
Trabajo Fin de Máster
Máster en Ingeniería de Sistemas e Informática

Characterization of
Interconnection Networks in CMPs

Using Full-System Simulation

Marta Ortín Obón

Directores: María Villarroya Gaudó y Darío Suárez Gracia

Departamento de Informática e Ingeniería de Sistemas
Escuela de Ingeniería y Arquitectura

Universidad de Zaragoza

Curso 2011/2012
Septiembre 2012

Acknowledgements
First of all, I would like to thank my advisors, María and Darío, for all their help and guidance.

I would like to thank Cruz for all her help with interconnection networks and her fast replies
to every email aswering all of our questions. I look forward to continuing working with you.

Special thanks to Jorge, who has been helping me every day with all the technical details
and problems that came up with the simulations.

I also thank all the members of the Computer Architecture Group (gaZ), especially Víctor,
for all his advice and useful insights, and Chus, who made sure the cluster was fixed as soon as
possible in the middle of the summer.

Caracterización de redes de interconexión en CMPs mediante
simulación de sistema completo

Resumen ejecutivo

Los computadores más recientes incluyen complejos chips compuestos de varios procesadores y
una cantidad significativa de memoria cache. La tendencia actual consiste en conectar varios nodos,
cada uno de ellos con un procesador y uno o más niveles de cache privada y/o compartida, utilizando
una red de interconexión. La importancia de esta red está aumentando a medida que crece el número
de nodos que se integran en un chip, ya que pueden aparecer cuellos de botella en la comunicación
que reduzcan las prestaciones. Además, la red contribuye en gran medida al consumo de energía y
área del chip.

Actualmente, hay numerosos estudios centrados en las redes de interconexión, pero la mayoría
no modelan en detalle todos los componentes del sistema debido a la alta complejidad que esto
conlleva. Además, suelen utilizar tráfico sintético o trazas de aplicaciones que no son representativas
del comportamiento real de un programa.

En este proyecto, comparamos el comportamiento de tres topologías: el anillo bidireccional, la malla
y el toro. El anillo es una topología mínima con bajo coste en energía pero peor rendimiento debido a la
mayor latencia de comunicación entre nodos. Por otro lado, el toro tiene mayor número de enlaces entre
nodos y ofrece mejores prestaciones. La malla ha sido incluida como una opción intermedia altamente
popular. Analizaremos también dos topologías de anillo adicionales que aprovechan la reducida área
y complejidad del mismo: una con mayor ancho de banda y otra con routers de menor número de ciclos.

Modelamos cuidadosamente todos los componentes del sistema (procesadores, jerarquía de memo-
ria y red de interconexión) utilizando simulación de sistema completo. Ejecutamos aplicaciones
reales en arquitecturas con 16 y 64 nodos, incluyendo tanto cargas paralelas como multiprogramadas
(ejecución de varias aplicaciones independientes). Fue llevado a cabo un estudio del comportamiento
de una de las suites de cargas paralelas incluidas en este proyecto y se presentaron los resultados en
una sesión de pósters en una conferencia internacional.

Demostramos que la topología de la red afecta en gran medida al rendimiento en sistemas con 64
nodos. Con las topologías de anillo, los tiempos de ejecución son mucho mayores debido al aumento
del número de saltos que le cuesta a un mensaje atravesar la red. El toro es la topología que ofrece
mejor rendimiento, pero la elección más óptima sería la malla si tenemos en cuenta también energía y
área. Por otro lado, para chips con 16 nodos, las diferencias en rendimiento son menores y un ani-
llo con routers de 3 cyclos ofrece un tiempo de ejecución aceptable con el menor coste en área y energía.

Nuestra aportación más significativa está relacionada con la distribución del tráfico en la red.
Vemos que el tráfico no está distribuido uniformemente y que los nodos con mayores tasas de inyección
varían con la aplicación. Hasta donde nosotros sabemos, no hay ningún trabajo de investigación previo
que destaque este comportamiento.

Como trabajo futuro, propondremos un diseño para la red que ofrezca al mismo tiempo buen
rendimiento y bajo consumo energético, partiendo de las conclusiones obtenidas de este estudio.

i

Characterization of Interconnection Networks in CMPs Using
Full-System Simulation

Abstract

In modern computer architecture systems, chips are composed of several processors and a sig-
nificant amount of memory. The current trend involves the interconnection of several nodes, each
of them with a processor and one or more levels of shared and/or private memory caches. The
interconnection network is responsible for connecting the nodes. The importance of the interconnect
is growing as the number of nodes integrated in a chip increases, because communication among
nodes can become a bottleneck and compromise performance improvement. It also contributes with
a substantial share to power consumption and chip area.

There are many studies that focus on the interconnection network, but most of them do not
model in detail all the components of the system due to the complexities it involves. Besides,
they usually only simulate synthetic traffic or application traces that are not representative of the
behaviour of real applications. They also center their conclusions on the interconnect, failing to anal-
yse the impact on overall performance and the effects some components of the chip may have on others.

In this work, we compare the behaviour of three topologies: bidirectional ring, mesh and torus.
The ring is a minimal topology that has lower energy costs but worse performance, that is, higher
average communication latency between nodes. On the other hand, a torus has more links between
nodes and offers the best performance. The mesh topology has been included as a very popular
intermediate option. We include two additional ring topologies that benefit from the reduced area
and complexity: one with increased bandwidth and another with reduced-pipeline routers.

We carefully model all the components of the system (processors, memory hierarchy and inter-
connect) using full-system simulation. We execute real applications on a 16 and a 64-core system,
including both parallel (execution of a multithreaded application) and multiprogrammed workloads
(execution of several independent applications). We performed a complete study of one of the
benchmark suites featured in this project and presented our results in a poster session at an interna-
tional conference. We analyse network centered metrics, like latency, injection rate, hop count and
congestion, as well as chip-level metrics, such as performance, area and power.

We prove that performance is highly affected by the choice of the interconnect in 64-core systems.
The ring topologies produce much larger execution times due the increased number of hops it takes
to traverse the network. The torus has the best performance, but the mesh would be the best choice
if we also consider area and power. On the other hand, for 16-core chips, differences in performance
are not so big and a ring topology with 3-cycle routers offers acceptable execution time with the
lowest power consumption and area requirements.

Our main contribution is related to the distribution of traffic on the network. We show that traffic
is not uniformly distributed on the network and that the most highly used areas of the chip depend on
the application. As far as we know, there is no previous research where this behaviour has been noted.

In our future work, we will propose a network design that offers good performance as well as low
energy consumption, incorporating the conclusions drawn from this study.

iii

iv

Contents

List of figures VII

List of tables IX

1. Introduction 1
1.1. Project Development . 2
1.2. Goals of the Masters Thesis . 2
1.3. Organization of the Report . 3

2. State of the Art 5

3. CMP Architecture Framework 9
3.1. General Description of the Architecture . 9
3.2. Interconnection Network . 11

3.2.1. Topologies . 11
3.2.2. Router Architecture . 12
3.2.3. Deadlock Avoidance . 15

4. Methodology 17
4.1. Metrics . 17
4.2. Workloads . 17
4.3. Simulation Environment . 18

5. Main Results 21
5.1. Network Topology Comparison . 21

5.1.1. Performance . 21
5.1.2. Energy-Delay versus Area . 22

5.2. Non Uniform Traffic Distribution . 24

6. Conclusions and future work 29
6.1. Conclusions . 29
6.2. Future Work . 30

A. Project Management 37
A.1. Time Management . 37
A.2. Effort Invested in this Project . 38
A.3. Problems Faced . 38

v

CONTENTS

B. CMP Architecture and Memory Subsystem 41
B.1. General description . 41
B.2. Memory coherence protocol . 43

C. Methodology and Experimental Environment 49
C.1. Metrics . 49
C.2. Workloads . 50
C.3. Simulation Environment . 54
C.4. Estimating the Energy Expended by Caches . 57

