
Trabajo Fin de Máster

Máster en Ingeniería de Sistemas e Informática

Efficient instruction and data caching for
high-performance low-power embedded

systems

Alexandra Ferrerón Labari

Director: Darío Suárez Gracia

Ponente: Jesús Alastruey Benedé

Grupo de Arquitectura de Computadores (GAZ)
Departamento de Informática e Ingeniería de Sistemas

Escuela de Ingeniería y Arquitectura
Universidad de Zaragoza

Curso 2011/2012
Septiembre 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/289972907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Although multi-threading processors can increase the performance of embedded systems with a mini-
mum overhead, fetching instructions from multiple threads each cycle also increases the pressure on
the instruction cache, potentially harming the performance/consumption ratio. Instruction caches are
responsible of a high percentage of the total energy consumption of the chip, which for battery-powered
embedded devices becomes a critical issue.

A direct way to reduce the energy consumption of the first level instruction cache is to decrease
its size and associativity. However, demanding applications, and specially applications with several
threads running together, might suffer a dramatic performance slow down, or even increase the total
energy consumption of the cache hierarchy, due to the extra misses incurred.

In this work we introduce iLP-NUCA (Instruction Light Power NUCA), a new instruction cache
that replaces the conventional second level cache (L2) and improves the Energy–Delay of the system.
We provided iLP-NUCA with a new tree-based transport network-in-cache that reduces both the cache
line service latency and the energy consumption, regarding the former LP-NUCA implementation.

We modeled in our cycle-accurate simulation environment both conventional instruction hierarchies
and iLP-NUCAs. Our experiments show that, running SPEC CPU2006, iLP-NUCA, in comparison
with a state–of–the–art high performance conventional cache hierarchy (three cache levels, dedicated
L1 and L2, shared L3), performs better and consumes less energy.

Furthermore, iLP-NUCA reaches the performance, on average, of a conventional instruction cache
hierarchy implementing a double sized L1, independently of the number of threads. This translates into
a reduction of the Energy–Delay product of 21%, 18%, and 11%, reaching 90%, 95%, and 99% of the
ideal performance for 1, 2, and 4 threads, respectively. These results are consistent for the considered
applications distribution, and bigger gains are in the most demanding applications (applications with
high instruction cache requirements). Besides, we increase the performance of applications with several
threads without being detrimental for any of them. The new transport topology reduces the average
service latency of cache lines by 8%, and the energy consumption of its components by 20%.

i

Resumen ejecutivo

Los procesadores multi-hilo pueden incrementar el rendimiento de sistemas empotrados con una mínima
sobrecarga en área y energía. Buscar instrucciones de varios hilos cada ciclo, no obstante, incrementa la
presión en la cache de instrucciones, lo que potencialmente puede afectar el ratio rendimiento/energía.
Las caches de instrucciones además son responsables de un porcentaje muy alto del total de la energía
consumida por el chip, aspecto crítico para dispositivos alimentados por baterías.

Una forma directa de reducir el consumo energético del primer nivel de cache de instrucciones es
reducir su tamaño y asociatividad. Sin embargo, aplicaciones con demandas mayores, y especialmente
aplicaciones multiprogramadas con varios hilos, pueden sufrir una drástica reducción del rendimiento,
o incluso un incremento de la energía total consumida por la jerarquía de memoria cache, debido a los
fallos adicionales.

En este trabajo introducimos iLP-NUCA (Instruction Light Power NUCA), una nueva cache de
instrucciones teselada que reemplaza la cache convencional de nivel 2 (L2) y mejora el Energy–Delay
del sistema. Además proponemos una nueva red de transporte para iLP-NUCA con topología en forma
de árbol que reduce tanto la latencia media de servicio, como la energía consumida por la red de
transporte, en comparación con implementaciones previas de LP-NUCA.

Hemos implementando en un entorno de simulación que modela en detalle los parámetros de la
microarquitectura, jerarquías convencionales de cache de instrucciones e iLP-NUCAs. Nuestros experi-
mentos demuestran que, ejecutando SPEC CPU2006, iLP-NUCA, en comparación con una jerarquía
típica convencional de alto rendimiento (tres niveles de cache, L1 y L2 separados, L3 compartido),
obtiene mayor rendimiento y consume menos energía.

Aún más, iLP-NUCA consigue alcanzar el rendimiento, en media, de una jerarquía convencional
reduciendo el tamaño del primer nivel de cache de instrucciones a la mitad, independientemente
del número de hilos. Esto se traduce en una reducción del producto Energy–Delay del 21%, 18%
y 11%, alcanzando el 90%, 95% y 99% del rendimiento de una cache de instrucciones perfecta,
con 1, 2 y 4 hilos, respectivamente. Estos resultados son consistentes para la distribución de las
aplicaciones consideradas y las mayores mejoras se dan en las aplicaciones que más estresan la je-
rarquía de instrucciones. Además en aplicaciones con varios hilos, el incremento en rendimiento se
consigue sin perjudicar a ninguna de las aplicaciones. La nueva red de transporte reduce la latencia me-
dia de servicio de bloques un 8%, y reduce el consumo energético de los componentes de la red un 20%.

iii

iv

Contents

1 Introduction 1
1.1 Scope of the Project . 2
1.2 Objectives . 2
1.3 Masters Thesis organization . 2
1.4 Contributions . 3
1.5 Acknowledgements . 3

2 Instruction cache hierarchies for embedded systems 5
2.1 State–of–the–art cache hierarchies for embedded systems 5
2.2 Performance and energy on a state–of–the–art embedded processor 6
2.3 Our proposal: instruction Light Power – NUCA 8

2.3.1 Tree-based transport network for iLP-NUCA 9

3 Methodology 11
3.1 Processor baseline . 11

3.1.1 Memory hierarchy overview . 11
3.2 Simulator . 12
3.3 Workloads . 13
3.4 Metrics . 13

4 Results 15
4.1 Impact of the tree-based transport network . 15
4.2 First level instruction caches: performance/energy trade-offs 16

4.2.1 Energy consumption . 16
4.2.2 Performance . 17
4.2.3 Energy-Delay . 19
4.2.4 Summary . 23

4.3 Putting all together: instructions and data . 23
4.4 L1-I access latency . 23
4.5 Results summary . 24

5 Related Work 25

6 Conclusion and future work 29
6.1 Publications . 30
6.2 Future Work . 30

References 33

v

CONTENTS

A Project management 39

B Simulation environment and methodology 41
B.1 SMTScalar . 41

B.1.1 The microarchitectural model . 42
B.2 Simulation methodology . 42

C SPEC CPU2006 characterization: instruction cache requirements 45
C.1 Cache size and associativity implications in performance 45

C.1.1 L1-I misses per k-instruction . 45
C.1.2 Performance evaluation: IPC . 48

D Shared iLP-NUCA designs 51

E ILP-NUCA: Cache de Instrucciones Teselada para Procesadores Empotrados 53

vi

List of Tables

2.1 Cache hierarchy parameters of representative current high-end processor samples
(28-45 nm). 6

3.1 Simulator micro-architectural parameters. 11

vii

viii

List of Figures

2.1 Dynamic energy consumption of the memory hierarchy for several L1 sizes/asso-
ciativities for 1, 2, and 4 threads. 7

2.2 3-level LP-NUCA. 8
2.3 2-D Mesh transport network topology and its components. 9
2.4 Tree-based transport network topology and its components. 10

3.1 Baseline system modeled: cache hierarchy detail. 12

4.1 Dynamic energy consumption of the memory hierarchy for several L1 sizes/asso-
ciativities for 1, 2, and 4 threads. 17

4.2 IPC throughput and fairness distribution for several L1 sizes/associativities for 1,
2, and 4 threads. 18

4.3 ED and ED2 products for 1, 2, and 4 threads, several configurations. Data cache
always hits. 19

4.4 ED distribution for 1 thread applications. 20
4.5 ED distribution for 2 threads applications. 21
4.6 ED distribution for 4 threads applications. 22
4.7 ED and ED2 products for 1, 2, and 4 threads, several configurations. 24

A.1 Schedule and tasks of the Masters Thesis. 40

B.1 Organization overview of the baseline simulated processor with a conventional
three level cache hierarchy. 41

B.2 Simulation methodology workflow. 43

C.1 L1-I mpki for several cache sizes and associativities, SPEC CPU2006. 46
C.1 L1-I mpki for several cache sizes and associativities, SPEC CPU2006. 47
C.2 IPC for several cache sizes and associativities, SPEC CPU2006. 48
C.2 IPC for several cache sizes and associativities, SPEC CPU2006. 49
C.2 IPC for several cache sizes and associativities, SPEC CPU2006. 50

D.1 Search network topology for shared iLP-NUCA. 52
D.2 Transport network topology for shared iLP-NUCA. 52
D.3 Replacement network topology for shared iLP-NUCA. 52

ix

x

Chapter 1 | Introduction

In the last years, embedded systems have evolved so that they offer functionalities we could
only find before in high performance systems. Portable devices, including smartphones, tablets,
or multimedia players, already have multiprocessors on-chip (such as Qualcomm MSM 8960,
so called Krait [17], or ARM Cortex A15 MPCore [53]). These systems usually have several
processor cores, often multi-threaded [52], and a powerful multi-level on-chip memory hierarchy.
This memory hierarchy has a first private level of cache separated for instructions and data, and a
last shared level. As most of these systems are battery-powered, the power consumption becomes
a critical issue.

Achieving conflicting goals such as high performance and low power consumption is a high
complexity challenge, where some proposals have been already made [32, 6, 29, 37, 24, 27, 50].
Suárez et al. proposed in [47] a new on-chip cache hierarchy, the Light Power NUCA (LP-NUCA),
which is able to reduce the access latency taking advantage of Non-Uniform Cache Architectures
(NUCA) properties. NUCA tackles the wire delay problem 1 in last level caches (LLC) by merging
the second and third level caches into a mesh of cache banks, and enabling inter-bank block
migration. In this way, blocks located in the banks close to the cache controller have a lower
latency than those located further apart [31]. LP-NUCAs have been proved to be efficient for
data hierarchies, achieving good performance and reducing the energy consumption.

On the other hand, instruction caches have different characteristics and requirements than
data caches, which do not comply with the low-power embedded systems requirements, especially
in SMT2 environments [52, 51]. Instruction caches are accessed every cycle by one or more threads
and its instruction flow supply influences the performance of the whole processor. Thus, it is not
a surprise that instruction caches account for a high percentage of the total energy consumption
of the chip. For example ARM 920TTM dissipates 25% of the power in its instruction cache [45],
and ARM Strong instruction cache is responsible of 27% of the total energy consumption of the
chip [38].

In this Master’s Thesis, we do a review on modern instruction caches for SMT embedded
systems. We study the goodness of adapting LP-NUCAs to the instruction cache hierarchy
(iLP-NUCA). We propose a new design that improves previous LP-NUCA designs by modifying
one of its networks-in-cache.

With this structure we can reduce the energy consumption and improve performance over a
conventional high performance hierarchy independently of the number of threads. Furthermore,
we achieve the same performance with smaller cache sizes, and we are able to reduce the energy
consumption by 21%, 18%, and 11%, and we reach 90%, 95% and 99% of the ideal performance
for 1, 2, and 4 threads, respectively.

1Driving a signal from the cache controller to the banks takes more time than the bank access itself.
2SMT stands for Simultaneous Multi-Threading.

1

CHAPTER 1. INTRODUCTION

1.1 Scope of the Project

This project has been developed in the Computer Architecture Group (Grupo de Arquitecturas)
of the University of Zaragoza. This work was supported in part by grants TIN2010-21291-C02-01
(Spanish Government and European ERDF), gaZ: T48 research group (Aragón Government and
European ESF), Consolider CSD2007-00050 (Spanish Government), and HiPEAC-3 NoE.

