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Kyoto and mañana: A Computable General Equilibrium (CGE) analysis of Spanish 

Greenhouse Gas targets to 2020 

 

1. Introduction 

 

The necessity for international cooperation in conceiving a global strategy to both mitigate 

and adapt to climate change, coupled with the absence of a sovereign international authority, 

bestowed upon individual governing bodies world-wide a sense of collective responsibility to 

engender binding and effectual policy measures. Against this background, the United Nations 

Framework Convention on Climate Change (UNFCCC) was created, which in turn oversaw the 

ratification of the Kyoto Protocol (UNFCCC, 1998). This international accord set a detailed 

roadmap for curbing carbon dioxide (CO2) emissions, as well as a collective basket of non-CO2 

‘greenhouse gas’ (GHG) emissions.1 More recently, the European Union has taken the lead in 

fighting climate change, by agreeing a series of further unilateral emissions cuts over the 2013-

2020 period, under the auspices of its Climate and Energy Package (CEP)2. 

Amid discussions on the best way to achieve these goals, the European Union (EU) 

Emissions Trading Scheme (ETS) emerged for a test period in 2005-2007 and thereafter for 

different commitment phases from 2008-2028 (European Parliament, 2003; 2004; 2008; 2009a). 

The ETS created an internal trading market for CO2 emissions permits, initially allocated across a 

select grouping of sectors (excluding agriculture), with the intention that abatement be 

incentivised via charges for exceeding (gradually contracting) domestic emissions limits or 

revenues to more efficient firms from the sale of excess permit allocations. Individual member 

states distribute emissions permits subject to both the approval of the European Commission and 

those limits stipulated within the National Allocation Plan (NAP)3. When Kyoto expires, the ETS 

will continue to operate to extend CO2 emissions reductions to 2020 (see Table 1). 

 For non-ETS GHG emissions, parallel EU-wide emissions reductions are implemented up to 

2012, although under a ‘burden sharing agreement’ Spain has been granted a softer emissions 

reduction target (see Table 1). Notwithstanding, in light of Spain’s impressive growth between 

1990-2007, some commentators estimate that its economy still faces relatively steep emissions 

reductions in order to meet its Kyoto commitment (Labandeira and Rodríguez, 2010; González-

                                                 
1 The non-CO2 gases within the remit of Kyoto are: methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), 
perfluorocarbons (PFCs) and sulphur hexafluoride (SF6). Importantly, these gases have a considerably higher Global 
Warming Potential (GWP) than CO2. 
2 see http://ec.europa.eu/clima/policies/package/index_en.htm 
3 see http://ec.europa.eu/clima/policies/ets/pre2013/nap/index_en.htm 
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Eguino, 2011).4 In the post-Kyoto period an independent ‘diffuse’ sector (includes agriculture) 

emissions target is in place up to 2020 (see Table 1).5 A cursory examination of Spanish emissions 

data reveals that diffuse emissions make up 55% of all Spanish GHG emissions, of which the 

transport sector produces the largest proportion (accounting for more than 40% of total energy 

consumed in Spain) followed by the agriculture sector which itself accounts for 14% of total 

Spanish GHG emissions (UNFCCC, 2011). A closer look at Spain’s agricultural emissions 

reveals that methane emissions from livestock activities constitute the largest proportion of total 

agricultural emissions (38%), followed by nitrous oxide from fertiliser application (34%), and 

carbon dioxide from petroleum usage (16%). The remaining emissions are largely nitrous oxide 

from manure, and small amounts of methane released during field burning in the cereals sectors. 

Computable general equilibrium (CGE) representations can be employed to quantify the 

impact of climate change policies because of their ability to assess the interactions between many 

different agents and sectors across the whole economy. Unlike ‘bottoms-up’ engineering models, 

CGE ‘top-down’ mathematical models are able to simulate the complex linkages between the 

direct and indirect consequences of modeller-specified policy shocks, producing as an output a 

comprehensive representation (i.e., prices, outputs, costs) of the economy-wide impacts. This 

characteristic is particularly pertinent when examining the integrated nature of energy production 

and usage across industries and consumers, as well as macroeconomic impacts of policy 

mandated emissions targets. 