D. Results 63
D.1. Performance . 63
D.2. Non uniform traffic distribution . 65
D.3. Type of Traffic Traversing the Network . 68
D.4. Area and Power . 70
D.5. Topology Selection . 73
D.6. Conclusions . 75

E. Research paper: Characterization of Interconnection Networks in CMPs Us-
ing Full-System Simulation 79

vi

List of Figures

3.1. Block diagram including a chip and the components of a tile. 9
3.2. Diagrams of the topologies analysed in this project for a 16-core CMP. 11
3.3. Four-stage virtual channel router. 13
3.4. Chronogram of a message with three flits travelling through three 4-stage routers

of the network . 14
3.5. Chronogram of a message with three flits travelling through three 3-stage routers

of the network . 15

5.1. Performance normalized to the mesh topology for 16 and 64 cores. 22
5.2. Area versus energy-delay or energy per instruction for 16 and 64 cores. 23
5.3. Injected flits per node and link utilization for the blackscholes application

executed in 64 cores. (Part A) . 25
5.4. Injected flits per node and link utilization for the blackscholes application

executed in 64 cores. (Part B) . 26
5.5. Injected flits per node and link utilization for the multiprogrammed workload

application executed in 64 cores. (Part A) . 27
5.6. Injected flits per node and link utilization for the multiprogrammed workload

application executed in 64 cores. (Part A) . 28

A.1. Gantt diagram of the project. 37
A.2. Distribution of the time in the tasks that comprise the project. 38

B.1. Chip architectures proposed in [49] by Zhang and Asanovic̀. 42
B.2. Block diagram of a single-chip Piranha processing node [4]. 42
B.3. POWER4 chip logical view [42]. 43
B.4. Components of a tile of the TILEPro64 [43]. 44
B.5. L1 cache coherence protocol. 45
B.6. L2 cache coherence protocol. 46

C.1. View of the GEMS architecture. 54

D.1. Average hop count for 16 and 64 cores. 64
D.2. Average network latency in number of cycles broken down into base and blocking

latency for 16 and 64 cores. 64
D.3. Average link utilization in flits/cycle for 16 and 64 cores. 66
D.4. Requests per flit for VC allocation and switch allocation for 14 and 64 cores. . . 66
D.5. Virtual channel allocation requests per flit for the blackscholes application

simulated on 64 cores. 67

vii

LIST OF FIGURES

D.6. Virtual channel allocation requests per flit for the multiprogrammed workload
simulated on 64 cores. 68

D.7. Average virtual channel load for 16 and 64 cores. 69
D.8. Traffic between each type of element of the memory subsystem for 16 and 64 cores,

meassured in total number of messages. 71
D.9. Network and cache area in for 16 and 64 cores. 72
D.10.Pie charts comparing network and cache area for 16 and 64 cores. 72
D.11.Energy expended by the interconnection network for 16 and 64 cores. 73
D.12.Energy expended by the L1 cache with 16 and 64 processors, broken into dynamic

and static energy. 74
D.13.Energy expended by the L2 cache with 16 and 64 processors, broken into dynamic

and static energy. 75
D.14.Pie charts comparing network and cache energy for 16 and 64 cores, distinguishing

between parallel and multiprogrammed workloads. 76
D.15.Network energy expended by the interconnect for 16 and 64 cores, broken into

each one of its components. 77
D.16.Tradeoffs between energy and performance. 77

viii

List of Tables

2.1. Characteristics of the research included in recent papers about interconnection
networks. 6

3.1. Main characteristics of the CMP system. 10
3.2. Qualitative comparison of the three topologies for a CMP system with N tiles. . 12
3.3. Main characteristics of the interconnection network. 13

A.1. Number of hours invested on each task of the project. 39

B.1. Nomenclature used in the cache coherence protocol diagrams. 47

C.1. Characteristics of the PARSEC benchmark suite applications. Chosen applications
appear in boldface. 51

C.2. Characteristics of the SPLASH2 benchmark suite applications. Chosen applications
appear in boldface. 52

C.3. Characteristics of the SPEC CPU2006 applications used. 53
C.4. Operations performed in the L1 cache for each event 59
C.5. Operations performed in the L2 cache for each event 60
C.6. Meaning of the acronyms used for power analysis. 61

ix

x

Chapter 1
Introduction

Interconnection networks, both system-level and chip-level, have been an important part of
computer architecture since the beginning of computing in the sixties. Today, interconnection
networks are used in supercomputers, data centers, for input/output and to communicate proces-
sors on a chip. In this work, we are focusing on networks on chip (NOCs).

Nowadays, chips are composed of several processors and a significant amount of memory. A
popular trend in the organization of general purpose chips consist on interconnecting several
nodes (usually called tiles), each of them with a processor (core) and one or more levels of shared
and/or private memory caches. Nodes communicate through an interconnection network that
allows them to exchange information (both pair to pair and multicast and broadcast messages).
In these general-purpose chips we can execute independent applications on each node (so as to
increase throughput) or parallel applications (in order to reduce execution time).

If the current trend continues, the scale of integration, along with the emergent 3D stacking
technology, will allow us to exponentially increase the number of nodes in a chip, reaching
hundreds or even thousands of cores in less than ten years. So that this technology evolution can
be translated into an improvement on performance, the capacity of communication among tiles
should scale in the same proportion.

At these time, there are very few studies that model in detail the set of processors, intercon-
nection network and memory hierarchy, due to the complexities it involves. Besides, analysis
that focus on interconnection networks are usually performed simulating synthetic traffic or
application traces that do not capture the behaviour of a real execution. They also center their
conclusions on the interconnect, failing to analyse the impact on overall performance.

In order to get representative results, we analyse the behaviour of real applications on the
network, carefully modeling all the components mentioned earlier. We include both parallel and
mutiprogrammed workloads. This allows us to study the effect of the interconnection network
configuration on the whole system and the interactions between the memory subsystem and the
interconnect. Specifically, we compare the performance of three topologies (bidirectional ring,
mesh and torus), simulating a chip multi-processor (CMP) with 16 and 64 cores. The ring is a
minimal topology that has lower energy costs but worse performance, that is, higher average
communication latency between nodes. On the other hand, a torus has more links between
nodes and offers the best performance. The mesh topology has been included as a very popular
intermediate option. We include two additional ring topologies that benefit from the reduced
area and complexity: one with increased bandwidth and another with reduced-pipeline routers.

1

CHAPTER 1. INTRODUCTION

We wanted to determine whether a higher energy consumption is justified or not and if it is
necessary to improve the efficiency of the network or if, on the contrary, it is over dimensioned
and we should introduce power reduction policies.

Based on our conclusions, we plan to continue our work with a PhD thesis in which we will
propose a network design that will offer good performance as well as low energy consumption.
We will try to reduce the latency of the network and use our knowledge of the requirements
imposed on the interconnect by the memory subsystem.

1.1. Project Development
This master’s thesis has been developed in the Computer Architecture Group at the University

of Zaragoza (gaZ) and has been supported by grant TIN2010-21291-C02-01 (Spanish Government
and European ERDF). It started in February 2012 and was completed in September 2012 with
full-time dedication.

