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Abstract 
 Nowadays, the current electronic industry based on silicon is near to its limit. 

Thus, many different alternatives are being investigated to continue decreasing the size 

of the chips and improving, at the same time, the efficiency, efficacy and power. One of 

these alternatives is molecular electronics, whose final goal is the use of individual 

molecules or a few of them to fabricate electronic devices. In contrast with silicon 

electronic industry, molecular electronics is based on bottom-up techniques and its 

origin is in the last seventies although before being a reality, many challenges have still 

to be overcome as it has been indicated by ITRS (International Roadmap for 

Semiconductors). Some of these challenges, which are directly related with this final 

master project, are: (i) fabrication of robust contacts between the metals and the organic 

molecules; (ii) fabrication of the top-contact electrode on monomolecular layers without 

damaging the organic molecule and penetrating the film; and (iii) have a deep 

knowledge of the charge transport mechanisms through the organic compounds. 

 Taking into account the foregoing challenges, in this project four different 

compounds have been used to contribute to this field, in particular to the fabrication of 

the top-contact electrode. First, the top-contact electrode was fabricated by the rupture 

of an organometallic compound immobilized onto a gold substrate, induced by thermal 

annealing, and the electrical properties of the devices were determined with a 

conductive-AFM (chapter 4). Since short-circuits have not been observed using this 

method, this strategy is an alternative technique for solving the top-contact electrode 

problem without damaging the organic molecule, penetrating the film or 

altering/contaminating the interfaces. Second, a top-contact electrode was prepared by 

chemical reduction of a graphene oxide layer transferred onto a monolayer of an organic 

compound by means of the Langmuir-Blodgett (LB) technique (chapter 5). Thus, metal  

SOPEA LB film  reduced graphene oxide (RGO) structures have been fabricated as it 

has been demonstrated by UV-Vis spectroscopy, QCM and AFM.  
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Chapter 1: Objectives 

1.1. General objectives 

 The objectives of a final master project of the Master´s Degree in 

Nanostructured Materials for Nanotechnology Applications from the University of 

Zaragoza are the acquisition and consolidation by the student of basic skills in 

nanomaterials and nanotechnology. 

 Among these basic skills, the student should be able to: sorting, critically 

analyze, interpreting, and synthesizing information; obtaining information from 

different types of sources and assess their reliability; applying knowledge and solving 

problems related to the study area; integrating knowledge and addressing the 

complexity of making judgments based on information that, being incomplete or 

limited, including reflexions on social and ethical responsibilities linked to the 

application of their knowledge and judgments; develop, analyzing, evaluating and 

comparing new or alternative solutions to various problems; being able to develop a 

project, the steps involved in literature search, planning experiments, obtaining results, 

interpretation, and dissemination of the results; managing properly the resources and 

time available; communicating own conclusions clear and unambiguous to specialist 

and non-specialist public; giving information orally, written or graphic presentation 

using appropriate tools; communicating fluently in English; using the vocabulary and 

specific terminology in the context of nanoscience and nanotechnology; knowing the 

degree of importance of researches and industrial applications of nanoscience and/or 

nanotechnology and its social, economic, and legal implications; interrelating the 

chemical structure, the architecture or the arrangement of nanostructured material with 

its chemical, physical, optical and mechanical properties; knowing the fabrication 

methods of nanostructured materials, bottom-up and top-down approaches; knowing the 

characterization methods of nanostructured materials, the type of information provided 

by each one and how it can be used in a complementary way to obtain the required 

information; designing of new materials and biomaterials with interest in nanoscience 

and / or nanotechnology; and applying theoretical knowledge for making nanodevices. 
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1.2. Objectives of the final master project “Use of organic compounds in molecular 

electronics” 

 This project has two main objectives: 

- Determination of the electrical properties of metal  organic monolayer  

metal junctions which were fabricated by thermal induced decomposition of 

organometallic compounds incorporated in Langmuir-Blodgett (LB) films.  

 

- To develop a new strategy to fabricate the top-contact electrode without 

damaging or penetrating the organic monolayer in metal  organic monolayer 

structures by deposition of a graphene film in ambient conditions. 
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Chapter 2: Introduction and 

revision of the state of the art 

2.1. Introduction  

In the next section, a brief review of the state of the art on molecular electronics 

is presented. In chapter 3, the instruments and materials used in this work are described. 

In chapter 4, the electrical properties of the fabricated metal | organic molecule | metal 

junctions are determined while in chapter 5, graphene is presented as a new possible 

alternative for making the top-contact electrode. Finally, chapter 6 describes the main 

conclusions of this work. 

 

2.2. Revision of the state of the art 

In the 20
th

 century and in the first decade of the present century, the electronic 

industry has suffered an important development as consequence of a continue 

miniaturization of the elements and components used for making electronic devices. 

This process of miniaturization has been made using top-down techniques, which 

progressively reduce the size of devices using sophisticated photolithographic 

techniques. Nevertheless, the limit of the actual electronic industry based on silicon is 

achieving its limit
1-3

 by reasons both technological and economical.
4-6

 From the 

economic point of view, each generation of chips requires the construction of a new 

manufacturing system, which is very expensive, and the companies have few months to 

make profitable the inversion. From the technological point of view, metal oxide layers 

with a thickness less to three atoms lose their insulating properties and short-circuits are 

easily produced. In addition, silicon does not preserve its band structure, so it is really 

difficult to continue the miniaturization process by top-down techniques.  
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For all these reasons, several alternatives to the current electronic industry are 

being developed. One of these possible alternatives is molecular electronics, a bottom-

up based technology that uses functionalized individual molecules that work as wires, 

switches, rectifiers, memories, etc.
7-9 

To achieve this objective it will be necessary to 

measure, monitor and understand the electronic transport through molecules situated 

between electrodes. Specifically, molecular electronics consists on devices involving a 

single molecule, or a monolayer, oriented between two electrodes (which may be 

conductors or semiconductors).
10,11 

Thus, the use of organic molecules in electronic 

components could provide, at least, the following advantages:
4,12,13

 (i) the small size of 

the molecules could lead to devices with higher packing densities, and therefore, lower 

costs and higher efficiency; (ii) molecular recognition and assembly get to fabricate 

nanoscale structures through specific intermolecular interactions between the molecules, 

obtaining low manufacturing costs; (iii) this molecular recognition can be used to 

modify the electronic behavior; (iv) the speed of response would increase, so the time 

required for an operation would be reduced; (v) special properties of the molecules such 

as different geometric structures or isomers, getting new electronic behaviors that 

cannot be implemented in conventional solid state devices; and (vi) the transport 

properties and specific properties of the molecules can be modified extensively with an 

appropriate design of the chemical composition and molecular geometry. However, the 

molecules have also some disadvantages such as the instability at high temperatures. 

Besides, the fabrication of good molecular junctions requires a precise control of the 

matter at unprecedented levels which can be difficult, slow and expensive. Nevertheless, 

these difficulties are not strong enough to discourage scientists to continue using 

molecular materials in electronic applications. 

