b-d16AZO 317  33 76 133 69.4 

PS1-b-d16AZO 392  34 102 134 34.6 

PS2-b-d16AZO 393  34 102 141 39.7 

[a] Td (in ºC):  decomposition temperature associated to mass lost calculated by TGA at 
the onset point in the weight loss curve.  [b] Transition temperatures and enthalpies 
were determined by DSC from the second heating scan (10ºC/min): Tg = glass 
transition; Ti = isotropisation; ∆Hi= enthalpy associated to isotropisation. [c] Data cannot 
be calculated accurately. Mesophase-to-isotropic transition was overlapped with Tg(2) 
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Figure 2.7 DSC traces recorded at 10ºC/min corresponding to the second heating of 
PS2, d16AZO and the corresponding LDBC PS2-b-d16AZO (from top to bottom) 

  

 

Figure 2.8 POM images of d16AZO and PEMA1-b-d16AZO taken at 75ºC on cooling 
from the isotropic state 

 

The microphase segregation pointed by the DSC study was also confirmed by 

TEM in the study carried by the group of Prof. Alcalá. Small pellets of the 

LDBCs were prepared by heating the powdery polymers at 180ºC for about 2 

min and subsequent fast cooling to room temperature. Pellets were then 

annealed for 1h at 140ºC and fast cooled again to room temperature. It was 

corroborated that longer annealing times at 140ºC does not introduce any 

significant change in the nanostructure. Then, thin slices (of about 100 nm 

thick) were cut from the pellets using a ultramicrotome, put on copper grids and 
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stained with RuO4. TEM images show a lamellar nanostructure for all the 

compounds. As an example, Figure 2.9 shows the nanostructure 

corresponding to three LDBCs containing different linear block.  

 

Figure 2.9 TEM bright field micrographs of LDBCs: a) PMMA1-b-d16AZO, b) PEMA1-
b-d16AZO and c) PS1-b-d16AZO. The size of the white bar is 200 nm 

 

Photoinduced anisotropy of LDBCs polymeric films has been studied by 

birefringence and dichroism measurements by the group of Prof. Alcalá. 

Although all the LDBCs showed a lamellar structure, they present very different 

photoinduced anisotropy. Low response has been obtained for the two BC 

containing PS while the two containing PMMA show a much higher response. 

In the case of PEMA compounds, different behaviour has been observed in 

PEMA1-b-d16AZO and in PEMA2-b-d16AZO.  

  

(
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2.4 Conclusions  

A series of LDBCs composed of a linear block, and a dendritic block 

functionalised at the periphery with cyanoazobenzene units has been 

synthesised by the direct coupling of the preformed blocks. 

Alkyne functionalised PMMA, PEMA and PS were first synthesised by ATRP 

and employed as the linear block. A dendron having sixteen peripheral 4-

cyanoazobenzene photoresponsive units and a 6-azidohexyl chain in the focal 

point was coupled to the linear segment by CuAAC. This coupling was 

especially efficient in the case of the polymethacrylic derivatives.   

All LDBCs exhibited liquid crystalline properties as well as a good thermal 

stability. Tg of PEMA derivatives was significant lower in comparison to PMMA 

one. DSC curves pointed to microphase segregation in all cases, which was 

also confirmed by TEM (lamellar microstructures). 
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2.5 Experimental Section 

Materials 

Methyl methacrylate, ethyl methacrylate and styrene (Aldrich, 99%) were 

passed through a basic alumina column, stored over CaH2, and vacuum 

distilled before use. CuBr was used as received and handled in a dry box. All 

other commercially available reagents were purchased from Aldrich and used 

as received without further purification. The ATRP inititator 3-

(trimethylsilyl)prop-2-ynyl 2-bromo-2-methylpropanoate and the azide 

functionalised PS resin were prepared according to literature procedures.16,19  

 

2.5.1 Experimental Details for the Synthesis of the Azido Functionalised 

Fourth Generation Dendron (d16OH)  

General Procedure for Esterification Reactions 

The selected alcohol and acid, and DPTS were dissolved in dry 

dichloromethane (DCM).  The reaction flask was flushed with argon, and a 

solution of DCC in dichloromethane was dropwise added.  The mixture was 

stirred at room temperature for several hours under argon atmosphere.  The 

formed white precipitate was filtered off and the solvent removed under 

vacuum.  The crude product was purified by flash column chromatography on 

silica gel. 

Synthesis and Characterisation of Isopropylidene-2,2-bis(methoxy) 

propionic acid (1) 

 

Bis-MPA (15.00 g, 111.83 mmol), 2,2-dimethoxypropane (20.6 mL, 167.74 

mmol) and p-toluenesulfonic acid monohydrate (1.06 g, 5.59 mmol) were 

dissolved in acetone (75 mL). The reaction mixture was stirred for 2 h at room 
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temperature. Then, the catalyst was neutralised by adding a NH3:EtOH (50:50) 

solution (approximately 1 mL) and the solvent was removed under vacuum. 

The residue was then dissolved in DCM (250 mL) and washed with water. The 

organic phase was dried over magnesium sulphate, filtered and the solvent was 

evaporated to give a white powder. Yield: 80%. IR (KBr),  (cm-1): 3360, 1718, 

1706, 1225. 1H-NMR (CDCl3, 400MHz) δ (ppm):  4.18 (d, J=12.0 Hz, 2H), 3.68 

(d, J=12.0 Hz, 2H), 1.45 (s, 3H), 1.42 (s, 3H), 1.21 (s, 3H). 13C-NMR (CDCl3, 

100 MHz) δ (ppm): 179.7, 98.4, 65.9, 41.7, 25.4, 21.7, 18.3. 

Synthesis and Characterisation of 6-azidohexan-1-ol (2) 

  

Sodium azide (6.42 g, 98.81 mmol) was added to a solution of 6-chlorohexan-

1-ol (4.50 g, 32.93 mmol) in N,N-dimethylformamide (DMF) (20 mL).  The 

mixture was stirred at 120°C for 24 h and then cooled to room temperature.  

The crude was diluted with diethyl ether, washed with water (375 mL), the 

organic layer dried over magnesium sulphate, filtered and evaporated to obtain 

6-azidohexan-1-ol (2) as a colourless oil.  Yield: 90%. IR (NaCl),  (cm-1): 3340, 

2096, 1266.  1H-NMR (CDCl3, 400MHz) δ (ppm): 3.65 (t, J=6.5 Hz, 2H), 3.27 (t, 

J=6.9 Hz, 2H), 1.68-1.55 (m, 4H), 1.43-1.39 (m, 4H). 13C-NMR (CDCl3, 100 

MHz) δ (ppm):  62.8, 51.4, 32.6, 28.8, 26.6, 25.3. 

Synthesis and Characterisation of 6-azidohexyl 2,2,5-trimethyl-1,3-

dioxane-5-carboxylate (3) 

 

Compound (3) was prepared according to the described general esterification 

procedure by employing 6-azidohexan-1-ol (2) (3.18 g, 22.20 mmol), 

isopropylidene-2,2-bis(methoxy)propionic acid (1) (4.25 g, 24.40 mmol), DPTS 

(2.88 g, 9.77 mmol) and DCC (6.05 g, 29.28 mmol) in dry DCM (25 mL).  The 

crude product was purified by flash column chromatography on silica gel, eluted 

with hexane, gradually increasing polarity to ethyl acetate/hexane (1:9) to yield 
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(3) as a colourless viscous oil.  Yield: 75%. IR (NaCl),  (cm-1): 2097, 1728, 

1257. 1H-NMR (CDCl3, 400MHz) δ (ppm): 4.18 (d, J=11.8 Hz, 2H), 4.15 (t, 

J=6.6 Hz, 2H), 3.64 (d, J=11.8 Hz, 2H), 3.27 (t, J= 6.9 Hz, 2H), 1.70-1.52 (m, 

4H), 1.45-1.36 (m, 4H), 1.43 (s, 3H), 1.39 (s, 3H), 1.18 (s, 3H). 13C-NMR 

(CDCl3, 100 MHz) δ (ppm): 175.8, 98.4, 66.0, 64.7, 51.3, 41.8, 28.7, 28.4, 26.3, 

25.4, 24.6, 22.7, 18.7. 

Synthesis and Characterisation of 6-azidohexyl 2,2-di(hidroxyethyl) 

propanoate (4) 

 

DOWEX-50-X2 resin (1.10 g) was added to a solution of compound (3) (4.50 g, 

17.35 mmol) in methanol (40 mL).  The mixture was stirred for 3 h at room 

temperature.  Then the resin was filtered off and the solvent removed under 

vacuum to give (4) as a colourless viscous oil.  Yield: 94%.  IR (NaCl),  (cm-1): 

3400, 2097, 1725, 1240.  1H-NMR (CDCl3, 400MHz) δ (ppm): 4.16 (t, J=6.6 Hz 

, 2H), 3.90 (d, J=11.2 Hz, 2H), 3.71 (d, J=11.2 Hz, 2H), 3.27 (t, J= 6.8 Hz, 2H), 

1.75-1.67 (m, 2H), 1.67-1.56 (m, 2H), 1.47-1.36 (m, 4H), 1.05 (s, 3H). 13C-NMR 

(CDCl3, 100 MHz) δ (ppm): 176.0, 99.9, 68.5, 64.9, 51.2, 49.0, 28.6, 28.3, 26.3, 

25.4, 17.1. 

Synthesis and Characterisation of Compound (5) 

 

Compound (5) was prepared according to the described general esterification 

procedure by employing 6-azidohexyl 2,2-di(hidroxyethyl) propanoate (4) (3.67 

g, 14.16 mmol), isopropylidene-2,2-bis(methoxy)propionic acid (1) (5.18 g, 

29.73 mmol), DPTS (1.67 g, 5.66 mmol) and DCC (7.30 g, 35.38 mmol) in dry 
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DCM (50 mL).  The crude product was purified by flash column 

chromatography on silica gel, eluted with hexane, gradually increasing polarity 

to ethyl acetate/hexane (2:8).  Compound (5) was obtained as a colourless 

viscous oil.  Yield: 70%.  IR (NaCl),  (cm-1): 2097, 1737, 1219. 1H-NMR 

(CDCl3, 400MHz) δ (ppm): 4.27 (s, 4H), 4.09 (d, J=11.9 Hz, 4H), 4.06 (t, J=6.7 

Hz, 2H), 3.56 (d, J=11.9 Hz, 4H), 3.21 (t, J= 6.9 Hz, 2H), 1.70-1.52 (m, 4H), 

1.38-1.29 (m, 4H), 1.36 (s, 6H), 1.30 (s, 6H), 1.22 (3H), 1.09 (s, 6H).  13C-NMR 

(CDCl3, 100 MHz) δ (ppm): 173.5, 172.6, 98.1, 65.9, 65.3, 65.1, 51.3, 46.7, 

42.0, 28.7, 28.4, 26.3, 25.5, 25.0, 22.2, 18.5, 17.7. MALDI-TOF MS (matrix: α-

cyano-4-hydroxycinnamic acid, m/z): 594.3 [M+Na]+.   

Synthesis and Characterisation of Compound (6) 

 

DOWEX-50-X2 resin (1.20 g) was added to a solution of compound (5) (5.05 g, 

10.22 mmol) in methanol (50 mL) in a 250 mL round bottom flask.  The mixture 

was stirred for 8 h at room temperature. Then, the resin was filtered off and the 

filtrate was removed under vacuum to give compound (6) as a colourless 

viscous oil.  Yield: 97 %.  IR (NaCl),  (cm-1): 3300, 2101, 1731, 1242.  1H-NMR 

(CDCl3, 400MHz) δ (ppm): 4.46 (d, J=11.1 Hz, 2H), 4.28 (d, J=11.1 Hz, 2H), 

4.15 (t, J=6.6 Hz, 2H), 3.92-3.83 (m, 4H), 3.76-3.67 (m, 4H), 3.28 (t, J= 6.8 Hz, 

2H), 1.70-1.52 (m, 4H), 1.45-1.36 (m, 4H), 1.31 (s, 3H), 1.05 (s, 6H). 13C-NMR 

(CDCl3, 100 MHz) δ (ppm): 175.1, 173.0, 68.2 ,65.4, 64.8, 51.3, 49.6, 46.3, 

28.7, 28.4, 26.3, 25.5, 18.1, 17.1. MALDI-TOF MS (matrix: α-cyano-4-

hydroxycinnamic acid, m/z): 514.2 [M+Na]+. 
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Synthesis and Characterisation of Benzyl 2,2-di(hidroxyethyl)propanoate 

(7) 

 

Bis-MPA (10.00 g, 74.55 mmol), and KOH (4.81 g, 85.73 mmol) were dissolved 

in DMF (50 mL). The mixture was heated at 100 °C for 1 h and benzyl bromide 

(10.6 mL, 89.46 mmol) was added then. After stirring for 15 h at 100 °C, DMF 

was evaporated off using a rotary evaporator. The residue was dissolved in 

DCM (200mL) and washed with water. Organic solvent was evaporated and the 

crude product was recrystallised from hexane/dicholoromethane (1:1). Yield: 60 

%. IR (KBr), v (cm-1): 3360, 1706, 1606, 1499, 1226. 1H-NMR (CDCl3, 400MHz) 

δ (ppm): 7.45-7.28 (m, 5H), 5.20 (s, 2H), 3.93 (d, J= 11.3 Hz, 2H), 3.73 (d, 

J=11.3 Hz, 2H), 2.98 (s, 2H), 1.08 (s, 3H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 

175.7, 135.6, 128.6, 128.3, 127.8, 68.1, 66.6, 49.2, 17.1. 

Synthesis and Characterisation of Compound (8) 

 

Compound (8) was prepared according to the described general esterification 

procedure by employing compound (1) (10.11 g, 58.06 mmol), compound (7) 

(6.20 g, 27.64 mmol), DPTS (3.25 g, 11.06 mmol) and DCC (14.26 g, 69.12 

mmol) in dry DCM (80 mL).  The crude product was purified by flash column 

chromatography on silica gel, eluted with hexane, gradually increasing the 

polarity to ethyl acetate/hexane (8:2).  Compound (8) was obtained as a 

colourless viscous oil.  Yield: 63%.  IR (NaCl),  (cm-1): 1738, 1259.  1H-NMR 

(CDCl3, 400MHz) δ (ppm): 7.42-7.32 (m, 5H), 5.12 (s, 2H), 4.44 – 4.25 (m, 4H), 

4.11 (d, J = 11.9 Hz, 4H), 3.58 (d, J = 11.6 Hz, 4H), 1.41 (s, 6H), 1.34 (s, 6H), 

1.30 (s, 3H), 1.09 (s, 6H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 173.5, 171.8, 
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135.5, 128.6, 128.5, 128.3, 98.1, 66.0, 65.9, 64.8, 46.9, 46.7, 42.1, 25.2, 22.1, 

18.5, 17.7. MALDI-TOF MS (matrix: dithranol, m/z):  559.3 [M+Na]+. 

Synthesis and Characterisation of Compound (9) 

 

The compound (8) (4.00 g, 7.52 mmol) was dissolved in ethyl acetate and Pd/C 

(10%) (0,40 g) was added. Then the flask was evacuated from air and filled 

with H2. After 4 h of stirring at room temperature, the catalyst was filtered off 

using Celite® and carefully washed with ethyl acetate. The solvent was 

evaporated and the product was obtained as a viscous oil. Yield: 98%. IR 

(NaCl),  (cm-1): 3300, 1742, 1258. 1H-NMR (CDCl3, 400MHz) δ (ppm): 4.35 (s, 

4H), 4.17 (d, J=11.1 Hz, 4H), 3.63 (d, J= 11.9 Hz, 4H), 1.42 (s, 6H), 1.36 (s, 

6H), 1.32 (s, 3H), 1.15 (s, 6H).13C-RMN (CDCl3, 100 MHz) δ (ppm): 173.6, 

175.43, 98.2, 66.9, 66.0, 65.4, 46.8, 42.1, 25.1, 22.1, 18.5, 17.7. MALDI-TOF 

MS (matrix: α-cyano-4-hydroxycinnamic acid, m/z): 469.2 [M+Na]+.  
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Synthesis and Characterisation of Compound (10) 
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Compound (10) was prepared according to the general esterification procedure 

described from compound (6) (2.20 g, 4.48 mmol), compound (9) (12.00 g, 

26.88  mmol), DPTS (5.27 g, 17.92 mmol) and DCC (6.01 g, 29.12 mmol) 

dissolved in dry DCM (80 mL). The crude product was purified by liquid 

chromatography on silica gel, eluted with hexane, gradually increasing to ethyl 

acetate/hexane (8:2). The product was obtained as colourless viscous oil. 

Yield: 63%. IR (NaCl),  (cm-1): 2097, 1725, 1259. 1H-NMR (CDCl3, 400MHz) δ 

(ppm): 4.37-4.20 (m, 30H) 4.14 (d, J=11.9 Hz, 16H), 4.11 (t, J=6.8 Hz, 2H), 

3.62 (d, J=11.9 Hz, 16H), 3.28 (t, J=6.8Hz, 2H), 1.70-1.52 (m, 8H), 1.41 (s, 

24H), 1.35 (s, 24H), 1.28-1.21 (m, 21H), 1.14 (s, 24H). 13C-NMR (CDCl3, 100 

MHz) δ (ppm): 173.5, 171.8, 98.1, 66.0, 65.9, 64.8, 46.9, 46.7, 42.1, 25.2, 22.1, 

18.5, 17.7. MALDI-TOF MS (matrix: α-cyano-4-hydroxycinnamic acid, m/z): 

2205.1 [M-H]+. 
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Synthesis and Characterisation of d16OH 

 

DOWEX-50-X2 resin (0.20 g) was added to a solution of compound (10) (1.00 

g, 0.46 mmol) in methanol (10 mL).  The mixture was stirred for 18 h at room 

temperature.  Then the resin was filtered off and the solvent eliminated under 

vacuum to give d16OH as a colourless viscous oil.  Yield: 97 %.  IR (KBr),  

(cm-1): 3400, 2099, 1729, 1239. 1H-NMR (DMSO-d6, 400MHz) δ (ppm): 4.65 (t, 

J=5.3Hz, 16H), 4.30-4.02 (m, 30H), 3.50-3.27 (m, 34H), 1.61-1.55 (m, 2H), 

1.55-1.47 (m, 2H), 1.36-1.32 (m, 4H), 1.20 (s, 3H). 1.17 (s, 6H), 1.15 (s, 12H), 

1.00 (s, 24H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 173.9, 171.7, 63.7, 63.6, 

50.6, 50.2, 46.2, 28.0, 27.7, 25.7, 24.8, 17.1, 16.6.  MALDI-TOF MS (matrix: 

dithranol, m/z): 1884.1 [M+H]+. 
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2.5.2 Experimental Details for the Synthesis of 11-[4-(4’-cyanophenylazo) 

phenyloxy]undecanoic acid (AZO) 

Synthesis and Characterisation of 4-(4’-hydroxyphenyazo)benzonitrile 

(11) 

 

A mixture of 4-aminobenzonitrile (10.00 g, 84.60 mmol) and HCl 6M (40 mL) 

was cooled into an ice bath. A 2.5 M NaNO2 solution (50 mL, 84.60 mmol) was 

added dropwise to the mixture and it was kept stirring in the ice bath.  Then, a 

solution of phenol (7.10 g, 84.60 mmol) in 2 M NaOH (75 mL) was carefully 

added.  The product was precipitated upon addition of HCl until neutral pH and 

it was purified by flash column chromatography on silica gel using DCM as an 

eluent.  The product was obtained as a yellow powder.  Yield: 65%.  IR (KBr),  

(cm-1): 3300, 2240, 1606, 1586, 1503, 1219, 844.  1H-NMR (CDCl3, 400MHz) δ 

(ppm): 7.95-7.91 (m, 4H), 7.81-7.79 (m, 2H), 6.98-6.96 (m, 2H), 5.33 (s, 1H). 
13C-NMR (CDCl3, 100 MHz) δ (ppm): 133.1, 125.6, 123.0, 115.9. 

Synthesis and Characterisation of Methyl 11-[4-(4’-cyanophenylazo) 

phenyloxy]undecanoate (12) 

 

A solution of 4-(4’-hydroxyphenyazo)benzonitrile (11) (6.90 g, 30.90 mmol), 

methyl 11-bromoundecanoate (9.50 g, 34.05 mmol) in butanone (80 mL) was 

prepared.  18-Crown-6 ether (0.05 g) and potassium carbonate (5.10 g, 37.11 

mol) were added.  The suspension was stirred and heated under reflux for 24 h.  

Then, it was filtered and concentrated.  The crude product was purified by flash 

column chromatography on silica gel using DCM as eluent.  The product was 

obtained as a yellow powder. Yield: 65%. IR (KBr),  (cm-1):  2233, 1730, 1602, 

1583, 1500, 1251, 863. 1H-NMR (CDCl3, 400MHz) δ (ppm): 7.95-7.93 (m, 4H), 
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7.80-7.72 (m, 2H), 7.02-7.00 (m, 2H), 4.06 (t, 2H, J=6.6 Hz), 3.67 (s, 3H), 2.31 

(t, 2H, J=7.6 Hz), 1.85-1.78 (m, 2H), 1.69-1,53 (m, 4H), 1.51-1.41 (m, 2H), 

1.39-1.17 (m, 8H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 174.8, 161.3, 146.9, 

133.1, 125.5, 123.1, 118.6, 114.8, 68.1, 51.1, 33.8, 29.4, 28.8, 25.6, 24.6. 

Synthesis and Characterisation of 11-[4-(4’-cyanophenylazo)phenyloxy] 

undecanoic acid (AZO) 

 

An aqueous solution of KOH (1.5 g, 15 mL) was added to a solution of methyl 

11-[4-(4’-cyanophenylazo)phenyloxy]undecanoate (12) (8.00 g, 19.03 mmol) in 

ethanol and butanone (120 mL and 40 mL, respectively).  The mixture was 

stirred and heated under reflux for 1 h.  Then, the crude product was 

precipitated by addition of HCl until pH 2 and it was recovered by filtration.  The 

product was recrystallised from ethanol.  Yield: 70%.  IR (KBr),  (cm-1): 3300, 

2242, 1714, 1600, 1580, 1499, 1255, 851. 1H-NMR (DMSO-d6, 400MHz) δ 

(ppm): 8.05-8.03 (m, 2H), 7.97-7.92 (m, 4H), 7.16-7.13 (m, 2H), 4.08 (t, J=6.4 

Hz, 2H), 2.18 (t, J=7.2 Hz, 2H), 1.78-1.69 (m, 2H), 1.52-1.44 (m, 2H), 1.44-1.36 

(m, 2H), 1.34-1.17 (m, 10H). 13C-NMR (DMSO-d6, 100 MHz) δ (ppm): 174.5, 

162.4, 154.1, 145.9, 133.7, 125.2, 122.8, 118.5, 115.2, 112.4, 68.1, 33.6, 28.9, 

28.8, 28.7, 28.5, 28.4, 25.4, 24.4. 
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2.5.3 Synthesis and Characterisation of the Azodendron d16AZO 

 

d16OH (0.75 g, 0.70 mmol), 11-[4-(4’-cyanophenylazo) phenyloxy]undecanoic 

acid (AZO) (3.11 g, 7.64 mmol) and DPTS (1.87 g, 6.36 mmol), were dissolved 

in a mixture of DCM (40 mL) and DMF (15 mL).  The reaction flask was flushed 

with argon, and DCC (1.73 g, 8.40 mmol) was added.  The mixture was stirred 

at room temperature for 48 h under argon atmosphere.  The white precipitate 

formed was filtered off, and the solvent was evaporated.  The crude product 

was purified by flash column chromatography on silica gel and eluted with 

DCM, gradually increasing the polarity to ethyl acetate:DCM (1:10).  The target 

azodendron was obtained as a red powdery solid.  Yield: 55%.  IR (KBr),  (cm-

1): 2227, 2096, 1741, 1600, 1582, 1501, 1257, 859. 1H-NMR (CDCl3, 400MHz) 

δ (ppm): 7.93-7.91 (m, 64H), 7.79-7.77 (m, 32H), 7.00-6.98 (m, 32H), 4.36-4.11 

(m, 62H), 4.02 (t, J=6.5 Hz, 32H), 3.29 (t, J=6.7 Hz, 2H), 2.31 (t, J=7.5 Hz 

32H), 1.81-1.78 (m, 32H), 1.64-1.56 (m, 32H), 1.50-1.40 (m, 36H), 1.39-1.24 

(m, 209H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 173.1, 172.0, 162.6, 154.7, 

146.6, 133.1, 125.4, 123.0, 118.6, 114.8, 113.2, 68.4, 64.7, 46.3, 34.0, 29.6, 

29.5, 29.4, 29.3, 29.2, 26.0, 24.8, 17.8. MS (MALDI+, dithranol ) m/z: 8116.9 
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[M-H]+. Anal. Calc for C465H565N51O78: C, 68.82; H, 6.97; N, 8.81. Found: C, 

68.34; H, 7.22; N, 8.64. 

 

2.5.4 Experimental Details for the Synthesis of the Linear Blocks 

PMMA, PEMA and PS were synthesised by ATRP using 3-(trimethylsilyl)prop-

2-ynyl 2-bromo-2-methylpropanoate,16 an initiator with a protected alkyne 

function that was subsequently deprotected (refer to Scheme 2.4). 

PMMA Polymerization 

Methyl methacrylate (18.70 g, 0.19 mol), PMDETA (200 µL, 0.9 mmol), CuBr 

(134.3 mg, 0.9 mmol) and the initiator (260.2 mg, 0.9 mmol) were added to a 

Schlenk tube.  The reaction mixture was degassed by three freeze-pump-thaw 

cycles and flushed with argon.  The polymerization was carried out in a 

thermostated oil bath at 90ºC. After 5 min for PMMA1-TMS or 10 min for 

PMMA2-TMS the polymerization mixture was diluted with THF, passed through 

a column of neutral alumina to remove the catalyst and precipitated into 

methanol.  The polymer was dried in a vacuum oven at 40ºC. 

PEMA Polymerization 

Ethyl methacrylate (13.76 g, 0.12 mol), PMDETA (144.1 µL, 0.7 mmol), CuBr 

(99.1 mg, 0.7 mmol) and the initiator (190.2 mg, 0.7 mmol) were added to a 

Schlenk tube.  The reaction mixture was degassed by three freeze-pump-thaw 

cycles and flushed with argon.  The polymerization was carried out in a 

thermostated oil bath at 90ºC. After 3 min for PEMA1-TMS or 8 min for 

PEMA2-TMS the polymerization mixture was diluted with THF, passed through 

a column of neutral alumina to remove the catalyst and precipitated into 

hexane.  The polymer was dried in a vacuum oven at 40ºC. 

PS Polymerization 

Styrene (13.59 g, 0.14 mol), PMDETA (and 21.3 µL, 0.1 mmol), CuBr (14.6 mg, 

0.1 mmol) and the initiator (28.3 mg, 0.1 mmol) were added to a Schlenk tube.  
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The reaction mixture was degassed by three freeze-pump-thaw cycles and 

flushed with argon.  The polymerization was carried out in a thermostated oil 

bath at 110ºC. After 45 min for PS1-TMS or 4 h for PS2-TMS the 

polymerization mixture was diluted with THF, passed through a column of 

neutral alumina to remove the catalyst and precipitated into methanol.  The 

polymer was dried in a vacuum oven at 40ºC. 

General Procedure of Alkyne Deprotection 

A 0.01 M solution of the protected alkyne-terminated polymer in THF was 

prepared and a five-fold excess of 1.0 M solution of TBAF in THF with respect 

to trimethylsilyl group (TMS) was added dropwise.  The reaction mixture was 

stirred overnight at room temperature and the product was precipitated into cold 

methanol.  The alkyne-ended linear polymer was dried at 40ºC under vacuum 

for 48 h. 

Characterisation Data for PMMA1:  IR (KBr),  (cm-1): 1728, 1240, 1150.  1H-

NMR (CDCl3, 400MHz) δ (ppm): 4.68-4.58 (m), 3.59 (s), 2.06-1.75 (m), 1.48-

1.38 (m), 1.26-1.13 (m), 1.10-0.80 (m).  Anal. Calc: C, 59.98%; H, 8.05% 

Found: C, 60.30%; H, 7.89. SEC: Mn= 12100, ĐM =1.04 (PMMA standars). 

Characterisation Data for PMMA2:  IR (KBr),  (cm-1): 1729, 1242, 1147.  1H-

NMR (CDCl3, 400MHz) δ (ppm): 4.65-4-52(m), 3.60 (s), 2.07-1.72 (m), 1.50-

1.35 (m), 1.26-1.13 (m), 1.09-0.70 (m).  Anal. Calc: C, 59.98%; H, 8.05% 

Found: C, 59.20%; H, 7.80%. SEC:  Mn= 20200, ĐM =1.04 (PMMA standars) 

Characterisation Data for PEMA1:  IR (KBr),  (cm-1): 1728, 1269, 1146.  1H-

NMR (CDCl3, 400MHz) δ (ppm): 4.60-4.36 (m), 4.02 (q, J=6.7 Hz), 2.10-1.70 

(m), 1.34-1.10 (m), 1.10-0.80 (m).  Anal. Calc: C, 63.14%; H, 8.83% Found: C, 

63.34 %; H, 9.13 %.  SEC: Mn= 11800, ĐM =1.22 (PMMA standars). 

Characterisation Data for PEMA2: IR (KBr),  (cm-1): 1729,1272, 1147.  1H-

NMR (CDCl3, 400MHz) δ (ppm): 4.60-4.36 (m), 4.02 (q, J=6.7 Hz), 2.10-1.70 

(m), 1.24-1.10 (m), 1.10-0.80 (m).  Anal. Calc: C, 63.14%; H, 8.83% Found: C, 

63.42 %; H, 9.08 %. SEC:  Mn = 22800, ĐM =1.20 (PMMA standars). 
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Characterisation Data for PS1:  IR (KBr),  (cm-1): 1601, 1493, 756, 698.  1H-

NMR (CDCl3, 400MHz) δ (ppm): 7.36-6.89 (m), 6.85-6.30 (m), 4.60-4.36 (m), 

4.08-4.01 (m) , 2.29 (s), 2.05-1.65 (m) 1.62-0.85 (m).  Anal. Calc: C, 92.26%; H, 

7.74% Found: C, 91.99 %; H, 7.89 %.  SEC: Mn = 11100, ĐM =1.04 (PS 

standars). 

Characterisation Data for PS2:  IR (KBr),  (cm-1): 1601, 1492, 756, 697.  1H-

NMR (CDCl3, 400MHz) δ (ppm): 7.36-6.89 (m), 6.85-6.30 (m), 4.60-4.36 (m), 

4.08-3.98 (m), 2.29 (s), 2.03-1.65 (m) 1.63-0.85 (m).  Anal. Calc: C, 92.26%; H, 

7.74% Found: C, 91.81 %; H, 7.98 %.  SEC: Mn = 19500, ĐM =1.05 (PS 

standars). 
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2.5.5 Experimental Details for the Preparation of LDBCs   

 

 

General Procedure for Coupling Reactions 

Azodendron d16AZO, 1.2 fold excess of alkyne functionalised polymer and 

two-fold excess of CuBr were placed into a Schlenk tube.  Two-fold excess of 

PMDETA and deoxygenated DMF (around 1 mL per 100 mg of polymer) were 

added with an argon-purged syringe, and the flask was further degassed by 

three freeze-pump-thaw cycles and flushed with argon.  The reaction mixture 

was stirred at 40ºC for 72 h.  Then, an azido functionalised resin was added 

under argon flow in order to remove the excess of the alkyne functionalised 

polymer and the reaction mixture was stirred for further 24 h.  The resin was 

filtered off, the mixture diluted with THF and then passed through a short 

column of neutral alumina.  The solvent was partially evaporated and the 

resulting polymer solution carefully precipitated into cold methanol. 
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Characterisation Data for PMMA1-b-d16AZO:  IR (KBr),  (cm-1): 2228, 1727, 

1601, 1582, 1500, 1256, 1141, 849. 1H-NMR (CDCl3, 400MHz) δ (ppm): 7.91-

7.89 (m), 7.76-7.64 (m), 7.56 (s), 6.98-6.95(m), 5.15-5.11(m), 4.71-4.68 (m), 

4.36-4.11 (m), 4.01 (t), 3.59 (s) 2.28 (t), 2.10-1.70 (m),1.65-1.48 (m), 1.47-1.34 

(m), 1.34-1.10 (m), 1.10-0.80 (m).  Anal. Calc: C, 62.47 %; H, 7.69 %; N, 3.88 

% Found: C, 62.71 %; H, 7.38 %; N, 3.53 %. 