At the beginning of the master’s thesis I held a grant from the Instituto Universitario de
Investigación e Ingeniería de Aragón(i3A) and then, I got a four-year research grant from the
Gobierno de Aragón. During the course of the project I attended several conferences and seminars,
including the NaNoC summer school on networks on chip. This is a summer school hosted by
the NaNoC project (FP7 ICT), which aims to develop a network on chip design platform. It
took place in Munich from the 11th to the 13th of June 2012. I also presented an analysis of one
of the benchmark suites included in this project in the HiPEAC conference, which took place in
Paris from the 23rd to the 25th of January 2012.

We have written a paper that sumarizes this work and will be submitted to the Interconnection
Workshop on Network Architectures: On-Chip, Multi-Chip. The workshop will be co-located
with the HIPEAC conference that will take place in 2013 in Berlin.

1.2. Goals of the Master’s Thesis
The aim of this project is to perform a comprehensive analysis of the behaviour of real

applications on the interconnection network in chip multiprocessors (CMPs). In particular, it
includes the following tasks:

1. Study of the state of the art on interconnection networks: architecture, organization and
implementation.

2. Analysis of the GARNET network simulator [1], which is included in the GEMS module
[33] and used in combination with Simics, a full-system simulator [31]. We need to model
the topologies and establish the configuration parameters. It is also necessary to adapt
the implementation of the routers to our necessities and include the calculation of new
statistics.

3. Selection of the simulation workload. We use parallel programs from the PARSEC and
SPLASH-2 benchmark suites and build multiprogrammed workloads from SPEC CPU2006
applications.

4. Measurement of energy and area costs of the topologies and comparison with those of the
memory hierarchy using high-level circuit-modeling tools, such as CACTI [35] and Orion
[23, 24].

2

1.3. ORGANIZATION OF THE REPORT

5. Evaluation of the impact of different network configurations on the overall performance
of the system and drawing of conclusions about the tradeoffs on performance and power
consumption.

With the completion of the former tasks described in this report, all the goals of this master’s
thesis have been met.

1.3. Organization of the Report
The rest of this document is organized as follows: Chapter 2 presents the state of the art

on interconnection network research; Chapter 3 describes the main characteristics of the CMP
we are modeling, with special attention to the interconnection network; Chapter 4 explains the
methodology followed in our experiments; Chapter 5 summarizes the results of the study and
Chapter 6 concludes the report.

The document includes the following appendices:

A. Project management. It contains information about the time invested in each section of the
project and some problems we have had to deal with.

B. CMP Architecture and Memory Subsystem. It includes a detailed description of our system,
explaining the general layout and the memory coherence protocol.

C. Methodology and experimental environment. It focuses on the metrics used to analyse the
impact of the interconnect on the system, the workload used and the tuning of the simulator.

D. Results. It includes a complete analysis of our results.

E. Research paper. It includes a paper that sumarizes this work and will be submitted to an
upcoming international conference.

3

4

Chapter 2
State of the Art

In this chapter we summarize previous work that analyses and tries to improve the performance of
interconnection networks, focusing on networks on chip.

There have recently been numerous papers that focus on networks on chip, since the in-
terconnect has been identified as a critical part of the system that has a great influence on
overall performance, energy consumption and chip area requirements. They focus on tiled
multiprocessors with shared memory.

There are many papers that propose alternatives to the most commonly used router ar-
chitectures, topologies and flow control methods, but none of them model the impact of their
contributions by running real programs on a full system. Among that research, we highlight the
following: Carara et al. propose to revisit circuit-switching which, as opposed to packet-switching,
allows to reduce buffer size and guarantees throughput and latency [12]; Walter et al. try to
avoid hotspots on systems on chip by implementing a distributed access regulation technique
that fairly allocates resources for those modules [44]; Mishra et al. propose an heterogeneous
on-chip interconnect that allocates more resources for routers suffering higher traffic but they
only get good results with a mesh topology [34]; Koibuchi et al. detect that adding random
links to a ring topology results in big performance gains, although they only experiment with a
network simulator [25]. All these studies either do not model the whole system, do not include a
significant variety of real workloads or do not experiment with different topologies. Also, most of
them only include network-related metrics and fail to report on overall performance, or elaborate
conclusion based on IPC (instructions per cycle), which has been reported to be unsuitable for
CMPs [50].

It is worth mentioning another approach to network on chip research. Instead of dealing
with classical network issues, there is previous work that tries to improve performance based
on the known behaviour of the memory subsystem and the coherence protocol. A selection
of recent papers follows. Yoon et al. propose an architecture with parallel physical networks
with narrower links and smaller routers that eliminates virtual channels [48]. Seiculescu et
al. propose to use two dedicated networks, one for requests and one for replies [39]. Lodde
et al. introduce a smaller network for invalidation messages, but only tests their design with
memory access traces [28]. Agarwal et al. propose embedding small in-network coherence filters
inside on-chip routers to dynamically track sharing patterns and eliminate broadcast messages
[2]. These studies try to improve the performance of the most commonly used networks, but
do not venture with less conventional topologies. Also, they only experiment with a maxi-
mum of 16 cores. Krishna et al. propose a system to improve the frequent 1-to-many and

5

CHAPTER 2. STATE OF THE ART

many-to-1 communication patterns by forking and aggregating packets to avoid the increment
in the amount of traffic when scaling the number of nodes [26]. Bezerra et al. try to reduce
traffic by statically mapping memory blocks to physical locations on the chip that are close to
cores that access them [6]. The last two proposals are only evaluated with a typical mesh topology.

There are very few papers which focus on the comparison of interconnection network configu-
rations. Balfour and Dally present an analysis of how different topologies affect performance,
area and energy efficiency [3]. However, they do not model the memory subsystem, they only
use synthetic traffic patterns and they fail to include a simpler topology like the ring. Sanchez et
al. explore the implications of interconnection network design for CMPs, but they focus on more
complex topologies, such as the fat three and the flattened butterfly, and they do not include
multiprogrammed workloads [37]. There is no clear information about the way they perform
their simulations. Therefore, we are not sure about how accurately they are reproducing real
system behaviour. Their results point out that the main parameter that influences performance
is the number of hops the messages will need to get from one tile to another in the network.
They also highlight the need of a careful codesign of the interconnection network and the cache
hierarchy. This necessity has also been noted by Kumar et al., but their research does not go
above 16 cores [27].

There are also proposals that try to reduce the time design-space exploration takes. Hestness
et al. propose a new trace-based network simulation methodology that does not ignore dependen-
cies between messages. Simulation with this method is faster than full-system simulation while
still having high fidelity [19]. It allows us to experiment with several interconnect configurations
with little overhead. The drawback is that the traces have to be rebuilt if we want to test different
number of cores or change parameters in the memory hierarchy. Knowing that the codesign of
all the elements of the system is critical for a balanced CMP, most benefits from this method are
overridden.

Table 2.1 sums up the characteristics of the papers mentioned above and allows us to find the
most common simulation techniques and configurations at a glance. The last column includes
the characteristics of this work, which combines features that others do not integrate.

In this work we present an analysis of three topologies with varying degrees of complexity,
performance and power and area costs. We perform full-system simulation of real workloads
and carefully model both the memory subsystem and the interconnect. Our aim is to extract
meaningful conclusions that will indicate the weaknesses of current configurations and guide our
future research.

Table 2.1: Characteristics of the research included in recent papers about interconnection networks. The first
rows in Simulation methodology refer to the simulation of the interconnect without including other elements of the
system like the processors or memory subsystem.

