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Resumen 

1 Introducción 

La reconstrucción geológica del subsuelo es de vital importancia en muchos 

ámbitos como la exploración y extracción de recursos naturales (minería, hidrocarburos, 

recursos hídricos…) y por tanto tiene fuertes implicaciones socio-económicas. La 

reconstrucción en 3D consiste en la integración de todo tipo de datos geológicos 

provenientes de la exploración geofísica (fundamentalmente sísmica), de datos de 

sondeos (litología y diagrafías) y por supuesto de datos de superficie como la 

cartografía (Groshong, 1999). Los datos son normalmente escasos y provienen de 

fuentes heterogéneas por lo que es muy importante validar la reconstrucción. 

Los métodos de restitución son una herramienta de gran utilidad en la búsqueda de 

coherencia de una reconstrucción geológica. Restituir significa pasar del estado 

deformado al estado no deformado. Los métodos de restitución se basan en un conjunto 

de reglas geométricas, cinemáticas y/o mecánicas que se apoyan en una serie de 

supuestos sobre el proceso de deformación. El principio básico de restitución en 3D es 

la conservación de volúmenes durante el plegamiento (Goguel, 1952), así como la 

horizontalidad de las capas en el estado no deformado. Con ello se busca que los 

horizontes estratigráficos reconstruidos tengan consistencia geológica con un estado 

inicial y un proceso de deformación concreto. Así mismo, los procesos de restitución 

pueden ser de ayuda a la hora de predecir la deformación sufrida por una estructura. 

Existe un gran abanico de métodos de restitución que se aplican en 2D y 3D y que 

se desarrollaron inicialmente para cortes geológicos “compensados” (Dahlstrom, 1969; 

Hossack, 1979; etc.), evolucionaron a superficies plegadas y falladas (Gratier et al., 

1991; Rouby et al., 2000; Massot, 2002; etc.) y actualmente se aplican ya a volúmenes 

(Moretti, 2005; Maerten and Maerten, 2006; etc.). Sin embargo, vemos que la mayoría 

de ellos presentan importantes limitaciones a la hora de restituir estructuras plegadas 

complejas (no cilíndricas y/o no coaxiales) y/o afectadas por gradientes laterales de 

acortamiento (rotaciones). Son estructuras que podemos encontrar habitualmente en 

sistemas de pliegues y cabalgamientos y que han sufrido movimiento fuera de plano 

(asumido como nulo en los métodos 2D) durante el proceso de plegamiento. 
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2 Objetivos 

El objetivo fundamental de esta tesis es añadir el paleomagnetismo a métodos de 

restitución existentes para mejorar su eficacia. El paleomagnetismo es el estudio del 

campo magnético terrestre del pasado a partir del estudio de la magnetización registrada 

en las rocas. Es la única técnica que permite describir movimientos respecto a un 

sistema de referencia absoluto, externo y global: el campo magnético terrestre. El 

paleomagnetismo ha sido utilizado con gran éxito desde los años 60 para la 

caracterización de rotaciones en zonas cinturones de cabalgamientos (Allerton, 1998; 

Sussman et al., 2012; etc.) y por tanto puede ser utilizado en los métodos de restitución 

para determinar el valor de la rotación y reducir así el número de incertidumbres. El uso 

del paleomagnetismo en técnicas de restitución fue recomendado a principios de los 

años 90 (McCaig and McClelland, 1992) y sin embargo sólo se ha utilizado hasta la 

fecha como criterio de corrección (Bonhommet et al., 1981; Bourgeois et al., 1997; 

Arriagada, 2004; Pueyo, 2000). 

Por tanto, la propuesta es utilizar en métodos de restitución el paleomagnetismo 

junto con el plano estratigráfico, puesto que ambos son una referencia conocida en los 

estados inicial y plegado. El plano estratigráfico determina la rotación de eje horizontal 

mientras que el paleomagnetismo determina la rotación de eje vertical, aportando así 

información complementaria. Por supuesto, los datos paleomagnéticos incorporados en 

el método de restitución deberán cumplir una serie de criterios de fiabilidad a los que 

también prestamos atención (Van der Voo, 1990; Pueyo, 2010). 

Concretamente, vamos a incorporar la información paleomagnética a dos métodos 

de restitución de superficie válidos para superficies globalmente desarrollables. No se 

trata propiamente de restitución 3D, pero creemos que desplegar superficies (horizontes 

estratigráficos) de forma correcta es el mejor punto de partida para una certera 

reconstrucción volumétrica. Superficies desarrollables son aquellas con curvatura 

gaussiana nula en todos sus puntos, superficies que han sido plegadas de forma 

isométrica (conservación de ángulos y longitudes) y por tanto podemos desplegarlas sin 

que sea necesario deformarlas (Lisle, 1992); son las que llamamos superficies 

flexurales. Del mismo modo, entendemos por superficies globalmente desarrollables 

aquellas que cumplen este supuesto de forma global a pesar de que hayan podido sufrir 

deformación en algunos puntos.  
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El primer método de restitución está basado en la triangulación de la superficie y 

parte del método desarrollado por Gratier et al. (1991). La superficie plegada está 

discretizada por una malla de triángulos en los que incorporamos el vector 

paleomagnético. Cada uno de los triángulos es abatido a la horizontal para después ser 

trasladado y rotado de forma que se minimice la distancia entre los vértices comunes. El 

dato paleomagnético nos determinará el valor de la rotación disminuyendo así el 

número de variables. 

El segundo método está basado en la parametrización de la superficie y parte del 

método desarrollado para gOcad por Massot (2002). La idea de la representación 

paramétrica es poder proyectar una superficie definida en 3D (estado plegado o 

deformado) a un plano en 2D (estado inicial o no deformado). Hay infinidad de 

posibilidades, pero por simplicidad y puesto que suponemos un plegamiento isométrico, 

se eligen unas coordenadas para el estado no deformado que sean rectilíneas y 

ortonormales. Este método está muy condicionado por la solución inicial y es aquí 

donde el paleomagnetismo viene en nuestra ayuda porque nos permite determinarla. 

Finalmente, extenderemos los métodos desarrollados a la restitución cartográfica en 

planta, válido tanto a escala regional cómo tectónica. No se trata de “desplegar” 

superficies sino de “des-rotar” la cartografía según el valor de las rotaciones verticales 

(VARs) obtenidas a partir de datos paleomagnéticos. 

 

3 Metodología 

Para evaluar la bondad de los métodos desarrollados nos vamos a apoyar en 

modelos a escala. Los análogos han sido siempre de gran utilidad para tratar de 

comprender y explicar comportamientos y estructuras geológicas. En nuestro caso son 

cruciales ya que nos permiten conocer al detalle el estado deformado y no deformado y 

de esta forma poder compararlos con la restitución obtenida. 

Los modelos análogos desarrollados están basados en estructuras complejas reales 

que nos parecen significativas. En concreto modelizamos un pliegue cónico basado en 

Santo Domingo con el cierre periclinal de San Marzal y un pliegue curvo basado en el 

anticlinal del Balzes, ambas estructuras localizadas en Sierras Exteriores (Pirineos). Los 

modelos se han construido utilizando planchas de goma EVA y se han digitalizado por 
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medio de dos técnicas: 1) la fotogrametría, únicamente válida para la reconstrucción de 

la superficie superior y 2) la reconstrucción de volúmenes a partir de secciones 

obtenidas mediante un escáner  de rayos X (TAC). 

Con la reconstrucción de estos modelos se realizan un gran número de pruebas para 

evaluar los diferentes métodos de restitución y los diferentes parámetros en juego. 

Analizamos la importancia del uso del paleomagnetismo, la sensibilidad de los 

diferentes métodos al mallado de la superficie, al punto de inicio y a la orientación del 

vector paleomagnético. Del mismo modo, se evalúan los resultados cuando el 

paleomagnetismo no se conoce en todos los puntos y viene definido con un cierto grado 

de error, tratando así de simular un caso real. 

 

4 Línea argumental 

La primera parte de la tesis centra el problema. Después de la introducción 

(Capítulo 1) hacemos un pequeño recorrido de todo lo que se ha hecho hasta ahora 

(Capítulo 2). Se describen los métodos de restitución existentes para cortes 

compensados, superficies y volúmenes prestando atención a los supuestos sobre el 

proceso de plegamiento de los que parten (Sección 2.1).  A continuación nos centramos 

en el paleomagnetismo: qué es, cómo se adquiere y qué requisitos de fiabilidad es 

necesario cumplir para su correcto uso (Sección 2.2). Introducimos también el uso de 

los modelos análogos en aplicaciones geológicas y su digitalización mediante 

fotogrametría, escáner de rayos X y láser escáner (aunque este último ha sido finalmente 

descartado) (Sección 2.3). Por último, nos centramos en el marco geológico sobre el que 

hemos basado el desarrollo de los modelos análogos: el cierre periclinal de San Marzal 

y el anticlinal curvado del Balzes situados en Sierras Exteriores (Sección 2.4). 

En la segunda parte pasamos a describir el trabajo desarrollado. En el capítulo 3 

explicamos la metodología de los modelos análogos y los modelos concretos 

desarrollados. Tras una serie de pruebas, los modelos a escala finalmente utilizados han 

sido construidos con planchas de goma EVA sobre las que se ha serigrafiado una 

cuadrícula con minio a modo de sistema de referencia (Sección 3.1.3). Con el escáner 

de rayos X se obtienen una serie de secciones a partir de las cuales se reconstruyen las 

distintas superficies y su sistema de referencia utilizando gOcad, un programa de 
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reconstrucción geológica (Sección 3.1.4). Una vez reconstruido el modelo es posible 

calcular los tensores de deformación gracias al sistema de referencia conocido antes y 

después de la deformación (Sección 3.1.5). Para el modelo concreto del Bazles hacemos 

un análisis completo de las potencialidades de la metodología descrita haciendo un 

estudio de la deformación tras el proceso de plegamiento (Sección 3.2.3). 

El capítulo 4 es la descripción de los métodos de restitución de superficie en los que 

hemos incorporado el paleomagnetismo como nueva variable de entrada. El primero 

(Sección 4.1) es un método iterativo que trata de encajar los triángulos abatidos 

mediante mínimos cuadrados. El paleomagnetismo determina el valor de la rotación 

individual de cada triángulo, restringiendo así el número de variables y disminuyendo la 

incertidumbre. El segundo método está basado en la parametrización de la superficie 

(Sección 4.2) y el paleomagnetismo sirve para determinar la solución inicial que 

condiciona severamente el resultado. Finalmente se describen los parámetros de 

dilatación y deformación que nos ayudarán a valorar la credibilidad del método 

(Sección 4.3). 

En el capítulo 5 y 6 se llevan a cabo una serie de simulaciones para tratar de evaluar 

los métodos de restitución descritos junto con los distintos parámetros en juego; la 

sensibilidad del método en un primer lugar y la sensibilidad del paleomagnetismo en un 

segundo lugar. Los resultados obtenidos con la restitución se comparan con la superficie 

inicial y la deformación real sufrida durante la deformación (Sección 5.1). En primer 

lugar, se muestran la diferencia en los resultados al desplegar las superficies con o sin 

paleomagnetismo (Sección 5.2). Del mismo modo se evalúa si el tipo de malla que 

define la superficie y su densidad (Sección 5.3), así como el punto de inicio por el que 

se empieza a desplegar la superficie (Sección 5.4) tienen efecto sobre el resultado final. 

Para completar el estudio, se muestran los resultados de una restitución multi-superficie 

como punto de partida para una restitución volumétrica; además se comparan los 

resultados con una restitución 3D real exponiendo las limitaciones adicionales que ésta 

presenta (Sección 5.5). 

Adicionalmente se lleva a cabo el estudio sobre el efecto que tienen en la restitución 

los datos iniciales de paleomagnetismo. Se evalúa en primer lugar el efecto de la 

orientación inicial del vector paleomagnético con respecto a la estructura principal 

(Sección 6.1). No perdemos de vista que el paleomagnetismo viene definido con un 

cierto grado de error y se analiza su influencia (Sección 6.2). Además, es fundamental el 
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análisis de la restitución con datos de paleomagnetismo aislados y no definidos en toda 

la superficie (Sección 6.3). Para poder utilizar con mayor fiabilidad los métodos de 

restitución en un caso real donde el paleomagnetismo es conocido únicamente en 

estaciones puntuales, se desarrolla un método de interpolación que se basa en la 

suposición de partida de que las superficies son desarrollables (Sección 6.4). Se aplica 

de esta forma el método a un escenario más realista (Sección 6.5). 

En el capítulo 7 aplicamos la idea de restitución con paleomagnetismo a una 

restitución cartográfica en planta. Definimos las bases de este nuevo método (Sección 

7.1) y mostramos los resultados para dos casos de estudio: el anticlinal del Balzes 

(Sección 7.2.1) y el sistema sur-pirenaico central (Sección 7.2.2).  

Los resultados obtenidos se evalúan en el apartado de las conclusiones proponiendo 

al mismo tiempo futuras líneas de investigación. 

En los apéndices se trata un tema de igual importancia pero un poco más alejado de 

la línea principal de la tesis y que está relacionado con la fiabilidad de los datos 

paleomangéticos. En el apéndice 1 proponemos una técnica para el procesado de los 

datos paleomagnéticos basada en el cálculo de direcciones virtuales como apoyo a las 

herramientas tradicionales. Para ello se desarrolla el programa “Virtual Paleomagnetic 

Directions” (VPD). En el apéndice 2 se describen matemáticamente tres posibles 

fuentes de error de los datos paleomagnéticos: el solapamiento de una componente 

secundaria, la deformación interna por cizalla y un mal control estructural del 

plegamiento producido en dos etapas.  
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1 Introduction 

1.1 Focus 

Three-dimensional reconstructions of the subsurface are an important field in Earth 

Sciences due to their considerable socio-economic implications as exploration of natural 

resources (mining, oil, water, etc.). 3D reconstructions aim at providing a plausible 

image of the underground, which entails the integration of discrete and heterogeneous 

datasets: field observation (stratigraphic contacts and orientations, fault planes, etc.), 

interpretative map and cross-sections, seismic sections, borehole data… (e.g. Caumon et 

al., 2009 and references therein). Reconstruction techniques are based on 

geometric/mechanic laws and are designed to tackle areas with scarce and 

heterogeneous data. 

Restoration algorithms are an important tool to validate these 3D geological 

reconstructions of the subsurface. Each step of reconstruction must be checked and 

validated with geological criteria (e.g. Groshong 2006). Restoration is the way back 

from the deformed to the undeformed state (retro-deformation). Undoing the 

deformation and achieving an initial surface with geological meaning (balanced 

structure) is useful to validate the reconstruction of the folded structure and the 

deformation processes assumed. The main postulate in most restoration methods is the 

horizontality of the initial layers while restoration algorithms are based in several 

deformation processes as flexural slip or simple shear. At regional scales and crustal 

levels, we can assume that deformation does not change the total rock volume, at least 

overall (Goguel, 1952). These and other rules based on geological criteria are applied in 

restoration as well as in forward modeling. We deepen in restoration techniques in next 

chapter but we want to emphasize here the importance of a continuous feedback 

between reconstruction and restoration. This becomes especially important when 

complex deformation processes are implied and limited data is available. In addition, 

restoration tools may also be useful to predict deformation patterns for well 

characterized structures because the knowledge of deformed and undeformed states 

allows calculation dilation and strain tensors. 

7 



However, existing restoration methods do not always succeed for complex 

structures like non-cylindrical, non-coaxial and/or areas undergoing vertical axis 

rotations (out-of-plane motions). We suggest using paleomagnetic information, which is 

known in both the undeformed (horizontal) and deformed state, as an additional and 

powerful constraint to improve restoration methods and to reduce the uncertainty of the 

results. The use of paleomagnetism in restoration tools was recommended in the early 

90’s (McCaig and McClelland, 1992). So far, however, relatively few researchers have 

tried using paleomagnetic information to double-check the rotation inferred from 

restoration methods, and hardly ever paleomagnetism is used as primary information of 

these tools.  

 

1.2 Objectives 

In this PhD we want to show how paleomagnetism can reduce the uncertainty in 

restoration tools when it is used as a constraint, particularly for structures with out-of-

plane motions. The bedding plane is the basic 2D reference to relate the undeformed 

and deformed states, but never could be a real 3D indicator. Our proposal is the usage of 

paleomagnetism together with the bedding plane as references known in both states. 

The bedding plane determines the horizontal rotation and paleomagnetism the vertical 

axis rotation (Fig. 1.1). 

Paleomagnetic vectors are the record of the ancient magnetic field at the time of the 

rock formation and we assume that they behave as a passive marker during the 

deformation process. Its original orientation can be known in the undeformed surface, 

and it is represented by the paleomagnetic reference vector. If we see the deformation 

mechanisms (Fig. 1.2), paleomagnetism allows reducing the number of variables, since 

it is a passive marker that may record the internal deformation and provides us with 

information on vertical axis rotation. Because accurate paleomagnetic data is necessary 

to improve results we also work on a good data acquisition. 
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Figure 1.1: Conceptual model of 3D restoration by integrating paleomagnetic data. 

 

 

Figure 1.2: Deformation mechanisms. Paleomagnetism helps determining the rotation. 

Paleomagnetism may be incorporated in many restoration tools. Particularly we 

center our study in geometrical surface unfolding algorithms valid for globally 

developable surfaces. Developable surfaces are those with Gaussian curvature equal to 

zero everywhere (Lisle, 1992). These surfaces in geology are stratigraphic horizons 

folded under flexural conditions that have minimum internal deformation. That implies 

surfaces isometrically folded with preservation of lengths and angles and consequently 

with preservation of area. By globally we mean that these constraints are valid almost 

everywhere but there are areas where internal deformation is possible. We can find this 
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kind of structures in the fold and thrust belts (FATs) of competent layers at upper 

crustal levels. 

In order to test the restoration methods we develop analog models of complex 

structures. Laboratory-scale models are based on non-coaxial structures of External 

Sierras (Pyrenees). These analogs are digitalized with photogrametry and X-Ray CT 

scanner techniques. In this way, models are completely characterized before and after 

deformation. This allows the calculus of strain ellipsoid of the folded surface and the 

comparison of the restored surface with the initial one. 

Additionally to the unfolding algorithms, we propose the usage of paleomagnetism 

in a map-view restoration technique. With this restoration we undo the vertical axis 

rotations (VARs) occurred during a narrow period of time. We do not pretend to do a 

rigorous restoration but help the location of deformation areas in the cartographic map. 

Premises Objectives 

Paleomagnetism (pmag) is reliable data 

known before and after deformation 

Incorporation of paleomagnetism in 

restoration techniques 

Pmag + bedding plane are complementary 

indicators in surface restoration 

The new constraint may help to locate the 

deformation 

FATs usually lead to globally developable 

surfaces 

Development of flexural unfolding 

algorithms (piecewise and parametric) 

Analog models are completely 

characterized before and after deformation 

Usage of analog models to test restoration 

algorithms 

VARs occur in a narrow period of time at 

tectonic scale 

Development of map-view restoration to 

unravel VARs 

  

1.3 Outline 

We summarize in this section the main points of this PhD. In the background 

chapter we want to synthesize the relevant pervious knowledge. In the first section (2.1) 
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we go trough and compare the main restoration algorithms, their strengths and limits. 

The second section (2.2) details the proper usage of paleomagnetism, paying special 

attention to its resolution and possible errors. The section on analog models (2.3) 

describes the usage of this kind of models in several areas, focusing on the techniques 

set forth here: photogrametry and X-Ray CT scanner; although we also describe laser 

scan techniques. Next section (2.4) relates the geological background of the particular 

models selected to develop the analogs: San Marzal Pericline (a conical fold) and 

Balzes Anticline (a curved fold) from External Sierras. 

The following chapters explain the main core of the PhD. The chapter on analog 

models introduces the methodology developed for the two techniques (3.1) and the 

particularities of the analogs based on the geological structures explained before (3.2). 

The particular models are used in next chapters and the technique itself may be used in 

several areas for further research. 

The next chapter is the main part of this PhD, in which we develop the restoration 

methods including the paleomagnetic constraint. Pmag3Drest is an unfolding algorithm 

based on a piecewise approximation (Gratier et al., 1991) (4.1) while the other is the 

equivalent based on a parametric approximation (Massot, 2002) (4.2). In order to 

evaluate the restoration results we define several control parameters to quantify the 

deformation (4.3).  

Chapter 5 presents the results of the restoration methods applied to the two analog 

models developed. We perform a sensitivity analysis on the meshing and the pin-

element and compare results with the same methods without using the paleomagnetic 

constraint. We also introduce the multi-surface restoration and compare results with a 

method of real 3D restoration. Chapter 6 analyzes the effects of paleomagnetism 

accuracy and resolution. In this chapter, we introduce an interpolation technique to be 

able to use the developed methods in real scenarios with scarce data. 

Next chapter (7) presents a map-view restoration algorithm that only uses rotational 

data as initial data. We apply this technique to two study cases to evaluate its 

utility.Finally we conclude this work discussing the results and pointing its strengths 

and weaknesses (Chapter 8). We also propose further developments: might include 

faults and extend the idea to volume restoration, among others.  
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Appendices deal with the calculus of paleomagnetic data. The first appendix 

proposes a new tool and software (VPD) to help determining paleomagnetic vectors. 

The second presents the possible sources of errors and theoretically quantify the error: 

overlapping, shear errors and superposed folds.  
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2 Background 

Understanding the methods and postulates of the thesis requires some knowledge 

about restoration methods, paleomagnetism, the regional geology of the Southern 

Pyrenees and model building techniques. While providing this background, we are also 

laying the foundations of our postulates about paleomagnetism as a useful tool to 

improve the results in restoration, and about computer and analog models as promising 

avenues to understand and evaluate restoration methods. More specifically, we set down 

the requirements needed to use paleomagnetism in restoration methods, we show the 

importance of using analog models for validation and we explain the geological 

background of the selected models. 

 

2.1 Restoration methods 

Restoration consists of returning a structure to its original pre-deformation state. A 

restorable structure is internally consistent and has a plausible initial geometry, usually 

assumed to be horizontal. That validates the interpretation of the reconstruction and 

helps finding strain patterns. In this section, we provide an historical review of main 

restoration methods from cross-section to 3D, from purely geometrical techniques to 

geomechanical ones. The first methods were developed along the 70’s, although the 

technological developments over the last two decades have facilitated new tools and 

software packages with higher processing capabilities (e.g. Move by Midland Valley 

Exploration [Griffiths et al., 2002], gOcad with Kine3D by Paradigm [Moretti et al., 

2005]; and Dinel3D by iGeoss [Maerten and Maerten, 2006]). Given this wide variety 

of methods the point is to know when to use each of them, depending on the 

assumptions taken for each scenario (e.g. extensional vs. compressional) and the 

available data. Last, we review the scarce usage of paleomagnetism in restoration.  

 

2.1.1 Cross-section restoration 

The term of balanced cross-section was first introduced by Chamberlin (1910) who 

assumed plane strain and constant area before and after deformation in cross-sections. 
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This idea was first applied in restoration techniques by Dahlstrom (1969), assuming that 

bed length and bed thickness remained constant during the deformation process, which 

is valid for post-depositional concentric deformation that produces no significant 

change in rock volume. This is the flexural slip method (Fig. 2.1A) mainly valid for fold 

and thrust belts (FAT belts) where internal deformation is assumed to occur mostly by 

layer-parallel simple shear located either in the fold hinges (tangential-longitudinal 

strain) or in the fold limbs (simple-shear). With the same assumptions Hossack (1979) 

uses balanced cross-sections to calculate the orogenic shortening, suggesting that the 

margins of orogenic belts have contracted by 35–54%. For oblique and inclined cross-

sections Cooper (1983) proposes a conversion to calculate the real strain.  

Analysis on lateral terminations of FAT systems, and derived problems related to 

gradients of shortening, displacement fields, cross section balancing, etc. have been 

extensively tackled as well (Wilkerson, 1992; Marshak et al., 1992; Hindle and 

Burkhard, 1999; Wilkerson and Dickens, 2001; Wilkerson et al. 2002; Soto et al., 2006) 

Later on, cross-section restoration has been applied in extensional tectonics (Gibss, 

1983). The typical method valid in these cases, in particular for hanging wall rollovers 

associated with half grabens, is the simple shear (Fig. 2.1B), which assumes the 

preservation of distances in the shear direction (not the bed length neither the thickness). 

The shear direction is specified as having a dip α with respect to a regional that does not 

change during deformation. This angle is usually around 60º but can vary along the 

fault.  

In cases where no internal deformation is observed the method applied is the rigid 

body displacement (also called domino style) (Fig. 2.1C) in which everything is 

preserved: bed lengths, thicknesses, areas and even cut-off angles between faults and 

horizons. Only rigid body translations and rotations are allowed.  

For structures in which deformation has produced significant changes in the original 

bed lengths and thicknesses (e.g. for decollement levels such as shale or salt) the 

method applied is area balance or ductile flow (Fig. 2.1D) where only global area is 

preserved (Miltra and Namson, 1989). These methods do not depend on specific 

kinematic models (independent on the evolution of geometry through time) and in that 

sense represent the most general approaches. 
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Figure 2.1: Geometrical cross-section restoration based on main kinematic models (Groshong, 2006). A) 

Flexural slip method. Pin line, solid-head; loose line, open-head. a Deformed-state cross section. b 

Restored  section: equal bed lengths and a straight loose line indicate a satisfactory restoration. B) Simple 

shear oblique to bending, restoration of the hangingwall of a fault. FWC: footwall cutoff of reference bed; 

HWC: hangingwall cutoff of reference bed; ti: distance between reference bed and fault, measured along 

shear direction; α : shear angle; D: block displacement. C) Restoration of rigid-body displacement by the 

overlay method. a Section to be restored. b Preparation of the overlay. c Restoration of the first block. d 

Complete restoration. D) Area restoration. A0: Original area; t0: original bed thickness; L0: original bed 

length. Shape of the restored area depends on assumed original orientations of the pin lines. a Deformed-

state cross section. b Section restored to vertical pin lines. c Section restored to tilted pin lines. 

Commercial software helps to apply these methods (Geosec_2D, Locace, 

2D_Move; Kligfield et al., 1986; Moretti and Larrère, 1989). Moreover, all these 

geometric rules described here can also be used in kinematic forward modeling (Elliott, 

1983) to infer the geometry of structures. Furthermore, they are the starting point for 3D 

restoration methods. Many algorithms have been developed since then, but the simplest 

ones are still in use. 2D balance is used extensively to validate concepts as well as 

individual interpretations, and to build workflow templates that are then used in 3D 

interpretation or to guide 3D balancing (Groshong et al., 2012). 

The methods described so far assume homogeneous strain that produces affine 

transformations (rigid-body translation and rotation plus internal deformation). 

However, these linear transformations cannot, in general, preserve both area and 

continuity (gaps and overlaps may appear). Non-linear algorithms based on strain-
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minimization have been developed trying to solve that (Wickham & Moeckel, 1997). 

Moreover, strain measurements and fault discontinuities can be incorporated. On the 

other hand, these methods are too sensitive to boundary conditions (as pin-line and 

reference surface). 

 

2.1.2 Map-view restoration 

Map-view restoration methods are also two dimensional techniques. They are 

mainly geometrical methods based on finite-element techniques and least-square fitting 

which were first applied in geology for ductile deformation (Schwerdtner, 1977; 

Cobbold and Percevaut, 1983). Audibert (1991) developed a method of rigid blocks for 

dominantly strike-slip deformation and Rouby et al. (1993) for normal faulting regions 

(Fig. 2.2). Both divide the initial region into rigid horizontal blocks bounded by faults 

and heaves (real or artificial respectively) and use an iterative algorithm to minimize the 

sum of the squares of the distances across cut-off lenses. 

 
Figure 2.2: Map-view restoration of Campos area in Brazil (Rouby et al., 1993). A) Fault block map of 

Campos area in deformed state. Fault blocks are sequentially numbered. Cut-off lenses appear as gaps. 

Artificial faults appear as straight lines without gaps. B) Fault block map of Campos area in restored state. 

Between the blocks are some remaining gaps and some overlaps (black). 
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2.1.3 Surface restoration 

Here, stratigraphic horizons are represented with triangular meshed surfaces. 

Surface restoration is usually called 2.5D because only the top of the horizon is 

considered and not its thickness. They are usually extended to multi-surface restoration 

by assuming that the thickness of the layers is constant or varies in a controlled way. 

Rouby et al. (2000) break the process down into two separate steps: unfolding and 

unfaulting. In turn, unfolding algorithms are based on the two main deformation 

mechanisms extended from cross-sections: simple shear (Kerr et al., 1993; Buddin et 

al., 1997) and flexural slip (Gratier et al., 1991; Gratier and Guillier, 1993; Williams et 

al., 1997; Léger et al., 1997; Griffiths et al., 2002; Massot, 2002, Thibert et al., 2005). 

Simple shear assumes folds have internal deformation, whereas flexural slip assumes 

surfaces are globally developable (area and lengths are preserved) (Fig. 2.3). The 

unfaulting step involves dividing the region into blocks bounded by faults that can be 

solved with the techniques described in map-view restoration (Audibert, 1991; Rouby et 

al., 1993; Arriagada, 2004; Arriagada et al., 2008). Surface restoration can also be 

performed in one single step, using, for instance, finite elements (Dunbar and Cook, 

2003) or parameterization of the surface (Massot, 2002). 

Concerning flexural unfolding, first methods developed were based on the 

triangulation of the surface (piecewise) while last methods are based on the 

parameterization of the surface. Gratier et al. (1991) and Gratier and Guillier (1993) 

divide the surface in zones defined by a network of rigid triangular elements that are 

rotated to the horizontal and then fitted with its neighbors by translation and rotation 

minimizing the sum of distances (Fig. 2.4A). Williams et al. (1997) follows the same 

process with a different fitting, they minimize the finite strain preserving the total area 

of each finite element (Fig. 2.4B). On the other hand, Griffiths et al. (2002) define a slip 

system (composed by a template surface, target surface, pin surface and unfolding 

plane) and the surface is systematically restored preserving the connectivity of the nodes 

(Fig. 2.4C). This technique is the one implemented in 3DMove software; unfortunately, 

it is not valid for structures that have suffered rotation during folding because a plane of 

movement is assumed and therefore, out-of-plane movements invalidate the method. 

Later on, several parametric approaches became to appear. Léger et al. (1997) 

define the unfolding process for a multi-surface in terms of parameterizations and solve 
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it by a least-squares method assuming: initial horizontality, bed-length and volume 

conservation (Fig. 2.4D). Massot (2002) uses a different parameterization with 

isometric constraints, curvilinear coordinates are orthogonal in the undeformed state 

(Fig. 2.4E). The commercial module Kine2D for gOcad is based on this technique 

(Moretti et al., 2006, Moretti, 2008). In any case, all these algorithms are designed for 

developable surfaces (flexural slip assumption) and when surfaces are unfoldable, the 

algorithm searches for the best solution although the result is never deterministic. 

 

 
Figure 2.3: Simple shear versus flexural slip in cross-section, surface and multi-surface restorations 

(Moretti, 2008). A) Flexural slip: lengths, thicknesses and area preserved. B) Simple shear: distances in 

the shear direction (di) are preserved, thickness, lengths and areas change. 
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Figure 2.4: Flexural unfolding algorithms with piecewise (A, B & C) and parametric (D & E) 

approximations. A) After flattening to the horizontal, triangles are fitted with rigid translation and 

rotations to minimize distances between common vertices (gaps and overlaps remain) (Gratier et al., 

1991). B) After flattening, triangles are sewed together preserving its area and minimizing the strain 

(Willliams, 1997). C) Line length is preserved in a given unfolding direction. Node connectivity is 

preserved. (Griffiths et al., 2002) D) Folded and restored structure least-square minimization as defined 

by Léger (1997). E) Folded and restored surface using isometric constraints (Massot, 2002).  
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2.1.4 Volume restoration 

Real 3D restoration considers layers with thickness. The volume is represented with 

a grid or tetrahedral mesh. Lately, implicit approaches with relaxed meshed have been 

proposed (Durand-Riard et al., 2010). Last efforts leverage geomechanical approaches 

that meld the retrodeformational merits of kinematic balancing with principles of 

continuum mechanics (mass preservation and strain minimization; usually an elastic 

finite element model is used), without assumptions of plane strain and allowing 

heterogeneous fault interaction (Muron, 2005; Maerten and Maerten, 2006; Griffiths 

and Maerten, 2007; Guzofski et al., 2009). The drawback is that they are too dependant 

on boundary conditions apart from the computational requirements needed. There are 

also combined geometrical and geomechanical approaches (Moretti et al., 2005) and the 

usage of several techniques is also recommended (Lovely et al. 2012).  

 

2.1.5 Paleomagnetism in restoration 

The use of paleomagnetism in restoration tools was recommended in the early 

1990’s (McCaig and McClelland, 1992) as a way to tackle the restoration problem in 

3D. So far, however, relatively few researchers have tried using paleomagnetic 

information to double-check the rotation inferred from restoration methods 

(Bonhommet et al., 1981; Bourgeois et al., 1997; Arriagada, 2004). These authors 

contrast the rotation data obtained with the restoration methods with real paleomagnetic 

datasets.  

Recently, Arriagada et al. (2008) have modified the map-view restoration method, 

developed by Audibert (1991) and Rouby et al. (1993), to include paleomagnetic data as 

primary information during the restoration process (Fig. 2.5). Although their approach 

is the first we are aware of that incorporates paleomagnetic data, it is still a 2D 

restoration method, as are two map-view methods that have been proposed involving 

paleomagnetic vectors (Millán et al., 1996; Pueyo, 2000 and Pueyo et al., 2004). These 

map-view methods (Fig. 2.5), which correct shortening estimated from cross-sections 

and calculate realistic shortening (using trigonometric calculus), have recently been 

applied in the Pyrenees (Oliva and Pueyo, 2007) and in the Rocky Mountains (Sussman 

et al., 2012). 

20 



 

 

Figure 2.5: Applications of paleomagnetism in restoration techniques. 1) Map-view concept for correction 

of shortening estimates in cross-sections (Pueyo et al., 2004). 2) Shortening errors as a function of the 

vertical axis rotations (Sussman et al., 2012). 3) Map-view applications. Two-dimensional restorations of 

the central Andes using two shortening models (A and B) by Arriagada et al. (2008). Colors indicate 

rotations of each block during restoration. A) Restored map for model with constrained block rotations 

(R0–15Awr). B) without rotation constraints (R0–45Anr). Arrow illustrates total displacement of 210 km 

in the center of the orocline. C) Restored map for model with constrained block rotations (R0–45Bwr). D) 

Blocks are allowed to freely rotate during the last stages of the restoration (R0–45Bnr). Arrow illustrates 

total displacement of 430 km in the center of the orocline. Total (Paleogene to present) displacement 

vectors for restoration R0–45Bwr.  

Paleomagnetism can be of great aid for structures with out-of-plane motions as it is 

the most reliable way to estimate vertical axis rotations (VARs). Of course, 

paleomagnetic data must be a proven and reliable record of the ancient magnetic field; 

the next chapter is devoted to this particular issue. 
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2.2 Paleomagnetism 

Paleomagnetism is the study of the ancient Earth magnetic field (EMF) recorded by 

ferromagnetic minerals present in most rocks of the crust. Igneous and sedimentary 

rocks acquire an initial, or primary, magnetization shortly after formation, which is 

usually aligned along the Earth’s field direction. This component may be unstable over 

time because of physical or chemical processes. Moreover, it can coexist with later, 

secondary, magnetizations and also register the ambient field direction. Thus, laboratory 

work is important to unravel the natural remanent magnetizations. The basic assumption 

to use paleomagnetism in many geological applications (e.g. detect absolute magnitudes 

of rotation) is that we can isolate the primary acquisition which is stable over time 

(Park, 1983) and it is a reliable record of the ancient field. Besides, the magnetic field is 

assumed to be generated by a Geocentric Axial Dipole (GAD) (Meert, 2009). 

Paleomagnetism is a good kinematic indicator to understand the processes of lateral 

transference of deformation.  