Characterisation Data for PMMA2-b-d16AZO:  IR (KBr),  (cm-1): 2228, 1728, 

1600, 1582, 1499 (Ar), 1265, 1146, 852. 1H-NMR (CDCl3, 400MHz) δ (ppm): 

7.91-7.89 (m), 7.76-7.64 (m), 7.55 (s), 6.98-6.95 (m), 5.14-5.11 (m), 4.36-4.11 

(m), 3.99 (t), 3.60 (s), 2.28 (t), 2.10-1.70 (m),1.65-1.48 (m), 1.47-1.34 (m), 1.34-

1.10 (m), 1.10-0.80 (m). Anal.  Calc: C, 62.34 %; H, 7.68 %; N, 2.47 % Found: 

C, 62.63 %; H, 7.41 %; N, 2.11 %. 

Characterisation Data for PEMA1-b-d16AZO:  IR (KBr),  (cm-1): 2227  1727, 

1600, 1582, 1501, 1257, 1141, 851. 1H-NMR (CDCl3, 400MHz) δ (ppm): 7.91-

7.89 (m), 7.76-7.64 (m), 7.56 (s), 6.98-6.95 (m), 5.15-5.11(m), 4.71-4.68 (m), 

4.36-4.11 (m), 4.09-3.91 (m), 2.28 (t), 2.10-1.70 (m),1.65-1.48 (m), 1.47-1.34 

(m), 1.34-1.10 (m), 1.10-0.80 (m).  Anal. Calc: C, 64.49 %; H, 8.39 %; N, 2.10 

% Found: C, 64.92 %; H, 7.95 %; N, 2.67%. 

Characterisation Data for PEMA2-b-d16AZO:  IR (KBr),  (cm-1): 2228, 1728, 

1601, 1583, 1501, 1265, 1145, 858. 1H-NMR (CDCl3, 400MHz) δ (ppm): 7.91-

7.89 (m), 7.76-7.64 (m), 7.55 (s), 6.98-6.95 (m), 5.14-5.11 (m), 4.36-4.11 (m), 

4.09-3.91 (m), 2.28 (t), 2.10-1.70 (m),1.65-1.48 (m), 1.47-1.34 (m), 1.34-1.10 

(m), 1.10-0.80 (m). Anal.  Calc: C, 64.51 %; H, 8.33 %; N, 2.29 % Found: C, 

64.06 %; H, 7.97 %; N, 1.99%. 

Characterisation Data for PS1-b-d16AZO:  IR (KBr),  (cm-1): 2227, 1741, 

1600, 1582, 1493, 1255, 848, 757, 698.  1H-NMR (CDCl3, 400MHz) δ (ppm): 

7.91-7.89 (m), 7.77-7.64 (m), 7.51-6.89 (m), 6.85-6.30 (m), 4.36-4.11 (m), 4.00 

(t), 2.28 (t), 1.97-1.63 (m), 1.63-0.89 (m).  Anal. Calc: C, 82.30 %; H, 7.42 %; N, 

3.74 % Found: C, 82.68 %; H, 7.43 %; N, 3.59 %. 
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Characterisation Data for PS2-b-d16AZO.  IR (KBr),  (cm-1): 2227, 1741, 

1600, 1582, 1493, 1256, 848, 756, 698.  1H-NMR (CDCl3, 400MHz) δ (ppm): 

7.91-7.89 (m), 7.77-7.64 (m), 7.51-6.89 (m), 6.85-6.30 (m), 4.36-4.11 (m), 4.01 

(t), 2.28 (t), 1.97-1.63 (m), 1.63-0.89 (m).  Anal. Calc: C, 85.37 %; H, 7.52 %; N, 

2.59 % Found: C, 85.68 %; H, 7.90 %; N, 2.07%. 
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3.1 Introduction and Aims 

As it was described in Chapter 1, one of the most important features of 

amphiphilic BCs is their ability to undergo spontaneous phase separation in 

solution forming different supramolecular structures of nanoscale dimensions, 

such as spheres, rods, lamellae or vesicles.1-3 Among all the different 

morphologies, polymeric vesicles, also known as polymersomes, are of 

particular interest as drug nanocontainers. Polymer vesicles originate from 

closing bilayers forming a central aqueous compartment which is enclosed by 

an amphiphilic copolymer bilayer membrane.4 The hydrophobic chains create 

the wall membrane stabilised by the hydrophilic chains forming internal and 

external coronas (Figure 3.1). 

 

Figure 3.1 Schematic representation of a polymeric vesicle 

 

Because of their internal hydrophilic cavities and robust hydrophobic 

membranes, vesicles can physically store both hydrophobic and hydrophilic 

compounds. The hydrophilic molecules will be encapsulated within the aqueous 

interior and hydrophobic molecules will be integrated within the membrane.  The 

methods of loading the molecules into the polymersomes are diverse.5 

Hydrophobic compounds can be solubilised into the vesicle bilayer by diffusion 

on stirring together with the vesicles suspension or by cooperative 

encapsulation during the self-assembly process.  Hydrophilic molecules can be 

directly encapsulated during the vesicle formation. Depending on the properties 

of the hydrophobic block, vesicles might retain loaded molecules very long 

periods of time, from days to weeks.   

hydrophobic
block

hydrophilic
block
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The membrane regulates transport of molecules between the inside and outside 

of the vesicle and its properties can be easily designed and tailored on varying 

the structural and chemical features of the BCs to include a range of desirable 

functions which make them useful in various technologies.6  For instance, 

modification of the coronas might determine the surface characteristics of the 

vesicles and hence their interactions with the environment.  But also, the 

incorporation of stimuli sensitive groups into the membrane wall might activate 

the delivery of cargo molecules on demand.5 

In this context, our research group studied a diversity of aqueous assemblies 

(cylindrical micelles, sheet-like micelles, tubular micelles, as well as polymer 

vesicles) exhibited by a series of amphiphilic LDBCs composed of PEG of 

different molecular weights and dendrons based on bisMPA functionalised at 

the periphery with 4-cyanoazobenzene moieties.  In particular, vesicles were 

observed for the LDBC consisting of a fourth generation dendron with sixteen 4-

cyanoazobenzene units and a 2000 g/mol linear PEG.7 The proposed model for 

these vesicles consists of a bilayer organisation for the azobenzene groups 

packing in the hydrophobic domains with internal and external PEG coronas. In 

order to check the photoresponse of these vesicles, they were irradiated with 

UV light to induce trans-to-cis isomerisation of the azobenzene located in the 

inner part of the bilayer. Nevertheless, morphological changes of the vesicles 

were only achieved by irradiation with intense UV light (Figure 3.2). It is well 

recognised the strong tendency of 4-cyanoazobenzenes towards antiparallel 

dipolar interactions8,9 and it has been described that for highly and densely 

packed azobenzene moieties the fast and highly efficient trans-to-cis 

isomerisation is hindered.10,11 Consequently, disruption of the membrane 

formed by such densely packed arrangements of 4-cyanoazobenzene might be 

restricted.  
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Figure 3.2 Cryo-TEM images of cyanoazobenzene containing vesicles before (a) and 
after (b) irradiation for 35 min at 360 nm and 150 mW/cm2  

 

Due to the potential of vesicles as controlled delivery systems, the aim of this 

work is the preparation of new LDBCs able to self-assembly into polymeric 

vesicles which can act as light controlled delivery nanocarriers upon irradiation 

with low intensity UV light. The use of low intensity UV irradiation limits possible 

undesired side photochemical process as well as the damage of the organic 

structures when exposed to UV irradiation.  For that purpose, the fourth 

generation of azodendrons derived from bisMPA and PEG of 2000 g/mol 

average molecular weight as the linear block has been selected (Figure 3.3). 

The cyano group at the para- position of the azobenzene moiety of the 

previously mentioned materials has been substituted by an alkoxy one. This 

substituents should have a lower tendency to antiparallel and dense 

arrangements. Furthermore, alkoxy para-substituents increase the difference in 

polarity between the trans and the cis isomers compared to the cyano one and, 

as it was above recognised, this facilitates the disruption of self-assemblies 

under UV irradiation.12  

 

a) b)
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Figure 3.3 Chemical structure of the proposed LDBCs 
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3.2  Tasks and Methods 

 

- Synthesis of the blocks consisting of a fourth generation polyester dendron 

based on the bisMPA acid functionalised with sixteen 4-alkoxyazobenzene 

moieties linked through different spacers and an azido functional group at 

the focal point. 

 

- Synthesis of alkyne functionalised PEG 2000 g/mol as linear block. 

 

- Synthesis of the target LDBCs approached by a coupling the preformed 

blocks using the CuAAC reaction (Figure 3.4).  

 

Figure 3.4 Synthetic approach for the synthesis of the LDBCs 

 

- Structural characterisation of the building blocks and derived LDBCs by 

FTIR, NMR, MS as well as elemental analysis. Thermal characterisation 

using POM, TGA and DSC. 

 

- Self-assembly of the LDBCs in water. 

 
- Morphological study of the self-assemblies in water by electron microscopy: 

TEM and Cryo-TEM. 

 
- Study of the photoresponsive behaviour of the self-assemblies in water. 

 
- Study of the encapsulation and photoinduced release of hydrophobic and 

hydrophilic fluorescent probes. 

+
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3.3. Results and Discussion 

3.3.1 Synthesis and Characterisation of the Amphiphilic Block 

Copolymers 

The synthesis of the amphiphilic LDBCs was carried out by using the same 

coupling strategy presented in Chapter 2 where a fourth generation of bisMPA 

based dendron with an azido group at the focal point and functionalised at the 

periphery with azobenzene units was ‘click’ coupled to a previously synthesised 

alkyne terminated PEG chain (Scheme 3.1). 
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Scheme 3.1 Synthesis of the aimed LDBCs starting from d16OH described in Chapter 
2 
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The synthesis of the azido functionalised dendron having sixteen hydroxyl 

groups (d16OH) was described in the Experimental section in Chapter 2. The 4-

alkoxyazobenzene unit was attached to the periphery of the dendron d16OH by 

an esterification reaction between its hydroxyl groups and the appropriate acids 

using the DCC/DPTS system.  In a first attempt, esterification of d16OH with 

11-[4-(4’-methyloxy-phenylazo)phenyloxy] undecanoic acid was approached but 

the sequential incorporation of 4-methyloxyazobenzene units during the course 

of the reaction decreased the solubility of the resulting dendron causing its 

precipitation from the reaction medium and preventing the complete 

functionalisation of the hydroxyl groups at dendron periphery. This result 

contrast with the solubility exhibited by dendrons functionalised with analogous 

cyanobenzene moieties.  Therefore, the 4-methyloxy substituent was replaced 

by the 4-isobutyloxy one while keeping the decamethylenic spacer. 

Nevertheless, a shorter flexible chain was also introduced that should decrease 

the hydrophobicity of the dendrons and influence the self-assembly process. 

For this purpose, two acids having the 4-isobutyloxyazobenzene photoactive 

unit and a decamethylenic (isoAZO) or a pentamethylenic (isoAZOb) flexible 

spacer were synthesised according to Scheme 3.2 using previously reported 

synthetic methods.13 Esterification of d16OH with 4-isobutyloxyazobenzene 

derivates, isoAZO and isoAZOb, rendered the corresponding dendrons, 

d16isoAZO and d16isoAZOb in 30-40% yield. Evidence for the complete 

functionalisation of the periphery of the dendrons was provided by several 

techniques. The MALDI-TOF mass spectra showed the expected ion peaks 

(see MALDI spectrum of  d16isoAZOb in Figure 3.7b as an example). The 1H-

NMR spectra of the azodendrons are fully consistent with the proposed 

chemical structures. As an example, the 1H-NMR spectrum of d16isoAZO is 

shown in Figure 3.5. Relative integration between the signals corresponding to 

the aromatic protons of the azobenzene units and the signal corresponding to 

the methylene unit linked to the azide group, CH2-N3 at 3.27 ppm (labelled as ‘a’ 

in Figure 3.5) also confirmed the complete functionalisation of the periphery of 

the dendron.  
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Scheme 3.2 Synthesis of 4-isobutyloxyazobenzene derivates isoAZO and isoAZOb 

 

 

 

Figure 3.5  1H-NMR spectrum of d16isoAZO in CDCl3 (400MHz) 
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The alkyne-terminated PEG of 2000 g/mol average molecular weight was 

prepared by postpolymerisation modification of commercial monomethyl 

polyethylenglycol monomethyl ether.  Thus, the end functional polymer was 

prepared by esterification of the PEG block with 4-pentynoic acid using DCC 

and  DPTS.14  Incoporporation of the alkyne group was corroborated by 1H-

NMR (Figure 3.6). Relative integration of the signal corresponding to the 

methoxy group of PEG at 3.36 (labelled as ‘a’) and the signal at 2.60-2.50 ppm 

(labelled as ‘d’ and ‘e’ ) evidenced complete functionalisation.  

 

Figure 3.6  1H-NMR spectrum of alkyne functionalised PEG in CDCl3 (400MHz) 

 

The preformed blocks, alkyne functionalised PEG and azobenzene containing 

dendrons (d16isoAZO and d16isoAZOb), were coupled in the last synthetic 

step to form the amphiphilic LDBCs PEG-b-d16isoAZO and PEG-b-

d16isoAZOb. The efficiency of the coupling was corroborated by SEC and 
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MALDI-TOF MS in order to check the presence of the original blocks. However, 

residual traces of the non coupled blocks were not detected. The SEC curves 

corresponding to the LDBCs were monomodal and the narrow molecular weight 

distribution was maintained on coupling, while the molecular peak was slightly 

shifted towards lower retention times compared to that of the separated blocks 

as an indication of the effective coupling of the blocks (Figure 3.7a).  In the 

MALDI-TOF spectra of the LDBCs evidences of the dendron or the linear blocks 

were not observed and their polidispersities are similar to the original PEG 

linear block (Figure 3.7b). Further evidence for the formation of the BCs was 

gained from the IR spectra where the band at 2100 cm-1 due to the azide 

functionality of the azodendron completely disappeared (Figure 3.8).  

 

Figure 3.7 a) SEC traces of PEG-b-d16isoAZOb (dot line) and d16isoAZOb (straight 
line). b) MALDI-TOF mass spectra of PEG-b-d16isoAZOb (top) and d16isoAZOb 
(bottom) 
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Figure 3.8 FTIR spectra of PEG-b-d16isoAZO (top) and the corresponding 
azodendron d16isoAZO (bottom) 

 

Details of the average molecular weights exhibited by the studied compounds 

are given in Table 3.1. LDBCs average molecular weights calculated by MALDI-

TOF fairly agree with expected values taken into account the molecular weight 

of the PEG block (MALDI-TOF) and the dendron. However, the values 

calculated by SEC using PS standards are underestimated. This phenomena 

has been observed previously for other types of LDBCs and can be attributed to 

the smaller hydrodynamic volume of these copolymers.15 

Table 3.1.  Molecular weight of the synthesised polymers 

                          
Polymer 

            
Mn

 [a] 
        

Mn [b] 
         

Mn [c] 
       

ĐM [c] 
philic/phobic       

ratio[d] 

PEG-b-d16isoAZO 10840 10681 9900 1.01 18/82 

PEG-b-d16isoAZOb 9718 9539 9000 1.01 21/79 

[a] Number average molecular weight (Mn) calculated as the sum of the molecular 
weight of the PEG block (Mn=1970 calculated by mass spectrometry) and the 
dendritic blocks (MW= 8870 g/mol for d16isoAZO and MW=7748 g/mol for 
d16isoAZOb). [b] Mn were calculated by MALDI-TOF. [c] Mn and polydispersity (ĐM) 
were determined by SEC using PS standards. [d] Hydrophilic/ hydrophobic ratio was 
calculated considering the linear block (PEG) as the hydrophilic part and the 
azobenzene-containing dendritic block as the hydrophobic part. 
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1H-NMR also confirmed the expected structures. Figure 3.9 depicts the 1H-

NMR spectrum of PEG-b-d16isoAZOb as an example. Relative integration of 

azobenzene aromatic protons signals and the corresponding ones to the PEG 

linear block protons at 3.65-3.50 ppm is in good agreement with the linear-

dendritic BCs structure. Furthemore, the signal corresponding to the methylene 

unit linkes to the azide, CH2-N3, at 3.27 ppm, disappeared and two new peaks 

appeared at 2.97 and 2.73 ppm (labelled as ‘e’ and ‘d’), which are related with 

triazol ring formation. 

 

Figure 3.9  1H-NMR spectrum PEG-b-d16isoAZO in CDCl3 (400MHz) 

 

The thermal stability of the azodendrons and the LDBCs was studied by TGA 

using powdered samples.  All the samples exhibited a good thermal stability up 

to 250ºC, with the onset of decomposition detected above 300ºC, being the 

stability of the BCs slightly higher than that of the corresponding azodendrons. 

Futhermore, no volatile residues were detected in all the studied samples. 
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The thermal transitions of the dendrons and LDBCs were studied by POM and 

DSC (Table 3.2, Figure 3.10).  In the case of POM, the materials were first 

heated to the isotropic state in a heating stage to have a common thermal 

history and then analysed. The results were compared with the DSC curves at 

10ºC/min scan rate.  In the case of d16isoAZO, when it was cooled rom the 

isotropic state, the appearance of birefringent textures associated to the 

development of a smectic A mesophase were observed by POM.  By DSC, the 

isotropic-to-mesophase transition temperature was detected at 92ºC followed 

by an exothermic peak at 79ºC corresponding to the crystallisation of the 

sample.   

Table 3.2.  Thermal properties of the azodendrons and LDBCs 

 TGA[a]  DSC[b] 

Dendrons and LDBCs Td  TI-M ∆HI-M TC ∆HC 

d16isoAZO 328  92 68 79 247 

PEG-b-d16isoAZO 357  - - 84 422 

d16isoAZOb 323  55   -[c] 51 107[c] 

PEG-b-d16isoAZOb 338  - - 62 83 

[a] Td (in ºC):  decomposition temperature associated to mass loss calculated by 
TGA at the onset point in the weight loss curve. [b] TI-M (in ºC) and ∆HI-M (in kJ 
per mole of polymer chain): isotropic-to-mesophase transition temperature and 
associated enthalpy. TC (in ºC) and ∆HC (in kJ per mole of polymer chain):  
crystallisation temperature and associated enthalpy.  Mn of polymer chain used 
to calculate enthalpy values was determined by MALDI-TOF. Data calculated 
from the first cooling scan recorded at 10ºC/min. [c] Crystallisation and isotropic-
to-mesophase transition peaks are overlapped. Enthalpy was calculated 
including the area of the two peaks, ∆HI-M and ∆HC. 

 

The study of d16isoAZOb under POM did not give evidence of mesomorphism 

and only crystallisation of the isotropic liquid was observed upon cooling.  

However, on the DSC cooling curve a small peak at 55ºC was registered before 

crystallisation at 51ºC, which may be indicative of a narrow interval of 
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mesophase. Its identification by POM is hindered due to the high viscosity of the 

sample and its proximity to the crystallisation. 

In relation to the behaviour of the LDBCs, both PEG-b-d16isoAZO and PEG-b-

d16isoAZOb were crystalline in nature and the occurrence of mesomorphism 

was discarded by POM and DSC studies.  By DSC, the crystallisation peak of 

the PEG block about 20ºC was not observed and upon cooling only the 

crystallisation process corresponding to the azodendron domains was detected 

at 84 ºC for PEG-b-d16isoAZO and at 62ºC for PEG-b-d16isoAZOb. PEG-b-

d16isoAZO crystallisation peak exhibits a little shoulder which could be related 

to an isotropic-to-mesophase very close the crystallisation process. Restricted 

PEG crystallisation has been also observed for LDBC when PEG is the minor 

component.16  

 

Figure 3.10 DSC traces of the dendrons and the corresponding LDBC at 10ºC/min 
corresponding to the first cooling  
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3.3.2 Self-assembly of the Linear-Dendritic Azobenzene Block Copolymers 

in Water 

Self-assembled structures of the LDBCs were prepared by the solvent switch 

(or co-solvent) method using THF-water. The process was followed by 

measuring the loss of intensity of transmitted light due to scattering 

(turbidimetry) when pass from a solution to a micellar dispersion. The two 

LDBCs were first dissolved in THF which is a good a solvent for both blocks. 

Then water, which is non solvent for the hydrophobic block, was slowly added 

to the solution while the turbidity of the mixture was monitored as a function of 

the water content (Figure 3.11).  When a critical water content was reached a 

sudden increase in turbidity occurred indicating that polymer self-assembly 

starts. At this point the hydrophilic block tends to shield the hydrophobic block 

apart from the solvent. The self-assembly process sacrifices the entropy of the 

single chains, but prevents a larger enthalpy penalty resulting from energetically 

unfavourable hydrophobe-water interactions.4 Once turbidity reached an almost 

constant value, the resulting dispersion was dialyzed against water to remove 

the organic solvent as it is described in the Experimental Section. 

 

Figure 3.11 Turbidity plot of the LDBCs THF solution versus amount of water added 
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assemblies in water.  In the case of PEG-b-d16isoAZOb, a stable water 

suspension of self-assemblies was eventually obtained using the same 

procedure. The hydrophilic/hydrophobic balance is responsible of this behaviour 

and put in evidence the influence of the structural design on the preparation of 

polymeric vesicles. 

The morphology of the stable self-assemblies of PEG-b-d16isoAZOb was first 

investigated by TEM on dried samples stained with uranyl acetate (see 

Experimental Section for further details).  In fact, the TEM images confirmed the 

formation of vesicular self-assemblies with a deflated appearance because of 

dehydration in the procedure of the sample preparation (Figure 3.12a). 

 

Figure 3.12 a) TEM image of PEG-b-d16isoAZOb non-irradiated vesicles. Cryo-TEM 
images of PEG-b-d16isoAZOb vesicles before b) and after c) irradiation for 1 h at 365 
nm and 2.6 mW/cm2. The length of the scale bar corresponds to 200 nm in a) and 100 
nm in b) and c) 

 

The aqueous suspension PEG-b-d16isoAZOb vesicles were also analyzed by 

Cryo-TEM (Figure 3.12b).  In this case, the sample was vitrified in liquid ethane 

at –170ºC, and images were obtained with liquid nitrogen cooling without the 

need of staining.  Spherical vesicles were observed with dark regions 

corresponding to the aromatic azobenzene moieties that form the hydrophobic 

membrane.  The vesicle diameter was in the range 250-450 nm and the 

thickness of the membrane around 8 nm, which fits well with a bilayer 

arrangement of the azodendrons as was previously reported for analogous 

azobenzene containing LDBCs.7 Size of the vesicles was also evaluated by 

dynamic light scattering (DLS) (see below Figure 3.16 before irradation).  The 

a) b) c)
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mean hydrodynamic diameter (Dh) was found to be 365 nm, which is in good 

agreement with Cryo-TEM observations. 

The critical aggregation concentration (CAC) of PEG-b-d16isoAZOb in water 

was determined by fluorescence spectroscopy using Nile Red as a polarity 

sensitive probe.17-20  In water, Nile Red exhibits a weak emission at 660 nm 

(with excitation at 550 nm) due to excimer formation but if the dye is located in a 

more hydrophobic environment its emission is blue shifted and the intensity 

increases dramatically.20  The self-assembly of this LDBCs produces a 

hydrophobic environment into which Nile Red can enter and the CAC can be 

determined by recording the fluorescence intensity as a function of the LDBC 

concentration. 

It has to be emphasise that Nile Red was also chosen because the 

excitation/emission wavelengths of this particular probe are separated from the 

wavelengths required to induce the trans-to-cis photoisomerisation of the 

azobenzene.  Besides, the intrinsic fluorescence emission of the vesicles with 

excitation at 365 nm (maximum absorption wavelength of azobenzene), was 

discarded.21  

Samples of PEG-b-d16isoAZOb were stirred together with Nile Red at room 

temperature overnight and the emission spectra of Nile Red were registered 

from 560 to 700 nm (see Experimental Section for further details). As expected, 

the fluorescence spectra show that the emission intensity increases on 

increasing the concentration of PEG-b-d16isoAZOb. At low concentrations of 

PEG-b-d16isoAZOb, the weak fluorescence intensity indicates that Nile Red is 

preferentially in water and, therefore, few micellar self-assemblies are present.  

At higher concentrations, the emission intensity increases indicating that Nile 

Red is located in a more hydrophobic environment as a consequence of being 

encapsulated by the polymer self-assemblies. The relationship between 

fluorescence intensity (maximum) and logarithm of the PEG-b-d16isoAZOb 

concentration is non-linear and the onset point corresponds to the CAC (Figure 

3.13). The observed onset point corresponded to a concentration of 35 µg/mL, 

which is comparable with CAC values reported for other LDBC self-

assemblies.19,22  
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Figure 3.13  Fluorescence intensity of Nile Red at 606 nm (λexc = 550 nm) versus PEG-
b-d16isoAZOb concentration (mg/mL)  

 

3.3.3 Light Responsive Behaviour of the Vesicles 

In order to study the photoresponse of the PEG-b-d16isoAZOb vesicles, the 

UV-vis spectra of both a solution of the LDBC in chloroform and the vesicles 

suspension in water were first recorded (Figure 3.14a). The spectra of PEG-b-

d16isoAZOb in solution was characterised by two absorption bands 

corresponding to the trans-isomer, a strong one centred at 360 nm attributed to 

the π-π* transition and a weak one at about 450 nm corresponding to n-π* 

transition. 

The spectrum of the vesicles showed a large broadening and a hypsochromic 

shift of the π-π* band (Figure 3.14a).  The absorption maximum shifted down to 

320 nm which indicates the dominant formation of H-aggregates of azobenzene 

units.  Furthermore two shoulders at  higher wavelengths were observed, one at 

360 nm which corresponds to the value determined for the non-aggregated 

trans-azobenzene and the other at 375 nm which is characteristic of the 

formation of J-aggregates. 

Exposure of the vesicles to UV irradiation, 365 nm and 2.6 mW/cm2, caused 

significant spectral changes (Figure 3.14b).  A remarkably decreasing of π-π* 

absorbance was observed accompanied by a notably increase of the 
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absorbance at 450 nm that can be attributed to the photo-isomerisation of the 

trans- to the cis-azobenzene.  After 30 min of light exposure only slight changes 

were further detected in the UV-vis spectrum.  When the irradiated suspension 

of the vesicles was kept in the dark, after 2 h the spectrum gradually started to 

recover its initial shape due to the slow thermal back isomerisation cis-to-trans. 

Although the thermal isomerisation is slow (hours) it can be readily accelerated 

by exposure to visible light. Thus, the vesicles (previously irradiated at 365 nm) 

were irradiated at 450 nm (Figure 3.15). After 10 min, absorbance at around 

360 nm increased which can be attributed to the back cis-to-trans 

photoisomerisation. After 1 h, the spectrum almost recovered the initial shape.  

 

Figure 3.14 a) UV-Vis spectra of PEG-b-d16isoAZOb in a 5x10-6 M solution in CHCl3 
(straight line) and a water suspension of PEG-b-d16isoAZOb vesicles (dashed line). b) 
UV-Vis spectra of PEG-b-d16isoAZOb irradiated vesicles (concentration of 1 mg/mL) 
for different times at 365 nm and 2.6 mW/cm2 

 

Figure 3.15 UV-Vis spectra of PEG-b-d16isoAZOb irradiated vesicles (concentration 
of 1 mg/mL) at different times at 450 nm (0 min correspond to vesicles previously 
irradiated at 365 nm for 30 min) 
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The irradiated samples were also studied by DLS and Cryo-TEM in order to 

study the modification on the particle dimension and morphology. For these 

studies the vesicles were irradiated for 1h at 365 nm and then measured. By 

DLS measurements a permanent change of the vesicles size upon irradiation 

was observed with a mean Dh of 270 nm determined after irradiation (Figure 

3.16). The Dh was evaluated immediately upon irradiation and after 24 h of 

irradiation and no evolution of the Dh was found evidencing an irreversible 

morphological change. The Cryo-TEM image of the irradiated sample after 15 h 

shows deformed vesicles with a distorted membrane in contrast to the non-

irradiated samples (Figure 3.12c).  Therefore, the experiments suggest 

remarkable changes in the morphology of PEG-b-d16isoAZOb vesicles before 

and after UV irradiation as a consecuence of the azobenzene 

photoisomerisation. 

 

Figure 3.16 DLS measurements of a water suspension of PEG-b-d16isoAZOb 
vesicles before and after UV light irradiation at 365 nm and 2.6 mW/cm2 

 

For the sake of comparison, vesicles of LDBC functionalised with 4-

cyanoazobenzene were irradiated under the same conditions of low intensity 

used in this work.  Recording of the UV data at different irradiation times 

indicated that trans-to-cis isomerisation took place to a lesser extent (Figure 

3.17a).  Substantial changes were not observed in the mean Dh determined by 

DLS upon irradiation (Figure 3.17b). Therefore, under the same experimental 
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conditions, changes on vesicles containing 4-cyanoazobenzene units were only 

moderate. We can assume that the higher tendency towards aggregation and 

the higher polarity of the trans 4-cyanoazobenzene might hinder an effective 

disruption of the photochromic bilayer shell. 

Figure 3.17 a) UV-Vis spectra and b) dynamic light scattering measurements of the 4-
cyanoazobenene-containing vesicles (concentration of 1 mg/mL) irradiated for different 
times at 365 nm and 2.6 mW/cm2  

 

3.3.4 Encapsulation and Photoinduced Release of Molecular Probes 

The potential of the vesicles as light responsive nanocontainers was 

investigated by encapsulation and subsequent release of fluorescent probes.  

Since molecules of interest can be trapped either in the hydrophilic hollow cavity 

or in the hydrophobic membrane of the vesicle, the ability to encapsulate both 

Nile Red and Rhodamine B, which are respectively of hydrophobic and 

hydrophilic nature, was tested. 

Encapsulation of Nile Red was already demonstrated in the determination of the 

CAC.  Because of its hydrophobic nature, Nile Red should be retained in the 

hydrophobic region of the vesicle, i.e. in the membrane formed by the photo-

responsive azobenzene block, rather than in the internal compartment of the 

vesicle.23  Thereof, Red Nile was encapsulated by difussion stirring an aqueous 

vesicle suspension of 1 mg/mL concentration in Nile Red 10–6 M.  The 

suspension was stirred overnight to reach the equilibrium before fluorescence 

was measured.  The emission spectra of Nile Red were registered from 560 to 
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700 nm while exciting at 550 nm. Nile Red exhibits an strong fluorescence 

revealing that the probe has been encapsulated. 

