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Arrythmic Risk Prediction based on the Analysis of Ventricular
Repolarization Markers from Surface ECG

ABSTRACT

Heart rate (HR) dependence of action potential duration (APD), also called restitution
kinetics, is critical in activation instability of the heart and provides relevant information for
ventricular arrhythmic risk stratification. The dynamic APD restitution (APDR) curve quantifies
the relationship between the APD and the RR interval (inverse of HR) at steady-state when
pacing at different RR values. Heterogeneities in the ventricle lead to non uniform restitution
properties, which makes APDR curves present spatial variations. Dispersion is a measure of
that spatial variation. An electrocardiogram (ECG) index, Δα, that quantifies dispersion in the
dynamic APDR slopes by characterizing the relationship between the T-peak-to-T-end (Tpe) and
the RR intervals at different steady-state conditions, was recently proposed.

In this master’s thesis a fully automated method to compute Δα in ambulatory recordings
has been developed and the value of Δα, as an independent predictor of sudden cardiac death
(SCD) in patients with chronic heart failure (CHF), has been evaluated.

Consecutive patients with symptomatic CHF were enrolled in the “MUSIC” (MUerte
Súbita en Insuficiencia Cardiaca) study, a prospective, multicenter study designed to assess risk
predictors for cardiovascular mortality in ambulatory patients with CHF. The Holter recordings
of 609 patients (48 victims of SCD, 64 of other cardiac causes, 25 of non-cardiac death causes
and 472 survivors) with sinus rhythm were available for the present study. Preprocessing of the
ECG signals performed in this master’s thesis included low pass filtering at 40 Hz to remove
electric and muscle noise, cubic splines interpolation for baseline wander removal and ectopic
beats detection. A single-lead-and-rules delineation technique was applied to select the samples
from the T-wave and compute principal component analysis. Then, the first principal component
was delineated using a single-lead technique and, from the delineation marks, the RR and Tpe
interval series of the ECG were obtained and subsequently interpolated at a sampling frequency
fs = 1Hz. Since each value of the APDR curve represents a stationary state corresponding to a
specific HR value, the ECG index Δα proposed to estimate APDR dispersion should in principle
be computed using ECG segments of stable HR regimes. Those types of segments are difficult to
get in clinical practice and thus the dependence of the Tpe interval on a history of previous RR
intervals was modeled and compensated for the Tpe memory lag. The relationship between Tpe
and RR was then characterized on the whole ECG of the ambulatory recordings and the index
Δα was calculated.

A threshold set in Δα>0.046 showed to discriminate patients from high and low SCD risk
(p-value = 0.003). The time to recurrence (SCD) was approximately doubled among patients
with Δα≤0.046 in comparison with those with Δα>0.046 (p-value = 0.001). By combining
Δα with other ECG indices, like the index of average T-wave alternans (IAA), stratification of
SCD risk was improved (p-value <0.001). This study demonstrates that dispersion in APDR,
quantified from Holter ECG recordings, is a strong and independent predictor of SCD in patients
with CHF. This findings support the hypothesis that an increased dispersion in APDR reflects
abnormal cardiac function predisposing to SCD.
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Arrythmic Risk Prediction based on the Analysis of Ventricular
Repolarization Markers from Surface ECG

RESUMEN

La dependencia de la duración del potencial de acción (APD, del inglés “Action Potential
Duration”) con el ritmo cardiaco (HR, del inglés “Heart Rate”), también conocida como cinética
de restitución, es cŕıtica a la hora de generar inestabilidades eléctricas en el corazón y proporciona
información relevante en la estratificación del riesgo a sufrir arritmias ventriculares. La curva
dinámica de restitución del APD (APDR, del inglés “APC restitution”) cuantifica la relación
entre el APD y el intervalo RR (inverso de HR) en condiciones estacionarias. Heterogeneidades
en el ventŕıculo dan lugar a propiedades de la restitución no uniformes, haciendo que las curvas
APDR presenten variaciones espaciales. La dispersión es una medida de dicha variación espacial.
Recientemente se propuso en la literatura un ı́ndice derivado del electrocardiograma (ECG),
Δα, que cuantifica la dispersión en las pendientes de las curvas dinámicas de APDR mediante
la caracterización de la relación entre los intervalos del pico al final de la onda T (Tpe) y RR
bajo condiciones estacionarias diferentes.

En este Trabajo Fin de Máster (TFM) se ha desarrollado un método automático para
obtener y evaluar, a partir de registros ambulatorios, Δα, como predictor independiente de
muerte súbita cardiaca (SCD, del inglés “Sudden Cardiac Death”) en pacientes con fallo cardiaco
crónico (CHF, del inglés “Chronic Heart Failure”).

Pacientes con CHF sintomático formaron parte del estudio “MUSIC” (MUerte Súbita en
Insuficiencia Cardiaca). La base de datos conteńıa los registros Holter the 609 pacientes (48
v́ıctimas de SCD, 64 de otras causas cardiacas, 25 de causas no cardiacas y 472 supervivientes)
con ritmo sinusal. El preprocesado de las señales ECG realizado en este TFM consistió en un
filtrado paso bajo a 40 Hz, interpolación de splines cúbicos y un detector de latidos ectópicos.
Se aplicó una técnica de delineación “uniderivacional más reglas a posteriori” para seleccionar
las muestras pertenecientes a la onda T y realizar un análisis de componentes principales. A
continuación, se delineó la primera componente principal mediante una técnica uniderivacional
y, a partir de las marcas de delineación, se obtuvieron las series de los intervalos RR y Tpe.
Posteriormente, se interpolaron a una frecuencia de muestreo fs = 1 Hz. Como cada valor
de la curva APDR está medido a un valor espećıfico de RR, el ı́ndice de ECG Δα debeŕıa
calcularse usando segmentos de ECG de ritmos cardiacos estables. Dichos segmentos son dif́ıciles
de conseguir en la práctica cĺınica y por lo tanto se modeló la dependencia del intervalo Tpe con
una historia de intervalos previos de RR y se compensó por el retardo de memoria de Tpe. La
relación entre Tpe y RR se caracterizó en los registros completos de ECG.

Un umbral fijado en Δα>0.046 discriminó los pacientes en alto y bajo riesgo a sufrir
SCD (p-valor = 0.003). El tiempo hasta el evento (SCD) fue aproximadamente el doble en los
pacientes con Δα≤0.046 en comparación con los Δα>0.046 (p-valor = 0.001). Al combinar
Δα con el ı́ndice de media de alternancias de onda T se mejoró la estratificación del riesgo a
sufrir SCD (p-valor<0.001). Este estudio demuestra que la dispersión en APDR, cuantificada a
partir de registros ECG Holter, es un predictor de SCD fuerte e independiente en pacientes con
CHF. Estos resultados apoyan la hipótesis de que una dispersión de APDR elevada refleja un
funcionamiento cardiaco anormal, con predisposición a sufrir SCD.
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Chapter 1

Introduction

1.1. Background

Cardiovascular disease is the leading cause of death in developed countries. In 2010,
201,781 deaths associated with cardiovascular disease occurred in Spain, 92,224 corresponding to
men and 109,557 to women. This number represented 54,4% of the total number of deaths that
occurred in Spain that year [1]. A good number of those cardiovascular deaths were produced by
arrhythmias. An arrhythmia is defined as a deviation from or a disturbance of the normal sinus
rhythm. The normal sinus rhythm has a rate between 50 and 100 beats/minute at rest. The
rhythm is called sinus bradycardia when the rate is below the lower limit and sinus tachycardia
when it is above the upper limit. A particular case of arrhythmia is ventricular fibrillation, which
is a totally disorganized rhythm during which the ventricles cease to depolarize in an orderly
fashion. As a result, a heart undergoing ventricular fibrillation cannot deliver oxygenated blood
to the brain. Ventricular fibrillation leads to cardiac arrest, cessation of respiration, loss of
consciousness, and, if no immediate treatment is given, it could lead to Sudden Cardiac Death
(SCD) and be almost invariably fatal [2].

SCD remains an important cause of mortality in patients with mild-to-moderate heart
failure (New York Heart Association [NYHA] classes II and III) [3]. Although previous studies
have shown the benefit of implantable cardioverter-defibrillators in this type of population [4],
the cost effectiveness of the therapy is low, as only a minority of patients with implantable
cardioverter-defibrillators benefitted from this therapy during the follow-up period [5]. A number
of indices have been proposed as SCD predictors, including left ventricular ejection fraction
(currently the only recommended marker to risk stratify patients [6]) and T-wave alternans [7].
Nevertheless, further research is needed to provide an index or a combination of indices with
improved capacity to identify patients at risk of SCD.

1.2. The Electrocardiogram

An electrocardiogram (ECG) describes the electrical activity of the heart recorded by
electrodes placed on the body surface. The voltage variations measured by the electrodes are
caused by the action potentials of the excitable cardiac cells as they make the cells contract. The
resulting heartbeat in the ECG is manifested by a series of waves whose morphology and timing

3



4 CHAPTER 1. INTRODUCTION

convey information that can be used for diagnosing diseases associated with disturbances of the
heart’s electrical activity [8].

1.2.1. Electrical Activity of the Heart

The heart is a muscular organ the size of a large fist whose primary function is to pump
oxygen-rich blood throughout the body. Its anatomy is divided into two“mirrored”sides, left and
right, which support different circulatory systems but which pump in a synchronized, rhythmic
manner. Each side of the heart consists of two chambers, the atrium where the blood enters and
the ventricle where the blood is forced into further circulation.

The wall of the heart is called the myocardium and is primarily composed of muscle cells
which produce mechanical force during contraction of the heart. The myocardium also contains
specialized muscle cells which are connected into a network (conduction system) that allows
an electrical impulse to rapidly spread throughout the heart. A cardiac cycle is created when
such an impulse propagates through the conduction system. The electrical impulse is the event
that triggers the mechanical force, and thus the electrical event precedes heart contraction.
The initialization of this cardiac cycle occurs in a mass of pacemaker cells with the ability to
spontaneously fire an electrical impulse. These cells are collectively referred as the sinoatrial
(SA) node and are situated in the upper part of the right atrium.