Following the pioneering works on plate tectonic reconstructions (see overview by 

Van der Voo, 1993), paleomagnetism has been increasingly used as a fundamental tool 

to assess the tectonic evolution of deformed areas all over the world because of its great 

and exclusive potential in quantifying vertical axis-rotations in an absolute way. In the 

last 50 years (Norris and Black, 1961) paleomagnetic data have been extensively 

applied to tackle tectonic problems at different scales in several orogenic systems (see 

overviews at McCaig and McClelland, 1992; Allerton, 1998; Sussman et al., 2012). In 

particular, paleomagnetism has been increasingly used as key quantitative information 

for unraveling tectonic deformation in fold and thrust belts and for defining the timing 

of the bending by its ability to determine the distribution and magnitude of vertical axis 

rotations (Elredge et al., 1985; Weil and Sussman, 2004; Yonkee and Weil, 2010). 

Together with classic structural geology analysis, reliable paleomagnetic vectors allow a 

spatial and temporal understanding of fold and thrust belts, including complex case-

studies of non-cylindrical and non-coaxial structures. All orogenic regions have been or 

still are under study; Pyrenees (Oliva et al., 2010 and 2012) Alps-Carpathian system 

(e.g. Pueyo et al., 2007; Marton et al., 2011), Eastern Mediterranean (Mattei et al., 

2007; Speranza et al., 2011), Zagros (Aubourg et al., 2008), Himalayas (e.g. Antolín et 

al., 2010), Andes (Roperch et al., 2011), Rockies (Wawrzyniec et al., 2007), 
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Appalachians (Stamatakos et al., 1996; Hnat et al., 2008 and 2009), Andes (Barke et al., 

2007; Maffione et al., 2010), Rockies (Weil et al., 2010), the Cantabrian mountains 

(Weil, 2006), etc.  

For deformed areas it has been suggested that the remanent paleomagnetic vector 

might be treated as a strain marker, assuming that the magnetization is entirely pre-

tectonic. These means that deformation has not taken place only by rigid-body rotations 

but by internal strain and, accordingly, paleomagnetic orientation may be modified 

during the deformation process. As a first approximation, it is assumed that the 

remanent vector behaves as a passive linear marker, rotation toward the direction of 

maximum extension (Facer, 1983; Cogné and Perround, 1985; Lowrie et al., 1986; van 

der Pluijm, 1987; Kodama et al., 1988; Stamatakos and Kodama, 1991). However, the 

experiments do not always confirm this simple passive-rotational behaviour of magnetic 

vector (Borradaile and Mothersill, 1989). Therefore, to ensure the credibility of 

paleomagnetic data we better consider only samples from undeformed areas or where 

rock internal strain can be ruled out (or assumed as lineal). 

 

2.2.1 Characteristic remanent magnetization direction 

Calculation of a characteristic remanent magnetization (ChRM), as mentioned 

before, is a key step during paleomagnetic data processing. ChRMs are stable directions 

that can be effectively isolated from a given demagnetization procedure (thermal or 

alterning fields); subsequent application of stability tests is necessary to provide 

information on their geological significance. “Ideally, analytical methods (...) should be 

based on as much of the original magnetic information as possible, with minimal 

assumptions” (Kirschvink, 1980). Though, the best interpretation should always 

incorporate all available information (magnetic, geological, etc.). 

The most common technique used to separate different paleomagnetic components 

is to eye-ball select the relevant demagnetization interval observed in an orthogonal 

projection of demagnetization data (Zijderveld, 1967). Once the demagnetization 

interval has been selected for each specimen, directions are fitted by principal 

component analysis (PCA) (Kirschvink, 1980). PCA is a least-squares method to 

determine the linear and planar orientations of the data. Collinear points indicate the 

progressive removal of one magnetic vector and determine the paleomagnetic direction. 
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Coplanar points exist when two simultaneous components define a demagnetization 

circle1 (DC) (Jones et al., 1975; Halls, 1976). When a demagnetization routine 

completely demagnetizes a sample, the origin is the end-point of line through the 

demagnetization data; it is possible to calculate the resultant direction (R), while the 

other possibility is to calculate the difference direction (D) excluding the origin (Roy 

and Park, 1974; Hoffman and Day, 1978). Working with DCs, the paleomagnetic vector 

will be the intersection point between the demagnetization circles derived from different 

samples (Jones et al., 1975; Halls, 1976; Bailey and Halls, 1984). When multiple 

samples are analyzed, and where some samples provide clear end-point magnetizations 

and others give rise to DCs, some studies have focused on the problem of combining 

direct observations and intersections of demagnetization circles (McFadden and 

McElhinny, 1988).  

After obtaining an individual ChRM for each specimen, the Fisher (1953), Bingham 

(1974) or bootstrap (Tauxe et al., 1991) statistics are applied to determine the 

paleomagnetic mean vector of the site and its precision. Fisher’s parameters (α and k) 

are standard in most paleomagnetic studies (Van der Voo, 1990). Other preliminary or 

auxiliary methods such as the Stacking Routine (SR) (Scheepers and Zijderveld, 1992) 

are more objective and automatic. In the SR approach, an individual mean is calculated 

from specimen vectors for each demagnetization step for a given site and builds a 

stacked demagnetization diagram for the site. Other approaches have been used to 

automatically fit the ChRM; linearity spectrum analysis (LSA) (Schmidt, 1982) seeks to 

objectively establish the demagnetization interval by means of the quality of the 

directions (linearity is related to the maximum angular deviation or MAD from PCA). 

On the other hand, the Line Find method (Kent et al., 1983) is a statistical analysis of 

linearity and planarity that takes into account measurement errors. So far, there is no 

software integrating all these methods and the transference of data between them is 

usually intricate. In Appendix I, we propose a new program developed based on the 

virtual directions to help finding the ChRM: Virtual Paleomagnetic Directions (VPD), 

which also integrates other methods. 

 

 

                                                 
1 A plane defines a great circle on an equal area projection 
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2.2.2 Reliability of paleomagnetic data in FAT belts 

Following the philosophy of the reliability criteria established by Van der Voo 

(1990) to evaluate the quality of paleopoles, Pueyo (2010) proposed some specific 

criteria of a paleomagnetic investigation focused on the characterization of vertical axis 

rotations (VAR) in an individual thrust sheet:  

1) Rock, deformation and magnetization ages are known.  

2) A minimum of five sites (ten is desirable) per thrust unit (10-15 specimens per 

site) is available. Site mean is characterized by α  ≤ 10° (never > 15°) and k > 20 

(never < 10).
95

  

3) There is a detailed demagnetization procedure isolating all magnetization 

components which should be fitted by PCA (Kirschvink, 1980) in which more than four 

steps should be involved in the calculation and MAD < 10° (never > 15°).  

4) Field tests and error-control techniques (conglomerate, reversal, fold test and the 

small-circle intersection method) have to be performed to support the magnetization 

age.  

5) Structural control is needed; fold and thrust geometry and kinematics should be 

known to avoid restoration errors.  

6) The origin of the inclination error has to be identified among compaction, 

internal deformation and overlapping of directions by means of geometric techniques.  

7) Rotations have to be contrasted to an appropriate reference in the undeformed 

foreland (absolute VAR) or in the nearest footwall (relative VAR).  

For the surface restoration methods proposed in this PhD we do not intend to 

calculate a VAR but only use the paleomagnetic vector in restoration techniques. 

Among the former criteria only points 1 and 5 do not need to be fulfilled: only pre-

deformation acquisition must be ensured (specific age is not necessary) and 

paleomagnetic vector is used in situ (before any bedding correction). 

Table 2.1 summarizes possible sources of errors in the calculus of VARs that come 

from neglecting inherent assumptions about paleomagnetism in FAT belts (Pueyo, 

2010). Note that, for the usage of paleomagnetism in surface restoration techniques, 

point 4 is not applicable because we use the vector before any correction. 
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Inclination errors, due to differential lithostatic load, are the most studied; 

corrections are proposed in (Tauxe, 2005). The other three possible sources of error 

with intrinsic structural (geometric) control are described in Appendix 2: overlapped 

paleomagnetic directions (C), rock volume deformation passively recorded by the 

paleomagnetic vector (D) and incorrect restoration of beds in non-coaxial structures (E). 

 

Assumption Source of error 

1) For a given period of time, the EMF 

behaves as a geocentric axial dipole. 

A) Insufficient averaged out of the secular 

variations. 

2) Natural mechanisms of magnetic field 

acquisition may be efficient to allow the 

ferromagnetic minerals for an accurate 

field orientation recording. 

B) Inclination flattening (shallowing). 

C) Overlapped directions. 

3) The EMF memory may remain stable 

along the geological time. 

D) Internal deformation of the rock 

volume. 

4) A paleomagnetic vector restored to the 

ancient reference system (paleo-

horizontal) allows quantifying the vertical 

axis rotations in this point (declination 

difference with the expected direction). 

E) Wrong bedding correction in complex 

areas where a reverse sequential 

restoration should be performed. 

Table 2.1: Error sources in the calculus of VARs. 

 

2.3 Analog models 

In order to evaluate the restoration methods developed in this PhD we are going to 

use analog models. Analog models are really useful because they let us know the 

simulations (based on paper, cardboard, fabric or plasticine models) have long been 

performed by geologists to conceptually illustrate and understand complex structures at 

the laboratory scale. In particular, scaled analog models as sand-box experiments 

(Hubbert, 1937; Ramberg, 1981; McClay, 1990) have played an important role in 
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establishing key variables controlling the 3D geometry and kinematics of oblique 

structures in FAT belts (Colletta et al., 1991; Schreurs et al., 2001; Soto et al., 2002 and 

2006; Reiter et al., 2011). To digitalize the analog models we summarize here three 

possible techniques, although we have finally used only the first two: X-ray computer 

tomography for volumes, photogrammetry and laser scan for surfaces. 

 

2.3.1 X-ray computer tomography 

X-ray computer tomography (CT) is a technique that uses X-rays to obtain cross-

section images. The object to be scanned is illuminated with X-rays that interact with 

electrons, and the contrast in the image is generated by local differences in mass density 

and mean atomic number. Effectively, the intensity in slice images of the scanned 

volume is related to the photoelectric absorption property of the material. The 

sensitivity of CT to material properties like density and composition makes it very 

versatile. 

X-ray CT, since its development in the 1970s, has been applied in many non-

medical fields, among them geology. Specifically, it has been used for understanding 

the internal 3D geometry of a wide range of earth and planetary materials (see overview 

by Carlson, 2006). Within this field, the application of CT scanning techniques to 

reconstruct the 3D geometry of analog models deserves special attention (Colleta et al., 

1991; Schreurs et al., 2001 and 2003; Adam et al., 2008). Reconstructions in 3D of a 

series of images obtained at different times during the experiment makes possible to 

obtain an overall 4D image. Current technological improvements allow virtually 

limitless and closely spaced serial cross-sections to be obtained and processed. Existing 

approaches do not, however, enable us to monitor the strain patterns within the model 

volume during the deformation.  

 

2.3.2 Photogrammetry 

Photogrammetry is a simple image-based modeling technique that assembles the 3D 

reconstruction using only photographs taken from different angles. This technique is an 

inexpensive, high-resolution, noninvasive, and efficient method that only needs 

27 



standard commercial software (e.g. PhotoModeler2) and a digital camera to determine 

the x, y, z positions of high-contrast markers placed on the model surface. It has been 

used in geology by Fischer and Keating (2005) among others.  

 

2.3.3 Laser scan techniques 

Georeferenced laser-scan techniques have multiple applications in Earth Sciences; 

outcrop and topographic reconstructions, hazard surveying and others since they allow 

for 3D and 4D control of surfaces. For this reason they are very useful to reconstruct the 

topography of analog models at laboratory scale (Nilforoushan et al., 2008; Donnadieu 

et al., 2003). Even complex refolded structures can be tackled with the double-scan 

technique (Grujic et al., 2002) to avoid shadows and occlusion areas during the 

scanning. Looking to obtain a detailed topography of our complex geometries, we 

performed some trials at the Department of Design and Manufacturing Engineering 

(Area of Engineering Graphic Expression) of the University of Zaragoza in 

collaboration with Alfredo Serreta. 

 

Figure 2.6: Laser scan digitalization with a very high-resolution scanner. It gives extremely dense point-

clouds of the scanned surface. The use of only one scanner source impedes the total reconstructions of the 

complex model (shadows in figure). 

Unfortunately, we had only access to either, very high-resolution scanner (for 

engineering design) or medium-resolution ones for topographic reconstructions. The use 

of the high-resolution scanners (Fig. 2.6) gave extremely dense point-clouds of the 

scanned surface that required a time-consuming and demanding post-processing. 

Besides, the use of only one scanner source impeded the total reconstructions of some 

                                                 
2 www.photomodeler.com
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of our complex models (see shadows in figure 2.6). These results motivated us to use 

the aforementioned photogrammetric techniques. Moreover, we finally discarded the 

usage of laser scan because it was unsuccessful to digitalize the reference system we 

required. 

 

2.4 Geological background of analog models 

The restoration methods proposed in this work are specially designed for fold and 

thrust belt structures (FATs), which have undergone out-of-plane motions and thus, may 

present different amounts of vertical axis rotation and tilting. The analog models 

developed to check the restoration methods are based on complex structures found in 

External Sierras (Southwesterern Pyrenees). Particularly, we have selected two type-

structures: the conical fold of the Santo Domingo termination (San Marzal pericline) 

and the curved fold of Balzes Anticline. These are well-studied structures with much 

geological and paleomagnetic information. In this section we first and briefly introduce 

the geology of the Southwestern Pyrenees and the External Sierras and then explain in 

more detail the two complex structures that have inspired our geometric analogue 

models. 

 

2.4.1 Geological setting 

2.4.1.A  The Southwestern Pyrenees 

The Pyrenean orogen is an asymmetric, double-vergent fold-thrust wedge 

resulting from Alpine continental collision and partial subduction of the Iberian plate 

beneath the European plate (ECORS Pyrenees Team, 1988; Choukroune et al., 1989; 

Roure et al., 1989; Muñoz, 1992; Teixell, 1996). Tectonic compression occurred 

between the Late Cretaceous and Early Miocene (e.g. Puigdefàbregas and Souquet, 

1986), giving raise to the North Pyrenean and the South Pyrenean thrust systems and 

their corresponding foreland basins (Aquitania and Ebro respectively). While the North 

Pyrenean thrust system verges to the north and developed over the European plate, the 

South Pyrenean thrust system developed on top of the Iberian plate and is characterized 

by south-directed thrust-sheets. It is the South Pyrenean thrust system, which has taken 
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up most of the shortening within the tectonic wedge (Seguret, 1972; Muñoz, 1992; 

Teixell, 1998). Several units can be recognized in the Southwestern sector: the Axial 

Zone in the core of the mountains is followed by the Internal Sierras, the Jaca turbiditic 

and molassic basin and the southernmost thrust front; the External Sierras (e.g. Mallada, 

1878; Almera y Ríos, 1951) (Fig. 2.7).  

The structural evolution can be described in terms of the relation of basement and 

cover thrust systems (Fig. 2.8). The oldest Lakora thrust to the North is responsible for 

the development of the Larra-Monte Perdido cover thrust system during Paleocene-

Eocene times (Teixel, 1998). The diachronic Gavarnie system broke the southern 

foreland and yielded the External Sierras thrust system during Lutetian to Rupelian 

times (Teixel, 1996; Millán et al., 2000; Huyghe et al., 2009). At that time, still under 

marine conditions, the foreland basin was very thin, a key factor to understand the 

number and wavelength of the imbricate thrusts. The younger basement thrusting 

(Guarga) took place during Oligocene-Miocene times (Millán et al., 2000) and it is 

responsible for the present-day elevation of the Western Pyrenees. The progression to 

the cover of the Guarga deformation reactivated the External Sierras sole thrust. At thas 

time, the cover rocks thicknesses were much higher, and heavily condition a new style 

of the deformation. 
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Figure 2.7: Geologic sketch map (Millán et al., 2000) and cross-sections from the Southwestern Pyrenees 

(Ansó by Teixell, 1996, Huesca-Olorón by Casas and Pardo, 2004 and Cotiella by Martínez-Peña and 

Casas, 2003). 
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Figure 2.8: Structural evolution of the Southwestern diagrams. Timing of the development of the main 

structures following different authors (after Oliva-Urcia, 2004). Absolute Age Ma. (Cande and Kent, 

1995). Black lines; ages deduced by Teixell (1992). Purple lines, those derived by Oliva-Urcia (2004). 

Blue lines by Martínez-Peña and Casas (2003). 
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2.4.1.B  The External Sierras 

The External Sierras (Fig. 2.9) are placed in the South Pyrenean sole thrust system, 

WNW-ESE trending and 100km long. They developed from Late Lutetian to Early 

Miocene (Puigdefàbregas, 1975; Arenas, 1993; Millán et al., 2000; Arenas et al., 2001), 

and caused the separation of the Jaca piggy-back basin to the North, from the main part 

of the Ebro foreland basin to the South (e.g. Puigdefàbregas y Soler, 1973; Ori and 

Friend, 1984; McElroy, 1990; Anastasio, 1992; Millán et al., 1995; Teixell y García 

Sansegundo 1995; Anastasio and Holl, 2001; Millán et al., 2000). The deformation of 

the Middle-Late Triassic to Early Miocene sediments were heavily influenced by the 

weak rheology of the Triassic evaporite deposits that served as a regional detachment 

horizon. The External Sierras display remarkable interference patterns between 

transverse (N-S to NW-SE) structures and the N-S trending Pyrenean folds and thrusts 

(e.g. Mallada 1878, Almera y Ríos, 1951). Millán et al. (1994 and 1995) suggests that 

the oblique structures were genetically related to the WNW-ESE thrust front, and also 

postulates that early in the structural evolution (Lutetian-Chattian), the External Sierras 

thrust system simultaneously developed to the south and west. Following the Chattian 

deformation, the kinematics changed significantly in the western and central segments 

of the South Pyrenean thrust system, as the development of the Santo Domingo 

Anticline (a regional scale detachment fold related to the emplacement of the Guarga 

basement thrust) and its associated south-directed thrust system progressively folded 

and/or truncated the earlier thrust structures. The evolution of the External Sierras 

involved a general clockwise rotation (e.g. Puigdefábregas, 1975; Burbank et al., 1987; 

Hogan and Burbank, 1996; Pueyo et al., 2002, 2003a, 2003b, 2004; Oliva et al., 2012a; 

Pueyo-Anchuela et al., 2012) that manifested itself in greater shortening towards the 

east (e.g. Soler, 1970; McElroy, 1990; Millán et al., 1995, 2000; Pueyo et al., 2004; 

Oliva and Pueyo, 2007a). 
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Figure 2.9: Geological setting of the External Sierras in the Southwestern Pyrenees displaying the 

location of the San Marzal Pericline and Balzes Anticline (mapping by Pueyo, 2000 integrating data by 

Puigdefábregas, 1975 and Millán, 1996). 
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Concerning the stratigraphy of the External Sierras, the lowest part of the well-

exposed stratigraphic section is comprised of Upper Triassic evaporites (serving as the 

detachment horizon), marls and dolomites that are uncomformably overlain by Upper 

Cretaceous sandstones and limestones and Garumnian fluvial lacustrine facies. The 

shallow carbonate series of the Boltaña and Guara Fms. represent the Eocene platform 

that covers a great part of the south Pyrenean basin (Barnolas y Gil-Peña, 2001). In the 

western and central portions of the External Sierras, these Eocene carbonate deposits 

grade into the deposits of the Arguis Fm., consisting of azoic blue marls from outer 

ramp areas as well as shallow siliciclastic and carbonate facies from middle and inner 

ramp areas. The synorogenic deltaic sequences of the Belsué-Atarés Fm. span the Latest 

Lutetian to the Early Priabonian, and thin significantly to the west.  Continental 

synorogenic strata, known as the Campodarbe Fm., is a 3000 to 4000 m thick fluvial 

sediment package which ranges in age from Late Priabonian to Stampian through the 

whole External Sierras, but is exclusively Oligocene in its western sector. Finally, the 

conglomerates, sandstones and siltstones of the Uncastillo Fm. span Late Eocene to 

Early Miocene. These strata border the southern edge of the External Sierras and lay 

uncomformably over the former lithostratigraphic units, recording the last compressive 

stages of deformation in the region. 

 

2.4.2 Structural evolution of the External Sierras 

Chronology of deformation. The emplacement of the cover thrust system 

coetaneous with the Gavarnie basement thrust displays a remarkable diachronic 

character (Millán et al., 2000). This diachronism is very well-established all along the 

External Sierras and Marginal Ranges (South Pyrenean Central Unit) as attested by 

numerous syntectonic deposits. In the External Sierras, this time gap spans from 

Lutetian deformation (Balzes Anticline) to the onset of folding during Rupelian (Sto. 

Domingo Anticline). Conversely, the reactivation of cover structures simultaneous to 

the Guarga basement thrust affects the entire South Pyrenean basal thrust in a more 

isochronic fashion (Fig. 2.10). Regarding our examples, the Sto Domingo Anticline 

continued the recently initiated folding (with a faster pace; Oliva et al., 2012c) and the 

Balzes Anticline was passively (piggyback) relocated over a basal ramp-flat setting. 
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This situation is responsible for the present day plunging to the North observed in the 

northern sector of the anticline. 

 

Figure 2.10: Chronostratigraphic chart of deformation evidences deduced from syntectonic materials all 

along the South Pyrenean Front in relation to the main basement events (modified from Millán et al., 

2000). 

4D evolution of the External Sierras front. The existence of abundant 

paleomagnetic and magnetostratigraphic data has permitted to accurately control the 

rotation magnitude, age and even velocity in some sectors and allows for an integrative 

analysis of the 4D evolution of the thrust front. The diachronic emplacement of the 

basal thrust during the Gavarnie activity together with the very thin marine sedimentary 

thickness is responsible for the structuring of the first imbricate thrust system, the low 

wavelength and the high density of oblique anticlines in the External Sierras (Balzes, 

Nasarre, Tozal, Gabardiella, Lusera, Pico del Aguila, Bentué de Rasal, Rasal, La Peña, 

Fachar and Peña Ronquillo).  

The rotation activity of these formerly oblique structures, displaying systematic N-S 

present-day orientation, is normally coetaneous with the diachronic folding and 

thrusting events responsible for their genesis during the Gavarnie period (Fig. 2.11). 

This is demonstrated in those structures where synrotational sediments have been 

studied in full detail: Pico del Aguila (Pueyo et al., 2002; Rodríguez-Pintó et al., 2008), 

Boltaña (Mochales et al., 2012a), Balzes (Rodríguez-Pintó et al., 2013c), Mediano 

(Muñoz et al., 2013). Despite the onset of rotation is only partially established, a well-
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defined diachronism has been demonstrated for the end of the rotational movement. The 

rotation laterally vanishes at an averaged rate of ≈ 5 km/M.a. although this velocity may 

be faster if a non-steady scenario is considered. Comparable values could be expected 

for the rotation onset as regards of the remarkable similarities found with the lateral 

migration of the deformation along the External Sierras front (Millán et al., 2000) or the 

westwards onlap of the turbiditic trough (Labaume et al., 1985). Younger rotational 

activity (related to the Guarga emplacement) cannot be completely ruled out but, if 

exists, is expected to be very small. This observation, apart from the existent 

paleomagnetic data, is supported by the very quick lateral expansion of the Guarga 

thrust front (≈ 30 mm /year), which, in turn, implies a very small lateral gradient of 

shortening (and equivalent associated rotations of the thrust front).  

Due to this complex deformation pattern (imbrication, obliquity, diachronity and 

two main deformation events), the External Sierras are an excellent natural laboratory to 

study the 3D geometry and kinematics of complex structures caused by non-coaxial axis 

of deformation and vertical axis rotations.  

 

Figure 2.11: 3D diagrams (not to scale) showing a schematic rotation model of the evolution of the 

Western and Central sectors of the External Sierras front (Pueyo et al., 2002). A) t1 (40 Ma); at the 

beginning of the deposit of the marl sediments (Arguis Fm.), illustrating the effect of the onset of rotation 

in the hanging wall of the South Pyrenean basal thrust. B) t2 (36.5 Ma); until the end of the deposit of the 

transitional sediments (Belsué-Atarés Fm.), which also represents the end of the rotation of the basal 

thrust in the Central sector. C) t3 (26 Ma); during this period, the studied area did not show any 

significant rotations but experimented important translation towards the south, while for the same time 

span, the western sector of the External Sierras suffered important rotations. 
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2.4.3 San Marzal Pericline 

The San Marzal Pericline is the lateral termination of the Santo Domingo Anticline, 

located at the westernmost sector of the External Sierras (South Pyrenean sole thrust). 

This deca-kilometric and apparently cylindrical anticline accommodated most of the 

shortening in that area. It strikes WNW-ESE, detaches along the incompetent Keuper 

facies and depicts parallel near-vertical limbs (Millán et al., 1995). It was active during 

Late Oligocene-Early Miocene (last stage of the structural evolution of South Pyrenean 

thrust front). Recent magnetostratigraphic studies (Oliva et al., 2012c and in prep.) in 

the southern flank of the anticline as well as and the reinterpretation of previous sections 

(Hogan 1993; Arenas et al., 2001) identify two distinct folding periods in relation to the 

Gavarnie and Guarga emplacements. These two periods display very contrasted folding 

velocities (Fig. 2.12). 

 
Figure 2.12: Kinematics of the Sto. Domingo Anticline deduced from the magnetostratigraphic studies in 

its southern flank (Luesia section by Oliva et al., 2012c and 2013 in prep) 

The Mesozoic beds as well as the marine and lowermost continental strata of 

Tertiary age involved in the Santo Domingo Anticline describe a cylindrical closure at 

the western termination of the External Sierras: the, so-called, San Marzal Pericline 

which folds axis orientation is 305º, 67º (Fig. 2.13). The underground western geometry 

of the fold reflects a quick diminishing of the plunge of the axis (Oliva, 2000; Oliva et 

al., 2012a). 
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Figure 2.13A: Geological setting of the Sto. Domingo Anticline (red rectangle) at the western end of the 

south Pyrenean sole thrust. Geological sketch map displaying the location of paleomagnetic data and 

cross-sections (modified from Puigdefábregas, 1975, Millán, 1996 and Pueyo, 2000). Paleomagnetic 

rotations by Hogan (1993-blue) and Pueyo (2000-white) are also displayed; cone axis is the mean 

paleomagnetic declination and its semi-apical angle represents the confidence angle (α95). 

 

Figure 2.13B: Stereographic projection of bedding poles; San Marzal Pericline and Sto Domingo 

Anticline. A cylindrical best-fit (Bingham’s [1974] statistics) performed with the Stereonet program 

characterizes the fold trend and plunge. Stereographic projections using Stereonet (Allmendinger et al., 

2012 and Cardozo and Allmendinger, 2013). 
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Figure 2.13C: Balanced sections in the western termination of the External Sierras; Cross section-I: 

Isuerre (Oliva et al., 1996 and 2012a) and cross section-II: San Marzal and III: San Felices (Millán, 

1996). Note the effect of the fold axis plunge (cone generator trend) on the geometry of the pre-

Campodarbe sequence.  
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Figure 2.13D: Conceptual model for the Sto. Domingo anticline at the western end of the south Pyrenean 

sole thrust (Millán et al., 1992 and 1995).  

The interest of this conical structure underlies in the large rotation magnitudes 

associated to its genesis, as originally proposed by simple analog modeling (Millán et 

al., 1992). Paleomagnetic analysis, carried out in fourteen marly sites (Arguis Fm.) at 

both flanks of the anticline as well as in the fold termination, attests a significant 

clockwise rotations (CW ≈ 45°) at the northern flank and almost 20° counter clockwise 

rotation (CCW) at the southern one (Pueyo, 2000; Oliva et al., 2012a; Pueyo-Anchuela 

et al., 2012). The sites located around the fold hinge (San Marzal area) display variable 

and gradual rotations between both extreme terms.  

This particular geometry is probably due to three combined mechanisms: 1) The 

general lateral gradient of shortening associated to the emplacement of the External 

Sierras thrust system responsible for the about 30° CW rotation in average (McElroy, 

1990; Millan, 1996; Pueyo et al., 1996 and 2004: Oliva and Pueyo, 2007a). 2) The 

lateral disappearance of the detachment level (Keuper facies) to the West, as 

demonstrated by the borehole records (Aoiz, Roncal and Sangüesa wells; Lanaja, 1987 

and balanced cross sections by Oliva et al., 2012a) that would have produced a pinning 

effect and the conical geometry of the fold. 3) The southern flank CCW rotation seems 

to be local and it dies out to the Southeast of the Santa Engracia fault (Pueyo et al., 

2003). Consequently this rotation looks to be a local effect probably caused by the 

pinning of the fold and the impossibility of the northern flank in accommodating more 

rotation. 
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Therefore the Santo Domingo anticline and the San Marzal lateral termination 

seems to be a pivot-point conical fold (in terms of Allerton, 1994) and it is a perfect 

paradigm of a complex-structure that can be used to test the reliability of our restoration 

method. 

 

2.4.4 Balzes Anticline 

The Balzes Anticline (BA) (Figs. 2.9 & 2.14) represents the southeasternmost 

structure of the External Sierras in the Southern Pyrenees. It is a 17 km-long curved 

structure with a fold hinge trending N011E in the northern sector passing to N152E in 

the southernmost sector, therefore, in map view, it displays an apparent bending of 

about 40° (southwestwards convex). Another interesting aspect is its connection with 

the N-S Boltaña anticline to the N, which partially overlaps the Balzes fold axis to the 

East. 

In contrast to the western sector, the particular stratigraphy involved in the BA 

comprises three main marine platform sequences during the Eocene (de Federico, 1981; 

Barnolas and Teixell, 1994): the Ypresian Alveoline limestones of the first platform 

outcrop in the core of the structure; the Boltaña Formation (late Ypresian, locally 

Cuisian), the second platform, represented by ≈300 m of shallow limestones and 

siliciclastic input; and the third platform, the Guara Formation, made of up to 650 m of 

Lutetian limestones. The sedimentation of the Guara Formation was determined by the 

growing of the Balzes Anticline as attested by an angular unconformity (Fig. 2.15) 

observed in its western flank (Millán et al., 2000; Barnolas and Gil-Peña, 2001; 

Rodríguez-Pintó et al., 2012b). On top of the Lutetian, in the northern part of the 

anticline, the Sobrarbe deltaic formation (Bartonian) marks the transition to continental 

conditions, the onset of which is clearly indicated by the thick Campodarbe Group 

(Puigdefàbregas, 1975) cropping out in the core of the vast Guarga Syncline (Jaca 

Basin).  
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Figure 2.14: Geological map of the Balzes Anticline (Barnolas et al., in press) displaying 

paleomagnetically derivedvertical axis rotations. Data by Dinarès-Turell (1992), Bentham (1992), 

Mochales (2011), Rodríguez-Pintó (2013) compiled by (Rodríguez-Pintó et al., 2013c) 
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Figure 2.15: Folding kinematics of the Balzes Anticline based on the analysis of the Santa Marina 

progressive unconformity (Rodríguez-Pintó et al., 2013c). Picture taken near the Santa María de Bagüeste 

hermitage. B) Stereoplot of bedding poles along the Sta Marina magnetostartigraphic profile (Rodríguez-

Pintó et al., 2012b). Strike and Dip versus stratigraphic height are also displayed (data by Rodríguez-

Pintó, 2013). 

 

Figure 2.16: Selected cross-sections in the Balzes region, eastern External Sierras (Millán 1996; Calvín et 

al., 2013). Oil-exploration wells are also displayed (Lanaja 1987). Geological map by Barnolas et al. 

(2008). 
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Figure 2.17: Cross-sections from the Eastern External Sierras (Millán, 1996; 2006) 

 

Several cross sections are available in the region (Séguret, 1972; Cámara and 

Klimovitz 1985; Martínez-Peña, 1991; Gil & Jurado 1998; Soto and Casas, 2001; 

Santolaria, 2010) as well as borehole information (Lanaja 1987) but they diverge from a 

unique interpretation (Fig. 2.16). We have adopted the sections performed by Millán 

(1996) and Calvín et al., (2013) since they are serial cross-sections based on seismic 

interpretation, laterally consistent and built with a regional perspective. Despite the lack 

of agreement between them (Figs. 2.17 & 2.18), some considerations can be established. 
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The Mesozoic-Tertiary cover in this sector is thrusting over a sedimentary wedge 

belonging to the foreland Ebro Basin, with several imbricated thrust sheets striking 

between N-S and E-W. This imbricated thrust system shows a highdensity of thrust 

sheets in this region (Millán et al., 2000). The Balzes-Boltaña structure is located in the 

footwall of the Mediano-Olsón thrust sheet (to the Northeast) and over the Tozal-

Alcanadre sheet (to the Southwest). The emplacement of these thrust sheets follows a 

piggyback sequence, and is diachronous, progressively younging to the west (Millán, 

1996).  

 

Figure 2.18: Cross-sections from the Eastern External Sierras (Calvín et al., 2013) 
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On the other hand, the geometry of the autochthonous footwall ramp, and the 

degree of superposition (i.e. displacement) between individual thrust sheets are still 

controversial (Rodrígez-Pintó et al., 2013c; Calvín et al., 2013); while some authors 

considered a major oblique ramp underneath the target structure (Millán, 1996; Fig. 

2.17), others (Calvín et al., 2013; Fig. 2.18) considered that the complete thrust sheet 

system is directly located on a footwall flat, defined by the autochthonous Eocene 

evaporitic materials of the Ebro foreland Basin (Barbastro Fm.). In this case, a minor 

superposition of thrust sheets exists. In the northern sector, different structures (i.e. 

Olsón and Balzes anticlines) appear as detachment anticlines without significant 

displacements of the underlying thrusts. Conversely, in the southern sector there is a 

slight overlap defining a small footwall flat (a few kilometers) associated with the 

Balzes and Naval thrust sheets. This particular geometry in the south can be related with 

the thinning of the pre-tectonic stratigraphic series involved in thrusting and folding. 

Furthermore and for the same reason, in this sector the vertical development of 

structures is lower than in the northern sector and unconformable Tertiary materials of 

Ebro foreland Basin (Uncastillo Fm.) unconfomably cover the top of the thrust 

sequence.  

Regional structural and paleogeographic studies in the area suggest a substantial 

increasing of the shortening eastwards (Puigdefàbregas, 1975; McElroy, 1990; Millán, 

1996; Millán et al., 2000; Pueyo et al., 2002). This gradient, related to the vertical axis 

rotation, multiplies by a factor of 3 the shortening of the westernmost sector (≈ 10 km) 

in comparison to the easternmost sections (≈ 30km). Paleomagnetically derived vertical 

axis rotations of 40 to 60° have been observed in the Boltaña Anticline, to the north of 

the BA (Mochales et al., 2012; and references therein), while there are moderate CW 

rotations of 15 to 20° and non-significant rotations in the Bartonian-Priabonian deltaic 

and continental sediments to the east and south (Sta. Maria de Buil syncline) (Bentham, 

1992; Bentham and Burbank, 1996; Pueyo, 2000; Mochales, 2011), pointing to a 

Bartonian-Priabonian age of the rotational emplacement of the underneath thrust sheets 

(Mochales et al., 2012).  

Reliable paleomagnetic directions derived from 75 new sites in the Balzes 

anticline (>500 specimens from more than thousand) from Ypresian to Priabonian rocks 

have been recently obtained (Rodríguez-Pintó et al., 2013c) (Fig. 2.19). The ChRM is a 

single component direction, displays two polarities and passes the fold test. After 
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comparing with the expected Eocene reference, individual sites display from negligible 

up to > 80° clockwise rotations. This variability is related to the fold curvature (Fig. 

2.20) as attested by the strike vs. rotation diagram where a good-quality regression 

(VAR= - 46° + 0,511 * TREND [R = 0.9724]). It reveals the addition of primary and 

secondary curvatures (Fig. 2.20A) and then, the original (primary) curvature of this 

thrust sheet can be reconstructed. Synfolding materials attest a Middle-Late Lutetian 

major folding event recorded in a progressive unconformity (Santa Marina) (Fig. 2.15). 