The suspension of the loaded vesicles was irradiated with 365 nm UV light, 2.6 

mW/cm2, and the fluorescence of Nile Red was recorded at different exposure 

times. Upon irradiation, an abruptly decrease on the initial fluorescence intensity 

at 606 nm was observed (Figure 3.18).  This change in fluorescence upon UV 

light exposure indicates that the environment of the probe becomes less 

hydrophobic.  A priori this can be reasonably related to the disruption of the 

vesicle membrane and subsequent release of Nile Red into water due to trans-

to-cis isomerisation of azobenzene.  But also, the trans-to-cis isomerisation of 

the azobenzene brings about a change in the polarity of membrane which 

becomes more hydrophilic and this can also explain the decrease on the 

fluorescence intensity of the Nile Red without its complete releasing into water.  

When the irradiated vesicles were kept in the dark the fluorescence intensity 

was slowly and partially recovered.  Therefore, because the slow back thermal 

cis-to-trans relaxation of azobenzene takes place the fluorescence intensity 

should increases again because the recovery of a more hydrophobic 

environment within the membrane.24
 

 

Figure 3.18 Emission spectra of the Nile Red encapsulated vesicles of PEG-b-
d16isoAZOb recorded after irradiating at 365 nm and 2.6 mW/cm2 for different time 
intervals 
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To gain more information on whether or not the photoinduced increase of 

membrane permeation takes place, vesicles were loaded with Rhodamine B 

dye and confocal microscopy was used for monitoring the process.  Rhodamine 

B exhibits emission at 575 nm when excitation with 554 nm light which do not 

overlap with absorption bands of azobenzene.  Due to its hydrophilic nature, 

Rhodamine B should be loaded in the hydrophilic internal cavity of the vesicle.  

In this case, vesicles were formed in THF by slowly addition of an aqueous 

solution of Rhodamine B following the self-assembling process by turbidity 

analysis (see experimental section for further details).25  The vesicles were 

dialysed against water to remove THF as well as the non-encapsulated 

Rhodamine B.  Dye encapsulation was confirmed by confocal microscopy 

images where fluorescence dots in a dark background were observed (Figure 

3.19a). 

 

Figure 3.19 Fluorescence microscopy images of the water supension of loaded PEG-
b-d16isoAZOb vesicles before a) and after b) irradiation for 1 h at 365 nm and 2.6 
mW/cm2.  The length of the scale bar corresponds to 5 µm 

 

After irradiation at 365 nm for 1h, fluorescent dots were still visible by 

fluorescence microscopy but also a fluorescent background was observed due 

to Rhodamine B release from the interior of the vesicles to the aqueous media 

(Figure 3.19b). These experiments indicate that under UV illumination the 

vesicle membrane became permeable to the loaded fluorescent probe. The 

persistence of fluorescent dots after 1 h irradiation might be due to the fact that 

some of the vesicles are still unaffected by irradiation but more likely it can be 

due to only partial release of the encapsulated dye.  A continuous permeation 

a) b)
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through the membrane of the encapsulated Rhodamine B occurs on exposure 

due to its deformation but, reassembly (at least partially) of the vesicle 

membrane on the dark due to thermal cis-to-trans back isomerisation limits the 

release.  Recent simulation studies pointed out that despite the release of 

hydrophilic substance starts as soon as the vesicles are exposed to light, the 

membrane permeation does not enhance suddenly.26 

  



Amphiphilic Linear-Dendritic Block Copolymer                                                137 
 

 
 

3.4 Conclusions 

Novel photoresponsive amphiphilic LDBCs have been prepared that include 4-

isobutyloxyazobenzene moieties at the dendritic block as the photo-active units 

and PEG as the linear hydrophilic block.  As it was proved in analogous 

materials based on 4-cyanoazobenzene, it has been found that combining the 

fourth generation of a bis-MPA based 4-isobutyloxyazodendron with PEG of 

Mn=2000 g/mol stable vesicles are produced. However, these polymeric self-

assemblies are only achieved when the incorporation of the alkoxy terminal 

chain is compensated by reducing the length of the methylenic linker used to 

attach the azobenzene to the periphery of the dendron. This structural 

modification (4-isobutyloxyazobenzene incorporation) does not significantly alter 

self-assembly in solution but what is more valuable it facilitates the disruption of 

azobenzene aggregates of the membrane on exposing the vesicles to low 

intensity UV light when compared to its 4-cyanoazobenzene counterparts. 

It has been demonstrated by fluorescence spectroscopy that these vesicles are 

able to load both hydrophobic and hydrophilic molecules and that under 

conditions of low intensity UV illumination trans-to-cis isomerisation of 

azobenzene occurs causing a distortion of the bilayer membrane increasing its 

permeability to loaded fluorescent probe.  Therefore, the light stimulated 

delivery process of encapsulate dyes has been proved. 
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3.5 Experimental Section 

Materials 

The fourth-generation polyester dendron (d16OH) was prepared according to 

the procedure described in Chapter 2.  CuBr was used as received and handled 

in a dry box. All other reagents were purchased from Sigma-Aldrich and used 

as received without further purification.  

 

3.5.1 Experimental Details for the Synthesis of 4-isobutyloxyazobenzene 

derivatives 

Synthesis and Characterisation of 4-isobutyloxynitrobenzene (13) 

 

2-Methyl-1-propanol (5.33 g, 71.90 mmol), p-nitrophenol (10.05 g, 71.90 mmol), 

and diisopropylazadicarboxylate (14.53 g, 71.90 mmol) were dissolved in dry 

THF (50 mL) under argon atmosphere and cooled into an ice-water bath.  Then, 

a solution of triphenylphosphine (18.85 g, 71.90 mmol) in dry THF (25 mL) was 

added dropwise with stirring.  The mixture was stirred at room temperature 

overnight, the solvent was evaporated and the residue dissolved in DCM.  The 

solution was washed twice with a saturated Na2CO3 solution, twice with water, 

and then with brine.  The organic phase was dried, concentrated, and purified 

by flash column chromatography on silica gel using hexane/ethyl acetate (8:2) 

as eluent.  Yield: 80%.  IR (KBr),  (cm-1): 1592, 1519, 1501, 1344, 1268, 1112, 

845.  1H-NMR (CDCl3, 400MHz) δ (ppm): 8.21-8.18 (m, 2H), 6.96-6.93 (m, 2H), 

3.81 (d, J=6,5 Hz, 2H), 2.07-2.13 (m, 1H), 1.05 (d, J= 6,7 Hz, 6H). 13C-NMR 

(CDCl3, 100 MHz) δ (ppm): 164.3, 140.8, 125.9, 114.4, 75.1, 28.1, 19.1. 
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Synthesis and Characterisation of 4-isobutyloxyaniline (14) 

 

Hydrazine monohydrate (98%, 3.5 mL, 71.71 mmol) was added dropwise to a 

solution of the nitrobenzene derivative (13) (7.00 g, 35.85 mmol) in ethanol (70 

mL).  After the solution was heated to 40 °C, activated Raney nickel was added 

and the mixture stirred until no further reaction was observed. The resulting 

mixture was filtered off of the Raney nickel, and ethanol was removed under 

reduced pressure.  The crude was dissolved in diethyl ether (60 mL), washed 

with water and brine, and dried over anhydrous magnesium sulphate.  The 

solvent was distilled off giving the aniline as a yellow oil that was used without 

further purification.  Yield: 90%. IR (KBr),  (cm-1): 3433, 3358, 1592, 1236, 

1036, 823.  1H-NMR (CDCl3, 400MHz) δ (ppm): 6.75-6.73 (m, 2H), 6.65-6.62 

(m, 2H), 3.64 (d, J=6,5 Hz, 2H), 3,40 (s broad, 2H), 2.04-2.11 (m, 1H), 1.00 (d, 

J= 6,7 Hz, 6H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 152.5, 139.8, 116.5, 

115.6, 75.2, 28.3, 19.3. 

Synthesis and Characterisation of 4-isobutyloxy-4'-hydroxyazobenzene 

(15) 

O N
N OH (15)

 

 

A mixture of aniline (14) (5.21 g, 31.50 mmol) and HCl 6M (15 mL) was cooled 

into an ice bath. A 2.5 M sodium nitrite solution (20 mL, 31.50 mmol) was added 

dropwise to the mixture and it was kept stirring in the ice bath.  Then, a solution 

of phenol (2.96 g, 31.50 mmol) in 2 M NaOH (25 mL) was carefully added.  The 

product was precipitated upon addition of HCl until neutral pH and it was 

purified by flash column chromatography on silica gel using DCM as an eluent.  

The product was obtained as a yellow powder.  Yield: 65%.  IR (KBr),  (cm-1): 

3137, 1599, 1586, 1503, 1261, 1149, 839. 1H-NMR (CDCl3, 400MHz) δ (ppm): 

7.87-7.85 (m, 4H), 7.84-7.82 (m, 4H), 3.81 (d, 2H, J=6,5 Hz), 2.07-2.13 (m, 1H), 
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1.05 (d, 6H, J= 6,7 Hz). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 161.4, 157.6, 

146.8, 124.6, 124.4, 115.8, 114.7, 74.7, 28.3, 19.3. 

 

Synthesis and Characterisation of Methyl 11-[4-(4’-isobutyloxyphenylazo) 

phenyloxy]undecanoate (16a) 

 

 

A solution of 4-isobutyloxy-4'-hydroxyazobenzene (15) (2.05 g, 7.40 mmol), 

methyl 11-bromoundecanoate (2.48 g, 8.88 mmol) in butanone (40 mL) was 

prepared.  18-Crown-6 ether (0.05 g) and potassium carbonate (2.05 g, 14.79 

mol) were added.  The suspension was stirred under reflux for 24 h.  Then, it 

was filtered and concentrated.  The crude product was purified by flash column 

chromatography on silica gel using DCM as eluent.  The product was obtained 

as a yellow powder. Yield: 75%. IR (KBr),  (cm-1): 1739, 1592, 1580, 1465, 

1242, 845. 1H- NMR (CDCl3, 400MHz) δ (ppm): 7.87-7.85 (m, 4H), 6.94-6.92 

(m, 4H), 4.03 (t, J=6.4 Hz, 2H), 3.80 (d, J=6,5 Hz, 2H), 3.69 (s, 3H), 2.30 (t, 

J=7.4 Hz, 2H), 2.09-2.14 (m, 1H), 1.88-1.75 (m, 2H), 1-67-1,56 (m, 2H), 1.37-

1,21 (m, 12H), 1.05 (d, J= 6,7 Hz, 6H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 

174.8, 161.3, 146.9, 124.3, 114.6, 74.6, 68.3, 51.4, 34.1, 29.4, 29.3, 29.2, 29.1, 

28.3, 26.0, 24.9, 19.2.  

Synthesis and Characterisation of Methyl 6-[4-(4’-isobutyloxyphenylazo) 

phenyloxy]hexanoate (16b)  

 

The product was obtained following the procedure described for (16a) using 

methyl 6-bromohexanoate. Yield: 88%.  IR (KBr),  (cm-1): 1741, 1601, 1580, 

1497, 1242, 843. 1H-NMR (CDCl3, 400MHz) δ (ppm): 7.84-7.82 (m, 4H), 7.00-

6.98 (m, 4H), 4.04 (t, J=6.4 Hz, 2H), 3.81 (d, J=6,5 Hz, 2H), 3.69 (s, 3H), 2.37 

(t, J=7.4 Hz, 2H), 2.07-2.13 (m, 1H), 1.88-1.81 (m, 2H), 1.76-1.69 (m, 2H), 1.57-
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1.49 (m, 2H), 1.05 (d, J= 6,7 Hz, 6H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 

175.0, 161.3, 160.9, 146.9, 124.3, 114.6, 114.6, 74.6, 67.9, 51.53, 33.9, 28.9, 

28.3, 25.6, 24.7, 19.3. 

Synthesis and Characterisation of 11-[4-(4’-isobutyloxyphenylazo) 

phenyloxy]undecanoic acid (isoAZO) 

 

An aqueous solution of potassium hydroxide (0.9g, 9mL) was added to a 

solution of methyl 11-[4-(4’-isobutyloxyphenylazo)phenyloxy]undecanoate (17a) 

(6g, 15.05 mmol) in ethanol (60 mL).  The mixture was stirred and heated under 

reflux for 1 h. Then, the crude product was precipitated by addition of HCl until 

pH 2 and it was recovered by filtration.  The product was recrystallised from 

ethanol.  Yield: 85%.  IR (KBr),  (cm-1): 3300, 1714, 1601, 1579, 1499, 1241, 

846.1H-NMR (CDCl3, 400MHz) δ (ppm): 7.86-7.84 (m, 4H), 7.00-6.98 (m, 4H), 

4.02 (t, J=6.4 Hz, 2H), 3.79 (d, J=6,5 Hz, 2H), 2.33 (t, J=7.4 Hz, 2H), 2.05-2.11 

(m, 1H), 1.86-1.73 (m, 2H), 1.64-1.59 (m, 2H), 1.48-1.43 (m, 2H), 1.34-1.21 (m, 

10H), 1.04 (d, J= 6,7 Hz, 6H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 173.9, 

161.6, 147.3, 124.4, 114.5, 74.6, 68.3, 34.1, 29.4, 29.3, 29.2, 28.3, 26.0, 24.8, 

19.2. 

Synthesis and Characterisation of 6-[4-(4’-isobutyloxyphenylazo) 

phenyloxy]hexanoic acid (isoAZOb) 

 

The product was obtained following the procedure descibed for isoAZO by 

using methyl 6-[4-(4’-isobutyloxyphenylazo)phenyloxy]hexanoate (16b). Yield: 

80%. IR (KBr),  (cm-1): 3300, 1708, 1693, 1601, 1580, 1501, 1240, 843.  1H-

NMR (CDCl3, 400MHz) δ (ppm): 7.87-7.85 (m, 2H), 6.94-6.92 (m, 2H), 4.06 (t, 

J=6.4 Hz. 2H), 3.81 (d, J=6,5 Hz, 2H), 2.37 (t, J=7.4 Hz, 2H), 2.08-2.14 (m, 1H), 

1.88-1.81 (m, 2H), 1.76-1.69 (m, 2H), 1.57-1.49 (m, 2H), 1.05 (d, J= 6,7 Hz, 
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6H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 174.4, 161.0, 146.9, 124.3, 114.7, 

74.7, 67.9, 33.6, 28.9, 28.3, 25.6, 24.4, 19.3.  

 

3.5.2 Experimental Details for the Synthesis of the Azodendrons 

 

General Procedure  

d16OH (n mmol), isoAZO or isoAZOb  (1.2 x 16 n mmol) and DPTS (16 n 

mmol) were dissolved in a mixture of DCM and DMF 5:1 (around 20 mL per 200 

mg of d16OH)  The reaction flask was flushed with argon, and DCC (1.32 x 16 

n mmol) was added.  The mixture was stirred at room temperature for 48 h 

under argon atmosphere.  The white precipitate formed was filtered off, and the 

solvent evaporated.  The crude product was purified by liquid chromatography 

on silica gel and eluted with DCM, gradually increasing the polarity to 1:10 ethyl 

acetate:DCM.  Azodendrons were obtained as a red powder.  Yield: 30-40 %.   

Characterisation Data for d16isoAZO: IR (KBr),  (cm-1): 2097, 1742, 1601, 

1581, 1500, 1242, 1147, 843.  1H-NMR (CDCl3, 400MHz) δ (ppm): 7.85-7.82 

(m, 64H), 6.98-6.92 (m, 64H), 4.30-4.16 (m, 62H) 3.96 (t, J=6.3 Hz, 32H), 3.76 
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(d, J=6,5 Hz, 32H), 3.26 (t, J=6.8 Hz, 2H), 2.28 (t, J=7.5 Hz, 32H), 2.12-1.08 (m, 

16H), 1.82-1.77 (m, 32H), 1.68-1.62 (m, 34H), 1.48-1.43 (m, 34H), 1.35-1.10 

(m, 209H), 1.03 (d, J= 6,7 Hz, 96H). 13C-NMR (100 MHz, CDCl3) δ (ppm): 

173.1, 161.1, 146.9, 124.3, 114.6, 114.6, 74.6, 68.2, 33.9, 29.6, 29.5, 29.3, 

28.2, 26.0, 24.8, 19.2.  (MALDI+, dithranol ) m/z: 8890.6 [M+Na]+. Anal. Calc for 

C513H709N35O94: C, 69.46%; H, 8.06 %; N, 5.53 %. Found: C, 69.36 %; H, 8.36 

%; N, 5.56%. 

Characterisation Data for d16isoAZOb: IR (KBr),  (cm-1): 2096, 1741, 1601, 

1581, 1500, 1244, 1148, 842. 1H-NMR (CDCl3, 400MHz) δ (ppm):  7.83-7.80 

(m, 64H), 6.96-6.90 (m, 64H), 4.30-4.16 (m, 62H) 3.93 (t, J=6.3 Hz, 32H), 3.74 

(d, J=6,5 Hz, 32H), 3.21 (t, J=6.8 Hz, 2H), 2.32 (t, J=7.5 Hz, 32H), 2.10-2.07 (m, 

16H) 1.78-1.73 (m, 32H), 1.62-1.54 (m, 34H), 1.47-1.38 (m, 34H), 1.36-1.10 (m, 

49H), 1.03 (d, J= 6,7 Hz, 96H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 172.8, 

172.1, 161.3, 161.0, 147.3, 146.9, 124.3, 114.5, 74.6, 67.9, 64.8, 46.4, 33.9, 

28.9, 28.3, 28.3, 25.6, 24.6, 19.2, 17.9. (MALDI+, dithranol) m/z: 7771.1 

[M+Na]+. Anal. Calc for C433H549N35O94: C, 67.12 %; H, 7.14 %; N, 6.33 %. 

Found: C, 67.69 %; H, 6.87 %; N, 5.98%. 

 

3.5.3 Experimental Details for the Synthesis of the Linear Block 

Synthesis and Characterisation of Alkyne Functionalised Polyethylene 

glycol (PEG) 14 

 

Polyethylenglycol mono ethyl ether (Mn=2000 g/mol) (4.30 g, 2.15 mmol), 4-

pentynoic  acid (0.26 g, 2.65 mmol) and DPTS (0.11 g, 0.90 mmol) were 

dissolved in DCM (25 mL) and coleed in an ice bath. The reaction flask was 

flushed with argon and DCC (0.59 g, 2.86 mmol) was added.  The mixture was 

kept in the ice-water bath for 10 min and then stirred overnight under an argon 

atmosphere at room temperature. The white precipitate (N,N’-dicyclohexylurea) 

was filtered off and the solution precipitated into a large volume of cold diethyl 

ether. The target product was then filtered and dried under vacuum. Yield: 90 
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%. IR (KBr),  (cm-1): 3260, 2881, 1962, 1730, 1475, 1285. 1H-NMR (CDCl3, 

400MHz) δ (ppm): 4.34 (t, J = 4.6 Hz, 2H), 3.70-3.54 (m, 178H), 3.36 (s, 3H), 

2.61-2.53 (m, 2H), 2.52-2.44 (m, 2H), 1.97 (t, J = 2.3 Hz, 1H).  

 

3.5.4 Experimental Details for the Synthesis of the LDBCs 

O

O

O

O

O

O

O

O

O
O

O

OR
OR

O

OR
OR

O

O

O

O OR

OR

O

OR

OR

O

O

O

O

OR

OR

O
OR

OR

O

O

O

O

OR

OR

O

OR

OR

O

O

N
NO

OCH2

n=10,5

O

R=
n

ONO
O

NN

O45 6

PEG-b-d16isoAZO
PEG-b-d16isoAZOb

 

General Procedure for the Coupling Reaction  

Azodendron d16AZO, 1.2-fold excess of alkyne-functionalised PEG and two-

fold excess of CuBr were placed into a Schlenk tube.  Two-fold excess of 

PMDETA and deoxygenated DMF (around 1 mL per 100 mg of polymer) were 

added with an argon-purged syringe, and the flask was further degassed by 

three freeze-pump-thaw cycles and flushed with argon.  The reaction mixture 

was stirred at 40ºC for 72 h. The reaction mixture was stirred under an argon 

atmosphere at room temperature for 72 h. The mixture was diluted with THF 

and then passed through a short column of alumina. The solvent was partially 

evaporated and the resulting polymer solution was carefully precipitated of cold 

ethanol.  Yield: 75-80%. 
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Characterisation Data for PEG-b-d16isoAZO: IR (KBr),  (cm-1): 1741, 1602, 

1581, 1499, 1243, 1148, 843. 1H-NMR (CDCl3, 400MHz) δ (ppm): 7.85-7.82 (m, 

64H), 7.52 (s, 1H), 6.98-6.92 (m, 64H), 4.30-4.16 (m, 64H) 3.96 (t, J=6.3 Hz, 

32H), 3.76 (d, J=6,5 Hz, 32H), 3.65-3.50 (m, 178H), 3.38 (s, 3H), 2.97 (t, J=6.5 

Hz, 2H), 2.73 (t, J=6.5 Hz, 2H), 2.28 (t, J=7.5 Hz, 32H), 2.12-2.08 (m, 16H) 

1.82-1.77 (m, 32H), 1.68-1.62 (m, 34H), 1.48-1.43 (m, 34H), 1.35-1.10 (m, 

209H), 1.03 (d, J= 6,7 Hz, 96H). Anal. Calc: C, 66.73 %; H, 8.19 %; N, 4.47 %. 

Found: C, 66.28 %; H, 8.59 %; N, 5.05 %. 

Characterisation Data for PEG-b-d16isoAZOb: IR (KBr), ν (cm-1): 1739, 

1601, 1581, 1498, 1245, 1148, 843. 1H-NMR (CDCl3, 400MHz) δ (ppm): 7.83-

7.80 (m, 64H), 7.52 (s, 1H), 6.96-6.90 (m, 64H), 4.30-4.16 (m, 64H) 3.93 (t, 

J=6.3 Hz, 32H), 3.74 (d, J=6,5 Hz, 32H), 3.65-3.50 (m, 178H), 3.38 (s, 3H), 2.97 

(t, J=6.5 Hz, 2H), 2.73 (t, J=6.5 Hz, 2H), 2.32 (t, J=7.5 Hz, 32H), 2.10-2.07 (m, 

16H) 1.78-1.73 (m, 32H), 1.68-1.62 (m, 34H), 1.48-1.43 (m, 34H), 1.35-1.10 (m, 

49H), 1.03 (d, J= 6,7 Hz, 96H).  Anal. Calc: C, 64.57%; H, 7.50 %; N, 4.98 %. 

Found: C, 64.09 %; H, 7.72 %; N, 4.63%.  
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3.5.5 General Procedures 

Preparation of the Vesicles 

For the preparation of the self-assemblies, a solution of 5mg/mL of the 

amphiphilic BC in THF was prepared and Milli-Q water was gradually added 

while measuring the absorbance at 650nm in the UV-Vis spectrophotometer as 

a means of monitoring turbidity (scattering).  When a constant value was 

reached, the mixture was dialyzed against water to remove the organic solvent 

using a Spectra/Por® dialysis membrane (MWCO 1000) during 3 days.  Water 

suspensions of the vesicles with a concentration around 2 mg/mL were 

obtained. 

Determination of the Critical Agregation Concentration (CAC) 

Critical aggregation concentration (CAC) was determined by fluorescence 

spectroscopy using Nile Red as the probe as follows:  119 µL of a solution of 

Nile Red in DCM (510–6 M) was added into a series of flasks and then the 

solvent evaporated.  Afterwards, a water suspension of vesicles of 

concentration ranging from 1.010–4 to 1.0 mg /mL was added to each flask.  

The vesicles suspensions were prepared by diluting the former 2 mg/mL vesicle 

suspension.  In each flask a final concentration of 1.010–6 M of Nile Red was 

reached.  These solutions were stirred overnight to reach equilibrium before 

fluorescence was measured.  The emission spectra of Nile Red were registered 

from 560 to 700 nm while exciting at 550 nm. 

Loading of Rhodamine B into the Vesicle 

In order to encapsulate the dye, vesicles formation was carried out following the 

same procedure described for the polymer vesicles but using a solution of 

Rhodamine B in Milli-Q water.25  The copolymer was first dissolved in THF and 

a solution of Rhodamine B was gradually added to induce the self-assembly 

into vesicles.  The charge ratio was 1:5 (mol copolymer/mol dye).  Self-

assembly was followed by monitoring the turbidity and once prepared the 

encapsulated vesicles, the mixture was then dialyzed against water to remove 

THF and non-encapsulated Rhodamine B. 
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Preparation of Samples for TEM Inspection 

5 µL of a 0.5 mg/mL water dispersion of self-assemblies was applied to a TEM 

grid.  Water of the sample was removed by capillarity using filter paper.  Then, 

the sample was stained with uranyl acetate and the grid was dried overnight 

under vacuum. 

Preparation of Samples for Cryo-TEM Inspection 

5µL of a 2 mg/mL water dispersion of self-assemblies were applied to a suitable 

grid and then rapidly frozen in liquid ethane. 

Confocal Microscopy Sample Preparation 

5µL of a 2 mg/mL water dispersion of self-assemblies with encapsulated 

Rhodamine B were applied to a glass slide and a cover slip was placed on the 

top of the sample.  The edges were sealed to avoid solvent evaporation during 

measurement. 

Irradiation Experiments 

A 1000 W mercury lamp Oriel was used as the light source for the 

photoisomerisation of the azobenzenes.  Light was passed through a IR water 

filter (10 cm) and a cut-off filter (λ = 365 nm).  The samples were placed at a 

distance of 40 cm from the light source in quartz cuvettes at room temperature. 

Power lamp was measured by using a calibrated photodiode sensor Newsport 

model 818-UV. 
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4.1 Introduction and Aims 

It has already been emphasised the increasingly interest in the preparation of 

stimuli-responsive polymeric nanoparticles for on demand delivery.1-10 From 

them, polymer vesicles created using synthetic amphiphilic block copolymers 

represent excellent candidates for new nanocarriers as they offer the benefit of 

simultaneous encapsulation of hydrophilic compounds in their aqueous cavities 

and the insertion of hydrophobic compounds in their membranes.  Polymer 

vesicles have similar structure to lipid vesicles with the advantage of superior 

stability and toughness but in addition offer numerous possibilities of tailoring 

physical and chemical properties. By variation of block length, chemical 

structure, hydrophobic/hydrophilic ratio, architecture or implementing additional 

functionalities, parameters such as the size, membrane integrity, permeation or 

responsiveness to stimuli can be modified.11-13 

We have focused our interest in light-responsive LDBC that can form polymeric 

vesicles in water when an appropriate hydrophilic-hydrophobic balance is 

reached. As already discussed in the previous chapter, amphiphilic LDBCs 

composed of a fourth generation of the azodendron based on bis-MPA having 

sixteen peripheral azobenzene units coupled to a PEG segment of 2000 

number average molecular weight generate stable vesicles in water.14 These 

vesicles can entrap small hydrophobic and hydrophilic molecules that can be 

released upon UV-irradiation. The photoresponsive behaviour of the vesicles 

was initially demonstrated from LDBC having 4-cyanoazobenzene units using a 

high intensity UV lamp. In the previous chapter, we showed that the 

incorporation of sixteen 4-isobutyloxyazobenzene units at the surface of the 

dendron facilitates the effectively light induced disruption of the membrane, as 

lower intensity of light illumination is required. The vesicles were used to 

encapsulate both hydrophobic and hydrophilic molecules and, under conditions 

of low intensity UV irradiation, the distortion of the membrane increased its 

permeability to the entrapped molecules.  

In this chapter, the chemical composition of the dendritic block is varied by 

incorporating 4-isobutyloxyazobenzene and hydrocarbon chains in different 

proportions randomly distributed at the periphery of the dendron.  The purpose 
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of this structural modification is to decrease the azobenzene content altering the 

interactions in the inner membrane and to investigate its possible influence in 

the uptake/release usin fluorescent probes. Specifically, three different 

codendrons derived from the fourth generation dendrons of bis-MPA statistically 

functionalised with 4-isobutyloxyazobenzene (isoAZOb) and alkyl chains (C18) 

in 3:1, 1:1 and 1:3 molar ratio (that correspond to 75/25, 50/50 and 25/75 molar 

percentages of isoAZOb/C18) were proposed (Figure 4.1). 

 

Figure 4.1 Schematic representation of the LDBCs with a statistitical 
cofunctionalisation of the dendron periphery 

 

LDBC
isoAZOb

units
C18
units isoAZOb/C18

PEG-b-d(isoAZOb/C18)-75/25 12 4 75/25

PEG-b-d(isoAZOb/C18)-50/50 8 8 50/50

PEG-b-d(isoAZOb/C18)-25/75 4 12 25/75
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Tasks in this chapter are analogous to the described in the previous one. The 

materials were accomplished by the same synthetic approach (Figure 4.2) and 

characterised using similar techniques in order to compare the results with the 

LDBC having sixteen azobenzene moieties used as reference.  

 

 

Figure 4.2 Synthetic approach for the synthesis of the LDBCs 

  

+
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4.2 Results and discussion 

4.2.1 Synthesis and Characterisation of the Amphiphilic Block 

Copolymers 

The target amphiphilic LDBCs with a statistical functionalisation were prepared 

following the coupling strategy described in Chapter 3. In this case, the dendron 

d16OH was esterified with a mixture of 4-isobutyloxyazobenzene carboxylic 

acid isoAZOb and stearic acid (C18) using DCC/DPTS (see Experimental 

Section). Three different proportions of both acids were fed in the esterification 

reaction being 75/25, 50/50 and 25/75 the molar percentages of isoAZOb/C18 

used (Scheme 4.1). 
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Scheme 4.1 Synthesis of the investigated LDBCs 
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Different analytical techniques were used to gain full information about the 

resulting composition of these codendrons. As expected, several peaks were 

registered in the MALDI-TOF mass spectra corresponding to a distribution of 

codendrons with different composition. The mass spectra showed a statistical 

functionalisation of the periphery of the dendron, being the most intense peaks 

the corresponding to fully substituted codendrons (Figure 4.3).  However, 

peaks corresponding to codendrons with fifteen functionalised groups were also 

detected at lower masses.  The maximum of this distribution (Table 4.1) 

corresponds to codendrons with a functionalisation equal or similar to the acids’ 

ratio feed on the esterification reaction.  Accordingly, for d(isoAZOb/C18)-75/25 

the maximum of this distribution corresponds to fully functionalised condendron 

containing 12 isoAZOb units and 4 alkyl chains (12isoAZOb/4C18 composition) 

at the sixteen peripheral positions, for d(isoAZOb/C18)-50/50 there is a similar 

population of codendrons with 8isoAZOb/8C18 and 9isoAZOb/7C18 

compositions and for d(isoAZOb/C18)-25/75 the majority corresponds to 

4isoAZOb/12C18 composition. 

 

Figure 4.3 MALDI-TOF spectrum of d(isoAZOb/C18)-50/50 codendron as an example. 
Assigned peaks correspond to the protonated species [M-H]+, although [M-Na]+ are 
also detected 
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Table 4.1 Molecular weight and composition of the synthesised condendrons and 
LDBCs. 

Codendrons and 
LDBCs 

         
Mn

[a] 
       

Mn
[b] 

  
Mn

[c] 
       

ĐM
[c] 

isoAZOb/C18   
ratio[d] 

philic/phobic
ratio[e] 

d(isoAZOb/C18)-75/25 7349 7350 6300 1.01 72/28 - 

d(isoAZOb/C18)-50/50 6948 6949 6500 1.02 47/53 - 

d(isoAZOb/C18)-25/75 6548 6549 6000 1.03 31/69 - 

PEG-b-
d(isoAZOb/C18)-75/25 

9319 9100 8600 1.02 - 79/21 

PEG-b-
d(isoAZOb/C18)-50/50 

8918 8800 8400 1.02 - 78/22 

PEG-b-
d(isoAZOb/C18)-25/75 

8518 8400 8000 1.03 - 76/24 

[a] For the codendrons, molecular weight was calculated from the feed isoAZOb/C18 
ratio. For LDBCs, the theoretical molecular weight is given as the sum of the molecular 
weight of the PEG block (Mn=1970) and the theoretical molecular weight of the 
dendritic block. [b] Molecular weights obtained by MALDI-TOF. Data of the dendrons 
corresponding to the most intense peak of the protonated species [M-H]+ in dendron 
distributions (see MALDI-TOF spectra in Figure 4.3). [c] Mn and ĐM were calculated by 
SEC using PS standards. [d] isoAZOb/C18 ratio calculated by 1H-NMR. [e] Hydrophilic/ 
hydrophobic ratio was calculated considering the linear block (PEG) as the hydrophilic 
part and the dendritic block as the hydrophobic one. 
 