Since September 2011 I have a scholarship Formación de Personal Investigador (FPI) from
Ministerio de Innovación y Ciencia (Spanish Government).

The results collected in this Master’s Thesis correspond to the work developed since January
2012 to September 2012.

1.2 Objectives

The main objectives of this Master’s Thesis are:

• Study the state-of-the-art in the design of instruction and data caches in SMT–CMP3

environments for embedded superscalar processors.

• Extend the home made simulation environment SMTScalar to add instruction cache
hierarchies.

• Implement iLP-NUCAs to efficient manage instructions and data in the simulation plat-
form, and evaluate the new design by simulating representative workloads such as SPEC
CPU2000/2006 [20, 21] .

• Study the possibilities of increasing performance and energy efficiency by adding content
allocation polices based on hardware and/or software.

After an extensive review of state-of-the-art instruction caches for SMT embedded systems,
we extended our simulation environment to support instruction cache hierarchies and iLP-NUCAs.
We proved their functionality by the execution of the benchmark suite SPEC CPU2006.

Adapting this structure for CMP environments, as well as applying software based techniques
for energy/performance efficiency, is right now ongoing work.

1.3 Master’s Thesis organization

The remaining of this Master’s Thesis is organized as follows: Chapter 2 explores iLP-NUCAs,
our proposal to improve instruction cache hierarchies efficiency; in Chapter 3 the methodology
we followed is explained; Chapter 4 collects the main results; Chapter 5 presents the related work
and Chapter 6 concludes.

Also found as appendix:

A. Project management. It includes schedules and effort.

B. Simulation environment and methodology. This appendix details our simulation environment,
SMTScalar, our simulated architecture, and our scientific workflow.

C. SPEC CPU2006 characterization: instruction cache requirements. This appendix presents a
characterization of the instruction cache requirements of SPEC CPU2006 benchmark suite.

3CMP stands for Chip Multi-Processors.

2

1.4. CONTRIBUTIONS

D. Shared iLP-NUCA designs. This appendix presents some ongoing work about iLP-NUCAs
shared by instructions and data.

E. iLP-NUCA: Cache de Instrucciones Teselada para Procesadores Empotrados. This appendix
contains the paper that will be presented in the XXIII Jornadas de Paralelismo (JJPAR’12),
Elche, September 2012.

1.4 Contributions

Summing up, the main contributions of this work are the following:

• We apply a new NUCA organization to the instructions hierarchy and evaluate it in a SMT
environment. To the best of our knowledge, this is the first work that proposes a specific
NUCA cache for the instructions hierarchy in single thread and SMT environments.

• We extended the simulation environment adding instruction cache hierarchies and iLP-
NUCA caches. We followed a simulation methodology that automatizes the simulation
process and allows to share resources and tools between the users of this and other simulation
tools.

• We adapted LP-NUCAs for instructions hierarchies. We propose a new transport network-
in-cache for LP-NUCA based on a tree topology that improves the previous designs. With
this new topology we are able to reduce the effective service latency of blocks, we decrease
the number of links (and therefore the nodes degree), and we reduce the energy consumed
by the network.

• We observed that instruction caches are responsible of a high percentage of the energy
consumption of the chip. Our experiments show that instruction caches are normally
over–dimensioned for many representative workloads. We proposed to reduce the first level
instruction cache size and associativity to save energy and keep an acceptable performance
by backing–up the first level cache with an efficient structure, iLP-NUCA. We achieve
the performance of a conventional hierarchy and reduce the energy consumption with
smaller caches independently of the number of threads. Furthermore, the available area
that iLP-NUCA provides by reducing the first level instruction cache offers space on-chip
for the implementation of other components such as accelerators.

• The realization of this Master’s Thesis delivered a poster presentation in an international
conference, a paper submission and acceptance in a national conference, and the future
submission of a paper to an international conference with the main results of this work.

1.5 Acknowledgements

First of all, I would like to thank to all the members of the Computer Architecture Group.
Thanks to Chus for his revisions and support. Jorge, one day we will flatten the motivation curve.
Specially, thanks to Darío, the most encouraging and positive person I have around, and the best
director I could have.

For all the friends that support me every day. There are many coffees and many beers waiting
for us. To Markus, who starts to be an expert in caches after hearing me day after day. Thanks
for all your support and help.

This project is dedicated to my family, especially to my parents and my grandma.

3

4

Chapter 2 | Instruction cache
hierarchies for embedded
systems

This chapter presents the design space for instruction cache hierarchies and introduces our proposal
(iLP-NUCA) to simultaneously improve performance and save energy in single thread and SMT
embedded systems.

Superscalar execution cores demand a continuous instruction supply to feed their functional
units [26, 46]. Instruction flows might be interrupted by dependencies between instructions,
breaks in the control flow (due to branches), and wait states generated by cache misses. Delays
due to the instruction cache hierarchy affect the instruction flow speed and the instruction issue,
and hence, performance.

Simultaneous multi-threading (SMT) is a well-known technique to hide long latency operations
by the execution of several threads [52]. SMT aims to have all the functional units highly utilized
by using a more powerful front-end (fetch unit) supplying instructions from several threads.
Although SMT can be implemented with a minimum energy and area overhead, it adds pressure
to the front-end, and instruction caches become a critical component in the system design.

Ideally we would like to have an instruction cache big enough to fit the working set of the
most demanding applications, in order to increase their hit rate. However, bigger caches come at
the expense of higher access times and higher power and energy consumption. Thus, there is a
complex trade-off between size, and latency and energy consumption.

In the following sections we will present current design choices for instruction caches in
commercial systems. We will evaluate in terms of performance and energy consumption the
behavior of potential applications using SPEC CPU2006 [21] for a state–of–the–art processor.
Finally, we will present our proposal, iLP-NUCA, and its enhancements over previous designs.

2.1 State–of–the–art cache hierarchies for embedded systems

Embedded systems cover a wide range of applications and domains. Table 2.1 collects information
about representative commercial system-on-chips (SoCs) from several vendors. As we can see,
instruction cache sizes vary between 16KB (Qualcomm MSM 8960 [17]) and 64 KB (Netlogics
XLP864 [18]), while most of the caches are 32KB. Associativities of this processors usually vary
between 2 and 8, being 4 a commonly adopted solution [53, 35, 3, 7].

Many of the embedded systems we can find nowadays such as smartphones, tablets, or
multimedia players, are portable devices. These devices are usually powered by batteries, so
energy consumption becomes more important, turning into a critical issue. Instruction caches are

5

CHAPTER 2. INSTRUCTION CACHE HIERARCHIES FOR EMBEDDED SYSTEMS

Table 2.1: Cache hierarchy parameters of representative current high-end processor samples (28-45 nm).

Model, Brand #threads/CPU L1/CPU (KB) L2/CPU L3 (MB)I D
QorIQ AMP T2080, Freescale [7] 2 32 32 512KB 512KBa

PowerPC 476FP, IBM–LSI [35] 1 32 32 512KB 2MB + 4 eDRAM
Cortex-A15 MPCore, ARM [53] 1 32 32 up to 4MB shared no
XLP864, NetLogic [18] 4 64 32 512KB 16MB shared
MSM 8960, Qualcomm [17] 1 16b 16b 512KB no
MIPS32 ProAptiv, MIPS [13] >1 32-64c 32-64c up to 1.3MB no
a Platform cache.
b L0 cache 4KB.
c Optional 4KB–1MB scratchpad.

responsible of a high amount of energy consumption of the system. To cite some examples, the
StrongARM SA-100 consumes the 27% of its total energy in the instruction cache [38], and ARM
920TTM dissipates 25% of the power in its instruction cache [45].

Some recent works claim that the applications executed in this kind of devices have high
requirements on instructions and therefore would benefit from a big first level instruction (L1-I)
cache [10, 16]. Others maintain that requirements of instruction caches are small [32, 50, 41, 33].
SPEC CPU2006 is a benchmark suite highly utilized by academia and industry, composed by 29
applications, including artificial intelligence, compilation, compression, and speech recognition,
among others [21]. This kind of applications are commonly employed in the embedded domain.
We consider that SPEC CPU2006 covers a wide range of applications of different disciplines and
therefore can represent the behavior of this domain applications.

2.2 Performance and energy consumption evaluation on a state–
of–the–art embedded processor

We run SPEC CPU2006 benchmarks with a typical state-of-the-art processor configuration
including a 32KB 4–way set associative first level instruction cache, dedicated L2 cache (i.e.,
separated data and instruction L2 caches), and a shared L3 cache. We assume 32nm technology
and run experiments with 1, 2, and 4 threads. For more details please refer to Chapter 3,
Methodology. Our experiments show that only a small subset of applications from the suite take
advantage of such a big instruction cache. In concrete, from the 28 benchmarks considered1,
half of them keep performance reducing the cache size and associativity by 2 (i.e., 16KB 2–way
set associative cache). Nine of them even keep the same performance with a 4KB 2–way set
associative cache.

However, those applications from the set that have a big instruction footprint experiment a
huge slow-down. For example, 11 of the benchmarks slow down more than 20% when reducing
the cache to 4KB 2–way.

When running 2 threads, 15% of the mixes keep performance when the cache is 4KB 2–way,
and 30% does it when 16KB 2–way. Again the slow down of applications with high requirements
is dramatic.

A more detailed characterization in terms of instruction requirements of SPEC CPU2006 can
be found in Appendix C.

Although many applications fit in a small instruction cache, the performance loss of applica-
tions with high requirements is not acceptable to satisfy the user experience.

1483.xalancbmk could not be executed in our simulation environment.

6

2.2. PERFORMANCE AND ENERGY ON A STATE–OF–THE–ART EMBEDDED PROCESSOR

Instruction cache size and associativity have also a high impact on the energy consumption of
the structure. Figure 2.1 shows the energy consumption of the memory hierarchy for 1, 2, and 4
threads. For the sake of clarity, we show they dynamic energy consumption of each structure,
and group the total static energy consumed. The latter value is small in comparison with the
total energy as we consider LSTP (Low STandby Power) technology. We keep all the parameters
the same and vary the first level instruction cache size and associativity. We consider four
configurations: CV–32KB–4ass (32KB, 4–way associative), CV–16KB–2ass, CV–8KB–2ass, and
CV–4KB–2ass. Each bar corresponds to one configuration, and represents the sum of the total
energy consumed by all the applications considered.

0

20

40

60

80

100

120

E
n
e
rg

y
 (

m
J)

C
V
-3

2K
B
-4

as
s

C
V
-1

6K
B
-2

as
s

C
V
-8

KB
-2

as
s

C
V
-4

KB
-2

as
s

1 thread

0

500

1000

1500

2000

2500

3000

3500

2 threads

0

2000

4000

6000

8000

10000

12000

14000

16000

4 threads

L1-I dyn

L1-D dyn

L2-I dyn

L2-D dyn

L3 dyn

Total static

Figure 2.1: Dynamic energy consumption of the memory hierarchy for several L1 sizes/associativities for 1, 2,
and 4 threads. Each bar corresponds to a configuration. Names of configurations include the size of the cache and
the associativity. For example: CV–32KB-4ass means conventional hierarchy, 32KB 4–way set associative L1-I
cache.