The adaptability of CGE modelling has led to a range of climate change studies with varying 

focal points and objectives. In surveying the existing literature we observe multi-region studies 

(e.g. Böhringer and Rutherford, 2010), whilst differences in the decomposition of emissions gases 

in specific member countries has given rise to sectorally more detailed single region CGE studies 

(e.g. Dellink et al., 2004). As expected, the general consensus is that meeting emissions reduction 

targets entails a short to medium term cost, but the differences in contexts and policies modelled 

render direct comparison of results difficult, or of little value. A cursory review of the relevant 

Spanish literature (Labandeira et al., 2004; 2009; Labandeira and Rodríguez, 2010; González-

Eguino, 2011) suggests that GDP falls of between 0.1% and 1% by 2012 may result from 

emissions restrictions. 

                                                 
4 Spain has been permitted an emissions target of 15% above 1990 levels, rising to a projected 37% when heavy usage of 
Kyoto approved ‘flexibility mechanisms’ and carbon sinks are accounted for. 
5 In the case of agricultural practice, a proportion of its pollution is classified as point source (i.e., emitted from a single 
discharge point such as a pipe). However, a large proportion is non-point source (difficult to determine an emitting source), 
which implies a more ‘diffuse’ nature to its emissions. 
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A key issue for this study is how the agriculture sector is impacted directly from facing its own 

emissions reduction targets, and indirectly from facing higher energy prices as a result of other 

environmental policies, such as the ETS. Given the diffuse nature of agricultural emissions, how 

reductions targets are to be achieved is left as an internal matter in each member state (European 

Parliament, 2009b) and is beyond the focus of the current study. Some CGE studies (Van Heerden 

et al. 2006; Labandeira and Rodríguez, 2006; Labandeira et al. 2009), report limited impacts on 

agriculture, but only account for emissions controls on combustion, whilst not accounting for 

agriculture’s diffuse emissions. One exception to this is a study assessing the Dutch economy by 

Dellink et al. (2004). The study estimates relatively sharper falls in agricultural production (-

4.8%) compared with the wider economy (-2.7%) by 2050, citing the relatively higher emissions 

intensity in agriculture (i.e., including non-CO2 gases). 

Given a general paucity of antecedents within the quantitative literature, there exists an 

additional need to assess the economic impacts of emissions targets on a selection of specific 

livestock and cropping practises. The focus on Spain is also justified by its strong growth record 

(pre-crisis) and the consequent sharp adjustment process it will need to follow in order to adhere 

to its emissions targets,6 which is likely to have important implications on the agricultural sectors. 

In those Spanish case studies that exist, the CGE approach has been employed to examine the 

impact of meeting the Kyoto 2012 targets or other hypothetical short term policy targets (e.g. 

González-Eguino, 2011). A recursive dynamic CGE approach is employed in Bourne et al. (2012) 

which incorporates a contemporary baseline scenario to consider the emissions targets impacts of 

both Kyoto as well as the EU CEP in 2020. Employing a more agricultural focus, a further key 

feature of this study is the inclusion of all six GHGs emissions across Spanish sectors, whilst an 

explicit representation of EU agricultural policy mechanisms is coded to reflect the supply 

rigidities within EU agricultural factor and product markets and their concomitant impacts on 

agricultural emissions.   

The current paper follows the approach in Bourne et al. (2012) with two important extensions. 

On the one hand, agricultural production decisions are now subject to endogenous technological 

adaptation in response to tightening emissions controls. This characteristic is modelled via the 

calibration of non linear marginal abatement cost (MAC) functions7. Given that different 

agricultural activities have differing MAC functions, the ensuing abatement costs to agricultural 

                                                 
6 Although it is recognised that the economic slowdown precipitated by the financial crisis has had a positive effect 
on reduced Spanish GHG emissions. 
7 For examples of agricultural MAC curves in the literature see Schneider et al. (2007); Beach at al. 2008; Högland-
Isaksson et al. (2010). For a meta-analysis see Vermont and De Cara (2010).  
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sectors are expected to differ considerably from earlier estimates which implicitly assume equal 

adaptation rates. 

A further feature of this paper is the recognition of the feedback mechanism which exists 

between changes in global temperatures and land productivity. With some notable exceptions 

(e.g. Csicar et al, 2011; Steinbuks and Hertel, 2011), the majority of CGE studies do not consider 

the land productivity impacts which accrue under a 'no change' or status quo baseline scenario. 

Consequently, the economic costs of climate change mitigation strategies are biased downwards. 

The costs of climate change are famously complex and involve a great deal of both scientific and 

economic uncertainty. However, a first step towards incorporating such costs into CGE models 

such costs is made in this study through the inclusion of estimates of land productivity effects in 

the crops sectors.   

The rest of this paper is structured as follows: in section 2 the methodology and details of 

simulations are presented, with findings presented in section 3. Section 4 concludes and suggests 

some possible areas for further research. 