In recent years, many different investigations have demonstrated that organic 

molecules lead and switch electric current and also act as memory devices which 

provide a solid basis to continue the development of molecular electronics. However, 

we are still very far to assembly a chip using these materials, although the possibilities 

are amazing.
14-16

 Molecular electronics is still on its infancy and many challenges have 

to be overcome before it becomes as it has been indicated by the ITRS (International 

Technology Roadmap for Semiconductors). Among the challenges set by the ITRS,
17

 

two are directly related with the work carried out in this work: (i) fabrication of stable 
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and suitable metal | organic molecule | metal junctions using new strategies to fabricate 

the top-contact electrode on monomolecular films without damaging the organic 

compound or penetrating the film, and (ii) measuring the electrical properties of these 

metal | organic films | metal devices without having short-circuits which verify that 

these new strategies are an alternative system for solving the top-contact electrode 

problem without damaging the organic molecule, penetrating the film or 

altering/contaminating the interfaces. 

Taking into account the two objectives of this work, in the next paragraphs a 

revision of the techniques used to carry out the electrical characterization of metal | 

molecule | metal devices together with a revision of the state of the art in the fabrication 

of the top-contact electrode are presented. 

1- Determination of the electrical properties:  

In recent years, a wide variety of techniques for measuring the 

electrical properties in metal | organic layer | metal sandwiches have been 

developed. In the next lines, some of the most used and important methods 

for analyzing these structures are explained briefly. 

Nowadays, the most important instruments for measuring the 

electrical properties of single molecules or monolayers are the scanning 

probes microscopies (SPM): a scanning tunneling microscopy (STM) and/or 

a conducting atomic force microscopy (c-AFM). In both cases, the tip acts 

as the top-contact electrode closing the circuit in the metal | organic 

molecule | metal junctions. The main advantage of these instruments is that 

a large amount of electrical measurements can be collected in a short time. 

A STM can work in current mode, constant height, or as a combination of 

both, allowing recording the tunnel current and topography of a sample at 

atomic scale simultaneously. Thus, this is a visual and simple method for 

studying the molecular conductance. In the case of a c-AFM, the tip, coated 

with a metallic layer, is placed in direct mechanical contact with the 

molecules on a thorough survey of the position of the AFM tip, to avoid an 

excessive pressure on the molecules that can change their conformation and 

thus the transport properties; this avoids the extra space or air gap that can 

present the use of a STM. The c-AFM technique provides a simple and 
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convenient way to fabricate molecular junctions and study the electron 

transport. 

A simple method to determine the electrical properties of a metal | 

organic layer is to use a mercury drop
18-21

 or an eutectic of Ga/In
22

 to close 

the circuit (acting as the top-contact electrode). This technique is a simple, 

economic and fast system to verify the electrical properties of the film 

although it is not useful for making commercial devices. In addition, it is 

possible that the liquid metal can cause defects or reorganizations in the 

monolayer.
23,24

  

Mechanically controllable break junction (MCBJ)
25

 was first used in 

1985 by Moreland and Ekin
26

 to study the electron tunneling in atomic 

scale. Reed and Tour
27 

used it again in 1997 to study the conductance of 

molecular junctions. Mechanically controllable break junctions use a 

notched metallic wire that is attached to a flexible substrate. Using a 

piezoelectric actuator, the substrate can be bent until the wire breaks at the 

notch and produces a gap. The separation of the junction’s gap can be 

adjusted by the actuator, which allows the creation of a junction with 

adjustable width on a nanometer scale. After fracturing, molecules can be 

deposited (mostly, from a solution) on either or each of the electrodes. The 

electrodes are then brought together until one molecule bridges the gap 

between the electrodes. Using the break junction approach, the conductance 

properties of a wide variety of molecules can be studied. The main 

advantage of this technique is that you can make a high number of electrical 

measures. However, the disadvantages of MCBJ are also evident: the 

geometry and the configuration at the point where contact is made are often 

random and cannot be controlled by this technique. Theoretical calculations 

have shown that the geometry and configuration of the electrode surface 

influence the measure of the conductance of the single molecule.
28 

STM break junction
25,29

 is a variant of MCBJ. Au STM tip, immersed 

in a solution of the molecules, is driven into and pulled back from an Au 

substrate. As the tip and substrate separate, a chain of Au atoms forms and, 

ultimately, breaks, allowing one or more molecules to be caught in the 

freshly formed gap. To obtain reproducible results with this method 
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conductance histogram approach is used. If a suitable sample has been 

prepared, the conductance histogram shows peaks at integer multiples of a 

fundamental conductance value, allowing, within the limitation of the 

spread of data, a fair estimate of the conductance (dI/dV) of a given type of 

single molecule. Using the STM break junction approach, the conductance 

of many different of single molecules, connected to two gold electrodes, can 

be studied. The conductance and tunneling current values obtain from the 

histograms are analyzed with computer programs. In conclusion, break 

junctions are formed by breaking a single metal wire into two sections 

leaving a gap between them. MCBJ and STM break junction, however, do 

not allow for any control over the exact shape of the electrodes and thus 

contact to the molecule under investigation. They do, however, provide 

some control on the width of the gap. So, with these techniques, gaps in the 

sub nanometer range can routinely be achieved, allowing single molecule 

measurements to be done, but not measurements in monolayers. 

In 2001, Cui and Lindsay
25,30

 report a reliable method (matrix 

isolation) for chemically bonding metal contacts to either end of an isolated 

molecule and measuring the I-V characteristics of the resulting circuit, 

matrix isolation. Molecules of 1,8-octanedithiol were inserted into an 

octanethiol monolayer [on Au(111)] using a replacement reaction whereby 

one of the two thiol groups becomes chemically bound to the gold substrate. 

The octanethiol monolayer acts as a molecular insulator, isolating the dithiol 

molecules from one another. The thiol groups at the top of the film were 

derivatized by incubating the monolayer with a suspension of gold 

nanoparticles. A gold STM tip was used to locate and contact individual 

particles bonded to the monolayer. I-V measurements made on over 4000 

nanoparticles produced only five distinct families of curves. The curves 

correspond to multiples of a fundamental curve, lying on this fundamental 

curve when divided by the appropriate integer. The resistance of a single 

octanedithiol molecule was 900 ± 50 megohms, based on measurements on 

more than 1000 single molecules. In contrast, nonbonded contacts to 

octanethiol monolayers were at least four orders of magnitude more 

resistive, less reproducible, and had different voltage dependence, 
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demonstrating that the measurement of intrinsic molecular properties 

requires chemically bonded contacts. 

The measurement of the electrical properties of molecules, down to 

the single molecule level, has recently become an experimental reality. So, 

in the past few years, at Liverpool University there has been developed and 

exploited novel scanning tunneling microscopy based methods for achieving 

this feat.
25,31,32

 In these methods, a gold substrate is coated with a low 

coverage monolayer of molecules bearing two terminal thiol moieties; thiols 

interact strongly with gold. A gold STM tip is employed, and in the course 

of the experiments, one (or a few) molecule(s) forms a junction between tip 

and substrate, and the current through the junction is measured. In one 

implementation, which it is named the I(s) method, the tip is withdrawed 

from the substrate while the tunneling current is been measured. As they 

cannot know, a priori, how many molecules form the junction for any given 

experiment, many such measurements are made and the results are analyzed 

statistically to determine the current and the conductance through a single 

molecule. The main advantage of this method is that is the unique method 

that can be used to measure the conductance in monolayers. Later, they 

developed an alternative procedure, the I(t) method, in which a gold tip is 

held over the molecule covered Au substrate at a fixed distance while the 

tunnelling current is monitored. Jumps are seen in the tunnelling current, 

attributed to molecules forming and breaking contact. These jumps are 

similarly analysed statistically. This method is particularly advantageous for 

shorter molecules that are difficult to pick up using the I(s) method.  