If we focus on one thread, we can draw several conclusions. As we said before, many of the
applications have a working set that fits within a 32KB 4–way set associative L1 instruction
cache. This implies that all the requests hit in the first level (L1-I) and there is no need to fetch
instructions from the next one (L2-I). The instruction cache consumes 32.5% of the memory
hierarchy energy. The dynamic energy consumption of the L2-I is negligible (less than 1% of the
total). As the L1-I cache shrinks, the dynamic energy per access also decreases (for example, with
4KB the percentage of energy consumption due to the L1-I is 13.5%). Per contra, the amount of
blocks that the cache can hold is smaller, so the probability of a miss is higher. If we continue
shrinking the L1-I cache there is a point where this reduction does not pay off. We can see that
when the cache size is less than 8KB, the reduction on the energy consumption of the L1-I is
smaller than the increase of the energy consumption of the L2-I, which at the end increases the
total energy consumption of the system.

With two threads the scenario is similar, although the reductions are smaller as the cache
requirements are bigger. If we consider four threads we can see how just reducing the cache to
16KB implies that the total energy consumption increases.

7

CHAPTER 2. INSTRUCTION CACHE HIERARCHIES FOR EMBEDDED SYSTEMS

Potentially, reducing the first level instruction cache, as MSM 8960 does [17], is going to
benefit the system from the energy point of view. But reducing the size of the L1-I will affect
also its hit rate, which heavily affects performance. Yet the energy consumption of the L2-I cache
will increase, counteracting the other savings.

Summing up, we would like to reduce the L1-I size and associativity to reduce the energy
consumption of the system but without increasing the energy consumption of the L2-I, and losing
as less performance as possible.

With this idea in mind, recent works proposed to dynamically reconfigure the L1 size and
associativity so only part of the ways or part of the sets are used in a given moment [50, 8, 15].
With such approach the cache adapts to the behavior of the application and can operate with
the optimal size. Other works proposed to add a small structure before or next to the first level
cache to capture part of the accesses to the L1-I and increase the fetch speed, reduce the energy
consumption, or both [32, 29]. A different approach is to rely on the compiler to map cache lines
in a given structure or a given way/set of the cache [6, 27].

All these techniques need to either modify the interface between the L1-I and the processor,
or add additional hardware or software support.

We propose a different approach. We will not modify the fetch unit or the L1-I structure, but
we will optimistically reduce the size and associativity of the first level instruction cache. We will
substitute the L2 cache by an improved and energy efficient structure, iLP-NUCA (instruction
Light Power NUCA), based on the LP-NUCA design, which will minimize the performance
degradation without increasing the energy consumption of the system. In the following section
we will explain this structure in more detail.

2.3 Our proposal: instruction Light Power – NUCA

LP-NUCAs [47] extend the conventional first-level cache capacity by surrounding it with one or
more levels of small cache tiles interconnected by specialized networks, as shown in Figure 2.2.

LP-NUCA levels

1 2 3from next

cache level
processor

to next cache level

3 55 3

3 4 6

75 6

4

6

6

7

RT

Figure 2.2: 3-level LP-NUCA. The numbers inside tiles represent the tile hit latency seen by the processor
(assuming single-cycle tiles).

The first level of LP-NUCA (root-tile, RT) corresponds to a conventional L1 cache with
additional control logic. We substitute the second level of the conventional hierarchy by a tiled
structure whose effective access time increases gradually. The numbers inside tiles represent the
minimum hit latency of a tile seen by the processor. We define the minimum hit latency of a tile

8

2.3. OUR PROPOSAL: INSTRUCTION LIGHT POWER – NUCA

as the time since we inject a request into the LP-NUCA until the block is actually served by that
tile (i.e., received by the root-tile). The LP-NUCA design is characterized by the use of three
specialized networks: search, transport, and replacement, which allow for a simple implementation
and provide low latency and high bandwidth. Please refer to [47] for further details about the
design and implementation of LP-NUCAs.

This structure has been proved to be efficient with data hierarchies, achieving high performance
and reducing the energy consumption of the system.

LP-NUCAs are good candidates for instruction hierarchies because they exploit the reuse
(temporal locality), are energy-efficient structures, and provide a lot of bandwidth to the root-tile.
Besides they do not change the interface between the L1 and the processor. We call this structure
adapted to instruction hierarchies iLP-NUCA (instruction Light Power NUCA).

We expect that the use of iLP-NUCAs in the instruction hierarchy will allow for great
reductions in energy consumption, at the same time that it will allow us to keep performance
losses in an acceptable range.

In the following section we will describe the enhancements from the baseline design that we
propose.

2.3.1 Tree-based transport network for iLP-NUCA

Previous designs of LP-NUCA utilized a 2-D mesh for the transport network because it provides
high bandwidth with its multiple return paths to the root-tile. Figure 2.3 shows the 2-D mesh
topology (Figure 2.3a) and the transport components inside a tile (Figure 2.3b). The numbers
inside the tiles represent the tile latency assuming one-cycle tiles. This topology provides an
increasing latency as we move further away from the root-tile. The main components of the
transport network are the two transport buffers (Tbf) and the switch. In a given moment
only three of the five inputs can be active in the crossbar (the contents among tiles are in
exclusion, and therefore hits cannot happen simultaneously in the replacement buffers, Rbf in the
Figure 2.3b, and the cache), which simplifies its design. We rely on buffered flow control, and use
store-and-forward flow control with on/off back-pressure and two-entry buffers per link.

LP-NUCA levels

1 2 3from next

cache level
processor

3 55 3

3 4 6

75 6

4

6

6

7

RT

(a) 2-D Mesh transport network.

on/o� control links

CACHE

T
 b

f

T bf

R bf

R
 b

f

T
 b

f

T bf

(b) Transport components.

Figure 2.3: 2-D Mesh transport network and its components. The numbers inside the tiles represent the
tile latency assuming one-cycle tiles. Tile latency includes search, tile access, and transport delay. The main
components shown in Figure 2.3b are the transport buffers (Tbf), the replacement buffers (Rbf), the cache, and
the switch.

9

CHAPTER 2. INSTRUCTION CACHE HIERARCHIES FOR EMBEDDED SYSTEMS

LP-NUCA levels

1 2 3from next

cache level
processor

3 55 3

3 3 5

55 5

3

5

5

5

RT

(a) Tree-based transport network.

on/o� control links

CACHE

T
 b

f

T bf

R bf

R
 b

f

T
 b

f

(b) Transport components.

Figure 2.4: Tree-based transport network and its components. The numbers inside the tiles represent the
tile latency assuming one-cycle tiles. Tile latency includes search, tile access, and transport delay. The main
components shown in Figure 2.4b are the transport buffers (Tbf), the replacement buffers (Rbf), the cache, and
the switch. In comparison with the former 2-D Mesh, the number of output links has decreased and so does the
complexity of the switch.

We already observed that the occupancy of the transport network links is very low [48]. Thus,
we could decrease the path diversity in order to reduce the nodes degree. Figure 2.4 shows an
alternative transport network based on a tree topology, and the transport components inside a
tile (Figures 2.4a and 2.4b, respectively). With this topology the benefit is twofold. On one hand
we decrease the links between tiles: now each tile only has one transport output link (before they
had two), simplifying the crossbar design. On the other hand, we decrease the tile hit latency,
especially for the tiles of higher levels, as we need less hops to reach the RT (which also means
that we will consume less energy to deliver blocks to the root tile). Thus, we expect to reduce
the effective service latency of blocks in comparison with previous LP-NUCA designs, and the
energy consumption of the transport network.

The novel topology slightly increases the length of some wires, but it does not affect the tile
cycle time because both search and replacement networks have less slack. It also increases the
degree of the root-tile crossbar from 3 to 5 inputs without performance impact. To start the
execution of a refill instruction, we only need to notify the MSHR (miss status holding register)
which entry is going to be written. The MSHR will notify then the Issue Window that launches
the refill instruction, and that is the time when the data will be necessary. We can take advantage
of these cycles to pass through the root-tile crossbar.

From now on, we will assume that iLP-NUCA refers to the structure with this novel transport
network.

Next chapters will show the detailed evaluation of a processor where we substitute the
conventional L2 for a iLP-NUCA, and how it behaves in comparison with a conventional hierarchy.

10

Chapter 3 | Methodology

This chapter presents the methodology followed in this project. We briefly present the modeled
processor, the simulation methodology and environment, the benchmarks utilized, and the metrics
used to evaluate them. For more information please refer to Appendix B.

3.1 Processor baseline

For our experiments, our simulator models the system summarized in table 3.1. We based our
model in typical state-of-the-art high performance embedded systems such as IBM/LSI PowerPC
476FP, NetLogic XLP864, and Freescale QorIQ AMP T2080 [35, 18, 7]. Our system has a more
powerful memory hierarchy, and it is able to execute up to 4 threads simultaneously.

Table 3.1: Simulator micro-architectural parameters. BS, AM, lat, and init stand for block size, access
mode, latency, and initiation rate, respectively

Clock Frequency 1 GHz Threads 1/2/4
Fetch/Decode/Commit width4 Issue width 4(IN+ME) + 2FP
INT/FP/MEM IW entries 24/16/ 16 ROB/LSQ entries 64/32
Branch Predictor bimodal + gshare, 16 bitMiss. branch penalty 6
L1/L2/L3 MSHR entries 8 / 8 / 4 MSHR secon. misses 4
TLB miss latency 30 Store Buffer/L2/L3 WB sizea 32/16/16

Baseline L1/root-tileb 32KB–4Way–32B BS, write-through, 2-cycle lat, 1-cycle init
L2c 512KB–8Way–32B BS, serial AM, 4-cycle lat, 2-cycle init, copy-back
iLP-NUCA rest of tiles 32KB–2Way–32B BS, parallel AM, copy-back, levels: 3, total size: 448KB

L3 4MB eDRAM–16Way–128B BS, 14-cycle lat, 7-cycle init, copy-back
Main Memory 100 cycles/4 cycle inter chunk, 16 Byte bus
a L2, iLP-NUCA, and L3 Write Buffers coalesce entries.
b In root-tile, copy-back and write-around.
c L2 dedicated for data and instructions.

We estimate conventional cache access latencies and energy consumption assuming 32nm LSTP
(Low STandby Power) technology with Cacti 6.5 [40]. Cacti is an integrated cache access time,
cycle time, area, leakage, and dynamic power model. By integrating all these models together,
cache trade-offs are all based on the same assumptions and, hence, are mutually consistent.
Besides, the latencies provided by Cacti are typically lower than the ones achieved in commercial
products, thus our assumptions are conservative. For iLP-NUCA latencies and energy estimations
we use both CACTI 6.5 and a scaled 90nm layout [47].

3.1.1 Memory hierarchy overview

Figure 3.1 shows our baseline, a conventional three level cache hierarchy with dedicated first
and second level caches, and with a third level shared between data and instructions. First level

11

CHAPTER 3. METHODOLOGY

caches are true multiported (2 read/write ports). Second and third level caches are multi-banked,
and have one read/write port. All caches use LRU (least recently used) but LP-NUCA, that
employs LRF (least recently filled).

L3-0

L3 MSHR

to/from main memory

L3-1

L2D-1

L2D

MSHR

L2D-0 L2I-0 L2I-1

L2I

MSHR

L1-D

L1D MSHR
Ports Ports

L1-I
L1I MSHR

Figure 3.1: Baseline system modeled: cache hierarchy detail. For the sake of brevity, only the loads path is
shown, omitting structures for stores.

L1 (baseline) and L2 caches are based on state-of-the-art commercial embedded systems
(Table 2.1). For the shrunk L1-I configurations we decided to keep associativity in 2 as a
compromise between energy consumption and performance in SMT applications [22].

We chose to model a separated L2 design for several reasons. First, we want to examine the
behavior of the instructions and therefore we do not want data to interfere on it. In some of our
experiments we will consider that the L1 data cache always hits. Second, dedicated caches offer
higher performance, although they occupy more area. Finally, the implementation of a shared
iLP-NUCA is not straightforward, and it is currently ongoing work.