 

2. Methodology 

 

 This section presents a brief description of the model used, followed by an explanation of the 

major data sources, and a contribution from two collaborators (Sonia Quiroga and Zaira 

Fernandez-Haddad from the Universidad de Alcala) describing the econometric model they used 

to estimate the land productivity effects of climate change used in these simulations. 

 

2.1  Model Framework  

  

The CGE framework is ‘demand’ driven, based on a system of neoclassical final, 

intermediate and primary demand functions. With the assumption of weak homothetic 

separability, a multi-stage optimisation procedure allows demand decisions to be broken into 

‘nests’ to provide greater flexibility through the incorporation of differing elasticities of 

substitution. Moreover, accounting identities and market clearing equations ensure a general 

equilibrium solution for each year that the model is run. After appropriate elasticity values are 

chosen to allow model calibration to the database, and an appropriate split of endogenous and 

exogenous variables is selected (closure), specific exogenous macroeconomic or trade policy 

‘shocks’ can be imposed to key variables (e.g., tax/subsidy rates, primary factor supplies, 

technical change variables, or real growth in GDP and/or its components). The model responds 
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with the interaction of economic agents within each market, where an outcome is characterised by 

a ‘counterfactual’ set of equilibrium conditions. 

To improve our estimates of the supply responsiveness of agricultural activities to emissions 

targets in the context of supply rigidities and support policies, additional code is implemented to 

support the representation of the Common Agricultural Policy (CAP). This follows previous CGE 

agricultural studies (see, for example, Philippidis and Hubbard, 2003) and is described in Table 2. 

As an important driver of (carbon dioxide) emissions, modifications are also made to the 

intermediate and final demands energy nests (Burniaux and Troung, 2002). Energy demands are 

separated from non-energy demands, where in the production nest they are treated as part of value 

added (rather than intermediate inputs) owing to the important relationship between (energy 

using) capital and energy. Furthermore, electrical and non-electrical (i.e., coal, gas, oil, bio-fuels) 

demands are in separate nests. For producers, this implies that primary energy (unlike electricity) 

can also be used as a ‘feedstock’ input into other industries (i.e., fertilizer, refining of raw 

energies) rather than directly consumed as an energy source. 

Changes in GHG emissions are assumed to be directly proportional to four driving 

mechanisms in the model (Rose and Lee, 2009): industrial processes (i.e., output), land use8 and 

intermediate and final demands for fuels.9 As a result, firms have some flexibility to mitigate their 

combustion emissions via substitution toward cleaner energy sources or less energy intensive 

capital, while process emissions can be reduced either by a contraction in industry output, or by 

end-of-pipe abatement determined by the MAC curve. Additional endogenous tax wedges, 

measured in Euros per metric tonne of CO2 equivalent, are inserted into the model code on each 

of the four drivers to capture the ‘shadow costs’ of reducing emissions (for sectors outside the 

ETS scheme), whilst the permit price for the ETS sectors (see below) is held exogenous and 

shocked according to data and projections (see below). For the MAC curves, ‘end-of-pipe’ 

abatement (see van Regemorter, 2005) response is calibrated to the data taken from GAINS 

through the use of a flexible functional form based on the work of De Cara and Jayet (2006). As a 

result, a more stringent emissions reduction target will (ceteris paribus) drive a higher ‘shadow 

cost’ to farmers in order for the target to be met, with the magnitude of this cost dependent on the 

steepness of the farmers’ MAC curves – i.e. the ease with which they can modify their production 

techniques in order to reduce  emissions. In crop farming, for example, this could mean applying 

nitrogen fertiliser more strategically, rather than simply using less fertiliser, which would reduce 

                                                 
8 Methane released from rice-growing 
9 For example, vegetable industry emissions from combustion of petrol are in direct proportion to intermediate input usage of 
petrol; production ‘process’ emissions vary with industry output. 
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land productivity. In the model, this end-of-pipe abatement then reduces the emissions factor 

associated with a specific emissions source, which in turn is also a function of the trend observed 

over the period 1990-2007. In other words, each emissions factor is made up of two components – 

an exogenous trend extrapolated from the available data (baseline and policy scenario), and 

endogenous, price-driven abatement (policy scenario only). 