Each cardiac cycle is composed of two phases, activation and recovery, which are referred
to in electrical terms as depolarization and repolarization and in mechanical terms as contraction
and relaxation. Depolarization is manifested by a rapid change in the membrane potential of the
cell and constitutes the initial phase of the cardiac action potential (AP). The rapid change in
voltage causes neighbouring cells to depolarize, and, as a result, an electrical impulse spreads from
cell to cell throughout the myocardium. Depolarization is immediately followed by repolarization
during which the membrane potential of the cells gradually returns to its resting state. The ECG
describes the different electrical phases of a cardiac cycle and represents a summation in time
and space of the action potentials generated by millions of cardiac cells. Of the millions of
individual cells in the heart that depolarize during a cardiac cycle, only groups of cells in the
myocardium depolarize at any given instant. Each group of cells simultaneously depolarizing may
be represented as an equivalent current dipole source to which a vector is associated, describing
the dipole’s time-varying position, orientation and magnitude. The related vectors of all these
groups can be summed to give a “dominant” vector which describes the main direction of the
electrical impulse.

Figure 1.1 illustrates how the AP of different cardiac cells generate the ECG signal, in
this example viewed by an exploring electrode which is positioned on the chest. During atrial
depolarization, the dominant vector is directed downwards towards the AV node. As a result, an
atrial wave with positive polarity (“P” wave) is generated in the ECG recorded at the position
of the exploring electrode. The amplitude of the resulting wave is low because the muscle mass
of the atria that produces the electrical wavefront is relatively small. Ventricular depolarization
begins in the wall between the ventricles (septum) in such a way that the associated vector is
directed away from the exploring electrode; hence, the related ECG wave (“Q”wave) has negative
polarity. Due to the high conduction velocity of the cells in this part of the heart, the Q wave has
short duration. During continued ventricular depolarization, the dominant direction of the vector
gradually turns toward the exploring electrode (“R” wave). Depolarization terminates with the
dominant vector pointing away from the electrode, and thus a wave with negative polarity (“S”
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wave) is produced in the ECG. During ventricular repolarization, a similar sequence of dominant
vectors to those during ventricular depolarization appears, and a wave with positive polarity (“T”
wave) is produced. Since atrial repolarization is concurrent with ventricular depolarization, the
related atrial repolarization wave is masked by the ventricular waves which have much larger
amplitudes.

Figure 1.1: The morphology and timing of action potentials from different regions of the heart
and the related cardiac cycle of the ECG as measured on the body surface.

1.2.2. Leads

The electrical activity of the heart is measured on the body surface by attaching a set
of electrodes to the skin. The electrodes are positioned so that the spatiotemporal variations of
the cardiac electrical field are sufficiently well-reflected. For an ECG recording, the difference in
voltage between a pair of electrodes is referred to as a lead.

A number of lead systems exist today with standardized electrode positions. The two that
have received the most attention, namely, the standard 12-lead ECG and the orthogonal lead
system producing a vectorcardiogram (VCG) are described below.

Standard 12-lead ECG: The standard 12-lead ECG is the most widely used lead system
in clinical routine and is defined by a combination of three different lead configurations:
the bipolar limb leads, the augmented unipolar limb leads and the unipolar precordial
leads. The 12-lead ECG is recorded by placing 10 electrodes at standardized positions on
the body surface.

Orthogonal leads: Each standard lead reflects a different point of view of the electrical
activity of the heart, depending on the place where the electrode, or pairs of electrodes are
located. Sometimes it is interesting to obtain a global ECG which represents the different
ECGs obtained from individual leads. Therefore, is is possible to compute an orthogonal
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base composed of three leads from the standard 12-lead ECG [9]. This method symbolizes
three leads (Frank leads) that would be obtained if three electrodes were placed on the x,
y and z axis of the heart, which is physically unviable [9]. The three orthogonal leads were
available in the database analyzed in this master’s thesis.

1.2.3. ECG Waves and Time Intervals

To develop signal processing algorithms, the knowledge of ECG wave characteristics,
which are described below, along with the wave-naming convention, is central.

P wave: Reflects the sequential depolarization of the right and left atria.

QRS complex: Reflects depolarization of the right and left ventricles. It is composed of
the Q, R and S waves. Since the QRS complex has the largest amplitude of the ECG
waveforms, it is the waveform of the ECG which is first identified in any type of computer-
based analysis.

T wave: Reflects ventricular repolarization. Substantial changes in T-wave have shown to
provide relevant information about the risk of suffering from ventricular arrhythmias. This
master’s thesis mainly analyzes this wave.

Figure 1.2 shows ECG waves and important time intervals.
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Figure 1.2: Wave definitions of the cardiac cycle and important wave durations and intervals.

RR interval: Represents the length of a ventricular cardiac cycle, measured between two
successive R waves, and serves as an indicator of ventricular rate.

QT interval: Represents the time from the onset of ventricular depolarization to the
completion of ventricular repolarization.

Tpe interval: Represents the time from the peak to the end of T-wave. It is considered as
a ventricular repolarization dispersion marker.
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1.3. Electrocardiogram Detection and Delineation

The detection process consists of detecting heartbeats. ECG delineation consists of de-
termining the boundaries of each wave within the PQRST complex so that, with the resulting
time instants, wave durations can be computed.

1.3.1. Single-lead Delineation

Single-lead delineation identifies the wave boundaries of a lead, independently from the
others. In this work an automatic method based on the Wavelet Transform (WT) has been
used [10]. WT describes the signal in both time and frequency domains. Therefore, it allows to
represent temporal wave characteristics at different levels (scales) depending on its frequency
content. This representation is proportional to the signal derivative, so a zero-crossing represents
a peak in the original signal. QRS complex needs a different scale of that used to characterize
P and T waves, because its frequency content is substantially different [11].

Firstly, QRS complex fiducial point (QRS complex gravity center) is detected and, then,
Q, R and S waves are separately delineated. Finally, P and T waves are delineated by sliding
the analysis window [10]. Signal to noise ratio constitutes a drawback in single-lead delineation
technique because if the noise level is high it is difficult to correctly place the wave boundaries.

1.3.2. Single-lead-and-rules Delineation

This method consists of selecting an annotation mark among the marks obtained using
single-lead delineation over the available leads in each heartbeat. If the mark is the onset of
a wave, all the onset marks from all the leads are sorted and the first one (which marks the
position of the first recorded electrical change) is chosen, since it is the most restrictive. To do
so, a protection criteria which states that k leads must have their onset mark within a δ time
interval needs to be accomplished. k and δ values are chosen depending on the delineated wave.
If the mark is the offset of a wave, the algorithm is the same but choosing the last annotation
mark. If the protection criteria is not accomplished, the mark is rejected. If the mark corresponds
to the wave peak, the median criteria is used: all the marks are sorted and the one in the middle
is selected [12].

1.4. Action Potential Duration Restitution Dispersion

The underlying mechanisms of lethal arrhythmias, which contribute to cardiovascular
disease begin the primary cause of death in the industrialized world, are poorly understood
[13]. The generation of arrhythmias has been widely studied by dynamically pacing cardiac
myocytes, cardiac tissue or whole hearts [14]. These experimental results have revealed that
heart rate (HR) dependence of action potential duration (APD), also called restitution kinetics,
is critical in activation instability and, therefore, provides relevant information for ventricular
arrhythmic risk stratification [15]. The dynamic APD restitution (APDR) curve, measured using
the so-called dynamic restitution protocol, quantifies the relationship between the APD and the
RR interval (inverse of HR) at steady-state when pacing at different RR values [16] (Figure 1.3).
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Figure 1.3: APD dynamic restitution (APDR) curve from one particular cardiac cell.

Individual APDR curves have been reported to play an important role in the development
of ventricular arrhythmias and APDR curves containing steep slopes are thought to induce
alternans of APD and block propagation leading eventually to arrhythmia [17]. On the contrary,
for shallow slopes, APD disturbances are smaller and eventually return to a stable activation
[16].

Heterogeneities in the ventricle lead to non uniform restitution properties, which makes
APDR curves present spatial variations [18]. Dispersion is a measure of that spatial variation.
Recent studies have suggested that dispersion in the APDR curves may act as a potent arrhyth-
mogenic substrate [19]. Additionally, increments in that dispersion have been associated with
greater propensity to suffer from ventricular tachycardia/fibrillation [20] (Figure 1.4). In [21], a
method to indirectly estimate dispersion of restitution slopes by making only use of the surface
ECG was developed. An ECG index, Δα, that quantifies dispersion in the dynamic APDR slopes
by characterizing the relationship between the T-peak-to-T-end (Tpe) and the RR intervals at
different steady-state conditions, was proposed and evaluated.

1.5. Objectives

The main objective in this work is to present a fully automated method to analyze APDR
dispersion in ambulatory recordings and to show that the ECG index, Δα, proposed in [21], is
an independent predictor of SCD in patients with chronic heart failure (CHF). To achieve the
proposed objective, a number of steps were followed:

To process the “MUSIC” (MUerte Súbita en Insuficiencia Cardiaca) database, composed
of 609 Holter ECG recordings.

To compute a representative marker of dispersion of APD restitution curves from changes
in the heart rate and time intervals measured on the ECG signal.

To compare the obtained responses and to extract conclusions about the relevance of these
results to predict ventricular arrhythmias that could lead to SCD in patients with CHF.
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Figure 1.4: Dynamic restitution curves (APDR) for two regions corresponding to APDmin (das-
hed line) and APDlast (solid line). Slopes αmin and αlast are estimated for a change in the RR
interval.

1.6. Structure of the document

After this brief introduction, the structure of this document is the following: in chapter
2, the analyzed database and the methods used to reliably compute the risk index, Δα, are des-
cribed. In chapter 3, the results obtained by applying the methodology on the studied database
are presented and discussed. In chapter 4, the practical training performed during this work is
explained. Finally, in chapter 5, the conclusions and future work are presented.
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Chapter 2

Materials and Methods

2.1. Materials

2.1.1. Study Population

Consecutive patients with symptomatic CHF corresponding to NYHA classes II and III
were enrolled in the MUSIC (MUerte Súbita en Insuficiencia Cardiaca) study, a prospective,
multicenter study designed to assess risk predictors for cardiovascular mortality in ambulatory
patients with CHF [22]. The study protocol was approved by institutional investigation commit-
tees and all patients signed informed consent. The Holter recordings of 609 patients (48 victims
of SCD, 64 of other cardiac causes, 25 of non-cardiac death causes and 472 survivors) with si-
nus rhythm were available for the present study. No medications were withdrawn during Holter
monitoring. Each recording consisted of three orthogonal ECG leads, sampled at 200 Hz.