The detailed analysis of the syn-rotational sedimentary record together with an accurate 

temporal calibration based on previous magnetostratigraphies has allowed us to obtain 

the rotation velocity for the Balzes anticline (5.2°/M.a.) as well as the rotation period 

(Lutetian-Bartonian) (Fig. 2.20B). These rate and ages are in agreement with previously 

published from the South Pyrenean front.  

 

Figure 2.19: Paleomagnetic rotations in different sectors of the Balzes anticline (Rodríguez-Pintó et al., 

2013c). Site means are projected before (BAC) and after (ABC) bedding correction. Normal and reverse 

polarities are treated separately and a global mean for every sector is only referred to the lower 

hemisphere. Fold axes trends are also displayed with their Bingham’s (1974) distribution. 
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Figure 2.20: Balzes Anticline geometry and kinematics constraints (Rodríguez-Pintó et al., 2013c).        

A) Balzes curvature. Bending diagram (VAR versus structural trend) in the anticline, data from Boltaña 

(BA) and from Pico del Aguila (PAA) anticlines are also shown. B) Rotation velocity in the Balzes 

anticline. Paleomagnetic rotations derived from mean (robust) values obtained for discrete temporal gaps 

(2-3 Ma). 
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3 Analog models 

Laboratory scale models are designed to evaluate the goodness of the restoration 

method. So far, we have developed static models in which only initial and final states 

are detailed. With these experiments we can fully characterize the geometry of any 

structure before and after deformation. Thus, they are perfect tools to compare the 

restored surface obtained with the restoration method with the initial and expected one. 

The analogs we want to simulate are complex structures from fold and thrust belts 

(FAT belts) at upper crustal levels. In this work we have only modeled folded layers 

without considering the faults; the whole structure is divided by regions bounded by 

faults and each block is treated individually. In the upper crustal levels (within the first 

5-6 km depth), competent layers such as limestones or sandstones behave more 

typically with a flexural slip mode (Ramsay and Huber, 1983). The preservation of 

lengths and angles (and consequently also areas) during folding is called in differential 

geometry as isometric bending. A remarkable property of isometric bending is that 

Gaussian curvature (the product of the two principal curvatures) is invariant and equal 

to zero everywhere; the surfaces are developable (Lisle, 1992). However, there may be 

some localized deformation in specific areas, i.e. flexural flow on the flanks or 

tangential longitudinal strain at the hinges (Ramsay, 1967). Therefore, we can speak 

about globally developable surfaces. 

The other important property we want to simulate is paleomagnetism. We are going 

to plot lines on the surfaces to represent paleomagnetic vectors (declination component). 

The initial paleomagnetic vectors in a real scenario are not contained in the surface as 

those simulated, but we can simply rotate them to have null inclination and then be 

embedded in the surface. Only the declination is relevant. It is worth saying that, we 

assumed a perfect primary record of a GAD magnetic field. 

Additionally, an interesting aspect that analog models may offer is the possibility to 

quantitatively measure the internal deformation, and not only qualitatively evaluate the 

results. An appropriate reference system allows the quantification of displacement, area 

or volume change and strain. The reference system proposed is an orthogonal grid 

drawn on each surface. The comparison of nodes location of two adjacent will allow us 

to reconstruct the strain ellipsoid (see more details later). 
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Otherwise, to digitalize or reconstruct the analog models we use two techniques 

already introduced: X-ray computer tomography scanner for volumes (built from a 

dense set of serial cross-sections) and photogrammetry for surfaces (built from a set of 

referenced nodes). The first technique requires materials with radiological contrast. 

The restoration methods developed in this work are for single surfaces and do not 

for the whole volume. In that sense, only reconstruction with photogrammetry would be 

enough. However, the technique of CT scanner allows evaluating inner surfaces and 

opens a wide range of possibilities for future researches, like understanding complex 

structures and characterizing its 3D deformation patterns, as well as validating others 

3D reconstruction and restoration methods and software. We show its potentiality with 

the example of the Balzes Anticline. 

 

3.1 Methodology 

In this section we describe the particularities of the analog models developed. These 

models are valid for flexural folds, they incorporate paleomagnetic data and an 

orthogonal reference system, and are appropriate for X-ray CT and photogrammetry 

reconstruction. We first describe the principles of photogrammetry because it is a 

technique with few requirements, and we focus later on the needs for the X-ray 

computer tomography (Ramón et al., 2013). The upper surface of models built for CT 

reconstruction can be also reconstructed using photogrammetry. In the last subsection 

we explain how to calculate the strain ellipsoid to quantify deformation using the 

orthogonal reference system. 

 

3.1.1 Photogrammetry:  principles and settings 

Photogrammetry is a technique that only requires a few photographs taken from 

different angles to reconstruct a 3D model. Any conventional camera is valid as long as 

all photos are taken with the same focal length. The software used for the reconstruction 

is PhotoModeler. This program uses the description of the camera (including data on the 

focal length, imaging scale, image center and lens distortion) to build a proper 

geometrical relationship between points on the photograph and points in 3D space. This 
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information is obtained by the camera calibration, performed by taking a minimum of 

six photographs of a reference grid provided by de program.  

Once the camera is calibrated we take photographs of the model from different 

angles, in order to see all points from at least two views, and recommended from at least 

three. Then, we proceed with the referencing process, marking on two or more different 

photographs points that represent the same physical object in space. We mark all points 

that define the grid (the reference system that we have drawn on our model). From these 

set of xyz points we build the triangular mesh that defines the surface. 

Accuracy depends heavily on the precise marking (or not) of locations on the 

images. A normal relative accuracy of 1:5,000 means that for an object with a 1 m 

largest dimension, PhotoModeler can produce 3D coordinates with 0.2 mm accuracy at 

68% (one standard deviation) probability. 

 

Figure 3.1: Analog model reconstruction with photogrammetry. Reference points are marked from several 

photos to build the 3D model (right). All photos must be referenced between them and all points must be 

seen at least in two photos taken from different angles. 

 
3.1.2 X-ray CT:  principles and settings 

Conventional CT scanners used in medicine usually have millimeter-scale 

resolution based on using low-energy X-rays (below 125 kV). A scanner with these 

characteristics is sufficiently powerful for our purpose. If the object scanned has a low 
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radiological density, it is possible to increase the intensity of the emission source. This 

should, however, be avoided when possible because of the risk of gantry overheating (in 

particular, the X-ray tube). Apart from the reological considerations, the proper 

selection of the materials to build the model is an important factor in achieving clear CT 

images. 

We used a General Electric HiSpeed FX/i CT scanner at the Royo Villanova 

Hospital in Zaragoza (Aragon Health Service, SALUD) (Fig. 3.2) in collaboration with 

L.H. Ros and the Radiology Service technicians. For the current study, the settings 

selected to optimize the digital reconstruction were (Fig. 3.2): 1) axial scans, rather than 

helical, because they generate a sharper image, with the minimum slice thickness 

allowed (1 mm); 2) slices spaced 0.5 to 1 cm apart, which is close enough for the 

required resolution; 3) a high resolution chest CT protocol with a beam energy of 120 

kV and low current of 180 mA to avoid gantry overheating; 4) the lung window to 

properly view the images on the CT system; and 5) the DICOM format to export the 

data to the 3D reconstruction software.  

Figure 3.2: General Electric HiSpeed FX/I CT scanner at Royo Villanova Hospital in Zaragoza. Left 

bottom inlet. Scanner settings in the main menu. 
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3.1.3 Materials and rheology 

Many of textile fabrics accomplish the basic geometric principles of isometric 

folding. They can be complexly folded but they will always be (globally) developable. 

Therefore, simple fabric simulations can be a very useful basis for realistic 3D models 

(Fig.3.3). 

Among the many possible materials, ethylene vinyl acetate sheets (EVA, also 

known as expanded rubber or foam rubber) allow almost any kind of deformation, 

including flexural flow and flexural slip as well as tangential-longitudinal strain. It has 

an amorphous structure, its density can vary widely, from 50 to 200 kg/m3, and it has 

very low water absorption (≈0.07%). On the other hand, its tensile strength ranges from 

2 to 10 N/cm2, while tear strength varies between 2 and 4 N/cm2, and it can be 

elongated by as much as 500 %, although common values are around 200-300 %. Due 

to its versatility in industrial applications, it is commercially available in thicknesses 

covering three orders of magnitude (0.5 to 500 mm). The stacking of a given number of 

EVA sheets (stuck together or free to move) also allows the stratigraphic thickness of 

the model and the expected mechanism of deformation to be varied. Unlike other 

materials, EVA’s radiological contrast is high enough, and its boundaries can be imaged 

with sufficient clarity to be accurately redrawn by the image processing software. 

Alternatively, ethylene propylene diene monomer rubber (EPDM [M-class] rubber) can 

also be used.  

Alternation of different mechanical properties, thicknesses and cohesion between 

layers produces infinite possibilities and allows modeling any case under study. The 

thicknesses of the modeled stratigraphic pile and the wavelength of the folds have to be 

adapted to the limited size of the CT scanner (usually less than 60 cm in diameter) and 

the circular geometry of the CT sections has to be taken into account in the model 

design. 
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Figure 3.3: Modelization and scanner of several analogs. 
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In addition to the layer modeling, the reference system characterization is of crucial 

importance. This reference system is defined with two sets of orthogonal parallel grid 

lines. We tested many different kinds of materials to simulate the sets of lines: plastic 

and metallic meshes, strings and cords, and even cloth with linear relief. In most cases, 

however, there was insufficient radiological contrast, while in the case of metallic lines 

the absorption was so high that the radiological image was over-exposed. Moreover, the 

use of specific layers such as plastic meshes to simulate the set of grid lines has 

mechanical consequences: 1) it implies detachment from the underlying bed; 2) it does 

not allow the effect of deformation on the grid lines to be quantified; and 3) the change 

of the rheology has also consequences for the final geometry. Solid linear elements 

(cords, strings, wires, etc.) cannot effectively be stuck to an EVA sheet (different 

mechanical properties) and if they are free to move, they cannot be trusted by definition 

to provide an accurate reference system. Similarly, the use of cuts or marks in EVA 

sheets also affects the rheology. 

Therefore, to define the reference system we decided to paint a set of parallel lines 

on the sheet using highly X-ray absorbing inks, liquids and paints. A wide variety of 

materials were tested for this purpose, all of them having high electrical conductivity 

(Fig. 3.4A), including graphite, gold and silver inks, aluminum paints, various types of 

glitter, etc. Of these, minium (red tetraoxide lead) paint was, by far, the most successful 

material. We found it gives a sharp radiological signal without serious streak artifacts in 

the CT image. Other potentially suitable materials such as graphite, gold, silver and 

aluminum had too little mass to absorb enough X-ray photons and hence were not 

detected in the signal or they were but only in a very faintly way. The minium was 

screen-printed onto the EVA sheets, which can be done with a good accuracy. Indeed, 

current screen printing technologies allow computer-aided design of the screen mesh 

(usually made of nylon and polyester) and mesh sizes up to 0.5 mm. Minium can be 

used in place of the usual screen printing inks without affecting the performance of the 

printing process. 

The grid that constitutes the reference system (needed to monitor internal 

deformation in 3D) is made by two orthogonal sets of parallel lines. We explored screen 

printing the second set of parallel grid lines using a mixture with a different ratio of 

minium and turpentine or, alternatively, a different quantity of ink. The amount of ink 

can be varied by changing the line width and an advantage of this approach is that the 
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minium/turpentine mixture for the main and secondary sets of parallel grid lines can be 

applied at the same time. We found that varying the line width between 0.5 and 2 mm in 

the screen worked well. These different amounts of minium produced sufficiently 

different intensities to allow identification of each set of lines in the CT images (Fig. 

3.4B). 

 

Figure 3.4: A) CT image of lines applied with the different conducting materials tested. B) CT image of 

lines containing different proportions of minium (left to right) to reproduce a secondary reference grid. 

Note that the signal from the minium mixture does not change from the top to the bottom section. C) 

Screen-painted EVA plates using dissolved minium. Different “ink” width (dash and continuous) trials to 

test the different radiological brightness. 
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The positioning of the model on the scanner table is also of crucial importance. To 

clearly identify a line in a CT image it should be perpendicular to the cross-section: the 

more oblique the greater the scatter; a line is indistinguishable when it is parallel to the 

section plane. The ideal orientation is with both sets of grid lines oblique to the cross 

sections. This is not always possible, however, especially for complex folds with 

considerable rotation and almost vertical or overturned limbs, a complexity that makes 

reconstruction more difficult. We can then make 2-3 serial sections, but the amount of 

work increases in the same proportion. 

 

3.1.4 Processing of data: reconstruction 

Digital Imaging and Communications in Medicine (DICOM, also known as the 

NEMA Standard PS3©) is the standard computer format for handling many different 

sources of medical images (among them CT). Together with a communication protocol, 

the file contains a header that provides information concerning the relative position of 

the different CT sections (location, orientation, spacing, etc.), and this enables us to 

geo-reference our model. A simple processing based on the data in the header fields 

(Image Position, Pixel Spacing, Rows and Columns) allows the images to be used like 

seismic sections in most 3D reconstruction software packages (i.e. gOcad).  

Medical software (e.g., MimicsTM1) allows processing and editing of 2D image data 

from CT (and other medical imaging techniques) and it is useful for 3D reconstruction 

of models. Unfortunately, it was not found to be very effective for the reconstruction of 

geological models due to the difficulty of accurately identifying important elements 

such as the different bedding surfaces or the grid lines (Fig. 3.5).  

For this reason, we decided to use geological software and treat the CT images as 

geo-referenced cross-section images in gOcad (Paradigm) (Fig. 3.6). The versatile 

capabilities of gOcad have allowed us to accurately reconstruct the model surfaces and 

the grid lines paths over the surface as if the dataset were a series of seismic sections in 

SEGY format. Since with CT we can measure closely spaced slices, 3D reconstructions 

can be highly reliable, far above the average in the case of reconstructions based on 

field data. 

                                                 
1 http://biomedical.materialise.com/mimics 
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Figure 3.5: Atempt of reconstruction with the software Mimics. 

This process can be quickly described but it is rather demanding. In each cross-

section we draw the lines that define the surfaces and the points that define the lines. As 

we need the reference points of the grid, we need to reconstruct the lines and then mark 

the crossings between them. These points are the basis for the meshing. As it is a 

manual reconstruction it introduces precision errors difficult to quantify. Since this error 

is not systematic, it can be assumed to be self-balanced. 
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Figure 3.6: Analog model reconstruction with gOcad from the cross-section images obtained by CT: A) 

CT scanner set-up; B) Lateral view; C) Top view; D) Cross sections spaced 2 cm apart: 11, 17 & 23; and 

E) gOcad reconstruction of the upper and lower surfaces. San Marzal (first generation). Note the white 

points in the radiograms represent the “paleomagnetic vectors” (intersections of the reference grid). 
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The projection or draping of an orthophoto over the model surface can help further 

improve the reconstruction, providing in particular accurate data on the position of the 

lines. We took an orthophoto using a camera with a 300 mm zoom-lens mounted on a 

tripod. With the help of a laser level, the height of the center of the lens was matched to 

the center of the model, ensuring that the camera was perfectly perpendicular to the 

model at a distance of 16 m; this corresponded to an angle of less than 1° between the 

borders of the model (Fig. 3.7).  

 

Figure 3.7: Orthophoto sketch and two analog models with the orthophoto drag on the digital 

reconstructed surfaces. 

 

3.1.5 Post-processing: estimation of strain 

A perfectly characterized reference system is key to understanding any folded 

lineation and to unravel deformation patterns (strain ellipses and ellipsoids) in 2D and 

3D. To quantify the deformation, we need accurate measurements of the position of 

reference points of the structure in the undeformed and deformed states. The fact that 

this desirable information is unavailable in real cases is what makes analog models all 

the more important. We reconstruct the model with a tetrahedral mesh formed by the 
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orthogonal set of lines. This reference system is the same in the original and folded 

states and consequently tracks the deformation. Therefore this allows us to predict the 

orientation of any passive lineation in the folded surface.  

Thanks to the reference system, we are able to calculate the dilation and the strain 

ellipsoid for each individual tetrahedron (or triangle in surfaces). Obviously, the spacing 

of these tensors will be related to the density of our orthogonal reference system. The 

dilation parameter measures the change of volume (or area in surfaces), while the strain 

ellipsoid (or ellipse in 2D) measures the anisotropy of strain and the preferred 

orientation (stretching lineation). In order to assess the anisotropy of the ellipsoid, we 

also calculate the ratio between axes (P’) and the shape factor (T), this ranging between 

-1 (prolate) and 1 (oblate) and T=0 corresponding to pure triaxial ellipsoids. These 

parameters (Jelinek, 1981) are regularly used in magnetic fabric analysis and are similar 

to the axial ratios plotted on a Flinn (1962) diagram (L= max/int and F=int/min), 

although they are much more sensitive to small changes of the ellipsoid since they are 

based on a logarithmic scale. 

The ellipsoid is calculated using the affine transformation matrix M that relates the 

points before and after deformation and characterizes the deformation. The matrix 

coefficients are determined using initial and final tetrahedron vertices. The application 

of this transformation to a sphere produces an ellipsoid and the eigenvalues and 

eigenvectors of the transformation matrix are the orientation and magnitude of the 

ellipsoid axes; the finite strain ellipsoid in terms of Ramsay (1967). We detail the 

mathematics right afterwards. 

 

3.1.5.A  Formulation 

A tetrahedron is defined by its vertices vi, { }3,2,1,0∈i . For the sake of simplicity, 

and without loss of generality, we take v0 as the origin of the coordinate system (which 

is equivalent to substituting vi  vi – v0, 1 ≤ i ≤ 3). Let V be the 3x3 matrix whose 

columns are the components of the column vectors vi, { }3,2,1∈i . Any point on the 

volume of the tetrahedron x is given by α⋅= Vx , where α  is a column vector whose 

components indicate the position of x with respect to the vertices and 

satisfy . The volume of the tetrahedron can be expressed in terms of the 1,0 ≤≥ ∑i ii αα

 63



determinant of V as ( )Vvolume det6/1 ⋅= . As the three vectors are linearly 

independent, V is invertible. 

If the tetrahedron undergoes a linear deformation, points are transformed so that 

their relative position with respect to the vertices remains the same: x  

α⋅′=′ Vx , where the columns of V’ are the components of the transformed vertices v’i, 

{ 3,2,1∈i }, with origin in  v’0. Thus 

xMVMVVVVx ⋅=⋅⋅=⋅⋅⋅′=⋅′=′ − ααα 1  

with  1−⋅′= VVM

In order to provide a quantitative measure of the deformation, we consider a sphere 

with radius 1 inscribed in the initial tetrahedron and study its transformation, it being 

distorted to an ellipsoid (Fig. 3.8). 

 

Figure 3.8: Deformation ellipsoid of a single deformed tetrahedron. 

The ellipsoid is a quadric surface that satisfies the equation: , where A 

is a 3x3 symmetric real matrix, the sphere being a degenerate case. Specifically, for a 

sphere with radius equal to 1, A

1=⋅⋅ xAxt

sphere is the 3x3 identity matrix. Thus 

( ) ( ) XAXXMXMXXXAX ellipsoid
ttt

sphere
t ′⋅⋅′=′⋅⋅′⋅=⋅=⋅⋅= −− 111     

where   ( ) 11 −− ⋅= MMA t
ellipsoid

Let λ1, λ2, λ3 be the eigenvalues of Aellipsoid.  The semi-axes of the resulting ellipsoid 

are . In the following, we assume they are ordered so that . 2/1−= iik λ 321 kkk ≥≥

Finally, we reconstructed the model with a tetrahedral mesh formed by the 

orthogonal set of lines, where the intersections of lines are the nodes of the surface and 
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the vertices of the tetrahedron. There are three tetrahedra for each triangular prism (Fig. 

3.9) and we calculate its mean ellipsoid in order to have a mean value for the whole 

volume of this triangular prism.   

 

Figure 3.9:  Volume tessellation 

Dilation is the change of volume between initial and final tetrahedron: 

( ) ( ) ( ) 1detdet −′=−= VVvolumevolumevolumedilation initialinitialfinal  

Using basic properties of the determinant, it can easily be shown that 

)det(/)det()det( VVM ′= .  Moreover, ( ) 2)det()det( −= MAellipsoid , and thus 

( ) 111)det(1)det( 321
321

2/1 −⋅⋅=−
⋅⋅

==−= − kkkAMdilation ellipsoid λλλ
 

 To describe the anisotropy of the ellipsoid, we calculate the P’ and T parameters 

defined by Jelinek (1981). We are interested in the ratios of the semi-axes, rather than in 

their differences. As a measure of their scatter, we consider the normalized anisotropy: 

( ) ( ) ([ ) ]2
3

2
2

2
12exp' ηηηηηη −+−+−⋅=P  where ηi are the logarithms of the semi-

axes )ln( ii k=η , and η  their mean value 3)( 321 ηηηη ++= . 

The shape factor, defined as 
31

3122
ηη

ηηη
−

−−
=T , characterizes the shape of the ellipsoid. 

An ellipsoid is said to be rotational prolate (prolate, neutral, oblate, rotational oblate) 

when ( )121222323 ,~,~,~ kkkkkkkkkkkk =<<=<<= , and thus T=-1(-1<T<0, T=0, 

0<T<1, T=1). 
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3.2 Analog models 

With the analog models we do not pretend to accurately reproduce the structure of 

San Marzal and the Balzes Anticline, neither to do an exhaustive analysis about them. 

These structures are selected because of its complexity (a conical fold and an arched 

anticline with a related conical fold in its inner arch). Their geometry is a good case to 

test the capabilities of the restoration methods and the CT scanning.  

In any case, and following the philosophy of analog modeling, our models assume 

an evaporitic core that has been modeled by air in the core of the anticline (a reasonable 

assumption considering the rheology). The cover rocks on top of the Middle Eocene 

platform (Boltaña Fm) has not been modeled, according to the deformation ages (syn-

folding). The model was designed as a “static” reproduction of the evolution of the 

anticline (we apply the finite deformation at once, without considering the actual 

kinematic). 

Several models have been developed based on this two complex structures (Marzal 

and Balzes) using different materials and scales (Fig. 3.10). It has been a laborious work 

in which we have learned the modelization and the reconstruction technique. At the end, 

we have selected two of the best reconstructed analogs to show the results of this 

technique and the restoration methods. We have reconstructed the San Marzal model 

using only photogrammetry and the Balzes Anticline with both techniques. 

 

Figure 3.10: Analog modeling of several models of San Marzal and Balzes. 
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3.2.1 San Marzal Pericline 

The San Marzal closure of the large-scale Sto. Domingo detachment anticline is 

modeled considering the pre-Campodarbe sequence, and particularly, the Guara 

Formation. The air within the anticline core represents the pre-Guara formations 

including the Triassic evaporites.  

The analog reproduces five main structural features (Fig. 3.12): 1) approximately 

the San Marzal relation between the wavelength (≈ 8 km) and thickness of the modelled 

layer (≈ 180 m); 2) strong immersion of the fold axis; 3) pseudo-parallel flanks in the 

Sto. Domingo Anticline; 4) an approximately 45° clockwise rotation in the northern 

flank; 5) the southern flank is assumed to be in structural continuity with the Ebro 

foreland basin and it will be used as the pin-line. 

 
Figure 3.12: Analog model of the San Marzal Pericline. A) San Marzal cartography (from Fig. 2.13A). 

Approximate wavelength and thickness of the modelled layer displayed. B) Orthophoto of the analog 

model. Approximate wavelength and rotation of the northern flank displayed. C) EVA foam model on 

which lines parallel and perpendicular to the paleomagnetic reference vector have been screen-printed. D) 

Final 3D reconstruction of the model with the z coordinate displayed. 

 67



 The model is built with an EVA plate of 0.3 cm thickness. Therefore, the relation 

between the wavelength and thickness is approximately 50 (15 cm / 0.3 cm) and is 

similar to one of the real structure ≈ 44 (8 km / 0.18 km). The paleomagnetic vectors 

(projection of the declination component) are featured as lines printed on the EVA 

surface. A rectangular grid screen-printed on the surface provides two possible 

references. The 2020× grid is composed of rectangles of 25.1 × cm (Fig. 3.12). 

We have reconstructed the San Marzal model using only photogrammetry because 

after many attempts we have found the CT reconstruction impossible. For a plausible 

CT reconstruction, lineations must be as perpendicular as possible to the cross-sections. 

Because of the strong folding of the model (overturned limbs) and the strong differential 

rotation between the flanks we were unable to fulfill this premise.  

 

3.2.2 Balzes Anticline 

We model the upper and better exposed thrust sheet involved in the Boltaña 

Formation (unit 2 in Fig. 2.19). The evaporitic core is modeled by air and the syn-Guara 

Formation has not been modeled. Thus, the top surface of the model represents the base 

of the Guara Formation and the bottom surface the base of the Ypresian limestones.  

The geometric scaling of the model obeys some key features: 1) the real variation in 

the fold axis trend (stereoplots in Fig. 2.18), 2) the relation between the wavelength of 

the anticline (≈ 6 km) and the thickness of the modeled stratigraphic pile (≈ 300 m), and 

3) the differential vertical axis rotation between the northern and southern sectors (27°). 

Generating an oblique structure based on the Balzes Anticline, we see how a secondary 

fold is formed in the inner part, which could correspond to the Boltaña Anticline 

southern termination near Paules de Sarsa.  

Using all this information the analog model is built with two EVA sheets of 58 x 38 

x 0.5 cm glued together, giving a total thickness of 1 cm. In this case the relation 

between the wavelength and thickness is approximately 16 comparing with the 

approximately 20 of the real one. The EVA sheets are screen-printed with a squared 

grid of 1 x 1 cm and line widths of 1 and 1.5 mm. One sheet is screen-printed on only 

one side and the other on both sides, thus we model three surfaces that represent the 

base, the top and the middle (and neutral) surface of the stratigraphic pile under study. 
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First of all, we scan the EVA sheets in an undeformed state (horizontal) to set up the 

reference system. Subsequently, we deform the sheets following the Balzes kinematic 

model and scan it again (Fig. 3.13). We then reconstruct the model from the DICOM 

cross-sections in gOcad. We also check the reconstruction from CT images against the 

reconstruction of the upper surface obtained using photogrammetry.  

 

Figure 3.13: Analog model of the Balzes Anticline. A) Balzes Anticline cartography (Fig. 2.19). 

Approximate wavelength displayed. B) Orthophoto of the analog model. Approximate wavelength 

displayed. C) CT scanning of the analog model. D) Reconstruction with gOcad of the analog model from 

the CT images. 
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3.2.3 Analysis of Balzes Anticline CT model 

With this example we want to show that these models can be very useful for 

understanding certain features related to complex settings: A) folded lineations, B) the 

2D distribution of deformation ellipses on different surfaces within the model, and C) 

the 3D distribution of strain tensors in the folded volume.  

  

3.2.3.A Lineation analysis 
This technique is valid for studying any passive geological lineation. In this section, 

we compare the grid lines of the model with paleomagnetism, but we could study any 

other linear element (paleo-current, stress, etc.). Paleomagnetic vectors (their local 

projection on the model surface; that is to say, only the declination information) can be 

seen as a type of lineation (Sellés, 1988; Stewart, 1995; Pueyo et al., 2003) and are 

feasible structural markers that can be clearly established for both the pre-and post-

deformation states. In this case, paleomagnetic data are assumed to be pre-folding.  

First, we need to rotate the entire model to converge to the real axes of the structure. As 

the reference set of lines in the model had no inclination, we need to apply a rigid-body 

rotation to our contrived paleomagnetic record (one of the sets of lines) to converge 

with the real dataset.  Inclination has been modeled to fit the real data (≈40°) rather than 

the Eocene reference expected in the Pyrenees (53°). 

Now, we consider lineation patterns separately in the northern and in the southern 

flank of the anticline. We select specific sites on the model simulating an outcrop on 

each side of the anticline. These data are approximately at the same structural location 

as the real dataset. We project paleomagnetic vectors before and after bedding 

correction (Fig. 3.14A). Paleomagnetic data before any correction are clustered into two 

groups corresponding to the western and eastern limbs of the anticline. As expected, 

data is grouped after the bedding correction (ABC), and the clustering is better than 

seen with the real noisy paleomagnetic data (Fig. 3.14B). 

Given the secondary origin of the fold curvature (that we applied to the model), 

there is a 22° difference between the mean paleomagnetic direction in the northern and 

southern sectors. This difference is slightly smaller (4°) than detected in the real dataset. 

These small errors in the lineation, as well as those highlighted by the bedding poles, 

are not unreasonable. They are likely caused by the analog model, which does not 
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perfectly reproduce the natural geometry. Once again, the fold axes of the sectors are 

similar but not exactly equal to those calculated for the real structure.  

 

 

Figure 3.14: Paleomagnetic analysis of northern and southern flank. Stereographic projections of 

paleomagnetic data before and after bedding correction (BAC, ABC) as well as the bedding plane (S0) for 

each site with the calculation of the fold axis: A) Analog model; and B) Real data.  
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3.2.3.B Surface analysis  

Before considering the internal deformation, we analyze the results of the 

uppermost surface, comparing the results obtained from the reconstruction of the CT 

images with those from photogrammetry, the complementary technique we use for 

surface reconstruction. Our aim with this was to validate the 3D reconstruction based on 

the CT images. First of all, we compare the distribution of dilation (=[Areafolded–

Areainitial]/Areainitial) across the entire surface. The second technique is more accurate for 

the upper surface reconstruction and gives clearer results but they are equivalent in 

meaning (Fig. 3.15A). This is basically due to the greater accuracy of the 

photogrammetric method in reconstructing the exact location of the nodes (intersections 

between the two sets of lines). 

If we now analyze all the three surfaces derived from the CT modeling (Fig. 3.15B), 

we observe tangential-longitudinal strain in line with Ramsay (1977) and Gairola 

(1978), extension in the anticlines outer hinges of the upper surface (positive dilation), 

conservation of area in the middle neutral surface and compression (negative dilation) 

of the inner hinges in the lower one. We observe consistent senses of dilation in the 

synclines: positive on the outer arc and negative on the inner one. It is worth noticing 

that the areas with clear dilation are significantly different at the two surfaces (upper 

and lower): in the lower surface the maximum dilation is concentrated in a much 

smaller area and is more intense than in the upper one. This observation fully agrees 

with the expected differences in arc lengths between outer and inner hinges.  

The most deformed areas are precisely the ones of maximum mean curvature (mean 

between the two principal normal curvatures: M=(k1+k2)/2). Since we are unable to 

derive the anisotropy from the curvature, we plot the strain ellipses in terms of the ratio 

of the axes and the orientation of the main axis. In the CT model, the areas of higher 

anisotropy (ratio between major and minor axis) correspond with areas of compression: 

the syncline between Balzes and Boltaña anticline in the upper surface (synclastic 

synform according to Lisle and Toimil, 2007) and both anticlines in the lower surface 

(synclastic antiform). This observation agrees with the distribution of dilation across the 

upper and lower surfaces. As suggested above, this may be caused by the concentration 

of deformation in the inner-arc zones, which have to accommodate an equal amount of 

volume change in a smaller deformed volume. On the other hand and, as it would be 

expectable, the Gaussian curvature (G=k1·k2; Gauss, 1827) is concentrated in the area 
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of superposed folding (Boltaña-Balzes) and there are no significant differences between 

the three surfaces. 
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Figure 3.15 (continued): A) Dilation and strain ellipse (magnitude and orientation) of the upper surface 

digitalized with photogrammetry. Fold classification of Lisle & Toimil (2007): synclastic antiform (G>0, 

M>0), anticlastic antiform (G<0, M>0), synclastic synform (G>0, M<0) and anticlastic synform (G<0, 

M<0). Gaussian (G) and mean normal curvatures (M) are also displayed along with strike and dip maps; 

B) Dilation, strain ellipse and curvature patterns of the upper, middle and lower surfaces digitalized using 

cross section CT images. 

The strain ellipse gives us extra information about anisotropy. As observed before, 

upper and lower surfaces display opposite results. The same applies for the orientation 
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patterns. The directions of the major axis of the ellipse are perpendicular for upper and 

lower surfaces. In the middle (neutral) surface there is no clear preferential orientation 

of deformation (and, in any case, the magnitude is very small). Focusing on the upper 

surface, we observe that the main axis (elongation) orientation is perpendicular to the 

fold axis in both anticlines (Boltaña and Balzes) and parallel to the fold axis in the 

middle syncline. On the other hand, for the lower surface, the main axes of the ellipses 

follow the fold axis orientation, being located in the inner part of the anticline. 

 

3.2.3.C  Volume analysis 

The volume analysis is carried out for the upper and lower volumes separately 

(Figs. 3.16 & 3.17). The main problem of the model is the low strain ratio (major 

axis/minor), caused by the small ratio between the modeled thickness and the fold 

wavelength.  

The low anisotropy (mostly less than 2) is attested by the P’ vs. T diagram (Jelinek, 

1981).  To explore the deformation, we decided to use these magnetic fabric parameters 

since they are more sensitive to variations in the tensor geometry than the simple axial 

ratio (i.e., Flinn diagram, 1962). Here, P’ is proportional to the total eccentricity of the 

ellipsoid and T ranges between 1 (pure oblate) and -1 (pure prolate). In this graph (Fig. 

3.16A), the points are widely scattered reflecting the low eccentricity of the ellipsoid. 

Similar evidence is obtained from the mean normal curvature vs. dilation diagram (Fig. 

3.16A). Apart from the narrow ranges of variation (-0.03 to 0.03 and -0.6 to 0.6 

respectively), most data fall close to the origin (non-deformation zone), although some 

data points on the upper surface with negative dilations spread towards negative 

curvatures (synclinal hinges), and some points on the lower surface with negative 

dilations tend to positive curvatures (anticlinal hinges). 

Due to the considerable noise caused by the low anisotropy and the large number of 

tensors, we tried classifying the data according to some simple variables (Fig. 3.16B). 

First, curvature readily allows localization of the hinges, both anticlines (positive 

values) and synclines (negative ones). Second, the bedding dip constrains the boundary 

between flanks and hinges. Dips < 30° can be unambiguously classified as fold hinges. 

Finally, small dips (< 30°) and low curvature values (< |10|) represent the flat and 
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undeformed portions of the model. Therefore a clear distinction can be established 

between all these model zones. 

The mean curvature allows a quick (and coarse) segregation of anticline and 

syncline hinges. The distribution of the shape of the ellipsoid (T) is very noisy (Fig. 

3.16C) when we plot the data all together. If, however, we concentrate only on the 

hinges (flat and flanks zones not considered) some patterns can be seen: curvature 

varies over a narrower range (between 10 and 20) in the anticlines than in the synclines 

(between –10 to -30). This must be related to the relatively large non-coaxial 

deformation in the curved syncline (Fig. 3.16B), compared to the anticline. The volume 

tensors seem to be slightly more oblate, and this could be related to the tangential-

longitudinal deformation in hinge zones. 

Despite the generally low anisotropy, this parameter is related to map view location 

(Fig. 3.16D). Selecting the ellipsoids with P’ > 1.5, we can see that they tend to be 

localized in specific zones, namely, the fold hinges. Consistent with the model design 

(the sheets were fixed), most deformation accommodated in the hinges and very little in 

the flanks. Additionally, there is more deformation in the northern sector (relatively 

closely spaced points with P’ > 1.5) than the southern one (more scattered points). 

Finally, we plotted on the map the shape of the tensor (T) of the hinge zones alone (only 

those with significant anisotropies: P’ > 1.3). Despite the remaining noise, oblate 

ellipsoids seem to be localized in the outer hinges (Balzes anticline and the curved 

syncline). 

Interesting results to understand the distribution of deformation across the model 

can be also derived from exploring key variables in map view. This example in Figure 

3.17 shows a general compression of the structure especially in the synclastic antiform 

of the inner arc (lower volume). The expected preservation of volume is not completely 

respected because there is no clear extension in the upper volume. This can be 

attributed, according to the surface analysis, to the values of compression in the lower 

surface being higher than those of extension in the upper surface. Moreover, 

deformation is concentrated in a smaller volume in the lower sheet than the upper one. 