References

[12] [44] [34] [25] [48] [39] [28] [2] [26] [6] [3] [37] [27] [19] This
work

Simulation methodology
Interconnect with
synthetic traffic X X X X X X

Interconnect with
traces X

6

References

[12] [44] [34] [25] [48] [39] [28] [2] [26] [6] [3] [37] [27] [19] This
work

Interconnect with
enhanced traces X X

Interconnect with
one real app. X

Full-simulation
with real apps. X X X X X X X X

Include
multiprogr. X X

Topologies
Bus, crossbar X

Ring X X

Mesh X X X X X X X X X X X X X X

Torus X X X X X
More complex
topologies

X X X X X

Concentrated
topologies X X X

Number of cores
4 X

8 X X

16 X X X X X X X X X

32 X

64 X X X X X X X X

128 X
Number of threads per core
1 X X X X X X X X X

2 X

4 X
Memory subsystem
Shared L2 cache X X X X X

Private L2 cache X X X X

3 cache levels X X X X
Directory-based
coherence X X X X X X X

Broadcast-based
coherence X X

7

CHAPTER 2. STATE OF THE ART

References

[12] [44] [34] [25] [48] [39] [28] [2] [26] [6] [3] [37] [27] [19] This
work

Scope
Interconnect
performance X X X X X X X X X X X X X

System
performance X X X X X X X X

Interconnect
Power X X X X X X X X X X X

Interconnect Area X X X X X X X X X X X

Cache Power X X X

Cache Area X X X

8

Chapter 3
CMP Architecture Framework

This chapter presents the architecture of the chip multiprocessor we are modeling, including a
more detailed description of the interconnection network.

3.1. General Description of the Architecture

This study focuses on homogeneous chip multiprocessors (CMPs). The system is composed
of several tiles connected by an interconnection network. On each tile we have a core with a
private first level cache (L1) split into data and instructions, a bank of the shared second level
cache (L2), a router and we may also have a memory controller. Figure 3.1 depicts the block
diagram of the chip and a tile with memory controller. It also includes the connections between
the elements in the tile and the router. This router has two inputs and two outputs to connect
the tile to other neighbouring ones.

Memory
channels

 DRAM
Main memory

CORE

L1I L1D

L2
tag&data

Dir

R

MC

CMP Chip Tile

 Register files, branch
predictor, ALUs, control, ...

Figure 3.1: Block diagram including a chip and the components of a tile. MC stands for memory controller, R is
the router and Dir is the directory, which is included in the L2 cache. This router has two ports to connect the tile
to other neighbouring ones.

We are modeling a system with simple Ultrasparc III Plus single-thread in-order cores. They
are running Solaris 10 operating system and execute one instruction at a time. We include
systems with 16 and 64 cores implemented in 32nm technology. Table 3.1 summarizes the key
parameters of our system. To model the architecture we based our design in other systems with
similar characteristics, both from academia research papers [49, 39, 4] and commercial processors
such as IBM Power4 [42], Tilera’s TILEPro64 [43], Intel 48-core processor [20, 21] and Sun
Microsystems’ Niagara2 [36].

9

CHAPTER 3. CMP ARCHITECTURE FRAMEWORK

Table 3.1: Main characteristics of the CMP system.

Cores 16 and 64 cores, Ultrasparc III Plus, in order,
1 instruction/cycle, single threaded, 2GHz frequency

Coherence
protocol

Directory-based, MESI
Directory distributed among L2 cache banks

Consistency
model Sequential

L1 cache 32KB data and instruction caches, 4-way set associative,
2-cycle hit access time, 64B line size
Pseudo-LRU replacement policy

L2 cache Distributed, 1 bank/tile, 1MB per bank,
16-way set associative, 64B line size
Pseudo-LRU replacement policy
shared, inclusive, interleaved by line address
7-cycle hit access time

Memory 4 memory controllers, distributed in the edges of the chip
(both for 16 and 64-core architectures)
160-cycle latency

Chip multiprocessors are used to execute parallel applications (to reduce execution time) or
independent programs on each core (to maximize throughput). In both cases, we need a memory
coherence protocol. For parallel applications, it is used to maintain coherence among shared
variables. For the independent programs, to allow migration of processes between cores. We are
using a directory-based MESI coherence protocol. A MESI protocol has four states that depend
on the coherence properties of the corresponding cache line: modified (M), exclusive (E), shared
(S) and invalid (I).

All the traffic that traverses the interconnection network is a direct consequence of the
memory activity, either to move cache lines (instructions or data) to the tile that needs them or
for coherence management. That is why it is important to model the caches realistically, even
though our main interest is the interconnect [27, 37].

The size of the messages traversing the network depends on the type of message and the size
of the cache line (in our case, 64B). Control messages only need 8B for the address and protocol
information, while data messages need those 8B plus 64B to hold the data. The assignment of
resources in the interconnect depends on the type of the message, which is determined by the
protocol. For that reason, the balance in the use of resources in the network depends on the type
of traffic managed by the memory system. Also, the spatial distribution of the traffic depends on
the location of the data in the chip, which is derived from the applications being executed and
the interleaving of the data in the shared L2 cache banks.

Additional information about the CMP architecture and the memory hierarchy can be found
in the Appendix B. It also includes a detailed description of the coherence protocols for both the
L1 and L2 caches.

10

3.2. INTERCONNECTION NETWORK

3.2. Interconnection Network

Although we carefully model every element of the system, we especially focus on the inter-
connection network. This element of the system is the responsible for connecting all the tiles
in the chip, which is why it is also called network on chip (NoC). In this section we include
explanations about the topologies, the router architecture (including routing and flow control)
and some notes about deadlock avoidance.

3.2.1. Topologies

We are going to study three different topologies: mesh, torus and ring, which are depicted in
Figure 3.2. The 2D mesh is a widespread choice for large-scale CMPs due to its regularity. The
tiles are organized in a matrix and every node is connected to its four neighbouring nodes to
the north, south, east and west. A torus is a mesh in which we add wraparound links to reduce
the average number of hops between tiles. To avoid having a very long wraparound link, which
would involve having links with different latency, the torus is folded so that every link is the
same length, equal to the length of the mesh link multiplied by

√
2 [13]. Longer links involve

higher wiring capacitance, resistance and latency [45]. This topology is the one that will need
the most resources in area and power. In contrast, we have included a bidirectional ring. So as
to keep the same organization of the chip, which follows a matrix layout, the ring is built as a
hamiltonian cycle.

2*W bytes

A

B
(a) Mesh

A

B

2*W bytes

(b) Torus

A

B

2*W bytes

(c) Ring

Figure 3.2: Diagrams of the topologies analysed in this project for a 16-core CMP. Every line represents two
links, one on each direction. W is the link bandwidth. A message going from A to B would be traversing the
maximum distance on each topology.

Table 3.2 summarizes the main characteristics of the three topologies. The number of input
and output ports of the router is a direct indicator of the complexity; the higher the number of
ports, the higher the area and expended energy. If we divided the network in two equal parts, the
bandwidth we would have between the two parts is what we call the bisection bandwidth. A lower
bisection bandwidth indicates that communications in the network will be slower. A hop in the
network is a set of router and link the message traverses when going from source to destination.
When counting the total number of hops we also include the first link going from the tile to
the router. The number of hops gives us an idea of the time it will take a message to traverse
the network. In the table, we distinguish the maximum distance (also called diameter) and the

11

CHAPTER 3. CMP ARCHITECTURE FRAMEWORK

average distance. A messages flowing from node A to B in Figure 3.2 would be traversing the
maximum distance. In the hop count, we are including the hops between the tiles and the first
and last routers. The length of the link will have an impact on the power consumed by the network.

Table 3.2: Qualitative comparison of the three topologies for a CMP system with N tiles (we assume that N
will always be a perfect square). The number of inputs\outputs does not consider tiles with a memory controller,
where routers would have one more input and output, or the tiles in the edges of the mesh, where some ports
would be left unused. W is the link bandwidth and L is the wire length.