Kyoto emissions reductions to 2012 are modelled by exogenous annual linear reductions in 

the number of domestic permits issued for the ETS sectors and the relevant emissions quota for 

non-ETS sectors. Spain is assumed to be a ‘price taker’ within the ETS (i.e., small country 

assumption), such that the permit price is held exogenous in all years. Following Labandeira and 

Rodriguez (2010), net imports of additional permits from other EU Member States by Spanish 

industries adjust endogenously subject to domestic demand conditions (determined by 

macroeconomic data and projections), gradual reductions in the exogenous supply of domestic 

permits, and year-on-year exogenous changes in the permit price. The purchase/sale of permits 

from/to other EU members is subsequently recorded as an additional import/export in the national 

accounts, adjusting the trade balance, and subsequently Spanish GDP. In keeping with the EU’s 

decision to initially allocate the majority of permits for free (employing a ‘historical’ emissions 

criterion), ETS permit allocation up to 2012 is via a ‘grandfathering’ method, whilst in the 

subsequent period (2013-2020), an increasing proportion of permits are auctioned at different 

rates (depending on the sector). Permit allocation is modelled by refunding the proportion of the 

cost incurred by firms in ‘buying’ grandfathered permits via a lump-sum subsidy payment, as set 

out in Edwards and Hutton (1999) and Parry (2002). Thus, in a given year, if 40% of a sector’s 

permits are auctioned, only 60% of the cost is refunded. Revenue raised from the auctioning of 

permits is paid, along with taxes on non-ETS sector emissions, to the government as tax 

revenue.10
 In the non-ETS sectors, the relevant abatement cost adjusts endogenously depending on 

the exogenous macro emissions targets. From 2013, a separate requirement for the diffuse sectors 

comes into force and their emissions quotas are adjusted accordingly. 

Given the lack of relevant Spanish data sources, calibration is facilitated through usage of 

substitution and expenditure elasticities from the standard GTAP version 8 data base (Aguiar et 

al., 2012). In the energy module, substitution elasticities from GTAP-E econometric estimates for 

developed countries are employed. Following Dixon and Rimmer (2002), export demand 

elasticities are calibrated to upper level GTAP Armington elasticities, whilst the transformation 

elasticities for land (between uses) are taken from Keeney and Hertel (2009). Central tendency 

                                                 
10 There are various hypothetical options for revenue recycling of environmental tax revenues (‘double dividend’) which lie 
beyond the scope of this study. 
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estimates of labour supply elasticities for Spain are taken from Fernándes-Val (2003) whilst for 

agro-food products, private household expenditure elasticities are taken from a study by Moro and 

Sckokai (2000) on Italian households stratified by wealth. 

 

2.2 Data 

 

To support the construction of the accompanying CGE Spanish database, the input-output 

(IO) tables (year 2007) published by the Instituto Nacional de Estadística (INE) are a principle 

source of secondary data (INE, 2010). These data are supplemented by institutional accounts data 

from INE on direct taxes, social security contributions, savings, fiscal deficit etc. to make up a 

social accounting matrix (SAM) for Spain (see Pyatt and Round (1985) for a detailed explanation 

of SAMs). Importantly, the conditions imposed by the IO/SAM framework underlie the 

fundamental accounting conventions of the CGE model. For the purposes of this study, the 

aggregation focuses principally on agricultural activities, whilst remaining sectors are those 

identified within the EU ETS, the non-agricultural ‘diffuse sectors’ (see Table 1), and ‘residual’ 

manufacturing and services activities. The model has three broad factors (capital, labour and 

agricultural land), of which labour is further subdivided into ‘highly skilled’, ‘skilled’ and 

‘unskilled’ employing labour force survey data (INE, 2009a).  

 Additionally, to explore the distributive effects of policy changes, Household Survey Data 

(INE, 2009b) permit a disaggregation of private household purchases for up to eight distinct 

disposable income groupings.11 

UNFCCC (2011) Spanish submissions data on emissions are separated into fuel combustion; 

fugitive emissions; industrial processes; solvent and other product usage; land use, land use 

change and forestry (LULUCF); waste emissions; and agricultural emissions. The data set 

includes concordance by industry activity, although in some cases further disaggregation is 

required to map to the model sectors. For combustion emissions, UNFCCC data is combined with 

energy usage data from the International Energy Agency (IEA, 2011), and intermediate input data 

from the Spanish IO database (INE, 2010), to map emissions by (i) fuel type; (ii) industry and (iii) 

source (i.e., domestic/imported). Fugitive and industrial process emissions are assigned to specific 

IO industries following Rose and Lee (2009), whilst solvent and other product emissions all 

originate from the chemical industry. Waste emissions are apportioned between the IO sectors of 

market and non-market sanitation services, whilst LULUCF emissions are excluded from the 

                                                 
11 It should be noted that at the current time, no attempt is made to insert factor ownership shares by households. 
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current analysis.12
 Finally, Spanish agricultural emissions by activity are, in general, clearly 

disaggregated into specific agricultural activities within the UNFCCC database, although nitrogen 

run-off from agricultural soils is assigned employing additional data on land usage (MARM 2008) 

and nitrogen uptake for specific crops (MARM 2010). Finally, data for the MAC curves comes 

from the International Institute for Applied Systems Analysis’ (IIASA) ‘GAINS’ model13, which 

provides estimates of the cost and abatement potential for each currently available emissions 

reduction technology in the agricultural sector, for all Annex 1 countries, and some others. 