As observed before, the normalized anisotropy (P’ parameter ≈ major axis/minor) is 

higher in areas of compression where more deformation is concentrated in less space. 

This is consistent with the surface analysis: the anticline hinge anisotropy seems to be 

smaller and more diffuse in the upper volume than in the lower one.  
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Figure 3.16: Tensor analysis: A) Anisotropy and eccentricity of the tensor; B) Classification of zones as a 

function of surface mean curvature and bedding dip; C) Shape localization: Anticlines and syncline 

curvatures versus the shape of the tensor (T); and D) Anisotropy localization in map-view: All tetrahedra 

(P’ >1.5), and only hinges (P’> 1.3) 
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Figure 3.17: Volumetric analysis: upper and lower volumes of the structure. Dilation (volume change), 

anisotropy parameter (P’), shape factor (T), orientation (trend and plunge) of the major and minor axes of 

the deformation ellipsoid. 
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Since anisotropy is quite small (close to 1) there is no clear shape factor 

distribution. Nevertheless, oblate ellipsoids1 tend to concentrate in the anticline. We 

could expect to find oblate ellipsoids in the upper volume and prolate ellipsoids in the 

lower volume but in this case layers are not thick enough for that pattern to be observed. 

The orientation of the minor axis is, however, coherent with the expected values: 

vertical in the upper volume and horizontal in the lower volume. The major axis is not 

that clear because it is very similar to the intermediate axis in oblate ellipsoids. 

 In future models, use of greater thicknesses (modeling more than one stratigraphic 

unit) will help to produce larger anisotropies in tangential-longitudinal strain folds for 

an equivalent wavelength. This can be expected to strengthen the results, confirming the 

usefulness of the models to predict any deformation pattern and to double-check 

restoration results.  

1  T ≈ 1, major axis ≈ intermediate > minor 
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4 Surface restoration methods using 

paleomagnetism 

In this chapter, we introduce the two surface restoration methods that leverage 

paleomagnetic vectors as a primary reference. They are valid for complexly folded 

structures. The first one is a simple geometric approach based on the piecewise 

restoration of a triangulated surface (Gratier et al., 1991 and Gratier and Gullier, 1993) 

into which paleomagnetic variables can be easily incorporated (Ramón et al., 2012). 

The surface is modeled by a mesh and the method starts from a pin-element. Triangles 

are laid flat and then fitted together to minimize distances between common vertices 

and paleomagnetic error. However, this first approach, as it will show later, is sensitive 

to the meshing and particularly to the pin-element. The second one is based on a 

parametric approach, whereby a curvilinear coordinate system is computed on the 

folded surface by numerical optimization. We use paleomagnetic data to define 

constraints for the computation of this frame, which significantly increases the 

robustness of the restoration method.  

As in any restoration method, we need to establish some reasonable initial 

assumptions. We assume that: 

1) Layers are horizontal in the undeformed surface; horizontality is the basic 

assumption in all restoration methods.  

2) The folded surface is developable; it has been transformed by preserving angles, 

lengths and areas, so the Gaussian curvature is constant and zero. The method is also 

valid for globally developable surfaces, like those derived from rock volumes that have 

undergone flexural folding as described by Ramsay (1967), i.e., flexural flow on flanks 

or tangential longitudinal strain at hinges. In this case, total volume is assumed to be 

constant. 

3) An even distribution of paleomagnetic vectors characterizes the folded surface. 

These vectors are primary (recorded at the time of deposition) and behave as passive 

markers during the deformation. In the analogs, these premises were clearly established, 

in the real databases, both the local and the paleomagnetic reference vectors have to be 

reliable in the sense used by Van der Voo (1990) and Pueyo (2010). 
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4.1 Piecewise approach  

The starting point of this approach is the UNFOLD method developed by Gratier et 

al. (1991) and by Gratier and Guillier (1993), as it is a simple geometric approach into 

which paleomagnetic variables can be easily incorporated (Ramón et al., 2012). We also 

considered an alternative method (Williams et al., 1997) that minimized internal 

deformation instead of distances, preserving the triangle’s area and allowing the 

modification of triangle’s shape. But the more proper method to introduce the 

paleomagnetic constrain is the one defined by Gratier et al. (1991) because triangles 

rotate rigidly.  The UNFOLD method, like most flexural restoration tools, requires the 

first two of the previous assumptions plus the paleomagnetic restrictions, which can be 

easily integrated. The horizon is defined as a mesh of triangular elements that are first 

laid flat, and then rearranged (translated and rotated) to minimize distances between 

neighbors. The main change on adding paleomagnetic data is that the rotation is not free 

when minimizing the distances, as it is constrained by the paleomagnetic reference 

vector (Fig. 4.1). The software (Pmag3Drest) has been developed using Matlab1.  

 

Figure 4.1: The concept: paleomagnetism as an additional tool in restoration methods. The surface is 

rotated to the horizontal with the bedding plane and then it is rotated around its vertical axis to fit with its 

paleomagnetic reference vector. 

The method involves the following sequence of eight steps (Fig. 4.2):  

1) Surface definition. A set of points with Cartesian coordinates describes the 

folded surface and determines the nodes of the rigid triangular elements of the mesh. To 

build the mesh, Delaunay (1934) or regular triangulation (Hjelle and Dæhlen, 2006) can 

be used. The most common triangulation is Delaunay’s one which states that the 

                                                 
1 www.mathworks.com
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circumscribed circle of every triangle should not contain inside it any point of the mesh. 

It maximizes the minimum angle of all the angles of the triangles, which, as a practical 

result, avoids obtaining triangles with very small angles. However, in the analog 

models, we use the regular triangulation because it is much easier to obtain using 

commercial off-the-shelf wire meshes or by printing, in order to set the reference grid. 

In any case, we are going to evaluate the influence of the meshing type in the next 

chapter. 

2) Incorporation of paleomagnetism. The method adds paleomagnetic vectors in 

triangular elements where paleomagnetic data is available, only considering the 

magnetic declination (the so-called horizontal component). The vector passes through 

the barycenter of the triangle (Fig. 4.3). The accuracy of the data, α95 (Fisher, 1953), can 

be related to the local paleomagnetic vector. In the case of sparse or poorly distributed 

vectors, it is possible to interpolate paleomagnetic data to all triangles of the surface 

using the algorithm described in Chapter 6.  

3) Flattening. Each triangle is automatically laid flat to form a horizontal surface, 

by horizontal rotation about its strike axis. In the case of overturned beds, we treat the 

stratigraphic polarity as a vector in each element.  

*  Pin-element definition. Following 2D restoration techniques, the unfolding 

restoration tools select a pin-element (also called the seed in the parametric approach), 

which is used as a fixed reference position in a restored model. Two types of pin-

elements can be defined for a surface: a pin-point is the first fixed triangle from where 

we start to unfold the surface, while the pin-line is the first row of triangles with fixed 

barycenters. The pin-element needs to be chosen with geological meaning because 

restoration is highly dependent on it, as it will be shown in next chapter. The pin is 

usually placed in the undeformed area of the surface which is considered not to have 

undergone deformation (i.e. the foreland).  

4) Vertical-Axis Rotation. The paleomagnetic vector from the pin-element must 

converge with the paleomagnetic reference vector. Significant rotations are very 

unlikely since the pin-element should be chosen in the stable (undeformed) portion of 

the horizon. However, if there are substantial rotations, we apply an equal rigid-body 

rotation to the horizon at this stage.  

 83



5) Translation and rotation. Each triangle is translated and rotated in order to fit its 

neighbors using the method of least-squares. We minimize distances between shared 

vertices, bearing in mind the paleomagnetic reference. This step starts at the pin-

element. If an element has paleomagnetic data, the related rotation is constrained by the 

paleomagnetic vector (Fig. 4.3), with a number of degrees of freedom that is determined 

by the α95 value. If the initial (undeformed) surface were completely developable 

(without any deformation), the restoration process would end at this step. 

6) Iterating. The translation and rotation process is iterated a certain number of 

times, or for as long as the total distance error remains below a threshold, 

∑∑= MDe . In this expression, e is the error, D the sum of distances between the 

vertices of each triangle and the triangular hole defined by its neighbors and M the sum 

of the medians of each triangle (Fig. 4.3). This step is especially important in the 

original UNFOLD method, where paleomagnetism is not considered (Gratier et. al., 

1991) and rotation is free. When rotation is constrained this step is unnecessary. 

7) Welding. After the iterative translation and rotation, the surface becomes 

discontinuous, with gaps and overlaps, assuming that the deformed surface that has 

been restored was not completely developable. In order to obtain a continuous surface, 

this step involves joining or welding the shared vertices of neighboring triangles 

through an average value, allowing internal deformation to take place. 

8) Optimization process. This step is only performed when the restoration uses 

paleomagnetic data. At this point of the restoration process, the maximum 

paleomagnetic error (the difference between the local and the reference paleomagnetic 

vectors) is less than the α95 angle, and we may want to sacrifice accuracy in favor of 

area preservation. The vertices of the triangles are randomly modified to minimize a 

potential function (Eq. [1]), following the simulated annealing method (Kirkpatrick et 

al., 1983; Press et al., 1992). The potential function (U) includes the paleomagnetic 

error (1- cos[ref-pmagi]) and the internal deformation (dilation in terms of area 

variation: [area0-areai]/areai) with specific weights for each term (A and B).  

[ ]∑ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−−=

i i i

ii
i area

areaarea
BpmagrefAU 0)cos(1            [1] 

 This step was proposed for the restoration with paleomagnetism although practical 

experiments show that this step is avoidable because we lose primary information. The 
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optimization algorithm tends to distribute the error across the entire surface. It is useful 

to obtain a smoother surface, when we are able to ensure there is no deformation. On the 

other hand, it is better to omit this last step when we are trying to identify a possible 

deformation, as it causes the model to lose information; the deformation always 

becomes weaker after the optimization (Fig. 4.4). Although the optimization process has 

been considered, we end the restoration at step 7 in the simulations shown later.  

 

Figure 4.2: The method, step by step. 1) Surface definition. 2) Incorporation of paleomagnetic data. 3) 

Flattening. 4) Vertical axis rotation (unneeded in this example because paleomagnetic data of the pin-

element fits with the reference). 5) Translation and rotation fitting. 6) Iterating process of step 5 with 

same results. 7) Welding of common vertices. 8) Optional optimization process. 
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Figure 4.3: Rotation of an individual triangle with and without using the paleomagnetic vector. c0 is the 

barycenter of the triangle. pmag is the paleomagnetic vector and ref its reference.  

 

Figure 4.4: Dilation of the restored surface before and after the optimization step. Due to the optimization, 

the dilation decreases but the expected pattern disappears.  

 

4.1.1 Formulation 

We now detail the particular equations used in the code: 

For a triangle defined by its vertices vi, its barycenter is 
3

321
0

vvvc ++
=  and its 

normal vector is 0201 cvcvN ×= . 

The rotation matrix for the flattening step v  is: 00
' )( ccvR ii +−⋅=
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where xyz is the rotation axis and ψ the magnitude. As the rotation axis is horizontal it is 

possible to write the rotation matrix as: 
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  If the surface is inverted: ψψ −=180inv  

The fitting process of translation and rotation is an iterative process: 

1) Fix pin-element triangles.  

2) Seek for neighbourhoods. 

3) If pmag is defined  Rotate to fit with its reference: 
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4) Translation and rotation. Objective: minimize distance between vertices. 
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• 2 vertices fixed 

Translation when 2 vertices are fixed (rotation is determined by pmag): 

2/)( 2211 abab vvvvntranslatio −+−=  where a is the initial triangle and b the fixed. 

Translation and rotation with 2 vertices of the triangles fixed (only if pmag is not 

defined or if it has some error allowed; 095 >α ): 
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• 3 vertices fixed 

Translation with 3 vertices of the triangle fixed. The triangle must have the same 
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5) After fitting each triangle, come back to the point 2. 
 

The optional optimization step is based on the Simulated Annealing method. Nodes 

are moved randomly to decrease a potential function U (Eq. [1]). The change is 

accepted if  and if 01 UU <
( )

ae Tk
UU

>⋅
−

− 01

 (some local worsen is allowed in order to find 

the global minimum and not only a local one). The temperature (T) decreases with the 

number of iterations, at the end only changes that really decreases U are allowed   
α

⎟
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⎞

⎜
⎝
⎛

+
−=

1
10 M

mTT where m is the actual iteration and M the total number of iterations. 

By default: 1,1,02.0,9.0 0 ==== αTka  

 

4.2 Parametric approach 

This proposed alternative approach incorporates paleomagnetic information in an 

unfolding algorithm based on the parameterization of the surface, a method also valid 

for surfaces folded under flexural conditions (Ramón et al., in review). We have 

incorporated this constraint in the gOcad (by Paradigm2) code (Massot, 2002). 

                                                 
2 http://www.pdgm.com
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Any surface S ( ) can be projected onto a map C ( ) using a parametric 

representation (Fig. 4.4). This so-called surface parameterization problem has been 

extensively studied in the computer graphics community. We summarize the main ideas 

below and refer the reader to Botsch et al. (2010) and Floater and Hormann (2005) for 

further details and discussions, and Mallet (2002), Moretti et al. (2005) and Moretti 

(2008) for more details about the application of the free boundary parameterization to 

surface restoration. Each point in C defined by the coordinates u=(u,v) has a unique 

associated image in S x(u) with coordinates (x,y,z): 

3ℜ 2ℜ

S
z
y
x

C
v
u

∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎯⎯⎯←
⎯⎯→⎯

∈⎥
⎦

⎤
⎢
⎣

⎡
= xu xu

ux

)(

)(

              [2] 

For a single surface there are many possible parametric representations. However, 

for any parameterization it is possible to define the metric tensor G(u,v) which defines 

the intrinsic properties of the surface.  

The main assumption of most restoration algorithms is the horizontality of the 

initial surface. Thus, the restoration problem is equivalent to look for a particular 

parameterization u(x). Moreover, we focus on surfaces folded under flexural conditions 

that lead to globally developable surfaces (Gaussian curvature equal to zero almost 

everywhere). This assumption implies the preservation of lengths and angles in the 

folded surface.  

The paleo-geographic coordinate system (u,v) can be freely and arbitrarily chosen 

and because of simplicity it is assumed to be rectilinear and orthonormal. Because of the 

principle of minimum deformation, the metric tensor G associated with the local 

parameterization must be close to the unit tensor (Eq. [3]). 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
=≅→≅−⋅=

10
01

),(0),(2/1 IvuGIvuGε                     [3] 

From a given 3D surface, the restoration problem can be addressed by computing 

two coordinates (u,v) on the surface so that:  

1
0
=∇=∇

=∇⋅∇

vu
vu

                       [4] 
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The first constraint means that both gradients are orthogonal and the second that 

they have the same norm (Fig. 4.4). These two conformality constraints can be 

discretized on the surface in order to compute the parameterization, e.g. see Lévy and 

Mallet, (1999) or Levy et al. (2002). In this work, we started with a parameterization 

method developed by Massot (2002), which starts from a pin-element on the surface 

where two directions  and  are chosen so as to be mutually orthogonal and 

orthogonal to the local normal vector n0 (Fig. 4.4B). This method starts by propagating 

this local frame to all the nodes of the surface. For this, the frame is rotated along an 

axis l given by the cross product of the normal at the pin-point n0 and the normal at the 

current point n1. (Figs. 4.4B&C). Last, the u and v coordinates are integrated 

numerically from the pin-point coordinate using a least-squares method so as to honor 

the input gradients at all locations (Fig. 4.4D), see details in Massot, (2002) and Mallet 

(2002).  

0u∇ 0v∇

Although this method often provides good results in moderately deformed areas, it 

remains quite sensitive to the initial solution and fails for complexly folded structures. 

We improve this restoration approach by using paleomagnetic data. The idea is to use 

the paleomagnetic values defined in all points of the surface as the initial gradient 

values . The gradient is a vector contained in the surface, thus, the initial 

paleomagnetic vector is rotated 

u∇

to have null inclination and so to be embedded in the 

surface. Paleomagnetic data is known in specific sites and then interpolated to the entire 

surface as described in Chapter 6. 
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Figure 4.4: Parameterization of the surface. A) 3D surface can be mapped onto a 2D plane by computing 

a curvilinear coordinate system u(x,y,z) which is chosen to be rectilinear and orthonormal. B-C) 

Algorithm used  to compute the initial parameterization. D) Parameterized surface. 

 

4.3 Control parameters 

The control parameters are basically the dilation and the strain ellipse described in 

the previous chapter (section 3.1.5) for the analysis of deformation of analog models. In 

our examples it is possible to calculate the real values of deformation because we know 

all points of the surface before and after deformation. However, in a real case, only 

estimated values can be obtained from the restored surface. If we compare the folded 

surface with the initial one we have the real values of deformation and if we compare 

the folded surface with the restored one we calculate the retro-deformation or the 

estimated values of deformation (Fig. 4.5).  
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Figure 4.5: Deformation states (initial, folded and restored). Real deformation and dilation (dreal) compare 

folded and initial surfaces while retro-deformation (d) compares folded with restored surface. 

Ideally, deformation and retro-deformation may coincide, but it strongly depends on 

the restoration process applied. Deformation of the restored surface (retro-deformation) 

may be used to validate the restoration process and provide an idea of the real 

deformation that has undergone the folded structure. However, deformation results of 

the restoration must be carefully evaluated, because they may be influenced by several 

causes:  

1) Bad reconstruction of the folded surface. All geological information must be 

included and contrasted in the model. However, when little information is available, the 

reconstruction is based on assumptions and thus, the importance of a feedback between 

restoration and reconstruction. Curvature analysis may also help evaluate reconstruction 

problems (i.e. high values of Gaussian curvature show a non-developable area; Lisle, 

1992).  

2) Bad restoration of the surface. Any restoration algorithm is valid under certain 

assumptions that must be checked; structures folded under flexural or simple shear 

mechanisms must be restored with different algorithms. Moreover, algorithms produce 

particular artifacts that must be recognized (i.e. the pin-element dependency). Thus, the 

importance of checking the methods with well known analog models.  

3) Real deformation. Although it is difficult that a restoration method perfectly 

reproduce the deformation process, it may provide an idea of the deformation that has 

suffered the structure during folding. Actually, this process helps in the decision-making 

and helps acquiring more data. 
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The parameter we have mostly used to evaluate the restoration and to compare 

results is the dilation calculated for each triangle. When we assume that restoration is 

correct a further analysis can be done calculating the strain ellipse to evaluate 

magnitude and orientation of deformation. Additioanlly, we can characterize the folded 

surface with a curvature analysis. 

Dilation measures the area variation within the triangles. Negative or positive 

dilation respectively correspond to contraction or expansion of the folded surface, with 

respect to the restored (Eq. [5]) or initial surface (Eq. [7]). A completely developable 

surface folded under flexural conditions (isometric constraints) would have null dilation 

everywhere. The restoration methods developed here are valid for globally developable 

surfaces in which this condition is nearly fulfilled, thus, the mean dilation (Eq. [6]) must 

have low values. Moreover, the distribution of maximum dilation values in a good 

restoration process may correspond with those expected; in order to quantify the 

difference between the real and calculated dilation values we measure the mean error 

between them (Eq. [8]). Although the absolute mean values dmean and e provide a 

numerical value, a qualitatively analysis is also necessary. On the other hand, we cannot 

forget that only d and dmean can be computed in a real case whereas that dreal and e 

require the knowledge of the initial surface, unknown in nature.  

Dilation of restored surface (retro-dilation): 
restored

restoredfolded

Area
AreaArea

d
−

=          [5] 

Mean dilation in absolute value: ∑= dNdmean 1             [6] 

Real dilation: 
initial

initialfolded
real Area

AreaArea
d

−
=                         [7] 

Mean error between real and retro-dilation in absolute value: ∑ −= ddNe real1     [8] 

Strain ellipse is a measure of the anisotropy of the deformation. As described in 

section 3.1.5, we first compute the affine transformation matrix M that relates the points 

in the two states. The matrix coefficients are determined using the coordinates of the 

vertices of the folded and restored surfaces. Second, we consider a circle centered on the 

barycenter of each triangle in the restored state, and apply the transformation matrix M 

to the canonical matrix of the circle. The circles become deformation ellipses. The 

magnitude of the deformation is then calculated as the ratio between the major and 
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minor axis of the deformation ellipse, while the orientation of the deformation is the is 

the trend of the major axis. We usually plot the strain ellipse in the restored state, but we 

always assume that the restored state is equivalent to the initial and therefore the 

undeformed. 

Moreover, we can perform a curvature analysis of the surface (in terms of Lisle and 

Toimil, 2007). The mean normal curvature is the arithmetic average of the two principal 

curvatures (M=(k1+k2)/2) and expresses the general degree of convexity (M > 0) or 

concavity (M < 0) of the surface at that point. The Gaussian curvature is the product of 

the two principal curvatures (G=k1*k2) and is an indicator of the develoapility of the 

surface. Lisle and Toimil (2007) propose a clasification of folds that uses both 

curvatures: synclastic antiform (M>0, G>0), anticlastic antiform (M>0, G<0), synclastic 

synform (M<0, G>0) and anticlastic synform (M<0, G<0). 
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5 Checking the consistency of the restoration 

methods: surface sensitivity  

In this chapter we analyze the consistency of the methods assuming that 

paleomagnetic variable is completely reliable and perfectly know in all points of the 

surface. In next chapter we deal with the effects of paleomagnetism resolution and 

confidence. 

First tests to check the consistency of the methods were done with completely 

developable surfaces, like a cylinder, which were theoretically described (using 

Matlab). All restoration methods for this kind of surfaces, independently of the 

approach and the usage or not of paleomagnetism, lead to equivalent solutions. On the 

other hand, we usually find complex structures in geology that have undergone some 

deformation even though they had been folded under flexural conditions. These are the 

type of structures we have simulated with the analog models described in Chapter 3, 

which we will use now to test the proposed restoration methods: a conical fold based on 

the San Marzal Pericline (Fig. 5.1) and a curved fold based on the Balzes Anticline (Fig. 

5.3). 

We must remember that the goodness of analogs is that we can completely 

characterize the structure before and after deformation because we know the surfaces 

with their reference system in both the initial and folded states. Thus, before evaluating 

the results of restoration, we are going to calculate in the first section the real 

deformation suffered by the upper surface of the models.  

 

5.1 Expected results 

Ideally, the restored surface should correspond with the initial surface. Therefore, 

the expected results are those obtained by comparing the initial and the folded surface 

(Fig. 4.5). As detailed in section 4.3, we calculate the real dilation (change of area) and 

the strain ellipse for all triangles. Additionally, we perform the curvature analysis.  
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The first model we are going to analyze is the conical fold based on the San Marzal 

Pericline (Fig. 5.1) because it is less complicated and has a lower mesh density than the 

curved fold based on the Balzes Anticline (Fig. 5.3). Curvatures are calculated in the 

folded surface but we visualize their values in the initial undeformed surface in order to 

easily compare all properties (Fig. 5.2). Gaussian curvature is the property that allows 

us to assess if the surface is developable. It has low values almost everywhere except in 

the pericline closure, and therefore we can state that the surface is globally developable. 

Mean normal curvature is positive (red colors) in the anticline and negative (blue 

colors) in the synclines. The fold classification (Lisle and Toimil, 2007) clearly 

distinguishes between antiforms and synforms, although synclastic and anticlastic areas 

are more ambiguous. 

Dilation is the main property used to measure deformation. The areas of maximum 

dilation values correspond with those of maximum normal curvature. Positive dilation 

values indicate expansion of the surface (tangential-longitudinal strain) and are located 

in the anticline hinge (synclastic and anticlastic antiform), while negative values mean 

compression and are located in the synclines (inner hinges). The strain ellipse offers 

extra information about the anisotropy of the deformation. The areas with higher values 

of strain ratio are compression areas, arguably because deformation concentrates in less 

space (inner hinges). Moreover, there is an orientation trend in these areas that 

corresponds with the fold axis. 

 

Figure 5.1: Conical fold. A) Analog model based on the San Marzal pericline. B) Digitalized model with 

values of normal curvature (M) displayed. 
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Figure 5.2: Curvature analysis and real deformation of the San Marzal model. Properties are displayed in 

the initial horizontal surface. Dashed black lines divide the maximum dilation areas. A) Mean normal 

curvature (M=(k1+k2)/2). B) Gaussian curvature (G=k1*k2). C) Fold classification described by Lisle 

and Toimil (2007): 1.synclastic antiform (M>0, G>0), 2.anticlastic antiform (M>0, G<0), 3.synclastic 

synform (M<0, G>0), 4.anticlastic synform (M<0, G<0). D) Real dilation (dreal=(Afolded-Ainitial)/Ainitial). E) 

Anisotropy of the strain ellipse; strain ratio: major axis / minor axis. F) Strain orientation. Major axis 

orientation. Axis displayed in those triangles with meaningful strain ratio (>1.07). 
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Figure 5.3: Curved fold. A) Analog model based on the Balzes Anticline. B) Digitalized model with 

values of normal curvature (M) displayed. The small picture shows the inverted area. 

 

Figure 5.4: Curvature analysis and real deformation of the Balzes model. Dashed black lines divide the 

maximum dilation areas and dashed blue lines the maximum strain ratio areas. A) Mean normal 

curvature. B) Gaussian curvature. C) Fold classification: 1.synclastic antiform, 2.anticlastic antiform, 

3.synclastic synform, 4.anticlastic synform. D) Real dilation. E) Strain ration. F) Strain orientation. Major 

axis orientation. Axis displayed in those triangles with meaningful strain ratio (>1.07). 
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A similar analysis is done for the second analog model; the Balzes Anticline (Fig. 

5.4). Again, maximum dilation areas correspond with those of maximum curvature, all 

located at the hinges of the folds where tangential-longitudinal strain has taken place. 

However, in this case, the maximum strain ratio has a bit different pattern and it is 

possible to associate it with the Gaussian curvature. The most deformed areas are those 

with maximum Gaussian curvature (no matter the sign). The orientation of the major 

axis of the strain ellipse seems to be perpendicular to the fold axis orientation in the 

outer hinges (as expectable from the Gairola’s [1967] models) where there is dilation 

and parallel to the fold axis in the inner hinges where there is contraction. 

 

5.2 Restoration with and without paleomagnetism 

After this round through the real deformation parameters we are going to test the 

incorporation of the paleomagnetic constraint into the restoration methods. We are 

going to unfold the surfaces with the piecewise approach using and not using 

paleomagnetism (Pmag3DRest and UNFOLD methods respectively) as well as with the 

parametric approach (gOcad method with and without the paleomagnetic constraint). 

The piecewise restoration is quite sensitive to the pin-element selection, as we will 

see in Section 5.4, but for our current purpose we stick to the traditional approach 

ofplacing a pin-element in the undeformed area, although not in the border. The 

orientation of the paleomagnetic vector also has some influence in the results; for this 

example we try to select one oblique to the main structures that better registers the 

deformation, but of course this depends on the real geology setting in natural cases. 

Eventually, in these simulations we consider paleomagnetism defined in all triangles. 

We first analyze the piecewise restoration of the San Marzal model using and not 

using paleomagnetism (Fig. 5.5, Table 5.1). Restoration without paleomagnetism seems 

to be pretty good in terms of mean dilation (dmean without pmag < dmean with pmag) but 

restoration with paleomagnetism better locates real deformation (e with pmag < e 

without pmag). The restoration without paleomagnetism achieves the restored surface 

with minimum deformation because triangles are free to find the best fitting. However, 

the paleomagnetic constraint yields a restored surface more similar to the initial one.  

Dilation values of the restored surface with paleomagnetism are mostly coherent with 
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the real dilation in the expected areas: expansion in the anticline and compression in the 

synclines. On the other hand, absolute values are always smaller than those expected 

(dmean < dreal_mean, e >> 0) because of the restoration method itself which try to minimize 

deformation. 

Additionally, the anisotropy of deformation (strain ellipse) is coherent for the 

restoration with paleomagnetism and has less meaning for the restoration without 

paleomagnetism. The compression area with maximum strain ratio coincides with the 

real one and shares the same orientation. Moreover, the shape of the surface restored 

with paleomagnetism is closer to the expected rectangle. 

This is a good example where piecewise restoration works well and 

paleomagnetism provides additional information about the real deformation of the 

surface. Let us compare now this results with the second method based on the 

parameterization. 

The parametric approach without the incorporation of paleomagnetism is unable to 

reach a proper restoration of the surface (Fig. 5.6B) and mean dilation values are to high 

(dmean ≈ 10% [Table 5.1]). We can say that this restoration method is only valid for 

smoothly folded structures and not for complex folds such as this example. This method 

is too dependant on the initial solution and for this reason the usage of paleomagnetism 

is crucial to define it (particularly in non-cylindrical and non-coaxial structures).  

The shape of the restored surface with paleomagnetism almost perfectly matches 

the expected one and orthogonality is preserved in the restored state. The distribution of 

maximum dilation values roughly corresponds with those expected, although the signs 

do not match in this case (restored surface does not show the contraction area). On the 

other hand, maximum strain orientation approximately coincides with the expected one. 

The restoration method assumes isometric parameterization based on developable 

surfaces folded under flexural conditions but we have used it to restore globally 

developable surfaces with small deformation in complex folded areas. Therefore, the 

unfolding algorithm minimizes the deformation showing dilation patterns similar to 

those real, but it could never predict the real deformation. Because of that, we 

recommend the usage of several restoration methods in order to compare results. In this 

case for example, the strain orientation of the compression area with a maximum strain 

ratio is trustable because almost coincides with both techniques.  
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Figure 5.5: Piecewise restoration of the San Marzal model (regular triangulation, original mesh density). 

Dashed black lines are useful to compare the restored surface with the initial one and real values of 

deformation (Fig. 5.2). The pin-element is highlighted with a red circle. A) Restoration using 

paleomagnetism (Pmag3DRest method). The red arrow is the paleomagnetic orientation. B) Restoration 

without paleomagnetism (UNFOLD method [Gratier et al., 1991]). 1) Dilation (d=(Afolded-

Arestored)/Arestored). 2) Strain ratio: major axis / minor axis. 3) Strain orientation: major axis displayed in 

those triangles with meaningful strain ratio (>1.07). 
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Figure 5.6: Parametric restoration of the San Marzal model. Dashed black lines are useful to compare the 

restored surface with the initial one and real values of deformation (Fig. 5.2). A) Restoration using 

paleomagnetism: 1) dilation, 2) strain ratio, 3) strain orientation. B) Restoration without paleomagnetism 

with dilation values. 

SAN MARZAL (dreal_mean=0.0433) 

  Piecewise restoration Parametric restoration 

  with pmag without with pmag without 

e 0.0392 0.0442 0.0459 0.0964

dmean 0.0174 0.0086 0.0164 0.0925

Table 5.1: Mean dilation values for the restoration of San Marzal. Mean error between real and retro-

dilation in absolute value: ∑ −= ddNe real1  (Eq. [8]) Mean dilation in absolute value: ∑= dNdmean 1  

(Eq. [6]). Mean real dilation in absolute value: dreal_mean.  

The next example (curved fold based on the Balzes Anticline) is more complicated 

than the previous because it has more deformation (higher dreal_mean) and the surface is 

less developable (higher Gaussian curvature). Moreover, the meshing is denser, 

hampering the piecewise restoration. 
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Piecewise restoration (Fig. 5.7, Table 5.2) is not as accurate for this example and 

the benefits of paleomagnetism are not as clear (e & dmean without pmag < e & dmean 

with pmag). Dilation increases towards the opposite part of the pin-element due to the 

propagation of errors. Moreover, the dilation values seem to be more related to the areas 

of higher Gaussian curvature than with the real dilation, particularly in the interference 

syncline between both anticlines. 

 

Figure 5.7: Piecewise restoration of the Balzes model. Dashed lines are useful to compare the restored 

surface with the initial one and real values of deformation (Fig. 5.4). The pin-element is highlighted with 

a red circle. A) Restoration using paleomagnetism (Pmag3DRest). The red arrow is the paleomagnetic 

orientation. B) Restoration without paleomagnetism (UNFOLD). 1) Dilation. 2) Strain ratio. 3) Strain 

orientation.  
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Figure 5.8: Parametric restoration of the Balzes model. Dashed lines are useful to compare the restored 

surface with the initial one and real values of deformation (Fig. 5.4). A) Restoration using 

paleomagnetism: 1) dilation, 2) strain ratio, 3) strain orientation. B) Restoration without paleomagnetism 

with dilation values. 

In this situation, it seems more convenient to unfold the surface with the second 

restoration method, the parametric approach, because the results are really encouraging 

(Fig. 5.8). As in the example of San Marzal, the method does not work well without the 

paleomagnetic constraint. Thus, we focus on the restoration with paleomagnetism.  

Dilation and strain ratio patterns are fairly similar to those expected. Strain orientation 

is more confuse this time. 

BALZES (dreal_mean=0.0989) 

  Piecewise restoration Parametric restoration 

  with pmag without with pmag without 

e 0.1087 0.0988 0.0856 0.1166

dmean 0.0415 0.0240 0.0228 0.0572

Table 5.2: Mean dilation values for the restoration of Balzes.  
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5.3 Mesh sensitivity 

In discrete computer-based models some algorithms may lead to artifacts when 

surface sampling changes. Therefore, we check the robustness of the method towards 

variations in density and structure of the mesh (Ramón et al., in review).  

 

5.3.1 Mesh density sensitivity 

The impact of mesh density is evaluated by decimating the initial point set defined 

by the nodes of the reference grid and preserving the meshing method and boundary of 

the surface. We decimate the initial nodes by a factor of two for rows and columns. The 

San Marzal model initially has 722 triangles and 400 nodes and after decimation: 200 

triangles and 121 nodes. The Balzes model has 3570 triangles and 1872 nodes and after 

decimation: 936 triangles and 513 nodes. 

The impact of mesh density for the simple geometry model (San Marzal) is only 

evident when analyzing the values of dilation for the restored surface because it has a 

proper rectangular shape (Fig. 5.9). With a higher mesh density, dilation in the restored 

surface is more localized along the hinges of the fold, whereas the lower mesh density 

model has a greater dispersion of dilation, partly due to the difference in triangle size 

(Fig. 5.9 vs. Fig. 5.5 & Fig. 5.6). However, differences in mean dilation between low 

and high density models are not great (Table 5.3 vs. Table 5.1), indicating that mesh 

density has a limited impact on restoration results. 
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Figure 5.9: Mesh density analysis of San Marzal (regular triangulation). A) Decimated initial surface 

(with boundary preservation). B) Restored surface using the piecewise approach with paleomagnetism. 

Dilation values displayed. C) Piecewise restoration without paleomagnetism. D) Parametric restoration 

with paleomagnetism. E) Parametric restoration without paleomagnetism. 

Similar considerations can be done for the second model of a curved fold (Balzes) 

(Fig. 5.10). Areas of maximum and minimum dilation obtained with both restoration 

methods are equivalent for the surfaces with more and less mesh density (Fig. 5.10 vs. 

Fig. 5.7 & Fig. 5.8). However, in this case there is an additional error produced by the 

influence of the border, particularly in the neighborhood of the pin-element where the 

size of triangles is smaller in order to preserve the boundary of the initial surface. This 

error causes an increase on the mean dilation value (Table 5.3 vs. Table 5.2). 
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Figure 5.10: Mesh density analysis of Balzes. A) Decimated initial surface (with boundary preservation). 

B) Restored surface using the piecewise approach with paleomagnetism. Dilation values displayed. C) 

Piecewise restoration without paleomagnetism. D) Parametric restoration with paleomagnetism. E) 

Parametric restoration without paleomagnetism. 

Piecewise restoration Parametric restoration 
dmean 

with pmag without with pmag without 

San Marzal Decimated 0.0197 0.0084 0.0362 0.0879 

Balzes Decimated 0.0707 0.0381 0.0500 0.0550 

Table 5.3: Mean dilation values (dmean) for decimated and re-meshed restored surfaces.   
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5.3.2 Mesh-type sensitivity 

The initial mesh of the surface is a regular triangulation formed with right-angled 

triangles defined by joining neighboring nodes of the reference mesh. We try a second 

triangulation method: an equilateral grid obtained by adaptive Delaunay’s sampling. 