 

1H-NMR spectroscopy was employed to study the average isoAZOb/C18 

composition by relative integration of azobenzene aromatic protons signals and 

the corresponding to the methylenic protons (-CH2-CO) of the functional units at 

the periphery (See Figure 4.4 as an example). The calculated isoAZOb/C18 

ratios are in fair agreement with the expected ones. 

Alkyne functionalised PEG15 and azido functionalised codendrons were finally 

coupled to give the corresponding LDBCs PEG-b-d(isoAZOb/C18)-75/25, 

PEG-b-d(isoAZOb/C18)-50/50 and PEG-b-d(isoAZOb/C18)-25/75. Again, the 

CuAAC reaction was carried out in DMF and using CuBr and PMDETA as the 

catalytic system. A slight excess of the PEG block was used in order to facilitate 

the completeness of the coupling reaction that was easily removed by 

precipitation of the LDBC in ethanol. 
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Figure 4.4  1H-NMR spectrum of d(isoAZOb/C18)-75/25 showing the signals used to 
composition calculation in CDCl3 (400 MHz) 

 

The efficiency of the coupling was corroborated by different techniques. First, 

the IR spectra confirmed the reaction of the azide and alkyne terminal groups. 

As an example in Figure 4.5 the IR spectra of a dendron precursor block and 

the LDBC derivative were compared. As can be seen, the signal corresponding 

to the azide group, located at 2100 cm-1, disappeared due to the coupling 

reaction. Furthermore, the absence of residual traces of non coupled blocks 

was corroborated by SEC and MALDI-TOF mass spectrometry, as it can be 

observed in the examples gathered in Figure 4.6. What is more, the relative 

integration of azobenzene aromatic protons signals and the corresponding ones 

to the linear PEG block protons at 3.70-3.55 ppm (labelled as ‘b’ in Figure 4.7) 

in the 1H-NMR spectra also confirmed the expected structures.  
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Figure 4.5  FTIR spectra of d(isoAZOb/C18-75/25 (bottom) and PEG-b- 
d(isoAZOb/C18-75/25  (top) 

 

Figure 4.6 a) SEC traces of d(isoAZOb/C18)-50/50 (straight line) and PEG-b-
d(isoAZOb/C18)-50/50 (dashed line) b) MALDI-TOF mass spectra of 
d(isoAZOb/C18)-50/50 (top) and PEG-b-d(isoAZOb/C18)-50/50 (bottom) 
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Figure 4.7.  1H-NMR spectrum of PEG-b-d(isoAZOb/C18)-75/25 in CDCl3 (400MHz) 

 

LDBCs average molecular weights were calculated by MALDI-TOF and SEC. 

The values calculated by mass spectrometry are in good agreement with 

theoretical values. The values calculated by SEC using PS standards are 

slightly underestimated (Table 4.1) as can be expected.16 

The thermal stability of the azodendrons and the LDBCs was analysed by TGA 

using powdered samples and the results main are presented in Table 4.2. All 

the samples exhibited a good thermal stability with the onset of decomposition 

above 320ºC. The stability of the LDBCs is around 30ºC higher than the 

corresponding codendrons. The thermal stability of the codendrons and the 

derived LDBCs is similar, even slightly higher, than the corresponding to the 

derivatives having sixteen azobenzene moieties linked to the periphery of the 

dendron, which were reported in previous chapter.  
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Table 4.2. Thermal properties of the codendrons and derived LDBCs. 

 

Codendrons and LDBCs 

TGA [a]  DSC [b] 

Td  Tc ∆Hc 

d(isoAZOb/C18)-75/25 331  36 128 

d(isoAZOb/C18)-50/50 335  29 228 

d(isoAZOb/C18)-25/75 327  29 258 

PEG-b-d(isoAZOb/C18)-75/25 359  38 139 

PEG-b-d(isoAZOb/C18)-50/50 365  32 173 

PEG-b-d(isoAZOb/C18)-25/75 360   31 232  

[a] Td (in ºC):  decomposition temperature associated to mass loss 
calculated by TGA, under nitrogen atmosphere (10ºC/min) at the 
onset point in the weight loss curve.  [b] TC (in ºC) and ∆HC (in kJ per 
mole of polymer chain):  crystallisation temperature and associated 
enthalpy calculated from the first cooling scan recorded at 10ºC/min. 
Molecular weight of the codendrons and Mn of polymer (determined 
by MALDI-TOF) were used to calculate enthalpy values. 
 
 

The thermal transitions of the dendrons and BCs were studied by POM and 

DSC (Table 4.2, Figure 4.8). Upon cooling from the liquid isotropic state, in all 

cases crystallisation of the codendrons was detected at approx. 30ºC, as 

calculated by DSC but it was observed that the crystallisation temperature 

depends on the C18 content. While crystallisation of the dendron containing 

only 4-isobutyloxyazobenzene occurs at 51ºC, crystallisation of codendrons 

decreases to 36ºC for d(isoAZOb/C18)-75/25 and to 29ºC for the lower 

isoAZOb/C18 contents, at the same time as crystallisation enthalpy increases. 

In the case of d(isoAZOb/C18)-75/25, the DSC cooling curve exhibits a small 

shoulder before crystallisation, which could be due to a narrow interval of 

mesophase analogous to the dendron containing 100% azobenzene, although 

this behaviour could not be corroborated by POM. The increase on the 

crystallinity content can be associated to the crystallisation of the alkyl chain as 

it has been reported for bis-MPA based hyperbranched polyesters containing 

terminal long alkyl chains.17 
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Similarly to the codendrons, LDBCs have tendency to crystallise. An exothermic 

crystallisation process was recorded on the DSC curves at 31-38ºC associated 

to the codendron block. Crystallisation of the PEG block, which should show at 

about 20ºC, was not visible.  Again, on decreasing the azobenzene content the 

crystallisation temperature slightly decreases as the correlated crystallisation 

enthalpy increases. The crystallisation temperature for LDBC with only isoAZOb 

moieties was 62ºC. 

Figure 4.8  DSC traces (10ºC/min) corresponding to the first cooling of the synthesised 
materials 
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4.2.2 Self-assembly of the Linear-Dendritic Azobenzene Block Copolymers 

in Water 

Vesicles were formed by the cosolvent method using THF and water and the 

process was followed by turbidimetry measurements (Figure 4.9).  When water 

was gradually added to a solution of the LDBCs in THF, an abrupt increase of 

scattered light was observed which indicates that polymer chains started to 

associate due to hydrophobic interactions. 

 

Figure 4.9 Turbidity plot of the LDBCs THF solution versus amount of water added 

 

As in Chapter 3, Nile Red was equilibrated with the amphiphilic LDBCs at 

several concentrations in order to determine the CAC. Figure 4.10 registers the 

emission intensity of Nile Red as a function of the concentration of PEG-b-

d(isoAZOb/C18)-50/50 in water. The relationship between the fluorescence 

and the concentration is non linear and the CAC of the three LDBCs in water 

was determined at the onset of the fluorescence intensity increase. Calculated 

CAC values were about 8-10 µg/mL. These CAC values for the investigated 

compounds, which incorporate aliphatic chains, are remarkably lower compared 

to the values calculated for LDBC containing only isoAZOb moieties (35 µg/mL).  

As the CAC is most commonly used to evaluate the stability of the self-
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assemblies in aqueous solution, lower CAC values point to a stronger tendency 

for aggregation or, in other words, higher thermodynamic stability.18  

 

Figure 4.10 Fluorescence intensity of Nile Red at 606 nm (λexc = 550 nm) versus BC 
concentration (mg/mL)  

 

The morphology of the self-assemblies was initially studied TEM using dried 

samples stained with uranyl acetate. The presence of vesicular self-assemblies, 

in general with a deflated appearance due to dehydration during sample 

preparation, was confirmed (Figure 4.11a).  Vitrified samples of the self-

assemblies without staining were also analysed by Cryo-TEM (Figure 4.11b). In 

this case, non disturbed vesicles were observed with a clear membrane that 

showed a distribution of diameters ranging from 70 to 300 nm for all the LDBCs.  

As was mentioned, the dark region of the membrane corresponds to the 

hydrophobic dendritic arrangement. The thickness of this inner part of the 

membrane was found to be around 8 nm fitting with a bilayer arrangement of 

the codendrons.14 

DLS measurements were also performed.  The mean hydrodynamic diameters 

(Dh) were found to be around 200-300 nm (Table 5.3, see Figure 4.13 below), 

slightly smaller than the previous vesicles described, i.e 365 nm. On the other 

hand, a higher dispersity in the size of the self-asssemblies was also found by 
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employing codendrons as dendritic block rather than a monodisperse dendron 

only containing 4-isobutyloxyazobenzene moieties. 

 

Figure 4.11  a) TEM images of non-irradiated dried vesicles.  Cryo-TEM images of the 
vesicles: b) before and c) after irradiation.  The length of the scale bar corresponds to 
200 nm in a) and 100 nm in b) and c) 
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Table 5.3. Mean hydrodynamic diameters (Dh) of the vesicles 
before and after irradiation. 

 

Vesicles 

Dh (nm) 

Non-irradiated 

Dh (nm) 

Irradiated 

PEG-b-d(isoAZOb/C18)-75/25 195 178 

PEG-b-d(isoAZOb/C18)-50/50 298 98/350[a] 

PEG-b-d(isoAZOb/C18)-25/75 210 190 

[a] Bimodal size distribution with two maxima (see Figure 4.13) 

 

4.2.3 Light Responsive Behaviour of the Self-Assemblies 

UV-Vis spectra of both LDBCs in an organic solution and the vesicles 

suspensions, 1mg/mL in water, were recorded and compared with that recorded 

for vesicles previously obtained in LDBCs only containing 4-

isobutyloxyazobenzene moieties (100% of azobenzene functionalisation) at the 

periphery described in the previous chapter.   

The solution spectra of all LDBCs exhibited two absorption bands 

corresponding to the trans-isomer, a strong one centred at 355 nm attributed to 

the π-π* transition and a weak one at about 450 nm corresponding to n-π* 

transition, as described for the LDBC PEG-b-d16isoAZOb. 

As it can be seen in Figure 4.12a the spectra of PEG-b-d(isoAZOb/C18)-75/25 

vesicles presents an absorption maximum located at 320 nm similarly to the 

LDBCs with 100% azobenzene functionalisation, althought the last one 

exhibited a broader band. This maximum indicates the dominating formation of 

H-aggregates of azobenzene units.  Two shoulders at 355 nm and 375 nm are 

also observed and attributed to non-aggregated trans-azobenzene and the 

presence of J-aggregates, respectively.   

For PEG-b-d(isoAZOb/C18)-50/50 and PEG-b-d(isoAZOb/C18)-25/75 vesicles 

the spectrum are very similar and showed a clear narrowing of the π-π* band 

accompanied by a bathochromic shift of the maximum, from 320 to 335 nm, 

indicating a lower tendency to aggregation of the azobenzene moieties as can 

be expected from the dilution effect of the C18 alkyl chains. 
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Figure 4.12 a) Comparison of the UV-Vis spectra of  water suspension vesicles of 
PEG-b-d(isoAZOb/C18)-75/25, PEG-b-d(isoAZOb/C18)-50/50 and PEG-b-
d(isoAZOb/C18)-25/75 with the vesicles previously reported in Chapter 3 (PEG-b-
d16isoAZOb, 100% azobenzene functionalisation).  b) Comparison of the UV-Vis 
spectra of irradiated PEG-b-d16isoAZOb vesicles described in Chapter 3 by 
employing different lamps. Evolution of the UV-Vis spectra of irradiated vesicles at 
different irradiation times: c) PEG-b-d(isoAZOb/C18)-75/25, d) PEG-b-
d(isoAZOb/C18)-50/50, e) PEG-b-d(isoAZOb/C18)-25/75 
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Irradiation experiments described in Chapter 3 were performed with a 1000 W 

mercury lamp with a 10 cm IR water filter and a cut-off filter (λ = 365 nm). In this 

work, the lamp was substituted by a smaller and easier to handle lamp emitting 

at 350-400 nm (Philips PL-9W). Therefore, irradiation control experiments with 

the previous vesicles containing only isoAZOb moieties using the new UV light 

source getting similar results to those described before were achieved. As it can 

be observed in Figure 4.12b, under these new conditions, a photostationary 

state was reached only after 10 min irradatiation. 

To demonstrate the sensitivity of the vesicles to UV-light, the suspensions of the 

three new LDBC in water were exposed to UV irradiation with the new lamp and 

evolution in the UV-vis spectra was followed (Figure 4.12c-e). In all cases, a 

notable decrease of π-π* band as well as an increase of the absorbance at 450 

nm were observed indicating the presence of cis-azobenzene. For PEG-b-

d(isoAZOb/C18)-75/25 vesicles, no further changes were detected in the UV-

vis spectrum after 5 min of irradiation indicating that a photostationary state was 

reached at this irradiation time. However, when the azobenzene content 

decreases, it was observed than the lower is AZO/C18 ratio of the dendritic 

block, the less is the time necessary to reach the photostationary state, being 

around 2 min for PEG-b-d(isoAZOb/C18)-50/50 vesicles and around 1 min for 

PEG-b-d(isoAZOb/C18)-25/75 vesicles.  Thus, a faster and more efficient 

photoinduced isomerisation was achieved by decreasing azobenzene content in 

the codendrons. This fact could be related with a less dense packing and 

aggregation of azobenzene moieties. Once irradiated and maintained in the 

dark, the spectra of the vesicles were similar to the observed before irradiation 

due to the back cis-to-trans isomerisation. 

Cryo-TEM microscopy (Figure 4.11c) and DLS measurements (Table 5.3) were 

carried out to gain further information about morphological changes occurred 

upon irradiation. The samples were studied immediately after irradiation for 5 

min. For PEG-b-d(isoAZOb/C18)-75/25 vesicles, a slight decrease in the Dh, 

i.e. from 195 to 178 nm, was detected (Figure 4.13a). Similarly to the vesicles 

of PEG-b-d16isoAZOb (100% azobenzene functionalisation), Cryo-TEM 

images showed deformed vesicles with a distorted membrane revealing that 
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trans-to-cis isomerisation provokes a notable morphological change of the 

vesicles. In the case of PEG-b-d(isoAZOb/C18)-50/50, cryo-TEM images 

showed drastic structural changes upon irradiation. An evident decrease in the 

number of vesicles accompanied by material without a clear morphology was 

observed (Figure 4.11c).  By DLS a clear change in the distribution curve was 

detected appearing a new peak at smaller Dh (Figure 4.13b).  This new 

distribution could explain the disarrangement of some of the self-assemblies 

observed by Cryo-TEM.  By contrast, Cryo-TEM images show that PEG-b-

d(isoAZOb/C18)-25/75 vesicles retain the morphology after irradiation (Figure 

4.11c), despite the modifications detected by UV-vis and only slight 

modifications were observed by DLS measurements after irradiation (Figure 

4.13c).  

 

Figure 4.13 Dynamic light scattering measurements of a water suspension vesicles 
before and after UV light irradiation: a)PEG-b-d(isoAZOb/C18)-75/25, b) PEG-b-
d(isoAZOb/C18)-50/50 and c) PEG-b-d(isoAZOb/C18)-25/75  
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4.2.4 Encapsulation and Photoinduced Release of Molecular Probes 

To investigate the release of encapsulated molecules stimulated by the trans-to-

cis photoisomerisation of the azobenzenes, Nile Red was first incorporated into 

the vesicles. Using an aqueous suspension of vesicles, 1 mg/mL, equilibrated 

with Nile Red, the fluorescence emission intensity was registered before, and 

upon UV irradiation at 365 nm to provoke trans-to-cis isomerisation. Before 

irradiation, an intense emission peak registered at 606 nm under excitation at 

550 nm indicates that Nile Red is in a hydrophobic environment, at the inner 

part of the membrane. 

Upon irradiation, the emission of Nile Red abruptly decreased in all cases 

(Figure 4.14).  As mentioned, this decrease of the emission of the dye can be 

due to both Nile Red migration from the membrane to the aqueous media and 

to the increase in the polarity of the inner membrane due to the change in net 

dipole moment associated to trans-to-cis isomerisation.  After standing the 

samples in the dark, and once thermal back cis-to-trans isomerisation took 

place according to the UV-vis spectra, Nile Red fluorescence was evaluated 

again. Nile Red emission in the samples was almost recovered to the initial 

value for PEG-b-d(isoAZOb/C18)-25/75, indicating that the fluorescent probe is 

again in an hydrophobic environment and consequently, the fluorescent probe 

mainly remains encapsulated. However, in the case of PEG-b-

d(isoAZOb/C18)-75/25 and PEG-b-d(isoAZOb/C18)-50/50, the initial Nile Red 

emission was not recovered at all and a weak emission band between 660 and 

680 nm appeared. This new band can be related with the Nile Red excimer 

formation in water proving the light triggered release of the trapped probe to the 

aqueous environment. It is necessary to mention that in the case of the vesicles 

containing only azobenzene (described in the previous chapter) Nile Red 

emission was partially recovered on standing in the dark which might be related 

to a less efficient release of the fluorescence probes. 
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Figure 4.14 Emission spectra of Nile Red encapsulated vesicles of a) PEG-b-
d(isoAZOb/C18)-75/25, b) PEG-b-d(isoAZOb/C18)-50/50 and c) PEG-b-
d(isoAZOb/C18)-25/75 
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nonfluorescent background due to the encapsulation of the dye in the polymeric 

vesicles (Figure 4.15).  Once irradiated, the fluorescence of the polymeric 

dispersion was again measured by confocal microscopy.  The appearance of a 

fluorescent background after irradiation was associated to the release of 

Rhodamine B. 

 

Figure 4.15 Fluorescence microscopy images of the water suspension of loaded PEG-
b-d(isoAZOb/C18)-50/50 vesicles before a) and after b) irradiation for 5 min (350-400 
nm, 9W) The length of the scale bar corresponds to 5 µm 

 

In an attempt to monitor the released dye versus the irradiation time, the 

intensity of the background fluorescence in the confocal images was measured 

after irradiating during different times.  Values of fluorescence intensity were 

obtained averaging 200-250 randomly selected points of the background on the 

irradiated samples and comparing them with the corresponding value for non-

irradiated samples. Figure 4.16 shows the evolution of fluorescence intensity of 

the aqueous solution at different irradiation times. 

The recorded data for PEG-b-d(isoAZOb/C18)-25/75 revealed that almost not 

dye was released (fluorescence intensity is almost constant), which is in 

accordance with previous described results where no morphological change 

was detected by Cryo-TEM in the irradiated vesicles of this LDBC.  

Consequently, it could be concluded that for a high content of hydrocarbon 

chains, the membrane vesicles were not altered enough to allow the permeation 

and release of the encapsulated hydrophilic molecules despite isomerising the 

azobenzene moieties. However, for PEG-b-d(isoAZOb/C18)-75/25 and PEG-b-

d(isoAZOb/C18)-50/50 vesicles, the intensity of the background fluorescence 

a) b)
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increases on increasing the irradiation time.  While a gradual increase of the 

emission intensity over irradiation time was observed for PEG-b-

d(isoAZOb/C18)-75/25 vesicles, a faster increase was found for PEG-b-

d(isoAZOb/C18)-50/50. Data collected for PEG-b-d(isoAZOb/C18)-75/25 show 

that Rhodamine B is gradually liberated upon irradiation and after 24 h in the 

dark leaking of the uploaded dye still persist.  However, a complete release was 

achieved by irradiation during 2 minutes in the case of vesicles derived from 

PEG-b-d(isoAZOb/C18)-50/50 which agrees with the vesicle collapsed 

observed by cryo-TEM. 

Figure 4.16 Evolution of fluorescence intensity of the aqueous solution of Rhodamine 
B encapsulated vesicles of a) PEG-b-d(isoAZOb/C18)-75/25  and b) PEG-b-
d(isoAZOb/C18)-50/50 at different irradiation times. The fluorescence value after 24 h 
of irradiation was considered as reference for normalisation 
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4.3 Conclusions 

Light responsive vesicles have been prepared from LDBCs with a PEG of 2000 

g/mol average molecular weight and new codendrons containing different 

percentages of 4-isobutyloxyazobenzene and hydrocarbon chains randomly 

distributed at the periphery.  It has been shown that dilution of azobenzene 

content using alkyl chains accelerates the trans-to-cis photoisomerisation 

process at the inner membrane probably by frustrating the aggregation 

tendency of the azobenzenes and providing higher mobility. 

PEG-b-d(isoAZOb/C18)-75/25 vesicles show similar photoresponse to 

previously reported vesicles containing only azobenzene moieties linked to the 

periphery. UV irradiation induces an evident deformation in the membrane and 

consequently an increase on its permeability. In this case, the release of the 

internal cargo molecule is constant and progressive. Nevertheless, the release 

is improved with respect to the LDBC with only azobenzene moieties as 

demonstrated with of hydrophobic Nile Red molecules retained at the 

membrane.  

For PEG-b-d(isoAZOb/C18)-50/50 vesicles, trans-to-cis photoisomerisation 

causes important changes in the stability of the vesicles.  Upon UV irradiation, 

large damages on the membrane of the vesicles are observed by cryo-TEM 

achieving fast release of the encapsulated probes.  

When AZO content is diluted down to 25% in PEG-b-d(isoAZOb/C18)-25/75, 

the vesicles do not suffer any modification upon irradiation.  The absence of 

significant changes in the irradiated samples could be due to the fact that the 

morphological change accompanied by the polarity change due to azobenzene 

isomerisation was not enough to provoke a deformation in the polymeric 

membrane and the subsequent release of the fluorescence probes. 

Therefore, the dendritic block of LDBCs has been used as a suitable platform to 

incorporate chemical changes and alter the properties of inner part of the 

vesicle membrane. By adjusting AZO/C18, the photoresponsive properties of 

the vesicles and consequently the release rate can be tailored.  
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4.4 Experimental Section 

Materials 

Alkyne-functionalised PEG, the fourth-generation polyester dendron (d16OH) 

and 6-[4-(4’-isobutyloxyphenylazo)phenyloxy]hexanoic acid (isoAZOb) were 

prepared according to procedures previously described in Chapers 2 and 3. All 

other reagents were purchased from Sigma-Aldrich and used as received 

without further purification.  

 

4.4.1 Synthesis and Characterisation of the Codendrons 
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General procedure  

d16OH (n mmol),  6-[4-(4’-isobutyloxyphenylazo)phenyloxy]hexanoic acid 

(isoAZOb) and stearic acid (C18)  (1.2 x 16 n mmol) in the desired molar ratio 

(3:1, 1:1 or 1:3) and DPTS (16 n mmol) were dissolved in a mixture of DCM and 

DMF 5:1 (around 20 mL per 200 mg of d16OH)  The reaction flask was flushed 

with argon, and DCC (1.32 x 16 n mmol) was added.  The mixture was stirred at 

room temperature for 48 h under argon atmosphere.  The white precipitate 



Amphiphilic LDBC using Azobenzene-Aliphatic Condendrons                        177 
 

 
 

formed was filtered off, and the solvent evaporated.  The crude product was 

purified by liquid chromatography on silica gel and eluted with DCM, gradually 

increasing the polarity to 1:10 ethyl acetate:DCM.  Azodendrons were obtained 

as an orange powder.  Yield: 65-70 %.   

Characterisation Data for d(isoAZOb/C18)-75/25: IR (KBr),  (cm-1): 2096, 

1740, 1601, 1582, 1499, 1243, 1149, 844.  1H-NMR (400 MHz, CDCl3) δ (ppm): 

7.8-7.80 (m), 6.96-6.90 (m), 4.3-4. (m) 3.93 (t, J=6.3 Hz), 3.74 (d, J=6,5 Hz), 

3.25 (t, J=6.8 Hz), 2.33 (t, J=7.5 Hz), 2.27 (t, J=7.4 Hz), 2.15-2.04 (m) 1.84-1.73 

(m), 1.70-1.59 (m), 1.52-1.41 (m), 1.40-1.13 (m), 1.03 (d, J= 6,8 Hz),  0.87 (t,  

J= 6,6 Hz). 13C-NMR (100 MHz, CDCl3) δ (ppm):  173.3, 172.8, 161.2, 161.0, 

146.9, 146.8, 124.3, 114.6, 74.6, 67.9, 46.4, 33.8, 31.9, 29.8, 29.7, 29.6, 29.4, 

28.9, 28.3, 25.6, 24.9, 24.6, 22.7, 19.2, 17.8, 14.1. Anal. Calc: C, 68.15 %; H, 

7.98 %; N, 5.15 %. Found: C, 68.12 %; H, 8.24 %; N, 8.42 %. 

Characterisation Data for d(isoAZOb/C18)-50/50: IR (KBr),  (cm-1): 2097, 

1742, 1601, 1582, 1501, 1247, 1147, 840.  1H-NMR (400 MHz, CDCl3) δ (ppm): 

7.85-7.82 (m), 6.98-6.91 (m), 4.34-4.06 (m) 3.96 (t, J=6.3 Hz), 3.77 (d, J=6,5 

Hz), 3.25 (t, J=6.8 Hz), 2.34 (t, J=7.5 Hz), 2.27 (t, J=7.4 Hz), 2.16-2.06 (m) 1.84-

1.73 (m), 1.72-1.62 (m), 1.60-1.42 (m), 1.40-1.13 (m), 1.03 (d, J= 6,8 Hz,),  0.86 

(t,  J= 6,6 Hz).13C-NMR (100 MHz, CDCl3) δ (ppm):  173.1, 172.8, 161.3, 161.0, 

146.9, 146.8, 124.3, 114.6, 114.6, 74.6, 67.9, 64.8, 46.6, 46.3, 34.0, 33.8, 31.9, 

29.7, 29.7, 29.6, 29.6, 29.4, 29.2, 28.9, 28.3, 25.6, 24.9, 24.6, 22.7, 19.2, 17.8, 

17.5, 14.1. Anal. Calc: C, 69.32 %; H, 8.89 %; N, 3.83 %. Found: C, 69.62 %; H, 

9.11 %; N, 3.99 %. 

Characterisation Data for d(isoAZOb/C18)-25/75: IR (KBr),  (cm-1): 2096, 

1742, 1601, 1582, 1500, 1247, 1148, 841. 1H-NMR (400 MHz,CDCl3) δ (ppm): 

7.83-7.80 (m), 6.96-6.90 (m), 4.36-4.06 (m) 3.93 (t, J=6.3 Hz), 3.74 (d, J=6,5 

Hz), 3.25 (t, J=6.8 Hz), 2.33 (t, J=7.5 Hz), 2.27 (t, J=7.4 Hz), 2.15.2.03 (m) 1.83-

1.72 (m), 1.72-1.57 (m), 1.55-1.40 (m), 1.38-1.10 (m), 1.03 (d),  0.87 (t,  J= 6,6 

Hz). 13C-NMR (100 MHz, CDCl3) δ (ppm): 173.0, 172.7, 161.3, 161.0, 146.9, 

146.9, 124.2, 114.6, 74.6, 67.9, 64.9, 46.7, 46.5, 34.0, 33.8, 31.7, 29.7, 29.6, 

29.5, 29.4, 29.2, 29.0, 28.3, 25.5, 24.9, 24.6, 22.8, 19.2, 17.8, 17.6, 14.2. Anal. 
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Calc: C, 70.62 %; H, 9.93 %; N, 2.35 %. Found: C, 70.83 %; H, 9.87 %; N, 2.50 

%. 

 

4.4.2 Synthesis and Characterisation of the LDBCs 
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General Procedure 

The codendron (d(isoAZOb/C18)-75/25, d(isoAZOb/C18)-50/50 or 

d(isoAZOb/C18)-25/75), 1.2-fold excess of alkyne-functionalised PEG and two-

fold excess of CuBr were placed into a Schlenk tube.  Two-fold excess of 

PMDETA and deoxygenated DMF (around 1 mL per 100 mg of polymer) were 

added with an argon-purged syringe, and the flask was further degassed by 

three freeze-pump-thaw cycles and flushed with argon.  The reaction mixture 

was stirred at 40ºC for 72 h. The reaction mixture was stirred under an argon 

atmosphere at room temperature for 72 h.  The mixture was diluted with THF 

and then passed through a short column of alumina.  The solvent was partially 

evaporated and the resulting polymer solution was carefully precipitated into 

cold ethanol.  Yield: 80-85%. 
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Characterisation Data for PEG-b-d(isoAZOb/C18)-75/25: IR (KBr),  (cm-1): 

1737, 1601, 1581, 1500, 1246, 1148, 841.  1H-NMR (400 MHz, CDCl3) δ (ppm): 

7.84-7.80 (m), 6.98-6.90 (m), 4.30-4.16 (m), 4.01-3.90 (m), 3.79-3.72 (m), 3.71-

3.55 (m), 3.38 (s), 3.02-2.95 (m), 2.76-2.70 (m), 2.33 (t, J=7.5 Hz), 2.27 (m), 

2.15-2.04 (m) 1.83-1.71 (m), 1.70-1.55 (m), 1.5.-1.39 (m), 1.36-1.13 (m), 1.03 

(d, J= 6,8 Hz),  0.86 (t,  J= 6,6 Hz). Anal. Calc: C, 65.32 %; H, 8.16 %; N, 4.02 

%. Found: C, 65.03 %; H, 8.53 %; N, 4.25%. 

Characterisation Data for PEG-b-d(isoAZOb/C18)-50/50: IR (KBr),  (cm-1): 

1739, 1601, 1582, 1501, 1247, 1147, 841.  1H-NMR (400 MHz, CDCl3) δ (ppm): 

7.83-7.80 (m), 6.98-6.92 (m), 4.30-4.10 (m), 4.02-3.92 (m), 3.80-3.73 (m), 3.71-

3.54 (m), 3.38 (s), 3.01-2.97 (m), 2.75-2.69 (m), 2.33 (t, J=7.5 Hz), 2.27 (t, 

J=7.4 Hz), 2.14-2.03 (m) 1.86-1.73 (m), 1.72-1.61 (m), 1.60-1.42 (m), 1.40-1.10 

(m), 1.03 (d, J= 6,8 Hz),  0.85 (t,  J= 6,6 Hz). Anal. Calc: C, 66.05 %; H, 8.92 %; 

N, 2.96 %. Found: C, 65.80 %; H, 8.53 %; N, 2.58%. 

Characterisation Data for PEG-b-d(isoAZOb/C18)-25/75: IR (KBr),  (cm-1): 

1739, 1600, 1581, 1500, 1246, 1147, 842.  1H-NMR (400 MHz, CDCl3) δ (ppm): 

7.84-7.80 (m), 6.98-6.90 (m), 4.30-4.12 (m), 4.04-3.96 (m), 3.80-3.73 (m), 3.72-

3.55 (m), 3.38 (s), 3.02-2.97 (m), 2.74-2.70 (m), 2.33 (t, J=7.5 Hz), 2.27 (t, 

J=7.4 Hz), 2.12-2.02 (m) 1.86-1.72 (m), 1.70-1.61 (m), 1.60-1.42 (m), 1.40-1.13 

(m), 1.04 (d, J= 6,8 Hz),  0.87 (t,  J= 6,6 Hz). Anal. Calc: C, 66.94 %; H, 9.65 %; 

N, 1.79 %. Found: C, 66.50 %; H, 9.59 %; N, 2.08%. 