The clinical characteristics of the studied patients and medications are listed in Table 3.1.
Measurements of the index of average alternans (IAA), computed in the MUSIC database after
evaluation of other clinical variables, were available for this study [7]. Only the values of IAA
corresponding to the patients analyzed in this master’s thesis were considered.

2.1.2. Follow-up and End Points

Patients were followed up every 6 months for a median of 48 months, with total mortality
as a primary end point and CD and SCD as secondary end points. Information about end points
was obtained from medical records, patients’ physicians and family members. Sudden cardiac
death was defined as (1) a witnessed death occurring within 60 minutes from the onset of new
symptoms unless a cause other than cardiac failure was obvious, (2) an unwitnessed death (< 24
hours) in the absence of preexisting progressive circulatory failure or other causes of death, or (3)
death during attempted resuscitation. Cardiac death was defined as death from cardiac causes,
including SCD, but excluding such vascular causes as pulmonary embolism, aortic aneurysm
dissection/aneurysm or stroke. End points were reviewed and classified by the MUSIC Study
Endpoint Committee. Table 3.2 summarizes the number of deaths in the study population during
the median 48-month period.

11
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2.2. Methods

2.2.1. ECG Preprocessing and Delineation

Preprocessing of the ECG signals included low pass filtering at 40 Hz to remove electric
and muscle noise, cubic splines interpolation for baseline wander removal and ectopic beats
detection.

Principal component analysis (PCA) is a method that, based on a signal’s statistical con-
tent, gathers the information from a group of correlated variables into a group of uncorrelated
variables. PCA was applied in this master’s thesis as a method to robustly extract temporal
and morphological properties from the T wave. One way to implement PCA is by applying
singular value decomposition (SVD) over the three available leads (x, y and z) to obtain three
new leads using the following transformation equation:

w(n) = VT l(n) (2.1)

where vector l(n) = [x(n), y(n), z(n)]T and V is the matrix which contains the right-singular
vectors obtained from a training matrix, L. In this master’s thesis, L = [x̂(n),ŷ(n),ẑ(n)], where
the circumflex accent indicates that only the samples from the T-waves have been considered on
each lead. Therefore,

L = UΣVT (2.2)

where U is a matrix which columns contain the left-singular vectors and Σ is a diagonal matrix
containing the eigenvalues of L.

First, a single-lead-and-rules delineation technique (section 1.3.2) was applied to select
the samples from the T-wave and compute the matrix L. Then, the first principal component
was computed and delineated using a single-lead technique (section 1.3.1). From the delineation
marks, the RR, QT and Tpe interval series were obtained and subsequently interpolated at a
sampling frequency fs = 1 Hz.

2.2.2. Restitution Dispersion from ECG segments with Stable Heart Rate

In [21] a method to indirectly compute ventricular dispersion in dynamic APDR slopes
by making only use of the surface ECG was proposed.

The Tpe interval reflects differences in the time for completion of repolarization by different
cells spanning the ventricular wall. Therefore, the Tpe interval can be expressed in terms of APDs
as follows:

Tpe = APDlast −APDmin −ΔAT (2.3)

where APDmin corresponds to the cell with the minimum APD among those repolarizing at the
T-wave peak instant (time instant when the maximum repolarization gradient sum occurs) and
APDlast is the APD of the last cell to repolarize [19]. ΔAT represents the activation time delay
between the two cells associated with APDmin and APDlast, as shown in Figure 2.1. ΔAT hardly
changes with RR for RR intervals above 600 ms [23]. Therefore, changes in the Tpe interval
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Figure 2.1: Representation of the Tpe interval in terms of APDs and delay of activation times
(ΔAT).

under variations of the RR interval, measured at different steady-state heart rate levels, can be
obtained as

∂Tpe
∂RR

=
∂APDlast
∂RR

−
∂APDmin
∂RR

(2.4)

where ∂ΔAT/∂RR has been neglected, under the premise that RR intervals above 600 ms are
considered.

If we let αlast and αmin denote the slopes of the dynamic restitution curves at the regions
corresponding to APDlast and APDmin, respectively:

αi =
∂APDi

∂RR
, i = {last,min} (2.5)

the spatial difference Δα = (αlast - αmin) (see Figure 1.3), which measures dispersion of restitution
slopes, can be estimated from the ECG by introducing (2.5) into (2.4), resulting in

Δα =
∂Tpe

∂RR
(2.6)

2.2.3. Restitution Dispersion from ECG segments with Unstable Heart Rate

Each value of the APDR curve represents a stationary state corresponding to a specific
HR value, and, therefore, the ECG measurement proposed to estimate restitution dispersion
should in principle be computed using ECG segments of stable HR regimes. Since those types of
segments are difficult to get in clinical practice, in [21] an approach proposed to overcome that
restriction by modeling the dependence of the Tpe interval on a history of previous RR intervals
and compensating for the Tpe memory lag.
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When ECG segments presenting unstable heart rate are analyzed, the lag of the Tpe
interval with respect to the RR interval needs to be considered in the computation of the index
Δα. The model shown in Fig. 2.2, previously proposed to quantify QT rate adaptation [24], was
used to characterize the Tpe dependence on RR. The input xRR(n) and output yTpe(n) denote
the RR and Tpe series of each recording.

xRR
h

zRR
gk(∙,a)

ŷTpe +
yTpe

v

Figure 2.2: Block diagram describing the [RR,Tpe] relationship consisting of a time-invariant FIR
filter (impulse response h) and a nonlinear function gk(∙,a). v accounts for the output estimation
error.

The impulse response h =[h(1), ...,h(N)]T includes information about the memory of the
system, that is, a characterization of the influence of a history of previous RR intervals on each
Tpe measurement. Therefore, zRR(n) represents a surrogate of xRR(n) with the memory effect of
Tpe compensated for. The length N of vector h was set to 150 samples. The function gk(∙,a),
dependent on the parameter vector a = [a(0), a(1)]T , represents the relationship between the
RR interval and the Tpe interval at steady-state conditions. Ten different biparametric regression
models (k= 1,...,10) were considered for gk(∙,a), and the one that best fits the data of each subject
was identified.

Linear: ŷTpe = a(0) + a(1)zRR

Hyperbolic: ŷTpe = a(0) +
a(1)
zRR

Parabolic: ŷTpe = a(0)(zRR)
a(1)

Logarithmic: ŷTpe = a(0) + a(1)ln(zRR)
Inverse logarithmic: ŷTpe = ln(a(0) + a(1)zRR)
Exponential: ŷTpe = a(0) + a(1).e

−zRR

Arctangent: ŷTpe = a(0) + a(1)arctag(zRR)
Hyperbolic tangent: ŷTpe = a(0) + a(1)tgh(zRR)
Hyperbolic arcsine: ŷTpe = a(0) + a(1)arcsinh(zRR)
Hyperbolic arccosine: ŷTpe = a(0) + a(1)arccosh(zRR).

The estimated output ŷTpe(n) was defined as

ŷTpe(n) = gk(zRR(n),a) (2.7)

in which the optimum values of the FIR filter response h, vector a, and function gk were searched
for by minimizing the difference between the estimated output ŷTpe(n) and the system output
yTpe(n), for each subject independently using the whole ECG recording. The optimization algo-
rithm seeks to minimize the following function:

J (h,a) = ‖yTpe(n)− ŷTpe(n)‖
2 + β2‖Dh‖2 (2.8)

where D is a regularization matrix that penalizes the fact that h deviates from having an
exponential decay [25] and β is the regularization parameter whose value was obtained by using
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the “L-curve” criterion [26]. With the computed value for β, the optimum values h and a in 2.8
were determined by using a “quasi-Newton” optimization technique described in [27], subject to
two constraints: the sum of the h components is 1, to ensure normalized filter gain, and all the
components of h are nonnegative, to give a physiological plausible interpretation. Regarding k,
in order to account for the inter-subject variability in the [RR, Tpe] relationship, the regression
function gk(∙,a) was determined as the one that minimizes the mean square error for each subject
independently.

The series zRR(n) represents a surrogate of the running RR series as if of a truly steady-
state period was present. Therefore, the estimate of restitution dispersion derived in (2.6) can
be replaced with the following equation, obtained by differentiating (2.7) with respect to zRR:

Δα =
∂T̂pe
∂zRR

∣
∣
∣
∣
zRR=zRR

=
∂gk(zRR,a)

∂zRR

∣
∣
∣
∣
zRR=zRR

(2.9)

where the derivative is evaluated at the mean zRR value, zRR, of the recording.

Additionally, a measure of the time required for Tpe to complete 90% of its rate adaptation,
denoted by t90, was computed by setting a threshold of 0.1 to the cumulative sum of the filter
impulse response, c(n)

c(n) =
N∑

i=n

h(i) (2.10)

leading to

t90 =
1

fs
argmáx

n
(c(n) > 0,1). (2.11)

2.2.4. Automated processing of the database

The previous subsections describe the methodology applied to the ECG recordings to
obtain the marker of APDR dispersion, Δα. In this master’s thesis this signal processing has
been developed in a fully automated and parallel computing using“Hermes”, a high performance
computer property of the University of Zaragoza. This parallel computing approach allows to
analyse a huge amount of data (in this master’s thesis, the ECG recordings from the patients in
the database) saving computational time. The methodology described previously was applied at
the same time in all the recordings in the database. The computational time required to analyze
one ECG recording is 2 hours, meaning a total of around 1200 hours to analyze the whole
database. Thanks to this high performance computer, it is possible to analyze the complete
database in 2 hours.