We assume for the L2 serial access mode (tag array is accessed before the data array). We
modeled with CACTI 6.5 L2 caches with smaller size (128 KB), and the results show that the size
reduction does not affect either the access time or initiation rates (4 and 2 cycles, respectively).
Reducing the L2 size would potentially reduce its energy consumption. However smaller L2 cache
sizes might suffer higher miss rates, increasing the amount of accesses to the L3, and affecting
both the performance of the system, and the energy consumption.

3.2 Simulator

We use SMTScalar, a cycle-accurate execution-based simulator based on SimpleScalar 3.0d for
Alpha ISA [4]. SimpleScalar was heavily extended to support detailed microarchitectural models,
highly configurable memory hierarchies, and simultaneous multi-threading execution for previous
LP-NUCA works [48, 47]. We extended SMTScalar to add instruction cache hierarchies. We

12

3.3. WORKLOADS

provided a realistic instruction fetch unit, and we evaluated the optimal values for the structures
involved by both an extensive review of literature and state–of–the–art commercial processors, and
experimentation with our simulation environment. More details about our simulated architecture
and methodology can be found in Appendix B.

3.3 Workloads

We use the full SPEC CPU2006 [21] benchmark suite, but 483.xalancbmk (which we could not
execute in our environment). For each program we simulate 100M representative instructions that
were selected following the SimPoints methodology [19]. One thread experiments warm up cache
and branch predictor during 200M instructions. Multi-thread experiments are multiprogrammed
and we utilize last as simulation ending policy; there is no structure warming up and we only
obtain statistics for the first 100M of instructions of each thread. For 2 SMT experiments we
run all the combinations of benchmarks. For 4 SMT experiments, we assure the representativity
of the results by following a methodology based on statistical sampling that allows for 97% of
confidence level and between 3% error [25, 54, 49].

3.4 Metrics

We use performance metrics for multiprogrammed workloads including misses per k-instructions
(mpki), average memory access latency (AMAT), IPC throughput (i.e., committed user instructions
summed over all threads divided by total elapsed cycles1), and fairness [12]. IPC throughput and
fairness are calculated according to the following formulas:

IPC througput =

n∑
i=1

IPCi, fairness =
min

i

(
CPIMP

i

CPISP
i

)
max

i

(
CPIMP

i

CPISP
i

)
where CPI refers to instructions per cycle, and MP and SP refers to single-thread and

multi-thread execution, respectively.
Other metrics such as weighted speed up, ANTT (average normalized turnaround time), or

STP (system throughput), were not utilized because we consider different baselines [9].
Regarding energy consumption, we report the total energy consumed as well as the Energy–

Delay and Energy–Delay2 products. We follow the Li et al. approach for SMT environments [34],
and account for all the energy consumed until the last thread commits 100M instructions.

1The use of IPC throughput is save in our environment because we have no synchronization instructions.

13

14

Chapter 4 | Results

This chapter presents the Master’s Thesis main results.

In previous chapters we have seen how from the energy point of view, we would like to have a
small instruction cache. A small cache means that each access to the structure will consume less
energy. However, from the performance point of view, some applications are heavily affected by
reducing the available cache size. Increasing the execution time has a collateral effect, which is
the increase of the static energy of the system.

In this chapter we will evaluate the new transport network for iLP-NUCA. We will see in
more detail how small instruction cache sizes affect the energy consumption and the performance
of the system. We will compare the behavior of a conventional cache hierarchy with our structure,
the iLP-NUCA.

We will examine the system from the energy and the performance perspective, using the
total energy consumed, and the IPC throughput and fairness, respectively. We will also use
other metrics like mpki (misses per k-instruction) and AMAT (average memory access time). To
summarize we will also consider Energy–Delay (ED) and Energy–Delay2 (ED2) products.

As we want to see how the system is influenced by instructions, we model a data cache
that always hits. In this way data do not interfere in the system, and we can be sure that the
performance and energy variations are due to the instruction caches. At the end of the chapter
we will present the results modeling real data caches to have an overview of the behavior of the
global system. Note that improving the private instruction caches reduce the pressure over shared
last level ones, improving at the same time those applications that are data cache sensitive.

During this chapter, we will adopt the following name convention:

• CV refers to conventional cache hierarchies, and iLP to iLP-NUCA hierarchies.
• Configurations names, for the sake of brevity, have been shorten up. Each name is composed

of three fields: category (CV/iLP), size of the first level instruction cache, and associativity
of the above. For example: CV–16KB–2ass represents a conventional hierarchy where the
L1-I size is 16KB and its associativity is 2.

We consider L1-I cache sizes ranging from 32KB 4–way set associative (so called baseline) till
4KB 2–way set associative. In any case we keep 2–way set associative caches because SMT takes
advantage of the associativity [22], and it is a compromise between performance and energy
consumption.

4.1 Impact of the tree-based transport network

The principal enhancement of iLP-NUCA from previous LP-NUCA designs is the new tree–based
transport network. As we mention before, the main advantage of this network regarding the
former 2-D mesh is the link count reduction per node, and the consequent degree reduction. The

15

CHAPTER 4. RESULTS

main transport components (see Figure 2.4) are the two input transport buffers and the switch.
From the hardware implementation of LP-NUCA [47] we know that each buffer accounts for one
third of the energy consumption, and so does the switch. Our new network will simplify the
switch as we just have one output link. From the original layout we estimate that this reduction
in the transport components will reduce their energy consumption by 20%. Although the path
diversity is lower, the observed amount of traffic in the transport network lets us think that it
will not experiment contention. This latter hypothesis is validated by our experimental results.

We compare the former 2-D mesh with the tree–based transport network with 3–level LP-
NUCA/iLP-NUCA; instructions and data root-tiles are 32KB, 4–way set associative. Our
experimental results show that the tree-based transport network is able to reduce by 8% the
average service latency. As the bigger latency reductions are in the tiles located on the iLP-NUCA
third level, the effectiveness of the new network is completely connected to the amount of reused
that this level is able to capture. For example, in 447.dealII, the iLP-NUCA third level (data)
capture 16.5% of hits (respect to the total hits in the second and third level). Our new network
topology with its faster paths reduces the AMAT by 1.25%, and that translates into 1% of IPC
improvement. However, other benchmarks like 450.soplex or 401.bzip2, which also have a high
percentage of hits in the iLP-NUCA third level, have a little improvement on IPC (0.30% and
0.15% respectively). These applications present a high percentage of stores.

Energy benefits are more obvious when executing several threads. With 2 threads the new
transport network consumes 7% less energy than the former 2-D mesh for data, and 4.7% less for
instructions. With 4 threads the energy savings on the transport network energy consumption
reach 6% for instructions, and 7% for data.

4.2 First level instruction caches: performance/energy trade-offs

We consider the processor presented in Chapter 3, with a three level cache hierarchy, where L1
and L2 are dedicated (i.e., separated for instructions and data), and a L3 is shared by instructions
and data. We substitute the L1/L2 instruction caches for a 3 level iLP-NUCA. During this section
we will consider that the data cache always hits.

4.2.1 Energy consumption

Figure 4.1 shows the energy consumption of different configurations for 1, 2, and 4 threads. Each
bar corresponds to one configuration, and represents the sum of the energy consumption of all the
applications considered. We only plot the dynamic and static energy of the instruction hierarchy.

As we saw before, the working sets of most of the applications executed fit in a 32KB 4–way
set associative L1-I cache (see Appendix C for more details). Thus, the dynamic energy consumed
by the L2-I is minimal. If we focus on one thread and we observed the evolution for conventional
hierarchies (CV), we can see how when we decrease the L1-I size to 16KB 2–way set associative
there is a huge decrease in the energy consumption. Still some of the applications fit in the cache,
but there is a clear increase in the dynamic energy due to the L2-I. With 8KB the same tendency
might be observed, but with 4KB the decrease of the dynamic energy consumption of the L1-I
does not pay off the increase in the dynamic energy consumption of the L2-I. Thus the total
energy consumption with 4KB is almost the same than with 32KB. iLP-NUCA configurations
follow the same tendency. For the same L1-I size iLP-NUCA always consumes, on average, less
energy than the conventional approach.

With two threads we can extract similar conclusions, still some observations should be made.
Fetching from two threads increases the pressure on the L1-I cache, and the aggregated instruction
footprint is less likely to fit in a small L1-I cache. Therefore the contribution of the L2-I respect to

16

4.2. FIRST LEVEL INSTRUCTION CACHES: PERFORMANCE/ENERGY TRADE-OFFS

0

5

10

15

20

25

30

35

40

E
n
e
rg

y
 (

m
J)

C
V
-3

2K
B
-4

as
s

C
V
-1

6K
B
-2

as
s

C
V
-8

KB
-2

as
s

C
V
-4

KB
-2

as
s

IL
P-

32
KB

-4
as

s

IL
P-

16
KB

-2
as

s

IL
P-

8K
B
-2

as
s

IL
P-

4K
B
-2

as
s

1 thread

0

200

400

600

800

1000

1200
2 threads

0

1000

2000

3000

4000

5000

6000
4 threads

RT-I/L1-I st

RT-I/L1-I dyn

ILPNUCA-I/L2-I st

ILPNUCA-I/L2-I dyn

L3 st

L3 dyn

Figure 4.1: Dynamic energy consumption of the memory hierarchy for several L1 sizes/associativities for 1, 2,
and 4 threads. Each bar corresponds to a configuration. Names of configurations include the size of the cache and
the associativity. For example: CV–32KB–4ass means conventional hierarchy, 32KB 4–way set associative L1-I
cache. Each bar represents the sum of the total energy consumed by all the applications considered. Data caches
always hit.

the total energy consumption is higher. A L1-I cache of 4KB 2–way set associative in comparison
with the 8KB 2–way set associative cache, decreases the energy consumption of the L1-I, on
average, by 13%, but increases the energy consumption of the L2-I by 73.5%. iLP-NUCA energy
consumption is increased by 66.5% in this case.

With four threads the added pressure gets too big and a conventional hierarchy cannot
decrease the energy consumption. iLP-NUCA is able to decrease the energy consumption except
for a 4KB 2–way set associative cache, where the dynamic energy of the iLP-NUCA experiments
a huge increase.

All in all, for the same configuration of L1-I, iLP-NUCA always consumes less energy than
the conventional hierarchy, independently of the number of threads. From the energy point of
view, on average, a L1-I of 16KB or 8KB is preferable than 32KB. These values offer a L1-I cache
capacity where a large part of the applications footprints fit, consuming less energy per access.

4.2.2 Performance

Figure 4.2 shows the average (harmonic) IPC throughput (Figure 4.2a) and fairness distribution
(Figure 4.2b) of the system for different configurations. As in previous figures, each bar in
Figure 4.2a corresponds to a configuration, following the name convention, and represents the
average IPC throughput of the applications considered.

Although decreasing the L1-I provides large energy savings, it has a huge impact on IPC
throughput. If we consider Figure 4.2a, and we focus on one thread, we see how when a
conventional hierarchy shrinks the L1-I from 32KB to 16KB the average IPC throughput slows

17

CHAPTER 4. RESULTS

1 thread 2 threads 4 threads
0.0

0.5

1.0

1.5

2.0

2.5

IP
C

CV-32KB-4ass

CV-16KB-2ass

CV-8KB-2ass

CV-4KB-2ass

ILP-32KB-4ass

ILP-16KB-2ass

ILP-8KB-2ass

ILP-4KB-2ass

(a) IPC throughput (average) for 1,2, and 4 threads,
several configurations.