 

 

 

 

 

 

 



180                                                                                                         Chapter 4 

 
 

4.4.3 General Procedures 

Self-assemblies formation, determination of the critical aggregation 

concentration (CAC), encapsulation of the fluorescence probes as well as the 

sample preparation for the different microscopies techniques have been 

performed following the same procedures described in Chapter 3. 

Irradiation Experiments 

The water dispersions of self-assemblies were irradiated during with a compact 

mercury low-pressure fluorescent lamp Philips PL-S 9W emitting UV irradiation 

between 350 and 400 nm.  The samples were placed at a distance of 10 cm 

from the light source in quartz cuvettes at room temperature. After irradiation, 

the water suspensions were kept in the dark. 
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5.1 Introduction and Aims 

The last decades have seen remarkable advances in the ability to prepare new 

polymeric architectures with improved control over molecular attributes to 

address the challenge of tailor made materials. Some authors proposed the 

term Macromolecular Engineering to refer to this challenge with high impact in 

the applications of the macromolecules.1,2 Since structure and function are 

intimately related, subtle manipulation of functional groups and chain 

architecture might end in new materials with dramatically different properties. 

Indeed, synthetic tools are available to facilitate the access to macromolecules 

with precisely controlled architectures in terms of narrow molecular weight 

distribution, well defined branching, well defined monomer sequences or 

functionality. In this context, the primary goal on combining controlled radical 

polymerizations and highly efficient ligation techniques is to arrive at the 

required structure by the simplest, cleanest and most efficient approach 

possible.3-6  

Star polymers are the simplest branched polymers consisting of several linear 

chains emanating from a central core. From star architectures, the relatively 

new miktoarm star polymers, also known as miktoarm polymers, are structures 

containing two or more arms with different chemical compositions and/or 

molecular weights.7-10 The most common type of miktoarm stars are A2B, A3B, 

A2B2 and ABC types, where A, B and C are chemically different chains.11 

Miktoarm polymers are a challenge from a synthetic point of view but many 

reliable synthetic protocols have emerged that encouraged to pursue studies of 

their self-assembly and applications. The interest in miktoarm star polymers 

comes from the combination of virtually any type and number of polymer arms, 

including functional moieties, into a single unique architecture. In particular, 

amphiphilic miktoarm polymers containing both hydrophobic and hydrophilic 

arms, are expected to create nanostructures in water similarly to amphiphilic 

BCs. 

As noted in the Chapter 1, only a few examples of azobenzene miktoarm 

polymers have been reported so far (see section 1.2.3.3). He and coworkers 

described a novel liquid crystalline miktoarm polymer, [PEG-PS-(PMMAZO)2], 
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composed of poly(ethylene glycol) (PEG), poly(styrene) (PS) and an 

azobenzene side chain poly(methacrylate) (PMMAZO).
12,13

 These polymers self-

assembled into simple or large vesicles, which showed a shape deformation 

with an elongation along the polarised direction upon irradiation with LPL. 

Recently, the same authors have also reported similar photoresponsive ABC 

miktoarm terpolymers – (PEG)(PS)(PMMAZO) – composed of PEG, PS and an 

azobenzene side chain poly(methacrylate) (PMMAZO).14 These terpolymers 

self-assembled into bowl shaped and multibowl shaped structures showing a 

photoinduced isomerisation behaviour influenced by different aggregation 

processes.  

The current chapter presents the synthesis, self-assembly in water and 

photoresponsive behaviour of a novel amphiphilic miktoarm star polymer 

PAZO17-(PEG12)3 of AB3 type. The miktoarm polymer is composed of an 

azobenzene side chain poly(methacrylate) (PAZO17) as the photoresponsive 

arm and three PEG arms of the same length (Scheme 5.1). By taking as a 

basis the results presented in previous chapters, 4-isobutyloxyazobenzene was 

used as the photoresponsive unit and a miktoarm having an approx. 80/20 

hydrophobic/hydrophilic balance ratio was prepared seeking the formation of 

vesicular self-assemblies in water. The target degree of polymerization (DP) of 

PAZO was around 16, i.e similar to the azobenzene units incorporated in the 

previous fourth generation dendron described in chapter 3. Thus, in order to 

obtain the desired hydrophobic/hydrophilic ratio, three PEG arms of Mn=650 

g/mol (DP=12) were employed. Once established the structural design of the 

macromolecule the synthesis was envisaged by a combination of controlled 

radical polymerization and ‘click chemistry’. 
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Figure 5.1 Chemical structure of the investigated miktoarm star polymer 
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5.2 Tasks and Methods 

- Synthesis of a PEG star polymer macroinitiator containing an ATRP 

initiation site by coupling the preformed arms to a tetrafunctional core 

(Figure 5.2). 

 

- Synthesis the proposed miktoarm star polymer by ATRP polymerization of 

an azomonomer using the PEG star macroinitiator (Figure 5.2). 

 

 

 

Figure 5.2 Synthetic approach for the synthesis of the miktoarm star polymer 

- Structural characterisation of the miktoarm polymer and precursors by 

FTIR, NMR, MS. Thermal characterisation by using POM, TGA and DSC. 

 

- Study of the self-assembly of the miktoarm polymer in water. 

 
- Morphological study of the self-assemblies in water by TEM and cryo-TEM. 

 
- Investigatio of the photoresponsive behaviour of the self-assemblies in 

water and studies of encapsulation and photoinduced release. 
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5.3 Results and Discussion 

5.3.1 Synthesis and Characterisation of the Amphiphilic Miktoarm Star 

Polymer 

The macromolecular structure of the target miktoarm star copolymer was 

prepared by a combination of CuAAC and CRP. Although several routes are 

possible, depending of the sequence of both types of reaction, we followed the 

three steps strategy collected in Scheme 5.1. As starting compound, a 

tetrafunctional core having three azide and a hydroxyl groups was used. Three 

end functionalised PEG arms were first coupled by CuAAC to the core and the 

remaining functional group was used for a subsequent polymerization reaction 

to grow the azobenzene containing arm by ATRP, eventually yielding the final 

miktoarm polymer.   
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Scheme 5.1 Synthesis of the PEG containing miktoarm polymer  
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The tetrafunctional 2,2,2-tris(azidomethyl)ethanol core, (N3)3-OH, was prepared 

by substitution of the bromine groups of 2,2,2-tris(bromomethyl)ethanol by azide 

groups using a methodology previously reported.15 Due to the high N/C ratio of 

this compound, it should be handled carefully (see Experimental Section). On 

the other hand, commercial PEG having one hydroxyl group was first etherified 

with propargyl bromide to obtain an alkyne terminated PEG16 of Mn=650 g/mol, 

as was adequately confirmed by MALDI mass spectrometry (Figure 5.3a). PEG 

arms were coupled to (N3)3-OH triazido core by a CuAAC reaction using 

CuBr/PMDETA as catalytic system. A slight excess of the alkyne ended linear 

block was employed that was removed by precipitation into cold diethyl ether. 

The efficiency of the ‘click’ coupling and structure of the star (PEG12)3-OH 

polymer was corroborated by MALDI mass spectrometry and 1H-NMR. In the 

latter case, comparison of the integration the protons signals corresponding to 

PEG –CH2O at 3.75-3.50 ppm– and the signals corresponding to the core were 

employed. (PEG12)3-OH was then modified by esterification of the hydroxyl 

group with α-bromoisobutyryl bromide to include an ATRP initiation site into the 

remaining functionality of the core yielding the macroinitiator (PEG12)3-Br. 

Again, the efficiency of the reaction as well as the average molecular weight 

(Table 5.1) were asserted by MALDI (Figure 5.3b), SEC and 1H-NMR (Figure 

5.4). Relative integration of the methyl groups signals of PEG (labelled as ‘a’) 

and the corresponding methyl groups of the α-bromoisobutyl moiety (labelled as 

‘g’) evidenced successful incorporation of the ATRP initiation site. 

 

Figure 5.3 MALDI-TOF mass spectra of a) alkyne functionalised PEG, b) (PEG12)3-Br 
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Figure 5.4  1H-NMR spectrum of (PEG12)3-Br in CDCl3 (250MHz) 

 

Table 5.1.  Molecular weight of the synthesised polymers 

                     
Polymer 

 
Mn [a] 

 
Mn [b] 

 
Mn [c] 

          
ĐM [c] 

Phobic/philic 
ratio[d] 

(PEG12)3-Br 2116 2154 2900 1.01 - 

PAZO17-(PEG12)3 - 9608  9700 1.10 78/22 

[a] Mn calculated by MALDI. [b] Mn calculated by 1H-NMR (see text).  [c] Mn and 
polydispersity (ĐM) of the polymers were determined by SEC using PS standards. [d] 
Phobic/Philic ratio was calculated by considering PEG arms as the hydrophilic part and 
the rest as the hydrophobic part. 

 

In the final step, the azobenzene methacrylate mAZO (details for the 

preparation of this monomer are given in the Experimental Section) was 

polymerised by ATRP from the (PEG12)3-Br macroinitiator in anisole using 

CuBr/PMDETA as catalytic system at 80ºC. As this macroinitiator was not 
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employed before, the polymerization conditions were optimised in order to 

obtain an azopolymer with a polymerization degree around 16 (comparable with 

the previous described azobenzene functionalised dendrons). To study the 

kinetics, monomer conversion was determined via 1H-NMR by relative 

integration of the vinyl protons, appearing at 6.10 and 5.55 ppm, and the 

aromatic protons corresponding to the azobenzene. Since monomer 

concentration at any time is given by 

[M] = [M]0 - [M]0 conversion = [M]0 (1- conversion) 

ln([M]0/[M]) was calculated and plotted against the polymerization time. As it 

can be seen in Figure 5.5a, in the initial stages of the polymerization the 

corresponding relation was not initially linear indicating that the propagating 

radical concentration was non constant. However, a linear trend was found 

after 2 h. The average molecular weights measured by SEC increased linearly 

with monomer conversions, which is consistent with the polymerization 

proceeding in a controlled fashion (Figure 5.5b). 

 

Figure 5.5 a) Relationship of ln([M]0/[M]) and monomer conversion with polymerization 
time and b) evolution of Mn and ĐM (SEC) with monomer conversion for the ATRP 
polymerization of mAZO in anisole at 80 ºC. 

 

Having evaluated the evolution of Mn vs conversion, time polymerization was 

set at 24 h. As noted before, the polymerization was performed in anisole using 

CuBr/PMDETA at 80ºC. 1H-NMR spectroscopy was used to estimate the 

average number of azobenzene units per macromolecular chain (Table 5.1). 
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the PEG arms at 3.37 ppm (labelled at ‘a’ in Figure 5.6) and the signals 

corresponding to the aromatic protons of the repeating azobenzene unit gave 

17 repeating units in average per polymer chain and consequently a molecular 

weight of 9608 g/mol. The molecular weight was also calculated by SEC using 

PS standards and it is good agreement with the value estimated by 1H-NMR. 

Figure 5.7 collects the SEC curves corresponding to the macroinitiator and the 

miktoarm polymer PAZO17-(PEG12)3.  As it can be observed, polymerization 

gives rise to a shift of the molecular weight distribution peak towards lower 

retention times where no residual macroinitiator was detected indicating that all 

the molecules contain the bromo group. 

 

Figure 5.6  1H-NMR spectrum of PAZO17-(PEG12)3 in CDCl3 (400MHz) 
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Figure 5.7 SEC traces of the macroinitiator (PEG12)3-Br (black line) and the miktoarm 
polymer PAZO17-(PEG12)3 (grey line)  

 

The thermal stability was studied by TGA using a powdered sample. The 

miktoarm polymer exhibited a good thermal stability up to 300 ºC and no 

presence of volatile components (e.g. water, residual organic solvents, etc.) 

were detected (Figure 5.8a). The thermal transitions were studied by DSC and 

POM. By POM, a melting process was observed and no textures typical of 

mesomorphism were detected. DSC curve also revealed the crystalline 

character of the polymer (Figure 5.8b). The miktoarm polymer PAZO17-

(PEG12)3 only presented a melting transition at around 110 ºC (10ºC/min) in the 

heating process and the subsequent crystallisation in the cooling scan at 

around 100ºC.  
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Figure 5.8 a) TGA curve and b) DSC curve (10ºC/min) corresponding to the second 
heating of PAZO17-(PEG12)3 Td: 315ºC, Tm: 108 ºC and ∆Hm: 155 kJ/mol 

 
 
 

5.3.2 Self-Assembly of the Miktoarm Polymer in Water 

As was described in previous chapters, polymeric self-assemblies were 

prepared by adding water to a solution of the miktoarm polymer in THF and 

monitored by recording the turbidity (Figure 5.9a). Once the turbidity reached 

an almost constant value, the resulting dispersion was dialysed against water to 

remove the organic solvent. After dialysis, a stable dispersion was obtained, 

although precipitation of the sample was observed after storing for a few weeks.  

CAC in water was determined using Nile Red following the procedure previously 

described in Chapter 3 and 4. The calculated CAC was about 40 µg/mL, which 

is similar to the value calculated for the LDBC of similar composition PEG-b-

d16AZOb (35 µg/mL) described in Chapter 3 (Figure 5.9b).  
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Figure 5.9 a) Turbidity evolution of the miktoarm polymer THF solution as a function  
the amount of added water. b) Flurorescence intensity of Nile Red at 606 nm (λexc = 
550 nm) versus miktoarm polymer concentration (mg/mL) 

 

The morphology of the PAZO17-(PEG12)3 self-assemblies was investigated by 

TEM on dried samples stained with uranyl acetate. It was found that the 

miktoarm polymer self-assembled into vesicles, which appear deflated because 

of sample drying (Figure 5.10a). Cryo-TEM images showed spherical vesicles 

with diameters ranging from 300 to 700 nm having a membrane thickness 

around 9 nm (Figure 5.10b). The size of the polymeric vesicles was additionally 

evaluated by DLS measurements providing a hydrodynamic diameter (Dh) of 

640 nm, significantly larger than Dh values determined for LDBC vesicles 

ranging from 365 to 195 nm. 

 

Figure 5.10 TEM image of PAZO17-(PEG12)3 non irradiated vesicles. Cryo-TEM images 
of PAZO17-(PEG12)3 vesicles before b) and after c) irradiation for 5 min (350-400 nm, 
9W). The length of the scale bar corresponds to 1 µm in a) and 200 nm in b) and c) 
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5.3.3 Photoresponsive Behaviour of the Self-Assemblies 

Initially, the UV-Vis spectra of both a miktoarm polymer isolution and the 

vesicles suspension in water where first recorded (Figure 5.11a). The spectrum 

in solution was characterised by two absorption bands corresponding to the 

trans-isomer, a strong one centred at 360 nm attributed to the π-π* transition 

and a weak one at about 450 nm corresponding to n-π* transition. The 

spectrum of the vesicles showed a broader π-π* transition due to aggregation 

of azobenzene moieties. 

An aqueous suspension of PAZO17-(PEG12)3 vesicles of 1mg/mL concentration 

was irradiated with a mercury low pressure UV lamp (9W) emitting between 350 

and 400 nm while recording the evolution of the UV-vis spectra (Figure 5.11b).  

During UV irradiation, a remarkable decrease on absorbance together with a 

hypsochromic shift of the π-π* transition took place accompanied by an 

increase of the absorbance at 450 nm corresponding to the n-π* transition. As 

noted in previous chapter, this change is attributed to the photoisomerisation of 

the trans-azobenzene to the cis isomer. After 5 min of irradiation, no further 

changes in the UV-vis spectra were detected indicating that a photostationary 

state was reached, similarly to PEG-b-d(isoAZOb/C18)-75/25 vesicles 

described in the previous chapter. After 24 h in the dark, UV-vis spectra started 

to recover the initial shape due to thermal cis-to-trans back isomerisation. 

 

Figure 5.11 a) UV-Vis spectra of PEG-b-d16isoAZOb in a 5x10-6 M solution in CHCl3 
(straight line) and a water suspension of PAZO17-(PEG12)3 vesicles (dashed line). b) 
UV-Vis spectra of PAZO17-(PEG12)3 irradiated vesicles (concentration of 1 mg/mL) for 
different times (350-400 nm, 9W) 
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Cryo-TEM observation of the polymeric micelles in combination with DLS 

measurements were performed to gain information about morphological 

changes upon irradiation. The cryo-TEM image recorded after irradiation shows 

the presence of wrinkled vesicles (Figure 5.10c). Furthermore, a change of 

around 170 nm in the Dh was detected by DLS measurements (Figure 5.12) 

that reveal a Dh of 470 nm after irradiation. This change confirmed also the 

deformation of the vesicles upon irradiation. The Dh was evaluated after 24 h of 

irradiation and no evolution was found evidencing an irreversible morphological 

change. 

 

Figure 5.12 DLS measurements of a water suspension of PAZO17-(PEG12)3  vesicles 
before and after UV light irradiation (5 min, 350-400 nm, 9W) 

 

 

5.3.4 Encapsulation and Photoinduced Release of Molecular Probes 

Once corroborated that the vesicles of this polymer also exhibited 

photoresponse, encapsulation and release of fluorescent probes were also 

carried out. Firstly, Nile red was encapsulated in the vesicles and irradiated 

using the same conditions that in the previous experiments. Upon irradiation, a 

similar behaviour to LDBC PEG-b-d16AZOb described in Chapter 3 is 

observed as is collected in Figure 4.13.  As mentioned, this decrease on the 

emission of the dye can be due to both Nile Red migration from the membrane 
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to the aqueous media and increase in the polarity of the inner membrane due to 

the change in net dipole moment associated to trans-to-cis isomerisation.  After 

24 h in the dark, Nile Red emission recovered the initial value indicating that the 

fluorescent probe is again in a hydrophobic environment and consequently, the 

fluorescent probe mainly remain encapsulated.  

 

Figure 5.13 Emission spectra of the Nile Red encapsulated micelles of PAZO17-
(PDEAA12)3 (concentration of 1 mg/mL) recorded at different irradiation times 

 

Encapsulation and photoinduced release of Rhodamine B was also investigated 

using the same experimental procedure previously described. It was found that 

in these conditions, vesicles were able to trap around 45 molecules of dye per 

miktoarm polymer chain. This value is significantly higher than the previous 

obtained vesicles based on LDBC, of around 20 molecules of dye per LDBC 

molecule. These differences can be related with the different size of the vesicles 

and consequently with the available internal volume. 

The evolution of the Rhodamine B release upon irradiation was investigated by 

confocal microscopy. Figure 5.14a display the fluorescence before irradiation 

with the dye concentrated in specific regions due to encapsulation. Upon 

irradiation, fluorescent dots were still visible by fluorescence microscopy but 

also a fluorescent background was observed due to Rhodamine B release from 

the interior of the vesicles to the aqueous media (Figure 5.14b).  These 
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experiments proved once again that under UV illumination the vesicle 

membrane became permeable to the loaded fluorescent probe.   

 

Figure 5.14 Fluorescence microscopy images of the water suspension of loaded 

PAZO17-(PEG12)3 vesicles before a) and after b) irradiation for 5 min (350-400 nm, 
9W). The length of the scale bar corresponds to 5 µm 

 

a) b)
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5.4 Conclusions 

Combination of ATRP and CuAAC has been employed for the preparation of a 

novel miktoarm polymer PAZO17-(PEG12)3. Three alkyne functionalised PEG 

arms were first coupled by CuAAC to a tetrafunctional asymmetric core and 

subsequently used as macroinitiator for the polymerization of an azobenzene 

containing monomer. By fixing the length of the PEG arm and the reaction 

conditions, it was possible to adjust the phobic/philic ratio (78/22) of the final 

material.  

As expected, the azobenzene containing miktoarm polymer synthesised was 

able to self-assemble into vesicles in water. Upon UV irradiation, deformed 

vesicles were observed by cryo-TEM evidencing a photoinduced morphological 

change. It has been demonstrated that these vesicles are able to load both 

hydrophobic and hydrophilic molecules. Upon UV irradiation, azobenzene 

isomerisation occurred and provoke the increase of the membrane permeability 

to loaded fluorescent probe.   
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5.5 Experimental Section  

Materials 

Experimental details for the synthesis of 4-isobutyloxy-4'-hydroxyazobenzene 

(15) are given in Chapter 3. CuBr was used as received and handle in a dry 

box. All other reagents were purchased from Sigma-Aldrich and used as 

received without further purification.  

 

5.5.1 Experimental Details for the Synthesis of the Azomonomer (mAZO) 

Synthesis and Characterisation of 6-[4-(4’-isobutyloxyphenylazo)-

phenoxy]hexanol (17) 

 

A solution of 4-isobutyloxy-4'-hydroxyazobenzene (15) (3.02 g, 11.10 mmol) 

and 6-chloro-1-hexanol (1.81 g, 13.30 mmol) in butanone (60 mL) was 

prepared. 18-Crown-6 (0.05 g) and potassium carbonate (3.15 g, 22.20 mol) 

were added. The suspension was stirred and heated under reflux for 24 h, then 

it was filtered and concentrated. The crude product was purified by flash 

column chromatography on silica gel using DCM as eluent. The product was 

obtained as a yellow powder. Yield: 60%. IR (KBr),  (cm-1): 3300, 1601, 1580, 

1496, 1465, 1237, 844. 1H-NMR (CDCl3, 400MHz) δ (ppm): 7.87-7.85 (m, 4H), 

6.94-6.92 (m, 4H), 4.03 (t, J=6.5 Hz, 2H), 3.80 (d, J=6.6 Hz, 2H), 3.65 (q, J=6.5 

Hz, 2H), 2.12-2.03 (m, 1H), 1.88-1.75 (m, 2H), 1-67-1,56 (m, 2H), 1.37-1.21 (m, 

4H), 1.05 (d, J= 6.7 Hz, 6H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 161.3, 

146.9, 124.3, 114.7, 114.6, 74.7, 68.1, 62.9, 32.7, 29.2, 28.3, 25.9, 25.6, 19.3. 
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Synthesis and Characterisation of 6-[4-(4’-isobutyloxyphenylazo) 

phenoxy]hexyl methacrylate (mAZO) 

 

A solution of 6-[4-(4’-isobutyloxyphenylazo)phenoxy]hexanol (17) (0.78 g, 2.20 

mmol) and triethylamine (0.4 mL, 2.60 mmol) in dry THF (10 mL) was prepared. 

The solution was stirred and methacryloyl chloride (0.2 mL, 2.60 mmol) was 

added dropwise under argon atmosphere. The mixture was stirred and heated 

under reflux overnight. Then, it was filtered and concentrated. The crude 

product was purified by flash column chromatography on silica gel using DCM 

as eluent. The product was obtained as a yellow powder. Yield: 85%. IR (KBr), 

 (cm-1): 1702, 1637, 1602, 1580, 1500, 1470, 1240, 841.  1H-NMR (CDCl3, 

400MHz) δ (ppm): 7.88-7.85 (m, 4H), 7.00-6.98 (m, 4H), 6.12-6.08 (m, 1H), 

5.58-5.52 (m, 1H), 4.14 (t, J= 6.6 Hz, 2H), 4.04 (t, J= 6.4Hz, 2H), 3.80 (d, J = 

6.6 Hz, 2H), 2.11-2.03 (m, 1H), 1.95 (dd, J = 1.5, 1.0 Hz, 3H), 1.90-1.78 (m, 

2H), 1.80-1.67 (m, 2H), 1.37-1.21 (m, 4H), 1.05 (d, J = 6.7 Hz, 6H). 13C- NMR 

(CDCl3, 100 MHz) δ (ppm): 167.5, 161.3, 161.0, 146.9, 146.9, 136.5, 125.2, 

124.3, 114.6, 114.6, 74.7, 68.1, 64.6, 29.1, 28.6, 28.3, 25.81, 25.7, 19.3, 18.3. 

Anal. Calc. for C26H34N2O4: C, 71.21 %; H, 7.81 %; N, 6.39 % Found: C, 71.13 

%; H, 8.14 %; N, 6.34 %. 
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5.5.2 Experimental Details for the Synthesis of the Macroinitiator (PEG12)3-

Br 

Synthesis and Characterisation of Alkyne Functionalised PEG16 

  

Polyethylene glycol mono methyl ether (15.00 g, 27.30 mmol) was dissolved in 

dry THF (200 mL) and the solution cooled into an ice-water bath. Then, sodium 

hydride (2.72 g, 55-65 wt%) was added and the solution stirred until no 

hydrogen gas was released. Propargyl bromide (4.5 mL g, 80 wt% in toluene) 

was added dropwise an the reaction mixture stirred at 0 ºC for 1 h and at room 

temperature overnight. The precipitated was filtered off and the solvent was 

removed under vacuum to yield the required product. Yield: 85%. IR (KBr),  

(cm-1): 3245, 2112, 1960, 1456, 1248, 1105. 1H-NMR (250 MHz, CDCl3) δ 

(ppm): 4.21 (d, J = 2.4 Hz, 2H), 3.76-3.50 (m, 48H), 3.38 (s, 3H), 2.44 (t, J = 2.4 

Hz, 1H). 

Synthesis and Characterisation of 2,2,2-tris(azidomethyl)etanol (N3)3-OH15 

 

2,2,2-Tris(bromomethyl)etanol (2.00 g, 6.16 mmol) was dissolved in DMF (10 

mL) and treated with sodium azide (1.22 g, 18.5 mmol) then heated to 120 °C 

for 17 h. The crude reaction mixture was cooled, an equivalent volume of water 

was added, the organic product was extracted into toluene (5x10mL), and DMF 

was back-extracted into brine. The organic solution was concentrated, but to no 

greater than 1 M in azide. Caution! Small organic azides should never be 

distilled to dryness. The final concentration of the triazide was determined by 

NMR (24 wt%). Yield: 86%. 1H-NMR (250 MHz, CDCl3, toluene peaks omitted) 

δ (ppm): 3.49 (s ,2H), 3.33 (s, 6H). 
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Synthesis and Characterisation of (PEG12)3-OH 

 

2,2,2-Tris(azidomethyl)ethanol (N3)3-OH (3.42 g, 3.80 mmol, 24 wt% in toluene) 

and alkyne functionalised PEG (9.00 g, 14.82 mmol) were placed into a Schlenk 

tube.  PMDETA (160 µL, 0.76 mmol), CuBr (110.2 mg, 0.76 mmol) and 

deoxygenated toluene were added with an argon-purged syringe, and the flask 

was further degassed by three freeze-pump-thaw cycles and flushed with 

Argon.  The reaction mixture was stirred at room temperature overnight.  Then, 

the mixture was diluted with THF and passed through a short column of neutral 

alumina.  The solvent was partially evaporated and the resulting polymer 

solution carefully precipitated into cold ethyl ether. Yield: 55%. IR (KBr),  (cm-

1): 3500, 1959, 1456, 1249, 1106. 1H-NMR (250 MHz, CDCl3) δ (ppm): 8.23 (s, 

3H), 4.72 (s, 6H), 4.33 (s, 6H), 3.75-3.50 (m, 146H), 3.37 (s, 9H), 3.02 (s, 1H). 
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Synthesis and Characterisation of (PEG12)3-Br 

 

A solution of the polymer (PEG12)3-OH (1.48 g, 0.76 mmol) in dry THF (20 mL) 

was prepared and cooled into an ice bath. The solution was stirred and 

triethylamine (0.5 mL, 3.80 mmol) and α-bromoisobutyryl bromide (0.4 mL, 3.80 

mmol) were added dropwise under argon atmosphere. The mixture was stirred 

then at room temperature overnight and methanol (1mL) was added. The 

solution was filtered and the solvent was removed under vacuum. Yield: 70%. 

IR (KBr),  (cm-1): 1959, 1742, 1457, 1249, 1107. 1H-NMR (250 MHz, CDCl3) δ 

(ppm): 8.18 (s, 3H), 4.70 (s, 6H), 4.46 (s, 8H), 3.75-3.50 (m, 144H), 3.37 (s, 

9H), 2.03 (s, 6H). 
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5.5.3 Experimental Details for the Synthesis of the Miktoarm Polymer 

(PAZO17-(PEG12)3)  

 

mAZO (200.0 mg, 456.3 µmol), (PEG12)3-Br (42.1 mg, 20.2 µmol) and CuBr 

(2.8 mg, 20.2 µmol) were added to a Schlenk tube.  PMDETA (4.0 µL, 20.2 

µmol) and deoxygenated anisole (1mL) were added with an argon-purged 

syringe, and the flask was further degassed by three freeze-pump-thaw cycles 

and flushed with argon.  The reaction mixture was stirred under an argon 

atmosphere at 80ºC for 24 h.  The mixture was diluted with THF and then 

passed through a short column of alumina.  The solvent was partially 

evaporated and the resulting polymer solution was carefully precipitated into 

cold methanol. Yield: 80% IR (KBr), v (cm-1): 1727, 1600, 1581, 1500, 1247, 

1147, 841.   1H-NMR (CDCl3, 400MHz) δ (ppm): 7.80-7.69 (m), 6.90-6.76 (m), 

4.65 (s), 4.37 (s), 4.05-3.81 (m), 3.79-3.52 (m), 3.37 (s), 2.13-2.01 (m), 2.01-

1.85 (m), 1.81-1.65 (m), 1.65-1.47 (m), 1.46-1.27 (m), 1.09-0.80 (m). Mn=9700 

ĐM =1.10 (PS standars).  Anal. Calc: C, 66.72 %; H, 7.93 %; N, 6.11 % Found: 

C, 67.21 %; H, 8.04 %; N, 6.26 % 
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5.5.4 General Procedures 

The preparation of the vesicles, determination of the critical aggregation 

concentration (CAC) as well as the sample preparation for the different 

microscopies techniques has been performed following the same procedures 

described in Chapter 3. Irradiation experiments were carried out in the same 

conditions as Chapter 4 (Philips PL-S 9W, 350-400nm). 
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6.1 Introduction and Aims 

BC micelles are simple spherical assemblies of amphiphilic copolymers that 

have core-shell type architecture (Figure 6.1). The hydrophobic parts of the 

polymer aggregate in the aqueous environment to form the core of the micelles 

and the hydrophilic parts form a water soluble corona that separates the core 

from the environment.  The core of the micelles is a loading space that can 

accommodates hydrophobic molecules, as drugs, while the corona is a 

protective shell that ensures the water dispersibility of the micelles.1-3 In that 

respect, amphiphilic block copolymer micelles have been widely explored for 

drug delivery as both the core and the corona can be chemically fine tuned to 

optimise the drug uptake/release.4,5 Providing an adequate chemical design to 

incorporate stimuli-sensitive moieties, micelles are capable of undergoing 

changes in their physical properties upon exposure to external stimulus as pH 

value, temperature, additives or irradiation with light.6  

 

Figure 6.1 Schematic representation of a polymeric micelle 

 

The solubility of certain polymers in water can be influenced by the temperature 

of the surrounding medium.7-9 Most small molecules become increasingly 

soluble with rising temperature; however, the so-called thermoresponsive 

polymers have a sharp transition temperature at which they become either 

soluble or insoluble. When the transition is from a more soluble to a less soluble 

state, this temperature is known as the lower critical solution temperature 

(LCST). Conversely, if the transition is from a less soluble to a more soluble 

state this temperature is known as the upper critical solution temperature 

(UCST). The majority of research has focused on materials that display an 

LCST, mainly due to the derived advantages in the design of polymeric 

hydrophobic block

hydrophilic block

core

corona
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biomaterials.  The LCST behaviour is attributed to the interplay between the 

intermolecular polymer–water hydrogen bonding and intramolecular polymer-

polymer interactions. Above the LCST macromolecules experience dehydration 

and collapse from a hydrated, extended coil to a hydrophobic globule.  In 

general, most of non ionic water soluble polymers show LCST behaviour. This 

has been observed for poly(hydroxyethyl methacrylate) (PHEMA), 

poly(oligoethylene glycol methacrylate) (POEGMA), poly(N,N-dialkylaminoethyl 

methacrylates) (PDMAEMA and PDEAEMA) or poly(N-substituted acrylamide). 