2.3. Statistical Analysis

Several statistical tests have been used in this master’s thesis, as described in the following.
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2.3.1. Quantitative statistical differences between populations

Student’s t-test

A t-test is a statistical hypothesis test used to determine if two sets of data are significantly
different from each other, and is most commonly applied when the test statistic would follow a
normal distribution. A p value of <0.05 was considered as statistically significant in this master’s
thesis.

Mann-Whitney U test

The Mann-Whitney U test is a non-parametric test of the null hypothesis that two popu-
lations are the same against an alternative hypothesis, especially that a particular population
tends to have larger values than the other.

It has greater efficiency than the t-test on non-normal distributions, such as a mixture of
normal distributions, and it is nearly as efficient as the t-test on normal distributions [28].

Fisher’s exact test

Fisher’s exact test is a statistical significance test used in the analysis of contingency
tables. Although in practice it is employed when sample sizes are small, it is valid for all sample
sizes. It is one of a class of exact tests, so called because the significance of the deviation from a
null hypothesis can be calculated exactly, rather than relying on an approximation that becomes
exact in the limit as the sample size grows to infinity, as with many statistical tests. The test is
useful for categorical data that result from classifying objects in two different ways; it is used to
examine the significance of the association (contingency) between the two kinds of classification
[29].

2.3.2. Classification

A receiver operating characteristic (ROC) is a graphical plot which illustrates the per-
formance of a binary classifier system as its discrimination threshold is varied. It is created by
plotting the fraction of true positives out of the positives (sensitivity) vs. the fraction of false
positives out of the negatives (1-specificity), at various threshold settings.

ROC analysis provides tools to select possibly optimal models and to discard suboptimal
ones independently from the cost context or the class distribution [30].

If a classifier system is optimal at some threshold, its associated ROC curve would ap-
proach to the upper left corner (as a logarithmic function), pointing at the maximized sensitivity
and specificity. If, on the contrary, there is no threshold optimizing the classification, its ROC
curve would follow a diagonal line.

2.3.3. Survival analysis

Survival analysis is a branch of statistics which deals with death in biological organisms
and failure in mechanical systems. Survival analysis attempts to answer questions such as: what
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is the fraction of a population which will survive past a certain time? Of those that survive, at
what rate will they die or fail? Can multiple causes of death or failure be taken into account?
How do particular circumstances or characteristics increase or decrease the odds of survival?

More generally, survival analysis involves the modeling of time to event data. In this
context, death or failure is considered as an “event” in the survival analysis literature.

The hazard function is defined as the event rate at time t conditional on survival until time
t or later. Censoring is a form of missing data problem which is common in survival analysis.
Ideally, both the birth and death dates of a subject are known, in which case the lifetime is known.
The hazard ratio is the ratio of the hazard rates corresponding to the conditions described by two
levels of an explanatory variable. This explanatory variable would, then, divide the population
in two groups and the hazard ratio would measure the proportion of probability survival between
both groups. The higher the hazard ratio, the better the survival rate from both groups can be
discriminated.

Kaplan-Meier estimator

The Kaplan-Meier estimator estimates the survival function from lifetime data. In medical
research, it is often used to measure the fraction of patients living for a certain amount of time
after treatment.

A plot of the Kaplan-Meier estimate of the survival function is a series of horizontal
steps of declining magnitude which, when a large enough sample is taken, approaches the true
survival function for that population. The value of the survival function between successive
distinct sampled observations is assumed to be constant.

An important advantage of the Kaplan-Meier curve is that the method can take into
account some types of censored data, which occurs if a patient withdraws from the study, i.e. is
lost from the sample before the final outcome is observed. On the plot, small vertical tick-marks
indicate losses, where a patient’s survival time has been censored [31].

Proportional hazards models

Proportional hazards models are a class of survival models in statistics. Survival models
relate the time that passes before some event occurs to one or more covariables that may be
associated with that quantity of time. In a proportional hazards model, the unique effect of a
unit increase in a covariable is multiplicative with respect to the hazard rate.

Survival models can be viewed as consisting of two parts: the underlying hazard function,
describing how the hazard (risk) changes over time at baseline levels of covariables, and the
effect parameters, describing how the hazard varies in response to explanatory covariables. The
proportional hazards condition [32] states that covariables are multiplicatively related to the
hazard. The effect of covariables estimated by any proportional hazards model can thus be
reported as hazard ratios. Survival models were built considering a significance of ≤0.05 as the
criterion for entry into a model.
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Logrank test

In statistics, the logrank test is a hypothesis test to compare the survival distributions of
two samples. It is a nonparametric test and appropriate to use when the data are right skewed
and censored. It is widely used in clinical trials to establish the efficacy of a new treatment
compared to a control treatment when the measurement is the time to event.

The logrank test statistic compares estimates of the hazard function of the two groups
at each observed event time. It is constructed by computing the observed and expected number
of events in one of the groups at each observed event time and then adding these to obtain an
overall summary across all time points where there is an event [33].



Chapter 3

Results

This chapter presents and discusses the results obtained in this master’s thesis regarding
the computation of APDR dispersion in ambulatory recordings from CHF patients and its use
for prediction of SCD risk. The relevance of this study is supported by the large amount of
clinical studies investigating abnormal ventricular behaviour and its relation to SCD. In this
study, Principal Component Analysis transformation was applied over the three orthogonal leads
available in the database and the heartbeats from the first principal component were detected
and delineated. From the annotation marks provided by the delineation process, RR and Tpe
series were computed. The value of Δα , describing dispersion in APDR slopes, was obtained
from the RR and Tpe series of each patient in the database. To account for the Tpe memory lag
with respect to the RR interval, a model that characterizes the Tpe dependence on RR was used.
The results obtained for Δα and their relation to the occurrence of clinical events are described
in the following.

3.1. Analysis of the relation between Δα and SCD

The risk marker Δα did not follow a normal statistical distribution. Therefore, the non-
parametric Mann-Whitney U test (section 2.3.1) was applied to determine whether SCD victims
(group a1) presented Δα values that were significantly different from the rest of patients (cardiac
death but non-SCD victims, victims of other causes and survivors) (group a2). The 25th, 50th
and 75th percentiles of Δα in the study population were 0.005, 0.022 and 0.046, respectively. The
median value of Δα was 0.033 for group a1 and 0.022 for group a2 (p = 0.048) (Figure 3.1(a)).
In an equivalent way, the procedure was repeated to determine whether there were statistical
differences between CD victims (group b1) and the rest (victims of other causes and survivors)
(group b2) Δα values. The median value of Δα was 0.021 for group b1 and 0.022 for group b2
(p = 0.608) (Figure 3.1(b)). Statistically significant differences were found in Δα median values
between groups a1 and a2 but not in Δα median values between b1 and b2 groups. As a result,
the idea of the restitution dispersion marker acting as a good SCD predictor may be supported.
Increments in Δα would indicate higher SCD risk.

19
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(a) (b)

Figure 3.1: Δα median ± 95% confidence interval for SCD and non-SCD victims (a) and for
CD and non-CD victims (b).

3.2. Selection of a risk threshold

Based on the results in section 3.1 showing that increments in Δα values are related with
SCD, a risk threshold was set on the continuous variable Δα. A new binary variable was built so
that Δα+ (associated with Δα values above the threshold) was composed of patients at higher
SCD risk and Δα- (associated with Δα values below the threshold) contained patients at lower
SCD risk. To determine the threshold that better discriminated between group a1 and group
a2, a ROC curve was computed, as shown in figure 3.2. As it can be seen, the ROC curve did
not show a marked logarithmic tendency but curved enough to separate from the diagonal. The
threshold that maximized sensitivity and specificity (closest point to the upper-left corner) was
Δα=0.046, which corresponded to the 75th percentile of Δα in the population (marked with a
red dot in figure 3.2).

3.3. Analysis of the relation between increments in Δα and SCD

Patients were divided into Δα positive (Δα+) and negative (Δα-) groups by setting a
cut-off point of 0.046 for Δα. Of the 609 patients studied, 457 were thus included in the Δα-
group (Δα ≤ 0.046) and 152 in the Δα+ group (Δα > 0.046).

Upon comparison of clinical variables between Δα+ and Δα- groups (Table 3.1), signi-
ficant differences were found for age, gender, treatment with amiodarone and rate adaptation
time t90 for the Tpe series. Data are presented as mean ± standard error of the mean (SEM) for
continuous variables and as number and percentage for categorical variables. Two-tailed Mann-
Whitney and Fisher exact tests (section 2.3) were used for univariable comparison of quantitative
and categorical data, respectively.

Survival rate was significantly higher in the Δα- group for primary and secondary end
points (p = 0.003) (Table 3.2).
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Figure 3.2: ROC curve for Δα in the classification of SCD victims. Red dot is associated with
the selected threshold.

3.4. Survival analysis

As explained in section 2.3.3, a survival analysis involves predicting the fraction of the
population which will survive to SCD past a certain time and how clinical variables increase or
decrease the odds of survival.

Survival probability was estimated by using Kaplan-Meier methods with a comparison of
cumulative events by using log-rank tests. The prognostic value of Δα in predicting the end-
points was determined with univariable and multivariable Cox proportional hazards analyses.