In conclusion, there are many different methods for measuring the 

electrical properties of metal | organic molecule | metal structures. 

 

2- Fabrication of the top-contact electrode:  

There are many different methods for making the top-contact 

electrode. In the following paragraphs, some of the most important 

techniques to fabricate the top-contact electrode in metal | organic layer | 

metal structures are described. 
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The simplest method is the evaporation of a metal onto the 

monolayer. However, this method generally produces the growth of metallic 

filaments (mushroom shaped structures) along the organic layer, short-

circuiting the system.
33-36

 A modification of this method which allows to 

reduce this problem is the evaporation of one metal on a cooled substrate 

(~100 K) introducing deflectors to block direct passage between the 

crucible, in which the metal is evaporated, and the sample; or introducing an 

inert gas into the evaporation chamber. The aim is to reduce the energy of 

the metal atoms which arrive at the surface of the monolayer.
37,38 

Other alternative is the deposition of a conductive polymeric layer 

onto the organic monolayer before evaporating the metal,
39

 although in this 

case, the  polymer can penetrate in the monolayer trough the holes or 

defects of the monolayer short-circuiting the system. Nano-transfer printing 

(nTP)
40

 is other possible alternative. This method is based on the use of 

lithographic techniques for drawing patterns with atomic resolution in solid 

surfaces.
41-43

 The main advantage of this technique is the reduction of short-

circuits,
44

 although it has limitations such as the necessity of making a real 

chemical bond between the terminal functional group of the molecule and 

the metal deposited limiting drastically the number of interfaces metal | 

molecule that can be used.
44

 Other alternatives could be the use of a two-

dimensional network of carbon nanotubes as the top-contact electrode 

(although the process is long, tedious and with inherent experimental 

difficulties),
45

 the electrodeposition of metal (although frequently generate 

the growth of metallic filaments along the organic layer which short-circuit 

the system.
46,47

 Finally, another alternative to make the top-contact electrode 

is by incubating monolayers, functionalized with a thiol terminal group, in 

suspensions of gold nanoparticles
48,49 

although aggregation of the gold 

nanoparticles is not controllable and a complete metallization of the organic 

film is not achieved. 

Therefore, we can conclude that new strategies to make the top-

contact electrode without damaging the organic molecule or penetrating the 

film have to be developed to get stable and robust metal | organic molecule | 

metal devices. 
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Chapter 3: Instrumentation and 

materials 

3.1. Instrumentation 

3.1.1. Fabrication of Langmuir and Langmuir-Blodgett (LB) monolayers 

Langmuir monolayers were fabricated in a Langmuir trough. The main 

components of a Langmuir trough are:
50

 (i) a Teflon® cuvette, where the liquid 

subphase is placed, (ii) a mobile barrier, the element that allows the compression and 

the assembly organization of the molecules at the air-water interface, for making the 

bidimensional (2D) layer; (iii) a Wilhelmy balance,
51

 to determine the surface pressure 

(π), which is defined as the difference between the surface tension of the clean subphase 

(γ0), and the surface tension of the subphase covered by the monolayer (γ); and (iv) a 

dipper, where the substrates are placed for making the LB films. In this work, three 

different troughs were used. These troughs are situated in the Department of Physical 

Chemistry of the Faculty of Science: a homemade trough, with dimensions 210 x 460 

mm
2
;
52

 a commercial trough from NIMA, with dimensions 100 x 720 mm
2
; and a 

commercial KSV trough, that contains two troughs with dimensions 120 x 775 mm
2
 

each one and an effective total area of 240 x 775 mm
2
. For preparing a Langmuir 

monolayer,
51,53,54

 a known amount of the compound of interest is spread onto the liquid 

surface. After the complete evaporation of the solvent, the monolayer is compressed 

resulting in an array of molecules to form the 2D film. Once the Langmuir monolayer 

has an appropriate surface pressure for the transference, this monolayer can be 

deposited onto a solid substrate to obtain a LB film.
55

 In a transfer process at a constant 

surface pressure, the transfer ratio
56

 is defined as: 

τ = S1 / S0                (1) 

where S0 is the geometric surface of the solid substrate and S1 is the reduction of the 

area occupied by the film at the air-water interface during the transference process. 
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3.1.2. Characterization of the Langmuir-Blodgett (LB) films 

In the following paragraphs, the equipment used in the characterization of the 

Langmuir-Blodgett (LB) films is described: 

 Atomic force microscopy (AFM): The equipment used to characterize the 

morphology and homogeneity of the LB films was an atomic force microscopy 

Multimode 8, from Veeco. This instrument belongs to the Advanced Microscopies 

Laboratory (LMA). The AFM creates images of the surface from the attraction and 

repulsion forces between the sample and the tip of the microscope. The system has a 

very thin tip which interacts with the sample surface, located at the end of a flexible 

sheet (cantilever). The tip sweeps across the surface and it is moved vertically by atomic 

forces, which are attractive or repulsive depending on the distance between the tip and 

the sample. Then, the software transforms this information into a two or three 

dimensional image. This technique provides information about the topography of the 

film at nanometric scale.
57

 A silicon tip from Bruker with a constant force of 40 mN and 

operating at a resonance frequency of 300 kHz was used in this work. The images were 

recorded in high resolution (512 lines / sample) at a scan rate of 1 Hz, in air conditions 

and using the tapping mode. 

 Quartz crystal microbalance (QCM): The instrument used was a QCM200 

balance from Stanford Research Systems that uses a QCM 25 sensor. The sensor is a 

thin α-quartz disk of 331 μm in thickness on whose surface circular are deposited gold 

electrodes on both sides. The nominal frequency of oscillation is approximately 5 MHz.  

The mode of operation involves applying an oscillating electric field between the crystal 

electrodes, which induces an oscillation that propagates through the quartz with a 

movement of the disc surface parallel to its side. The device is sensitive to disturbances 

produced in the surface, such as the deposition of a thin layer. The mass variation per 

unit area in the quartz crystal is related to the variation in the oscillation frequency of 

the crystal according to the Sauerbrey equation:
58 

 ∆f = - Cf · ∆m                (2) 

where ∆f  is the observed frequency change, Cf is the sensitivity factor of the crystal (in 

this work, Cf has a value of 56.6 Hz·μg
-1

·cm
2
), and ∆m is the mass variation per unit 
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area. In particular, the quartz crystal microbalance was used to determine the transfer 

ratio and calculate the surface coating of the substrate on which the film was deposited. 