Poly(N-isopropylacrylamide) (PNIPAM) is probably the most representative 

example of thermoresponsive polymers with a LCST near to body temperature.7 

Poly(N,N-diethylacrylamide) (PDEAA) is a structurally similar thermoresponsive 

polymer featuring an LSCT ranging from 25 to 35 ºC, close to room 

temperature.10 

Thermoresponsive micelles assembled from amphiphilic block copolymers have 

been extensively studied. If the thermoresponsive component is combined with 

a hydrophilic polymer block then the polymer is molecularly dissolved below the 

LCST but, upon raising the temperature, the hydrophilic-hydrophobic switch 

results in micellar self-assembly with the thermoresponsive block forming the 

hydrophobic core. When the thermoresponsive component is combined with a 

hydrophobic block the polymer will form micelles with a thermoresponsive shell. 

Upon heating above the LCST the shell collapses resulting in the 

precipitation/gelation of the micelles.11 Thermoresponsive micelles can be 

exploited as nanocontainers for controlled drug release.12-14  

The area of micelles responsive to a single stimulus has been extended to 

micelles which show responsive behaviour to multiple stimuli as a way to better 

control their performance.15 Of special importance are micelles responsive to 

temperature and light16 and accordingly there have been several reports on 

temperature responsive polymers containing azobenzene moieties. Li et al. 

described the formation of micelles from a novel amphiphilic diblock copolymer 

composed of a PEG block and a hydrophobic block of a random azobenzene 

poly(methacrylate) and PNIPAM copolymer, (PEG-b-(PAZO-co-PNIPAM)) 

(Figure 6.2a).17 The size of these micelles was dependent on temperature, 

while no disruption of the micelles was detected upon irradiation. Theato et al. 
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also reported a similar thermo and lightresponsive BC based on PEG and 

PNIPAM containing azobenzene moieties (Figure 6.2b) able to self-assemble 

in water forming micelles.18 A temperature reversible formation as well as a light 

induced partial disruption of the micelles was found. In both examples, the 

photoresponsive moieties were included in the thermoresponsive block. A 

further example for dual-responsive micelles was reported by Zhao et al.19 

PNIPAM with azobenzene moieties inserted into the main chain was 

synthesised. The multiblock copolymer was able to self-assemble in cold water 

forming flower micelles. Upon UV irradiation, swelling of the vesicles was 

observed due to trans-to-cis isomerisation and the micelles collapsed upon 

heating above the LCST of PNIPAM.  

 

Figure 6.2 Chemical structures of some examples of thermo and photoresponsive 
amphiphilic BCs: a) reported by Li et al.17, b) reported by Theato et al.18 

 

In summary, all the thermo and photoresponsive amphiphilic BC reported so far 

are based on linear-linear diblock copolymers composed of a hydrophoilic block 

(PEG) and a hydrophobic responsive block composed of a copolymer 

containing azobenzene as well as thermoresponsive moieties.  

The main goal approached on the current chapter was the preparation of novel 

thermoresponsive azobenzene miktoarm polymers AB3 type having the thermo 

and photoresponsive moities located in different arms. The seleted miktoarm 

polymers, PAZO17-(PDEAAm)3, are composed of an azobenzene 

poly(methacrylate) PAZO17 as the photoresponsive block and three arms 

containing poly(N,N-diethylacrylamide) (PDEAAm), a thermoresponsive water 
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soluble polymer (Figure 6.3). The synthesis of the polymers was afforded by 

combining controlled radical polymerization, i.e. ATRP and RAFT 

polymerization, with CuAAC, as the way to obtain well-defined polymer 

structures with adjustable structural parameters. In order to assess the 

influence of the hydrophobic/hydrophilic ratio, PDEAA with three different 

average molecular weights were prepared leading to different miktoarm 

polymers with hydrophobic/hydrophilic ratios ranging from 56/44 to 26/74. The 

study additionally includes an exploration of thermo and photoresponsive 

properties of the materials. 

 

Figure 6.3 Chemical structure of the investigated miktoarm star polymers 
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6.2  Tasks and Methods 

- Synthesis of the photoresponsive arm by ATRP polymerization of an 

azomonomer using an initiator containing three azido groups. 

 

- Synthesis of the thermoresponsive arms consisting of alkyne functionalized 

PDEAA by RAFT polymerization. 

 

- Coupling of the performed arms to obtain the target thermo and 

photoresponsive miktoarm star polymers of AB3 type using CuAAC (Figure 

6.4). 

  

Figure 6.4 Synthetic approach for the synthesis of the miktoarm star polymers 

 

- Structural characterisation of the miktoarm polymers (and their building 

blocks) by FTIR, NMR and elemental analysis. Thermal characterisation 

using POM, TGA and DSC. 

 

- Self-assembly of the miktoarm polymers in water and morphological 

study of the self-assemblies in water by TEM 

 
- Thermo and photoresponsive behaviour of the self-assemblies in water 

 
- Encapsulation and thermo and photoinduced release of fluorescent 

probes 
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6.3 Results and Discussion 

6.3.1 Synthesis and Characterisation of the Amphiphilic Miktoarm Star 

Polymers 

The miktoarm star copolymers were prepared by a combination of controlled 

radical polymerizations (ATRP and RAFT were used) and CuAAC as it is 

collected in Scheme 6.1. ATRP was used to polymerize the azomonomer, 

mAZO, from an asymmetric tetrafunctionalised core, (N3)3-Br, giving an 

azobenzene polymethacrylate, (N3)3-PAZO17, with three azido groups at the 

end. RAFT polymerization using a properly functionalised charge transfer 

reagent (CTA) with an alkyne function was used to prepare the 

thermoresponsive arms. Final coupling of the (N3)3-PAZO17 with the alkyne-

terminated thermoresponsive arm through CuAAC leaves behind the target AB3 

miktoarm polymers.   

 

Scheme 6.1 Synthesis of the investigated miktoarm star polymers 

 

As can be seen synthetic strategy is similar to that used in Chapter 5 but the 

sequence, polymerization and coupling, was reversed in order to modulate 

phobic/philic ratio maintaining the same photoresponsive block (in the previous 

chapter, commercial PEG arms of a predetermined Mn were first introduced). 
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Consequently, an appropriately functionalised azido initiator is required. In 

particular, starting from the same core, the tetrafunctional 2,2,2-

tris(azidomethyl)ethanol core (N3)3-OH, a novel triazido ATRP initiator ((N3)3-

Br) was prepared by an esterification reaction between (N3)3-OH and α-

bromoisobutyryl bromide. This initiator was used to polymerize the azobencene 

methacrylate mAZO to render an azido functionalised polymer (N3)3-PAZO17.  

ATRP was conducted in anisole at 80ºC using CuBr/PMDETA as the catalytic 

system. The average molecular weight of the polymer arm (N3)3-PAZO17 was 

deduced by end group analysis using 1H-NMR spectroscopy: the relative 

integration of the signal corresponding to the end-group -CH2-N3 at 3.27 ppm 

(labelled at ‘a’ in Figure 6.5) and the signals corresponding to the aromatic 

protons of the repeating azobenzene unit were used to calculate the 

polymerization degree, giving in average 17 repeating units per polymer chain 

as it is collected in Table 6.1. 

Table 6.1 Molecular weight the synthesised polymers 

                     

Polymer 

 

Mn [a] 

 

Mn [b] 

 

ĐM [b] 

Phobic/philic 

ratio[c] 

(N3)3-PAZO17  7816 9900 1.18 -- 

PDEAA14 2040  1700 1.18 -- 

PDEAA22 3056  2400 1.14 -- 

PDEAA55 7247  6300 1.11 -- 

PAZO17-(PDEAA14)3 13936            14800 1.22 56/44 

PAZO17-(PDEAA22)3 16984            17400 1.10 46/54 

PAZO17-(PDEAA55)3 29557            26200 1.12 26/74 

[a] Mn calculated by 1H-NMR (see text). [b] Mn and polydispersity (ĐM) of the polymers 
were determined by SEC using PS standards. [c] Phobic/Philic ratio was calculated by 
considering PDEAA arms as the hydrophilic part and the rest as the hydrophobic part. 
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Figure 6.5  1H-NMR spectrum of (N3)3-PAZO17 in CDCl3 (400MHz) 

 

Independently, three PDEAAm polymers with different number average 

molecular weight were synthesised via RAFT polymerization using a suitable 

chain transfer agent (CTA) containing an alkyne group, according a method 

previously published.20 The CTA was kindly provided by B. Schmidt (Macroarc 

group, KIT). For PDEAAm polymers, the average molecular weight was also 

calculated by 1H-NMR spectroscopy using the integral values corresponding to 

the terminal methylenic protons linked to the alkyne -CH2-O-C≡C at 4.71 ppm 

(labelled as ‘b’ in Figure 6.6) and the methylene linked to the amide functional 

group (-CH2-N-CO- of the repeating unit at 3.5-3.0 ppm (labelled as ‘f’ in Figure 

6.6). In average, the target polymers contained m=14, 22 and 55 repeating 

units as it is collected in Table 6.1.  
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Figure 6.6  1H-NMR spectrum of (PDEAA14)3  in CDCl3 (400MHz) 

 

In the final step, the alkyne terminated PDEAAm polymers were coupled with 

the azopolymer (N3)3-PAZO17 via a CuAAC to form the three target miktoarm 

polymers PAZO17-(PDEAA14)3, PAZO17-(PDEAA22)3 and PAZO17-(PDEAA55)3. 

An excess of the alkyne functionalised polymers was employed to ensure the 

completeness of the reaction. The excess of alkyne ended polymer was finally 

removed by using an azido functionalised polystyrene resin. The efficiency of 

the coupling reaction was assessed by SEC traces based on the unimodal 

distribution and the shift of the molecular weight distribution peak towards lower 

retention times that indicates miktoarm copolymer formation (Figure 6.7a). 

Further evidence for the miktoarm polymer formation was obtained from the IR 

spectra, where the band at 2100 cm-1 due to the azide functionality completely 

disappeared as it is observed in Figure 6.7b. The incorporation of the three 

PDEAA arms was confirmed by 1H-NMR. The relative integration of 

azobenzene aromatic protons signals (photoresponsive block) and the 

corresponding ones to methylene groups linked to nitrogen at 3.50-3.00 ppm as 

well as the CH- group of the main chain of the PDEAA arms (thermoresponsive 

arms) were in good agreement with the proposed AB3 structure in all the cases. 

Figure 6.8 shows the 1H-NMR spectrum of PAZO17-(PDEAA14)3 as an 
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example. The molecular weight of the miktoarms polymers were also calculated 

by SEC using PS standards and it is good agreement with the experimental 

values estimated by 1H-NMR (Table 6.1). 

 

Figure 6.7 a) SEC traces of (N3)3-PAZO17 (black line), PDEAA55 (grey line) and 
PAZO17-(PDEAA55)3 (dashed line). b) FTIR spectra of (N3)3-PAZO17 (bottom) and 
PAZO-(PDEAA55)3 (top) 

 

Figure 6.8 1H-NMR spectrum of PAZO17-(PDEAA14)3 showing the signals used to 
composition calculation in CDCl3 (400MHz) 
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Thermal properties of the synthesised polymers are collated in Table 6.2. The 

thermal stability of the preformed blocks and miktoarm polymers was studied by 

TGA using powdered samples. All the samples, including the miktoarm 

polymers, exhibited a good thermal stability up to around 300 ºC, far above the 

temperature transition to an isotropic liquid state. The thermal transitions were 

studied by DSC and POM. For (N3)3-PAZO17, a melting process to the isotropic 

liquid was detected by POM and confirmed by DSC as an endothermic peak 

detected at 110 ºC on the heating curve. The corresponding crystallisation 

process was detected at 103ºC upon cooling.  By contrast, the PDEAAm 

polymers are amorphous materials with a Tg in the range between 45 and 

64ºC, increasing the Tg value on increasing the molecular weight of these 

polymers as expected. The miktoarm polymers resulting from the coupling of 

(N3)3-PAZO17 and PDEAAm exhibited DSC curves showing a solid-isotropic 

liquid transition at close to 100 ºC, corresponding melting processes of the 

azobenene containing arms. Tg values corresponding to the thermoresponsive 

blocks were not accurately calculated due to the overlap with cold 

crystallisation processes (Figure 6.9).  

 

Figure 6.9 DSC curves (10ºC/min) corresponding to the second heating of (N3)3-
PAZO17, PDEAA14 and PAZO17-(PDEAA14)3 (from bottom to top) 
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Table 6.2. Thermal properties of the miktoarm star polymers and the 
corresponding building blocks 

 

Polymer 

TGA [a]      DSC [b] 

Td  Tg Tm ∆Hm 

(N3)3-PAZO17 337  - 110 10 

PDEAA14 366  45 - - 

PDEAA22 375  53 - - 

PDEAA55 389  64 - - 

PAZO17-(PDEAA14)3 303  -[c] 99 10 

PAZO17-(PDEAA22)3 343   -[c] 103 9 

PAZO17-(PDEAA55)3 367  -[c] 90 11 

[a] Thermogravimetric analysis: Td (in ºC): Decomposition temperature 
associated with the mass loss calculated by TGA at the onset point in 
the weight loss curve. [b] Data of Differential Scanning Calorimetry 
(DSC) calculated from the second heating scan recorded at 10ºC/ 
min. Tg (in ºC): glass transition temperature; Tm (in ºC) and ∆Hm (in kJ 
per mole of azobenzene unit): crystallisation temperature and 
associated enthalpy. [c] Tg was not clearly detected. 
 

 

6.3.2 Self-Assembly of the Miktoarm Polymers in Water 

Polymeric self-assemblies of PAZO17-(PDEAA14)3, PAZO17-(PDEAA22)3 and 

PAZO17-(PDEAA55)3 were prepared by dissolving the miktoarm polymers in 

THF and adding water gradually while measuring the turbidity at room 

temperature (Figure 6.10a). Once the turbidity reached an almost constant 

value, the resulting dispersion was dialyzed against water to remove the organic 

solvent. After dialysis, a stable micellar solution was obtained for PAZO17-

(PDEAA55)3, while precipitation was observed for PAZO17-(PDEAA14)3 and 

PAZO17-(PDEAA22)3 indicating that relatively short PDEAA arms are not able to 

stabilise self-assemblies in water. As a consequence, the study of micellar 

solutions was only focussed on PAZO17-(PDEAA55)3. 
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The critical micellar concentration (CMC) in water of PAZO17-(PDEAA55)3 was 

determined using Nile Red.21-23 The CMC was calculated to be close to 45 

µg/mL (Figure 6.10b).  

 

Figure 6.10 a) Turbidity evolution of the miktoarm polymer THF solutions as a function  
the amount of added water. b) Flurorescence intensity of Nile Red at 606 nm (λexc = 
550 nm) versus miktoarm polymer PAZO17-(PDEAA55)3 concentration (mg/mL) 

 

The morphology of the PAZO17-(PDEAA55)3 self-assemblies was investigated 

by transmission electron microscopy (TEM) on dried samples stained with 

uranyl acetate. TEM images (Figure 6.11a) evidence the presence of spheric 

micellar self-assemblies with a diameter of approx. 30 nm. The size of the 

polymeric micelles was additionally evaluated by DLS measurements providing 

the hydrodynamic diameter (Dh). Two size distributions were found (Figure 

6.12); one centred at 31 nm corresponding to single micelles composed of an 

azopolymer core and a PDEAA shell and a second distribution, less intense, 

centred at 275 nm, which can be attributed to aggregation of the single micelles 

forming a more complex aggregate. The aggregation of the micelles was also 

confirmed by TEM due to the occasional presence of complex micellar 

aggregates in some region of the grid as can be observed in Figure 6.11b, 

although it should be remarked that these aggregates were observed in lesser 

number than the singles micelles, with Figure 6.11a being more representative 

of the morphologic TEM study. A similar behaviour has been also reported by 

Wang et al. for other thermoresponsive micelles.24 
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Figure 6.11 TEM images of a water suspension of PAZO17-(PDEAA55)3 at different 
initial conditions: a) and b) at 20 ºC and non irradiated, c) quenched at 40 ºC; d) 20 ºC 
(after heating at 40 ºC for 1 h and then slowly cooled to room temperature), e) 
irradiated at room temperature, f) 24 h after irradiation. The length of the scale bar 
corresponds to 200 nm 

 

Figure 6.12 Volume distribution of a water suspension micelles of PAZO17-(PDEAA55)3 

and representative cartoon of single and aggregated micelles 
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6.3.3 Thermo- and Photoresponsive Behaviour of the Self-Assemblies 

The synthesised miktoarm polymers contain thermo and photoresponsive 

moieties and consequently they may have a dual response to external stimuli. 

The effect of the temperature on PAZO17-(PDEAA55)3 micelles was initially 

assessed. First, the LCST of PDEAA55 was calculated by DSC (see 

Experimental Section for further details).10 This critical temperature was found 

to be close to 27 ºC, indicating that PDEAA55 is a hydrophilic polymer at rrom 

temperature (approx. 20 ºC) and is becomes hydrophobic at temperatures 

above the LCST.  

Once determined the LSCT of the thermoresponsive arms, an aqueous 

suspension of PAZO17-(PDEAA55)3 (concentration of 1 mg/mL) was heated to 

40 ºC (i.e. a temperature above the LSCT) for 30 min. Subsequently, a TEM 

analysis of the sample was performed. As the TEM experiment was carried out 

at room temperature, the suspension was placed in the grid and dehydrated 

immediately after being heated in order to maintain the morphology reached at 

40 ºC. TEM image confirmed the collapse of the micelles (Figure 6.11c) due to 

the polarity change of the micelles’ shell, which became hydrophobic. The 

collapse can also be followed macroscopically, since a precipitate appeared in 

the suspension. An additional experiment was carried by using the aqueous 

suspension that was heated at 40ºC for 1 h (above LSCT of the 

thermoresponsive arms) and then slowly cooled to room temperature in an 

attempt to reverse the thermal process suffered by the PDEAA arms. At room 

temperature, PDEAA became hydrophilic, turning the miktoarm polymer again 

into an amphiphilic polymer. In fact, partial reassembly of the micelles was 

observed by TEM. As can be seen in Figure 6.11d, spherical micelles similar to 

the initials ones were again observed, although featuring a higher diameter of 

approx. 50 nm. Scheme 6.3a despites the representation of the proposed 

thermoinduced morphological changes.  

DLS measurements at different temperatures were additionally carried out 

(Table 6.3 and Figure 6.13a). As noted above, micelles with a 31 nm 

hydrodynamic diameter (Dh) were found at 20 ºC. Upon heating to 40 ºC, the 

size of the aqueous dispersion was not able to be accurately measured due to 
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the limited stability of the suspension at that temperature. Nevertheless, once 

the suspension was cooled and equilibrated at 20 ºC, a distribution centred at 

53 nm was found, in agreement with TEM observations.  

 

Scheme 6.3 a) Schematic representation of the proposed thermo and photoinduced 
morphology changes in PAZO17-(PDEAA55)3 micelles. b) Schematic representation of 
the proposed thermo and photoinduced Nile Red release 

 

Table 6.3. Mean hydrodynamic diameters (Dh) of AZO-
(PDEAA55)3 micelles determined by DLS. 
 

Sample 
 

Conditions Dh (nm) 

Initial  20 ºC 31 

Heated 40 ºC  -[a]

Heated at 40 ºC and cooled down 
to 20 ºC 

20 ºC 53 

Irradiated at 350-400 nm for 10 
min  

20 ºC 23 

24 h after irradiation 20 ºC 32 

[a] Data could not be calculated accurately 

 

T>LCST

T<LCST Vis

UV

T>LCST

T<LCST Vis

UV

AZO(trans)

AZO(cis) PDEAA (T>LCST)

PDEAA (T<LCST)
Nile Red

a)

b)

Collapsed micelle



Dual Responsive Miktoarm Star Polymers                                                      229 
 

 
 

 

Figure 6.13 Volume distribution of a water suspension micelles of PAZO17-(PDEAA55)3 

at different conditions: a) at different temperatures (distribution at 40ºC was not 
measure accurately due to instability of the suspension) and b) upon irradiation at 20ºC  

 

In order to study the photoresponse of PAZO17-(PDEAA55)3 micelles, an 

aqueous suspension (concentration of 1mg/mL) was irradiated with a mercury 

UV lamp (9W) emitting between 350 and 400 nm and the evolution of the UV-

Vis spectra was followed. Initially, the spectrum of the micellar suspension 

showed a broad π-π* transition with an absorption maximum close to 324 nm, 

indicating the dominating formation of H-aggregates of azobenzene units 

(Figure 6.14a). Furthermore, a shoulder at higher wavelengths, around 350 nm, 

was observed which corresponds to the absorption non aggregated 

chromophores, as was determined in these solution spectrum of PAZO17-

(PDEAA55)3 shown in Figure 6.14a as reference. Upon irradiation, a remarkable 

decrease of the π-π* transition was observed accompanied by an increase of 

the absorbance at 450 nm, corresponding to the n-π* transition as can be 

observed in Figure 6.14b. This behaviour is attributed to the photoisomerisation 

of the trans-azobenzene to the cis isomer accompanied by changes of the 

molecular aggregation. After 2 min of irradiation, a photostationary state was 

reached and no further evolution in the UV-Vis spectra was detected. Thermal 

cis-to-trans back isomerisation took place after 24 h in the dark and UV-Vis 

spectra almost recovered the initial shape. 
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Figure 6.14 a) UV-Vis spectra of PAZO17-(PDEAA55)3 in a 5x10-6 M solution in CHCl3 
(straight line) and a water suspension of PAZO17-(PDEAA55)3 micelles (dashed line). b) 
UV-Vis spectra of PAZO17-(PDEAA55)3 irradiated micelles (concentration of 1 mg/mL) 
at different times (350-400 nm, 9W) and 20ºC 

 

Having evaluated the evolution of UV-Vis spectra of the micellar suspension by 

irradiation, TEM observation of the polymeric micelles in combination with DLS 

measurements were also performed to gain further information about 

photoinduced morphological changes (Table 6.3). The TEM image recorded 

after irradiation shows the presence of micellar aggregates less defined than 

the initial ones accompanied by material without clear morphology (Figure 

6.9e). A change of 8 nm in the Dh was detected by DLS measurements, 

evidencing a morphological change in the micelles (Table 6.3 and Figure 

6.13b). TEM image of an irradiated suspension after 24 h in the dark was 

additionally taken. Under these conditions, thermal cis-to-trans back 

isomerisation took place and reformation of the spherical initial shape of the 

micelles occurred as it is shown in Figure 6.11f. By DLS, the Dh evaluated 

before and 24 h in the dark after irradiation were almost identical, i.e. 31 and 32 

nm, respectively (Figure 6.13b). These values were in agreement with TEM 

observations and demonstrated a reversible light induced morphological change 

of the polymeric micelles (Scheme 6.3a). 
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6.3.4 Encapsulation and Thermo and Photoinduced Release of Nile Red 

The hydrophobic core of the spherical micelles can be loaded with hydrophobic 

molecules and delivered using temperature or light as external stimulus. With 

this aim, a suspension of the micelles loaded with Nile Red was prepared and 

the fluorescence of Nile Red encapsulated at the core was initially recorded 

(Figure 6.15a). Upon heating to 40 ºC (i.e. a temperature above the LSCT of 

the thermoresponsive arms), an increase of the fluorescence intensity occurred, 

which indicates that Nile Red is  in a more hydrophobic environment.25 As noted 

in the previous section, at 40 ºC, the PDEAA shell becomes more hydrophobic 

and the micelles collapse. A priori it would be reasonable to assume that 

disruption of the micelles might provoke Nile Red release. However, the 

increase of the fluorescence indicates that release of the Nile Red did not occur. 

We propose that the collapse of the micelles keeps the Nile Red inside, 

provoking a slight increase in the fluorescence due the increase of the 

hydrophobicity in their environment (Scheme 6.3b). After cooling, the original 

Nile Red fluorescence was almost reached, probably due to a partial 

reassembly of the micelles and recovery of the initial hydrophobic environment 

of the Nile Red. 

In a further experiment, a suspension of the loaded micelles was irradiated with 

low intensity UV light, and the fluorescence of Nile Red was recorded after 

predetermined exposure times (Figure 6.15b). An abrupt decrease of the 

fluorescence intensity was observed after irradiation, indicating that the 

environment of the probe becomes more hydrophilic. Such a behaviour can be 

related to an increase in the polarity of the micelle core due to trans-to-cis 

isomerisation of azobenzene accompanied by a morphological change of the 

micelles and the subsequent release of Nile Red into water (Scheme 6.3b).  

After 24 h, the Nile Red fluorescence was not completely recovered, pointing to 

that part of the Nile Red was delivered into the aqueous medium under UV 

irradiation as consequence of the photoinduced disruption of micelles mediated 

by the trans-to-cis isomerisation of the azobenzene chromophores. 
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Figure 6.15 Emission spectra of the Nile Red encapsulated micelles of PAZO17-
(PDEAA55)3 (concentration of 1 mg/mL) recorded at a) different temperatures and b) 
different irradiation times at 20ºC 
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6.4 Conclusions 

Combination of ATRP, RAFT polymerization and CuAAC has been employed 

for the preparation of three miktoarm polymers composed of a photo responsive 

arm, PAZO17, and three thermoresponsive PDEAAm arms, containing different 

philic/phobic ratio ranging from 56/44 to 26/74. Only a stable micellar solution in 

water was obtained for PAZO17-(PDEAA55)3 

A dual response of the PAZO17-(PDEAA55)3 micelles was demonstrated. 

Collapse of the micelles takes place either upon heating and reversible 

morphological changes accompanied by partial distortion of the micelles 

occurred by UV irradiation.  

The ability to act as controlled delivery systems was investigated via 

encapsulation of hydrophobic molecules such as Nile Red. Upon heating, it was 

found that the fluorescence probe is retained in the micellar core, while light 

induced micelles deformation provoked controlled Nile Red release.  
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6.5 Experimental section 

Materials 

Experimental details for the synthesis of 6-[4-(4’-isobutyloxyphenylazo) 

phenoxy]hexyl methacrylate (mAZO) and 2,2,2-tris(azidomethyl)ethanol 

solution are given in Chapter 5. The alkyne functionalised CTA, prop-2-yn-1-yl 

2-(((ethylthio)carbonothioyl)thio)-2-methylpropanoate, was provided by 

B.Schmidth (Macroarc group, KIT).20,26 2,2’-Azobis(2-methylpropionitrile) (AIBN) 

was recrystallised twice from ethanol. N,N-diethylacrylamide was passed over a 

short column of basic alumina prior to use. All other reagents were purchased 

from Sigma-Aldrich and used as received without further purification.  

 

6.5.1 Experimental Details for the Synthesis of the Azopolymer (N3)3-

PAZO17 

Synthesis and Characterisation of the Trifunctional ATRP Initiator ((N3)3-

Br) 

 

2,2,2-tris(azidomethyl)ethanol, (N3)3-OH, solution (3.41 g, 4.50 mmol, 27 wt% in 

toluene) was placed in a round bottom flask and diluted with dry toluene (6 mL). 

The reaction flask was flushed with argon and cooled in an ice bath. 

Triethylamine (0.8 mL, 5.63 mmol) and α-bromoisobutyryl bromide (0.7 mL, 

5.63 mmol) were added. The mixture was stirred at room temperature overnight 

under argon atmosphere. The white precipitate formed was filtered off, and the 

solution was washed twice with HCl 0.1 N, twice with NaOH 0.1 N, and then 

with water. Caution!! The organic solution was concentrated, but not higher than 

to 1 M in azide. The final concentration of the triazide was determined by 1H-

NMR (33 wt%). Yield 90%. 1H-NMR (250 MHz, CDCl3, toluene peaks omitted) δ 

(ppm): 4.06 (s, 2H), 3.37 (s, 6H), 1.93 (s, 6H).  
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ATRP Polymerization 

 

Azobenzene-containing methacrylate (mAZO) (0.20 g, 0.46 mmol), initiator 

solution (21.6 mg of a 33 wt% solution in toluene, 20.2 µmol,) and CuBr (2.8 

mg, 20.2 µmol) were added to a Schlenk tube. N,N,N′,N′′,N′′-

pentamethyldiethylenetriamine (PMDETA) (4.0 µL, 20.20 µmol) and 

deoxygenated toluene (1 mL) were added with an argon-purged syringe, and 

the flask was further degassed by three freeze-pump-thaw cycles and flushed 

with argon. The reaction mixture was stirred under an argon atmosphere at 80 

ºC for 24 h. The mixture was diluted with THF and subsequently passed 

through a short column of neutral alumina.  The solvent was partially 

evaporated and the resulting polymer solution was carefully precipitated into 

cold methanol. Yield 75%. IR (KBr),  (cm-1): 2103, 1727, 1600, 1581, 1500, 

1248, 1147, 840.  1H-NMR (CDCl3, 400MHz) δ (ppm): 7.80-7.74 (m), 6.99-6.76 

(m, Ar), 4.00-3.85 (m), 3.82-3.64 (m), 3.27 (s), 2.16-2.02 (m), 1.98-1.57 (m), 

1.56-1.35 (m), 1.33-1.19 (m), 1.01-0.87 (m). Anal. Calc: C, 72.39%; H, 8.00 %; 

N, 9.54 % Found: C, 71.89 %; H, 7.96 %; N, 8.91% 
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6.5.2 Experimental Details for the Synthesis of the Thermoresponsive 

Polymers PDEAAm 

O
S S

O

N O
S

m PDEAAm

 

RAFT Polymerization  

Procedure for PDEAA14 is given as an example. Alkyne functionalised CTA 

(269.0 mg, 1.03 mmol), N,N-diethylacrylamide (10.00 g, 78.62 mmol), 

azobisisobutyronitrile (AIBN) (15.0 mg, 0.09 mmol), and DMF (45 mL) were 

added into a Schlenk-tube. The reaction mixture was degassed by three freeze-

pump-thaw cycles and flushed with argon, placed in an oil bath at 60 °C and 

removed after 1 h. The tube was subsequently cooled with liquid nitrogen to 

stop the reaction. The residue was dialyzed against deionised water with a 

SpectraPor® membrane (MWCO = 1000 Da) for 3 days at room temperature. 

The solution was freeze-dried to yield the polymer as yellow solid. Yield 20-

30%.   

Characterisation Data for PDEAA14: IR (KBr),  (cm-1):  1728, 1635, 1451, 

1381. 1H-NMR (CDCl3, 400MHz) δ (ppm): 4.71 (m), 3.71-2.88 (m), 2.85-2.22 

(m), 2.01-1.48 (m), 1.43-0.88 (m). Anal. Calc: C, 63.58 %; H, 9.79 %; N, 9.52 %; 

S, 4.67 %  Found: C,  64.05 %;  H, 10.21 %; N, 9.12 %; S, 4.55 %. 