3.4.1. Influence of Δα and other variables on SCD

Use of Δα

Univariable Cox analysis computes the hazard function and the hazard ratio explained in
section 2.3.3 by only taking into account the variable under study. In this master’s thesis, Δα.
Univariable Cox analysis revealed that Δα+ outcome was associated with all-cause mortality,
CD and SCD (Table 3.3), however, Δα+ statistically discriminates better the survival rate to
SCD than to CD or total mortality. We can conclude that the time to recurrence was significantly
prolonged (approximately doubled) among patients with Δα≤0.046 in comparison with those
with Δα>0.046.
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Overall population Δα− Δα+
p-value

(n = 609) (n = 457) (n = 152)

Age (y) 63 ± 0,5 62 ± 0,6 64 ± 1,0 0.040
Gender (men) 426 (70.0%) 333 (72.9%) 93 (61.2%) 0.008
NYHA class III 110 (18.1%) 81 (17.7%) 29 (19.1%) 0.716
LVEF ≤ 35% 324 (53.2%) 242 (53.0%) 82 (53.9%) 0.852
Diabetes 232 (38.1%) 180 (39.4%) 52 (34.2%) 0.289
Beta-blockers 425 (69.8%) 327 (71.6%) 98 (64.5%) 0.104
Amiodarone 55 (9.0%) 30 (6.6%) 25 (16.4%) 0.001
ARB or ACE inhibitors 494 (81.1%) 375 (82.1%) 119 (78.3%) 0.338
Average heart rate [beats/min] 72 ± 0,5 71 ± 0,5 73 ± 1,1 0.600
Maximum heart rate [beats/min] 115 ± 0,8 115 ± 0,9 116 ± 1,8 0.589
Heart rate range [beats/min] 43 ± 0,6 43 ± 0,7 43 ± 1,3 0.426
t90[s] (Tpe) 94 ± 2,3 88 ± 2,7 109 ± 3,8 0.001
QRS > 120 ms 236 (38.8%) 178 (38.9%) 58 (38.2%) 0.924
Nonsustained ventricular
tachycardia and > 240 155 (25.5%) 121 (26.5%) 34 (22.4%) 0.335
Ventricular premature beats in 24 h
IAA>3.7μV 143 (23.8%) 108 (23.9%) 35 (23.5%) 0.999

Data are presented as absolute frequencies and percentages and as mean ± standard error of the mean.
ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; LVEF = left ventricular ejection fraction;

NYHA = New York Heart Association; IAA = Index of maximum alternans; Δα+ = dispersion in the dynamic APDR slopes

positive group; Δα− = dispersion in the dynamic APDR slopes negative group. Significant differences between Δα+ and
Δα− are indicated in bold.

Table 3.1: Characteristics of patients

Use of Δα in combination with other variables

Although a univariable Cox analysis provides useful information about survival rate, it
necessarily ignores the impact of any other factors under investigation, which are known to be
associated with SCD end-point, such as left ventricular ejection fraction <35% [6] or index of
average alternans >3.7μV [7]. In clinical investigations, it is more common to have a situation
where several covariables potentially affect patient prognosis [34]. By considering all the critical
covariables in the adjusted model, it is possible to compute the relative SCD risk prediction
of each covariable. Multivariable Cox proportional hazard model was constructed by adjusting
for: age, gender, NYHA class, left ventricular ejection fraction < 35%, index of average alter-
nans >3.7 μV, diabetes, use of beta-blockers, amiodarone and angiotensin-converting enzyme or
angiotensin receptor blocker inhibitors. Δα+ was the variable with the second highest hazard
ratio (2.68), after left ventricular ejection fraction < 35% (hazard ratio 2.87; 95% CI 1.44-5.69;
p = 0.003). The index of average alternans had a hazard ratio of 2.33; 95% CI 1.30-4.20; p =
0.005. Table 3.3 shows all the hazard ratios computed in the multivariable Cox analysis. The
unadjusted Δα+ effect (univariable) may be summarized by a time ratio of 2.54 (1.44-4.50),
which, having allowed for other covariables (multivariable) increased slightly to 2.68. This fact
suggests that joining together more variables instead of using only Δα+ may improve survival
prediction.
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Overall population Δα− Δα+
p-value

(n = 609) (n = 457) (n = 152)

Total mortality 137 (22.5%) 91 (19.9%) 46 (30.3%) 0.010
CD 112 (18.4%) 74 (16.2%) 38 (25.0%) 0.021
SCD 48 (7.9%) 27 (5.9%) 21 (13.8%) 0.003

Data are presented as absolute frequencies and percentages.

CD = cardiac death; SCD = sudden cardiac death; Δα+ = dispersion in the dynamic APDR slopes positive group; Δα− =
dispersion in the dynamic APDR slopes negative group. Significant differences between Δα+ and Δα− are indicated in bold.

Table 3.2: Events during follow-up.

3.4.2. Cumulative survival curves

Figure 3.3 (top panels) shows the event-free curves for SCD (a) and CD (b), respectively,
having divided the population into Δα+ (in green) and Δα- (in blue) groups. As it can be seen
from the figure, the survival curves for Δα+ and Δα- can be statistically separated for SCD end-
point (p-value = 0.001) and CD end-point (p-value = 0.007). Patients belonging to Δα+ group
have a lower survival rate than those from Δα- group, supporting the idea that higher values of
Δα indicate higher SCD risk. Values of cumulative survival corresponding to CD end-point are
lower, indicating that Δα better separates SCD risk than other types of cardiac deaths.

The Kaplan-Meier curves obtained by using IAA>3.7μV as a risk stratifier are shown in
Figure 3.3 (middle panels). Both curves can be statistically separated for SCD end-point (p-
value = 0.004) and CD end-point (p-value = 0.026). Comparing these p-values and curves visual
separation, we can affirm that Δα on its own statistically discriminates better from SCD and
CD risk than IAA.

This master’s thesis uses an ECG-derived marker to predict SCD survival. It would be,
then, interesting, to measure the SCD survival prediction rate using the combination of ECG-
derived variables. The prediction of Δα+ was, then, combined with the one provided by Index
of average alternans >3.7 μV.

Combining the information provided by Δα and IAA and sorting the population by those
who meet Δα>0.046 and IAA>3.7μV and those who do not, it can be seen how both survival
curves are more separated with lower p-values (Figure 3.3 (bottom panels)). Therefore, combining
Δα and IAA improves the stratification of SCD risk.

The results described above can be discussed in terms of sensitivity and specificity. Using
only Δα as a risk marker, 21 true positives out of 152 are obtained (positive predictive value =
13.82%). Using the combination of Δα and IAA, the population of the risk group is reduced to
35 patients, from which 10 are SCD (positive predictive value = 28.57%). In clinical practice, it
is recommended to implant cardioverter defibrillators to 18 patients if only one is known to suffer
from SCD (positive predictive value = 5.56%). Besides, carrying an implantable cardioverter
defibrillator is not comfortable, as it is an invasive device and its discharges are often debilitating.
Therefore, minimizing non-necessary cardioverter defibrillator implantations is an important
matter. The results obtained in this master’s thesis show how Δα on its own helps to improve the
positive predictive value and how, in combination with another ECG-derived SCD risk marker,
such as the index of average alternans, the survival prediction is increased up to 28.57%.

This study demonstrates that quantification of the dispersion in the dynamic APDR slopes
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Univariable Multivariable
Hazard ratio

p-value
Hazard ratio

p-value
(95% CI) (95% CI)

Total mortality
Δα+ (Δα>0.046) 1.68 (1.18-2.40) 0.004 1.60 (1.11-2.32) 0.013
Age - - 1.02 (1.00-1.04) 0.013
Gender (men) - - 1.74 (1.15-2.62) 0.009
NYHA class III - - 2.42 (1.67-3.50) <0.001
LVEF - - 2.29 (1.56-3.36) <0.001
IAA>3.7μV 1.59 (1.11-2.29) 0.012 1.53 (1.06-2.21) 0.025
Diabetes - - 1.31 (0.92-1.86) 0.129
Beta-blockers - - 0.74 (0.51-1.07) 0.111
Amiodarone - - 1.59 (0.97-2.60) 0.064
ARB or ACE inhibitors - - 1.10 (0.72-1.68) 0.671

CD
Δα+ (Δα>0.046) 1.70 (1.15-2.51) 0.008 1.65 (1.10-2.49) 0.016
Age - - 1.02 (1.00-1.04) 0.026
Gender (men) - - 1.92 (1.20-3.07) 0.006
NYHA class III - - 2.34 (1.55-3.53) <0.001
LVEF ≤ 35% - - 2.27 (1.48-3.47) <0.001
IAA>3.7μV 1.58 (1.05-2.36) 0.028 1.53 (1.01-2.31) 0.043
Diabetes - - 1.39 (0.94-2.05) 0.097
Beta-blockers - - 0.78 (0.52-1.17) 0.229
Amiodarone - - 1.37 (0.78-2.43) 0.281
ARB or ACE inhibitors - - 1.10 (0.68-1.76) 0.703

SCD
Δα+ (Δα>0.046) 2.54 (1.44-4.50) 0.001 2.68 (1.50-4.79) 0.001
Age - - 1.02 (1.00-1.04) 0.231
Gender (men) - - 2.57 (1.18-5.60) 0.018
NYHA class III - - 2.01 (1.07-3.76) 0.029
LVEF ≤ 35% - - 2.87 (1.44-5.69) 0.003
IAA>3.7μV 2.26 (1.27-4.04) 0.006 2.33 (1.30-4.20) 0.005
Diabetes - - 1.29 (0.71-2.34) 0.402
Beta-blockers - - 1.19 (0.62-2.30) 0.605
Amiodarone - - 1.22 (0.50-2.93) 0.665
ARB or ACE inhibitors - - 0.61 (0.26-1.46) 0.269

CD = cardiac death; CI = confidence interval; SCD = sudden cardiac death; Δα = dispersion in the dynamic APDR slopes;

IAA = Index of maximum alternans.

Adjusted model includes age, gender, New York Heart Association class, left ventricular ejection fraction < 35%, Index of

maximum alternans >3.7 μV, diabetes and use of beta-blockers, amiodarone and angiotensin receptor blocker or angiotensin-

converting enzyme inhibitors. Statistically significant values are marked in bold.

Table 3.3: Association of dispersion in the dynamic APDR slopes index, Δα, with sudden cardiac
death, cardiac death and total mortality.
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is a strong, independent predictor of SCD in patients with CHF. The index Δα quantifying
the dispersion in the dynamic APDR slopes in a 24-hour period independently predicted CD
and SCD but did not predict noncardiac mortality (results not shown). These findings support
the hypothesis that elevated dispersion in the dynamic APDR slopes reflects abnormal cardiac
function predisposing to CD and, more specifically, to SCD.

3.5. Limitations

Some of the limitations of the present work are listed below:

The number of patients in the“MUSIC”database that died from SCD was relatively low in
comparison with the group formed by survivors, victims of non-cardiac causes and victims
of cardiac-but-non-SCD causes.

The quality of the ECG recordings was not optimal. A thorough preprocessing step was
necessary to prepare the signals for further analysis.
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(a) (b)
Figure 3.3: Event-free curves for sudden cardiac death (a) and cardiac death (b). Above, using
Δα+ on its own; middle, using IAA+ on its own; below, a combination of Δα+ and IAA+.