2 threads 4 threads
0.0

0.2

0.4

0.6

0.8

1.0

fa
ir

n
e
ss

C
V

-3
2

K
B

-4
a
ss

C
V

-3
2

K
B

-4
a
ss

C
V

-1
6

K
B

-2
a
ss

C
V

-1
6

K
B

-2
a
ss

C
V

-8
K

B
-2

a
ss

C
V

-8
K

B
-2

a
ss

C
V

-4
K

B
-2

a
ss

C
V

-4
K

B
-2

a
ss

IL
P
-3

2
K

B
-4

a
ss

IL
P
-3

2
K

B
-4

a
ss

IL
P
-1

6
K

B
-2

a
ss

IL
P
-1

6
K

B
-2

a
ss

IL
P
-8

K
B

-2
a
ss

IL
P
-8

K
B

-2
a
ss

IL
P
-4

K
B

-2
a
ss

IL
P
-4

K
B

-2
a
ss

(b) Fairness distribution for 2 and 4 threads, several
configurations.

Figure 4.2: IPC throughput and fairness distribution for several L1 sizes/associativities for 1, 2, and 4 threads.
Each bar corresponds to a configuration. Names of configurations include the size of the cache and the associativity.
For example: CV–32KB-4ass means conventional hierarchy, 32KB 4–way set associative L1-I cache. In Figure 4.2a
each bar represents the average (harmonic) IPC throughput of all the applications considered. In Figure 4.2b
the candlestick represents the minimum, the quartile 25, the median, the quartile 75, and the maximum of the
distribution. In both cases data caches always hit.

down by 5.8%. Smaller cache sizes imply a slow down of 12.5% and 20% of performance for
8KB and 4KB respectively. Performance also decreases in a system implementing iLP-NUCA,
yet this slow down is much smaller. With the same size than a conventional hierarchy, on
average, iLP-NUCA performs better. If we compare with the conventional baseline (32KB–4ass),
iLP-NUCA speeds up 0.61% with the same size, and slows down 2.8%, 7.6%, and 13% for sizes
16KB, 8KB, and 4 KB, respectively.

It the applications fit in the L1 cache, little difference in terms of performance can be observed.
Remember that iLP-NUCA root-tile is equivalent to a conventional L1, and we do not change the
interface between the L1 and the processor. When the applications do not fit in the L1 cache and
start to stress the next level of the hierarchy (smaller cache sizes) is when we can take advantage
of the iLP-NUCA structure. That is why the bigger differences in performance are observed for
smaller L1-I cache sizes.

With two threads the slow down is soften by the ability of SMT to hide long latency operations
with useful work from other threads. Nevertheless, the same tendency might be observed: the
performance loss with conventional caches is bigger than that with iLP-NUCA, naming 3%, 6.3%,
and 10.5% of slow down for CV–16KB–2ass, CV–8KB–2ass, and CV–4KB–2ass, respectively,
against a speed up of 0.5% for iLP–32KB–4ass, and slow down of 1.16%, 3.2%, and 6% for
iLP–16KB–2ass, iLP–8KB–2ass, and iLP–4KB–2ass, respectively.

With four threads the difference is smaller. The occupancy of the functional units is higher
and there are more threads to hide the stalls in the processor. iLP-NUCA keeps performance
degradation in less than 1.5% while conventional caches lose 3.5% for 4KB.

In conclusion, iLP-NUCA achieves on average better performance than conventional data
caches for the same L1-I configuration, regardless the number of threads. Even more, iLP-NUCA
is able to achieve the same performance than a conventional hierarchy with half of the size (except
for 16KB–2ass, where the performance degradation is 3% for 1 thread and less than 1% for 2
threads, if we compare iLP–16KB-2ass with CV–32KB–4ass).

18

4.2. FIRST LEVEL INSTRUCTION CACHES: PERFORMANCE/ENERGY TRADE-OFFS

Figure 4.2b shows the fairness distribution of the system. Each candlestick represents the
minimum, the quartile 25, the median, the quartile 75 and the maximum of the distribution.
The differences between cache organizations are very small and, in general, each iLP-NUCA
configuration has a higher minimum. For 4 threads it might be surprising that smaller cache
sizes present higher values of fairness. We calculate the fairness as the relative slow down of each
application respect to the speed of that application running alone, with the same configuration, in
the system. As applications perform, on average, worse as the cache size shrinks, the relative slow
down is lower, and consequently the values of fairness higher. The conclusion we can extract from
this graph is that iLP-NUCA increases performance without being detrimental to any program.

4.2.3 Energy-Delay

Figure 4.3 shows Energy-Delay and Energy-Delay2 products normalized to the baseline (CV–
32KB–4ass) for the different configurations considered, for 1, 2, and 4 threads. ED and ED2 are
the lower–the–better metrics.

1 thread 2 threads 4 threads
0.0

0.5

1.0

1.5

E
D

 n
o
rm

a
liz

e
d
 t

o
 b

a
se

lin
e

CV-32KB-4ass

CV-16KB-2ass

CV-8KB-2ass

CV-4KB-2ass

ILP-32KB-4ass

ILP-16KB-2ass

ILP-8KB-2ass

ILP-4KB-2ass

(a) Energy–Delay product for 1, 2, and 4 threads, several
configurations. Values are normalized to baseline (CV–
32KB–4ass). Data cache always hits.

1 thread 2 threads 4 threads
0.0

0.5

1.0

1.5

E
D

2
 n

o
rm

a
liz

e
d
 t

o
 b

a
se

lin
e

CV-32KB-4ass

CV-16KB-2ass

CV-8KB-2ass

CV-4KB-2ass

ILP-32KB-4ass

ILP-16KB-2ass

ILP-8KB-2ass

ILP-4KB-2ass

(b) Energy–Delay2 product for 1, 2, and 4 threads,
several configurations. Values are normalized to baseline
(CV–32KB–4ass). Data cache always hits.

Figure 4.3: ED (Figure 4.3a) and ED2 (Figure 4.3b) products for 1, 2, and 4 threads. Each bar corresponds to
one configuration. Values are normalized to baseline (CV–32KB–4ass). Names of configurations include the size
of the cache and the associativity. For example: CV–32KB–4ass means conventional hierarchy, 32KB 4–way set
associative L1-I cache. Data cache always hits. ED and ED2 are the lower–the–better metrics.

Bearing in mind the energy consumption and performance results we have seen, it seems clear
that iLP-NUCA will present better results in the combined metric than a conventional hierarchy.

Both ED and ED2 show a similar tendency. With one thread, ED decreases for both
conventional and iLP-NUCA caches for 16KB and 8KB, although iLP-NUCA relative values are
always smaller. With a 4KB L1-I, the conventional system presents a ED of 1.15 while iLP-NUCA
keeps under the baseline (0.85).

With two threads we observe a similar behavior, yet the relative ED does not decrease that
much. Again, iLP-NUCA relative values are smaller than conventional ones, and for the smallest
cache size considered iLP-NUCA has a ED of 0.98.

With four threads the tendency changes. As we shrink the L1-I cache the relative ED of the
conventional hierarchy increases. iLP-NUCA however presents a similar behavior for different
cache sizes, but for 4KB, where the ED becomes 1.20.

19

CHAPTER 4. RESULTS

Similar conclusions can be drawn for ED2, yet the impact of the performance degradation
(delay) affects more the conventional hierarchy.

In conclusion, in terms of ED and ED2, iLP-NUCA on average performs better than a
conventional hierarchy independently of the L1-I size and the number of threads.

Untill now we have shown the average values of ED and ED2. To examine in more detail the
behavior of our structure we will see the distribution of ED for all the applications considered.
We want to see how iLP-NUCA performs against the conventional hierarchy. To do that, we
take as baseline the best configuration of conventional caches: for 1 thread, 2 threads and 4
threads the best conventional configuration (on average) are CV–8KB–2ass, CV–16KB–2ass, and
CV–32KB–4ass, respectively.

Figure 4.4 contains three graphs. The upper one presents the distribution of ED normalized to
the 1 thread baseline (CV–8KB–2ass). The graph in the middle shows the absolute ED. The graph
in the bottom of the figure shows the L1-I mpki (misses per k–instruction). We plot the baseline
CV–8KB–2ass, and three of the iLP-NUCA configurations: iLP–16KB–2ass, iLP–8KB–2ass, and
iLP–4KB–2ass. Benchmarks are sorted according to the L1-I mpki of the baseline.

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

E
D

 n
o
rm

a
liz

e
d

ILP-4KB-2ass ILP-8KB-2ass ILP-16KB-2ass CV-8KB-2ass

0.00
0.05
0.10
0.15
0.20
0.25
0.30

E
D

 (
m

J*
s)

43
4.

ze
us

m
p

47
0.

lb
m

46
2.

lib
qu

an
tu

m

44
7.

de
al
II

43
7.

le
sli

e3
d

43
3.

m
ilc

47
3.

as
ta

r

48
1.

wrf

45
6.

hm
m

er

41
0.

bw
av

es

43
6.

ca
ct

us
ADM

40
1.

bz
ip

2

45
0.

so
pl

ex

43
5.

gr
om

ac
s

42
9.

m
cf

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

46
5.

to
nt

o

45
9.

Gem
sF

DTD

45
3.

po
vr

ay

40
0.

pe
rlb

en
ch

41
6.

ga
m

es
s

40
3.

gc
c

44
4.

na
m

d

48
2.

sp
hi

nx
3

45
8.

sje
ng

45
4.

ca
lc
ul

ix

44
5.

go
bm

k
0

20
40
60
80

100
120

L1
-I

 m
p
ki

Figure 4.4: ED distribution for 1 thread applications. Names of configurations include the size of the cache
and the associativity. For example: CV–32KB–4ass means conventional hierarchy, 32KB 4–way set associative
L1-I cache. Data cache always hits. The upper graph represents ED values normalized to the best conventional
configuration (baseline CV–8KB–2ass). The graph in the middle represents the absolute ED values. ED is a the
lower–the–better metric. The lower graph represents the L1-I mpki. Benchmarks are sorted according to the L1-I
mpki of the baseline (CV–8KB–2ass).

If we pay attention to the upper graph we can see how for the same L1-I cache size (8KB,
2–way set associative) iLP-NUCA always have the same or a smaller relative ED value (below
1). The performance (in terms of ED) of the iLP-NUCA is better when the mpki values of the

20

4.2. FIRST LEVEL INSTRUCTION CACHES: PERFORMANCE/ENERGY TRADE-OFFS

applications are bigger. The lower graph sorts the SPEC CPU2006 benchmarks from small values
to big mpki values for the baseline configuration. The first 11 applications on the left hand side
of the graph fit in a 8KB cache (their mpki is close to 0). Therefore the energy consumption of
the 8KB cache is smaller than the 16KB cache, as each access to the cache consumes less energy.
When the application does not fit anymore in the 8KB instruction cache, 16KB configuration
takes advantage of its larger capacity and reduces its relative ED. The right hand side of the
graph shows applications with high mpki. We can see how iLP-NUCA performs better in this
kind of applications as it can exploit its full potential to reduce the ED. The behavior of the 4KB
2–way set associative cache is too irregular due to the small capacity.

Figures 4.5 and 4.6 are the equivalent graphs for 2 and 4 threads applications. Regarding two
threads applications, again for the same L1-I cache size iLP-NUCA shows a relative ED below
the baseline. Also the difference increases as we move to the applications that show a higher
aggregated L1-I mpki (right hand side of the graph). If we reduce the cache size to 8KB 2–way
set associative, for applications with low L1-I mpki we achieve a large reduction in ED, as the
aggregated footprint fits in the first level cache. In some applications with high L1-I mpki values
ILP–8KB–2ass has a relative value over the baseline. Nevertheless, in most of the applications
iLP-NUCA reduces the relative ED product with an instruction cache with half of the capacity.
Thus, the reduction in ED is consistent among all the applications with two threads.