The equilaterality of triangles is maximized, but the nodes of the triangulated surface do 

not coincide with those of the actual reference mesh. This triangulation method is 

performed in gOcad™ using the “beautify for equilaterality” command (Mallet, 2002). 

Paleomagnetism is interpolated into the new mesh. This may introduce some noise that 

does not influence significantly the final restoration result. 

Both triangulations (regular and equilateral) lead to equivalent dilation patterns of 

the restored surfaces of the San Marzal model (Fig. 5.11 vs. Fig. 5.5 & Fig. 5.6) and 

almost equivalent for the Balzes model (Fig. 5.12 vs. Fig. 5.7 & Fig. 5.8). Yet, for the 

piecewise approach, the restored surface with the regular mesh matches the expected 

undeformed state with less scattering. This can be particularly observed in the Balzes 

model where dmean increases (Table 5.4 vs. Table 5.2) and dilation pattern is blurred. 

Piecewise restoration without paleomagnetism is unable to reach a good solution in this 

case. Therefore, we can say that for a dense initial mesh, the meshing type may 

influence the restoration for the piecewise approach, especially, when paleomagnetism 

is not considered. On the other hand, piecewise restoration of the Balzes model was 

uncertain also with the regular mesh. 

Summarizing, the restored surfaces and the dilation patterns are equivalent for both 

the regular and the equilateral grid. The decimated regular mesh leads to an equivalent 

result although with smoother definition of the dilation pattern. Apart from this 

consideration, paleomagnetism still guarantees the reliability of the result and the 

difference with the restoration results when the paleomagnetic vectors are not 

considered is notable. 
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Figure 5.11: Mesh-type analysis of San Marzal. A) Initial surface triangulated with an equilateral mesh 

(initial nodes of the reference mesh are not maintained, but density is mantained). B) Restored surface 

using the piecewise approach with paleomagnetism. Dilation values displayed. C) Piecewise restoration 

without paleomagnetism. D) Parametric restoration with paleomagnetism. E) Parametric restoration 

without paleomagnetism. 
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Figure 5.12: Mesh-type analysis of Balzes. A) Initial surface triangulated with an equilateral mesh (initial 

nodes of the reference mesh are not maintained). B) Restored surface using the piecewise approach with 

paleomagnetism. Dilation values displayed. C) Piecewise restoration without paleomagnetism. D) 

Parametric restoration with paleomagnetism. E) Parametric restoration without paleomagnetism. 

Piecewise restoration Parametric restoration 
dmean 

with pmag without with pmag without 

San Marzal Re-meshed 0.0151 0.0053 0.0171 0.1165 

Balzes Re-meshed 0.0660 0.1805 0.0220 0.0653 

Table 5.4: Mean dilation values (dmean) for decimated and re-meshed restored surfaces.  
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5.4 Pin-element sensitivity 

The pin-element or seed is the starting point to unfold the surface. In the piecewise 

restoration, the pin-element is the first triangle laid flat with fixed barycenter, while in 

the parametric restoration, the pin-element is the node from which starts the propagation 

of the initial solution. Piecewise restoration and calculus of the initial solution in the 

parametric restoration are both iterative processes and thus, too dependent on the 

starting point (the pin-element). Moreover, parametric restoration is largely conditioned 

for the initial solution. Fortunately, in the parametric restoration with paleomagnetism, 

the latter determines the initial solution and then, it is independent on the pin-element. 

Therefore, we are going to analyze the effect of the pin-element on the piecewise 

restoration and on the parametric restoration without paleomagnetism (Ramón et al., in 

review). 

As a general idea, the pin-element should be chosen with geological meaning; it is 

normally placed in the undeformed area of the surface as the foreland. However, any 

pin-element can be chosen to run the unfolding algorithm. The only requirement to have 

a final restored surface with geological meaning is to translate and rotate it (rigid block 

movement) to fit the known fixed reference. Thus, we are going to locate the pin-

element in deformed and undeformed, anchored and free areas in order to evaluate its 

effect. 

In general terms, we can say that the piecewise restoration works fairly well for the 

simpler model (San Marzal) while it presents some problems for the more complicated 

one (Balzes), particularly when paleomagnetism is not considered (Fig. 5.13).  

We can see from the San Marzal model that the worse solution is to locate the pin-

element in a corner of the surface. It is a fixed and undeformed area with geological 

meaning, but the proximity of the border introduce mathematical effects that we should 

avoid. Therefore it seems advisable to choose the pin-element inside the surface or at 

least not in the corner.  

On the other hand, we have also restored the surface using a pin-line instead a pin-

point, because as a matter of fact, a complete side of the model is fixed. Restoration 

with paleomagnetism is coherent with expected results, while restoration without this 
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constraint is unable to reach a proper solution, displaying high dilation values caused by 

a propagation error.  
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Figure 5.13 (continued): Pin-element analysis, piecewise restoration starting from different points. 1) San 

Marzal model. 2) Balzes model. A) Restoration with paleomagnetism. B) Restoration without 

paleomagnetism. Dilation values displayed. 

The restoration of the Balzes model is more uncertain in any case. Dilation patterns 

of restored surfaces highly vary as the pin-element placement changes. This difference 

among solutions raises the question of whether the deformation obtained with the 

restoration represents the real one or not. In any case, the restoration with 
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paleomagnetism clearly improves the solution yielding the proper rectangular shape of 

the initial surface. 

Another consideration we can make by observing the results (particularly from the 

Balzes model) is that generally, the deformation concentrates far from the pin-element. 

Therefore, if we want to use the restoration to predict real deformation, we should avoid 

placing the pin-element in a deformed area (as in the first simulation of Fig. 5.13). 

 

Figure 5.14: Pin-element analysis for the parametric restoration without paleomagnetism. 1) San Marzal 

model. 2) Balzes model. Dilation values displayed.  

The parametric restoration is sensitive to this variable only when restoring without 

paleomagnetism, on the other hand, only useful to restore simpler structures. The main 

difference is the selection of the pin-element inside or outside the main structure (Fig. 
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5.14): a pin-element located inside the main structure where deformation has taken 

place seems to be a better choice in order to get a restored surface more similar to the 

initial one. 

 

5.5 Multi-surface restoration 

The restoration methods developed in this work unfolds single surfaces and do not 

consider volumes. However, multi-surface restoration is the first step for a multi-map 

volume restoration and it may be a good approximation to the real 3D problem.  

 
Figure 5.15: Multi-surface restoration of the Balzes model. A) Initial surfaces (upper and lower) with real 

dilation values. B) Restored surfaces with retro-dilation values. Note: the range of dilation is not the same 

for initial and restored surfaces, being higher for the first.  

Thanks to the CT scanner we are able to reconstruct internal surfaces of the models 

and we can characterize completely the Balzes, although the resolution is worse than in 

the case of photogrammetric reconstruction. The restoration method we are going to 

apply to the model obtained with the CT scanner is the parametric approach with 

orientation of paleomagnetic data of pmag3 because it is the one that has shown better 

results. We restore separately the upper and lower surfaces of the model (just the most 
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representatives) and compare them with the expected results. Real dilation values 

(already analyzed in Section 3.2.3 Fig.3.17) show extension in the outer parts of the 

anticline and compression in the inner parts, in accordance with the tangential-

longitudinal deformation described by Ramsay (1977).  

Restored surfaces (Fig. 5.15) display opposite signs of dilation which suggest the 

real behavior of the volume: extension in the outer parts of the anticline and 

compression in the inner parts. Dilation is higher in the real case than in the restoration, 

but the consistency in the difference between both surfaces (opposite dilation signs) is 

quite encouraging. 
 

5.5.1 Comparison with a 3D restoration method 

We may think that multi-surface restoration is far from recent real 3D restoration 

methods based on geomechanical approaches. However, for highly folded surfaces as 

those of our examples, these methods assume elasticity of materials and present several 

limitations we analyze in this Section 

We used Dynel3D (IGEOSS1; Maerten & Maerten, 2006) to restore the Balzes 

model. The stratigraphic units in Dynel3D are discretized with tetrahedral elements that 

are assigned elastic properties. The tetrahedral elements deform elastically in response 

to constraints such as applied and/or internal forces, displacements and interface 

contacts. Dynel3D uses an iterative, explicit solver that preserves mass and allows 

forces to be transmitted from node to node through the entire system until equilibrium is 

reached.  

One of the characteristics of the finite element methods (FEM) as this one, it is that 

requires strong boundary conditions, treating the geological body as a separate 

individual system delimited by a volume within which the calculations take place. A 

closed boundary or bounding box must be defined prior to the volume generation (Fig. 

5.16A). On the other hand, the physical-based restoration algorithm run in Dynel3D 

needs several rock mechanical properties to be set up. As these mechanical properties 

vary with lithology, we set the typology of a sandstone (Young's modulus: 2.2E10Pa, 

Poisson's ratio: 0.24, density: 2480kg/m3). The method also permits to model the 

                                                 
1 http://www.igeoss.com 
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behavior of the contact between units. Since the two layers of the model represent the 

same stratigraphic unit, we have blocked them in Dynel3D.  

 

Figure 5.16: Volumetric restoration of the Balzes model with Dynel3D. A) Initial model with its 

boundary box. B) Restored upper layer. C) Restored lower layer. Volumetric strain displayed: 

E1+E2+E3. 

With these initial settings, we unfold the layers assuming horizontality of initial 

state. The properties calculated are different than the used in our methods, but we can 

qualitatively compare results. We display the volumetric strain which is the sum of all 

main strains.  

The restoration method is unable to undo the deformation process because it can 

reach the initial rectangular shape of the surface (Figs. 5.16B&C). Strain consistently 

accumulates in the hinge anticlines of the upper layer and hinge synclines of the lower 

layer. However this strain is always positive, indicating than the volume needs to 

expand to reach the folded surface, and therefore, an unreal change of volume has 

occurred. 
 

5.6 Conclusions  

In this chapter, we have evaluated the goodness of the piecewise and parametric 

restoration methods using paleomagnetism, which is defined in all points of the surface. 

The paleomagnetic constraint improves the resultant surface in most cases achieving in 

general more similar deformation patterns to those expected. Particularly, we can 

highlight the importance of paleomagnetism when the methods present higher 

limitations: 1) the strong sensitivity to the pin-element of the piecewise restoration; and 

even more important, 2) the impossibility of the parametric restoration to achieve the 

expected solution for strongly folded surfaces (Table 5.5).  
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Additionally, we recommend the multi-surface restoration as previous step to real 

3D restoration. If horizons are correctly modeled and the surface restoration method 

applied works properly for one surface; the multi-surface restoration is able to indicate 

differences between surfaces offering volumetric information. We also emphasize the 

importance of CT analogs to test 3D restoration methods. 

  Piecewise rest. Parametric rest. 

Restoration 
Rest. with pmag better locates 

deformation patterns 

Rest. w/o pmag is invalid for 

complex structures 

Sensitivity to 

meshing 
Dilation patterns are equivalent Dilation patterns are equivalent 

Sensitivity to 

pin-element 

Too sensitive (although pmag 

improves the results) 
Insensitive with pmag 

Multi-surface 

restoration 
 Good 3D approximation 

Table 5.5: Summarizing table. 
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6 Checking the consistency of the restoration 

methods: paleomagnetic sensitivity  

In this chapter we analyze the influence of the initial paleomagnetic dataset on the 

results of the restoration methods. Specifically we analyze: 

- The influence of the initial orientation of paleomagnetic vectors.  

- The sensitivity to the error degree inherent to the definition of paleomagnetism for 

a given site.  

- The sensitivity to data availability and distribution, since in a real scenario 

paleomagnetic data is not defined in all points of the surface, being only available in 

scattered sites. Additionally, we propose an interpolation algorithm to extend sparse 

data to the whole surface. Then, we analyze the usage of scattered and interpolated data.   

 

6.1 Sensitivity to the initial paleomagnetic orientation  

In this section we analyze the effect on the orientation of the paleomagnetic vectors. 

In a real case we can not modify this parameter but we need to know if the orientation 

of initial paleomagnetic data conditions the result. Paleomagnetism in the analog 

models is defined by the sides of the triangles, and therefore we have three possible 

initial datasets. We restore the two analog models with the two restoration methods 

using the three paleomagnetic datasets (Fig. 6.1). 

The San Marzal model presents two preferred orientations with lower mean dilation 

and error values (Table 6.1) and better location of maximum dilation areas: pmag1 

(dataset used in previous examples) and pmag3 although the observed dilation is always 

smaller than the expected one.  These orientations are oblique to the main structure, 

while pmag2 is rather parallel to the fold axis. Although with this single observation is 

not feasible to generalize the result. 

The restoration of the Balzes model with the piecewise approach is more uncertain 

than the restoration with the parametric approach and, accordingly, we especially focus 

on the second method. The three restored surfaces present positive dilation in the main 
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anticline and negative dilation in the main syncline between both folds. Main 

differences appear in areas of maximum Gaussian curvature and at the boundary. 

Between the three simulations, the one restored with pmag3 has the minimum mean 

dilation error (e, Table 6.1) and presents the dilation pattern closest to the expected. 

This is the dataset used in previous examples, and again, is the most oblique to both 

folds. 

These results show that the methods examined are quite robust to the paleomagnetic 

data orientation. Although there are some variations in the dilation patterns, they are 

much less significant than the ones we observed for other factors, like for example the 

pin-element variation. That is quite reassuring, because, as mentioned before, in a real 

case we can not vary the paleomagnetic data. 
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Figure 6.1 (continued): Paleomagnetic orientation analysis. Paleomagnetism is defined with the different 

sides of the triangles: pmag1, pmag2, pmag3. 1) San Marzal model. Previous examples used pmag1. 2) 

Balzes model. Previous examples used pmag3. A) Piecewise restoration with paleomagnetism. B) 

Parametric restoration with paleomagnetism. Dilation values displayed. 

   pmag1 pmag2 pmag3 

e 0.0392 0.0519 0.0391Piecewise 

rest. dmean 0.0174 0.0191 0.0123

e 0.0459 0.0473 0.0451

San 

Marzal 

model 
Parametric 

rest. dmean 0.0164 0.0186 0.0169

e 0.0993 0.1051 0.1087Piecewise 

rest. dmean 0.0460 0.0415 0.0415

e 0.0924 0.0952 0.0856

Balzes 

model Parametric 

rest. dmean 0.0198 0.0177 0.0228

Table 6.1: Mean error and dilation values for restored surfaces using different initial datasets.   
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6.2 Sensitivity to the paleomagnetic accuracy  

Paleomagnetic data must be a reliable record of the magnetic field at the time of 

rock formation (Van der Voo, 1990; Pueyo, 2010) and it is always defined with a given 

accuracy (α95). In this section we analyze the effects of the paleomagnetic error degree. 

We define two initial datasets: 1) with a random error ≤5º with a confidence level of 

0.95 (α95=15º) and 2) with a random error ≤15º with a confidence level of 0.95 

(α95=15º). We restore the two analog models with the two restoration methods using 

both paleomagnetic datasets (Fig. 6.2). For the piecewise restoration there are two 

options: 1) use the paleomagnetic data as hard data although it is not completely 

accurate (Fig. 6.2B) and 2) use it with its angular variation (α95) allowing a free rotation 

of triangles according to that (Fig. 6.2C). This second option needs the iterative step 

used in the restoration without paleomagnetism (step 6 described in Section 4.1). 

In order to quantify the difference between the restored surface using and not using 

accurate data, we measure the mean error dilation between the surface restored from 

accurate paleomagnetic data and the surface restored (with the same method) from 

inaccurate paleomagnetic data (erest=mean(|drest0-drestAlfa95|, Table 6.2). In this case we 

do not compare the real dilation with the restored one (e) as we did in previous cases, 

but the dilation of the restored surface using ideal and real initial datasets (erest).  

For the initial dataset defined with an error minor than 5º and for both models, the 

piecewise restoration that uses initial data as hard data, without allowing free rotation of 

triangles, (option 1) produces lower mean error dilation (erest) than the piecewise 

restoration that allows free rotation (option 2). This agrees with dilation patterns. It can 

be observed that the first option leads to similar restored surface patterns than those 

obtained with the piecewise restoration using paleomagnetic data (Fig. 6.2A vs. Figs. 

5.5A & 5.7A) while the second option is similar to the restoration without 

paleomagnetism (Fig. 6.2B vs. Figs. 5.5B & 5.7B). 

In the same way, for the initial dataset with α95=15º, the dilation patterns of 

piecewise restored surface without free rotation (option 1 vs. option 2) are similar to the 

dilation patterns of the restoration with paleomagnetism and α95=0º, although the 

former have much more deformation. Because of that, the mean error dilation increases 

this time. Due to this deterioration of the results, we encourage to do an effort to achieve 

a reliable paleomagnetic dataset. We particularly propose in the appendices two ways to 
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improve the accuracy of paleomagnetic data: 1) we develop a program to help obtaining 

a better characteristic remanent component (Appendix 1) and 2) we model the effect of 

several structural sources of errors to help its identification (Appendix 2). 

Parametric restoration significantly improves results. The initial dataset with α95=5º 

yields result almost equal to those using the accurate dataset with α95=0º (erest=0.0055 

and 0.0035 in San Marzal and Balzes respectively). An initial dataset with α95=15º adds 

some undesirable deformation but still match pretty well. Again, parametric restoration 

shows lower sensitivity to the paleomagnetic uncertainties than piecewise restoration. 
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Figure 6.2 (continued): Paleomagnetic accuracy analysis using two initial datasets defined with an error 

minor than 5º and 15º respectively. 1) San Marzal model. 2) Balzes model. A) Piecewise restoration 

without free angular variation. B) Piecewise restoration with free angular variation corresponding with 

the paleomagnetic accuracy (α95). C) Parametric restoration. 

  erestAlfa95; α95=5º erestAlfa95; α 95=15º 
Piecewise rest. alfa95=0 0.0181 0.0431 

Piecewise rest. alfa95=α95 0.0241 0.0241 
San Marzal 

model 
Parametric rest. 0.0055 0.0163 

Piecewise rest. alfa95=0 0.0161 0.0624 

Piecewise rest. alfa95=α95 0.0412 0.0609 
Balzes 

model 
Parametric rest. 0.0035 0.0125 

Table 6.2: Mean error dilation between restored surface with paleomagnetism defined accurately and 

restored surface with an inaccuracy minor than α95 (erestAlfa95=mean(|drest0-drestAlfa95|)). 
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6.3 Sensitivity to paleomagnetic spatial resolution  

The most important factor in methods involving paleomagnetism is the resolution of 

the initial paleomagnetic dataset because in natural cases paleomagnetic vectors are 

only known in scattered sites. For the piecewise approach, paleomagnetism can be 

considered just where it is defined with no compulsory extrapolation, but for the 

parametric approach it must be defined everywhere, as it is used as the initial u gradient. 

This is the reason why we propose an interpolation algorithm, described in the next 

section. Before going into that, we analyze here the importance of having a dense initial 

dataset available for piecewise restoration without interpolation. 

We define two initial datasets (Fig. 6.3): decimated sites by a factor of four, and 

scattered sites defined only in a simulated outcrop (sites cutting the topographic surface) 

plus the foreland (corresponding with the pin-element). The second dataset would 

mimic a more realistic scenario. The foreland data could be derived from a borehole or 

reasonably assumed, like for example in the San Marzal model where the southern limb 

is in continuity with the undeformed Miocene rocks of the Ebro Basin. Equivalently to 

the previous section, we define the mean error dilation between the restored surface 

using paleomagnetism defined in all points and the restored surface using scattered data: 

erest=mean(|drest0-drestScatt|). Mean error increases as the density of initial datasets 

decreases (Table 6.3). With the scarcity of data, the restoration worsens because the 

deformation increases not in the expected areas. 

    

erestScatt 

decimated sites 

erestScatt 

scattered sites 

San Marzal model Piecewise rest. 0.0141 0.0264 

Balzes model Piecewise rest. 0.0397 0.0704 

Table 6.3: Mean error dilation between restored surface with paleomagnetism defined in all points and 

scattered data (erestScattp=mean(|drest0-drestScatt|)). Decimated sites are the initial dataset divided by four and 

scattered sites are 14 and 16 for San Marzal and Balzes respectively located in contrived outcrops and 

also in the foreland. 
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Figure 6.3: Paleomagnetic accuracy analysis using two initial datasets: A) decimated sites by a factor of 

four and B) scattered sites located in contrived outcrops and in the foreland. Piecewise restoration of San 

Marzal and Balzes model. 
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6.4 Interpolation of paleomagnetic data 

Interpolation algorithms are mandatory in the case of parametric restoration. In 

addition to that, the results of the previous section show that interpolation is convenient 

in piecewise restoration.  

We initially proposed an extrapolation technique based on the dip-azimuth domains, 

similar to the dip-domain concept of Suppe (1985) and Fernández et al. (2003). 

Neighbor triangles with similar orientation (i.e., those in the same bedding plane) will 

have the same paleomagnetic vector. However, this technique is not valid to extrapolate 

data to the whole surface strongly folded. Therefore, a second technique was developed. 

The core idea of this new interpolation algorithm is the propagation of the initial 

paleomagnetic data to all points, assuming the surface is completely developable.  

The paleomagnetic vector of a specific triangle is propagated to its neighbor by 

rotating the vector with the same global rotation that was applied to the triangle. The 

axis of rotation is the common side between both triangles and the angle of rotation is 

the angle between the normal vectors (Fig. 6.4A). The propagation of paleomagnetic 

vectors is an iterative process. Firstly, the initial paleomagnetic vector of one triangle is 

propagated to all its neighbors. Secondly, all neighbors with new data are used for the 

next iterations, propagating the paleomagnetic vector to all its neighbors and so forth 

(Fig. 6.4B). We propagate the paleomagnetic data to the entire surface for all single 

paleomagnetic sites. After that process each triangle has as many paleomagnetic values 

as initial sites. The final value is the mean of all of them. If the initial paleomagnetic 

sites have different precision (given by the confidence angle α95) it can be used to 

weight the mean. We have also tested other criteria like inverse distance to weigh the 

mean, but we obtained no clear improvements in the outcome. It is worth noticing that 

this method can be only applied in continuous surfaces.  

In order to evaluate the soundness of this interpolation algorithm, we firstly apply it 

to the San Marzal model with primary paleomagnetic data defined everywhere in the 

surface (in all its points). The interpolated paleomagnetism is the mean of all initially 

propagated vectors. The error between interpolated and real paleomagnetic data depends 

directly on the developability of the initial surface; this error is not very high in this case 

(Fig. 6.4C). In any case, the difference between measured and interpolated data is 1.2º 

on average and is always < 6º, which is acceptable  with regard to the typical deviation 
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error of α95 = 10º in most paleomagnetic sites (not far from the real resolution of the 

technique, Bazhenov, 1988). 

Secondly, we simulate the more realistic case advanced in the previous section with 

primary paleomagnetic vectors defined in only a few discrete sites of the fold and also 

in the foreland, taken as the reference (Fig. 6.4D). The interpolation of the 

paleomagnetic dataset is similar to the one with the paleomagnetism defined in the 

entire surface (Fig. 6.4E); the mean error between real and interpolated data is 1.3º in 

this case. These results encourage using this method in real cases (continuous surfaces) 

with sparse paleomagnetic data.  

Although this algorithm is feasible for the restoration methods used here, further 

improvements may be done in this area. Moreover, we also encourage the development 

of restoration methods that only consider scattered data in order to avoid any possible 

influence of interpolation. As we already mentioned, the algorithm explained here is 

only valid for continuous folds. Therefore, further efforts should be done to deal with 

discontinuities of the models (thrust planes and faults). 
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Figure 6.4: Paleomagnetism interpolation. A) Rotation of the paleomagnetic vector to propagate it from 

triangle to triangle. B) Propagation order starting from two different initial sites. The next step computes 

the average of both paleomagnetic propagated datasets. C) The interpolated paleomagnetism is calculated 

using all points of the surface as initial data. We plot the difference in degrees between real and 

interpolated paleomagnetic data.  D) Initial paleomagnetic sites location simulating a real case with sparse 

data. E) Difference between real and interpolated paleomagnetic data from the initial sites plotted in 

figure D. 
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6.5 Real-world case: sensitivity to accuracy and 

resolution  

Finally, we simulate a real scenario with inaccurate and scattered initial data that are 

interpolated. We reproduce the scattered datasets described in Section 6.3; 14 sites for 

the San Marzal model and 15 sites for the Balzes model (Fig. 6.3B). For these sites, we 

define two different initial paleomagnetic datasets, one with total accuracy (α95=0º) and 

the other with a random error ≤15º with a confidence level of 0.95 (α95=15º). These 

datasets are interpolated with the algorithm described in previous section. 

First of all, we need to find the error introduced by the interpolation algorithm. To 

do so, we calculate the difference between the real dataset with paleomagnetism defined 

in all points and the interpolated datasets from the scattered sites (both defined with and 

without total accuracy) (Fig. 6.5A). The simpler model has mean errors of 1.47º and 

2.69º for the interpolated datasets of α95=0º and α95=15º respectively, while the more 

complicated model has mean errors of 2.92º and 3.54º. Again, error is never too big in 

comparison with the usual paleomagnetism resolution (α95 ≈ 10º). 

Secondly, we restore the surfaces using the interpolated datasets and compare the 

results with those obtained with paleomagnetism defined in all points (Figs. 5.5A, 5.6A, 

5.7A and 5.8A). For the piecewise restoration we must clarify the following issue; in the 

translation and rotation step, we do not allow a free angular variation related to the α95 

value, but use paleomagnetism as hard data. We do it this way because if we set a free 

variation of 15º (as α95) the restored surface is equivalent to the one restored without 

paleomagnetism as observed in Section 6.2.  

Observing the restoration of the San Marzal model we can say that the restoration 

method based on the parameterization of the surface becomes more robust. Results 

define with more accuracy the main deformation area in the anticline hinge (maximum 

dilation). Even more important is that dilation patterns are similar in all three situations. 

This observation is stronger in the Balzes model; although dilation patterns become 

diffuse and are closer to a Gaussian curvature than to the real dilation, they are more 

coherent for the parametric restoration than for the piecewise restoration. 

In order to quantify the difference between the restored surface using interpolated 

dataset and the initial one, we measure the mean error dilation between the surface 
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restored with paleomagnetism defined in all points and the surface restored with 

interpolated data (eRest=mean(|drest0-drestInterp|)). The method based on the 

parameterization has lower values (Table 6.4) in both examples. That means, in general 

terms, that parametric restoration is more stable than piecewise restoration. 

On the other hand, restored surfaces of the Balzes model are almost independent on 

the initial paleomagnetic dataset (α95=0º or α95=15º). The reason is that the 

paleomagnetism is averaged with the interpolated algorithm, and the interpolation of 

paleomagnetic values with more or less accuracy leads to similar results. This makes the 

method appropriate to be used in real cases. 
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Figure 6.5 (continued): Paleomagnetic accuracy and resolution analysis. Initial scattered paleomagnetic 

datasets already defined in Figure 6.3B with total accuracy (α95=0º) and with random error minor than 15º 

(α95=15º). 1) San Marzal model. 2) Balzes model. A) Paleomagnetic error (in degrees) between the real 

dataset with paleomagnetism defined in all points and the interpolated dataset from the scattered sites. B) 

Piecewise and C) parametric restoration. 

    eRest Interp. α95=0º eRest Interp. α95=15º 
Piecewise rest. 0.0191 0.0272 San Marzal 

model Parametric rest. 0.0079 0.0113 

Piecewise rest. 0.0681 0.0825 Balzes 

model Parametric rest. 0.0203 0.0208 

Table 6.4: Mean error dilation between restored surface with paleomagnetism defined in all points and 

restored surface with interpolated data (erestInterp=mean(|drest0-drestInterp|)). 
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6.6 Conclusions 

Summarizing, the proposed restoration methods remain valid for a real case with 

scattered paleomagnetic sites, thanks to the interpolation algorithm. However, the 

parametric approach is more robust than the piecewise approach. On the other hand, we 

should not forget that the dilation patterns obtained with the restoration are just an aid to 

determine the real dilation, but they never provide the real dilation because they are 

conditioned for the restoration procedure.  

 133



 

 

 134



7 Map-view restoration 

In this chapter we explore the usage of paleomagnetism in map-view restoration 

techniques. Map-view restorations based on balanced cross-sections, also known as 

palinspastic restorations, have been long used to understand 3D patterns in fold and 

thrust belts (Kay, 1945 and 1954). Together with structural, isolith and isopach maps, 

they are very useful in underground oil and gas exploration. Palinspastic maps display 

folded or faulted strata restored to their paleogeographical location before deformation 

took place (folding or faulting). Classic (see for example Dalhstrom, 1969), or even 

recent approaches (Price and Sears, 2000), are based on balanced cross sections (2D). 

To ensure the map-view reconstruction effectively considers the entire volume of the 

materials represented and, therefore, respects the lengths of lines and the thicknesses of 

individual layers. The term palinspastic is derived from the Greek palin meaning again, 

and spastikos meaning pulling (Allaby and Allaby, 1999). We could consider this 

approach as an early 3D restoration technique. The map-view restoration approach 

proposed in this chapter does not concern surface restoration of individual structures; 

here we propose a cartographic map view restoration applicable at local and regional 

scales. The main goal of this map-view restoration method is to unravel the vertical axis 

rotations. 

We first need to establish some assumptions (and derived limitations) as well as the 

aims and scope of the method: 

1) Vertical Axis Rotations (VARs) may produce severe room problems in fold and 

thrust belts. Therefore, the removal of VARs at the regional scale is equivalent to the 

removal of the lateral gradient of shortening (in the sense used by Pueyo et al., 2004 and 

Sussman et al., 2012). This means that only parallel and constant translation will remain 

in the thrust front after the restoration of the map before the rotational period. The 

restored map will not represent a real image. Additional work should be done in the 

future to implement the combined restoration of VARs and translations due to 

cylindrical folding and thrusting.  

2) The second assumption deals with the rotational time. Several evidences from the 

Pyrenees point to a narrow rotational window during the Eocene-Oligocene: Lutetian-

Priabonian in the Southwestern (Pueyo, 2000; Pueyo et al., 2002; Mochales et al., 2012; 
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Rodríguez et al., 2013c; Muñoz et al., 2013) and in the Southeastern Pyrenees (Sussman 

et al., 2004), and similar ages both in the Northwestern (Mouleon basin) and in the 

Northeastern (Corbiers) (see works by Oliva et al. (2010) and Rouvier et al. (2012) 

respectively). Therefore, the map-view restoration will offer an imprecise snapshot of 

that moment, just before the out-of-plane movements began. 

3) We also assume the geological map as a flat and horizontal surface. The final 

goal is to observe the structural trends before the rotational period. 

Within these three assumptions, our cartographic restoration technique aims to 

localize the expected gaps and overlaps between in relation to their cartographic 

location, and does not pretend to be a trustworthy reconstruction of the past. An 

additional advantage of our map-view reconstruction is its ability to identify the 

anisotropy related to the gaps and overlaps.  

Extension of surface restoration (2.5D) techniques by Audibert (1991) and by 

Rouby et al. (1993) using paleomagnetic vectors were developed by Arriagada et al., 

(2008) and applied to map-view (2D) in the Bolivian orocline. This technique, based on 

the least-square minimization of fault-boundaries blocks, assumes that the initial surface 

(geologic map) can be entirely divided by discontinuities in a set of discrete domains 

(heave maps). Although some interesting results can be derived from this technique, the 

problem is that many heave faults lack for geological expression or meaning, or at least 

they are scale-dependent in the sense used by  Rouby et al., 2000, and this adds 

uncertainty to the restoration results. 

Our idea is somehow similar to the one developed by Arriagada et al. (2008), but in 

our approach, we divide the map in random triangles and not in blocks bounded by 

faults and heaves. In other words, we keep the continuity of the map. As we said, the 

map-view restoration only considers the coordinates xy, and structures are roughly 

assumed flat. 

We present two techniques based on the piecewise and parametric approaches. The 

first technique is equivalent to the fitting step of the piecewise restoration detailed in 

Section 4.1, which comes after the flattening step. Gaps and overlaps of the restored 

map (before the welding step) indicate areas were maximum deformation has taken 

place. After welding we can visualize the cartographic image in the restored map to 

approximate the initial location of the structures. This restoration technique is 
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essentially based on the rotation determined by paleomagnetic data: triangles with 

known data rotate according to this constraint, while the others fit minimizing distances 

between vertices. The second technique is the parametric restoration described in 

Section 4.2 in which the rotation data determines the gradient of one of the parameters. 

Whereas the drawback in the first technique is the pin-element location, the drawback in 

the second technique is that rotation data needs to be established everywhere. 

Again, paleomagnetism is the key-stone that allows quantifying vertical-axis-

rotations (VARs). However, VAR magnitudes can be now derived not only from 

primary vectors (like in the surface restoration) but also from secondary components 

(synfolding or postfolding)  since they are still valid to quantify and date VARs (see 

Pyrenan examples in Oliva and Pueyo, 2007b). On the other hand, VARs are known in 

specific sites while the structural trend (or strike direction) can be easily determined in 

more points using geologic maps or field data. The proposed idea is to find some law to 

relate these two variables in order to have a large rotation dataset relevant for the 

restoration. To cope with this aim, we develop two distinct procedures: firstly, the use 

of specific vectors as the initial dataset (raw data), and secondly, leveraging strike vs. 

rotation relations, interpolated following the strike-VAR law.  

We apply this palinspastic restoration method at two different scales in two case 

studies, the Balzes Anticline (regional scale) and the South Central Pyrenees (tectonic 

scale). A vast paleomagnetic dataset is available in both cases (Rodríguez-Pintó et al., 

2013c and López et al., 2008 respectively)  

 

7.1 The method 

This palinspastic or map view restoration method starts from the cartographic map 

of the area of interest and the georeferenced rotation dataset, obtained from punctual 

paleomagnetic data [Section 7.1.1] or from paleomagnetic and structural data [Section 

7.1.2].  

The procedure is based on the piecewise approach as stated above, and therefore it 

involves a sequence of five steps: 

1) Map triangulation. As in similar methods, the first step consists in the 

discretization of the area we want to restore. The cartographic map is meshed with a 
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Delaunay triangulation, targeting the homogeneity of the triangles. As discussed in the 

previous chapter (Section 5.3) the type of mesh hardly conditions the result, and 

therefore other approaches like regular triangulation can be employed. However, mesh 

density must be carefully chosen. It must be dense enough to represent all the structures 

and rotation data, and wide enough to minimize propagation errors.  

2) Incorporation of rotation data and pin-element. The rotation vectors are added in 

the barycenter of triangles wherever they are known. Rotation data can be obtained from 

individual VARs, as detailed later, or be inferred from strike data. Moreover, it is really 

important to add null values in the foreland where we know structures are unrotated. 

Regarding the pin-element, we must select it with care and geological sense because the 

restoration process depends heavily on it. We should preferably select the foreland as 

pin-area. 

3) Translation and rotation. This step is equivalent to the piecewise surface 

restoration method and we use the same code. Triangles are rigidly translated and 

rotated to minimize distances between common vertices and to fulfill the rotation 

constraints. An angle of free rotation is allowed, subject to the precision of data (α95), 

but it is better to use the rotation data as rough data. 

4) Welding. After the fitting process, triangles are welded in order to have a 

continuous map. This step adds measurable deformation. 

5) Calculus of deformation and visualization of results. We display the dilation 

(change in area) because it has proven to be the most representative control parameter. 

The anisotropy of the strain ellipse can be easily calculated from the restoration 

procedure. We can also display the displacement vector map, which provides relevant 

information as well. Moreover, we visualize the cartographic map in the restored state 

to facilitate the evaluation of results. This requires deforming the raster image as the 

restored mesh. With this purpose we have developed a C program based on openGL1, 

available in the companion CD with Supplementary Material. We treat the cartographic 

map as a texture. We triangulate this texture and then apply the proper deformation to 

the triangles, according to the restoration. 