Characterisation Data for PDEAA22: IR (KBr),  (cm-1):  1728, 1635, 1451, 

1381. 1H-NMR (CDCl3, 400MHz) δ (ppm): 4.71 (m), 3.71-2.88 (m), 2.85-2.22 

(m), 2.01-1.48 (m), 1.43-0.88 (m). Anal. Calc: C, 64.42 %; H, 9.96 %; N, 1.02%; 

S, 3.13 %  Found: C,  65.07 %; H, 10.25 %; N, 0.82 %; 3.68 S, % 

Characterisation Data for PDEAA55: IR (KBr),  (cm-1):  1728, 1635, 1451, 

1381. 1H-NMR (CDCl3, 400MHz) δ (ppm): 4.71 (m), 3.71-2.88 (m), 2.85-2.22 

(m), 2.01-1.48 (m), 1.43-0.88 (m). Anal. Calc: C, 65.22 %; H, 10.21 %; N, 10.64 

%; S, 1.33 %  Found: C,  65.92 %; 10.68 H, %; N, 9.98%; S, 0.99% 
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6.5.3 Experimental Details for the Synthesis of the Miktoarm Polymers 

 

 

General Procedure for Coupling Reactions 

(N3)3-PAZO17 (1eq), 1.2 fold excess of alkyne functionalised PDEAAm (3.6 eq) 

and two-fold excess of CuBr were placed into a Schlenk tube.  Two-fold excess 

of PMDETA and deoxygenated THF (around 1 mL per 100 mg of polymer) were 

added with an argon-purged syringe, and the flask was further degassed by 

three freeze-pump-thaw cycles and flushed with argon. The reaction mixture 

was stirred at 40ºC for 48 h. Subsequently, an azido functionalised resin was 

added under argon flow to remove the excess of PDEAA and the reaction 

mixture was stirred for further 24 h. The mixture was diluted with THF, the resin 

was filtered off and then passed through a short column of neutral alumina. The 

solvent was partially evaporated and the resulting polymer solution was 

carefully precipitated into cold ethanol. Yield 75-85%.  
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Characterisation Data for PAZO17-(PDEAA14)3: IR (KBr),  (cm-1):  1728, 

1635, 1600, 1583, 1499, 1463, 1253, 841.  1H-NMR (CDCl3, 400MHz) δ (ppm): 

7.92-7.73 (m), 6.92-6.74 (m), 4.30-4.24 (s), 4.01-3.82 (m), 3.80-3.62 (m), 3.60-

2.92 (m), 2.75-2.29 (m), 2.14-2.02 (m), 2.01, 1.81-1.54 (m), 1.52-1.18 (m), 

1.16-0.94 (m), 0.93-0.78 (m). Anal. Calc: C, 69.51 %; H, 8.87 %; N, 8.86 %; S, 

2.14 %  Found: C,  70.11 %; H, 9.25 %; N, 8.68 %; S, 2.42 % 

Characterisation Data for PAZO17-(PDEAA22)3: IR (KBr),  (cm-1): 1728, 

1635, 1601, 1582, 1501 (Ar), 1463, 1253, 841 (Ar).  1H-NMR (CDCl3, 400MHz) 

δ (ppm): 7.92-7.73 (m), 6.92-6.74 (m), 4.30-4.24 (s), 4.01-3.82 (m), 3.80-3.62 

(m), 3.60-2.92 (m), 2.75-2.29 (m), 2.14-2.02 (m), 2.01, 1.81-1.54 (m), 1.52-1.18 

(m), 1.16-0.94 (m), 0.93-0.78 (m). Anal. Calc: C, 69.90 %; H, 9.12 %; N, 9.26; 

% S, 2.14 %  Found: C, 70.51 %; H, 9.42 %; N, 8.88 %; S, 1.92 % 

Characterisation Data for PAZO17-(PDEAA45)3: IR (KBr),  (cm-1): 1729, 1635, 

1600, 1582, 1500 (Ar), 1463, 1250, 839 (Ar).  1H-NMR (400 MHz, CDCl3) δ 

(ppm):  7.92-7.73 (m), 6.92-6.74 (m), 4.30-4.24 (s), 4.01-3.82 (m), 3.80-3.62 

(m), 3.60-2.92 (m), 2.75-2.29 (m), 2.14-2.02 (m), 2.01, 1.81-1.54 (m), 1.52-1.18 

(m), 1.16-0.94 (m), 0.93-0.78 (m). Anal. Calc: C, 67.70 %; H, 9.60 %; N, 10.02; 

% S, 0.01 %  Found: C,  67.15 %; H, 10.22 %; N, 9.85 %; S, --% 

 

6.5.4 General procedures 

The preparation of the vesicles, determination of the critical aggregation 

concentration (CAC), the sample preparation for the different microscopies 

techniques as well as the irradiation experiments has been performed following 

the same procedures described in Chapter 4. 

LSCT calculation 

The LCST was calculated by DSC in a Q20 from TA Instruments using a 10 

wt% solution of PDEAA55 in water sealed in an aluminium pan that calculated 

as the peak maximum in the first derivative of heat flow.  
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7.1 Introduction and Aims 

Engineering surface chemistry and topography affords technological 

advancements for a variety of applications ranging from biosensors to 

microelectronics.1,2 Surface functionalisation is an essential process for the 

construction of patterned surfaces and microarrays, surface immobilisation of 

biological molecules or just to tune or confer new properties to substrates. It can 

be completed by physical deposition (physisorption), but covalent 

immobilisation (chemisorption) is preferable because of the added stability of 

the coating. Smart functional surfaces can be created by covalent 

inmmobilisation of stimuli responsive molecules to tailor-made properties and 

generate substrates with switchable properties such as pH or wetability.3-5 In 

particular, the attachment of photoresponsive molecules onto surfaces is very 

attractive as the properties of the surfaces can be controlled by light as an 

external and non contact stimulus (see section 1.4). One critical aspect of the 

immobilisation is retaining the activity of the molecule once it is immobilised 

onto the surface. 

To cover demands, the development of fabrication methods for soft material 

surfaces with precise control over functionality, architecture, reactivity and 

domain size is required. During the last years, development of the ‘click 

chemistry’ methods has had an enormous impact on surface functionalisation.6,7 

These reactions provide an efficient strategy because of the functional group 

versatility, high yields with no side products and simple reaction conditions. 

Nevertheless, in some applications an efficient reaction is not enough since 

patterning of the surface with spatial control of chemical functionality might also 

be required. The utilisation of light initiated ‘click reactions’ represents a 

powerful ligation protocol. These UV induced reactions include thiol-ene/thiol-

yne coupling,8 1,3-dipolar cycloaddition reactions9,10 and Diels–Alder reactions11 

among others (Scheme 7.1). 
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Scheme 7.1 Examples of light induced reactions employed for the preparation of 
patterning surfaces: a) CuAAC,9,12 b) photoenol chemistry,13 c) NITEC reaction14 

 

Bowman and coworkers have recently developed a new photochemical protocol 

for the in situ generation of Cu(I) from a Cu(II) complex using light to catalyze a 

CuAAC reaction between azides and alkynes. Patterned material fabrication 

was achieved with this reaction by using standard photolithographic techniques 

(Figure 7.1).9,12 Barner-Kowollik and coworkers have introduced a novel 

procedure for click conjugations based on a Diels–Alder reaction of hydroxy-o-

quinodimethanes (photoenols) generated by photoisomerisation of o-

methylphenyl ketones or aldehydes.15,16 Photoenols are highly reactive dienes 

that can react with activated alkenes. This chemistry has been successfully 

applied to polymer conjugation as well as to surface patterning using different 

maleimide derivatives.17 The nitrile imine-mediated 1,3-dipolar cycloaddition of a 

tetrazole and an alkene derivative (NITEC reaction) was firstly reported by 

Huisgen and Sustmann in 196718 and recently significantly expanded by Lin and 

coworkers.19 The NITEC reaction proceeds via the generation of a nitrile imine 

dipole by irradiation with UV light of a tetrazole compound. The nitrile imine 

intermediate is able to react spontaneously with a large variety of alkenes 

forming a pyrazoline cycloadduct in near quantitative yields.19-21 This strategy 

have also been successfully employed for room temperature grafting of 
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polymers onto variable surfaces such as silicon or cellulose by Barner-Kowollik 

and coworkers.22  

 

 

Figure 7.1 Photopatterning of an azide functionalised polypropylene using a 
photomask (Image adapted from ref. 9) 

 

In the current chapter, the preparation and study of responsive surfaces using 

exclusively light as a stimulus for both the preparation of azobenzene modified 

surfaces and the subsequent control of the surface properties is approached by 

using chromophores analogues to those described in previous chapters. The 

preparation of these spatially controlled photoresponsive surfaces is addressed 

by use of the NITEC reaction using azobenzene dipolarophiles as it is collected 

in Scheme 7.2. In this strategy, the previously activated surfaces were modified 

with a silane derivative containing a tetrazole group. Then, a NITEC reaction 

between tetrazole and dipolarophiles was employed to obtain the 

photoresponsive surfaces. The dipolarophiles consist of a maleimide containing 

either a single azobenzene (AZO1) moiety or a first-generation dendron 

carrying two azobenzene units (AZO2). To the best of our knowledge, this 

reaction has not been used before in the presence of species exhibiting strong 

absorption in the UV−Vis region. Again, 4-isobutyloxyazobenzene unit was 

chosen due to the increment in polarity difference between the trans and the cis 

isomers. 

 

PEG-alkyne

CuAAC

EDTA

PHOTOPATTERNED
SURFACE



248                                                                                                         Chapter 7 

 
 

 

Scheme 7.2 Azobenzene functionalisation of surfaces via the NITEC reaction 
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7.2 Tasks and Methods 

- Synthesis and characterisation of a tetrazole functionalised silane (TET) 

and two maleimide-containing azo derivatives containing either a single 

azobenzene moiety (AZO1) or a first-generation dendron carrying two 

azobenzene units derivates (AZO2). 

 

 

Figure 7.2 Chemical structure of the aimed tetrazole functionalised silane (TET) and 
the two aimed maleimide-containing azobenzene derivates (AZO1 and AZO2)  

 

- Study of the viabilility of the NITEC reaction in solution using maleimide 

containing azobenzene derivatives as dipolarophiles. 

 

- Preparation and characterisation of azobenzene functionalised surfaces 

by employing NITEC reaction (Scheme 7.2) 

 
- Preparation of azobenzene patterned surfaces 

 
- Study of the photoresponsive behaviour of the functionalised surfaces 
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7.3. Results and Discussion 

7.3.1 Synthesis and Characterisation 

The tetrazole functionalised silane (TET) and the azo derivatives AZO1 and 

AZO2, were first prepared. The 2,5-disubstituted tetrazole (18) was synthesised 

by reaction of the phenylsulfonylhydrazone, terephthalaldehyde and benzene-

diazonium salt.19 The subsequent reaction of tetrazole (18) with 3-

aminopropyltriethoxysilane gave the target tetrazole functionalised silane 

(TET)22 (Scheme 7.3). As the photolysis of diaryl tetrazoles easily takes place 

upon light exposure, the tetrazole derivates were storaged and manipulated in 

the dark. It should be noted that in spite of the mentioned precautions, the 

tetrazole derivatives were obtained in low yields. 

 

Scheme 7.3 Synthesis of the tetrazole containing silane TET 

 

The synthesis of the target maleimide containing azobenzene AZO1 and AZO2 

is depicted in Scheme 7.4. AZO1 was prepared in two steps starting from 6-[4-

(4’-isobutyloxyphenylazo) phenyloxy]hexanoic acid, isoAZOb, whose synthesis 

was described in Chapter 3. Esterification of isoAZOb with the protected 

maleimide containing a hydroxyl group (20) using DCC/DPTS rendered the 

intermediate (21) that was readily deprotected by a heat induced retro-Diels-

Alder reaction in quantitative yields. 
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The synthesis of the first-generation azodendron derived from bis-MPA with a 

maleimide group at the focal point, AZO2, was prepared in several steps. First, 

esterification of the acetal protected bis-MPA (1) with the hydroxyl protected 

maleimide (20) and subsequent hydrolysis of the acetal using an acidic resin 

render the hydroxyl terminated intermediate (23). The 4-isobutyloxyazobenzene 

unit was appended by an esterification reaction between the acid chloride of 

isoAZOb and (23) to give compound (24). Finally, compound AZO2 was 

afforded by a heat induced retro-Diels-Alder reaction of (24) in quantitative 

yields. 

 

Scheme 7.4 Synthesis of the azobenzene maleimides 
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FTIR and 1H-NMR spectroscopies as well as mass spectrometry (see 

Experimental Section) confirmed the expected structures of all intermediates 

and final products. Figure 7.3 depicts 1H-NMR spectrum of AZO2 as an 

example. Besides the signals corresponding to the 4-isobutyloxyazobenzene 

moiety, a new signal at 6.70 ppm corresponding with the protons of the 

malimide group (see peak labelled as ‘a’ in Figure 7.3) appeared proving the 

formartion of the target dipolarophile.  

 

Figure 7.3 1H-NMR spectrum of the azobenzene maleimide AZO2 in CDCl3 (400 MHz) 
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7.3.2 Premilinary Test of the NITEC Reaction with Azobenzene 

As noted above, the NITEC approach is a very efficient light triggered ligation 

technique for both small molecules and macromolecular conjugation.18-21,23-31 

However, as mentioned the NITEC UV initiated reaction has not been employed 

before using chromophores with a strong absorption in the UV region such as 

azobenzenes. For this reason, a series of preliminary experiments in solution 

were approached using the tetrazole compound TET and the maleimide AZO1 

to assess and evaluate the reaction conditions as well as the conjugation 

efficiencies. 

 

Scheme 7.5 Synthetic scheme of the NITEC reaction in solution using the tetrazole 
TET and the maleimide AZO1  

 

The reaction between the tetrazole functionalised silane TET and a 1.5-fold 

excess of maleimide-containing azobenzene AZO1 was carried out in DCM 

(concentration of AZO1 7mM) at room temperature (Scheme 7.5). Electrospray 

ionisation coupled to mass spectrometry (ESI-MS) was employed to confirm the 

photoadduct formation.  
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Firstly, the selection of suitable photochemical conditions was addressed. In 

solution, the tetrazole TET shows an absorption band with the maximum at 280 

nm while the trans-azobenzene AZO1 presents two well described absorption 

bands, a strong one centred at 360 nm and a weak one at about 450 nm 

(Figure 7.4). Following a previously established procedure,22 the reaction was 

performed at 254 nm, where both the tetrazole and the azobenzene 

chromophores present similar absorptions. Only low conversions were achieved 

by using a UV hand-held lamp but decomposition of the compounds occurred 

using a higher power light source (OSRAM Puritec HNS L 36 W). Therefore, in 

view of these results, a lamp with the maximum emission at 290-315 nm 

(Philips PL-S 9 W/12) was employed to avoid the azobenzene absorption band. 

This time, the formation of the desired adduct AD was confirmed by ESI-MS by 

the presence of the molecular ion peak at m/z= 949.4 [M-H]+ and 971.7 [M-Na]+. 

Figure 7.5 depicts the evolution of the reaction. The initial ESI-MS spectrum, 

t=0, consist of the peaks corresponding to the initial products TET (m/z= 492.3 

[M-Na]+ and 961.3 [2M-Na]+) and AZO1 (m/z= 508.3 [M-H]+ and 530.4 [M-Na]+). 

After 20 min the formation of the coupling product AD was detected (m/z= 949.4 

[M-H]+, 971.7 [M-Na]+) and after 40 min almost all tetrazole (m/z= 492.3 [M-

Na]+) was consumed. After 1 h, ESI-MS showed complete consumption of the 

tetrazole and charged ions corresponding to the photoproduct AD and to the 

azobenzene AZO1 employed in excess (m/z=  508.3 [M-H]+ and 530.4 [M-Na]+) 

were detected. Thus, the lamp with the maximum emission at 290-315 nm is 

more suitable to carry out the NITEC reaction in presence of the azobenzene 

group. 
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Figure 7.4 UV spectra of the tetrazole functionalised silane TET (grey line) and 
maleimide-containing azobenzene AZO1 (black line) solution in acetonitrile (10-4 M)  

 

 

Figure 7.5 ESI-MS spectra of the NITEC reaction depicted in Scheme 7.5 at different 
reaction times 
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7.3.3 Azobenzene Surface Functionalisation 

After evidencing the efficiency of the NITEC reaction in the presence of 

azobenzene and in solution, the following step was to carry out the same 

reaction with tetrazole functionalised silicon wafers (Scheme 7.6). The silicon 

after were cleaned and hydroxylated with Piranha solution and subsequently the 

covalent binding of the tetrazole containing silane was performed by heating an 

activated silicon wafer with TET in toluene at 50 ºC (see Experimental Section). 

The tetrazole functionalised silicon wafer (Si-TET) was thoroughly rinsed with 

fresh solvent and sonicated to ensure no physisorbed tetrazole was present 

onto the surface. XPS was employed to prove the functionalisation of the 

surface. In the XPS spectra (Figure 7.6a) it is possible to observe intense 

peaks around 285-290 eV corresponding to C 1s and around 400-402 eV 

attributed to N 1s. As it was reported, peaks at 286.6 eV and 288.5 eV can be 

assigned to carbon atoms single bonded with oxygen and nitrogen (C-O, C-N) 

and to carboxylic groups (-N-C=O, -O-C=O) respectively .32,33 The N 1s 

spectrum presents a strong peak at 400.2 eV that can be assigned to the 

tetrazole species34 and a weak one at 402.7 eV that probably correspond to 

positively charged nitrogen.35  

Then, the NITEC reaction was employed to graph AZO1 onto the surface by 

using the optimum conditions identified in the solution tests (290-315 nm). The 

Si-TET silicon wafer was placed in a quartz flask containing a maleimide AZO1 

solution in DCM  (7 mM) and exposed to UV light (9W, 290-315 nm) The 

azobenzene functionalised wafers Si-AZO1 were analysed by XPS and 

compared with the tetrazole functionalised one (Si-TET). As in the case of Si-

TET (Figure 7.6a), XPS spectra of Si-AZO1 shows peaks at 285.0 at 286.6 and 

288.5 eV corresponding to C 1s and around 400.2 and 402.7 eV attributed to N 

1s (Figure 7.6b). In order to establish comparison, the relative peak areas were 

calculated by using (C-O, C-N) signal at 286.6 eV as reference (Figure 7.7). As 

expected, in comparison with Si-TET the N / (C-O, C-N) ratio decreased from 

1.12 to 0.50 on the functionalised surface Si-AZO1 evidencing the presence of 

azobenzene on the surface (Figure 7.6b). 
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Scheme 7.6 NITEC reaction between a tetrazole-functionalised surface and the 
azobenzene derivatives AZO1 and AZO2. To simplify, only one Si-anchoring has been 
considered  

 

Figure 7.6 Comparison of the C 1s (left) and N 1s (right) normalised regions of the 
XPS spectra of functionalised silicon wafers: a) Si-TET, b) Si-AZO1 and c) Si-AZO2 
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Figure 7.7 Chemical structures and theoretical C 1s and N 1s XPS peak abundances 
(top) for the modified silicon wafers Si-TET, AZO1 and AZO2. Bar chart comparing 
theoretical and experimental C 1s and N 1s XPS peak abundances for the silicon 
wafers Si-TET, Si-AZO1 and Si-AZO2 (bottom). For wafer Si-AZO2 a theoretical 
reaction yield of 50% is assumed, the experimental data are based on 6 h reaction 
time. The high experimental intensity of all C-H components is due to adventitious 
carbon. 
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The photoligation reaction was also carried out with the first-generation 

azodendron AZO2. The silicon wafer Si-TET was immersed into a solution of 

AZO2 in DCM (3.5 mM) in a quartz flask and irradiated at 290-315 nm. The 

functionalised silicon wafer Si-AZO2 was analysed by XPS (Figure 7.6c). The 

relative areas of the signals were again compared using C-O, C-N as reference 

and it was observed that the N/(C-O, C-N) ratio decreased from 1.12 in for Si-

TET to 0.57 for Si-AZO2 (Figure 7.7). Nevertheless, in this case the 

experimental result is not in agreement with the theoretical value (N/(C-O, C-N) 

ratio of 0.40) evidencing incomplete functionalisation of the surface.  

In order to optimise the efficiency of the photoconjugation, the progress of the 

reaction with AZO2 was followed by XPS from the changes in N/(C-O, C-N) 

ratio (Figure 7.8) The best result was achieved with 6 h of reaction for which a 

functionalisation close to 50% was reached according to the XPS data. The 

lower efficiency might be attributed to a higher steric hindrance in the case of 

the azodendron AZO2 in comparison with the single molecule AZO1. 

 

Figure 7.8 Time dependent evolution of the XPS N / (C-O, C-N) ratio of Si-AZO2. 
Dashed line indicates the assumed max. 50% reaction yield, 0 h reaction time 
represents pure wafer Si-TET. Error bars represent standard deviations of the 
measurements. 
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7.3.4 Azobenzene Surface Patterning 

To prove the spatial control in azobenzene functionalisation, the concept was 

extended to the formation of a micropatterned substrate by using a photomask. 

Tetrazole functionalised surfaces, Si-TET, were covered with a shadow mask 

containing a micropattern, immersed in an azobenzene solution of AZO1 or 

AZO2 and UV illuminated in the same conditions as before (Scheme 7.7).  After 

removing the mask and washing the surfaces, the patterns were revealed by 

time-of-flight secondary ion mass spectrometry (ToF-SIMS). This is a surface-

sensitive analytical method providing chemical images generated by collecting 

mass spectra at a high lateral resolution (see Appendix). 

 

 

Scheme 7.7 Azobenzene functionalisation of the surfaces with spatial control 
employing a micropatterned shadow mask. 

 

Figure 7.9a and Figure 7.9b depicts the ToF-SIMS images of the patterned 

surfaces. Two azobenzene fragments, C16H17N2O2
- (m/z=269.2) and 

C12H8N2O2
- at 212.1 m/z, were exclusively detected in the UV exposed areas, 

and not in the non irradiated regions. Further, the [M-Na]- ions (m/z=530.4 for 

AZO1 and 1012.5 for AZO2) cannot be detected after the photografting step 

discarding physisorption of the precursor molecules AZO1 and AZO2 and 

consequently unambiguously evidencing a covalent attachment. Figure 7.10 

shows as an example the SIMS data in the region of the molecular ion of AZO2, 

where [M-Na]-  was not detected in the case of the covalently functionalised 

surface. 

N2
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Figure 7.9 ToF-SIMS images of a) the azobenzene AZO1 and b) azobenzence AZO2 
immobilised in a zigzag pattern defined by the applied photomask. Negative polarity 
SIMS, 269.1 u and 212.1 u, assigned to C16H17N2O2

- (left) and C12H8N2O2
- (right) 

 

Figure 7.10 SIMS spectrum of the azobenzene AZO2 physically adsorbed by solvent-
casting deposition (red) and grafted (black) onto silicon wafers 
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7.3.5 Wettability Study 

After evidencing the presence of azobenzene on the surface by XPS and ToF-

SIMS, azobenzene trans-to-cis photoisomerisation was provoked by UV 

irradiation of the surface. For this photoisomerisation, a lamp with the maximum 

emission wavelength close to 355 nm was chosen (the strongest absorption 

band of trans-azobenzene is centered about 360 nm). 

Functionalised surfaces Si-AZO1 and Si-AZO2 were illuminated through a 

mask covering half of the surface as a way to generate two regions having 

different polarities due to the azobenzene isomerisation in the selectively 

exposed areas (Scheme 7.8).  This would allow fine tuning of the surface 

wettability. A simple and effective technique employed to macroscopically 

monitor the photoisomerisation is the contact angle (CA) measurement. 

Advancing and receding CAs were measured in non irradiated (trans-

azobenzene rich areas) and irradiated (cis-azobenzene rich areas) regions of 

both surfaces (Table 7.1). On an ideal surface, the advancing and the receding 

angles will be identical.36 It is well known that roughness or chemical 

heterogeneity can cause CA hysteresis, yet it has also been reported that even 

surfaces – which are initially smooth and homogeneous – can exhibit CA 

hysteresis because of a reorganisation of surface molecules.37,38 In the present 

case, no significant modification in the advancing CA can be observed. 

However, a significant change of 15º in receding CA occurred on Si-AZO1 

surface evidencing that the photoisomerisation occurs and has influence on the 

wettability of the surface. In the case of Si-AZO2 surface, smaller differences 

were detected between the non-irradiated and the irradiated zone were 

detected, probably due to a more heterogeneous and less azobenzene 

functionalised surface being produced. As expected, the contact angle in the 

cis-azobenzene region in both cases decreased as a consequence of the 

increase on the dipole moment. Reported differences in CA on trans and cis 

azobenzene functionalised smooth surfaces did not exceed 10º39,40 whereas 

higher differences were achieved in the azobenzene functionalised surface Si-

AZO1.  
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Scheme 7.8. Spatially controlled photoisomerisation of an azobenzene functionalised 
surface by using a mask to cover half of the surface. 

Table 7.1 Contact angle measurements of the azofunctionalised surfaces 

Surface Advancing angle Receding angle 

AZO1            
(non-irradiated) 

87.0º + 1.0 56.7º + 3.5 

AZO1    
(irradiated) 

86.7º + 1.5 41.7º + 1.5 

AZO2            
(non-irradiated) 

83.0º + 2.5 52.3º + 2.5 

AZO2    
(irradiated)  

83.5º + 3.0 42.3º + 4.5 

   

Visual experiments by using a water droplet were performed to demonstrate the 

photoswitchable wettability of the functionalised surface. It was evidenced that 

when azobenzenes at the surface adopt the trans configuration a water droplet 

can slips the surface whereas the water droplet is sticky if azobenzenes are in 

the cis configuration. Such a different behaviour is more pronounced in the case 

of surface modified with azobenzene Si-AZO1. For a visual demonstration of 

the switching effect, please refer to the movies (http://onlinelibrary.wiley.com 

/doi/10.1002/adfm.201203602/suppinfo). In these experiments, a water droplet 

was placed in each region of the surface, irradiated as well as non-irradiated, 

and it was forced to move over the surface. Reversible cis to trans thermal 

isomerisation was checked by keeping the surface in the dark for 24 hours 

before evaluating the water droplet behavior again. After 24 h, the water droplet 

slipped over the entire surface proving that azobenzene adopted trans 
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configuration in both regions. Although the thermal isomerisation is slow (hours) 

it can be readily accelerated by heating or by exposure to visible light. 
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7.4 Conclusions 

A novel and spatial resolved photocontrolled functionalisation of surface with 

azobenzene moieties by employing the NITEC (nitrile imine-mediated tetrazole 

ene cycloaddition) has been achieved. Photoligation reaction has been carried 

out in presence of a molecule featuring a single azobenzene unit and a 

maleimide group was performed as well as with a first-generation dendron 

containing two azobenzene groups.  

XPS was employed to prove the functionalisation of the silicon wafers with both 

azobenzene derivates. In the case of AZO2, the experimental result is not in 

agreement with the theoretical value evidencing incomplete functionalisation of 

the surface. 

On the other hand, ToF-SIMS images proved functionalised surfaces in a highly 

spatial controlled fashion in both cases.  

Photocontrolled trans-to-cis azobenzene isomerisation of the surface provokes 

a change in the dipolar moment allowing the tuning of the surface wettability. 

Visual experiments by using a water droplet demonstrated the photoswitchable 

wettability. An optimum photoresponse has being achieved when the 

photoligation is performed with azobenzene AZO1. 

Thus, it has been demonstrated that trans-to-cis azobenzene isomerisation of 

spatially resolved surfaces allows tuning the surface properties. 
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7.5 Experimental Section 

Experimental details for the synthesis of isopropylidene-2,2-bis(methoxy) 

propionic acid (1) and 6-[4-(4’isobutyloxiphenylazo) phenyloxy]hexanoic acid 

(isoAZOb) are given in Chapter 2 and 3, respectively. All other reagents were 

purchased from Aldrich and used as received without further purification.  

 

7.5.1 Experimental Details for the Synthesis of the Tetrazole Derivatives 

Synthesis and Characterisation of 4-(2-phenyl-2H-tetrazol-5-yl)benzoic 

acid (18) 

 

A solution of 4-formylbenzoic acid (2.10 g, 13.30 mmol) in ethanol (130 mL) 

and benzenesulfonohydrazide (2.29 g, 13.30 mmol) was prepared. The mixture 

was stirred for 30 min. After addition of water (250 mL), a white precipitate was 

formed and collected in a funnel. The white solid was dissolved in pyridine (50 

mL). In parallel, a solution of NaNO2 (0.92 g, 13.30 mmol) in water (10mL) was 

added dropwise to a cooled mixture of aniline (1.24 g, 13.30 mmol) dissolved in 

a mixture of water-ethanol (1:1) (20mL) and concentrated HCl (3.4 mL). This 

solution was slowly added to the pyridine solution cooled with an ice-salt bath. 

The reaction mixture was then extracted with ethyl acetate 3 times and HCl 3N 

added to the organic layer. A precipitated formed that was collected and dried. 

IR (KBr),  (cm-1): 3300, 1695, 1650, 1308, 1094, 1016, 802. 1H-NMR (DMSO-

d6, 400MHz) δ (ppm): 12.29 (s, 1H), 8.34-8.26 (m, 2H), 8.19 (td, J = 5.5, 2.9 Hz, 

4H), 7.78-7.27 (m, 3H); 13C-NMR (DMSO-d6, 100 MHz) δ (ppm): 166.7, 163.8, 

136.1, 132.8, 130.4, 130.3, 130.2, 126.8, 120.0 
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Synthesis and Characterisation of the Tetrazole Functionalised Silane 

(TET) 

N
N N

N

O

N
H

Si
O
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A solution of carboxy functionalised tetrazole (18) (0.80 g, 3.00 mmol), (3-

aminopropyl)triethoxysilane (0.65 g, 3.00 mmol), and 4-dimethylaminopyridine 

(0.05 mg, 0.45 mmol) in dry DCM (25 mL) was prepared. N,N'-

dicyclohexylcarbodiimide (0.77 g, 3.60 mmol) in dry DCM (10 mL) was then 

added dropwise. The mixture was then stirred at room temperature for 18 h. 

The white precipitate formed was removed by filtration and the solvent was 

evaporated. The crude product was purified by column chromatography on 

silica gel and eluted with DCM:acetate 1:1 and then crystallised in hexane 

giving a pink powder. Yield 20 %. IR (KBr),  (cm-1): 3300, 3260, 1636, 1552, 

1102, 1076, 860, 798. 1H-NMR (CDCl3, 400MHz) δ (ppm): 8.35-8.33 (m, 2H), 

8.24-8.20 (m, 2H), 7.95-7.92 (m, 2H), 7.64-7.50 (m, 3H), 6.69 (t, J = 5.4 Hz, 1 

H), 3.85 (q, J = 7.0 Hz, 6H), 3.53-3.50 (m, 2H), 1.83-1.76 (m, 2H), 1.24 (t, J = 

7.0 Hz, 9H), 0.83 (t, J = 7.5 Hz, 2H). 
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7.5.2 Experimental Details for the Synthesis of the Azobenzene 

Derivatives 

Synthesis and Characterisation of 4,10-dioxatricyclo[5.2.1.02,6]dec-8-ene-

3,5-dione (19) 

 

A suspension of maleic anhydride (30.02 g, 0.31 mmol) in toluene (150 mL) was 

heated to 80 ºC and then furan (33.4 mL, 0.46 mmol) was slowly added. The 

resulting turbid solution was stirred for 6 h, and then the mixture was cooled to 

room temperature and the stirring stopped. After 1 h, the resulting white crystals 

were collected by filtration and washed twice with petroleum ether (2x30mL). 

The solvent was evaporated and the product was obtained as small white 

needless. Yield: 90% IR (KBr),  (cm-1): 1857, 1780, 1309, 1282, 1211, 1145, 

1083. 1H-NMR (CDCl3, 400MHz) δ (ppm): 6.57 (t, J =1.0 Hz, 2H), 5.45 (t, J = 

1.0 Hz, 2H), 3.17 (s, 2H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 170.0, 137.1, 

82.4, 48.9. 