0 50 100 150 200 250 300 350
0.5

1.0

1.5

2.0

2.5

E
D

 n
o
rm

a
liz

e
d

ILP-4KB-2ass ILP-8KB-2ass ILP-16KB-2ass CV-16KB-2ass

0 50 100 150 200 250 300 350
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

E
D

 (
m

J*
s)

0 50 100 150 200 250 300 350
0

50

100

150

200

250

L1
-I

 m
p
ki

Figure 4.5: ED distribution for 2 threads applications. Names of configurations include the size of the cache
and the associativity. For example: CV–32KB–4ass means conventional hierarchy, 32KB 4–way set associative
L1-I cache. Data cache always hits. The upper graph represents ED values normalized to the best conventional
configuration (baseline CV–16KB–2ass). The graph in the middle represents the absolute ED values. ED is a the
lower–the–better metric. The lower graph represents the L1-I mpki. Benchmarks are sorted according to the L1-I
mpki of the baseline (CV–16KB–2ass).

Figure 4.6 shows all the mixes considered in our experiments for 4 threads applications. The

21

CHAPTER 4. RESULTS

best conventional configuration in this case is a L1-I cache of 32KB 4–way set associative, so
we consider the iLP-NUCA configurations iLP–32KB–4ass, iLP–16KB–2ass, and iLP–8KB–2ass.
4KB 2–way set associative first level instruction cache shows a very irregular pattern and it is too
small to hold the aggregated instruction footprint of four applications. The same pattern as in
previous figures can be observed. For the same size, iLP-NUCA performs better in terms of ED,
and this differences are clearer as the aggregated L1-I mpki increases (applications on the right
hand side of the graph). Shrinking the cache size to 16KB improves the ED product for those
applications with low L1-I mpki. The relative ED product of this configuration (ILP–16KB–2ass)
in general is below the baseline with some exceptions that rarely go beyond 10% increase, and
usually reaches 20% decrease, until mix 350, approximately. Then the values swing around the
baseline without big differences until approximately mix 500, where the relative ED is increased in
some points by 20%. For most of the applications iLP-NUCA with a 16KB 2–way set associative
instruction cache improves the ED of a conventional hierarchy with a 32KB 4–way set associative
first level instruction cache. For more than half of the applications, iLP-NUCA with a L1-I
8KB 2–way set associative cache also outperforms a conventional hierarchy with four times more
capacity and the double of the associativity.

0 100 200 300 400 500 600 700
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

E
D

 n
o
rm

a
liz

e
d

ILP-8KB-2ass ILP-16KB-2ass ILP-32KB-4ass CV-32KB-4ass

0 100 200 300 400 500 600 700
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

E
D

 (
m

J*
s)

0 100 200 300 400 500 600 700
0

50
100
150
200
250
300
350
400

L1
-I

 m
p
ki

Figure 4.6: ED distribution for 4 threads applications. Names of configurations include the size of the cache
and the associativity. For example: CV–32KB–4ass means conventional hierarchy, 32KB 4–way set associative
L1-I cache. Data cache always hits. The upper graph represents ED values normalized to the best conventional
configuration (baseline CV–32KB–4ass). The graph in the middle represents the absolute ED values. ED is a the
lower–the–better metric. The lower graph represents the L1-I mpki. Benchmarks are sorted according to the L1-I
mpki of the baseline (CV–32KB–4ass).

22

4.3. PUTTING ALL TOGETHER: INSTRUCTIONS AND DATA

4.2.4 Summary

To summarize the results presented in this section, we can conclude that iLP-NUCAs are able
to improve performance over conventional designs when the L1-I has the same size, and yet
reduce the energy consumption. Even more, iLP-NUCA with a root-tile of 8KB, 2–way set
associative achieves, on average, the performance of a conventional hierarchy with a 16KB,
2–way set associative cache, independently of the number of threads, and reduces the energy
consumption by 21%, 18%, and 11%, for 1, 2, and 4 threads, respectively. With a 8KB, 2–way set
associative root-tile, iLP-NUCA reaches 90%, 95%, and 99% performance of an ideal first level
instruction cache. We have seen also that these results are consistent among the applications and
that iLP-NUCA outperforms conventional caches specially in environments with high L1-I mpki
(misses per k-instruction).

4.3 Putting all together: instructions and data

The results we have presented so far consider that data caches always hit. In this section we will
examine the behavior of the complete system considering the same memory hierarchy model:
a three level cache hierarchy, with L1 and L2 dedicated caches (i.e., separated for instructions
and data), and shared L3. In iLP-NUCA configurations we substitute each L1/L2 for a 3 level
iLP-NUCA (one iLP-NUCA for data, and one iLP-NUCA for instructions). The detailed micro-
architectural parameters can be found in Table 3.1 (Chapter 3). To describe the behavior of the
complete system we chose ED and ED2 metrics.

Figure 4.7 shows Energy-Delay (Figure 4.7a) and Energy-Delay2 (Figure 4.7b) products
normalized to the baseline (CV–32KB–4ass) when the data cache is not perfect. The graphs show
the same tendency as before and similar conclusions can be derived. A conventional hierarchy
reduces ED and ED2 when we reduce the L1-I cache to 16KB and 8KB for 1 thread applications,
and increases for 4KB. With 2 and 4 threads shrinking the L1-I cache translates into bigger ED
and ED2 values. iLP-NUCA, on the other hand, keeps ED and ED2 below the conventional
baseline and improves for 16KB and 8KB. The ED and ED2 values increase for for 4KB L1-I but
still they are below the conventional ones.

Several observations must be made. There are two factors that influence the drastic reduction
in Energy–Delay.

• The energy savings. The energy savings are double by the combination of instruction
iLP-NUCA and data iLP-NUCA.

• The performance increase. iLP-NUCA and its new transport network provide cache lines
with a minimum latency taking great advantage of their temporal reuse. We detected
that benchmarks with high slow downs in performance are bounded by stores. The higher
iLP-NUCA bandwidth helps to increase the stores speed.

In conclusion, the system take advantage of faster instructions paths, faster data paths, and
higher bandwidth to commit stores.

4.4 L1-I access latency

The decrease on the L1-I cache size and associativity influences the access latency and initiation
rate of the cache. We modeled the different cache configurations with CACTI 6.5 [40] and our
experiments show that for the given technology and cycle time (LSTP, 1 GHz) the access latency
of the cache is never less than 2 cycles.

23

CHAPTER 4. RESULTS

1 thread 2 threads 4 threads
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
D

 n
o
rm

a
liz

e
d
 t

o
 b

a
se

lin
e

CV-32KB-4ass

CV-16KB-2ass

CV-8KB-2ass

CV-4KB-2ass

ILP-32KB-4ass

ILP-16KB-2ass

ILP-8KB-2ass

ILP-4KB-2ass

(a) Energy–Delay product for 1, 2, and 4 threads, several
configurations. Values are normalized to baseline (CV–
32KB–4ass).

1 thread 2 threads 4 threads
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
D

2
 n

o
rm

a
liz

e
d
 t

o
 b

a
se

lin
e

CV-32KB-4ass

CV-16KB-2ass

CV-8KB-2ass

CV-4KB-2ass

ILP-32KB-4ass

ILP-16KB-2ass

ILP-8KB-2ass

ILP-4KB-2ass

(b) Energy–Delay2 product for 1, 2, and 4 threads,
several configurations. Values are normalized to baseline
(CV–32KB–4ass).

Figure 4.7: ED (Figure 4.7a) and ED2 (Figure 4.7b) products for 1, 2, and 4 threads. Each bar corresponds to
one configuration. Values are normalized to baseline (CV–32KB–4ass). Names of configurations include the size
of the cache and the associativity. For example: CV–32KB–4ass means conventional hierarchy, 32KB 4–way set
associative L1-I cache. ED and ED2 are the lower–the–better metrics.

Assuming that technology allows for accessing the L1-I cache in 1 cycle, we run experiments
for different configurations of L1-I with both conventional and iLP-NUCA based hierarchies.
Our results show that, as expected, the lower latency improves the performance of the system.
However, the tendency remains, and the same conclusions extracted for 2-cycle access latencies
can be observed. Furthermore, an instruction cache with 1-cycle access latency could request a
cache line per cycle to the L2 in case of a batch of misses. iLP-NUCA can inject one miss per
cycle and offers more bandwidth than a conventional hierarchy. Thus we also expect iLP-NUCA
to perform better in this kind of scenario.

4.5 Results summary

To sum up, we have seen that first level instruction caches are responsible of a high percentage of
the total energy consumption. We observed that by reducing the size and associativity of the
L1-I we consume less energy, but at the expense of a non acceptable performance degradation.
We proposed to utilize for instructions hierarchies LP-NUCAs with a new transport network
(iLP-NUCAs). This new transport network effectively reduces the average service latency of the
blocks and the energy consumption of the network. We also saw how iLP-NUCA achieves better
performance than conventional hierarchies for the same configuration of L1-I, independently of
the number of threads, and without being detrimental for any of them. Furthermore, it can
achieve the same performance than a conventional hierarchy with smaller L1-I cache sizes, which
allows for great energy reductions. In any case we observed that the optimal results in terms
of Energy–Delay, on average, are those given by a 8KB 2–way set associative L1-I cache. The
results are consistent for data, where we observed a twofold benefit due to the instructions and
the data iLP-NUCAs.

24

Chapter 5 | Related Work

Several works addressed the instruction cache energy consumption problem by adding hardware
structures that are able to capture a great amount of instruction fetches. Kin et al. proposed the
Filter cache, a small direct mapped conventional cache placed before the first level instruction
cache (L1-I) that trades off performance for power [32]. If the instruction request hits in the filter
cache, the access is faster and consumes less energy. However, if the fetched instruction misses in
the filter cache, we incur in a penalty delay for accessing the L1-I. Thus, although a 256-byte
direct mapped filter cache achieves a 58% energy reduction, the performance loss is about 21%.

To cope with the extra delay incurred when a miss occurs in the filter cache, Jung et al.
proposed to add a small cache (EM-cache) next to the L1-I instead of before [29]. In this way,
some of the accesses will go to the L1-I and some of them will save energy by accessing only the
EM-cache. The key idea is to detect if following instructions access the same cache block than
the last instruction fetched. In this case, we can directly access the EM-cache. However, if we
want to capture a bit more complicated patterns, we need to add instructions to the ISA and rely
on the compiler to indicate the hardware when to access each structure.

In a similar way, Bellas et al. proposed the L-cache [6]. The L-cache contains instructions
within a loop, so that iterations of the loop will fetch instructions from the L-cache rather than
from the instruction cache, saving great amount of energy. As the compiler decides which blocks
are kept in the L-cache, the performance loss in much lower. The energy savings are directly
related to the amount of large blocks within loops, and the amount of times that those blocks
are executed. Therefore this technique works well for floating point workloads, but the energy
savings are lower in the case of integer workloads.

Trace caches follow a similar idea, although their main concern is increasing performance.
Dynamic instruction streams are kept in an additional hardware structure to avoid noncontiguous
fetches [43]. They were implemented in the Pentium 4, where they store already decoded micro-
operations, or translations of complex x86 instructions, which had a positive impact by reducing
the energy consumption of the machine [44].

All these proposals (and others like [57, 56]) add extra hardware structures between the
processor and the first level instruction cache. Their goal is to reduce the amount of accesses to
the L1-I, but at the expense of introducing extra fetch latency when a miss to these structures
occurs. On the contrary, we keep clear the interface between the processor and the L1 instruction
cache, and therefore, all these designs are orthogonal to ours, and they could be easily implemented
in front of our system.

Besides, these works do not consider multi-thread environments, where threads interfere with
each other and may pollute the filter structure.