The procedure based on the parametric approach has the same initial and final steps 

that the piecewise approach:  

                                                 
1 www.opengl.org 
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1) Map triangulation. 

2) Incorporation of rotation data. Rotation data determines the gradient of one of 

the parameters of the coordinate system ( u∇ ). In this case, we need to interpolate the 

initial dataset into all points of the meshed map.  

3) Restoration procedure. This step is equivalent to the parametric surface 

restoration method and therefore we employ the same gOcad plugging. Note that the 

main idea is that the coordinate system is assumed to be rectilinear and orthonormal. 

4) Calculus of deformation and visualization of results. 

 

7.1.1 Rotation data using Vertical Axis Rotations (VARs) 

The initial rotation dataset is defined by VARs wherever they are determined by 

paleomagnetism. Each data value is specified with its confidence angle (α95). The first 

option, only valid for the piecewise approach, is to use isolated paleomagnetic data 

where triangles without rotation information can rotate freely.  For each triangle we 

assign the closest rotation data to the barycenter within a maximum distance. The 

second option is to interpolate the initial dataset into the whole map, which we do by 

using the discrete smooth interpolator (DSI) implemented in gOcad™ (Mallet, 1992). 

 

7.1.2 Rotation data using the strike vs. VAR relationship 

Paleomagnetic data is more difficult and time-consuming to acquire than the 

structural position of a site. Strike values can be derived from the cartographic traces 

directly drawn on a map, and numerous data can be easily acquired in a field campaign. 

For this reason, we want to determine a strike vs. rotation law to infer rotation data from 

strike information. As a matter of fact, this is an old and well-founded idea used to 

unravel the primary or secondary origin of curved orogenic belts. Oroclinal diagrams 

(Elredge et al., 1985) clearly establish that strike-VAR relationships are fairly constant 

at the orogenic scale (see compilations by Weil and Sussman, 2004; Yonkee and Weil, 

2010 and the recent review of the Cantabrian mountains by Weil et al., 2013). Although 

this is an approximation, it can help to clear up the spatial resolution problem in some 

areas. We need two initial datasets to establish the law and run the method. On the one 
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hand, the points in which strike and VAR information are known (available in or drawn 

from paleomagnetic works). On the other hand, the strikes measured from the 

cartographic traces. To establish a proper strike vs. rotation law, we need filtering the 

initial data (dataset 1) and keep only reliable data from which to obtain a mean by 

sectors (see more details later). The strike map (dataset 2) is defined in three steps: 

vectoring structural trends, removing topographic effects (V-rule) and smoothing 

remaining trends. Additionally, as in the previous case, we can use the resulting rotation 

data in specific triangles or interpolated to the whole map using DSI. 

 

7.2 Case studies 

We apply this method as a first attempt to two case studies: 1) the Balzes Anticline 

at regional scale and 2) South Central Pyrenees at tectonic scale. 

 

7.2.1 Balzes Anticline 

Rodríguez-Pintó et al. (2013c) have fully studied the Balzes Anticline calculating 

75 paleomagnetic vectors and their derived VARs. More than 30° of clockwise (CW) 

rotation characterizes the Balzes Anticline on average, although this value change in 

individual sites from negligible magnitudes up to more than 80° of CW VAR. This 

variability is related to the fold curvature (Fig. 7.1). It is possible to reprocess the 

paleomagnetic vectors considering their structural location, the relative location respect 

to the fold curvature.  

After filtering low-quality and unreliable data and grouping sites in structural 

sectors (sharing a common strike) (Table 7.1), Rodríguez-Pintó et al. (2013c) have built 

a strike vs. VAR diagram (Fig. 7.2). This plot is the equivalent, at fold scale, of the 

oroclinal diagram by Elredge et al. (1982). Fold axes vary from 195° in the northern 

part (N-NNE to S-SSW) to 142° in the southern one (NW-SE), giving more than 50° of 

observed bending. The curvature displayed by the Balzes anticline in map-view is a 

combination between a primary curvature (related to the thrust geometry before any 

VAR) and a secondary one related to the thrust rotational activity; 25° of VAR are 

related to 50° of fold axis bending. This relation follows a well defined regression; 
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VAR= - 46° + 0.511 * strike (R = 0.9724), that could be used to infer the expected VAR 

in other positions. Finally, the rotational activity of the Balzes Anticline took place 

during the deposit of the Lutetian to Bartonian rocks, synchronous to the folding and 

thrusting period (Rodríguez-Pintó et al., 2013a), which fulfils the second assumption of 

the method (see more details in section 2.4.4). 

 

Figure 7.1: Vertical axis rotation deduced in the Balzes anticline (Rodríguez-Pintó et al., 2013c). The axis 

of each cone represents the VAR and its semi-apical angle is the confidence cone (α95). A portion of arc 

(red line) has been fitted to the fold axis. Several radii of this arc, all of them converging in the same 

point) help to split the data in different pseudo-homogeneous sectors (between 12 and 17° of semi-arc).  
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Table 7.1. Paleomagnetic vectors in the Balzes anticline (Rodríguez-Pintó et al. (2013c). Raw data before 

any reliability filtering.  
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Figure 7.2: Strike vs. VAR diagram in Balzes Anticline (Rodríguez-Pintó et al., 2013c). 

The geologic map from the Balzes anticline comes from the MAGNA program 

(Barnolas et al. in press) but additional improvements have been done considering 

recent advances in the stratigraphy of the region (Barnolas and Gil, 2001) as well as the 

GEODE program (Robador et al., 2011) with the help of Antonio Barnolas and Javier 

Ramajo (Fig. 7.1). 

Therefore, we draw on this map the cartographic traces and use them to assign 

rotation values using the aforementioned law (Fig. 7.3A). To mesh the initial map we 

have used a Delaunay triangulation with a mean length of triangle sides around 100 m. 

Initial scattered rotation data is assigned to the nearest triangles within a maximum 

distance corresponding to this mean length triangle side (Fig. 7.3B). Individual data is 

interpolated to the whole map using gOcad (Fig. 7.3C). 
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Figure 7.3: A) Meshed initial cartographic map with cartographic traces. The red triangle is the pin-

element selected for the piecewise restoration. B) Scattered rotation dataset derived from the strike vs. 

rotation law (VAR= - 46° + 0.511 * strike). Green contour triangles are no data value. C) Interpolated 

rotation dataset. 

A relevant point to consider in the piecewise restoration is the selection of the pin-

element, because it severely conditions the result. The logic selection should be the 

unrotated area of the foreland. However, the area selected for this example is too small 

and has suffered rotations everywhere. Thus, we could select the pin-element where 

rotation is known and preferably in the main trace (Balzes Anticline) and also in the 

middle of the structure so that the propagation error is as small as possible. 

Nevertheless, the result will be rather uncertain because this selection is arbitrary. 

Hence, the usage of two different restoration techniques helps to check the results. 

We restore the cartographic map with the two techniques described before and 

using the scattered and interpolated rotation dataset derived from the structural trends 

(Fig. 7.4). Before completely trust the results we should answer two questions: 1) is the 

initial rotation dataset representative enough? and 2) is the pin-element well selected? 

If the initial rotation dataset is representative enough, the piecewise restoration 

using the scattered and interpolated dataset should be equivalent in meaning. Definitely, 

the restoration with the scattered data would have less deformation because many 

triangles lack of rotation data and can freely move to fit with their neighbors, but there 

should not be much difference. In this example (Figs. 7.4 A&B) we appreciate dilation 

patterns similarly distributed but unlikely equal. Moreover, the shape of the restored 

map is also different. Therefore, we can not ensure that interpolated data match the real 

scenary neither the initial rotation data have enough relevance to determine the proper 

restored map. On the other hand we can certainly observe the deformation trend: to 
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undo the curved fold it is necessary to expand the inner part (blue dilation color in the 

eastern area) and to contract the outer part (red dilation color in the western area).  

 
Figure 7.4: Map-view restoration of Balzes Anticline using the structural trends to infer the rotation data. 

A) Piecewise restoration using the initial scattered rotation dataset. B) Piecewise restoration using 

interpolated data. C) Parametric restoration using interpolated data. 
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Despite the plausible lack of accuracy, this result has a clear geological meaning. 

Negative dilation areas are located in the inner part of the Balzes curvature 

(southeastern sector of the map). This means this region will be affected by additional 

compression during the bending of the anticline (rotational period), and corresponds to 

the area where several diapiric bodies are concentrated (Naval, La Puebla de Castro, 

Estadilla, etc… Martínez-Peña, 1991; Salvany and Bastida, 2004; Muñoz et al., 2013). 

The restricted size of the map impedes to see this feature with more accuracy and 

highlights the importance of the selection of the initial map and the problems on the 

border. Unfortunately, the expected extension in the outer arc of the fold (south western 

region), where positive dilation is located, is fossilized by the Tertiary deposits of the 

Ebro Basin (Sariñena Formation). 

Concerning the pin-element location, we evaluate its consistency comparing the 

piecewise restoration using the interpolated dataset (Figs. 7.4A&B) with the parametric 

restoration (Fig. 7.4C) in which the pin has no influence at all. The shape and dilation 

pattern of the restored maps are similar apart from an important area in the north-east. 

That suggests that parametric restoration is more certain but also that pin-element 

location was not a bad choice. On the other hand, it is possible to observe that dilation 

increases in areas distant from the pin-element, reminding us its influence. 

It is important to underline the influence of the selected area in the restoration 

results. In this example all the structures are rotated and we do not have a fixed foreland 

as the boundary condition. Therefore, the rotation accommodates from the starting point 

to the borders. Borders are always the most uncertain area for a restoration method.  

 

7.2.2 South Central Pyrenees 

To solve part of the border and size effects, the map-view restoration method has 

been applied at tectonic scale to the South Central Pyrenees. This region comprises high 

quality databases and the constraints needed for our restoration method: Orogen-scale 

geologic and structural maps (Choukroune and Seguret, 1973; Barnolas et al., 2008), 

and a vast paleomagnetic dataset (López et al., 2008; San Miguel et al., 2010) with an 

exceptional control of the rotational period recorded in syntectonic materials (Pueyo et 

al., 2002; Sussman et al., 2004; Mochales et al., 2012a, Muñoz et al., 2013). 
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7.2.2A Geologic map 

The base-geologic map was recently published by the BRGM & IGME (Barnolas et 

al., 2008). Despite the apparent large scale (1:400.000) this map displays plenty of 

structural features (fold axes, thrust traces, etc) and has the additional advantage of 

being georeferenced in modern GIS platforms (Fig. 7.5A). Besides, we were granted 

access to the map in fully digital format. However, this map has many more 

cartographic details than needed for our purposes. Therefore, we have cloned the style 

of the classic Choukroune and Seguret’s structural map (1973) of the Pyrenees (Fig. 

7.5B). This implies a drastic simplification of lithologies and represented ages but it still 

holds plenty of structural details (Fig. 7.5C). Javier Ramajo helped us in the GIS during 

this process. 
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Figure 7.5. Geologic maps used for the map-view restoration of the Southern Pyreenes.  
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7.2.2B Paleomagnetic data 

Paleomagnetic studies have been conducted in the Pyrenees (and their foreland 

basins; Aquitaine and Ebro) since this technique appeared (Van der Lingen, 1960 and 

Schwarz, 1962) and have continued during the next five decades. At the moment 

research interest is still growing as regards of the increasing number of ongoing projects 

and PhDs and the subsequent publication of many peer-reviewed papers (more than 

200). This high amount of information is due to several reasons including the 

availability of synorogenic materials (allowing an accurate dating of deformation), the 

excellent outcrop conditions (including stratigraphic sequences with global interest), the 

existence of well-exposed zones of lateral transference of deformation etc. This enviable 

frame has produced one of the densest and most homogeneous nets of paleomagnetic 

sites when comparing with any other orogenic area. Besides, the compilation work 

carried out by the Geokin3DPyr group during the last years (Pueyo et al., 2005, 2006; 

Lopez et al., 2008; San Miguel, 2010) under the financial support of the Pyrenean 

Network (European INTERREG program) has allowed completing data collection and 

homogenization. Additional work has been done in the frame of this PhD to implement 

new data from 2010 to 2013 in the database. 

 

Figure 7.6: Paleomagnetic sites and magnetostratigraphic profiles in the Pyrenees and Ebro Basin. Initial 

(raw) data: blue points; data comprising both strike and VAR information: red points; filtered data 

following quality and reliability criteria: yellow points; averaged data by sectors (grouping means): black 

spots. The orthogonal net in the map has been used to group the data, although the structural trend 

(similar strike) was the mean criteria for the grouping. 
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Overall, more than 30.000 demagnetizations coming from more than 1.800 

sampling points, ≈150 of them magnestostratigraphic profiles (>85 kilometers of 

sections), were synthesized. Within this large dataset, the northern Pyrenees are very 

densely sampled in the Corbieres sector, Eastern corner (Rouvier et al., 2001, 2012; 

Henry et al., 2006) and in the Mouleon basin, the westernmost one (Oliva et al., 2010) 

but there are very few data in the largest central portion, for that reason it has been not 

considered. We have focused our restoration on the Southern Pyrenees where ≈85% of 

the data is located. The Pamplona Fault constitutes the western boundary, and the 

Western Cadi Range the easternmost one. The Ebro Basin attached to this large portion 

of the mountains was also taken into account (Fig. 7.6). Several structural domains can 

be identified and display abundant paleomagnetic references (in brackets). 

- Pamplona Basin (Larrasoaña, 2000; Larrasoaña et al., 2003). 

- Internal Sierras (Oliva, 2004; Oliva and Pueyo, 2007a&b; Oliva et al., 2008; Oliva 

et al., 2012a). 

- Turbiditic basin (Pueyo, 2000; Oms et al., 2003; Oliva and Pueyo, 2007; Pueyo et 

al., in prep). 

- External Sierras (Hogan, 1993; Hogan and Burbank,1996; Pueyo, 2000, Pueyo et 

al., 1997; 2002, 2003a&b, 2004; Kodama et al., 2010; Oliva et al., 2012a and 2012b; 

Rodríguez-Pintó et al., 2012a&b, 2013a&b). 

- Jaca Basin (Hogan, 1993; Hogan and Burbank, 1996; Pueyo, 2000; Pueyo-

Anchuela et al., 2012). 

- Ainsa Oblique zone (Dinarès-Turell, 1992; Bentham 1992; Holl and Anastasio, 

1993; Parés and Dinarés, 1993; Bentham and Burbank, 1992; 1996; Fernández, 2003; 

Oms et al., 2006; Mochales, 2011; Mochales et al., 2012a&b; Muñoz et al., 2013).  

- South Pyrenean Central Unit (Bentham 1992; Dinarès-Turell, 1992; Pascual, 

1992; Pascual et al., 1990, 1991, 1992a&b; Meigs, 1995 and 1998; Meigs et al., 1996, 

1997; Beamud et al., 2003, 2004; 2011; Galbrun et al., 1992; Dinarès-Turell, and 

García-Senz, 2000; Gong, 2008; Gong et al., 2008a&b, 2009). 

- Eastern portion of the South Pyrenean Central Unit (SPCU)- Oliana sector 

(Dinarès-Turell, 1992; Burbank et al., 1992a&b; Keller 1992; Keller et al., 1992, 1994, 

1996; Sussman et al., 2004). 
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- Pedraforca and Cadi Easternmost units (Dinarés, 1992; Keller, 1992).  

- Ebro Foreland Basin (Barberá, 1999; Barberá et al., 1994; 2001; Gomis, 1997; 

Gomis et al., 1997; Taberner et al., 1999; Perez-Rivarés et al., 2002, 2004; Larrasoaña 

et al., 2006; Cascella and Dinarès-Turell, 2009; Costa et al., 2010, 2011, 2013; Gómez-

Paccard et al., 2012). 

 

Figure 7.7: Rotational and thrusting dating of oblique structures in the Southwestern Pyrenees (Pueyo et 

al., 2013). Mediano data by Muñoz, et al. (2013), Boltaña by Mochales et al. (2012b), Balzes by 

Rodríguez-Pintó et al., (2013c) and Pico del Aguila by Pueyo et al. (2002) 

Besides, and due to, the syntectonic record, the first rotation velocities of individual 

thrusts and fold-related thrusts have been defined in the Southern Pyrenees (Pueyo et 

al., 2002; Mochales et al., 2012a, Rodríguez-Pintó et al., 2013c; Muñoz et al., 2013). 

These data are derived from dense sampling along well-dated magnetostratigraphic 

profiles and allow constraining the main rotational activity of the External Sierras and 

Ainsa oblique zone during Upper Lutetian-Bartonian-Priabonian times (Fig. 7.7). This 

period is coincident with other important rotation ages in other locations of the 

Pyrenees; Oliana anticline  (Sussman et al., 2004), Cerveres (Rovier et al., 2012); 

Mauleon (Oliva et al., 2010). 

Despite the large paleomagnetic dataset, only part of it honors standard and 

objective quality criteria and therefore it has been filtered with the following criteria:  

-Data with α95 > 25° or without α95 were deleted (1110 data remain from the initial 

1227).  
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-Sites with little number of samples were removed; n < 5 or without this 

information (179 + 7; remain 924).  

-Data with more than 100Ma (229); this criteria filters pre-Pyrenean vectors 

(Paleozoic, Triassic to Lower Cretaceous), which in turn may be also affected by the 

rotational kinematics of Iberia. Most remaining data are Cenozoic (695 mean vectors). 

-  Remaining North-Central Pyrenean data (5) are removed too. 

-Extreme and anomalous declinations (normally related to secondary 

remagnetizations) VAR < -90° (11 sites mainly from Cotiella) and VAR > 90° (9). 

-Anomalous inclination < |30°| (66) and > |70°| (8). Likely linked to internal 

deformation, inclination shallowing etc). Therefore, we have adopted a conservative 

approach to avoid the noise caused by these sources of error. 

-Sites with 15° > α95 < 25°, are treated with caution in grouping stage. 511 mean 

vectors survived the filtering routine. 

The resultant database that we consider as the initial passes a second filter. This 

filter consists on grouping VAR data by structures and sectors (Table 7.2 and Fig. 7.8). 

We calculate the mean VAR, with its α95 and k values, the mean position and the mean 

structural trend. This last one includes the Bingham’s (1964) matrix as well as its 

Woodcock’s (1977) parameters. This treatment aims to quantify the quality of both 

datasets (VARs and structural trends) and to establish objective criteria to removed 

unreliable data. 
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Figure 7.8: Mean rotational magnitudes in several structural sectors the Southwestern Pyrenees and in the 

Ebro Basin (Pueyo et al., 2013). Red triangles indicate the structures where rotation velocities are well 

constraint. 
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Table 7.2: Mean Vertical Axis Rotations (filtered raw data) deduced from paleomagnetic data in the 

Southern Pyrenees. s/S: considered/available sites. X,Y: UTM coordinates (ED50 30T zone). Structural 

trend referred to 0-180° scale (exceeded in exceptional cases). Bingham’s (1964) distribution. 

Eigenvalues of the orientation matrix (bedding planes). Woodcock’s (1977) parameters to constrain the 

shape and strength of the trend distribution. Sn: total number of demagnetized samples. Rotation vector 

(final orientation with geological meaning to quantify the VAR). 
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Figure 7.9: A) Stereographic projection of unrotated data from the Ebro foreland basin (only filtered 

sectors). B) Paleomagnetic robust rotations (only filtered sectors). C) Woodcock diagram (1977) of mean 

strike values calculated by sector. Only girdled distributions have been used in the following steps. D) 

Rotation Q diagram (Fisher, 1953) of mean VAR values calculated by sector. E) Strike vs. rotation 

diagram with not well grouped data deleted. F) Strike vs. rotation diagram with all filtered data except the 

foreland.  
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Filtered data averaged by sectors is not equally representative; thus, we delete not 

well-grouped data. Sector VAR’s are only considered with α95<15°, k> 20 and 

R>0.9500 (Fig. 7.9D). Structural trends are only considered if they are based in well-

defined girdle distributions of bedding poles (Fig. 7.9C); Woodcock’s K<1 and total 

eccentricity (E1/E3) > 2). Moreover, unrotated data from the Ebro foreland basin (Fig. 

7.9A) are only considered for the definition of the pin area. Strike vs. rotation diagram 

is plotted in order to establish the law to infer rotation data from structural trends (Figs. 

7.9E&F). We calculate the theoretical regression line but we prefer to adjust it manually 

because far data is still biased by syntectonic records (Fig. 7.9F). The resultant equation 

is VAR = -60 + 0.67 * strike, which is not far from the obtained in the Balzes Anticline 

(VAR= - 46° + 0.511 * strike).  

A surprising result from the VAR vs. trend diagrams is the definition of frontal 

unrotated structures. In both cases, Balzes and Southern Pyrenees, this orientation 

seems to be N090E in contrast with the so-called mean Pyrenean direction, which is 

assumed to be N100E-N120E and often assumed to be perpendicular to tectonic 

shortening. 

Another observation is the banana-like scattering of the Pyrenean data (≈90° 

scattering in declination) if compared with the pronounced clustering of the Ebro Basin 

data (14°). This is what we expected, since the Ebro Basin is supposed to be 

undeformed in contrast with the Pyrenean rotated structures. In this sense, the small 

difference between both means (10°) has to be evaluated within this frame. Finally, the 

consistent (almost) unrotated data from the Ebro Basin has been a key fact for the 

definition of the pin-area in the piecewise restoration and thus, we have selected the 

entire portion of the Basin included in the target map. The geological meaning is quite 

obvious; this large pin-area can be considered the absolute footwall of the Pyrenean 

basal thrust (autochthonous). 

 

7.2.2C Restoration settings 

We use several initial rotation datasets: all VARs, filtered VARs (sector means), 

and rotation inferred from the structural trends using both laws. Strikes at the map-scale 

are obtained from the cartographic traces vectorized directly from the map (Fig. 7.10). 
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Initial traces are filtered removing topographic effects (V-rule) and smoothing 

remaining trends. 

 

Figure 7.10: Structural trends: initial (red lines) and filtered (black lines). 

Once the rotation data has been defined, we need to establish the meshing of the 

map. In order to be coherent with the rotation data density, the mean side of mesh 

triangles is around 5 km. Following the conclusions from previous sections (where we 

advise about the influence of the area selected, particularly at the borders) we chose two 

initial meshes to restore in order to compare the results (Fig. 7.11). Anyway, first we 

analyze the influence of the initial rotation dataset using the mesh of smaller area. 

 
Figure 7.11: Initial map with two different meshes. Blue points: all VARs; green points: filtered VARs 

(sector means); red lines: structural trends.  
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We restore the map with the piecewise approach using scattered and interpolated 

rotation data, and with the parametric approach using only interpolated data. However, 

in order to focus on the initial rotation dataset used for the restoration, we do not discuss 

neither the restoration method nor the pin-element for the moment. We use several 

rotation datasets (Figs. 7.12 & 7.13): 1) scattered and interpolated from individual 

VARs (yellow points of Fig. 7.8), 2) scattered and interpolated filtered VARs, sector 

means (black points of Fig. 7.8 or Table 7.2), 3) scattered and interpolated rotation 

derived from strike vs. VAR laws (black lines of Fig. 7.10) following the equation 

determined only for the Balzes Anticline area (VAR= - 46° + 0.511 * strike) and 4) 

scattered and interpolated rotation derived from strikes (black lines of Fig. 7.10) 

following the equation manually determined for the entire South-Central Pyrenees 

(VAR = -60 + 0.67 * strike). 

The first observation we can make, regarding the consistency of the method, is that 

results derived from scattered and interpolated data (piecewise restoration) are similar 

for all the initial rotation datasets. Therefore, the initial density of data is enough and the 

discrete smooth interpolation of gOcad is accurate. 

 Similarly, initial and filtered VARs (also scattered as interpolated) are equivalent 

datasets because they lead to comparable restoration maps (Figs. 7.12 A&B vs. C&D). 

Filtered VARs are smoother data that produce less extreme dilation patterns in the 

restored state.  

Regarding the rotation datasets derived from the strike vs. VAR law, we may say 

that the precision of the strike vs. rotation law is not that determinant. The restored map 

using the equation calculated at regional scale (Balzes Anticline) extrapolated to the 

whole area does not differ much from the restoration using the properly calculated 

equation at tectonic scale (Figs. 7.13 A&B vs. C&D).  

We have to answer now the most important question: are the rotation datasets 

derived from strikes equivalent to VARs? Before answering this question we need to 

know  which restored map we have to pay attention to, because, in true and total fact, 

the piecewise restoration produces an important propagation error conditioned by the 

pin-line (although we have tried to select a significant portion of unrotated area).  
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Figure 7.12: First column) Rotation datasets from VARs: A) scattered VARs, B) interpolated VARs, C) 

scattered filtered VARs and D) interpolated filtered VARs. Second column) Restored map with dilation. 
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Figure 7.13: First column) Rotation datasets from the strike vs VAR law A&B) following the equation 

determined for the Balzes Anticline and C&D) following the equation determined for the South Central 

Pyrenees. Second column) Restored map with dilation. 
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Thus, parametric restoration seems more reliable. Hopefully, we observe how 

restored maps using VARs are similar to those using strikes (Fig. 7.12 vs. 7.13). 

Therefore, we have reached a positive answer to the initial question. Considering the 

two restoration techniques separately, we have obtained very similar results 

independently of the initial rotation database. This is very important, because a solid 

strike vs. VAR law can be very useful in cases with less abundant data. 

Hereafter, and considering the previous evidences, we only use the interpolated 

rotation dataset derived from strikes using the law calculated at tectonic scale. We want 

to check the influence on the limits of the selected area to restore in the boundary 

effects. To do so, we use considered an extended mesh in addition to the one used 

before, both of them displayed in Figure 7.11. Interpolated rotation datasets are slightly 

different but may not have significant effects (Fig. 7.14). 

 

Figure 7.14: Parametric restoration; two initial meshes with the rotation dataset derived from strikes. 

Now we want to establish the differences between both restoration techniques. 

Piecewise restoration (Fig. 7.15A) is extremely conditioned by the pin-area in both 

meshes. That is particularly observable in the vector displacement map where longer 

vectors are in the opposite side to the pin. On the other side, both meshes share a main 

positive dilation area (red line on the figure). However, the mesh with higher area 

displays a well-defined positive dilation area at the eastern edge of the SPCU and this is 

not present in the other mesh. On the contrary, parametric restoration (Fig. 7.15B) gives 

relatively similar results for both meshes. On one side, the dilation close to the borders 

could be questionable. On the other side, both restored maps share two main positive 

dilation areas (red lines on the figure) and now there are not significant differences 

between them. 
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Figure 7.15: Restoration using the rotation dataset from strikes for two initial meshes: dilation pattern, 

displacement vector and cartographic map in restored state. A) Piecewise restoration. B) Parametric 

restoration. 
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Figure 7.16: Parametric restoration using the rotation dataset from strike vs. VAR law and the densest 

mesh: A) initial map, B) dilation pattern, C) displacement vector, D) strain ellipse (ration between major 

and minor axis and orientation of major axis) and E) cartographic map in restored state.  
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7.2.2D Geological meaning of the restoration 

In order to evaluate the geological meaning of the map-view restoration we consider 

all the aforementioned conclusions: 1) Parametric instead of piecewise restoration. 2) 

VARs derived from the strike law interpolated with the DSI of gOcad, which yields an 

evenly distributed dataset. 3) An extended mesh on the initial map to minimize border 

effects.  

Positive dilations (Fig. 7.16B) are mostly located in the Western Pyrenees. The 

most significant dilation overlaps the External Sierras and the Ainsa oblique zone, 

although the Internal Sierras can also be delineated with this pattern. Besides, this 

highest dilation zone is located in the inner arc of the oblique structures, where 

maximum lateral shortening had to take place. This is what we should expect, although 

dilation has a sign opposite to the expected (extension instead of compression during the 

deformation process). We must take into account that the restoration method does not 

retro-deform the frontal displacement. The most strongly rotated structures have no 

space to be accommodated during the restoration because the foreland is undeformed. 

Therefore, this dilation patterns simply locate the main areas of out-of-plane motions. 

Additionally, there is another positive dilation area related to the Marginal Ranges 

frontal units, but this is likely related to the absence of real frontal structures in this 

domain (several diapirs, Estopiñan oblique syncline etc). However, this area as well as 

the central northern sector (blue area) could be affected by border effects. The eastern 

SPCU edge seems to be much less important than the equivalent western border; this is 

somehow reasonable since rotations are much more moderate in that sector.  

Displacement vector field (Fig. 7.16C). Perfectly delineates the center of the SPCU, 

where very small VARs have taken place. This field displays a main N010E 

displacement direction, which is comparable with the expected one in frontal structures 

(N000E). The two symmetric vortexes locate the main Pyrenean oblique zones at both 

edges of the SPCU. The western one is much more pronounced than the eastern one 

It is worth noticing that the real displacement field would be the result of the 

addition of the frontal displacement (not restored by our method) to our restoration 

result, which in fact would present a more clear N-S pattern. Figure 7.16C only displays 

the displacement field related to the lateral gradient of shortening. 
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Anisotropy of deformation (Fig. 7.16D) presents limited geological meaning since 

translations are not considered in the restoration process and dilation patterns display 

opposite signs. 

Despite this map does not represent the complete retro-deformation (just the VAR 

removal) some important paleo-geographical consequences are derived: 

1) The apparent E-W transition between platform and talus facies found in the 

present coordinate system in the Ainsa oblique zone seems to display a more logic 

NNW-SSE orientation in our restored map. 

2) An apparent continuity or, better saying, alignment is observed when comparing 

the restored front location of the External and Marginal Sierras. 

3) Our map, gives an idea of the initial oblique geometry of the thrust front before 

any rotation took place. This structural trend is consistent with the expected shortening 

direction at that time. 

 

7.3 Conclusions 

This new map-view approach aims to unravel the vertical axis rotations (VARs) 

occurred during a “narrow” window of time. Of course, it is an inaccurate restoration 

because only VARs, and not displacement fields and anisotropies, are considered. On 

the other hand, this restoration leads to an approximate pre-rotational map in which we 

can appreciate the problems of space.  

The application to the two case studies allows us to state some practical conclusions 

about the method: 

- The selection of an appropriate and well delimited area is important to avoid 

undesirable errors on the borders. Ideally, the map should be surrounded by an 

unrotated area. And this is likely and important drawback of the restoration of the 

Southern Pyrenees that we have performed. 

-  The mesh density must be related to the initial rotation data density. 

- The discrete smooth interpolator of gOcad is a proper tool to extend the scarce 

rotation data to the whole map.  
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- A solid strike vs. VAR law allows the usage of structural trends to determine the 

rotation data. This is very useful in cases with fewer paleomagnetic data. 

- The parametric restoration is more consistent than the piecewise restoration, 

particularly because it is independent from the pin-element. 

Future work must be done to obtain a correct restored map. The implementation of 

translations in the method is essential. This implies tackling the problem of 

discontinuous deformation, thrusting and major faults. 
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8 Conclusions 

This thesis proposes paleomagnetism as a primary source of information in 

restoration methods. The usage of paleomagnetism is particularly relevant for complex 

geometries found in fold and thrust belts like non-cylindrical, non-coaxial or areas 

undergoing vertical axis rotations. We have opened up this avenue showing promising 

results in two surface restoration methods valid for globally developable surfaces 

(flexural unfolding). Moreover, we introduce a first approach of a new map-view 

restoration algorithm to unravel the vertical axis rotations at regional and tectonic scale. 

 

8.1 Analog models 

Analog models are a very useful tool in many ways. In this thesis we use geometric 

static simulations to test restoration methods, and we show their capabilities to analyze 

deformation patterns. A reference system drawn in the models allows us to compare the 

geometry before and after the deformation process. We can observe the real 

deformation calculating the dilation (change of volume or area in surfaces) and the 

strain ellipsoid in all grid cells. We show these models are useful to calculate the 

expected orientation of any linear element, particularly for understanding paleomagnetic 

vectors, to determine deformation patterns of surfaces and to obtain the distribution of 

the strain tensors in 3D.  

The digitalization of analog models is not an obvious task. We leveraged two 

techniques: photogrammetry, more precise for surface reconstruction, and CT scanning 

for structures in 3D, where models are built up from a series of CT slices treated as 

seismic sections using geological software. Deformation mechanisms can be reproduced 

depending on the scaling and the rheology of the materials employed in the model. The 

model resolution can be tuned as required by changing the density of an orthogonal 

reference system and the density of CT slices. Sheets of EVA (ethylene vinyl acetate) 

were selected to build the analog models because this material provides enough 

radiological contrast and presents an appropriate and diverse rheology to simulate active 
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folds. The screen-printing of lines with different thicknesses of minium paint allows a 

suitable orthogonal reference system to be set up.  

We have produced two idealistic simple models inspired in complex geometries 

from External Sierras (Pyrenees). The San Marzal Pericline is the western termination 

of a conical fold (the Sto. Domingo Anticline). The Balzes Anticline is a curved fold. 

Both examples are used to test the restoration methods, but additionally, the Balzes 

model is used to show the capabilities of the modelization technique. We successfully 

compare one of the grid lines of the model with real paleomagnetic data in the northern 

and southern sides of the anticline. The deformation analysis identifies dilation of 

opposite senses in upper and lower surfaces, with higher magnitudes in areas of 

compression. Surface anisotropy reflects a perpendicular orientation of the main axis 

with respect to the fold axis in the anticlines. Volume anisotropy is smaller, although it 

is possible to distinguish horizontal ellipsoids in the upper volume and vertical 

ellipsoids in the lower one. 

CT scan models have additional applications. They can be used to check the 

reliability of automatic reconstruction methods because they can be designed to achieve 

a high level of accuracy (e.g. by closely spacing the radiological slices). They can also 

be used to leverage partial or biased information, but in this case   the geometrical and 

geomechanical properties must be properly scaled to identify the materials, model 

stratigraphic volumes and to reproduce the mechanical properties of rocks. Likewise, 

CT scan models allow validating 3D restoration methods and the reliability of other 

software because the geometry and kinematics of the model are perfectly known, and 

the geometry of the undeformed state is also fixed. Finally, the proposed technique 

could also be applied to sandbox or centrifuge analog models to monitor the strain 

pattern over time (4D).  

 

8.2 Surface restoration methods 

The main part of this thesis is the modification of two unfolding algorithms to 

include the paleomagnetic constraint with the purpose of reducing the uncertainty of 

geological reconstruction. The first method is based on a piecewise approach (Gratier et 

al., 1991 and Gratier and Guillier, 1993) in which paleomagnetism determines the 
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rotation (code developed in Matlab). The second one is based on a parametric approach 

(Massot, 2002) and paleomagnetism determines the initial solution (code modified in 

gOcad). 

We must remember three initial assumptions before any valuation of the restoration 

methods developed: firstly, the horizontality of the initial surface, secondly, the 

developability of the folded surface (Gaussian curvature equal to zero everywhere), and 

finally, a sufficient set of primary and passive paleomagnetic vectors. The first 

assumption is forced by most restoration methods; we transform the 3D coordinates into 

2D by flattening the triangles in the first restoration method, and by parameterization in 

the second. The third assumption is an initial condition: if paleomagnetism is not 

reliable data results become uncertain. We should use only certain initial data.  

The second assumption (developability of folded surface) is more delicate because 

we only fulfil it partially. For non-complex developable surfaces no method present 

difficulties; if there is no deformation during the folding process, the unfolding is 

performed successfully. However, we suggest the usage of these methods to restore 

globally developable surfaces in which specific deformation has taken place in some 

areas (global conservation concept). The restoration process treats the surface as if it 

were developable because it tends to minimize the deformation everywhere (minimizing 

distances between common vertices in the piecewise approach and seeking an 

orthonormal parameterization in the second approach). Therefore, the resultant 

deformation parameters from restoration would never match exactly the real ones, 

although in a good restored surface they may indicate real deformation areas in those 

parts where the restoration process presents more problems. 