 UV-Vis spectroscopy (UV-Vis): The UV-Vis absorption spectra were obtained 

with a spectrophotometer Varian Cary 50 Bio UV-Vis. UV-Vis absorption spectroscopy 

is based on the absorption of radiation in the UV-Vis region by the molecule. This 

absorption of radiation is a consequence of the promotion of the electrons situated in the 

lowest energy orbitals. When the intensity of the incident beam (I0) passes through the 

sample containing the chromophore, this intensity is attenuated up to the intensity of the 

transmitted beam (I). Thus, the fraction which has passed through the sample is called 

transmittance (T). The relationship between transmittance and absorbance is: 

 A = - Log (I / I0) = - Log (T)              (3) 

where A is the absorbance, I is the intensity of the incident beam, I0 is the intensity of 

the transmitted beam and T is the transmittance. UV-Vis spectroscopy was used in this 

project to study the Langmuir-Blodgett (LB) films transferred onto quartz substrates. 

These substrates are situated perpendicular to the UV-Vis beam. The technique provides 

information about the molecular interactions in the films (presence or absence of 

aggregates, types of aggregates, etc.).
59

 In addition, UV-Vis spectra of LB films can be 

used to determine if a monolayer, a bilayer, a trilayer,… was deposited.
60

 Finally, the 

reduction of graphene oxide was studied by means of UV-Vis spectroscopy.   

3.1.3. Electrical properties of the Langmuir-Blodgett (LB) films 

 The equipment used to determine the electrical properties of the fabricated metal 

| organic molecule | metal devices was:  

 Atomic force microscopy (AFM): The equipment used to determine the 

electrical properties was a conductive atomic force microscopy ICON, from Bruker. 

This instrument belongs to the Microelectronic National Centre of Barcelona (CNM) of 

the High Centre of Scientific Researches (CSIC) (Spain).
61

 The equipment uses a Peak 

Force TUNA
TM

 mode and a cantilever coated with Pt/Ir 20 nm, a spring constant of 0.4 

N·m
-1

, a resonance frequency of 70 kHz and a tip edge size of approximately 25 nm, 

from Bruker. The measurements were carried out under humidity control, 

approximately 30 %, with N2 flow. Before recording the I-V curves, a preliminary study 
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was carried out to check the influence of the applied set-point force in the deformation 

or damage of the monolayer.
 

3.2. Materials  

In this project, four different materials have been used. On the one hand, see 

chapter 4, the materials assembled in Langmuir and Langmuir-Blodgett films have been 

the following: [[4-{(4-carboxy)ethynyl}phenyl]ethynyl]-(triphenylphosphine)-gold and 

the [1-isocyano-4-methoxy-benzene][4-amino-phenylethynyl]-gold, which we briefly 

call FOSGAC and G-PEA, respectively. The chemical structures of these compounds 

are shown in figure 1 and 2, respectively. These molecules have been synthesized at the 

Department of Chemistry of the University of Durham (United Kingdom) by the group 

of Professor Paul J. Low. The synthetic route and NMR spectra of these molecules can 

be found in references 62 and 63. These molecules have a hydrophilic terminal group (-

COOH and –NH2, respectively) that allows their anchoring at the water surface, and a 

hydrophobic portion which provides insolubility in water and stability to the Langmuir 

monolayers due to π-π interactions with side neighboring molecules.
62-65

 From the point 

of view of the interest of these materials and their potential applications, there are two 

important points to be considered. Firstly, the strong conjugation of the –C C-Ph-C

C-Ph-COOH and –C C-Ph-NH2 groups that, as is well described in the literature,
73-75

 

is responsible of their remarkable electrical properties as molecular wires. However, the 

most significant aspect is the presence of the groups Ph3P-Au-C  and CH3-O-Ph-N

C-Au-C , respectively. It has been observed that the presence of gold atoms could 

result in materials with memory properties.
62,63,66,67,68

 In addition, the presence of a 

metal atom in the skeleton of this family of molecules can be used for fabricating GNPs 

which can be used as the top-contact electrode, without damaging the organic 

monolayer and penetrating the films, in metal | organic molecule | metal devices.
63,68,69

 

In this work, the electrical properties of devices incorporating these molecules have 

been determined. 
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+

Au
-

O
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Figure 1. Chemical structure of [[4-{(4-carboxy)ethynyl}phenyl]ethynyl]-(triphenylphosphine)-

gold compound, FOSGAC. 

 

Au
-

N
+

NH2 O CH3

  

Figure 2. Chemical structure of [1-isocyano-4-methoxy-benzene][4-amino-phenylethynyl]-gold 

compound, G-PEA. 

 

In chapter 5, graphene and 4-(4-(4-

(trimethylsilylethynyl)phenylethynyl)phenylethynyl)-aniline, which we briefly call 

SOPEA, are studied. In figure 3 and 4 the chemical structures of these compounds are 

shown. SOPEA molecule was synthesized at the Department of Chemistry of the 

University of Durham (United Kingdom) by Professor Paul J. Low. The synthetic route 

and NMR spectra of this molecule can be found in reference 62. This molecule has a 

hydrophilic terminal group (–NH2) that allows its anchoring on the water surface, and a 

hydrophobic portion which confers insolubility in water and provides stability to the 

Langmuir monolayers due to π-π interactions with side neighboring molecules.
62-65

 

Graphene was synthesized at the Instituto de Carboquímica de Zaragoza (CSIC)
70

 by 

the group of Dra. Ana M. Benito and Dr. Wolfgang Maser. Graphene is a new 

interesting material with many different potential applications, including a large 

conductivity. Thus, graphene can be used as the top-contact electrode in molecular 

electronic devices avoiding the disadvantages
34

 of the traditional methods used to 

fabricate the top-contact electrode. In this project, gold | SOPEA | graphene devices 

have been prepared. 
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Figure 3. Chemical structure of the graphene.  

 

NH2Si

CH3

CH3

CH3  

Figure 4. Chemical structure of 4-(4-(4-(trimethylsilylethynyl)phenylethynyl)phenylethynyl)-

aniline compound, SOPEA. 

 

Chemicals used in this work are shown in table I. 

Tabla I. Chemicals used in this project. 

Chemicals CAS Commercial company 

Chlorofom 
67-66-3 Sigma-Aldrich, 99 %. Stabilized with 

ethanol 1 % 

Ethanol 64-17-5 Panreac, absolute, 99.5 % 

Acetone 67-64-1 Panreac, QP, 99.5 % 

Nitrogen 7727-37-9 Linde, 99.999 % 
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 The different substrates used in this project together with the characterization 

technique and the cleaning sequence performed are shown in table II. 

Tabla II. Classification of the substrates in terms of the characterization technique used and the 

cleaning method.  