Synthesis and Characterisation of 4-(2-hydroxyethyl)-10-oxa-4-azatricyclo 

[5.2.1.02,6]dec-8-ene-3,5-dione (20) 

 

The anhydride 19 (2.00 g, 12.0 mmol) was suspended in methabol (50 mL) and 

the mixture cooled to 0 ºC. A solution of 2-aminoethanol (0.72 mL, 12.0 mmol) 

in MeOH (20 mL) was added dropwise and the resulting mixture was stirred for 

5 min at 0 ºC, then 30 min at room temperature, and finally refluxed for 4 h. 

After cooling to room temperature, the solvent was removed under reduced 

pressure, and the white residue was dissolved in DCM (150 mL) and washed 

with water. The organic layer was dried and the solvent evaporated. The solid 

was purified by flash column chromatography on silica gel and eluted with ethyl 
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acetate. The product was obtained as a white solid. Yield: 50%. IR (KBr),  (cm-

1): 3472, 1681, 1269, 1168, 1100, 1053. 1H-NMR (CDCl3, 400MHz) δ (ppm): 

6.52 (t, J= 1.0 Hz, 2H), 5.28 t, J =1.0 Hz, 2H), 3.76-3.78 (m, 2H), 2.90 (s, 2H), 

1.90 (s, 1H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 177.0, 136.6, 81.0, 60.2, 

47.5, 41.8.  

Synthesis and characterisation of (21) 

 

The protected maleimide (20) (0.41 g, 2.20 mmol), 6-[4-(4’-

isobutyloxyphenylazo)phenyloxy] hexanoic acid (isoAZOb) (1.02 g, 2.60 mmol) 

and 4-(dimethylamino)pyridinium 4-toluenesulfonate (0.62 g, 2.20 mmol) were 

dissolved in DCM (15 mL). The reaction flask was flushed with argon, and N,N'-

dicyclohexylcarbodiimide (0.63 g, 2.85 mmol) was added. The mixture was 

stirred at room temperature for 24 h under argon atmosphere. The white 

precipitate formed was filtered off, and the solvent was evaporated. The crude 

product was purified by flash column chromatography on silica gel and eluted 

with 1:9 ethyl acetate:DCM. The target product was obtained as a yellow 

powdery solid. Yield: 70 %. IR (KBr),  (cm-1): 1743, 1713 (C=O), 1601, 1580, 

1499, 1396, 1247, 840. 1H-NMR (CDCl3, 400MHz) δ (ppm):  7.90-7.86 (m, 4H), 

7.07-6.95 (m, 4H), 6.50 (t, J = 1.0 Hz, 2H), 5.27 (t, J = 1.0 Hz, 2H), 4.33-4.19 (t, 

J = 5.2 Hz, 2H), 4.05 (t, J = 6.4 Hz, 2H), 3.89 – 3.66 (m, 4H), 2.86 (s, 2H), 2.34 

(t, J = 7.5 Hz, 2H), 2.19-2.09 (m, 1H), 1.88-1.81 (m, 2H), 1.74-1.67 (m, 2H), 

1.64-1.45 (m, 2H), 1.07 (d, J = 6.7 Hz, 6H). 13C-NMR (CDCl3, 100 MHz) δ 

(ppm): 176.0, 173.3, 161.3, 161.2, 146.9, 146.8, 136.5, 124.3, 114.7, 114.6, 

80.9, 74.7, 67.9, 60.5, 47.4, 37.9, 33.9, 29.7, 28.3, 25.6, 24.4, 19.3.  
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Synthesis and Characterisation of AZO1 

 

The azobenzene (21) (0.20g, 0.35 mmol) was suspended in toluene (150 mL) 

and heated to reflux while the reaction was monitored by thin layer 

chromatography. After 4 h, the solvent was removed under reduced pressure to 

give AZO1 as a yellow powder. Yield: 100%. IR (KBr),  (cm-1): 1735, 1707, 

1601, 1580, 1499, 1402, 1242, 839. Yield: 98%. 1H-NMR (CDCl3, 400MHz) δ 

(ppm): 7.90-7.82 (m, 4H), 7.04-6.91 (m, 4H), 6.71 (s, 2H), 4.30-4.19 (t, J = 5.3 

Hz, 2H), 4.03 (t, J = 6.4 Hz, 2H), 3.89-3.66 (m, 4H), 2.34 (t, J = 7.4 Hz, 2H), 

2.19-2.09 (m, 1H), 1.90-1.81 (m, 2H), 1.74-1.67 (m, 2H), 1.64-1.45 (m, 2H), 

1.07 (d, J = 6.7 Hz, 6H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 173.3, 170.4, 

161.3, 147.0, 134.2, 124.3, 114.7, 114.6, 74.7, 67.9, 61.3, 36.9, 33.9, 28.8, 

28.3, 25.6, 24.4, 19.2. MALDI-TOF MS (matrix: dithranol, m/z): 508.3 [M-H]+, 

530.4 [M-Na]+. Anal. Calc. for C28H33N3O6: C, 66.26 %; H, 6.55 %; N, 8.28 %; 

Found: C, 66.21 %; H, 6.83 %; N, 8.22 %. 

Synthesis and Characterisation of (22) 

 

The protected maleimide (20) (1.20 g, 5.71 mmol), protected bis-MPA acid (1) 

(1.20 g, 6.90 mmol) and 4-(dimethylamino)pyridinium 4-toluenesulfonate (1.72 

g, 5.7 mmol) were dissolved in DCM (50 mL). The reaction flask was flushed 

with argon, and N,N'-dicyclohexylcarbodiimide (2.23 g, 7.4 mmol) was added. 

The mixture was stirred at room temperature for 24 h under argon atmosphere. 

The white precipitate formed was filtered off, and the solvent was evaporated. 

The crude product was purified by flash column chromatography on silica gel 

and eluted with 7:3 ethyl acetate/DCM. The target product was obtained as a 

yellow powdery solid. Yield: 80 %. IR (KBr),  (cm-1): 1772, 1723, 1698, 1279, 
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1247. 1H-NMR (CDCl3, 400MHz) δ (ppm): 6.51 (t, J = 1.0 Hz, 2H), 5.26 (t, J = 

1.0 Hz, 2H), 4.32-4.27 (m, 2H), 4.13 (d, J = 11.8 Hz, 2H), 3.83 - 3.73 (m, 2H), 

3.58 (d, J = 11.8 Hz, 2H), 2.86 (s, 2H), 1.40 (s, 3H), 1.37 (s, 3H), 1.18 (s, 3H). 

13C-NMR (CDCl3, 100 MHz) δ (ppm): 175.8, 173.8, 136.4, 97.9, 80.7, 65.7, 

61.1, 47.4, 41.6, 37.7, 23.8, 23.2, 18.4.  

Synthesis and Characterisation of (23) 

 

DOWEX-50-X2 resin (0.10 g) was added to a solution of compound (22) (0.50 

g, 1.50 mmol) in methanol (15 mL). The mixture was stirred for 3 h at room 

temperature. Subsequently, the resin was filtered off and the solvent removed 

under vacuum to give (23) as a colourless viscous oil. Yield: 90%. IR (KBr),  

(cm-1): 3500, 1772, 1721, 1699, 1279, 1246. 1H-NMR (CDCl3, 400MHz) δ 

(ppm):  6.45 (t, J = 1.0 Hz, 2H), 5.22 (t, J = 1.0 Hz, 2H), 4.32 – 4.19 (m, 2H), 

3.75-3.69 (m, 4H), 3.64-3.60 (m, 2H), 2.83 (s, 2H), 2.81 (t, J=6.8 Hz ,1H), 0.97 

(s, 3H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 175.8, 173.8, 136.4, 80.7, 65.7, 

61.1, 47.4, 41.6, 37.7, 18.4.  

Synthesis and Characterisation of (24) 

 

The acid chloride derivate of 6-[4-(4’-isobutyloxyphenylazo)phenyloxy] hexanoic 

acid (isoAZOb) was prepared by reaction of isoAZOb (0.93 g, 2.43 mmol) with 

oxalyl chloride (0.4 mL, 4.86 mmol) in DCM (20mL). After stirring at room 

temperature for 4h, the solvent was distilled. The acid chloride derivated was 

directly added to a solution of compound 23 (0.40 g, 1.12 mmol) and 



272                                                                                                         Chapter 7 

 
 

triethylamine (0.23 g, 2.40 mmol) in DCM (20 mL). The mixture was stirred for 3 

h at room temperature under argon atmosphere. After this time, the white 

precipitate formed was filtered off, and the solvent was removed under vacuum. 

The crude product was purified by flash column chromatography on silica gel 

using 7:3 ethyl acetate:DCM as eluent. Yield: 65%. IR (KBr),  (cm-1): 1739, 

1703, 1601, 1581, 1498, 1243, 1149, 1024, 843. 1H-NMR (CDCl3, 400MHz) δ 

(ppm):  7.90-7.86 (m, 8H), 6.96-6.90 (m, 8H), 6.48 (t, J = 1.0 Hz, 2H), 5.29 (t, J 

= 1.0 Hz), 4.26-4.08 (m, 6H), 4.01 (t, J = 6.4 Hz, 4H), 3.82-3.73 (m, 6H), 2.86 

(s, 2H), 2.35 (t, J = 7.4 Hz, 4H), 2.10-2.03 (m, 2H), 1.86-1.75 (m, 4H), 1.73-1.64 

(m, 4H), 1.54-1.44 (m, 4H), 1.22 (s, 3H), 1.05 (d, J = 6.7 Hz, 12H). 13C-NMR 

(CDCl3, 100 MHz) δ (ppm): 175.9, 172.9, 172.3, 161.9, 160.9, 146.8, 146.8, 

136.4, 124.1, 114.6, 114.5, 80.7, 74.6, 67.8 , 64.9, 61.4, 47.4, 46.2, 37.6, 33.8, 

28.8, 28.2, 25.5, 24.5, 19.2, 17.5.  

Synthesis and Characterisation of AZO2  

 

The protected maleimide (24) was suspended in toluene (150 mL) and heated 

to reflux. The reaction was monitored by thin layer chromatography After 4 

hours, the solvent was removed under reduced pressure to give AZO2 as a 

yellow powder. Yield: 100%. IR (KBr),  (cm-1): 1731, 1713, 1601, 1582, 1498, 

1243, 1149, 1034, 845. 1H-NMR (CDCl3, 400MHz) δ (ppm): 7.90-7.86 (m, 8H), 

6.96-6.90 (m, 8H,), 6.70 (s, 2H), 4.27-4.12 (m, 6H), 4.01 (t, J = 6.4 Hz, 4H), 

3.82-3.73 (m, 6H), 2.35 (t, J = 7.4 Hz, 4H), 2.10-2.03 (m, 2H), 1.86-1.75 (m, 

4H), 1.73-1.64 (m, 4H), 1.54-1.44 (m, 4H), 1.22 (s, 3H), 1.05 (d, J = 6.7 Hz, 

12H). 13C-NMR (CDCl3, 100 MHz) δ (ppm): 172.9, 172.3, 170.3, 161.9, 160.9, 

146.8, 146.8, 134.2, 124.1, 114.6, 114.5, 74.6, 67.8, 64.9, 61.4, 46.2, 37.6, 

33.8, 28.8, 28.2 (CH), 25.5, 24.5, 19.2, 17.5. MALDI-TOF MS (matrix: dithranol, 

m/z): 990.6 [M-H]+, 1012.5 [M-Na]+. Anal. Calc. for C55H67N5O12: C, 66.72 %; H, 

6.82 %; N, 7.07 %. Found: C, 66.53 %; H, 7.01 %; N 7.05 %. 
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7.5.3 General Procedures 

Solution Tests 

Solution tests were performed in a quartz cuvette by employing a hand-held UV 

lamp and low pressure mercury lamp OSRAM Puritec HNS L 36 W  (dominant 

wavelength 254 nm). The photoreaction was carried out in DCM (7mM AZO1) 

at room temperature. 

Activation of Silicon Wafers 

Prior to surface activation, the silicon wafers (p-type, boron doped (100) from 

Si-Mat Silicon Materials, Landsberg, Germany) were cleaned with chloroform, 

acetone and ethanol. The wafers were rinsed thoroughly with fresh solvent and 

sonicated 5 min several times with each solvent. After cleaning, the silicon 

wafers were activated by immersion in Piranha solution (H2SO4 95%/H2O2 35% 

3:1 vol/vol) at 90 °C for 1h. After extensive rinsing with deionised water, they 

were dried under a stream of argon. 

Functionalisation of Silicon Wafers with Tetrazole (Si-TET) 

The activated silicon wafers were placed in a flask containing a solution of 

silane functionalised tetrazole (TET) in dry toluene (4.8 mg in 1 mL). The flask 

was heated to 50 °C overnight. Subsequently, the wafers were rinsed 

thoroughly with fresh toluene and chloroform and sonicated for 5 min. The 

wafers were finally dried in a stream of argon. 

Functionalisation of Silicon Wafers with Azobenzene (Si-AZO1 and Si-

AZO2) 

The tetrazole functionalised silicon wafers were placed in a quartz flask 

containing an azobenzene solution in DCM (7mM for AZO1 and 3.5 mM for 

AZO2). The flask was introduced into a photoreactor with two lamps and 

irradiated for a pre-set time interval. Subsequently the wafers were rinsed 

thoroughly with fresh chloroform and sonicated for 5 min. The wafers were 

finally dried in a stream of argon. The experiments were carried out with 
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compact low-pressure fluorescent lamps Philips PL-S 9W/12 emitting UV 

irradiation between 290 and 315 nm. 

Photoisomerisation of Azobenzene Functionalised Silicon Wafers 

The azobenzene functionalised silicon wafers were introduced in a photoreactor 

fixed with two lamps and irradiated for 30 min. After this time, the wafers were 

kept in the dark. The experiments were performed using compact low-pressure 

fluorescent lamps Philips CLEO PL-L 36W emitting between 310 and 400 nm 

(λmax=355 nm). 
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Capítulo 2 

Se han sintetizado y caracterizado nuevos copolímeros bloque dendrítico-

lineales formados por un bloque dendrítico funcionalizado con unidades 4-

cianoazobenceno en la periferia y un bloque lineal variable en cuanto a 

composición –poli(metacrilato de metilo), poli(metacrilato de etilo) o 

poliestireno– y su masa molecular –10000 y 20000 g/mol aprox– mediante 

combinación de polimerización radicalaria por transferencia de átomo (ATRP) y 

la cicloadición 1,3 dipolar entre azidas y alquinos catalizada por Cu(I). 

Se han estudiado las propiedades térmicas tanto de los bloques como de los 

copolímeros mediante microscopía óptica de luz polarizada (MOP), 

termogravimetría (TGA) y calorimetría diferencia de barrido (DSC). El dendrón 

funcionalizado con azobenceno y todos los copolímeros bloque preparados 

presentan comportamiento cristal líquido. El estudio de DSC ha puesto de 

manifiesto la tendencia a la microsegregación de estos copolímeros, que se 

corroboró por microscopía electrónica, observándose una morfología de tipo 

lamelar en todos los casos. 

 

Capítulo 3 

Se han preparado nuevos copolímeros bloque dendrítico-lineales –PEG-b-

d16isoAZO y PEG-b-d16isoAZOb– a partir de un dendrón funcionalizado en la 

periferia con dieciséis unidades 4-isobultiloxiazobenceno y un bloque lineal de 

poli(etilenglicol) de 2000 g/mol. Con el copolímero PEG-b-d16isoAZOb se 

obtuvieron vesículas estables en agua capaces de responder a la irradiación 

con luz UV de baja intensidad. Esta respuesta es notablemente superior a la 

que presentan los copolímeros bloque dendritico-lineales derivados de 

cianoazobenceno. 

Se ha demostrado que la deformación de las vesículas debida a la 

fotoisomerización del azobenceno, provoca un aumento en la permeabilidad de 

la membrana y con ello es posible la liberación fotoestimulada de sustancias 

previamente encapsuladas. 
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Capítulo 4 

Se han sintetizado y caracterizado nuevos copolímeros bloque dendrítico-

lineales –d(isoAZOb/C18)-75/25, d(isoAZOb/C18)-50/50 y d(isoAZOb/C18)-

25/75– formados por bloques dendríticos funcionalizados en la periferia con 

unidades 4-isobultiloxiazobenceno y cadenas hidrocarbonadas distribuidas 

aleatoriamente en diferente proporción (condendrones) y un bloque lineal de 

polietilenglicol de 2000 g/mol. Todos los copolímeros fueron capaces de 

autoensamblarse en agua formando vesículas estables. 

Las vesículas formadas por el copolímero PEG-b-d(isoAZO/C18)-75/25 

presentan un comportamiento similar a las del homodendrón análogo 

totalmente funcionalizado con azobenceno. 

Las vesículas con el contenido en azobenzeno más bajo, PEG-b-

d(isoAZOb/C18)-25/75, no presentan fotorrespuesta. Este hecho puede ser 

debido a que el cambio de polaridad y morfología durante la fotoisomerización 

del azobenceno no es suficiente para provocar una deformación en la 

memebrana de las vesículas. 

Sin embargo, la estabilidad de las vesículas formadas por el copolímero PEG-

b-d(isoAZOb/C18)-50/50 se ve alterada de forma drástica al ser irradiadas con 

luz UV, provocando una liberación rápida y eficiente de las sustancias 

encapsuladas. 

Así, los resultados indican que ajustando la proporción AZO/C18 en estas 

estructuras dendríticas se puede modular la fotorrespuesta de los ensamblados 

formados en agua. 

 

Capítulo 5 

Se preparado un nuevo copolímero con una arquitectura macromolecular tipo 

“miktoarm” de composición AB3 formado por una rama de un azopolímero de 

cadena lateral y tres ramas idénticas de poli(etilenglicol) combinando la 
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polimerización radicalaria por transferencia de átomo (ATRP) y la cicloadición 

1,3 dipolar entre azidas y alquinos catalizada por Cu(I).  

Este copolímero es capaz de autoensamblarse en agua formando vesículas 

que mostraron fotorrespuesta al irradiar con luz UV. 

 

Capítulo 6 

Se han sintetizado y caracterizado una serie de copolímeros “miktoarm” de tipo 

AB3 –PAZO17-(PDEAA14)3, PAZO17-(PDEAA22)3 y PAZO17-(PDEAA55)3– que 

contienen una rama de un azopolímero de cadena lateral y tres ramas idénticas 

de poli(N-etilacrilamida un polímero termosensible, combinando técnicas de 

polimerización radicalaria por transferencia de átomo (ATRP) y transferencia 

por adición-fragmentación reversible (RAFT), y la cicloadición 1,3 dipolar entre 

azidas y alquinos catalizada por Cu(I). 

Tras estudiar el ensamblaje en agua de todos los polímeros preparados, se 

obtuvieron dispersiones micelares estables para el copolímero PAZO17-

(PDEAA55)3 de las que se estudió su respuesta tanto a la luz como a la 

temperatura como estímulos externos.  La respuesta dual de las micelas fue 

evaluada mediante TEM y DLS observando cambios en la morfología de las 

micelas, llegando al colapso al calentar por encima de la temperatura de 

transición critica. La luz induce deformación micelar y permite controlar la 

liberación de sustancias hidrófobas encapsuladas en su interior. 

 

Capítulo 7 

Se han preparado superficies fotosensibles funcionalizadas con dos moléculas 

que contienen bien una o dos unidades de 4-isobultiloxiazobenceno (AZO1 y 

AZO2) utilizando luz, mediente una reacción de cicloadición fotoinducida 

(NITEC). El uso de luz abre la posibilidad de utilizar técnicas fotolitográficas 

para la estructuración de la superficie. 
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La caracterización de las superficies se llevó a cabo mediante XPS. Se observó 

una completa funcionalización de la superficie en el caso AZO1, mientras que 

en el caso de la superficie funcionalizada con AZO2 se ha observado una 

funcionalización incompleta. Mediante la técnica ToF-SIMS ha demostrado la 

posibilidad de obtener superficies funcionalizadas y estructuradas con un gran 

control espacial. 

Por último, medidas de ángulos de contacto en la superficie irradiada y sin 

irradiar demuestran la posibilidad de utilizar estos materiales para  modular la 

afinidad de la superficie por el agua con luz (control hidrofobia-hidrofilia de la 

superficie con luz) 

 

Como conclusión general de esta tesis doctoral se establece que el diseño 

adecuado de estructuras fotocrómicas complejas permite obtener materiales 

con una respuesta controlada con luz útil para campos tan diversos como la 

liberación controlada o las superficies fotoactivas.  

 



 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

 

Characterisation Techniques  

 

 

 
 

 

 

 



 



Characterisation Techniques                                                                           287 
 

 
 

Fourier Transform Infrared Spectroscopy (FT-IR) 

FT-IR spectra were obtained on a Nicolet Avatar 360-FT-IR spectrometer 

(Chapter 2) and Bruker FT-IR spectrometer using KBr pellets. 

 

Nuclear Magnetic Resonance Spectroscopy (NMR) 

1H-NMR and 13C-NMR spectra were measured on a Bruker AV-400 

spectrometer at 400 MHz and on a Bruker AM250 spectrometer at 250 MHz 

(Chapter 5 and 6) 

 

Mass spectrometry (MS) 

MALDI-TOF MS was performed on an Autoflex mass spectrometer (Bruker 

Daltonics).  Number-average molecular weight (Mn) and polydispersity of the 

BCs were calculated from the mass spectra using PolyTools 1.0 (Bruker). 

ESI-MS spectra (Chapter 7) were recorded on an Autoflex mass spectrometer 

(Bruker Daltonics) and a LXQ mass spectrometer (ThermoFisher Scientific) 

equipped with an atmospheric pressure ionization source operating in the 

nebuliser-assisted electrospray mode. The instrument was calibrated in the m/z 

range 195-1822 using a standard comprising caffeine, Met-Arg-Phe-Ala acetate 

(MRFA), and a mixture of fluorinated phosphazenes (Ultramark 1621, all from 

Aldrich). 

 

Elemental Analysis (EA) 

EA was performed using a Perkin–Elmer 2400 microanalyzer. 

 

Size Exclusion Chromatography (SEC)  

SEC was carried out on a Waters e2695 Alliance liquid chromatography system 

(Chapter 2, 3 and 4) equipped with a Waters 2424 evaporation light scattering 
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detector and a Waters 2998 PDA detector using two Ultrastyragel® columns, 

HR4 and HR2 from Waters, of 500 and 104Å pore size and on a Polymer 

Laboratories PL-GPC 50 Plus Integrated System (Chapter 5 and 6), comprising 

an autosampler, a PLgel 5 mm bead-size guard column (50 7.5 mm) followed 

by three PLgel 5 mm MixedC columns (300 7.5 mm) and a differential refractive 

index detector. Measurements were performed in THF with a flow of 1 mL/min 

using narrow molecular weight PS and PMMA standards. 

 

Preparative SEC (Chapter 2) was carried out on a Waters 600 pump and a 

Waters 2998 PDA detector using two UltrastyragelTM columns, 19300 mm, of 

500 and 104Å pore size. Separations were carried in THF using a rate of 6 

mL/min. 

 

UV-Vis Spectroscopy 

UV-Vis spectra were recoreded on an ATI-Unicam UV4-200 spectrophotometer.   

 

Fluorescence Spectroscopy 

Fluorescence measurements were recorded using a Perkin Elmer LS 50B 

fluorescence spectrophotometer. 

 

Thermogravimetry (TGA) 

TGA were performed using a Q5000IR from TA Instruments under nitrogen 

atmosphere using 2-5 mg of the sample. 

 

Differential Scanning Calorimetry (DSC) 

Thermal transitions were determined by DSC using a DSC Q-2000 from TA 

Instruments with powdered samples (2-5 mg) sealed in aluminium pans.  Glass 

transition temperatures were determined at the midpoint of the baseline jump 
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and the isotropic temperatures were determined at the maximum of the 

corresponding peaks. 

 

Polarised optical microscopy (POM) 

Mesomorphic behaviour was evaluated by POM using an Olympus BH-2 

polarizing microscope fitted with a Linkam THMS600 hot stage. 

 

Transmission Electronic Microscopy (TEM) 

Morphologic study of the polymers was studied by TEM in a JEOL-2000 FXIII 

and (Chapter 2, 3, 5 and 6) in a Tecnai T20 electron microscope (Chapter 4) 

electron microscope operating at 200kV. 

 

Cryogenic Transmission Electronic Microscopy (Cryo-TEM) 

Cryo-TEM observations were carried out in a JEM-2011 electronic microscope 

on samples rapidly frozen in liquid ethane.  

 

Dynamic light scattering (DLS) 

DLS measurements were carried out in a Malvern Instrument Nano ZS using a 

He-Ne laser with a 633 nm wavelength, a detector angle of 173º at 25ºC using a 

He-Ne laser with a 633.  The self-assembiles concentration was 0.05 mg/mL 

(Chapter 3, 4  and 5) and 0.10 mg/mL (Chapter 6) and size measurements were 

performed at least three times on each sample to ensure consistency.   

 

Confocal Microscopy 

Fluorescence vesicles were observed with a Olympus FV10i confocal scanning 

microscope.  Images were collected using a 60x oil immersion lens (lens 
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specification, Plan S-APO 60xO, NA 1.35), a line average of 8 and a format of 

1024x1024 pixels. The confocal pinhole was 1 Airy unit. 

 

Contact Angle Measurements 

Advancing and receeding contact angle measurements were performed with an 

OCA5 instrument (Dataphysics, Filderstadt, Germany). HPLC grade water was 

used and all measurements were performed on several spots of the substrate 

and averaged (n>3). 
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Surface Analysis 

Effective and powerful methods for surface analysis are necessary for basic 

research on solid surfaces as well as for technical applications. These methods 

must be capable of giving detailed information, particularly about the chemical 

composition of the surface. In this section, fundamentals of two powerful 

techniques for surface analysis, i.e X-ray Phototelectron Spectroscopy (XPS) 

and time-of-flight Secondary Ions Mass Spectrometry (ToF-SIMS), will be briefly 

described. 

 

X-Ray Phototelectron Spectroscopy (XPS) 

XPS1, also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a 

widely used technique to investigate the elemental composition, chemical state 

and electronic state of a surface element. This technique is based on the 

photoelectric effect outlined by Einstein in 1905.  In the photoelectric effect, 

electrons are emitted from solids, liquids or gases when they are exposed to 

sufficiently energetic electromagnetic radiation (Figure AP.1a). The kinetic 

energy, Ek, of these photoelectrons is determined by the energy of the X-ray 

radiation, h, and the electron binding energy, Eb, as given by:  

Ek = h - Eb  

The experimentally measured energies of the photoelectrons are given by:  

Ek = h - Eb - Ew  

where Ew is the work function of the spectrometer. 

Since the energy of the emitted photoelectrons is exactly the energy of the 

incident photon minus the material's work function or binding energy, the work 

function of a sample can be determined by bombarding it with a monochromatic 

X-ray source or UV source, and measuring the kinetic energy distribution of the 

electrons emitted. The peak areas obtained can be used (with appropriate 

sensitivity factors) to determine the composition of the materials surface. The 

shape of each peak and the binding energy can be slightly altered by the 
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chemical state of the emitting atom. Therefore, XPS can also provide chemical 

bonding information. XPS is not sensitive to hydrogen or helium, but can detect 

all other elements.  

 

Figure AP.1 a) Scheme of the photoelectric effect. b) Diagram of an X-ray 

photoelectron spectrometer. 

 

XPS instruments consist of an X-ray source, an energy analyzer for the 

photoelectrons, and an electron detector (Figure AP.1b) For the analysis and 

detection of photoelectrons, the sample must be placed in a high-vacuum 

chamber. Since the photoelectron energy depends on X-ray energy, the 

excitation source must be monochromatic, Al Kα (1486.6eV) or Mg Kα 

(1253.6eV) are often the photon energies chosen. The energy of the 

photoelectrons is analyzed by an electrostatic analyzer, and the photoelectrons 

are detected by an electron multiplier tube or a multichannel. 

XPS measurements were performed using a K-Alpha XPS spectrometer 

(ThermoFisher Scientific, East Grinstead, UK). All samples were analyzed using 

a microfocused, monochromated Al Kα X-ray source (400 μm spot size). The 

kinetic energy of the electrons was measured by a 180° hemispherical energy 

analyzer operated in the constant analyzer energy mode (CAE) at 50 eV pass 

energy for elemental spectra. Data acquisition and processing using the 

Thermo Avantage software is described elsewhere.2 The spectra were fitted 

with one or more Voigt profiles (binding energy uncertainty: + 0.2 eV). The 

analyzer transmission function, Scofield sensitivity factors,3 and effective 

a) b)



Characterisation Techniques                                                                           293 
 

 
 

attenuation lengths (EALs) for photoelectrons were applied for quantification. 

EALs were calculated using the standard TPP-2M formalism.4 All spectra were 

referenced to the C1s peak of hydrocarbon at 285.0 eV binding energy 

controlled by means of the well known photoelectron peaks of metallic Cu, Ag, 

and Au, respectively.  

 

Time-of-Flight Secondary Ions Mass Spectrometry (ToF-SIMS) 

ToF-SIMS is a very effective and universally applicable method for the chemical 

analysis of surfaces.5-7 

When a surface is bombarded by energetic ions, they penetrated into the solid 

surface and transfer their kinetic energy to the atoms of the solid in a 

succession of individual collisions. The majority of species emitted are neutral 

but it is secondary ions which are detected and analysed by a mass 

spectrometer (Figure AP.2). 

 

 

Figure AP.2 Scheme of the SIMS process 

The ToF ion mass spectrometer consists of three main components: the ion 

gun, the accelerating and flight path system and the detector (Figure AP.3). 

The primary ion source (tipically Cs or Ga) produces mass separated pulses. 

The emited secondary ions travel through the time-of-flight analyzer at different 

velocities, depending on their mass to charge ratio (k=½mv2). For each primary 

ion pulse, a full mass spectrum is obtained by measuring the arrival times of the 

secondary ions at the detector and performing a simple time to mass 

conversion. 
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Figure AP.2 Diagram of the time-of-flight ion mass spectrometer  

 

By reducing the diameter of the primary ion beam and scanning it over the 

surface it is possible to measure the lateral distribution of the secondary ion 

emission and therefore that of the surface constituents responsible for the 

emission. The primary ions beam is positioned in particular positions of the 

sample and the spectrum is recorded and stored with its corresponding 

coordinates. From these data, it is possible to construct an image (chemical 

map) for each secondary ion species or group of species showing the 

distribution of the surface. 
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Figure AP.3 ToF-SIMS images of a metal structure showing the Ti and Cu distribution 
(top) and an overlay (bottom) 

 

ToF-SIMS5,7 (Time-of-Flight Secondary Ion Mass Spectrometry) was performed 

on a TOF.SIMS5 instrument (ION-TOF GmbH, Münster, Germany), equipped 

with a Bi cluster liquid metal primary ion source and a non-linear time of flight 

analyzer. UHV base pressure was < 5x10-9 mbar. The Bi source was operated 

in the bunched mode providing 1.1 ns Bi1+ ion pulses at 25 keV energy and a 

lateral resolution of approx. 4 μm. The short pulse length allowed for high mass 

resolution to analyze the complex mass spectra of the immobilised organic 

layers. Images larger than the maximum deflection range of the primary ion gun 

of 500×500 μm2 were obtained using the manipulator stage scan mode. Spectra 

were calibrated on the C-, C2
-, C3

-, or on the C+, CH+, CH2
+, and CH3

+ peaks. 

Primary ion doses were kept below 1011 ions/cm2 (static SIMS limit). Advancing 

and receding contact angle measurements were performed with an OCA5 

instrument (dataphysics, Filderstadt, Germany). HPLC grade water was used 

and all measurements were performed on several spots of the substrate and 

averaged (n>3).  
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