In order to evaluate the methods, we have performed several simulations with the 

two analog models developed: the conical structure (San Marzal) and the curved fold 

structure (Balzes). In the case of the parametric approach it is clearly observable in both 

examples that the restoration with paleomagnetism considerably improves results, and 

that otherwise the restoration is unable to reach the initial rectangular shape of the 

surface. At first glance, the usage of paleomagnetism is not that determinant for the 

piecewise approach, particularly for the complex example of Balzes for which this 

restoration technique presents some limitations.  

Overall tough, restoration with paleomagnetism better locates the deformation 

areas. Moreover, it is less sensitive to the pin-element location (starting point of the 
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restoration), which really conditions the result in the piecewise restoration without 

paleomagnetism. A good location of the pin-element may be an undeformed area (but 

not the border) in order to do not mask deformation but avoid propagation errors. On 

the other hand, the parametric approach is not conditioned by this variable, which is a 

strong point. Additionally, we performed mesh-sensitivity tests, but density and mesh 

type do not condition the results as much as the pin-element. In any case, the usage of 

paleomagnetism always improves the results. 

We also introduce the multi-surface restoration as a first approach to real 3D 

restoration. For the best restoration of the Balzes model (parametric approach with 

paleomagnetism oblique to the main structures) we appreciate differences between the 

upper and lower surfaces according to the real outer hinge dilation and inner hinge 

contraction of the structure. This is a good starting point, especially if we compare the 

results with a real volumetric restoration. We have restored the structure with a 

geomechanical tool (Dynel3D) being unable to reach the expected rectangular shape of 

the initial surface.  

In a real scenario, paleomagnetism is defined with a certain degree of error and in 

scattered sites of the outcrop, (not in all points of the surface). This uncertainty reduces 

the precision of the proposed restoration methods. Therefore, in addition to improve the 

quality of the initial paleomagnetic data (see Section 7.4), we propose the interpolation 

of data. We define an interpolation algorithm based on the developability of the surface 

to propagate paleomagnetic data to the entire surface. The rationale behind is that 

restoration with interpolated data is common or mandatory in methods like the 

parametric approach, and therefore it can work in the case of exploiting paleomagnetic 

data in real-world cases. We also consider paleomagnetic data defined with an angle of 

error (α95). Thanks to the interpolation algorithm, this error hardly affects the results. A 

drawback is that the initial orientation of paleomagnetism slightly conditions the 

deformation patterns obtained with restoration. Hence, restoration results must be 

always carefully evaluated. 

Summarizing, we encourage the usage of reliable paleomagnetic data in restoration 

methods, particularly for complex structures that underwent non-cylindrical or non-

coaxial VARs. We propose the parametric restoration for surfaces folded under flexural 

conditions. The piecewise approach is more sensitive to certain input parameters but 

greatly improves when using paleomagnetic data. However, we must keep in mind that 
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the deformation patterns of restoration are just indicative and do not show the real 

deformation, because they depend on the initial assumptions of the simplified 

restoration method which is applied.  

 

8.3 Map-view restoration 

In addition to surface restoration we propose the usage of paleomagnetism in map-

view restoration techniques. Particularly, we extend the usage of the previous methods 

with this purpose. This is a first approach in which we apply the piecewise and 

parametric approach in map-view (2D) with only one single constraint, the rotation data. 

This initial dataset can be interpolated from scattered vertical axial rotations (VARs) or 

derived from structural trends with a rotation law. The best approach to run this 

restoration is the parametric method using the interpolated dataset derived from strikes. 

We apply this technique in two case studies: the Balzes Anticline at regional scale 

and the South Central Pyrenees at tectonic scale. The geological meaning of the 

restoration is limited because lateral translations are not considered. However, we can 

get an idea of the pre-rotational moment showing the areas that have undergone the 

maximum deformation. 

 

8.4  Paleomagnetism  

As we have already mentioned, we must make sure that the paleomagnetic data we 

want to introduce in the restoration methods are reliable. In this way, we have followed 

two work lines (described in the appendices): achieving the optimal information from 

paleomagnetic analysis, and characterizing structural paleomagnetic errors. In the first 

line, we have developed the program VPD and proved it is a useful tool to obtain a 

global view of the paleomagnetic behavior of a site. It is particularly useful when 

dealing with homogeneous and large data sets because it allows a rapid estimation of 

the characteristic remanent component. Moreover, an automatic calculus of the 

demagnetization interval is proposed. Besides the “virtual directions” approach, the 

program implements the classical method of principal component analysis and others 
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more automatic: the stacking routine and the linear spectrum analysis, which is very 

useful to compare results. 

On the other hand, paleomagnetic vectors are biased by numerous sources of 

scattering but we mathematically describe here three particular cases with structural 

control: overlapping of vectors, internal deformation (shear) and errors restoring 

superposed folds. Overlapping of vectors produces declination and inclination errors 

controlled by the secondary vector and the magnitude of overlapping, as well as the 

structural position. Simple shear affects paleomagnetic vectors at the flanks of the folds 

producing declination and inclination errors controlled by the shear as well as the 

structural position. The geometry of a superposed fold is equivalent to a tilting fold, but 

standard restoration of paleomagnetic vectors (simple bedding correction) is different 

and not considering it causes declination errors controlled by the tilting of the two steps 

of foliation.  Error characterization is of great help for the identification of the sources 

of error and later correction. 

 

8.5 Further developments 

The usage of sparse paleomagnetic data in restoration methods is conditioned by the 

interpolation of this data. Therefore, we need to pay attention to the interpolation 

algorithm trying to improve it. Moreover, the parametric approach can be improved by 

adding the possibility to run it with scarce initial data. 

In this work we have only considered surface restoration methods and not real 3D. 

Next step should be including in the restoration fault discontinuities and not only 

isolated surfaces, without losing sight of 3D restorations. Besides, we have only 

considered static restorations because paleomagnetism is known in the initial and final 

state, and a next step here should be to consider the time variable. 

In any way, it seems important to evaluate and numerically quantify the differences 

between the different restoration methods available.  

Concerning the analog models, we already suggested that they can be used to test 

any restoration and reconstruction algorithm and software. In this thesis, they have been 

the key-stones to validate our methods. On the other hand, we can not forget that 

restoration methods are designed for geological reconstructions of the subsurface, thus, 
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we should test them with real examples and not only with models. Therefore, next step 

will be to perform the restoration at the Balzes Anticline structure where a dense set of 

paleomagnetism is available (Rodriguez-Pintó et al., 2012) as well as the reconstruction 

of some starting horizons (Calvin et al., in preparation). 

Following the goodness of analogs, we think about building a catalog of complex 

geometries based on CT simulations. Moreover, we do not forget the aforementioned 

possibility of adding the time variable and build dynamic models (4D). 

In the line of the map-view restoration proposed, it is important to remind the need 

of the implementation of translations in the method considering thrusts and major faults.  
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Conclusiones 

Con esta tesis pretendemos abrir una nueva puerta a los modelos de restitución 

existentes: proponemos la incorporación del paleomagnetismo como variable de entrada 

para reducir así el número de incertidumbres. En concreto, en este trabajo hemos 

incorporado el paleomagnetismo a dos métodos de restitución de superficie válidos para 

desplegar superficies globalmente desarrollables. El uso del paleomagnetismo es 

especialmente relevante en la restitución de estructuras de geometrías complejas (no 

cilíndricas, no coaxiales o afectadas por gradientes laterales de acortamiento) donde los 

métodos existentes suelen presentar serias limitaciones. Adicionalmente, proponemos 

un método de restitución cartográfica con el objetivo de deshacer las rotaciones de eje 

vertical a escala tanto regional como tectónica. 

 

1 Modelos análogos 

Para poder evaluar los resultados de los métodos de restitución se han desarrollo 

modelos análogos. Estos modelos son una herramienta muy útil en muchos aspectos y 

nos pueden servir para analizar cualquier patrón de deformación. Para ello se dibuja un 

cuadrícula en cada capa del modelo a modo de sistema de referencia; ésta nos permite 

caracterizar el modelo de forma completa antes y después de la deformación. Para 

cuantificar la deformación se calcula para cada celda la dilatación (cambio de volumen 

o área en superficie) y el elipsoide de deformación. De esta manera, los modelos son de 

gran utilidad para determinar tanto la orientación de cualquier elemento lineal como 

puede ser el paleomagnetismo, como los patrones de deformación en superficie y 

volumen. 

Una vez construidos los modelos, la digitalización de los mismos no es una tarea 

sencilla. En este trabajo proponemos dos técnicas: la fotogrametría para la 

reconstrucción de superficies y el escáner de rayos X para la reconstrucción de 

volúmenes a partir de secciones. La primera es más precisa pero únicamente nos 

permite reconstruir la superficie superior del modelo. Los modelos análogos son válidos 

para reproducir cualquier tipo de mecanismo de deformación modificando la reología y 

 177



escalado de los materiales utilizados. Para el desarrollo de pliegues flexurales hemos 

utilizado planchas de goma EVA. El sistema de referencia se ha serigrafiado en las 

distintas planchas con pintura de minio puesto que presenta un buen contraste 

radiológico. 

Mediante esta técnica se desarrollan dos modelos sencillos inspirados en estructuras 

complejas que encontramos en los Pirineos: un pliegue cónico basado en el cierre 

periclinal de San Marzal y un pliegue curvo basado en el anticlinal del Balzes. Ambos 

ejemplos los utilizamos para evaluar los métodos de restitución, pero además hacemos 

una descripción completa del modelo del Balzes para mostrar las posibilidades que 

pueden ofrecer estos modelos. Se compara coherentemente una de las lineaciones del 

sistema de referencia con el paleomagnetismo real al norte y sur del anticlinal. Mediante 

el análisis de deformación en superficie se observa dilatación en la parte exterior del 

anticlinal y compresión en la interior siendo ésta de mayores magnitudes y se observa 

como la orientación de la deformación es perpendicular al eje de pliegue. La anisotropía 

volumétrica, en este caso, es menor debido probablemente al escaso espesor 

modelizado, sin embargo se pueden observar elipsoides horizontales en el volumen 

superior y verticales en el inferior. 

Estos modelos tienen además aplicaciones adicionales. Son una herramienta muy 

útil para evaluar los métodos y programas de reconstrucción geológica puesto que son 

modelos en los que disponemos de tanta precisión como deseemos (disminuyendo el 

espaciado del sistema de referencia y de las secciones escaneadas). Además, la técnica 

del escaneado podría ser aplicada a modelos dinámicos de arena para ver la evolución 

en el tiempo y monitorizar la deformación en 4D.  

 

2 Métodos de restitución de superficie 

La parte principal de la tesis es la modificación de dos algoritmos de restitución de 

superficie para que incluyan la restricción del paleomagnetismo. El primer método está 

basado en la triangulación de la superficie y el paleomagnetismo determina la rotación 

de los triángulos (código desarrollado en Matlab). El segundo es una aproximación 

paramétrica en la que la solución inicial viene determinada por el paleomagnetismo 

(código modificado en gOcad). 
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Antes de pasar a evaluar los resultados debemos recordar los supuestos de partida 

en los que se basa el método: en primer lugar el estado inicial de la superficie se 

considera horizontal, en segundo lugar suponemos que las capas plegadas son 

desarrollables y por último asumimos que contamos con un conjunto suficiente de datos 

paleomagnéticos primarios que se comportan como vectores pasivos. La primera 

suposición de partida viene forzada por ambos métodos ya que se convierten las 

coordenadas 3D en coordenadas 2D; en el primer caso abatiendo los triángulos a la 

horizontal y en el segundo mediante la parametrización. La tercera suposición es una 

condición inicial, si los datos paleomagnéticos no son fiables se introduce error en el 

resultado de la restitución; sólo se deberían utilizar en el método aquellos datos que se 

sabe que son certeros.  

En cuanto al segundo supuesto de que las superficies a desplegar son desarrollables 

vemos que es un poco más delicado porque es una condición que sólo se cumple de 

forma parcial; ya que hemos dicho que el método sirve para desplegar superficies 

globalmente desarrollables. Ninguno de los métodos presenta problemas a la hora de 

desplegar superficies sencillas completamente desarrollables; las dificultades aparecen 

cuando la superficie ha sufrido algún tipo de deformación normalmente en las zonas de 

mayor curvatura. Los métodos de restitución suponen superficies desarrollables y 

buscan minimizar la deformación (minimizando la distancia entre los vértices comunes 

en el primer método y con una parametrización ortonormal en el segundo). Por ello, la 

deformación resultante de la restitución no va a ser nunca la restitución real; sin 

embargo, en una buena restitución sí que va a ser un indicador de cuáles son las áreas 

que han sufrido una mayor deformación, ya que son las zonas que presentan mayor 

dificultad para ser desplegadas. 

Para poder evaluar los métodos de restitución se han hecho una serie de 

simulaciones con los dos modelos análogos desarrollados: el pliegue cónico (San 

Marzal) y el pliegue curvo (Balzes). En la restitución paramétrica se observa claramente 

como los resultados mejoran al utilizar los datos paleomagnéticos; en caso contrario, el 

método no es capaz de alcanzar la superficie rectangular inicial. Los resultados no son 

tan evidentes para el otro método de restitución basado en la triangulación, 

especialmente para el modelo más complejo, el del Balzes, para el que aparecen ciertas 

limitaciones del método, tanto con, como sin paleomagnetismo. Sin embargo, vemos 

como para el modelo de San Marzal, la restitución con paleomagnetismo es capaz de 
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localizar las zonas de deformación mientras que éstas quedan diluidas en la restitución 

sin paleomagnetismo.   

Más importante es que el método con paleomagnetismo es mucho más estable a las 

distintas localizaciones del punto de inicio por el que se empieza a desplegar la 

superficie (pin-element). De todas formas, es bueno elegir este punto de inicio en una 

zona no deformada de la superficie pero que no esté muy cercana al borde; esto es para 

que no se enmascare la posible deformación real de la superficie y para evitar errores de 

propagación. Por otro lado, una ventaja importante del segundo método de restitución 

con paleomagnetismo, aproximación paramétrica, es que no es sensible a este punto de 

inicio. Se han hecho también pruebas con diferentes densidades de malla y tipos de 

mallado pero vemos que no condicionan tanto el resultado como puede hacerlo el punto 

de inicio. 

Hasta ahora se ha considerado el paleomagnetismo definido en todos los puntos de 

la superficie, sin embargo, en un caso real, los datos paleomagnéticos provienen de 

estaciones aisladas de afloramientos puntuales. Es por ello que se desarrolla un 

algoritmo de interpolación para propagar el paleomagnetismo a toda la superficie y que 

pueda ser utilizado con relevancia en los métodos de restitución. Es alentador que los 

resultados utilizando los datos interpolados no difieren mucho de los obtenidos con el 

paleomagnetismo definido en todos los puntos, especialmente en el caso de restitución 

paramétrica. Además se ha definido un conjunto de datos iniciales definidos con cierto 

grado de error (α95) para simular un escenario real. Gracias al algoritmo de interpolación 

(que en cierta manera promedia los datos) los resultados son bastante similares a los 

obtenidos con el paleomagnetismo definido de forma precisa. De cualquier modo, es 

importante asegurar un cierto grado de precisión en los datos de entrada (trabajo 

desarrollado en los apéndices que comentamos en la sección de paleomagnetismo). Un 

inconveniente es que la orientación inicial de los vectores paleomagnéticos afecta en 

cierta manera al resultado, variando ligeramente los patrones de deformación de la 

superficie restituida. Por lo tanto, es necesario siempre evaluar de forma crítica el 

resultado obtenido. 

Finalizamos el estudio haciendo una restitución multi-superficie para compararla 

con una restitución 3D real. Restituimos la superficie inferior y superior del modelo del 

Balzes con el método de restitución paramétrica y utilizando los datos paleomagnéticos 

definidos de forma oblicua a las estructuras principales. Se pueden apreciar diferencias 
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en los patrones de deformación de las superficies restituidas en concordancia con lo 

esperado; se observa dilatación en la parte exterior del anticlinal y contracción en la 

parte interna. Creemos que éste es un buen punto de partida previo a la restitución 3D y 

vemos de su necesidad al comprobar las limitaciones de los métodos de restitución 

volumétricos. Tratamos de restituir la estructura utilizando un programa de 

aproximación geomecánica (Dynel3D) sin lograr alcanzar la forma rectangular inicial 

de las capas. 

Por todo ello, animamos a incluir datos paleomagnéticos certeros en los métodos de 

restitución, de forma especial para restituir estructuras complejas que hayan sufrido 

rotaciones. De forma concreta, proponemos el método de restitución paramétrica para 

desplegar superficies plegadas bajo condiciones flexurales. Vemos que el método 

basado en la triangulación es un poco más variable a ciertos parámetros de entrada, pero 

que también presenta mejoras al incorporar los datos paleomagnéticos. Sin embargo, no 

debemos olvidar en ningún caso que la deformación obtenida con la restitución es 

orientativa y no debe tomarse al pie de la letra ya que depende mucho del método de 

restitución utilizado. 

 

3 Restitución cartográfica 

De forma adicional a los métodos de restitución de superficie se recomienda el uso 

del paleomagnetismo en los métodos de restitución cartográfica. En concreto, lo que 

hemos hecho en este trabajo, ha sido extender el uso de los métodos desarrollados para 

superficie y aplicarlos en restitución cartográfica (2D). Se ha utilizado el método de 

restitución basado en la triangulación de la superficie y el basado en la parametrización 

para restituir un mapa con el único criterio de deshacer las rotaciones de eje vertical (sin 

tener en cuenta pliegues, cabalgamientos o fallas). Los datos de rotación se pueden 

obtener directamente de variaciones de eje vertical (VARs) o inferidos a partir de trazas 

estructurales por medio de una ley que relacione la dirección de la traza con el VAR. 

Los datos iniciales son interpolados para que tengan una mayor influencia en la 

restitución y puedan ser aplicados en ambos métodos. De nuevo, el método que mejor 

funciona, es el basado es la aproximación paramétrica. 
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Esta técnica es una primera aproximación que hemos aplicado en dos casos reales a 

diferentes escalas: el anticlinal del Balzes y el sistema surpirenaico central. La 

restitución no va a ser en ningún caso el estado inicial de la estructura puesto que solo 

estamos teniendo en cuenta las rotaciones y no los desplazamientos ni las 

deformaciones. Sin embargo, esta restitución es útil para ofrecer una idea de cómo 

estaba la cartografía antes de la rotación (generalmente localizada en un corto espacio 

de tiempo) y ver así las zonas de máxima deformación.. 

  

4 Paleomagnetismo 

Como hemos mencionado con anterioridad, es necesario matizar que para poder 

utilizar los datos paleomagneticos en los métodos de restitución con cierta credibilidad, 

es imprescindible que se asegure en primer lugar su fiabilidad. En esta línea hemos 

trabajado en dos direcciones (apéndices): 1) obtener la información óptima a partir de 

un análisis paleomagnético y 2) caracterizar un conjunto de posibles errores 

estructurales. En cuanto al primer punto, se desarrolla el programa VPD para tratar de 

sacar la mayor y mejor información de las rutinas de desmagnetización. En primer lugar 

nos permite ver y evaluar una estación de forma rápida, pero lo más importante es el uso 

que se le puede dar para determinar las componentes naturales (NRM) de estaciones 

homogéneas y con numerosas muestras. El programa calcula todas las direcciones 

virtuales (VD) de cada estación, así como los métodos tradicionales de análisis de 

componentes principales (PCA) y otros más automáticos como el promediado (SR) o el 

análisis espectral de linearidad (LSA); permitiendo así comparar resultados. 

En cuanto a la caracterización de posibles fuentes de error que desvían el dato 

paleomagnético nos centramos en tres, todas ellas con control estructural: 1) 

solapaminto, 2) cizalla de flanco y 3) dos etapas de plegamiento. El solapamiento de un 

vector secundario produce errores de declinación e inclinación controlados por el grado 

de solapamiento y la posición estructural (eje del pliegue y magnitud de la rotación). La 

cizalla de flanco produce también errores de declinación e inclinación controlados por el 

grado de cizalla y la posición estructural. Dos etapas de plegamiento son equivalentes a 

un pliegue inclinado pero la restitución del vector paleomagnético a la horizontal no es 

equivalente en ambos casos produciendo errores de declinación al restituir el primer 

 182



caso como el segundo. La descripción matemática de estos errores, aún cuando los dos 

últimos son únicamente modelos preliminares, es de gran ayuda para simular cualquier 

situación y ayudar a identificar las causas de error para su posterior corrección.  

 

5 Futuras líneas de investigación 

Para poder usar cualquier método de restitución que incluya paleomagnetismo en 

casos reales es importante tener en cuenta que contamos únicamente con datos aislados. 

Por ello es importante seguir trabajando en métodos para interpolar estos datos de 

entrada, así como mejorar los métodos de restitución para que sean más eficaces en 

estas circunstancias. 

En este trabajo nos hemos centrado en métodos de restitución de superficie. El 

siguiente paso sería incluir discontinuidades de falla para un posterior salto a 

reconstrucciones volumétricas. Del mismo modo nos hemos centrado únicamente en 

restituciones estáticas considerando el estado inicial y final (ya que es donde se conoce 

el valor del dato paleomagnético), el salto en este aspecto sería considerar el tiempo 

(restituciones dinámicas). 

Si nos fijamos en el método de restitución cartográfica propuesto, el siguiente paso 

está claro, es necesario incorporar tanto desplazamientos causados por plegamientos y 

fallas como posibles deformaciones. 

En cuanto a los modelos análogos ya apuntábamos que pueden ser de gran utilidad a 

la hora de evaluar técnicas y programas tanto de reconstrucción como de restitución. 

Del mismo modo, es posible utilizar estos modelos para crear un catálogo de estructuras 

complejas. Por otro lado, no cabe duda de que los métodos deben funcionar en casos 

reales, para reconstrucciones geológicas del subsuelo y  no únicamente para modelos, 

por tanto, sería interesante testarlos en un caso real. Se cuenta con mucha información 

relativa al anticlinal del Balzes por lo que apunta a ser una buena estructura modelo.  
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I Appendix 1:  

Achieving the optimal information from 

paleomagnetic analysis 

We have been assuming the reliability of paleomagnetic data throughout the whole 

manuscript. Let us now focus on the acquisition of these paleomagnetic vectors from 

the rough initial data, known as characteristic remanent magnetization (ChRM). As we 

already mentioned (Section 2.2.1), the calculation of a ChRM is a key step during 

paleomagnetic data processing. In this line, we have developed the Virtual 

Paleomagnetic Directions (VPD) program based on the virtual directions (VD). We 

propose this multi task software because it is a global and rapid approach to evaluate all 

natural remanent components (NRM). 

The VPD is designed as a global approach to tackle the demagnetization data of a 

site. This tool is especially useful and fast when dealing with large (i.e. u-channel data) 

or discrete and homogeneous (sites) datasets. Moreover, the VPD software also 

implements classic approaches (principal analysis components [PCA], stacking routine 

[SR], linearity spectrum analysis [LSA]) to allow comparing between them. The goal of 

the VPD software is not to substitute the expertise of paleomagnetic researchers, but to 

ease the identification and calculation of ChRM directions reducing the uncertainty, 

especially when dealing with large datasets.  

 

I.1 Virtual directions in paleomagnetism: a global 

view on the NRM components 

Virtual directions (VD) are all possible directions (or vectors) calculated among all 

possible demagnetization intervals for each specimen from a site (Pueyo, 2000; Ramón 

& Pueyo, 2008). In the same way, virtual circles (VC) are all possible demagnetization 

circles (or planes). Directions and circles are calculated without including the origin 

(difference vectors) and including it (resultant vectors). The rationale behind this 
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calculus is that any stable direction of the natural remanent magnetization (NRM) will 

stand out above the scattered directions. Thus, if the ChRM can be defined in that site, it 

will necessarily be included in the VD data set. VD does not pretend to be a new 

method, but an auxiliary tool. The use of VD to help determining the NRM components 

is an approach that necessarily implies several assumptions, that are on the other hand  

applicable to all methods proposed for calculating ChRM directions, although only in 

exceptional cases are completely fulfilled: 

- A ChRM can be isolated with the selected demagnetization routine. 

- Directions are continuous, all valid steps within a given demagnetization interval 

are included to calculate any direction. 

- The stepwise demagnetization process is expected to be homogeneous among the 

collection, demagnetization step increments are recommended to be similar. 

- A magnetization component can be identified with a sufficient number of 

demagnetization steps. 

- The site must be lithologically homogeneous (e.g., similar magnetic mineralogy) 

and must have the same structural attitude (i.e. belong to a set of beds with an equal 

bedding plane). 

Let us suppose that there is a site with m specimens that are demagnetized following 

an homogeneous procedure of n steps. For each specimen all possible directions are 

calculated. Each direction is calculated using PCA (Kirschvink, 1980). The number of 

difference virtual directions (DVD) for one specimen is:∑
−

=

−=
1

1

2 2/)(
n

i
nni . To calculate 

the resultant virtual directions (RVD), the process is the same but includes the origin, 

being the number of RVD ∑
=

+=
n

i
nni

1

2 2/)( . In this case there are n more possible 

directions because only one step is needed to form a direction that includes the origin. 

Therefore, a total of n2 directions (difference + resultant) are automatically calculated 

for each sample, which results in m * n2 total directions for that site (Fig. I.1). 

The RVD data set mostly represents the directions that trend to the origin of the 

orthogonal demagnetization plot because the latter is included, although there is a 

background noise caused by demagnetization steps of other directions that are not 

directed to the origin. On the other hand the DVD data set will represent any direction 
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contained in the studied site plus, again, the noise caused by directions obtained from 

mixed demagnetization windows. To characterize the VD data set, Fisher (1953) and 

Bingham (1974) statistics are calculated. The normalized eigenvalues (S1, S2, S3) of the 

orientation matrix (Scheidegger, 1965; Bingham, 1974) will help identifying the 

anisotropy of the scatter caused by multi-component NRMs. 

In the same way and with similar meaning, the virtual demagnetization circles can 

be calculated from two different sources of vectors (resultant and difference) which 

gives two new data sets: difference virtual circles (DVC) and resultant virtual circles 

(RVC). The expected result must be checked by observing the areas where denser 

intersections of circles are located and its anisotropy. The poles of demagnetization 

planes plotted in the stereographic projection tend to form a girdle whose pole, in turn, 

corresponds with the main intersection of all circles. The minimum eigenvector (e3) of 

the Bingham (1974) statistics of this distribution of poles should be closer to the ChRM 

in this case.  

Visualization of all virtual directions and calculation of its mean direction can be 

inappropriate for noisy data or for sites with more than one representative component. 

Therefore, post-processing becomes necessary to discriminate the components. With 

this aim, we propose the filtering of the data. 
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Figure I.1: Illustration of the virtual directions concept. Demagnetized sample with n=5 demagnetization 

steps. A) Resultant virtual directions (RVD). With only one step there are n directions, n-1 directions with 

2 steps and so on until 1 direction with n steps. B) Difference virtual directions (DVD). The minimum 

number of steps required to calculate a direction is two. C) Resultant virtual circles (RVC). D) Difference 

virtual circles (DVC). 

Several criteria can be used to filter the virtual directions and circles data sets (Fig. 

I.2): some can be considered more objective (number of steps, MAD, intensity) and 

some others are particularly based on the experience and expertise of the researcher 
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(interval of demagnetization). This last criteria obviously lacks of objectivity but it can 

be very useful to automatically process very large homogeneous datasets. The criteria 

that we have used are as follows: 

- Minimum number of steps. A difference direction can be defined in two steps 

and a resultant direction in only one step (including the origin of the demagnetization 

diagram). Nonetheless, a representative component should be defined using as many 

demagnetization steps as possible. However, a minimum number of steps can be 

established to extract only those directions that are stable and reliable. 

- Maximum and minimum intensities. This filter is useful to remove instrumental 

noise (background intensities), laboratory errors, or anomalous samples (e.g., shock 

magnetized, lighting, etc). For example, the application of maximum threshold intensity 

could be very useful to differentiate bimodal distributions along u-channels (i.e. cyclic 

sequences). 

- Minimum and maximum error (MAD). Low MAD values guarantee linearity 

for a direction ( ( ) 123tan λλλ += alineMAD  where λi are the eigenvalues of the 

PCA) and planarity for a circle ( ( ) ( )1323tan λλλλ ++= acircleMAD ), thus filtering 

with a maximum MAD is useful to remove poorly characterized directions and circles. 

Besides, the selection of a minimum MAD of 0.1º will avoid inclusion of resultant 

vectors characterized by only one step as well as difference vectors characterized by 2 

steps (e.g., original demagnetization vectors). 

- Interval of demagnetization / unblocking window. Although the most 

subjective, his approach is really meaningful when a fixed demagnetization interval is 

found for all specimens in the studied homogeneous site/profile/locality and particularly 

necessary if there is more than one component. Selection of minimum and maximum 

demagnetization steps can accurately constrain the virtual data set within the selected 

unblocking window. It could be very useful to quickly characterize the ChRM providing 

a clear definition of the demagnetization interval. 
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Figure I.2: Illustration of the filtering concept (example from sample of Fig. I.1). A) Minimum number of 

steps filter. B) MAD filter. C) Demagnetization interval / unblocking window filter. D) Final filter with 

multiple criteria.  

 

I.1.1 Automatic calculation of demagnetization intervals 

The selection of the demagnetization interval or unblocking window may be quite 

subjective. However, for an homogeneous dataset (homogeneity in terms of magnetic 

properties and tectonics between all specimens of a site) we want to facilitate this 

selection making it as objective as possible. In that sense, we want to use the virtual 

directions method to seek the most representative demagnetization interval. We will 

filter the VD data set with the calculated interval and determine the mean directions 

(ChRMs). 

The idea is to find the interval that contains the group of most representative virtual 

directions. Resultant or difference virtual directions (RVD, DVD) can be considered if 

we assume that directions point toward the origin (complete demagnetization) or not 

(the general case). For further analysis, the initial VD data set (RVD or DVD) is 

objectively filtered selecting only reliable directions defined by a minimum number of 

steps (e.g. n ≥ 3) and a maximum value of error (e.g. MAD < 15º).  
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We define groups of VD data sets filtered by each possible demagnetization 

interval. We consider that a well-represented group has an accurately determined 

direction (MAD < 15º) at least for half the specimens of the site. As the initial data set 

has already been objectively filtered, only groups with a minimum number of directions 

(the number of specimens divided by two) are used. The data quality or relevance for 

each group is measured with the precision parameter (k) of Fisher (1953). In order to 

gain resolution and better discern the results, we use it squared.  

Each interval is defined by their initial and final demagnetization steps. The 

concurrent occurrence of these intervals in relevant groups leads to the selection of the 

proper interval or intervals. We plot weighted histograms for the initial and final steps: 

we count the numbers of times each step is the initial or final step of the groups but 

weighted by the squared precision parameter (k2) of each group. Local maxima of the 

weighted histograms of initial and final steps may correspond with the unblocking 

windows for different natural remanent magnetization components (Fig. I.3). ChRM is 

the Fisher Mean of the VD filtered by the calculated interval (step max –min and # 

steps). 

Demagnetization step: 1, 2, 3, 4

group2 (k2 = 6)

group3 (k3 = 4)

group1 (k1 = 2)

Interval: 2-4

k22 = 36

k12+k32 = 20

k12 = 4

k22+k32 = 52

INITIAL STEP FINAL STEP

demagnetiztion step demagnetiztion step  

Figure I.3: Automatic determination of the demagnetization interval concept. Weighted histograms of 

initial and final steps. Example of a site with 4 demagnetization steps. There are three possible groups of 

VD filtered by interval. The group 2 (initial step 2 and final step 4) is the best represented (higher values 

of the histograms) and the one that defines the best characterized direction (k2=6); thus, it is the interval 

of the ChRM. 
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The VDP program includes a filtering menu with the weighted histograms and all 

filtering criteria. Additionally, there are some visualization windows including a display 

of the VD plotted in color maps corresponding with these filtering criteria. Moreover, 

some useful graphics, including separated stereographic projections from all subsets of 

the VD, the Woodcock (1977) diagram and a counter of directions before and after the 

filtering are displayed in this menu to help to decide the correct filtering parameters. 

The Woodcock (1977) diagram may be useful to discriminate the goodness of the 

filtering. This diagram is used to quantify the shape and anisotropy of the orientation 

matrix of any population of vectors in the spherical space (Scheidegger, 1965). Using 

the ratios of its normalized eigenvalues (S1, S2, S3) in a way similar to the Flinn’s 

diagram (Zingg, 1935 and Flinn, 1962) is helpful to determine anisotropies in the 

dataset. After an appropriate filtering, the S1/S2 clustering ratio and the total anisotropy 

of the orientation matrix (S1/S3) are expected to be increased for a well-defined ChRM 

direction. VC will show an enhancement of the girdling ratio (S2/S3) and the total 

eccentricity of the tensor (S1/S3). 

 

I.2 Application to real data sets 

In this section we show the potential of the VD approach when applied to two case 

studies involving real paleomagnetic data: a well-defined multi-component NRM in a 

site with tectonic purposes (ASN3 from Internal Sierras, Southern Pyrenees), and a 

large data set obtained from u-channels (Almonacid de La Cuba outcrop). Results are 

compared to those from three other techniques: visual inspection of demagnetization 

directions (PCA), the stacking routine (SR) and the linearity spectrum analysis (LSA). It 

is worth mentioning that we should not expect any consistent result in poor-quality sites 

after applying the VPD approach (or any other method). 

 

I.2.1 Application to a site scale: multi-component NRM 

Results for a paleomagnetic site (ASN3) from the Internal Sierras in the Southern 

Pyrenees with three components are presented here. This Cenomanian-Santonian site 

(10 standard demagnetized specimens) is affected by the Larra-Monte Perdido thrust 
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system and the later Gavarnie thrust sheet. Apart from the primary Cretaceous direction, 

a post-folding (Eocene) reverse polarity remagnetization records the moderate CW 

rotation of the Guarga basement thrust which is the latest thrust affecting the area. The 

components have been isolated with standard eye-ball PCA fitting and using the 

stacking (SR), LSA and VD routines of the VPD software.  

During PCA analysis one of the ten samples was rejected because of its 

inconsistency (n/N= 9/10, likely a core orientation error). Visualization of all VD with 

different colors for each sample gives us a global idea of the site and additionally helps 

us to reject this inhomogeneous specimen (Fig. I.4A). Results obtained with PCA for 

the intermediate and high unblocking temperature components were published by 

Oliva-Urcia and Pueyo (2007). Apart from a variable and low-temperature component, 

two stable components were defined during the thermal demagnetization procedure at 

the site scale: an intermediate temperature (between 250 and 460ºC; six or seven steps; 

D&I= 207º, -32º; α95= 10º; k= 23) and a high temperature component (between 500 and 

560ºC; three steps directed to the origin, D&I= 189º, 24º, α95= 11º, k= 19). Different 

components can be distinguished visualizing the initial step of all VD (Fig. I.4B).  

                 

 

Figure I.4: Virtual Directions of ASN3 site. A) Color map: specimens or samples. B) Color map: initial 

step of each direction. 

 The ChRM direction for a stacked sample (SR, the mean of each step) is calculated 

rapidly after choosing the nine samples with demagnetization steps from 100 to 560ºC. 

A few obvious anomalous steps (mostly laboratory errors) were removed for further 

analysis. The stacked sample also helps to achieve a global idea of the paleomagnetic 

directions for the site. The unblocking windows for the three components are clearly 

recognizable (Fig. I.5A) and there is a good similarity with results from the PCA 
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analysis of the stacking routine and the eye-ball fitting because of the good quality of 

the sample. 