Substrate Commercial 

company 

Characterization 

technique 

Cleaning method 

Quartz Hellma Analytics UV-Vis spectroscopy 

(UV-Vis) 

 

15 min in chlorofom with 

sonication. Drying with N2. 4 

times 15 min in pure water 

with sonication, rinsing with 

ethanol and drying con N2 

Mica Ted Pella, Inc. Atomic force microscopy 

(AFM) (topography) 

Cleavage. Rinsing with 

ethanol. Drying 

Gold Arrandee® Atomic force microscopy 

(AFM) (electrical 

properties) 

Ethanol and drying with N2 

Quartz 

and gold 

Stanford Research 

Systems 

Quartz crystal 

microbalance (QCM) 

Piranha solution
a 

 

a 
 Piranha solution: mixture of hydrogen peroxide (H2O2) and sulfuric acid (H2SO4) in a 1:3 ratio. 

Peroxide is added over the acid. The mixture is very corrosive and reacts with organic matter, so the 

solution must be handled with appropriate protective measures. 
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Chapter 4: Electrical properties of 

FOSGAC and G-PEA 

4.1. Langmuir and Langmuir-Blodgett (LB) monolayers and the fabrication of the 

top-contact electrode 

The experimental conditions to prepare Langmuir and Langmuir-Blodgett 

monolayers as well as the fabrication of the top-contact electrode by using FOSGAC 

and G-PEA compounds have been the same as those used by myself in my final project 

degree (TAD)
68

 and by Dr. Luz Marina Ballesteros Rueda in her PhD work,
63

 

respectively. Firstly, surface pressure-area per molecule isotherms of these molecules 

were fabricated to verify the reproducibility of the results previously obtained. In the 

case of FOSGAC, the preparation conditions of Langmuir films were: concentration of 

the spreading solution: 2.5·10
-5

 M; solvent: chloroform; the solution was sonicated for 

10 minutes; initial area per molecule: 1.60 nm
2
·molecule

-1
; compression speed: 0.018 

nm
2
·molecule

-1
·min

-1
; and working temperature: 20 ± 1 ºC. The preparation conditions 

of G-PEA Langmuir films were: concentration of the spreading solution: 1·10
-5

 M; 

solvent: chloroform; the solution was sonicated for 10 minutes; initial area per 

molecule: 2.30 nm
2
·molecule

-1
; compression speed: 0.018 nm

2
·molecule

-1
·min

-1
; and 

working temperature: 20 ± 1 ºC. In both cases a Millipore Milli-Q water (resistivity of 

18.2 MΩ·cm) was used as subphase.  

Once the monolayers of both compounds were formed at the air-water interface, 

these were transferred onto solid substrates for fabricating Langmuir-Blodgett (LB) 

films. FOSGAC monolayers can be transferred by withdrawing or dipping a substrate, 

having a Y-type transference and a transfer ratio close to one. The hydrophilic solid 

substrates were always withdrawn from the aqueous subphase to make the contact 

between the carboxylic acid of the molecule and the substrate. The upstroke speed was 

7 mm·min
-1

 and the Langmuir films were transferred at a surface pressure of 10 mN·m
-

1
. G-PEA monolayers can be only transferred during the withdrawn of the substrates, 

leading to Z-type LB films with a transfer ratio close to one. In this case, the 

hydrophilic solid substrates were also withdrawn from the aqueous subphase to make 

the contact between the amine group of the molecule and the substrate, the transfer 
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speed during the upstroke of the substrate was 7 mm·min
-1

 and the Langmuir films were 

transferred to a surface pressure of 16 mN·m
-1

. The obtained results for both molecules 

are in agreement with those obtained previously.
62,63,68 

It has been shown previously that these immobilized organometallic compounds 

decompose to generate, by annealing the LB film, gold nanoparticles (GNPs)which can 

act as the top-contact electrode in metal | organic layer | metal structures, figure 5.
63,68

 

Two different methods for generating these GNPs were tested (an irradiation process 

and a thermal process), getting the best results for the annealing process.
63,68

 In the case 

of FOSGAC, the best conditions to generate GNPs are annealing at 150 ºC for 2 hours; 

meanwhile for the G-PEA the optimum conditions are annealing at 100 ºC for 2 hours. 

Figure 6 shows the XPS spectra of a pristine and annealed FOSGAC LB film. It is 

particularly interesting that this molecule contains a phosphorous atom which has a 

characteristic energy in the XPS spectrum that, as shown in figure 6, disappears after the 

annealing and subsequent rinsing processes, indicating that the triphenylphosphine 

group of FOSGAC is lost after the thermal treatment. In addition, the Au4f region for 

the film after the annealing process shows two peaks at 83.81 and 87.48 eV, attributable 

to Au(0)
71,72

, whilst the pristine monolayer shows two intense peaks at 85.04 and 88.74 

eV, attributable to Au(I),
73,74 

and two weaker peaks at 83.88 and 87.56 eV attributable to 

gold (0) that is probably formed during the irradiation process required for the 

registration of the spectrum. On the other hand, figure 7 shows the XPS spectra of the 

Au4f region of G-PEA which confirms the reduction of Au(I) to Au(0) once the film 

has been annealed revealing that the annealing process is a general property of this 

family of compound and not just a specific feature of a compound. 
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Figure 5. Cartoon showing the method in which rupture of P-Au or C-Au bonds after annealing 

of immobilized monolayers occurs leading to the formation of gold NPs on the film surface 

(figure taken from reference 63). 

 

Figure 6. XPS spectra in the region of P2p (left images) and Au4f (right images) for a FOSGAC 

monolayer transferred at 10 mN·m
-1

, before and after annealing the Langmuir-Blodgett (LB) 

film at 150 ºC for 2 hours (figure obtained of the reference 68). 
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Figure 7. XPS spectra in the region of Au4f for a G-PEA monolayer transferred at 16 mN·m
-1

, 

before and after annealing the Langmuir-Blodgett (LB) film at 100 ºC for 2 hours (figure 

obtained of the reference 63). 

4.2. Electrical measurements 

A frequent problem in the fabrication of the top-contact electrode is the 

formation of short-circuits due to a metallic contact between the bottom and top-contact 

electrodes.
34

 Thus, it is really important to verify if the strategy proposed in the 

references 63 and 68 also leads to short-circuits or, on the contrary, is an effective 

strategy to avoid such problem obtaining metal | organic monolayer | gold nanoparticles 

(GNPs) systems without damaging the organic monolayer and penetrating the film. To 

probe the electrical properties of these metal | organic monolayer | gold nanoparticles 

(GNPs) sandwich structures fabricated as described above,
63,68 

I-V curves were recorded 

with a conductive-AFM. The operation mode for the AFM (PF-TUNA™) was chosen, 

instead of a STM or conducting AFM in conventional contact mode, because it is a 

method for the conductivity mapping of soft or fragile samples since this technique 

avoids lateral forces during the images that would have damaged tip coating and sample 

surface, while at the same time allowing the use of cantilevers with low spring constant. 

Thus, the Peak Force Tunneling AFM used here combines “tapping” mode AFM with a 

conducting AFM tip and low-noise current amplifier to probe current flow through 
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these metal | organic monolayer | GNP junctions. Nevertheless, before recording the I-V 

curves, it is necessary to have a compromise in selecting the suitable peak force which 

is applied during the measurement: a rather small force would result in an inadequate 

electrical probing of the monolayer underlying the GNPs, while a too intense force 

would result in an unacceptably large deformation of the LB film. Therefore, before 

recording the I-V curves, control experiments were made to determine the most suitable 

set-point force monitoring the deformation or damage to the monolayer as a function of 

tip loading force (set-point force). 