Aragon et al. proposed a technique to reduce the power consumption of CAM-based instruction
cache designs with high associativity [2]. The key observation is that not all the instructions
fetched are executed due to taken branches. They implement a prefetch mask to avoid fetching
instructions from a block that will not be used.

25

CHAPTER 5. RELATED WORK

Associativity tends to have a strong impact on power consumption on modern high-performance
low-power embedded systems. First level caches of such systems usually have associativity varying
from 2 to 8. For example: 2–way for ARM Cortex A15 [53], 4–way for IBM PowerPC 476FP [35]
and ARM Cortex A9 [3], or 8–way for the Freescale QorIQ AMP T2080 [7]; in comparison with
the 32-way associative L1-I cache used in Aragon’s work.

Furthermore, CAMs generally have about twice the area of SRAM cells and tend to consume
a large amount of power because the matchlines are heavily loaded and have an activity factor
close to 1 [55]. These structures are preferred for TLBs (translation lookaside buffers), as they
require a high-speed table look-up. They are also especially popular in network routers (where
they are very useful for IP classification and forwarding).

Although SMT get more benefit from associativity than from size [14], our experiments
conclude that instruction caches with associativities between 2 and 4 work well while they keep a
reasonable energy consumption.

Other proposals also exploit the varying requirements of instruction caches not only among
programs, but also among phases of the same program, to reduce the cache energy consumption.

There are some techniques to selectively place some of the unused cache lines into a low-leakage,
state-preserving or switched-off state [11, 30, 42]. These approaches are straightforward applicable
to our system and can account for additional energy savings.

Ishihara et al. proposed to relax the cache uniformity constraint to reduce the dynamic power
consumption and the leakage power [24]. They developed both a non-uniform cache architecture
which varies the number of ways per set, and a code placement algorithm to reduce cache accesses
and cache misses. Other similar works that focus on analyzing cache requirements at run-time
are [1, 8, 15, 58].

A recent proposal from Sundararajan et al. is Smart cache, a reconfigurable cache that adapts
dynamically to the requirements of each program/phase [50]. They proposed a way to dynamically
reconfigure the cache parameters (size and associativity) at run-time based on the behavior on
the application with a machine learning decision tree model. This model is applicable to all the
cache levels. They reduce the energy-delay product with an overall performance degradation of
2%.

All these proposals imply important design changes in the structure of the caches. The key
advantage is that the variable L1-I size or associativity allows to capture big working sets of
demanding applications and at the same time reduce energy when the requirements are small.
The main performance losses come when the prediction of a certain optimal size is wrong (smaller
than it should) and the L1-I cannot capture all the accesses. iLP-NUCA works as a distributed
victim cache which backs up the L1-I. We believe that the combination of a reconfigurable cache
approach and our iLP-NUCA would achieve high energy reductions while keeping performance.

Other proposals take advantage of the compiler to place blocks in an specific location of
the cache. Jones et al. proposed to place frequently executed code at the start of the program
binary and explicitly place these instructions in a particular way [27]. Thus, in a given access,
the processor would be able to detect that the request is aimed to the selected instructions, and
only one way and one set will need to be accessed. Similar proposals are [36, 23].

All these approaches are orthogonal to our design, as we do not modify the interface between
the processor and the first level cache.

Victim caches [28] have also been studied as energy saving structures [37, 5]. Memik et al.
proposed to put a victim cache before the L2 and enhance its behavior by a predicting schema.
This schema would tell us if a block is not in the victim cache, or per contra is likely to be

26

there [37]. In this way they can save some of the accesses to the victim cache that will not
produce a hit.

Our experiments show that a conventional victim cache (8-16 entries) is not enough to capture
the instruction footprint and produce a significant improve in performance. This work does not
consider SMT applications neither. Several threads running together and sharing a small victim
cache would interfere each other by evicting other threads victim blocks. Besides, iLP-NUCA
is far more complex than a conventional victim cache and its networks-in-cache offer a fast
communication with the L1 cache and lots of bandwidth.

27

28

Chapter 6 | Conclusion and future work

Although multi-threading processors can increase the performance of embedded systems with
a minimum overhead, fetching instructions from multiple threads each cycle also increases the
pressure on the instruction cache. Instruction caches are responsible of a high percentage of the
total energy consumption of the chip, which for battery-powered embedded devices becomes a
critical issue.

In this Master’s Thesis we proposed to reduce the size of the first level instruction cache to
achieve significant energy reductions. We proposed iLP-NUCA, an energy efficient tiled structure,
that substitutes a conventional first and second level caches, for the instruction hierarchy, We
provide iLP-NUCA of a new transport network-in-cache that reduces the average service latency
of blocks by 8%, and the energy consumption of the network.

We compare our proposal with a state-of-the-art conventional three level cache hierarchy,
where L1 and L2 are dedicated (separated for instructions and data), and L3 is shared. To
evaluate both proposals we implemented them in our simulation environment, providing it of
instruction cache hierarchies and a realistic fetch unit.

We run experiments of representative applications (SPEC CPU2006) for the two structures
(conventional and iLP-NUCA), varying the L1-I cache size and associativity, for 1, 2, and 4
threads.

From these experiments we can extract the following conclusions:

• First level instruction caches energy consumption represents an important percentage of
the total energy consumed by the memory hierarchy.

• By reducing the L1-I cache size we can achieve great energy reductions. However, we suffer
from a non acceptable performance degradation.

• In a system with ideal data caches, iLP-NUCA in comparison with a conventional hierarchy
performs better and consumes less energy for the same L1-I size, independently of the
number of threads. In this way iLP-NUCA achieves, on average, an Energy–Delay product
(ED) relative to a conventional hierarchy with a 32KB, 4–way set associative L1-I cache, of
0.98, 0.83, and 0.70 keeping the same L1-I size, and shrinking the L1-I to 16KB, and 8KB
for one thread applications. Two threads applications reduce the ED by more than 10% for
16KB and 8KB, and 4 threads applications by more than 5%. This ED improvements are
consistent for the distribution of applications considered, being greater the benefits when
the applications footprints increase the misses of the first level cache.

• We observe that when we model both instructions and data in the system the results are
consistent.

29

CHAPTER 6. CONCLUSION AND FUTURE WORK

In conclusion with iLP-NUCA we can implement a 8KB 2–way set associative first level
instruction cache and get the same performance, on average, than a double sized conventional
cache, independently of the number of threads. This translates into a reduction of the energy
delay product of 21%, 18%, and 11%, and we reach 90%, 95%, and 99% of the ideal performance
for 1, 2, and 4 threads, respectively.

6.1 Publications

The publications related to this Master thesis are the following:

• Alexandra Ferrerón, Darío Suárez and Víctor Viñals. Tiled instruction caches. Poster.
Student Poster Session of the 7th International Conference on High-Performance and
Embedded Architectures and Compilers. January 2012. Best student poster award.

• Alexandra Ferrerón, Marta Ortín, Darío Suárez, Jesús Alastruey and Víctor Viñals. iLP-
NUCA: Cache de Instrucciones Teselada para Procesadores Empotrados. Prooceedings of
the 23th Jornadas de Paralelismo (JJPAR’12). September 2012.

• Alexandra Ferrerón, Marta Ortín, Darío Suárez, Jesús Alastruey and Víctor Viñals. Shrink-
ing L1 Instruction Caches to Improve Energy–Delay in SMT Embedded Processors. Future
submission (September 2012) to 26th International Conference on Architecture of Computing
System (ARCS 2013).

6.2 Future Work

This Master Thesis work lays the foundations for a PhD. dissertation. In the near future we
would like to study in more detail the following ideas.

Some recent works claimed that the traditional benchmarks such as SPEC CPU do not
represent the real behavior of applications [10, 16]. Characterizations of those new benchmarks
suites point out that applications have high instruction requirements. iLP-NUCAs work well in
environments where L1 caches present a high mpki (misses per k-instruction). Thus, we expect
that in such applications iLP-NUCAs get performance benefits. We want to test our structure
using new benchmarks like BBench [16] or EEMBC [41] to corroborate our hypothesis.

Mostly all portable devices comprise multicore processors. One of our priorities is to imple-
ment iLP-NUCAs in a multicore context. This implies a complete re-evaluation of the structure
considering coherence, quality of service, etc. The characteristics of our structure let us think
that we can also get benefit in this area.

Regarding the iLP-NUCA transport network, we saw that from the components of the trans-
port network (the switch and the two buffers per tile), each buffer was responsible of one third
of the energy consumption, and the other third was caused by the switch. With this tree-based
transport network we could decrease the energy consumption by simplifying the switch design.
The low utilization rates of the transport network would allow us to implement more aggressive
techniques. A possible design would eliminate the buffers, and offer a direct way from each tile to
the root-tile in just one hop. We want to explore this design where transport blocks can reach
the root-tile in one cycle by traversing a bufferless tree-based network [39]. We want to sintetyze
this new topology in hardware to test its functionality and quantify its benefits.

30

6.2. FUTURE WORK

Finally, we have seen that there are not big opportunities for larger improvements in terms of
performance and energy in first level instruction caches with hardware-only based techniques. We
hardly believe that further energy savings are possible by hardware/software co-design techniques.
Compilation techniques are a high candidate to improve the energy efficiency of our structure. In
order to explore all this alternatives, we are going to collaborate with Professor Michael O’Boyle
from the Compiler and Architecture Co-Design Group of the University of Edinburgh, where I
will be doing an internship next year.

31

Bibliography

[1] David H. Albonesi. Selective cache ways: on-demand cache resource allocation. In MICRO 32:
Proceedings of the 32nd annual ACM/IEEE international symposium on Microarchitecture,
pages 248–259, Washington, DC, USA, 1999. IEEE Computer Society.

[2] Juan L. Aragón and Alexander V. Veidenbaum. Optimizing cam-based instruction cache
designs for low-power embedded systems. J. Syst. Archit., 54(12):1155–1163, December 2008.

[3] ARM. The ARM Cortex-A9 Processors, 2009. www.arm.com/files/pdf/
ARMCortexA-9Processors.pdf.

[4] Todd Austin and Doug Burger. SimpleScalar Tutorial (for tool set release 2.0). SimpleScalar
LCC, 1997.

[5] R. Iris Bahar, Gianluca Albera, and Srilatha Manne. Power and performance tradeoffs using
various caching strategies. In Proceedings of the 1998 international symposium on Low power
electronics and design, ISLPED ’98, pages 64–69, New York, NY, USA, 1998. ACM.

[6] N. Bellas, I.N. Hajj, C.D. Polychronopoulos, and G. Stamoulis. Architectural and compiler
techniques for energy reduction in high-performance microprocessors. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 8(3):317 –326, june 2000.

[7] Joseph Byrne. Freescale drops quad-core threshold. Microprocessor Report, 26(7):10–12, July
2012.

[8] Liming Chen, Xuecheng Zou, Jianming Lei, and Zhenglin Liu. Dynamically reconfigurable
cache for low-power embedded system. In Natural Computation, 2007. ICNC 2007. Third
International Conference on, volume 5, pages 180 –184, aug. 2007.

[9] S. Eyerman and L. Eeckhout. System-level performance metrics for multiprogram workloads.
Micro, IEEE, 28(3):42 –53, may. 2008.

[10] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee,
Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak
Falsafi. Clearing the clouds: a study of emerging scale-out workloads on modern hardware.
In Proceedings of the seventeenth international conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’12, pages 37–48, New York, NY,
USA, 2012. ACM.

[11] Krisztian Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and Trevor Mudge. Drowsy
caches: simple techniques for reducing leakage power. In Proceedings of the 29th annual
international symposium on Computer architecture, pages 148–157. IEEE Computer Society,
2002.