Abatement technologies available in Spain include feed changes and anaerobic digestion plants 

for livestock emissions, and the use of nitrification inhibitors and precision farming techniques for 

crops sector emissions from fertilisers. A detailed description of the technologies covered, and the 

methodology used, can be found in Höglund-Isaksson et al. (2010a). 

 

2.3 Yield Changes 

 

 Statistical models of yield response have proven useful to evaluate the sensitivity of land 

productivity to climate change (Parry et al., 2004; Ciscar et al., 2011; Iglesias et al., 2010). This 

methodology is applied to the eight most representative crops, in terms of area and value, in the 

Ebro basin. The Ebro river basin is located in the northeast of the Iberian Peninsula; with an area 

of 85000 km2 and a mean annual runoff of 16.92 km3 yr− 1, and is the largest basin in Spain. 

 The selected crops are alfalfa, wheat, rice, grapevine, olive, potato, maize and barley. To 

characterize crop yield for these Mediterranean crops, we estimate linear regression models by 

ordinary least squares (OLS) linking bio-physical and socio-economic factors, through the 

introduction of environmental, hydrological, technological, geographical and economic variables. 

Later, these models are used to assess climate change effects on crop yield. We use a Cobb-

Douglas production function for eight main crops in the area using historical data (1984-2002). A 

Cobb-Douglas specification was chosen because of its intuitive interpretation in terms of 

elasticities, as well as its simplicity and validity (Zellner et al., 1966, Giannakas et al., 2003) and 

its acceptance in agricultural economics literature (Lobell et al., 2005, 2006; Quiroga et al., 2011). 

The specified model for the eight crops has the general form: 

 

 

                                                 
12 Whilst the UNFCCC data provide a figure for the total sequestration of land, due to data limitations, we were unable to 
disaggregate this sequestration potential between agricultural land types and forestry land. Moreover, due to the difficulty in 
valuing forestry land, the model does not have a land factor in the forestry sector. 

13 http://www.iiasa.ac.at/web/home/research/researchPrograms/GAINS.en.html 

++++++++= −− t6t5t4nt3t2t101tt area_Irrigebro_AreaAltitudeMacMacLYlnYln βββββββα
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where the dependent variable (lnYt) is the natural logarithm of the crop yield for a site in year t, 

and the explanatory variables are described in Table 3. For more detail on the construction of this 

variable set, see Quiroga, et al. (2011). This function is not unique and varies among crops and 

zones, so the selection of explanatory variables for model specification is important. To facilitate 

the improvement of particular model estimation for each crop, 95% confidence intervals were 

estimated assuming normality of the residuals, and significant relations were included in the 

estimated model. The whole process to estimate this model as well as variables selection and test 

can be found also in Quiroga, et al. (2011). In this case, the coefficients of the model have to be 

interpreted as semi-elasticities given the model presents a semi-logarithmic transformation. 

 In order to simulate agriculture yield changes, we use projections of temperature and 

precipitation from global circulation models (GCMs). These climate data are from the 

ClimateCost project (Christensen et al., 2011). A set of 26 climate change runs to 2020 have been 

considered in this study. There are twelve runs for the A1B scenario and fourteen runs for the E1 

scenario. The medium-high non-mitigation baseline scenario (A1B) of the IPCC SRES implies 

roughly a global temperature increase of 4ºC by 2100, compared to the pre-industrial level.  The 

mitigation scenario (E1) implies a global temperature change at about 2°C above pre-industrial 

levels. 

 Table 4 illustrates the yield changes generated from the different runs of climate scenarios. 

As we mention above, the implications of this impact assessment exercise is crop specific. We 

can note that these scenarios imply yield changes, ranging from -21.83% for barley to more than 

15% for alfalfa. In general, barley, olive and wheat present important losses of crop productivity, 

whereas grapevine does not suffer major losses in yield performance. For all runs of both climate 

scenarios, rice shows increases of crop yield in 2020 and in most of the cases, alfalfa also present 

gains in crop productivity; however, these two are mostly irrigated crops, and a significant 

drawback of the current analysis is its failure to account for water scarcity. Other limitations 

include imperfect data (representative climate stations), restrictions of the models to represent 

complex reality (statistical models of yield response simplify the climate, agricultural, and social 

effects on crop yield), and uncertainty about the future (climate scenarios). 