 Figure 8 shows an AFM image of a FOSGAC LB film after the annealing 

process at 150 ºC for 2 hours using a set-point force of 1.5 nN. Three gold nanoparticles 

labelled as GNP1, GNP2, and GNP3 are clearly visible in the image. 

 

Figure 8. AFM image of a FOSGAC LB film onto a gold substrate after annealing process at 

150 ºC for 2 hours. 

 When the applied set-point force is in the 1.5 to 17 nN range, the section 

analysis shows a practically constant height of 7.4, 9.0 and 8.9 nm for GNP1, GNP2 and 

GNP3, respectively (figure 9) revealing that in this set-point force range no deformation 

or damage of the monolayer occurs. However, if the set-point force is between 26 and 

43 nN, a continuous deformation of the monolayer is observed since the section analysis 

shows heights of 6.8, 8.7 and 8.3 nm (at 26 nN) to 6.2, 8.0 and 7.7 nm (at 43 nN) for 

GNP1, GNP2 and GNP3, respectively. If the set-point force is turned to low values, for 

example to 8.75 nN, the section analysis of these GNPs shows heights of 5.1, 4.0 and 

5.4 nm, which indicates that the deformation produced in the monolayer after applying a 
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high set-point force (43 nN) is reversible and does not induce damage in the organic 

layer.  

 

Figure 9. Height of GNPs showed in figure 8 for an annealed FOSGAC film determined with 

the c-AFM at the indicated set-point forces together with the average conductance values 

measured by locating the tip of the c-AFM on the GNPs. 

 

 After this study, the I-V curves were recorded for all range of the set-point forces 

used previously by sweeping the tip voltage (±1.2 V) once the c-AFM tip was located 

on the GNPs and a bias between the sample and the tip was applied with the LB-coated 

Au substrate held at ground. When the set-point force used is 1.5 or 3.5 nN no current 

was detected (figure 9). Meanwhile, if the set-point force is in the 3.5 to 17 nN range the 

I-V curves show low conductance suggesting that the contact between the tip and the 

GNP is not good. However, when a set-point force of 26 nN is used to record the I-V 

curves, the curves show a significant conductance (figures 9 and 10) revealing that for 

this set-point force the contact between the tip and the GNP is good. Therefore, this set-

point force, 26 nN, was used to determine the electrical properties of these metal | 

organic monolayer | GNP junctions and to check the presence of short-circuits by 

recording the I-V curves. The I-V curves were averaged from multiple scans recorded 

for contacts to different GNPs, for ensuring reproducibility and reliability of the results, 

figure 10. These curves show a shape commonly observed for metal | organic molecule | 

metal junctions, with a linear section only at relatively low bias voltages (from -0.6 to 

+0.6 V, the ohmic region, where the conductance value is 4.65x10
-5

 G0, where G0 is the 

conductance quantum (G0=2e
2
h  77.4 S)) and increasing curve gradient at higher 

bias. In addition, and most importantly, only curves with this behavior were observed 

GNP1 

GNP3 

GNP2 
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and no low resistance traces characteristic of metallic short circuits were obtained over a 

wide range of set-point forces which rule out the presence of short-circuits.  

 

Figure 10. Averaged I-V curve for the metal | FOSGAC monolayer | GNPs sandwich structures 

recorded using a set-point force of 26 nN. The inset top image shows a representative example 

of a 200 x 200 nm
2
 image where gold NPs can be clearly distinguished and was used to position 

the c-AFM tip onto the NPs. The inset bottom image shows a scheme of the studied metal | 

organic monolayer | GNPs sandwich structures. 

 Once the electrical properties of the metal | FOSGAC LB film | metal junctions 

were determined, a similar study is carried out for the G-PEA. Figure 11 shows an AFM 

image of a G-PEA LB film after annealing at 100 ºC for 2 hours using a set-point force 

of 3.5 nN. Three gold nanoparticles labeled as GNP1, GNP2 and GNP3 are clearly 

visible in the image. 

 

Figure 11.  AFM image of a G-PEA LB film onto a gold substrate after annealing at 100 ºC for 

2 hours. 
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 When a set-point force in the range from 3.5 to 26 nN is applied, the section 

analysis shows practically constant heights of 5.2, 4.1 and 5.5 nm for GNP1, GNP2 and 

GNP3, respectively (figure 12). Thus, for this set-point force range no deformation or 

damage of the monolayer occurs. If the set-point force is increased up to 35 nN, the 

section analysis of the GNPs gives heights of 2.7, 2.4 and 4.4 nm for GNP1, GNP2 and 

GNP3, respectively, revealing that when this set-point force is applied there is a 

deformation of the monolayer. Finally, for a set-point force of 44 nN, the deformation 

of the monolayer increases since the section analysis shows heights of 2.1, 1.9 and 3.8 

nm for GNP1, GNP2 and GNP3, respectively. Nevertheless, if the set-point force is 

turned to low values, for example to 8.5 nN, the section analysis of these GNPs shows 

heights of 5.2, 4.0 and 5.3 nm, which indicates that the deformation produced in the 

monolayer after applying a high set-point force (35 or 44 nN) is reversible and does not 

induce any damage in the organic layer. 

 

Figure 12. Height of GNPs showed in figure 11 for an annealed G-PEA film determined with 

the c-AFM at the indicated set-point forces together with the average conductance values 

measured by locating the tip of the c-AFM on the GNPs. 

 

 Once the influence of the applied set-point force in the monolayer was studied, 

the I-V curves were recorded for all range of the set-point forces used. When the used 

set-point force is 3.5 nN no current was detected (figure 12). Meanwhile, if the applied 

set-point force is in the range from 3.5 to 26 nN, the I-V curves show low conductance. 

These results suggest that when low set-point forces are used to record the I-V curves 

the contact between the tip and the GNP is not good. However, for a set-point force of 

35 nN the I-V curves show a significant conductance (figures 12 and 13) revealing that 

GNP1 

GNP2 

GNP3 
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for this set-point force the contact between the tip and the GNP is good without 

damaging the monolayer. Therefore, the I-V curves were recorded for a set-point force 

of 35 nN. In figure 13 an averaged I-V curve for the metal | G-PEA monolayer | GNPs 

sandwich structures recorded as indicated previously for FOSGAC is showed. A similar 

behavior to this obtained for FOSGAC is observed which also rule out the presence of 

short-circuits in these structures. The conductance value is, in this case, 1.35x10
-4

 G0 

obtained from the linear section at relatively low bias voltages (from -0.6 to +0.6 V, the 

ohmic region). 

 

Figure 13. Averaged I-V curve for the metal | G-PEA monolayer | GNPs sandwich structures 

recorded using a set-point force of 35 nN. The inset top image shows a representative example 

of a 200 x 200 nm
2
 image where gold NPs can be clearly distinguished and was used to position 

the c-AFM tip onto the NPs. The inset bottom image shows a scheme of the studied metal | 

organic monolayer | GNPs sandwich structures. 