Chapter 4

Practical Training

4.1. Introduction

In this master’s thesis, I visited the Zentrum für Klinische Forschung (ZKF) (Center for
Clinical Trials) of UniversitätsSpital in Zürich (USZ) (Switzerland). I worked in the group of
Dr. Laurence Jacobs, in collaboration with FIFA - Medical Assessment and Research Centre
(F-MARC), as the required part of the practical training of the master thesis in Biomedical
Engineering.

Sports-Related Sudden Cardiac Death (SRSD) is always a devastating event. This is
especially true when the victim is an apparently healthy athlete who in the eyes of the public
epitomizes health itself. Among athletes a tragedy like SRSD becomes a powerful symbol, one
that is vigorously fueled by the media. However, SRSD remains fundamentally mysterious in
medical terms, in the sense that no practical diagnosis of its risk exists, and an understanding of
the mechanisms involved is lacking. A large amount of research into SRSD has been generated
over the past decade, most of it with mixed results as far as identifying plausible causes. In this
practical training I learnt new hypotheses about the field and, especially, methodologies and
techniques that have never before been brought to bear on this problem.

4.2. Hypothesis

The central hypothesis of our study is that SRSD will not occur unless there is an associa-
ted impairment in the dynamics of the Autonomic Nervous System (ANS). Based on this idea,
an external stimulus, a trigger, will generate an arrhythmia, which, under normal circumstances,
is quickly arrested by an ANS response. When the ANS is impaired, however, the arrhythmia
is not arrested and SRSD ensues. While the response system associated with inter- and intra-
cardiac rhythms, mediated through various nonlinear feedback loops, is highly complex, it is
undoubtedly deterministic. This forms the basis for the proposed analysis, namely, the concept
that deterministic complexity [35] is essential for long-term dynamical stability of the cardiovas-
cular system. The degree of deterministic complexity might be the basis of a diagnosis of health
and risk associated with the ANS.

27
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4.3. Objectives

The first objective in this study was to explore the hypothesis described in 4.2 by eva-
luating and analyzing the dynamics of the QT, Tpe and other intra-beat intervals in highly
physically conditioned and apparently healthy subjects. The APDR risk marker, Δα, measured
in this master’s thesis over recordings from CHF patients, showed to significantly stratify SCD
risk. Therefore, the second objective was to measure Δα in the database composed of recordings
from professional athletes provided by F-MARC, and analyze potentially high Δα values in the
investigated population.

4.4. Methods

4.4.1. ECG acquisition and processing

Electrocardiographic data from the subjects of the study were collected and analyzed
during the pilot phase of the study performed in collaboration with F-MARC. To do this,
a three-lead electrocardiograph that generates ECG data at the time and voltage resolution
required by the analytical methods was used (Figure 4.1). The selected electrocardiograph was
provided by “Schiller” [36].

Figure 4.1: The electrograph used for the recording of the electrocardiographic data.

The analysis proceeded through the calculation of various metrics, including the deter-
ministic complexity metrics mentioned above, as well as methods for determining the degree
of nonlinearity in the time series, including the QT and Tpe interval series. These metrics were
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used to estimate the degree and stability of autonomic function [35]. The extended phase of the
project is currently under development. ECG signals will be acquired through the FIFA centers
collaborating on the project and they will be subsequently analyzed in our studies.

4.4.2. Study Population

ECG data for the pilot phase of the project was acquired, and continues to be acquired,
from approximately 150-200 male soccer athletes drawn from 4 clubs. The extended phase of
the project will involve on the order of 10 FIFA Medical centers of Excellence, each acquiring
150-200 additional recordings in their respective areas of operation.

Any healthy male member of the selected clubs in the age range of 18-36 years who signs
an informed consent form can be included in the study. The selection process will be done in
consultation with the medical officers of each selected soccer club. The only possible exclusion
criteria are highly unlikely in this population: (1) overt diagnosed cardiovascular disease and (2)
use of either beta-blockers or any other medication known to affect the ANS function.

4.4.3. Protocol

During the pilot phase, project staff performed subject preparation and data acquisition
at the club venue. Three measurements sessions were run in parallel. For the extended study,
project staff will acquire the ECG recordings together with the cardiology staff of the FIFA
Medical Center in question. Detailed data management protocols and specialized software will
be provided to the center’s cardiology service to facilitate data management and transfer to ZKF
to ensure consistency of the procedure.

4.5. Conclusions

In this practical training I learned about the relationship between deterministic complexity
and ANS, and how a variability in such deterministic complexity can be a SCD risk marker.

I also participated on the data acquisition from the pilot phase, by attending to an intro-
ductory training course to know how the electrocardiograph works.
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Chapter 5

Conclusions and Future Work

5.1. Conclusions

In this master’s thesis the performance of an ECG index proposed to measure APDR
dispersion, Δα, has been evaluated. A database composed of patients with chronic heart failure
has been analyzed. The information provided by the index Δα has been correlated to clinical
information obtained during patients’ follow-up.

Dispersion in APDR, quantified from Holter ECG recordings through the index Δα, is
shown to be a strong and independent predictor of SCD in patients with chronic heart failure.
Δα improves up to three times the predictability recommended for an index to be used in the
assessment of cardioverter-defibrillator implantation. When Δα is combined with other ECG
indices, like the index of average T-wave alternans, the predictability rises up to six times. Our
findings support the hypothesis that an increased dispersion in APDR reflects abnormal cardiac
function predisposing to SCD.

5.2. Future Work

To improve and extend the results of the present master’s thesis, the following future work
is proposed:

In [37] a method to perform multilead delineation of the VCG on a beat-to-beat basis was
proposed. The method was shown to remove side effects in ECG series computed from the
delineation marks, such as postural changes that could be misunderstood with repolariza-
tion phenomena. Future work could include the delineation of the three orthogonal leads
(x, y and z) available in the “MUSIC” database with the multilead technique proposed in
[37], by searching for the onsets, peaks and offsets of the ECG waves on a beat-to-beat
basis, following the electrical movement of the VCG to remove inherent postural change
effects.

The work started during the clinical training (chapter 4) will be continued. The methodo-
logy described in this master’s thesis will be evaluated on the whole database composed
of professional athletes, whose ECG recordings have been and continue to be acquired in
collaboration with FIFA.
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The cellular and sub-cellular mechanisms that could explain the origin of the different
observed patterns in the analyzed ventricular repolarization indices remain to be elucida-
ted. An electrophysiological modeling investigation is proposed to be carried out to better
understand action potential duration restitution dynamics and their eventual relationship
with arrhythmic risk and sudden cardiac death.

The results obtained in this master’s thesis have been published in the following confe-
rences:

J. Ramı́rez, A. Mincholé, J. Bolea, P. Laguna, E. Pueyo. “Sudden Cardiac Death Survival
Prediction from Restitution Dispersion Analysis”. II Reunión Jóvenes Investigadores del
Instituto de Investigación en Ingenieŕıa de Aragón (I3A). 16 Mayo 2013.

J. Ramı́rez, A. Mincholé, P. Laguna, E. Pueyo. “Analysis of Repolarization Dispersion to
Predict Sudden Cardiac Death Survival”. PGBiomed. 9th-11th July 2013.

J. Ramı́rez, A. Mincholé, J. Bolea, P. Laguna, E. Pueyo. “Prediction of Sudden Cardiac
Death in Chronic Heart Failure Patients by Analysis of Restitution Dispersion”. Computers
in Cardiology 2013. Accepted for the Young Investigators Awards plenary session. 22th-
25th September 2013.
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[37] J. Ramı́rez, A. Mincholé, P. Laguna, and E. Pueyo, “Characterization of cardiac repolari-
zation response to heart rate changes provoked by a tilt test,” Computers in Cardiology,
2012.



36 BIBLIOGRAPHY



APPENDIX





Sudden Cardiac Death Survival Prediction from Restitution 
Dispersion Analysis 

Julia Ramírez1, 2, Ana Mincholé3, Juan Bolea1, 2, Pablo Laguna1, 2, Esther Pueyo2, 1   
1 Grupo de Tecnologías de las Comunicaciones 

Instituto de Investigación en Ingeniería de Aragón (I3A). 
Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain. 

Tel. +34-976762707, Fax +34-976762043, e-mail: Julia.Ramirez@unizar.es 
2 CIBER – Bioingeniería, Biomateriales y Nanomedicina, Spain 

3 University of Oxford, Oxford, United Kingdom 
 

Abstract 
Increase in the dispersion of action potential 
duration restitution (APDR) has been associated 
with sudden cardiac death (SCD). A marker, Δα, 
was proposed to quantify APDR dispersion from the 
electrocardiogram (ECG). 609 ECG recordings 
were analysed. The marker Δα stratified patients 
according to their risk of suffering from SCD. 

Introduction 
APDR measures the relationship between the 

action potential duration and the RR interval at 
steady-state pacing. Due to heterogeneities in the 
ventricles, APDR presents spatial variations 
generally termed APDR dispersion. An increase in 
APDR dispersion has been associated with higher 
propensity to suffer from ventricular arrhythmias 
and SCD. Recently, a marker, Δα, which accounts 
for the rate normalized differences of the Tpe 
interval, was proposed to quantify APDR dispersion 
from the ECG at steady-state conditions [1]. 

Materials and methods 
Materials 

Consecutive patients were enrolled in the MUSIC 
(MUerte Súbita en Insuficiencia Cardiaca) study, a 
prospective, multicenter study designed to assess 
risk predictors for cardiovascular mortality in 
ambulatory patients. The Holter recordings of 609 
patients (48 victims of SCD, 64 of other cardiac 
causes, 25 of non-cardiac death causes and 472 
survivors) with sinus rhythm were available for the 
present study. Each recording consisted of 3 
ortogonal ECG leads, sampled at 200 Hz. In this 
study, the population in the database was splitted 
into two groups: SCD victims (group 1) and victims 
of other cardiac causes, non-cardiac causes and 
survivors (group 2). 