Topology inputs/
outputs

Bisection
BW

Max. hops
(diameter)

Avg. hops
(Avg

distance)
Link length

2D mesh 6/6 2W
√
N 2

√
N 2/3

√
N + 1 L

Torus 6/6 8W
√
N

√
N + 2 1/2

√
N + 2 L

√
2

Ring 4/4 4W N/2 + 2 N/4 L

3.2.2. Router Architecture

We use a pipelined router with four stages: input buffering and routing, virtual channel
allocation, switch allocation and switch traversal. Therefore, every hop takes a total of five
network cycles, including link traversal. Figure 3.3 illustrates the microarchitecture of a classic
four-stage virtual channel pipelined router. At each input, there are several virtual networks
(VNs), used to avoid protocol deadlock [13]. Deadlock occurs when messages are stalled in the
network waiting for resources that are being held by other stalled messages, creating a cyclic
dependency. A message is assigned to a VN depending on its class, which is determined by the
memory coherence protocol. Our architecture has two virtual networks, so messages will be
assigned to one or the other depending on whether they are a request or a reply. For each virtual
network, we may have several virtual channels (VCs), each of them with a buffer to store incoming
packets. VCs are used to prevent a packet that could continue traversing the network from
being stalled after another that has been blocked [13]. Our routers have a total of four VCs per
input, distributed in the two VNs. The network runs at 2GHz, using the same clock frequency as
the processors. Table 3.3 sums up the main parameters of our interconnection network and routers.

A message flowing through the network is divided into flow control units (called flits) [13]. In
our case, each flit is 16 bytes long, which is the same as the wire bandwidth. Control messages
will need a single flit, while data messages will be divided in five flits. Figure 3.4 shows how
a message composed of three flits would traverse the network through three routers. We are
studying packet-switched networks, which means packets reserve resources as the advance through
the network.

When the head flit of a message first arrives at a router, it is stored at the input buffer assigned
to its virtual channel. In the same cycle, routing computation is performed, which indicates
the output port through which the message will exit the router. We are using deterministic
dimension order routing (DOR), also called X-Y routing. Messages are first routed on the X
dimension and then, on the Y dimension. This means that all packets with the same source and
destination will follow the same minimal path.

12

3.2. INTERCONNECTION NETWORK

Figure 3.3: Four-stage virtual channel router. MC stands for message class, which is equivalent to virtual
network. (Image taken from [50])

Table 3.3: Main characteristics of the interconnection network.

General Two virtual networks (requests and replies)

Routers 4-stage pipeline: routing and input buffering, VC allocation,
switch allocation and switch traversal
Round-robin 2-phase VC/switch allocators
2 VCs per virtual network
5-flit buffers per virtual channel, enough to store a whole
message (3-flits per buffer in ring with higher bandwidth)

Links 16-byte flit size (we also include a ring with higher bandwidth
with 24B flit size)
1-cycle latency

Technology 32nm, 2GHz frequency, Vdd = 1V

13

CHAPTER 3. CMP ARCHITECTURE FRAMEWORK

Figure 3.4: Chronogram of a message with three flits travelling through three 4-stage routers of the network

After that, a virtual channel must be allocated in the downstream router. In our implemen-
tation, virtual channel allocation has two phases. During the first phase, a destination VC is
chosen for each VC at each input port. At the end of this phase, we will have a set of VCs at
the downstream routers that have been requested by a set of competing VCs at the input ports.
During the second phase, arbitration is performed to choose a single input VC channel for each
VC at the downstream routers following round-robin order.

To leave the router, the flit must traverse the crossbar, which connects all inputs with all
outputs. There may be conflicting requests, so there is a two-phase switch allocation stage.
During the first phase, a single VC is chosen for each input port. In the second phase, arbitration
is performed so that only one request is granted for each output port. After this, flits may
traverse the crossbar, exit the router, traverse the link, and get to the next router.

Since all flits that belong to the same message always follow the same route and use the same
virtual channels, routing and VC allocation must only be performed for the head flit. A VC in a
router may only be used by one message at a time. It will only be available for another message
to use when the tail flit of the message has left the router.

Our network uses wormhole credit-based flow control. With wormhole flow control, flits can
exit a router as soon as they arrive and resources are allocated in flit-granularity. This is a better
implementation than store-and-forward, in which we have to wait for a whole packet to arrive
before we can forward it to the next router, and virtual cut-through, where we need to reserve
space for the whole packet as soon as the first flit arrives. Credit-based flow control refers to
how the router knows that it can allocate a VC in the downstream router because there is free
buffer space. The upstream router simply keeps a count of the number of free flit buffers in each
downstream VC and decreases the count every time it forwards a flit. When a flit buffer is freed
in the downstream buffer, it sends a credit to the upstream router, so that it can increment its
buffer count.

We have been talking about a fixed four-stage router, but we also want to be able to ex-
periment with routers that could be traversed in less than four network cycles. This can be
useful for merging stages to decrease latency when we are working at a reduced frequency and
voltage for power saving [50]. Also, in the ring topology, the number of inputs/outputs to the
outside of the tile is reduced to two (as opposed to the four used in mesh and tours), which
results in a smaller number of buffers and simpler allocators and crossbar. For this reason, since
the complexity of the crossbar is considerably reduced, we have also included tests merging the
switch allocation and switch traversal stages. The diagram of a 3-flit packet traversing three of

14

3.2. INTERCONNECTION NETWORK

these reduced-pipeline routers is shown in Figure 3.5.

Figure 3.5: Chronogram of a message with three flits travelling through three 3-stage routers of the network

Following the same idea, the routers in the ring topology will need a much smaller area. To
make use of this idle space, we have also tested a configuration in which we increase the link
bandwidth keeping the router area in the ring slightly under the router area in the torus. This
has allowed us to have flits of 24 bytes, which will reduce the number of flits needed per message
and, therefore, serialization latency.

3.2.3. Deadlock Avoidance

We have already mentioned that we use two separate virtual networks (one for requests and
one for replies) to avoid protocol deadlock, but there are other causes for deadlock that we must
take into consideration.

With the torus and ring topologies, the links form loops which could cause deadlocks. We
can easily imagine all tiles in a loop sending a message to a tile a couple hops further away in
the loop, booking resources and being stalled in a cyclic dependency. To avoid these deadlocks
caused by loops in the topology we need two virtual channels per virtual network [14, 13]. The
main idea is to choose a point in the loop, which we will call dateline, and force all flits to use
either the first virtual channel or the second one depending on whether they are going to cross
the dateline or not [14, 15, 38]. This method changes the original round-robin policy mentioned
earlier. We route flits that will cross the dateline in VC1 and move them to VC0 after they have
crossed. For all other flits, we use VC0. This way, we eliminate the loops in the topology and
therefore, avoid deadlock. In this naive implementation, most flits will be routed on VC0, so the
use of the virtual channels will be highly unbalanced. To achieve a balanced use of resources, we
only force VC1 when the flit will cross the dateline. In any other case, we choose the virtual
channel using round-robin.

Apart from that, in our tests we saw deadlock happening in some particular cases where
there was a high congestion in the network. After analysing the debug traces produced by the
simulator, we realized that it was due to some coherence messages overtaking other previous
ones targeting the same cache line. To solve the problem, we tried using three virtual networks,
one exclusively dedicated to these high priority messages that should always arrive sooner. This
solved the problem, but forced us to have routers with six virtual channels, which was not our
desired configuration. We finally decided to include a partial ordering in the interconnection
network. A message will not be able to go past VC allocation or switch allocation if there is
another message with higher priority waiting to get to same cache line. This also solved the

15

CHAPTER 3. CMP ARCHITECTURE FRAMEWORK

problem and allowed us to keep only four virtual channels.