 

3. Scenario design and results 
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Under the auspices of the IPCC’s scenario design, associated land productivity estimates 

generated employing the methodology described in section 2.3 are used to guide our scenario 

design. This paper employs two groups of scenarios, each consisting of three policy experiments. 

In the first group, it is assumed that no action is taken to stabilise or reduce GHG emissions 

(A1B), with global temperatures rising by 4°C. In the second group (E1), sufficient action is taken 

to contain the global temperature increases to 2°C by 2100. Within each of the two IPCC groups 

there are approximately 12-14 outcomes, which reflects the degree of scientific uncertainty which 

frequently surrounds climate modelling. Thus, each group in our study contains a 'worst-case', 

'best-case' and 'average' outcome experiment based on our estimates of the associated land 

productivities. 

As a consequence, the results section will be split into two parts. The first part will compare 

effects between each group of scenarios, by looking at the ‘average’ scenario in which all 2020 

EU emissions targets are met14, and the ‘average’ baseline. This is in order to meet our primary 

goal of exploring the effects of the EU’s targets on the Spanish economy and, specifically, the 

agriculture sector. The second part includes some analysis of the range of results produced within 

each group. This comparison reflects the reality of climate science which works in terms of 

differentiated scenarios rather than a specific outcome.  

  

3.1 Policy Effects 

 

 This first part of the results section attempts to put aside, for the moment, the complexities of 

climate science by taking for the baseline ‘no-action’ simulation an average of the (12) different 

estimates of land productivity effects for each crop under the A1B group of scenarios, and for the 

‘emissions control’ simulation, an average of the (14) estimates under the E1 group of scenarios, 

thus giving us simply a no-action baseline, and an emissions-control scenario to measure against 

it. The section begins with an overview of the major macroeconomic results, and proceeds to a 

more focussed analysis of results in the agricultural sector. 

 

3.1.1 Overview 

 

 As expected, the Spanish economy faces a short to medium-run economic cost with the 

implementation of the Kyoto and EU environmental targets, as evidenced by reductions in all real 

                                                 
14 An assumption is made that meeting these targets is associated with the E1 stabilisation scenario  
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macro indicators and rises in general price indices (see table 5). In meeting Kyoto targets by 2012, 

Spanish GDP falls 0.4% in the policy scenario with concurrent general price rises of 1.0%. By 

2020, GDP and general price changes are exacerbated further (-1.7% and 3.2%, respectively). 

Spain’s relative macroeconomic contraction depresses both employment (-1.8%) and real wages 

(-0.9%), with supply-elastic ‘unskilled’ labour (used heavily by the agricultural sector) suffering 

more from the employment fall (-4.2%), whilst inelastic ‘highskilled’ labour witnesses a real 

wage drop of 1.9%. In terms of economic welfare (real incomes), by 2020 household utility falls, 

though slightly more so for the lowest income grouping (-3.0%) compared with the highest 

income grouping (-2.2%), indicating the potential regressivity of the environmental policy. This is 

because lower income households spend a larger share of their incomes on energy, where 

household energy costs have risen cumulatively by 48% (not shown) by 2020 compared with the 

baseline. 

 Since the effect of the emissions quota reductions is to raise the cost of GHG emitting energy 

inputs and processes, the energy sectors (excluding the electricity industry to an extent) perform 

badly, in line with expectations. The greatest output fall (results not shown) is suffered by the 

heavy emitting waste industry (23.9%), whilst coal (23.5), gas (11.9%), oil (11.4%), and transport 

(9.9%) industries also witness notable output declines by 2020. 

 In Figure 1, the annual evolution of (endogenous) emissions between 2007 and 2020 is 

estimated. Emissions under the ETS increase slightly in 2009 despite the recession due to the 

dramatic fall in permit price, whilst ETS emissions surge in 2011-2012, and again in 2012-2013, 

due to the accession of aviation and chemicals industries, respectively. 