Patients were followed up every 6 months for a 
median of 48 months. SCD was defined as (1) a 
witnessed death occurring within 60 minutes from 
the onset of new symptoms unless a cause other 
than cardiac failure was obvious, (2) an unwitnessed 
death (< 24 hours) in the absence of preexisting 
progressive circulatory failure or other causes of 
death, or (3) death during attempted resuscitation.  

Methods 

Preprocessing of the ECG signals included low 
pass filtering at 40 Hz to remove electric and muscle 
noise, cubic splines interpolation for baseline 
wander removal and ectopic beats detection. 

Principal Component Analysis was applied over 
the three leads to emphasize T-wave energy and 
improve delineation. A Single-Lead-and-rules 
delineation technique was applied to mark the 
onsets and offsets of the T-wave. From the 
annotation marks, RR, QT and Tpe series were 
obtained and subsequently interpolated at a 
sampling frequency of 1 Hz. 

The spatial dispersion of APDR slopes was 
estimated from the ECG as 

 

∆𝛼 =
𝜕𝑇𝑝𝑒
𝜕𝑅𝑅

 

measured at steady-state RR intervals [1]. 

Results and discussion 
The mean value of Δα in the study population 

was 0.028 ± 0.076 and the 25th, 50th and 75th 
percentiles were 0.005, 0.022 and 0.046, 
respectively. 

mailto:Julia.Ramirez@unizar.es


II Reunión Jóvenes Investigadores del Instituto de Investigación en Ingeniería de Aragón (I3A)  
Δα discriminated between the group formed by 

SCD victims (group 1) and the group composed of 
the other patients (group 2), with mean ± SEM 
values of: Δα = 0.052 ± 0.013 for the former and Δα 
= 0.026 ± 0.003 for the latter (p = .048). Patients 
were divided into Δα positive (Δα+) and negative 
(Δα-) groups by setting a cut-off point of 0.046 for 
Δα, corresponding to the 75th percentile of the 
distribution of Δα in the population. Of the 609 
patients studied, 457 (75.0%) were included in the 
Δα- group (Δα ≤ 0.046) and 152 (25%) in the Δα+ 
group (Δα > 0.046). A two-tailed Fisher exact test 
showed an existing effect of being a SCD victim on 
having Δα>0.046 (p = .003), with a survival rate 
higher in the Δα- group for SCD endpoint. In a 
survival analysis, Cox regression revealed that a 
Δα+ outcome was associated with SCD (p = .001), 
as shown in Figure 1. 

Conclusions 
This study demonstrates that quantification of 

APDR from the ECG is a strong predictor of SCD. 
This finding supports the hypothesis that elevated 
APDR dispersion reflects abnormal cardiac function 
predisposing to SCD. 
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Fig 1: Event-free curves for SCD 
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Abstract - Enhancement of dynamic restitution of the 
action potential duration (APDR) dispersion has 
been associated with higher propensity to suffer from 
ventricular arrhythmias and sudden cardiac death 
(SCD). Recently, a marker, Δα, was proposed to 
quantify APDR dispersion from the 
electrocardiogram (ECG) by computing the ratio 
between T-peak-to-T-end (Tpe) and RR intervals. 
Holter ECG recordings of 609 subjects were analysed. 
RR and Tpe series were computed and the risk 
marker Δα was derived. The marker Δα stratified 
patients according to their risk of suffering from 
ventricular arrhythmias that could lead to SCD, with 
larger repolarization dispersion indicating lower 
survival probability. 
 

I. INTRODUCTION 
 

APDR measures the relationship between the action 
potential duration and the RR interval at steady-state 
pacing. Due to heterogeneities in the ventricles, APDR 
presents spatial variations generally termed APDR 
dispersion. Enhancement of APDR dispersion has been 
associated with higher propensity to suffer from 
ventricular arrhythmias and SCD. A marker, Δα, was 
recently published to non-invasively estimate the 
quantification of APDR dispersion from the ECG by 
computing the ratio between differences in the Tpe and 
RR intervals at different steady-state conditions [1]. 
 

II. METHODS 
 
Holter ECG recordings of 609 subjects (48 victims of 
SCD, 64 of other cardiac causes, 25 of non-cardiac death 
causes and 472 survivors) from the ``MUSIC'' database 
were analysed. ECGs were delineated using a single-lead 
procedure over the first principal component calculated 
to emphasize the T-wave. RR and Tpe series were 
computed and Tpe/RR dynamics was estimated using a 
nonlinear system with memory [2], from which the risk 
marker Δα was derived, by applying the following 
equation: 

∆𝛼 =  
𝜕𝑇𝑝𝑒
𝜕𝑅𝑅

 
 

 

 
Figure 1.Event-free curves for SCD. 

 
III. RESULTS AND DISCUSSION 

 
Δα discriminated between the group formed by SCD 

victims and the group composed of the other subjects, 
with mean ± SEM values of: Δα = 0.052 ± 0.013 for the 
former and Δα = 0.026 ± 0.003 for the latter (p = 0.026). 
Following the hypothesis that an enhancement of APDR 
dispersion has been associated with higher propensity to 
suffer from SCD, a threshold on the third quartile of Δα 
values was set in a survival analysis. Statistically 
significantly different event probabilities were obtained 
in both strata of the population (p = 0.001), as shown in 
Figure 1. 

IV. CONCLUSIONS 
 

The marker Δα stratifies patients according to their 
risk of suffering from ventricular arrhythmias that could 
lead to SCD, with larger repolarization dispersion 
indicating lower survival probability. Future research 
involves applying this method over a database composed 
of professional athletes, to predict sports-related sudden 
cardiac death. 
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Abstract

An increase in the dispersion of action potential dura-
tion restitution (APDR) has been associated with higher
propensity to suffer from ventricular arrhythmias and sud-
den cardiac death (SCD). Recently, a marker,Δα, was
proposed to non-invasively quantify APDR dispersion from
the electrocardiogram (ECG) by computing the ratio be-
tween differences in the T-peak-to-T-end(Tpe) and RR in-
tervals at different steady-state conditions. Holter ECG
recordings of patients with chronic heart failure divided
into two groups, one consisting of victims of SCD and the
other of victims of other causes and survivors, were an-
alyzed. ECGs were delineated using a single-lead proce-
dure over the first principal component calculated to em-
phasize the T-wave.Δα discriminated between the groups
formed by SCD and non-SCD victims, respectively, with
mean± SEM values of:Δα = 0.052± 0.013 for the for-
mer andΔα = 0.026± 0.003 for the latter (p < 0.048).
In a survival analysis where a threshold on the third quar-
tile ofΔα values was set, statistically significantly differ-
ent event probabilities were obtained in both stratas of the
population (p = 0.003). The markerΔα stratifies patients
according to their risk of suffering from ventricular ar-
rhythmias that could lead to SCD, with larger restitution
dispersion indicating lower survival probability.

1. Introduction
Sudden cardiac death (SCD) remains an important

cause of mortality in patients with mild-to-moderate heart
failure. A number of indices have been proposed as SCD
predictors, including left ventricular ejection fraction (cur-
rently the only recommended marker to risk stratify pa-
tients [1]) and T-wave alternans [2]. Nevertheless, further
research is needed to provide an index or a combination of
indices with improved capacity to identify patients at risk
of SCD.

Heart rate dependence of action potential duration

(APD), also called restitution kinetics, is thought to be crit-
ical in activation instability and, therefore, provides rel-
evant information for ventricular arrhythmic risk stratifi-
cation [3]. The dynamic APD restitution (APDR) curve,
measured using the so-called dynamic restitution protocol,
quantifies the relationship between the APD and the RR in-
terval at steady-state when pacing at different RR values.
Heterogeneities in the ventricle lead to non-uniform resti-
tution properties, which makes APDR curves present spa-
tial variations [4]. Dispersion is a measure of that spatial
variation. Recent studies have suggested that dispersion
in the APDR curves may act as a potent arrhtymogenic
substrate and increments in that dispersion have been as-
sociated with greater propensity to suffer from ventricular
tachycardia/fibrillation [5].

The main limitation on the usability of APDR dis-
persion as a risk index is that its quantification usually re-
quires invasive procedures. In [6], a method to indirectly
estimate dispersion of restitution slopes by making only
use of the surface electrocardiogram (ECG) was devel-
oped. An ECG index,Δα, that quantifies dispersion in the
dynamic APDR slopes by characterizing the relationship
between the T-peak-to-T-end (Tpe) and the RR intervals at
different steady-state conditions, was proposed and evalu-
ated.

In this work, we present a fully automated method
to analyze APDR dispersion in ambulatory recordings and
we show that the ECG index,Δα, proposed in [6], is an in-
dependent predictor of SCD in patients with chronic heart
failure (CHF).

2. Materials and Methods

2.1. Materials
Consecutive patients with symptomatic CHF corre-

sponding to NYHA classes II and III were enrolled in the
MUSIC (MUerte Śubita en Insuficiencia Cardiaca) study, a
prospective, multicenter study designed to assess risk pre-
dictors for cardiovascular mortality in ambulatory patients



with CHF [7]. The Holter recordings of 609 patients (48
victims of SCD, 64 of other cardiac causes, 25 of non-
cardiac death causes and 472 survivors) with sinus rhythm
were available for the present study. Each recording con-
sisted of three orthogonal ECG leads, sampled at 200 Hz.
In this study, the population was divided into two groups:
SCD victims (group 1) and victims of other cardiac causes,
non-cardiac causes and survivors (group 2).

The clinical characteristics of the studied patients
and medications are listed in Table 1. No medications were
withdrawn during Holter monitoring.

Patients were followed up every 6 months for a me-
dian of 48 months.SCDwas defined as (1) a witnessed
death occurring within 60 minutes from the onset of new
symptoms unless a cause other than cardiac failure was
obvious, (2) an unwitnessed death (< 24 hours) in the ab-
sence of preexisting progressive circulatory failure or other
causes of death, or (3) death during attempted resuscita-
tion. End points were reviewed and classified by the MU-
SIC Study Endpoint Committee.

2.2. Methods
2.2.1. ECG Preprocessing and Delineation

Preprocessing of the ECG signals included low pass
filtering at 40 Hz to remove electric and muscle noise, cu-
bic splines interpolation for baseline wander removal and
ectopic beats detection.