16

Chapter 4
Methodology

In this chapter we introduce the metrics, workloads and simulation environment used in the
project. More information about these topics can be found in Appendix C

4.1. Metrics

Our study focuses on the comparison of interconnection network topologies. Therefore, we are
using several traditional interconnect-centric metrics. We study node throughput, link utilization,
hop count, latency, virtual channel load and the number of arbitration requests. These metrics
help us gain insight on how each topology behaves with the workloads.

Power consumption is a key factor in the design of new architectures. We include the energy
and area costs of the interconnect and compare them to those of the memory subsystem.

We are modeling all the components of the architecture and we want to examine the impact
the different network configurations have on the whole system, so we include metrics that that
reflect the overall performance and the behaviour of the memory hierarchy. We analyse the
execution time of every application with all the configurations to see which one leads to better
performance. We also include miss rate results, which are a determinant factor in the pressure
imposed on the interconnect.

4.2. Workloads

The chip multiprocessors we are focusing on may be used to execute parallel applications in
order to reduce execution time or for multiprogrammed workloads (execution of independent
programs on each core), to increase throughput. We are using a selection of shared-memory
parallel applications from PARSEC and SPLASH2 and a multiprogrammed workload made up
of SPEC CPU2006 benchmarks. The performance of these applications may be limited by the
interconnection network and we intend to establish to what extent this is actually happening. We
would like to work with pressing applications that offered a very high miss rate, a large amount
of traffic between nodes and good scaling. To be fair, we tried to put together a set of applica-
tions with varying characteristics in terms of the axes previously mentioned. More information
about the characteristics of the benchmarks and the selection process can be found in Appendix C.

PARSEC is a benchmark suite composed of multithreaded programs implemented with
OpenMP and pthreads [11, 9, 10, 5, 7, 8]. It focuses on emerging workloads and was designed
to be representative of next-generation shared-memory programs for chip-multiprocessors. We

17

CHAPTER 4. METHODOLOGY

performed a complete study of this benchmark suite and presented our results in a poster session
at the HiPEAC international conference in January 2012 [32]. The benchmarks chosen are
blackscholes, canneal, fluidanimate, swaptions and x264. They have all been executed
with the large input except for x264, for which we have used the medium input due the large
simulation time. We simulate the whole parallel region of the applications.

SPLASH2 is a mature benchmark suite containing a variety of high performance computing
and graphics applications [46, 40, 10, 5]. Shared-memory parallelism is explicitly written by
using PARMACS, a library of parallel macros that allow an architecture-independent imple-
mentation [29, 30]. The chosen applications are barnes, fmm, ocean, radiosity, volrend, and
water-spatial. As we do with PARSEC, we simulate the parallel region of the applications.

SPEC CPU2006 is a benchmark suite composed of single threaded applications written in
C, C++ and Fortran [41]. We have used it to build a multiprogrammed workload in which
we run one application on each core, binding applications to cores so that no migration occurs.
The threads that are being executed in each core are independent, so the only traffic in the
network will be caused by cache misses and replacements. Since no data will be shared and no
migration is allowed, there will be no additional coherency messages. In this case, we chose 16
applications with high footprint and working set size (according to [18, 16]) so as to determine
potential bottlenecks in the interconnect. To build the workload for the 16-core architectures
we have executed each application once, binding each one of them to a different core. For the
64-core architectures we have used the applications four times assigning them to the cores consec-
utively (this should have better been done randomly, that is left for future work). To execute this
workload, we first warm up the caches for 200 million cycles and then execute for 500 million cycles.

4.3. Simulation Environment

We have obtained our results using simulation, which is a common resource in computer
architecture for the exploration of the design space of new computing systems. We have chosen a
set of tools used extensively in this field. We are using Wind River Simics as a simulator [31] and
GEMS modules, from the University of Wisconsin [33]. Simics can simulate a full-system (which
can execute an operating system), both single and multiprocessors, and it is widely used in this
field. GEMS provides modules to model the memory subsystem (Ruby). GARNET, implemented
in Princeton University and included inside Ruby, simulates the details of the interconnection
network [1].

We carefully model all the components of the system and perform full-system simulation
with simple single-threaded cores and directory-based coherence. We have had to include several
modifications to the Ruby module to produce the statistics and support the topologies we wanted
to study. For the power and area analysis we used two additional tools, CACTI [35] and Orion
[23, 24]. We describe this in detail in the following sections.

New Functionalities Incorporated into the Simulator

To model the system with our desired features we had to include the following features in the
simulator:

18

4.3. SIMULATION ENVIRONMENT

Modeling of the three topologies (mesh, torus and ring) using network files. With these
files, we simply need to indicate which elements to include in each node and how to connect
them.

Modify the protocol to use only two virtual networks, as opposed to the original five.
Request messages will be assigned to one of them, and replies to the other.

Prevent torus and ring from using some minimal paths more than others. If there are two
minimal paths between two nodes (this happens in every loop with an even number of
nodes), the same one is always selected in detriment of the other, depending on which link
was written first in the network file. To avoid this, we statically force the minimal path to
be only one of the two, alternating the direction the messages will follow depending on
whether the source node identifier is even or odd [38].

Deadlock avoidance implementation for torus and ring, as explained in Chapter 3.

Solve deadlock caused by coherence messages overtaking other previous ones targeting the
same cache line, explained in Chapter 3. We consider acknowledgements as high priority
messages, because they mean there is a cache line being blocked waiting for them. We
implemented another version of the protocol with three virtual networks, one exclusively
dedicated to these high priority messages. This solved the problem, but forced us to
have routers with six virtual channels, which was not our desired configuration. We also
implemented a partial ordering in the interconnection network, so that no message could
move forward if there is another one with higher priority waiting to go to the same cache
line.

Implementation of the capability of combining any consecutive stages of the router pipeline
so that they can be executed in the same cycle. This allows us to end up with a one-cycle
router. To implement this, we included the possibility of scheduling an event (the wake up
of the next stage) for the current cycle and introduced an ordering of the events waiting to
be scheduled.

GARNET offers statistics for average link utilization, virtual channel load and network
latency. We included the following additional measurements:

Number of injected and received messages per network interface (each L1, L2 block and
memory controller).

Detailed information about the utilization of each link.

Number of occurrences for message latency and hop count.

Number of accesses and misses in the L1 and L2 for power analysis (this was already
implemented but had to be fixed).

Number of messages sent by caches and memory controllers broken into coherence types.

Number of times virtual channel and switch allocation are requested but arbitration fails.

Power and Area Analysis

To get the area and the energy expended by the network we used a circuit modeling tool
called Orion 2.0 [23, 24]. The version of Orion included in Garnet was 1.0, which didn’t give
accurate results compared to the new version. The first thing we did was to integrate the new

19

CHAPTER 4. METHODOLOGY

version in our Ruby module. Orion 2.0 gives us information about the area, leakage and dynamic
power for the links, the router stages (input, virtual channel allocation, switch allocation and
crossbar traversal) and the propagation of the clock.

For the area and energy expended by the memory hierarchy we used CACTI 6.5, which is
another circuit modeling tool for estimating access time, cycle time, area, leakage, and dynamic
power [35]. For the dynamic energy, CACTI tells us how much energy the cache consumes
when performing a switching event, such as a tag read (TR), tag write (TW), data read (DR)
and data write (DW). We then have to count the events that take place in the cache when
we run the program (read hit, read miss, replacement...) and multiply them by their consumption.