 From 2013 onwards, ETS emissions continually rise in spite of a steadily rising (exogenous) 

permit price and a decreasing domestic allocation of permits, as pan-EU permit trading (i.e., 

imports) plays an increasingly pivotal role in accommodating downwardly ratcheted domestic 

emissions targets for Spanish sectors within the ETS. Indeed, we estimate that Spain increases its 

imports of emissions permits from 24 million in 2007 to 45 million in 2020.15
  

 

3.1.2. Agriculture 

 

 The stated purpose of this paper is to explore the distribution of emissions reductions across 

the agricultural sectors, in the light of their respective MAC curves. To this end it will be 

worthwhile here to comment on the MAC curves themselves, as well as the trends observed in the 

                                                 
15 In other words, we argue that the MAC for Spain is higher than other EU members given that it has further to 
go in order to meet its stipulated emissions reduction targets. 
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baseline, which also form an important part of the story in terms of what happens once the 

emissions reductions are imposed. 

 Figures 2 and 3 show the GAINS data, and the MAC curves calibrated for the model, for the 

two principle sources of agricultural greenhouse gas emissions: methane from livestock 

production, and nitrogen oxide from crop fertiliser16. The first thing to note is that for methane 

emissions from livestock (Fig. 3), a significant proportion of emissions can be abated at a 

relatively low price. These ‘low-hanging fruit’ come from changes in feed, and an initial phase of 

anaerobic digestion plants, as documented by Högland-Isaksson et al. (2010b). Once these low-

cost options have been maximised, the price of abatement rises quickly, as further reductions from 

either strategy are much more costly. Of importance for this study though, is that the steep rise in 

costs does not come until after more than 20% of methane emissions have been abated. Since 

around 87% of livestock GHG emissions17 are methane (the rest being N2O) (UNFCCC, 2011), 

this implies that livestock sectors are likely to play a significant role in meeting the 10% reduction 

target. Meanwhile, for fertiliser emissions in the crops sectors, the price rises more quickly early 

on, so even within the 10% reduction necessary, low-cost ‘end-of-pipe’ abatement is hard to find. 

However, unlike in the livestock sectors, crops growers have some capacity to substitute away 

from their polluting inputs – fertilisers – by using more land, or labour. Essentially, the lack of 

low-cost end-of-pipe options in the crops sectors is balanced by the possibility of reducing use of 

the polluting input, whilst the inability to use less of the polluting input in the livestock sectors is 

balanced by the availability of low-cost end-of-pipe abatement options. These two effects, and 

their interaction, make it very difficult to predict where the brunt of the emissions reductions will 

fall, and it is to be hoped that this study can contribute to the current knowledge on that subject. 

 Also important in analysing the effects of the emissions policy, is what the likely trends in the 

Spanish agriculture would be without it. Here we see (Table 6) output falling in the sugar sector 

as a result of the reductions in intervention prices. Barley is the only cereal sector to increase its 

production as a result of the decoupling of agricultural payments, while the movement is 

generally towards non-cereal crops such as fruit, vegetables and olives, and output falls in cattle 

and sheep farming as their subsidies are also decoupled. Here we see the central role played by 

the CAP in setting the framework within which the emissions target must be met, and thus 

significantly affecting the distribution of reductions. In addition to the discussion of MACs above, 

it should be borne in mind that there are certain sectors in which emissions will fall ‘naturally’ as 

                                                 
16 only a small amount of rice is grown in Spain, thus the MAC curve for methane from rice growing is not 
shown here 
17 in CO2 equivalent 
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a result of falling output in the baseline, though this will be offset by other sectors which are 

growing in the baseline. 

 Figure 4 shows how emissions for the major groups of agricultural industries are affected 

under the policy scenario relative to the baseline. By this measure, the relative fall in emissions is 

greatest in the olives industry, followed by cereals and the livestock sectors (with the exception of 

poultry, which has a negligible amount of emissions), with smaller relative falls in fruit and 

vegetables. In quantity terms, emissions from fruit and vegetable production are much lower than 

those from cereals, olives, and livestock, so this result is not surprising, and suggests all of the 

major emitters in Spanish agriculture will have to contribute to ensure the target is met. However, 

it is interesting to note that the emissions restrictions appear to reinforce trends which were 

already visible in the baseline in terms of a movement away from cereal production towards other 

crops. Despite the fall in emissions from olives relative to the baseline, both output and emissions 

increase in absolute terms in this sector in the policy scenario. In general terms, the cereals sectors 

– and olives – reduce their emissions by substituting land and labour for fertiliser use. Whilst this 

is partly offset by the expanding fruit and vegetables sectors, which increase their use of fertiliser 

and resultant emissions, in the benchmark year the majority of emissions come from cereals and 

olives, so the dominant effect is a reduction in crop emissions, although end-of-pipe abatement 

plays a minor role due to the lack of low costs options in these sectors. For the livestock 

industries, meanwhile, falling output in the cattle and sheep sectors contribute to ‘natural’ 

emissions reductions, whilst the availability of low-cost abatement options means emissions 

factors fall significantly in most of the livestock sectors. These results can be seen in table 7, 

which shows the changes in output, emissions, fertiliser use (where relevant), primary factor use, 

and emissions factors in the major agricultural sectors in the policy scenario. 