 For these two metal | FOSGAC or G-PEA monolayer | GNPs sandwich 

structures, the electrical properties have been determined as an influence of the set-point 

force. I-V curves have not revealed evidences of short-circuits. Therefore, this new 

method for making the top-contact electrode, thermal induced decomposition of an 

organometallic compound, is an alternative system for solving the top-contact electrode 

problem without damaging the organic molecule, penetrating the film or 

altering/contaminating the interfaces. 
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Chapter 5: Graphene as top-

contact electrode in molecular 

electronics 

As mentioned previously, other important objective of this project is the 

development of a new strategy using graphene for making the top-contact electrode. In a 

previous work,
75

 it was demonstrated that Langmuir and Langmuir-Blodgett films of 

graphene oxide solution can be fabricated. Therefore, we considered the possibility of 

using graphene oxide (GO) monolayers for making the top-contact electrode onto an 

organic monolayer after a chemical treatment of these layers to obtain reduced graphene 

oxide (RGO). Conjugated organic compounds have been widely used as molecular 

wires in molecular electronics.
7-9

 In the last years, several organic compounds have been 

assembled using the LB technique to fabricate metal  LB film  metal (a STM tip) 

junctions in our group and their electrical properties were also determined.
76,77

 Among 

all these compounds, SOPEA has been chosen to prepare a LB monolayer because this 

molecule has a hydrophilic terminal group (–NH2) that allows its anchoring at the water 

surface, and a hydrophobic part which confers insolubility in water and provides 

stability to the Langmuir monolayers due to π-π interactions with side neighboring 

molecules.
62-65

 This compound has been demonstrated to form very homogenous and 

stable monolayers at the air/water interface which can be transferred onto several 

substrates obtaining very homogenous films without holes or defect. In addition, these 

LB films are directionally oriented with good conductance values.
77

 Therefore, the 

objective of this chapter is to fabricate a monolayer of SOPEA free of defects and to 

deposit a graphene oxide layer by the Langmuir-Blodgett (LB) technique as the top-

contact electrode (figure 14) on top of the organic layer. 
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Figure 14. Scheme of the metal | SOPEA monolayer | reduced graphene oxide sandwich 

structure. 

 Nevertheless, to achieve this objective, different challenges had to be overcome. 

The first step was to reproduce the fabrication of the Langmuir and Langmuir-Blodgett 

(LB) films both of SOPEA and graphene under the same experimental conditions used 

previously in the group by Dr. Gorka Pera Seijo in his PhD
62

 and Jorge Trasobares 

Sánchez in his final project master,
75

 respectively. Once these films were fabricated 

under the same experimental conditions: spreading of a 1.0·10
-5

 M solution in 

chloroform which was previously sonicated for 10 minutes, with an initial area per 

molecule of 2.50 nm
2
·molécula

-1
 and using a compression speed of 0.018 

nm
2
·molécula

-1
·min

-1
 for SOPEA and spreading of a 8.8 mg·L

-1
 solution in 

water:methanol:chloroform (1:5:6), previously sonicated for 10 minutes with a 

compression speed of 7 cm
2
· min

-1 
for the graphene and using Millipore Milli-Q water 

as the subphase; the monolayers were transferred onto solid substrate to fabricate 

Langmuir-Blodgett (LB) films at 20 and 15 mN·m
-1

 for the SOPEA and graphene, 

respectively at a transfer speed of 7 mm·min
-1

. SOPEA films are Y-type, with a transfer 

ratio close to one. The transfer process was done during the upstroke of the substrate to 

favor the interaction between the amine group (NH2) of the molecule and the substrate 

leaving the other end, the TMS group, free to interact with the graphene oxide layer in 

next steps.  

 Nevertheless, before carriying out the transference of graphene oxide onto a 

substrate containing the SOPEA LB film it was necessary to check firstly that a 

graphene oxide LB monolayer could be reduced successfully. A graphene oxide layer 

formed at the air-water interface was transferred onto a quartz substrate and the UV-Vis 

spectrum of the LB film was registered, figure 15. Afterwards, the graphene oxide LB 
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film was treated with hydrazine vapors
78

 at the Instituto de Carboquímica de Aragón 

(CSIC) by Drs. Ana M. Benito and Wolfgang Maser. The UV-Vis spectrum of the 

reduced graphene oxide LB film was recorded, figure 15. The UV-Vis spectra of the 

graphene oxide (GO) layer shows a peak at 226 nm in agreement with the literature.
79

 In 

addition, the LB film after the reduction treatment shows a peak at 263 nm associated to 

reduced graphene oxide (RGO).
79

  

 

Figure 15. UV-Vis spectra of a graphene oxide monolayer before and after the reduction 

treatment with hydrazine vapors.  

 The open question now is if this treatment can damage the organic SOPEA LB 

film. To answer this question a monolayer of SOPEA was transferred onto a quartz 

substrate and the UV-Vis spectrum was recorded before and after the reduction with 

hydrazine vapors, figure 16. The pristine LB film shows a peak at 310 nm.
77

 After the 

exposure to hydrazine, the UV-Vis spectrum of the LB film does not change, which 

demonstrate that hydrazine vapors do not damage the film. 
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Figure 16. UV-Vis spectra of a SOPEA monolayer pristine and after exposuring to hydrazine 

vapors. 

 Once it has been demonstrated that the treatment with hydrazine vapors reduces 

the graphene oxide layer without damaging the organic monolayer, the next step was to 

transfer a graphene oxide layer onto a SOPEA LB film and its subsequent treatment 

with hydrazine vapours. A SOPEA monolayer was transferred onto a quartz substrate 

during the upstroke of the substrate. After that, a graphene oxide layer was transferred 

onto the organic SOPEA LB film and the UV-Vis spectrum of this structure was 

recorded, figure 17. The UV-Vis spectrum shows two peaks at 310 and 226 

corresponding to the organic SOPEA monolayer
77 

and the graphene oxide,
79

 

respectively, revealing the incorporation of the graphene oxide to the SOPEA LB film. 

Later, the SOPEA + GO layer was treated with hydrazine vapors to reduce the graphene 

oxide and the UV-Vis spectrum was registered to follow the process, figure 17.  The 

peak at 310 nm corresponds to the SOPEA LB film, meanwhile the peak at 263 nm is 

due to the reduced graphene oxide (RGO). Therefore, UV-Vis spectroscopy has 

revealed the incorporation of graphene oxide onto the SOPEA LB film and its 

subsequent reduction to RGO without damaging the organic layer. 
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Figure 17. UV-Vis spectra of Au-SOPEA-graphene oxide pristine and after the reduction 

process with hydrazine vapors. 

 At this point it is necessary to indicate that the same study was carried out for 

LB films of SOPEA fabricated with the substrate initially outside of the aqueous 

subphase, hydrophobic substrate, to have the following structure: Au-TMS-OPE-NH2, 

that is, leaving free the amine group to make the contact with the graphene oxide in 

order to check the influence of having different directionally oriented LB films. The 

same results were obtained indicating that both directionally oriented LB films can be 

used. 