The technology files in both tools have been matched so as to be able to compare the results
obtained from the two models. These files specify parameters such as the technology, voltage,
transistor sizes, resistivities, capacitances, wire sizes,... Some parameters have been taken from
the work of Gracia et al. [17] and accuracy has been further improved by approximating our
values to the ones used in INTEL 32nm technologies [22].

20

Chapter 5
Main Results

This chapter summarizes the main contributions of our analysis for 16 and 64-core architectures,
including both parallel and multiprogrammed workloads. We focus on the comparison of performance,
power, area and traffic distribution for the mesh, torus and ring topologies. We include a ring with
increased bandwidth and one with 3-cycle routers. More detailed information is included in Appendix
D

5.1. Network Topology Comparison

Our objective is to compare the behaviour of the ring, mesh and torus topologies. The ring
is a simple topology that is expected to have worse performance but less power and area costs.
The torus is the most complex topology out of all three. It has more links that provide lower
communication latency but suffers from higher energy consumption. The mesh is an intermediate
option used very frequently due to its regularity. To benefit from the small area of the original
ring topology, two additional rings have been included: one with higher bandwidth where flits
are 24 bytes long (instead of the original 16 bytes), and one with 3-cycle routers (instead of
4-cycle routers).

In this section, we study the performance of the applications (both parallel and multipgro-
grammed workloads) with all the network configurations. We also include power and area costs
and analyze the tradeoffs for each topology.

5.1.1. Performance

To compare the impact of the network configurations on performance, we are studying the
number of processor cycles it takes for the parallel workloads to complete the parallel section.
For the multiprogrammed workloads, we check how many instructions get executed in 500 million
cycles. Figure 5.1 shows these values normalized to the mesh topology. We can see that we
achieve the best performance with the torus topology, closely followed by the mesh. In 16-core
architectures differences between topologies are much smaller, with the ring with 3-cycle routers
being very similar to the mesh for some applications. In 64-core applications, the performance of
the ring topologies drops significantly. The ring with higher bandwidth (with 24B flits and links,
as opposed to the standard 16B) performs only slightly better than the original ring, which does
not compensate for the increase in area and power (as we will demonstrate in the next section).
The ring with 3-cycle routers instead of 4-cycle ones also performs better than the original ring,
but is still much worse than the mesh and torus.

21

CHAPTER 5. MAIN RESULTS

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Blackscholes

C
anneal

Fluidanim
ate

Sw
aptions

X264

Barnes

Fm
m

O
cean

R
adiosity

Volrend

W
ater−spatial

E
x
e
c
u
ti
o
n
 t
im

e
 (

n
o
rm

a
liz

e
d
)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Multi

N
u
m

b
e
r

o
f

in
s
tr

u
c
ti
o
n
s
 (

n
o
rm

a
liz

e
d
)

MESH
TORUS

RING
RING_FLIT24B

RING_3CYCLE_ROUTER

(a) 16 cores

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Blackscholes

C
anneal

Fluidanim
ate

Sw
aptions

X264

Barnes

Fm
m

O
cean

R
adiosity

Volrend

W
ater−spatial

E
x
e
c
u
ti
o
n
 t
im

e
 (

n
o
rm

a
liz

e
d
)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Multi

N
u
m

b
e
r

o
f
in

s
tr

u
c
ti
o
n
s
 (

n
o
rm

a
liz

e
d
)

MESH
TORUS

RING
RING_FLIT24B

RING_3CYCLE_ROUTER

(b) 64 cores

Figure 5.1: Performance normalized to the mesh topology for 16 and 64 cores. For parallel workloads, we measure
the execution time of the parallel region. For multiprogrammed workloads, we count the number of completed
instructions in 500 million cycles. The figures in the left include the paralell workloads; for those bars, the higher
the better. The ones in the right show results for the multiprogrammed workloads; in this case, the lower the
better. Note that scales are not consistent among graphs.

The differences in performance are a direct consequence of the number of hops it takes a
message to go from its source to its destination. Besides, there is no congestion in the network
that could be slowing messages down. These results ratify the conclusions of Sanchez et al. A
more in depth explanation can be found in Section D.1.

5.1.2. Energy-Delay versus Area

When making design choices for future architectures we need to consider performance, power
and area. When executing parallel applications on a multicore architecture, we are interested in
reducing latency. Therefore, we are calculating energy-delay, which is commonly used to account
for both energy consumption and performance improvements. This allows us to visualize the
tradeoff and decide if the performance increase we are getting is worth the higher consumption.
Using chip multiprocessors to run multiprogrammed workloads, we want to increase our through-
put. For that reason, we are going to use energy per instruction (EPI), which indicates the

22

5.1. NETWORK TOPOLOGY COMPARISON

2.0⋅10
11

2.2⋅10
11

2.4⋅10
11

2.6⋅10
11

2.8⋅10
11

3.0⋅10
11

3.2⋅10
11

 6 7 8 9 10 11 12 13 14 15

E
n
e
rg

y
−

d
e
la

y
 (

J
u
le

s
 *

 E
x
e
c
u
ti
o
n
 T

im
e
)

Network area (mm2)

MESH

TORUS

RING

FLIT24B

3CYCLE−R

5.5⋅10
−10

6.0⋅10
−10

6.5⋅10
−10

7.0⋅10
−10

7.5⋅10
−10

8.0⋅10
−10

 6 7 8 9 10 11 12 13 14 15

E
n
e
rg

y
 p

e
r

in
s
tr

u
c
ti
o
n
 (

J
u
le

s
 /
 I
n
s
tr

u
c
ti
o
n
)

Network area (mm2)

MESH

TORUS

RING

FLIT24B

3CYCLE−R

(a) Parallel applications (left) and multiprogrammed workloads (right) executed on 16 cores

5.0⋅10
10

1.0⋅10
11

1.5⋅10
11

2.0⋅10
11

2.5⋅10
11

3.0⋅10
11

 20 25 30 35 40 45 50 55

E
n
e
rg

y
−

d
e
la

y
 (

J
u
le

s
 *

 E
x
e
c
u
ti
o
n
 T

im
e
)

Network area (mm2)

MESH TORUS

RING

FLIT24B

3CYCLE−R

2.2⋅10
−10

2.4⋅10
−10

2.6⋅10
−10

2.8⋅10
−10

3.0⋅10
−10

3.2⋅10
−10

3.4⋅10
−10

3.6⋅10
−10

3.8⋅10
−10

 20 25 30 35 40 45 50 55

E
n
e
rg

y
 p

e
r

in
s
tr

u
c
ti
o
n
 (

J
u
le

s
 /
 I
n
s
tr

u
c
ti
o

n
)

Network area (mm2)

MESH

TORUS

RING

FLIT24B

3CYCLE−R

(b) Parallel applications (left) and multiprogrammed workloads (right) executed on 64 cores

Figure 5.2: Area versus energy-delay or energy per instruction for 16 and 64 cores. We also distinguish between
parallel applications (left) and multiprogrammed workloads (right). For the parallel applications, they have all
been considered together, as if they were executed back to back.

quality of the system in terms of throughput by modeling how much energy is needed for the
execution of each instruction. For these workloads, we ran the simulations for a fixed number of
cycles (as we explained in Chapter 4), so the energy-delay metric would not be representative.
We are considering only the energy expended by the interconnection network since it is the
element we are comparing and we noticed that cache energy does not vary among interconnect
configurations (see Section D.4).