 

3.2 Land Productivity Effects 

 

 As shown in table 4, the olives, wheat and barley sectors witness the largest declines in land 

productivity from changing temperatures, whilst vineyards and feed crops (alfalfa) suffer the 

smallest declines, with the latter actually seeing an increase in yields in the more optimistic 

scenarios. It is important to note that these results are based on the assumption that land can be 

irrigated without restrictions on water use. Given current and predicted water scarcity in the 

Spanish mainland (see, for example, Iglesias et al. 2010), future work would need to deal with this 

issue more fully. Given the weight of emissions from olives, wheat and barley in the agricultural 

total, this extension to the model is of some importance, as we would expect declining land 
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productivity to limit the reduction in fertiliser intensity. Indeed, declining productivities lead to 

higher effective land rents to farmers in the wheat, barley and olives sectors. In the most 

pessimistic scenario, effective land rents rise by, respectively 15%, 21% and 30% for these three 

crops relative to the most optimistic scenario – a result which is consistent across the two groups 

of scenarios. According to our hypothesis, as a result of such land rent rises, these industries 

should contribute less to the overall effort to meet the emissions reduction target, since rising land 

rents drive substitution towards fertiliser, but this result is not clear. Emissions from olive 

growing do rise slightly from the most optimistic scenario to the least, but there is no similar 

effect on emissions from wheat or barley, and no discernible impact on the cost of meeting the 

overall emissions reduction target. This suggests the results are relatively robust to the degree of 

uncertainty present in climate science, in the short- to medium-term.  

  

4. Conclusions and further work 

 

 The results of this study suggest that the decoupling of payments during this transition period 

for the CAP helps the agricultural sector to meet its emissions reduction target, as it encourages 

production of less fertiliser-intensive fruit and vegetables at the expense of cereals. Since low-cost 

end-of-pipe abatement options are limited for N2O emissions from fertiliser use, this movement, 

and the substitution away from fertiliser towards labour and capital, look to be the principal ways 

in which crops sectors will contribute to meeting the agricultural industry’s 10% ‘diffuse sector’ 

target. By contrast, the livestock sectors have few options for substitution (see my comment above 

on this issue in section 3.1.2), but by taking advantage of some of the low-cost, end-of-pipe 

abatement options, these industries still have a significant part to play in meeting the target. 

 The changes in crop land productivity seem to have little effect on the distribution of 

emissions reductions across agricultural industries. There are some land price effects, but in terms 

of emissions and the structure of production, the results seem consistent across the various land 

productivity scenarios. This is clearly influenced by the fact that our scenarios only run until 

2020, and the effect of climate change on yields will most likely be small in such a short 

timeframe, with the degree of uncertainty also being smaller. Projecting further forward would 

create its own problems though. In addition to the greater levels of uncertainty in making any 

economic projections into the more distant future, there is much less certainty about what climate 

policy will look like in Spain (and the rest of the EU) post-2020. A key advantage of our short- to 

medium-term simulation is that the climate policies relevant to the period are clearly defined, thus 
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the land productivity extension should be seen as an attempt to improve the realism of the 

scenarios, rather than a core component of the model. 

 The first priority for further work is to expand and improve the MAC curves. The current 

curves are based on a small number of data points, and yet they play a crucial role in the model 

results. Whilst this continues to be an avenue of further research, at the current time, to the best of 

the authors' knowledge, other secondary data estimates specific to the Spanish crops and livestock 

sectors are not available. A second area of great interest would be to improve the treatment of 

water as a resource in the model. The issue of water is of vital importance for Spanish agriculture, 

particularly for the fruit and vegetable sectors which, according to our results, are likely to expand 

in the near future. Although these crops are less fertiliser intensive than cereals or olives, they 

have significant water requirements which call their sustainability into question. The author is 

keen to deal more fully with this issue in the near future. 
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Table 3: Description of variables 
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Table 6: % change in output of agricultural industries in the baseline 2007-2020 
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Table 7: % changes in key variables in the policy run 2007-2020 
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Figure 2: Calibrated MAC curve for livestock CH4 emissions. 
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Figure 3: Calibrated MAC curve for fertiliser N2O emissions.

 

 

Figure 4: Emissions of major agricultural industries in policy scenario 
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