 

Figure I.5: A) Stacking routine (SR) for samples from site ASN3.  The stacked sample calculates the 

mean direction for all samples from a site for each demagnetization step. A1) Orthogonal projection / 

Zijderveld (1967) diagram. A2) Equal area stereographic projection. A3) Intensity decay diagram. B) 

Determination of the demagnetization intervals for paleomagnetic data from site ASN3 using the 

spectrum of linearity (Schmidt, 1982). B1) Specimen linearity. B2) Mean linearity for all specimens of a 

site. Peaks of maximum linearity determine the middle demagnetization step of the intervals and 

minimum linearity ones are the extremes of the demagnetization windows.  
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The demagnetization intervals can also be calculated with the linearity spectrum 

analysis (LSA; Schmidt, 1982). LSA calculates the demagnetization interval in an 

automatic way looking for the best quality of directions. The term used to measure the 

quality is the linearity: 1-sin(MAD). The direction with longer demagnetization interval 

and maximum linearity is sought around the middle demagnetization steps for all 

specimens. The middle demagnetization step that determines the interval is the one with 

the maximum mean linearity of the site. Three intervals can be determined from the site 

mean-linearity diagram (Fig. I.5B); a low temperature component up to 250°C (around 

the middle step of 200ºC with maximum linearity), an intermediate unblocking 

temperature is defined between 250 – 430°C (middle step: 360ºC) and, finally, the high 

temperature component up to 560ºC (middle step: 530ºC). These ranges may slightly 

change within the individual samples but, as a rule, they are identical to those originally 

defined by Oliva and Pueyo (2007). 

Moreover, we calculate the demagnetization interval leveraging the automatic 

technique described before (sub-section 1.1.1). We calculate the weighted histograms 

for the initial and final steps using the objectively filtered dataset (n≥3 and MAD<15º). 

Results are different for the difference and resultant virtual directions because there is 

more than one component and all intervals can only be observed using DVD. The 

weighted histograms for DVD show two local maxima that correspond with the 

demagnetization intervals of the two components (Fig. I.6). The high temperature 

interval is exactly the same and the intermediate temperature interval is defined by one 

step less but it is equivalent in meaning (from 300 to 460º). 

 
Figure I.6: Automatic determination of the demagnetization intervals using the weighted histograms 

technique for site ASN3. Only difference virtual directions objectively filtered (n≥3, MAD<15) are 

considered. Intervals are determined by local maximums of initial and final steps; interval 1: 300-460ºC, 

interval 2: 500-560ºC. 
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Figure I.7: A) VD from site ASN3 plotted on equal area stereographic projections. A1) DVD0: all 

difference virtual directions, DVD1: filtered by interval 250-460ºC (intermediate temperature 

component), DVD2: filtered by interval, number of steps (n ≥3) and MAD (<15). A2) RVD0: all resultant 

virtual directions, RVD1: filtered by interval 500-560ºC (high temperature component), RVD2: filtered 

by interval, number of steps (n≥3) and MAD (<15). B) Woodcock (1977) diagram. B1) Intermediate 

temperature component. B2) High temperature component. C) Means calculated with different methods. 

C1) Intermediate temperature component calculated with PCA, SR, LSA and DVD (n =7, MAD <15, 

interval: 250-460ºC). C1) High temperature component calculated with PCA, SR, LSA and RVD (n = 3, 

MAD <15, interval: 500-560ºC).  
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ASN3  

(DD: 250-460ºC) 
DEC (º) INC (º) α95/MAD (º) k n/N 

PCA 207 -32 10/- 23 9/10 

SR 208 -29 -/6 - 9/10  

DVD 206 -32 3/- 23 110/770 

LSA (360) 206 -33 10/- 31 9/10 

    

ASN3  

(RD: 500-560ºC) 
DEC (º) INC (º) α95/MAD (º) k N 

PCA 189 24 11/- 19 9/10 

SR 181 30 -/3 - 9/10 

RVD 181 29 10/- 43 7/892 

LSA (530)  183 29 8/- 50 9/10 

Table I.1: Paleomagnetic results for site ASN3 (intermediate and high temperature components). Virtual 

directions are filtered by the observed demagnetization intervals (250-460ºC and 500-560ºC) as well as 

the more objective filters (DVD2: n ≥3, MAD <15; DVD: n =7, MAD <15; RVD: n =3, MAD <15).  

Mean direction calculated with LSA is looked for around the middle demagnetization interval 

(intermediate component: 200ºC, high: 530ºC). 

Using the particular procedure of this program, all virtual directions are calculated 

(RVD0: 892, DVD0: 770). For a multi-component NRM is essential to choose the 

correct demagnetization interval. The whole initial dataset is filtered by interval: the 

intermediate temperature component (250-460ºC) is calculated using difference 

directions and the high temperature component (500-560ºC) using resultant directions 

(Fig. I.7A). A second filter is applied trying to improve the quality of the selected 

directions: we select a minimum of three steps to define the direction as accurate as 

possible and we allow a maximum error (MAD) of 15º (110 DVD2 and 7 RVD2 

remain). The application of filters in order to narrow both components increases the 

anisotropy of the orientation matrix (Fig. I.7B) as deduced from the Woodcock (1977) 

diagram.  

However, after the filtering steps, the confidence angle of the intermediate direction 

is not comparable with the eyed-ball PCA fitting because the number of directions is 

different. Thus, in order to compare results, we filter the intermediate component with 

seven steps (Fig. I.7C, Table I.1). A common true mean direction (CTMD) in terms of 

McFadden and Lowes (1981) is found independently of the method used and the 

maximum deviation angle between means is 5º for the intermediate component. When 

the high unblocking temperature component is defined with fewer steps , PCA and the 

 219



more automatic methods differ on an angle of 10º, although all of them share a CTMD 

(SR, LSA and RVD, really close between them, are included in the confidence angle of 

the PCA mean). 

 

I.2.2 Application to automatic calculation to large data sets 

To highlight the possibilities of the VD approach to a natural site with a large data 

set, we resort to an outcrop in Almonacid de la Cuba (Zaragoza, Spain). At the 

beginning of the 1st century AD, the largest dam (35 m) in the western world until the 

16th century was built by the Romans in the vicinity of Cesaraugusta, now known as 

Zaragoza (NE Spain). The Almonacid de la Cuba reservoir completely overflowed at 

the end of the second century to give a total infill thickness of sediments of 25 m, 5 m 

of which are exposed by present-day river incision. Unfortunately, the exact dating of 

this uppermost exposure is not available. 

Several standard paleomagnetic samples (both cores and plastic boxes) were taken 

(a sample every 5 cm) to search for a continuous record of secular variation throughout 

this period. Two u-channel samples (1.5 m length and 2x2 cm cross-section) were also 

collected from the studied outcrop (Fig. I.8) and were measured at 1cm stratigraphic 

intervals. IRM acquisition curves indicate the occurrence of low coercivity minerals, 

and thermomagnetic curves provide evidence for magnetite (dominant), iron sulfides 

(occasional) and hematite (rare) as magnetic remanence carriers (Pueyo et al., 2002). 

Results from stepwise demagnetization (both thermal and AF) of discrete samples allow 

us to differentiate two components: (1) an overprint due to the present geomagnetic 

field (PGF) and other viscous records (sampling, laboratory, etc.) that is identified up to 

10 mT and (2) a stable ChRM that is identified from 100 to 350°C and from 20 to 60 

mT. The SR run under the VPD of the lower u-channel sample confirms these intervals 

as the optimal demagnetization windows, that were helpful for design the filters to a 

large data set with a homogeneous demagnetization routine.  
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Figure I.8: Data from a u-channel sample from Almonacid de la Cuba sediments. A) Declination in red 

and inclination in orange. B) Sampling u-channels in a vertical outcrop. C) Equal area stereographic 

projection with the virtual directions for paleomagnetic data. Virtual directions filtered by interval: PGF 

from 0 to 10 mT (3 steps) and ChRM from 20 to 60 mT (7 steps) and MAD <15º.  D) The Woodcock 

(1977) diagram for the PGF and ChRMs components. Open symbols: all data; solid symbols: filtered 

data. 
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In this case VPD helps to quickly estimate both components after applying the 

correct filters (Fig. I.8C). Only directions with MAD <15º are considered. The first 

component (PGF) is set between 0 and 10 mT; if we select three steps, only two 

directions (resultant and difference) per measured stratigraphic interval will result from 

the filtering. Since intermediate components are not necessarily directed toward the 

origin of the demagnetization plot, only the difference vectors have been considered. In 

any case, both VD sets show increases in the clustering ratios (Woodcock, 1977) (Fig. 

I.8D). The mean is well characterized (D&I= 005º, 54º; α95= 1.4°; k= 71) and seems to 

be a slightly noisy record of the PGF, as deduced from the National Geophysical Data 

Center (NGDC) for the sampling site (D&I= 358º, 57º).  The second filter between 20 

and 60 mT includes seven demagnetization steps and gives a slightly different mean for 

the resultant and difference vectors (Fig. I.8C). This is likely caused by incomplete 

demagnetization that bias the resultant vectors. This ChRM drifts around the “expected” 

mean for the Roman period in the Iberian Peninsula (Pavón et al., 2009). 

 

I.3 Availability and requirements 

The program Virtual Paleomagnetic Directions (VPD, Fig. I.9) was developed to 

easily visualize the demagnetization data and to compare the results obtained with 

virtual directions (VD) and other classic methods: eye-ball inspection and fitting with 

principal components analysis (PCA), linearity spectrum analysis (LSA) and the 

stacking routine (SR). VPD was coded in Java to run the program in any operating 

system (Linux, Mac, Windows) on a Java Virtual Machine, as a single executable file 

with no special installation1. Principal Component Analysis (PCA) [Kirschvink, 1980] 

and part of the visualization menu have been inspired on the Paldir code developed by 

the University of Utrecht. The stacking algorithm [Scheepers and Zijderveld, 1992] is 

based on software Gamsstack [Pueyo et al., 2003] from Gams paleomagnetic laboratory 

(Montanuniversität Leoben, Austria) whereas LSA is detailed by Schmidt [1982].  

                                                 
1 Java that can be easily downloaded and installed from the official site 
http://www.java.com/en/download. The Java SE 6 version is required. Software upgrades are available 
from http://www.igme.es/internet/zaragoza/aplicaInfor.htm. 
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Figure I.9: VPD program. A) Main menu (sample level): stereographic projection, orthogonal projection, 

intensity decay graphic, visualization mode options, core/specimen/sample information, PCA menu, 

initial site and final site info-box, other methods buttons: LSA, SR, VD and summarize. B) Summarize 

window: weighted histograms, interval selection, SR orthogonal projection, ChRM calculated with all 

methods, stereographic projection of ChRM calculated with all methods (RD and DD). C) Virtual 

directions menu: stereographic projection with statistical information of resultant virtual directions 

(RVD), difference virtual directions (DVD), total virtual directions (VD), resultant virtual planes or 

circles (RVC), difference virtual circles (DVC) and total virtual circles (VC).  
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Figure I.9 (continued): D) Filtering window: number of demagnetization steps, frequency diagram of VD 

intensities, frequency diagram of VD MAD, filtering parameters (initial and final steps, number of steps, 

minimum and maximum intensity, minimum and maximum MAD), weighted histograms, orientation 

matrix control (Woodcock [1977] diagram), VD counter. E) Declination/inclination diagram with 

parameter selection to determine the color scale: specimen, number of steps, minimum step, maximum 

step, intensity and MAD. F) Linearity spectrum analysis window: specimen linearity, mean linearity of 

the site, stereographic projection of directions obtained with LSA with statistical information, mean 

demagnetization step selector. k and alfa95 of all mean directions calculated for each demagnetization 

step. 
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I.4 Conclusions 

The virtual paleomagnetic directions (VPD) software is a useful tool for obtaining a 

global view of the paleomagnetic behavior of a site. The entire VD set allows 

researchers to obtain a rapid understanding of the magnetic behavior. Initial dataset can 

be filtered (minimum number of steps needed to define a direction, maximum error 

allowed, intensity and optimal demagnetization interval) to help estimating the NRM 

components. An automatic method is proposed to help determining the demagnetization 

intervals. Additionally, the program implements several existent methods to calculate 

the ChRM: principal component analysis (PCA by Kirschvink, 1980), stacking routine 

(SR by Scheepers and Zijderveld, 1992) and linearity spectrum analysis (LSA by 

Schmidt, 1982); which are really useful for checking the interval consistency of the 

data.  

The VPD has been tested for a well defined multi-component character site and  

compared with other methods (PCA,  SR, LSA) leading to similar and statistically 

indistinguishable results (all sharing a CTMD). Moreover, this tool is especially useful 

when dealing with homogeneous and large data sets. The ability to rapidly obtain large 

paleomagnetic data sets represents a growing problem for post-laboratory data 

processing. Large data sets (thousands of measurements), such as those derived from 

automatic instruments like the 2-G Enterprises SQUID magnetometer designed for u-

channel samples, can be quickly generated. We apply this technique for a u-channel site 

with satisfactory results. 

The VPD software allows a complete and friendly visualization of demagnetization 

data and allows conventional ChRM estimation approaches (eye-ball fitting by PCA of 

both directions and circles, stacking routine and linearity spectrum analysis) as well as 

the VD method with application of filters. The software package, with versatile 

output/input formats, allows fast and reliable processing of large data sets (see 

supplementary material).  
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II Appendix 2:  

Paleomagnetic errors 

Building on the idea of Appendix 1 about the reliability of paleomagnetic data, we 

want to control the errors caused by the geometry of folding from a theoretical point of 

view. With this work, we develop the mathematical modeling of several sources of 

error. In ideal conditions (perfect record of the paleomagnetic field direction and stable 

behavior in time) the paleomagnetic record could behave as an exact paleo-reference 

indicator. However paleomagnetic vectors are biased by numerous sources of scattering, 

like a low-quality primary record, natural scattering (e.g. secular variation), delaying 

time-gap during acquisition, poor magnetic stability over time, magnetic shallowing 

caused by sedimentary or tectonic load, several sources of instrumental limitations 

(incomplete cleaning, inability of isolation of components, creation of laboratory noise, 

etc.) and non-dipolar recordings of the magnetic field (Buttler, 1992; Voo and Torsuik, 

2001; Tauxe, 2002; Kodano, 2012). Apart from these sources, some “structural” errors 

are controlled by the geometry of the deformation (Pueyo, 2010) and can be modeled 

and filtered. Controlling these errors we want to reduce the uncertainty. 

An analysis of the implicit assumptions in paleomagnetic studies of fold and thrust 

belts reveals three possible sources of error with an intrinsic structural (geometric) 

control (Pueyo, 2010) (Fig. II.1):  

Assumption 1) Laboratory procedures are able to completely isolate the original 

paleomagnetic vectors (Halls, 1978; Bailey and Halls, 1984; McFadden and McElhinny, 

1988). When this fails, the subsequent overlapped paleomagnetic directions (e.g. 

primary record and the recent overprint) will display both the declination and the 

inclination errors, which will be controlled by the fold axis orientation, the degree of 

flank rotation (dip), the primary magnetic polarity as well as the degree of vector 

overlapping. In this case, the overlapped direction will be controlled by the structural 

position that will depend on the angular relationships between the original vector 

(including its polarity), the fold axis and the present field as well as the actual dip of the 

sampled bed and the intensity ratio between the primary and secondary (overlapped) 

intensities.  
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Some research has qualitatively focused this problem from an structural point of 

view (Dinarès and McClelland, 1991). More recently, an exhaustive and quantitative 

description of expected errors was devoted to this important issue (Rodríguez-Pintó et 

al., 2011, 2013). We assume that this important source of error has been finally 

understood and that it can be easily detected and corrected. 

 

Figure II.1: Errors in paleomagnetic analysis (Pueyo A) Sedimentary flattening error. B) Structural 

control and modeled errors on overlapped paleomagnetic directions; the original vector has been 

overlapped with the present geomagnetic field, both vectors have the same intensity.  D) Structural 

control on the magnitude of angular errors (declination) in incorrectly restored paleomagnetic directions. 

A plunging fold derived from an oblique tilting of a previous horizontal axis has been restored by the 

simple bedding correction.  

Assumption 2) Rigid-body behavior during deformation and the absence of rock 

volume changes. When the rock volume undergoes active internal deformation during 

folding or shearing, the deformed paleomagnetic vectors will display again declination 

and inclination errors, but both polarities will behave similarly. In this case the errors 

will depend on the relation between the primary field orientation and the deformation 

tensor, which in fact, can be reduced to the orientation and magnitude of the shear in 

most cases.  

This problem has been largely considered in paleomagnetic investigations (Cogné 

and Perroud, 1985; Lowrie et al., 1986; van der Pluijm, 1987; Kodama, 1988; 
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Stamatakos and Kodama, 1991). However a quantitative approach to the problem has 

still to be done. As it happens with overlapped directions, the final deformed vectors 

will depend upon the original vector, the fold axis and the magnitude of shear (strain 

tensor).  

Assumption 3) Bedding correction is able to restore the bedding-vector couple to 

the ancient (paleo-) geographical reference system. This restoration may fail in complex 

deformation zones affected by non-coaxial or inclined axes of deformation (conical, 

plunging, forced folds, etc; see MacDonald, 1980 and Chan, 1988; spurious rotation by 

Pueyo et al., 2003a). In this case only the paleomagnetic declination will show 

deviations (spurious or apparent rotations). These deviations will be a function (non-

coaxial case) of the obliquity (external rotation) of the deformation axes as well as of 

their magnitudes (e.g. degree of flank rotation for the original fold and amount of 

secondary tilting). 

Much quantitative research has been done in this topic for the last years (Zotkevich, 

1972; Scott, 1984; Sellés-Martínez, 1988; Setiabudidaya et al, 1994; Stewart, 1995; 

Weinberger et al., 1995; Weil et al., 2000; Pueyo et al., 2003a and 2003b; Weil, 2006 

among others) but a numerical control is still necessary to rapidly evaluate this error 

when processing large datasets. 

All these errors may cause severe problems in the so-called stability tests: all the 

three sources of error will change the result of the fold test (Weil and Van der Voo, 

2002) following a false synfolding magnetization that may display also an artificial 

oroclinal bending of the dataset (Elredge et al., 1995). A fictitious negative reversal test 

may be derived from the overlapping of vectors (very severe) and the non-rigid-body 

behavior of the rock volume (internal deformation). Moreover, to detect these errors 

Pueyo (2010) also proposes the inclination-dip diagram (Fig. II.2 & Table II.1). All 

these sources of error reduce the reliability criteria established for paleomagnetic data 

(Van der Voo, 1990). 
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Figure II.2: Detection techniques of errors in paleomagnetic analysis (Pueyo, 2010). 

Error type Source Variables
Dec 
error

DEC 
vs 

Strike
Inc 

error
INC vs 

Dip  Fold test

Differentia
l effect on 
Polarity 

Polarity 
change

Reversal 
Test

Stereonet 
anisotropy

1 Non-averaged 
secular variation

insufficient 
sampling

n +/-                    
sample distribution

YES   
(small) NO YES   

(small) NO NO NO NO NO YES

2 Inclination   
flattening sedimentary load original field (P),           

lithostatic load NO NO YES NO NO NO NO NO YES

3 Overlapping of 
components

unefficient 
demagnetization

original field (P),           
fold axis orientation (α,β), 

secondary field (S),        
obliquity (Ω),              
int.P/int.S (r)

YES YES YES YES

YES        
synfolding or 

non-
significant

YES
YES    

(extreme 
cases)

YES YES

4 Internal 
deformation

simple or pure 
shear during 
deformation

original field (P),           
fold axis orientation (α,β),   

obliquity (Ω),              
shear (γ) (strain tensor: D)

YES YES YES YES

YES        
synfolding or 

non-
significant

NO NO YES YES

5
Incorrect 

restoration 
(complex 

structures)

non-commutative 
character of the 

deformation 
history 

original field (P),           
fold axis orientation (α1,β1), 
secondary folding (α2,β2), 

obliquity (Ω)  

YES YES NO NO

YES        
synfolding or 

non-
significant

NO NO NO NO

 

Table II.1: Errors in paleomagnetic analysis (Pueyo, 2010).  
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II.1 Overlapping errors 

We describe in this section the mathematical formulation needed to characterize the 

overlapping. A full description with a real example is presented by Rodriguez-Pintó et 

al. (2011 and 2013a). The mathematical modeling considers two paleomagnetic 

components overlapping in a cylindrical fold. To simplify the model, a horizontal flat 

bed and a primary magnetic vector (P) recorded in the rock are assumed. The rock pile 

is first folded (PF). After a given time gap, a secondary component (S) overprints the 

primary signal and both components are overlapped (PO). Bedding correction with 

respect to the primary component produces the paleomagnetic error that we want to 

characterize (declination and inclination error) (Fig. II.3 & II.4). We summarize the 

variables involved and describe the procedure step by step: 

P  Primary paleomagnetic vector. Vectors are characterized by its declination, 

inclination and intensity (Pdec, Pinc, P ) or by its Cartesian coordinates (Px, Py, Pz) (see 

*Coordinates conversion). 

PF  Folded paleomagnetic vector (before overlapping). 

PO  Folded and overlapped paleomagnetic vector.  

PR  Restored paleomagnetic vector. 

S  Secondary vector. 

r  P/S ratio, the degree of overlapping between the two components.  

α,β  Bedding plane, α: strike, β: dip. The fold axis orientation is equal to the strike and 

the plunge is considered null. The obliquity Ω is the angle between the primary 

declination (Pdec), and the fold axis trend αφ = . 

*Coordinates conversion: 

 

y(E) 

z 

x(N) 

α 

β 

α: declination 
β: inclination   

22/tan(

)/tan(

yxz

xy

+a

a

=

=

β

α
 

  (quadrant arcotangent)  

  
β

βα
βα

sin
cossin
coscos

=
⋅=
⋅=

z
y
x

y(E)

z 

x(N) α: strike 
β: dip 

α 

β  
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Figure II.3: Block diagram of overlapping error: the original vector has been overlapped with the present 

geomagnetic field; both vectors have the same intensity. 

1) Rotation of the paleomagnetic vector during foliation: 

 PRPF ⋅= ),( βα  

where R is the rotation matrix 

( )
( )
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⎟
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coscos)cos1()cos1(cos

)cos1(coscos)cos1(cos
),( 2

2

sensensen
sensensen

sensensen
R

φφ
φφφφ

φφφφ
φ

being φ  the trend of the horizontal axis rotation and Ψ  the magnitude of rotation; since 

the plunge of the fold is negligible, the degree of limb rotation is equal to the dip of the 

limb (β). 

2) Overlapping in the folded state: 

rSPP FO +=  

3) Restoration of the overlapped paleomagnetic vector (without considering the 

secondary vector). The inverse rotation matrix is R with opposite magnitude of rotation: 

OR PRP ⋅−= ),( βα  

4) Paleomagnetic error (εdec, εinc): 

RPP −=ε  
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Figure II.4: Lower hemisphere stereographic projections showing different states of the magnetic 

record during folding, overlapping and restoration of Po. The block diagrams show four states. From left 

to right: 1) undeformed state (normal and reverse polarity), 2) folded position of the primary vectors, 3) 

folded and overlapped and 4) overlapped vectors restored to the horizontal. Note that the secondary 

component is assumed to be normal polarity. 

Therefore, the scattering is basically controlled by the relationship between the 

primary and secondary magnitudes (r or P/S ratio), and the angular relationships of the 

paleomagnetic components respect to the fold geometry (fold axis orientation and dip of 

bedding planes). With this mathematical model and the excel macro developed (see 

supplementary material), we can calculate the declination and inclination errors caused 

by the overlapping of two components with a particular structural setting. 

We simulate two examples (Fig. II.5) showing the paleomagnetic error caused by 

two similar overlapped vectors (P: 0º, 50º and S: 0º, 60º) and its scattering depending on 

the structural position. In this case, the error increases with the verticality of the limbs, 

and the parallel orientation of the primary vector with respect to the fold axis 

(obliquity(Ω)=0º) causes the highest declination errors while perpendicular orientation 

(Ω=90º) causes the highest inclination errors.  
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Figure II.5: A) Overlapping simulation with constant P/S ratio (r=1). Declination and inclination 

paleomagnetic error caused by the overlapping of a primary (P: 0º, 50º) with a secondary vector (S: 0º, 

60º) in different structural areas (fold axis from 0º to 180º and dip of 10º, 30º, 50º and 70º). B) 

Overlapping simulation with constant dip (30º). Declination and inclination paleomagnetic error caused 

by the overlapping of a primary vector (P: 0º, 50º) with different proportions (r=0.5, 1, 1.5 and 2) of a 

secondary vector (S: 0º, 60º) in different structural areas (fold axis from 0º to 180º). 
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II.2 Shear errors 

This is a preliminary model in which we describe a particular case of internal 

deformation: simple shear occurs in the flanks of a fold with flexural flow. Strain is 

only found in one direction, perpendicular to the fold axis. In that case, the 

paleomagnetic error depends on the structural position (fold axis and dip) and the 

magnitude of shear (Fig. II.6 & II.7). On the other hand, this error can be modeled for 

any kind of internal deformation provided that the strain tensor is known. Moreover, in 

this model there is another assumption: paleomagnetic vector behaves as a passive 

marker with lineal deformation. We now describe the variables and the mathematical 

equations step by step: 

P  Primary paleomagnetic vector. 

PF  Folded paleomagnetic vector (before deformation). 

PD  Folded and deformed (by simple shear) paleomagnetic vector. 

PR  Restored paleomagnetic vector (without considering deformation). 

α,β  Bedding plane, α: strike, β: dip. α is the fold axis direction. The obliquity Ω is the 

angle between the primary declination (Pdec), and the fold axis trend (α). 

γ  Simple shear, elongation along the axis;  ψ  angle of simple shear ( ψγ tg= ). The 

direction of simple shear is perpendicular to the bedding plane (α+90º, β) 

 
Figure II.6: Simple shear description. γ=tg(ψ) is the elongation and α, β the shear direction (axis1). 

1) Rotation of the paleomagnetic vector during foliation. The rotation matrix is the 

same as in the previous section: 

 PRPF ⋅= ),( βα  
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2) Deformation by simple shear perpendicular to the fold axis. The paleomagnetic 

vector behaves as a passive marker:  

( ) ),90()(',90 βαψβα +⋅⋅+= AtgSAD   

FD PDP ⋅=  

D is the symmetric strain tensor: ASAD ⋅⋅= '  where the matrix A is the coordinate 

system defined by the eigenvectors and S is the matrix of the eigenvalues: 
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3) Restoration of the deformed paleomagnetic vector (without considering the 

deformation): 

DR PRP ⋅−= ),( βα  

4) Paleomagnetic error: 

RPP −=ε  

 

Figure II.7: Stereographic projections showing the different states of magnetic record during the folding, 

deformation and restoration processes. 
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Figure II.8: A) Simple shear simulation with constant elongation (γ=0.2) for different structural areas 

(fold axis from 0º to 180º and dip of 10º, 30º, 50º and 70º). B) Simple shear simulation with constant dip 

(β=30º) for different magnitudes of deformation (γ=0.1, 0.2, 0.3 and 0.4) and structural areas (fold axis 

from 0º to 180º). 
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This error is basically controlled by the magnitude of deformation (γ) and the 

orientation of the shear (Ω and β). We simulate two examples (Fig. II.8) that show the 

paleomagnetic error caused by a simple shear perpendicular to the fold axis. As in the 

previous case for the same primary vector (P: 0º, 50º) the parallel orientation of this 

paleomagnetic vector with respect to the fold axis (Ω=0º) causes the highest declination 

errors while the perpendicular orientation (Ω=90º) causes the highest inclination errors. 

Definitively, large values of elongation cause higher paleomagnetic errors, in the same 

way that larger overlapping ratios caused higher errors in the previous case. 

 

II.3 Superposed folding errors 

We describe here a preliminary model of error produced by two steps of folding or 

tilting wrongly restored (bedding corrected) or after apparent fold axis correction 

(untilting of the perpendicular). After the two steps of folding we have a resultant 

plunging fold. The restoration procedure for a tilting fold is: 1) rotate with an axis 

perpendicular to the fold trend and a magnitude equal to the plunge and 2) rotate with 

the resultant bedding plane. Previous qualitative and quantitative analysis were 

performed on the 60’s. Recently, Pueyo (2000) and Pueyo et al. (2002) have derived 

nomograms to quantify potential errors in paleomagnetic data. However, this is not 

valid in this case because the tilting is not from the original fold but caused by two steps 

of folding or tilting (Fig. II.9 & II.10). We here describe the variables and the 

mathematical equations step by step: 

P  Initial paleomagnetic vector. 

PF  Folded paleomagnetic vector (after two steps of folding, with S1 and S2). 

PAFAC  Paleomagnetic vector after apparent fold axis correction. 

PR  Restored (fold axis correction + bedding correction) paleomagnetic vector. 

α1,β1  Tilting plane S1 (strike and dip); pole1(α1-90, 90-β1): pole of the plane. The first 

fold axis has null plunge and a trend equal to the strike (α1). The magnitude of rotation 

is equal to the dip (β1). 

α2,β2  Tilting plane S2 (strike and dip). The second fold axis has null plunge and a 

trend equal to the strike (α2). The magnitude of tilting is equal to the dip (β2). 
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α3,β3  Resultant bedding plane (strike and dip); pole3(α3-90, 90-β3): pole of the plane.  

fa3(trend3,plunge3)  Resultant fold axis.  

αAFAC,βAFAC  Bedding plane after apparent fold axis correction; poleAFAC: pole.  

 

Figure II.9: Block diagram for a incorrectly restored tilted fold caused by two steps of foliation. 

1) Double rotation of the paleomagnetic vector with steps of tilting S1 and S2: 

[ ]PRRPF ⋅⋅= ),(),( 1122 βαβα  

2) Resultant bedding plane and fold axis after the second step of folding: 

331223 ,),( βαβα →⋅= poleRpole  

331223 ,),( plungetrendfaRfa →⋅= βα  

3) Apparent fold axis correction, to eliminate the plunge the resultant fold (fa3): 

FAFAC PplungetrendRP ⋅−−= ),90( 33  

AFACAFACAFAC poleplungetrendRpole βα ,),90( 333 →⋅−−=  

4) Incorrect restoration of the folded paleomagnetic vector with the resultant 

bedding plane after apparent fold axis correction: 

AFACAFACAFACR PRP ⋅−= ),( βα  

5- Paleomagnetic error: 

RPP −=ε  
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Figure II.10: Stereographic projections showing the different states of magnetic record during two steps 

of folding and later restoration. 

 

Figure II.9: A) Superposed folds simulation with constant S2 (α2=40º, β2=40º) for different S1. B) 

Superposed folds simulation with constant S1 (α1=40º, β1=40º) for different S2. 

Superposed folds wrongly restored produce error only in the paleomagnetic 

declination and not in the inclination. The deviation is a function of the two bedding 

planes. We simulate two examples (Fig. II.11) which show the scattering error 

depending on S1 and S2. The magnitude of rotation of the first step of folding is well 
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restored (β1) but not the magnitude of rotation of the second step (β2) that is 

proportional to the declination error. 

Further analysis must be done, particularly in the shear and superposed folding 

error, but the characterization of these errors constitutes a great help for the 

identification of the source of error and its later correction. 
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Supplementary material 

The work done with this thesis is an open door for further researches. Therefore, we 

pretend with the contents of the supplementary CD that methods and simulations can be 

reproduced and used as starting point for incoming studies. We detail the content of 

each folder. 

 

Analog models 

Files marzal.ts and balzes.ts are gOcad surface objects. They are the reconstruction 

of the analog models described in Sections 3.2.1 and 3.2.2 used to test the restoration 

methods. In order to restore the surface using the paleomagnetic constraint we need to 

select as “Default gu values” (in the Parameterizer2D window) the property with 

interpolated paleomagnetic vectors. 

 

Piecewise restoration 

The piecewise restoration code is programmed in Matlab version 6.5 and needs to 

be run from Matlab. We include some simulations performed in this thesis 

(simulation_sanMarzal.m, simulation_balzes.m and simulation_mapView.m), the fold 

restPmag that contains the Matlab functions and the fold ExampleData with the files of 

initial surfaces to restore. To run the simulations we need to include this fold in the 

workpath. We detail the data and functions organization and flow: 

Initial data: 

1) Triangulated initial surface: nodes (X,Y,Z) and vertices of triangles (tri). 

2) Polarity of triangles of initial surface (normal polarity: pol = 0). 

3) Pin-element (starting point or line: pin = 1). 
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4) Paleomagnetism (no data value: pmag0 (dec,inc) = Inf, Inf) and its confidence 

angle (by default: where paleomagnetism is defined alfa95 = 0 and where is undefined 

alfa95 = 360). Reference unrotated data. 

Restoration process: 

1) Optional; extrapolation of scattered paleomagnetism:  

[pmag_xyz,pmag_decInc]=extrapolatePmagB(tri,X,Y,Z,tri2,X2,Y2,pmag0,ref,pol); 

pmagExtrap=mean(pmag_decInc); 

decPmag=pmagExtrap(1,:,1); incPmag=pmagExtrap(1,:,2); 

2) Flattening (initial paleomagnetic data is also flattened, only the resultant 

declination value is used in the fitting process): 

[tri2,X2,Y2,azimuth,dip,pmag] = flattening3(tri,X,Y,Z,pol,decPmag,incPmag);  

3) Fitting (with iterating process if paleomagnetism is not hard [α95 ≠ 0] and free 

rotation is allowed): 

[tri3,X3,Y3,orderTri]= translationRotation(tri,tri2,X2,Y2,pmag,alfa95,ref,pin); 

n =maximum number of iterations; 

[X3,Y3]=iteratingB(tri,tri2,X3,Y3,alfa95,pmag,ref,n,orderTri,pin); 

4) Welding: 

[X4,Y4] = welding(tri,tri2,X3,Y3);  

5) Calculus of dilation and deformation (relation between major and minor axis and 

direction of major axis): 

d=dilation(tri2,X2,Y2,tri,X4,Y4); 

[rel,ang]=deformation2(tri,X4,Y4,tri3,X3,Y3); 

6) Visualization of results: 

 figure; trisurf(tri,X4,Y4,zeros(size(X4)),d); hold; axis equal; title(‘Dilation'); 

colormap(map1); caxis([-0.15 0.15]); view(2);  triplot(tri(find(pin==1),:),X4,Y4,'r');  

figure; trisurf(tri,X4,Y4,zeros(size(X4)),(rel)); hold; axis equal; title('Axis 

relation'); colormap(map2);  caxis([1 1.3]); colorbar; 

 244



figure; trisurf(tri1,X4,Y4,zeros(size(X4)),(ang)); hold; axis equal; title('Maj. angle 

direction'); colormap(map1); caxis([0 180]); colorbar; 

 

Parametric restoration 

This fold contains the plugin Restoration2D for gOcad version 2009.4. This plugin 

is the restoration method based on the parametric approach in which we have 

incorporated the paleomagnetic constraint. We must set the paleomagnetic property as 

“Default gu value”. 

  

Map-view restoration 

This simple c program (restoredmap.exe) plots the cartographic map in the restored 

state after the palinspastic (or map-view) restoration (Section 6.1). Two files are needed 

to run the program: 1) a text file with the vertices of texture and position (example: 

vertices.txt) and a 2) bitmap file with the raster image of the cartographic map 

(example: carto.bmp).  The program is run from the command prompt adding two 

arguments corresponding with these two files (example: >restoredmap vertices.txt 

carto.bmp).  

The vertices file contains the x y coordinates of texture and position. Vertices are 

sorted by triangles (three consecutive lines are the nodes of a triangle). Texture vertices 

are the points of the meshed initial map while position vertices are the points of the 

meshed restored map. Point range is from 0 to 1.  

 

VPD 

Virtual Paleomagnetic Directions program is fully described in Appendix1: 

Achieving the optimal information from paleomagnetic analysis. VPD.jar is the 

executable file whereas the source folder contains the code. We also include example 

files for each input format. ASN3.th and Almonacid u-channels.txt are the files used in 
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Section I.2 for the application to real data sets. We detail in the manual (VDP 

Manual.pdf) all routines of the program. 

 

Paleomagnetic errors 

These are the excel macros developed to compute the paleomagnetic errors 

described in Appendix 2:  

1) Overlapping error 

Input data: P (primary vector), S (secondary), r (P/S ratio), rotation matrix (α, 0, β) 

Output data: Error 

2) Shear error 

Input data: P (primary vector), bedding plane (α, β), simple shear (γ, ψ) 

Output data: Error 

3) Superposed folding error 

Input data: P (primary vector), S1 (α1,β1), S2 (α2,β2) 

Output data: Error 
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