 To confirm the results obtained with the UV-Vis spectroscopy, quartz crystal 

microbalance (QCM) experiments were carried out. Firstly, the frequency of a bare 

QCM substrate was determined, f0, see table III. Afterwards, a monolayer of SOPEA 

was transferred onto these QCM substrates which were initially either inside or outside 

the aqueous subphase to have the two possible directionally oriented LB films: Au-

NH2-OPE-TMS, when the substrate is initially immersed or Au-TMS-OPE-NH2 when 

the substrate is initially outside of the aqueous subphase; and the frequency was 

measured, f1, in table III. The observed frequency change (f0 - f1) for both films, was 14 

and 12 Hz for the Au-NH2-OPE-TMS and Au-TMS-OPE-NH2, respectively, which 

correspond to transfer ratios of 1.03 and 0.98 for the Au-NH2-OPE-TMS and Au-TMS-

OPE-NH2, respectively, according to the Sauerbrey equation (2). Secondly, a graphene 

oxide layer was deposited onto the organic monolayer and the oscillation frequency was 

measured, f2, in table III. The observed frequency change (f1 – f2) reveals the 

incorporation of the graphene oxide to the LB film as it has already been observed by 
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UV-Vis spectroscopy. Finally, these LB films were treated with hydrazine vapors to 

reduce the graphene oxide and the oscillation frequency was measured, f3. The increase 

in the oscillation frequency with respect to f2 suggests the elimination of the hydroxyl 

groups present in the graphene oxide as a consequence of the reduction of the graphene 

oxide layer in agreement with the spectroscopy results. 

Table III. Experimental results for the QCM experiments. 

Oscillation frequency of 

a QCM substrate 
Au-NH2-OPE-TMS Au-TMS-OPE-NH2 

Bare susbstrate (f0) 5007355 Hz 5007358 Hz 

After deposition of a 

SOPEA monolayer (f1) 

Δf = (f0 – f1) 

5007341 Hz 

(τ = 1.03) 

Δf = + 14 Hz 

5007346 Hz 

(τ = 0.98) 

Δf  = + 12 Hz 

After deposition of a 

graphene oxide layer (f2) 

Δf  = (f1 – f2) 

5007270 Hz 

 

Δf = + 71 Hz 

5007276 Hz 

 

Δf  = + 70 Hz 

After the treatment with 

hydrazine vapors (f3) 

Δf = (f2 – f3) 

5007286 Hz 

 

Δf = - 16 Hz 

5007293 Hz 

 

Δf = - 17 Hz 

 

 Finally, the morphology of the different films transferred onto freshly cleaved 

mica substrates were evaluated by AFM imaging. Figure 18 shows an AFM image and 

section analysis profile of a one-layer LB film of SOPEA transferred onto a substrate 

initially immersed in the subphase, a mica-NH2-OPE-TMS monolayer with the presence 

of aggregates of different size is observed; the film roughness, calculated in terms of the 

root mean squared (RMS), is 0.15 nm. Deposition of a graphene oxide film onto a mica-

NH2-OPE-TMS film, figure 19, shows a topography completely different to the one 

observed for the organic monolayer, figure 18, with an increase in the RMS (0.89 nm). 

Finally, an AFM image of the organic monolayer | reduced graphene oxide film is 

shown in figure 20. The image shows sheets of graphene with a constant height (3-4 

nm), confirming the reduction of the graphene oxide as well as the presence of similar 
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aggregates to those observed in figure 19 indicating that not all graphene oxide is 

reduced by hydrazine vapors. 

 

Figure 18. AFM image and section analysis of mica-NH2-OPE-TMS film transferred at 20 

mN·m
-1

. 

 

Figure 19. AFM image and section analysis of mica-NH2-OPE-TMS-graphene oxide film. 
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Figure 20. AFM image and section analysis of mica-NH2-OPE-TMS-reduced graphene oxide 

film. 

 A similar study was carried out for a LB film of SOPEA transferred onto 

cleaved mica initially outside of the subphase (mica-TMS-OPE-NH2) and the 

subsequent transference of a graphene oxide layer followed by treatment with hydrazine 

vapors, figures 21 to 23. As can be observed, similar results were obtained. 

 

Figure 21. AFM image and section analysis of mica-TMS-OPE-NH2 film transferred at 20 

mN·m
-1

. 
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Figure 22. AFM image and section analysis of mica-TMS-OPE-NH2-graphene oxide film. 

 

Figure 23. AFM image and section analysis of mica-TMS-OPE-NH2-reduced graphene oxide 

film. 

In conclusion, a new strategy using graphene has been considered to make the 

top-contact electrode in metal  organic layer structures without damaging the organic 

layer, being an alternative to other traditional methods. In this work a preliminary 

research of the possible use of graphene as the top-contact electrode in molecular 

electronics has been made, although further research is needed. In future projects, the 

following issues would be investigated: working with more homogenous organic films, 

to avoid the presence of aggregates, holes or defects in the monolayers; studying the 

organic layer | graphene junctions; trying to find new possible methods for reducing the 

graphene oxide; and measuring the electrical properties of the metal | organic film | 

graphene devices.  
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Chapter 6: Conclusions 

 In this section we will attempt to provide an overview of the experimental results 

obtained in this final project master: 

Two organometallic compounds with a gold metal in their skeleton have been 

studied, FOSGAC and G-PEA. It was previously demonstrated that these immobilized 

organometallic compounds decompose to generate gold nanoparticles (GNPs) by 

annealing the LB films, and these GNPs could act as the top-contact electrode in 

molecular devices. In this work, the electrical properties of these metal | organic 

monolayer | GNPs sandwich structures have been determined as a function of the set-

point force applied with a conductive-AFM to verify if the strategy proposed in 

references 63 and 68 also leads to short-circuits or on the contrary is an effective 

technique to avoid such problem, obtaining metal | organic monolayer | GNPs systems 

without damaging the organic monolayer and penetrating the film. I-V curves show a 

shape commonly observed for metal | organic molecule | metal junctions, with a linear 

section only at relatively low bias voltages and increasing curve gradient at higher bias. 

Only curves with this behavior were observed and no low resistance traces characteristic 

of metallic short circuits were obtained over a wide range of set-point forces which rule 

out the presence of short-circuits. Therefore, this new method for making the top-

contact electrode, thermal induced decomposition of an organometallic compound, is an 

alternative system for solving the top-contact electrode problem without damaging the 

organic molecule, penetrating the film or altering/contaminating the interfaces. 

A new strategy using graphene as alternative to other traditional methods has 

been developed to fabricate the top-contact electrode in metal  organic layers structures 

without damaging the monolayer. To achieve this objective, first, Langmuir and 

Langmuir-Blodgett monolayers of SOPEA and graphene oxide have been fabricated 

using the experimental conditions described in the literature. Then, a treatment with 

hydrazine vapors has been used to reduce the graphene oxide as it has been 

demonstrated by UV-Vis spectroscopy. In addition, UV-Vis experiments have 

demonstrated that this treatment does not damage the SOPEA film. Finally, metal  

SOPEA LB film  reduced graphene oxide (RGO) structures have been fabricated as it 

has been demonstrated by UV-Vis spectroscopy, QCM and AFM.  
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