33

www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
www.arm.com/files/pdf/ARMCortexA-9Processors.pdf

BIBLIOGRAPHY

[12] R. Gabor, S. Weiss, and A. Mendelson. Fairness and throughput in switch on event
multithreading. In Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 39, pages 149–160, Washington, DC, USA, 2006. IEEE Computer
Society.

[13] J. Scott Gardner. Mips aptiv cores hit the mark. Microprocessor Report, 26(5):1–11, May
2012.

[14] R. Gonçalves, E. Ayguadé, and M. Valero. A simulator for SMT architectures: Evaluating
instruction cache topologies. In 12th Symposium on Computer Architecture and High
Performance Computing, pages 279–286, 2000.

[15] Ann Gordon-Ross, Jeremy Lau, and Brad Calder. Phase-based cache reconfiguration for a
highly-configurable two-level cache hierarchy. In Proceedings of the 18th ACM Great Lakes
symposium on VLSI, GLSVLSI ’08, pages 379–382, New York, NY, USA, 2008. ACM.

[16] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi, C. Emmons, and N. Paver.
Full-system analysis and characterization of interactive smartphone applications. In IEEE
International Symposium on Workload Characterization, pages 81–90, November 2011.

[17] Linley Gwennap. What’s inside the krait. Microprocessor Report, 26:1–9, June 2012.

[18] Tom R. Halfhill. Netlogic broadens XLP family. Microprocessor Report, 24(7):1–11, 2010.

[19] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0: Faster and
more flexible program analysis. In Proceedings of Workshop on Modeling, Benchmarking and
Simulation, 2005.

[20] John L. Henning. SPEC CPU2000: Measuring cpu performance in the new millennium.
Computer, 33(7):28–35, 2000.

[21] John L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Archit.
News, 34(4):1–17, 2006.

[22] Sébastien Hily and André Seznec. Contention on 2nd level cache may limit the effectiveness
of simultaneous multithreading. Technical Report 1086, IRISA, fébrier 1997.

[23] Koji Inoue, Tohru Ishihara, and Kazuaki Murakami. Way-predicting set-associative cache
for high performance and low energy consumption. In Proceedings of the 1999 international
symposium on Low power electronics and design, ISLPED ’99, pages 273–275, New York,
NY, USA, 1999. ACM.

[24] Tohru Ishihara and Farzan Fallah. A non-uniform cache architecture for low power system
design. In Proceedings of the 2005 international symposium on Low power electronics and
design, ISLPED ’05, pages 363–368, New York, NY, USA, 2005. ACM.

[25] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. John Wiley & Sons, Inc., April 1991.

[26] M. Johnson. Superscalar microprocessor design. Prentice Hall series in innovative technology.
Prentice Hall, 1991.

[27] Timothy M. Jones, Sandro Bartolini, Bruno De Bus, John Cavazos, and Michael F. P.
O’Boyle. Instruction cache energy saving through compiler way-placement. In Proceedings of
the conference on Design, automation and test in Europe, DATE ’08, pages 1196–1201, New
York, NY, USA, 2008. ACM.

34

BIBLIOGRAPHY

[28] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers. In Proceedings of the 17th annual international
symposium on Computer Architecture, ISCA ’90, pages 364–373, New York, NY, USA, 1990.
ACM.

[29] Changwoo Jung and Jihong Kim. Instruction cache organisation for embedded low-power
processors. Electronics Letters, 37(9):554 –555, apr 2001.

[30] Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. Cache decay: exploiting generational
behavior to reduce cache leakage power. In Proceedings of the 28th annual international
symposium on Computer architecture, pages 240–251. ACM Press, 2001.

[31] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches. In Proceedings of the 10th interna-
tional conference on architectural support for programming languages and operating systems
(ASPLOS-X), pages 211–222. ACM Press, October 2002.

[32] J. Kin, Munish Gupta, and W.H. Mangione-Smith. The filter cache: an energy efficient
memory structure. In Microarchitecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM
International Symposium on, pages 184 –193, dec 1997.

[33] Chunho Lee, M. Potkonjak, and W.H. Mangione-Smith. Mediabench: a tool for evaluating
and synthesizing multimedia and communications systems. In Microarchitecture, 1997.
Proceedings., Thirtieth Annual IEEE/ACM International Symposium on, pages 330 –335,
dec 1997.

[34] Yingmin Li, D. Brooks, Zhigang Hu, K. Skadron, and P. Bose. Understanding the energy
efficiency of simultaneous multithreading. In Low Power Electronics and Design, 2004.
ISLPED ’04. Proceedings of the 2004 International Symposium on, ISLPED ’04, pages 44–49,
New York, NY, USA, aug. 2004. ACM.

[35] LSI Corporation. PowerPCTM processor (476FP) embedded core product brief, http://www.
lsi.com/DistributionSystem/AssetDocument/PPC476FP-PB-v7.pdf, January 2010.

[36] Albert Ma, Michael Zhang, and Krste Asanovic. Way memoization to reduce fetch energy in
instruction caches. In ISCA Workshop on Complexity Effective Design. MIT, 2001.

[37] Gokhan Memik, Glenn Reinman, and William H. Mangione-Smith. Reducing energy and
delay using efficient victim caches. In Proceedings of the 2003 international symposium on
Low power electronics and design, ISLPED ’03, pages 262–265, New York, NY, USA, 2003.
ACM.

[38] J. Montanaro, R.T. Witek, K. Anne, A.J. Black, E.M. Cooper, D.W. Dobberpuhl, P.M.
Donahue, J. Eno, A. Farell, G.W. Hoeppner, D. Kruckemyer, T.H. Lee, P. Lin, L. Madden,
D. Murray, M. Pearce, S. Santhanam, K.J. Snyder, R. Stephany, and S.C. Thierauf. A 160
mhz 32 b 0.5 w cmos risc microprocessor. In Solid-State Circuits Conference, 1996. Digest
of Technical Papers. 42nd ISSCC., 1996 IEEE International, pages 214 –215, 447, feb 1996.

[39] Thomas Moscibroda and Onur Mutlu. A case for bufferless routing in on-chip networks. In
Proceedings of the 36th annual international symposium on Computer architecture, ISCA ’09,
pages 196–207, New York, NY, USA, 2009. ACM.

35

http://www.lsi.com/DistributionSystem/AssetDocument/PPC476FP-PB-v7.pdf
http://www.lsi.com/DistributionSystem/AssetDocument/PPC476FP-PB-v7.pdf

BIBLIOGRAPHY

[40] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Optimizing NUCA
Organizations and Wiring Alternatives for Large Caches with CACTI 6.0. In MICRO 40:
Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 3–14, Washington, DC, USA, 2007. IEEE Computer Society.

[41] Jason A. Poovey, Thomas M. Conte, Markus Levy, and Shay Gal-On. A benchmark
characterization of the eembc benchmark suite. IEEE Micro, 29(5):18–29, September 2009.

[42] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T. N. Vijaykumar. Gated-
vdd: a circuit technique to reduce leakage in deep-submicron cache memories. In Proceedings
of the 2000 international symposium on Low power electronics and design, ISLPED ’00,
pages 90–95, New York, NY, USA, 2000. ACM.

[43] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace cache: a low latency approach
to high bandwidth instruction fetching. In Proceedings of the 29th annual ACM/IEEE
international symposium on Microarchitecture, MICRO 29, pages 24–35, Washington, DC,
USA, 1996. IEEE Computer Society.

[44] Dave Sager, Desktop Platforms Group, and Intel Corp. The microarchitecture of the pentium
4 processor. Intel Technology Journal, 1:2001, 2001.

[45] S. Segars. Low power design techniques for microprocessors. ISSCC Tutorial note, February
2001.

[46] J. Shen. Modern Processor Design: Fundamentals of Superscalar Processors. McGraw-Hill
Series in Electrical and Computer Engineering. McGraw-Hill Companies,Incorporated, 2004.

[47] D. Suárez, G. Dimitrakopoulos, T. Monreal, M. G. H. Katevenis, and V. Vi nals. LP-NUCA:
Networks-in-cache for high- performance low-power embedded processors. IEEE Transactions
on Very Large Scale Integration (VLSI) systems, PP(99):1, August 2011.

[48] D. Suarez, T. Monreal, F. Vallejo, R. Beivide, and V. Viñals. Light NUCA: a proposal
for bridging the inter-cache latency gap. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’09, pages 530–535, 3001 Leuven, Belgium, Belgium,
2009. European Design and Automation Association.

[49] D. Suárez, Monreal T, and V. Viñals. A comparison of cache hierarchies for SMT processors.
In Proc. of the 22th Jornadas de Paralelismo (JJPAR’11), 2011.

[50] Karthik T. Sundararajan, Timothy M. Jones, and Nigel Topham. Smart cache: A self adaptive
cache architecture for energy efficiency. In Proceedings of the International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2011.

[51] D. Tullsen, S. J. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm. Exploiting choice:
instruction fetch and issue on an implementable simultaneous multithreading processor. In
Proceedings of the 23rd annual international symposium on Computer architecture, ISCA ’96,
pages 191–202, New York, NY, USA, 1996. ACM.

[52] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading:
maximizing on-chip parallelism. In Proceedings of the 22nd annual international symposium
on Computer architecture, ISCA ’95, pages 392–403, New York, NY, USA, 1995. ACM.

[53] Jim Turley. Cortex-A15 "Eagle" flies the coop. Microprocessor Report, 24(7):1–11, November
2010.

36

BIBLIOGRAPHY

[54] Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer. Mathematical Statistics
with Applications. BROOKS/COLE CENGAGE Learning, 7th edition, 2008.

[55] Neil H. E. Weste and David Harris. CMOS VLSI Design: A Circuits and Systems Perspective.
Addison Wesley, 4th edition, 2010.

[56] Chia-Lin Yang and Chien-Hao Lee. Hotspot cache: joint temporal and spatial locality
exploitation for i-cache energy reduction. In Proceedings of the 2004 international symposium
on Low power electronics and design, ISLPED ’04, pages 114–119, New York, NY, USA,
2004. ACM.

[57] Jun Yang and Rajiv Gupta. Energy-efficient load and store reuse. In Proceedings of the 2001
international symposium on Low power electronics and design, ISLPED ’01, pages 72–75,
New York, NY, USA, 2001. ACM.

[58] Chuanjun Zhang, Frank Vahid, and Walid Najjar. A highly configurable cache for low energy
embedded systems. ACM Trans. Embed. Comput. Syst., 4(2):363–387, May 2005.

37

38

	Introduction
	Scope of the Project
	Objectives
	Masters Thesis organization
	Contributions
	Acknowledgements

	Instruction cache hierarchies for embedded systems
	State–of–the–art cache hierarchies for embedded systems
	Performance and energy on a state–of–the–art embedded processor
	Our proposal: instruction Light Power – NUCA
	Tree-based transport network for iLP-NUCA

	Methodology
	Processor baseline
	Memory hierarchy overview

	Simulator
	Workloads
	Metrics

	Results
	Impact of the tree-based transport network
	First level instruction caches: performance/energy trade-offs
	Energy consumption
	Performance
	Energy-Delay
	Summary

	Putting all together: instructions and data
	L1-I access latency
	Results summary

	Related Work
	Conclusion and future work
	Publications
	Future Work

	References
	Project management
	Simulation environment and methodology
	SMTScalar
	The microarchitectural model

	Simulation methodology

	SPEC CPU2006 characterization: instruction cache requirements
	Cache size and associativity implications in performance
	L1-I misses per k-instruction
	Performance evaluation: IPC

	Shared iLP-NUCA designs
	ILP-NUCA: Cache de Instrucciones Teselada para Procesadores Empotrados