Principal Component Analysis was applied over the
three leads to emphasize the T-wave and improve delin-
eation. The first principal component was delineated us-
ing a single-lead technique [8] and, from the delineation
marks, the RR, QT andTpe interval series were obtained
and subsequently interpolated at a sampling frequencyfs

= 1 Hz.

2.2.2. Restitution Dispersion from ECG seg-
ments with Stable Heart Rate

The Tpe interval reflects differences in the time for
completion of repolarization by different cells spanning
the ventricular wall. Therefore, theTpe interval can be ex-
pressed in terms of APDs as follows:

Tpe = APDlast−APDmin −ΔAT (1)

whereAPDmin corresponds to the cell with the minimum
APD among those repolarizing at the T-wave peak instant
andAPDlast is the APD of the last cell to repolarize [9].
ΔAT represents the activation time delay between the two
cells associated withAPDmin andAPDlast. ΔAT hardly
changes with RR for RR intervals above 600 ms [10].
Therefore, changes in theTpe interval under variations of
the RR interval, measured at different steady-state heart
rate levels, can be obtained as

∂Tpe

∂RR
=
∂APDlast

∂RR
−
∂APDmin

∂RR
(2)

If we let αlast andαmin denote the slopes of the dy-
namic restitution curves at the regions corresponding to
APDlast andAPDmin, respectively:

αi =
∂APDi

∂RR
, i = {last,min} (3)

the spatial differenceΔα = (αlast - αmin), which measures
dispersion of restitution slopes, can be estimated from the
ECG by introducing (3) into (2), resulting in

Δα =
∂Tpe

∂RR
(4)

2.2.3. Restitution Dispersion from ECG seg-
ments with Unstable Heart Rate

When ECG segments presenting unstable heart rate
are analyzed, the lag of theTpe interval with respect to the
RR interval needs to be considered in the computation of
the indexΔα. The model shown in Fig. 1, previously
proposed to quantify QT rate adaptation [11], was used to
characterize theTpe dependence on RR. The inputxRR(n)
and outputyTpe(n) denote the RR andTpe series of each
recording.

xRR

h
zRR

gk(∙,a)
ŷ
Tpe +

y
Tpe

v

Figure 1. Block diagram describing the [RR,Tpe] relation-
ship consisting of a time-invariant FIR filter (impulse re-
sponseh) and a nonlinear functiongk(∙,a). v accounts for
the output error.

The impulse responseh =[h(1), ...,h(N)]T includes
information about the memory of the system, that is, a
characterization of the influence of a history of previous
RR intervals on eachTpe measurement. Therefore,zRR(n)
represents a surrogate ofxRR(n) with the memory effect
of Tpe compensated for. The length N of vectorh was
set to 150 samples. The functiongk(∙, a), dependent on
the parameter vectora = [a(0), a(1)]T , represents the re-
lationship between the RR interval and theTpe interval at
steady-state conditions. Ten different biparametric regres-
sion models (k = 1,...,10) were considered forgk(∙, a). The
estimated output̂yTpe(n) was defined as

ŷTpe(n) = gk(zRR(n), a) (5)

in which the optimum values of the FIR filter responseh,
vectora, and functiongk were searched for by minimizing
the difference between the estimated outputŷTpe(n) and the
system outputyTpe(n), for each subject independently using
the whole ECG recording.

The serieszRR(n) represents a surrogate of the run-
ning RR series as if of a truly steady-state period was
present. Therefore, the estimate of restitution dispersion



Overall population Δα− Δα+
p-value

(n = 609) (n = 457) (n = 152)

Age (y) 63 ± 0.5 62 ± 0.6 64 ± 1.0 0.040
Gender (men) 426 (70.0%) 333 (72.9%) 93 (61.2%) 0.008
NYHA class III 110 (18.1%) 81 (17.7%) 29 (19.1%) 0.716
LVEF ≤ 35% 324 (53.2%) 242 (53.0%) 82 (53.9%) 0.852
Diabetes 232 (38.1%) 180 (39.4%) 52 (34.2%) 0.289
Beta-blockers 425 (69.8%) 327 (71.6%) 98 (64.5%) 0.104
Amiodarone 55 (9.0%) 30 (6.6%) 25 (16.4%) 0.001
ARB or ACE inhibitors 494 (81.1%) 375 (82.1%) 119 (78.3%) 0.338
Average heart rate [beats/min] 72 ± 0.5 71 ± 0.5 73 ± 1.1 0.600
Maximum heart rate [beats/min] 115 ± 0.8 115 ± 0.9 116 ± 1.8 0.589
Heart rate range [beats/min] 43 ± 0.6 43 ± 0.7 43 ± 1.3 0.426
t90[s] (Tpe) 94 ± 2.3 88 ± 2.7 109 ± 3.8 0.001
QRS> 120 ms 236 (38.8%) 178 (38.9%) 58 (38.2%) 0.924
Nonsustained ventricular tachycardia and> 240 155 (25.5%) 121 (26.5%) 34 (22.4%) 0.335
Ventricular premature beats in 24 h
SCD 48 (7.9%) 27 (5.9%) 21 (13.8%) 0.003
Data are presented as absolute frequencies and percentages and as mean± standard error of the mean.
ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; LVEF = left ventricular ejection fraction; NYHA = New York
Heart Association;Δα+ = dispersion in the dynamic APDR slopes positive group;Δα− = dispersion in the dynamic APDR slopes negative
group. Significant differences betweenΔα+ andΔα− are indicated in bold.

Table 1. Characteristics of patients

derived in (4) can be replaced with the following equation,
obtained by differentiating (5) with respect tozRR:

Δα =
∂T̂pe

∂zRR

∣
∣
∣
∣
zRR=zRR

=
∂gk(zRR, a)
∂zRR

∣
∣
∣
∣
zRR=zRR

(6)

where the derivative is evaluated at the meanzRR value,
zRR, of the recording.

Additionally, a measure of the time required forTpe

to complete 90% of its rate adaptation, denoted byt90, was
computed by setting a threshold of 0.1 to the cumulative
sum of the filter impulse response, c(n)

c(n) =

N∑

i=n

h(i) (7)

leading to
t90 =

1

fs

argmax
n
(c(n) > 0.1). (8)

2.2.4. Statistical Analysis
Data are presented as mean± standard error of

the mean (SEM) for continuous variables and as num-
ber and percentage for categorical variables. Two-tailed
Mann-Whitney and Fisher exact tests were used for uni-
variate comparison of quantitative and categorical data, re-
spectively. Survival probability was estimated by using
Kaplan-Meier methods with a comparison of cumulative
events by using log-rank tests. The prognostic value ofΔα
in predicting the end points was determined with univariate
and multivariate Cox proportional hazards analyses. Cox
regression models were built considering a significance of

≤0.05 as the criterion for entry into a model. Ap value
of <0.05 was considered as statistically significant. Data
were analyzed by using SPSS software.

3. Results and Discussion
The mean± SEM value ofΔα in the study pop-

ulation was 0.028± 0.003 and the 25th, 50th and 75th
percentiles were 0.005, 0.022 and 0.046, respectively.

Patients were divided intoΔα positive (Δα+) and
negative (Δα-) groups by setting a cut-off point of 0.046
for Δα, corresponding to the 75th percentile ofΔα in the
population. Of the 609 patients studied, 457 were thus in-
cluded in theΔα- group (Δα≤ 0.046) and 152 in theΔα+
group (Δα > 0.046).

Upon comparison of clinical variables betweenΔα+
andΔα- groups (Table 1), significant differences were
found for age, gender, treatment with amiodarone and rate
adaptation timet90 for theTpe series. Patients with longer
adaptation timet90 were more likely to have aΔα+ out-
come.

Survival rate was significantly higher in theΔα-
group for SCD end point (p = 0.003). Univariate Cox
analysis revealed thatΔα+ outcome was associated with
SCD (Table 2). Multivariate Cox proportional hazard
models were constructed by adjusting for “1”: age, gen-
der, NYHA class, left ventricular ejection fraction< 35%
and diabetes and “2”: use of beta-blockers, amiodarone
and angiotensin-converting enzyme or angiotensin recep-
tor blocker inhibitors in addition to covariables in model
1. For model 1,Δα+ was the variable most significantly



Univariate Multivariate 1∗ Multivariate 2†

Hazard ratio
p-value

Hazard ratio
p-value

Hazard ratio
p-value

(95% CI) (95% CI) (95%CI)
Δα > 0.046 2.54(1.44-4.50) 0.001 2.59(1.46-4.60) 0.001 2.57(1.44-4.58) 0.001
CI = confidence interval;Δα = dispersion in the dynamic APDR slopes.
∗ Adjusted model includes age, gender, New York Heart Association class, left ventricular ejection fraction< 35% and diabetes.
† Adjusted model includes variables in model 1 plus use of beta-blockers, amiodarone and angiotensin receptor blocker or
angiotensin-converting enzyme inhibitors. Statistically significant values are marked in bold.

Table 2. Association of dispersion in the dynamic APDR slopes index,Δα, with sudden cardiac death

associated with SCD risk, with a hazard ratio of 2.59 (95%
confidence interval [CI] 1.46-4.60;p = 0.001), improving
the performance of the left ventricular ejection fraction<
35% (hazard ratio 2.92; 95% CI 1.47-5.78);p= 0.002). For
model 2,Δα+ was the variable with the second highest
hazard ratio (2.57), after left ventricular ejection fraction
< 35% (hazard ratio 2.94; 95% CI 1.48-5.82;p = 0.002).
Figure 2 shows the event-free curves for SCD, having di-
vided the population intoΔα+ andΔα- groups.
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Figure 2. Event-free curves for sudden cardiac death

4. Conclusions
This study demonstrates that dispersion in APD

restitution, quantified from Holter ECG recordings, is a
strong and independent predictor of SCD in patients with
CHF, improving the performance of other markers such as
the left ventricle ejection fraction. Our findings support the
hypothesis that an increased dispersion in APD restitution
reflects abnormal cardiac function predisposing to SCD.
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Laguna P. Quantification of restitution dispersion from the
dynamic changes of the T-wave peak to end, measured at
the surface ECG. IEEE Transactions on Biomedical Engi-
neering 2011;58:1172–1182.
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