Figure 5.2 represents area versus energy-delay or EPI for 16 and 64-core architectures, which
will help us to make a decision based on the three main aspects we should consider. First, we
are going to focus only on the vertical axis, which is representing the energy-delay or EPI. For
parallel workloads, we are adding up the energy-delay values of all the applications as if they
were all executed back to back. When using 16 cores, we are getting the best results with the
ring topology with 3-cycle routers, which is similar to the original ring topology. However, if we
focus on our 64-core architecture, we most often get the best results with the torus, very closely
followed by the mesh. This is because, as we saw in Section 5.1.1, performance drops much more

23

CHAPTER 5. MAIN RESULTS

significantly for the ring topologies when we have a higher core count due to the number of hops.
In those cases, the increase in energy consumption is justified by the large benefits we get in
performance.

We are now going to consider the area requirements for each topology, represented in the
horizontal axis of Figure 5.2. The torus is the topology with larger area requirements and the
ring the one with the lowest. The ring with higher bandwidth was designed so that routers would
have the same area as the torus routers. The area for the ring with 3-cycle routers is the same
as the area for the original ring.

If we look at all the parameters included in the graph, we would like to have a configuration
with small area and small energy-delay, that is, be in the bottom left corner of the graphs. For
the 16-core system, we would clearly choose the ring topology with 3-cycle routers, which gave
us the best energy-delay values and has only very small area. With 64 cores, we could draw
a line between the 3-cycle router ring and the mesh topology to represent the Pareto optimal
points. Anything above that line would be suboptimal. We see mesh and torus very close with
the lowest energy-delay values, but the torus needs a much larger area. Ring topologies still
have smaller area, but performance has dropped considerably. In this case, we would choose
the mesh topology to get the best tradeoffs. Conclusions are applicable to both parallel and
multiprogrammed workloads.

5.2. Non Uniform Traffic Distribution

We have analysed the number of injected flits and the link utilization for all our architecture
configurations and workloads. We have noted that traffic is unevenly distributed in the intercon-
nect, which means that some resources will be needed more often than others. In this section,
we are only presenting results for blackscholes among all the parallel applications. We have
results for all the other applications but we will omit them due to space constraints. The same
conclusions are extracted from all parallel applications. We will also be focusing on results for a
64-core chip, but conclusions still hold for 16-core configurations.

Figures 5.3 and 5.4 depict a heat map of injected flits per cycle for each node and link
utilization for blackscholes executed on 64 cores. The distribution of injection flits is the same
regardless of the topology. Values are usually smaller for the rings because a very similar amount
of flits gets injected in a much longer period of time. Besides, for the ring with higher bandwidth
(24B flits), flits are bigger so we need less flits to send the same amount of information. We
can clearly see that some nodes inject more flits than others. Parallel workloads usually have
a master thread that drives the execution and distributes work to other threads, which might
not be used uniformly. In this case, judging from the heatmaps, we could say that the master
thread is located in the bottom left corner of the chip. We can also see that link utilization is
higher around the nodes with higher injection rates. Also, link utilization is higher in the ring
topologies, since there are less links to transport the same amount of information. The torus
wastes more resources since it is the topology where the highest number of flits get injected
per cycle, but still has the lowest link usage. Even though we see different patterns in other
applications, the conclusions we draw from them are exactly the same.

Figures 5.5 and 5.6 show the same plots for the execution of a multiprogrammed workload. In
this case, we see four clear hotspots in the injection pattern in the edges of the chip. Those are the

24

5.2. NON UNIFORM TRAFFIC DISTRIBUTION

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

In
je

c
te

d
 f

lit
s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.000

0.050

0.100

0.150

0.200

fl
it
s
/c

y
c
le

(a) Mesh

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
In

je
c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.000

0.050

0.100

0.150

0.200

fl
it
s
/c

y
c
le

(b) Torus

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.000

0.100

0.200

0.300

0.400

0.500
fl
it
s
/c

y
c
le

(c) Ring

Figure 5.3: Injected flits per node (left) and link utilization (right) for the blackscholes application executed
in 64 cores. For link utilization, each line is the combination of two links, one in each direction. Injection and
ejection links have been left out, since their usage can be easily infered from injection values. Note that the scale
has been kept constant among topologies for injection figures, but not for link utilization. In the torus, links that
touch the edges of the chip represent the wraparound links. (Part A)

25

CHAPTER 5. MAIN RESULTS

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

In
je

c
te

d
 f

lit
s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.000

0.100

0.200

0.300

0.400

0.500

fl
it
s
/c

y
c
le

(a) Ring, 24Bflits

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.000

0.100

0.200

0.300

0.400

0.500

fl
it
s
/c

y
c
le

(b) Ring, 3-cycle routers

Figure 5.4: Injected flits per node (left) and link utilization (right) for the blackscholes application executed in
64 cores. (Part B)

tiles where the memory controllers are located. Apart from that, the rest of ideas we introduced
for parallel workloads are still valid. In the mesh topology we can also see that links are more
used in the center of the chip, which is the characteristic behaviour for this topology with uni-
form traffic. Probably, the memory controller location increases link usage in the center of the chip.

These results point out that the network is not being uniformly used. We could have an
heterogeneous network where some tiles had more resources and move the threads that need
them to those locations. That way, we would be saving power in the lighter parts of the chip and
would not waste so many resources. Mishra et al. already introduce this idea, but they only apply
it statically knowing that the center of the chip is usually used more often in mesh topologies
[34]. As we have seen, this is not always the case. As far as we know, there is no previous
research that introuduces the idea of non uniform traffic derived from the behaviour of applications.

26

5.2. NON UNIFORM TRAFFIC DISTRIBUTION

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.05

0.10

0.15

0.20

In
je

c
te

d
 f

lit
s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.050

0.100

0.150

0.200

0.250

0.300

fl
it
s
/c

y
c
le

(a) Mesh

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.05

0.10

0.15

0.20

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

fl
it
s
/c

y
c
le

(b) Torus

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.05

0.10

0.15

0.20

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.420

0.440

0.460

0.480

0.500

0.520

0.540

0.560

0.580

0.600

0.620

fl
it
s
/c

y
c
le

(c) Ring

Figure 5.5: Injected flits per node (left) and link utilization (right) for the multiprogrammed workload application
executed in 64 cores. (Part A)

27

CHAPTER 5. MAIN RESULTS

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.05

0.10

0.15

0.20

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.300

0.320

0.340

0.360

0.380

0.400

0.420

0.440

fl
it
s
/c

y
c
le

(a) Ring, 24Bflits

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.05

0.10

0.15

0.20

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.480

0.500

0.520

0.540

0.560

0.580

0.600

0.620

0.640

0.660

0.680

fl
it
s
/c

y
c
le

(b) Ring, 3-cycle routers

Figure 5.6: Injected flits per node (left) and link utilization (right) for the multiprogrammed workload application
executed in 64 cores. (Part B)

28

Chapter 6
Conclusions and future work

In this chapter we sum up the conclusions we have taken away from this project and we introduce
some ideas for our future research.

6.1. Conclusions

Interconnection networks have a significant influence on system performance, area and power
consumption. The actual trend in computer architecture design consists on integrating sev-
eral cores on a single chip. The network on chip is responsible for the communication between
those cores and the caches, and its design is crucial for guaranteeing improvements in performance.

We have compared the behaviour of three network topologies: mesh, torus and ring. We
include two additional ring configurations that benefit from the simplicity of the routers: one with
higher bandwidth that uses bigger flits and, therefore, reduces serialization latency, and one with
3-cyle routers which will reduce the latency of every hop. In order to get representative results,
we are carefully modeling the processors, memory hierarchy and the network, using full-system
simulation for 16 and 64 cores. We execute real applications, including both parallel and multipro-
grammed workloads. We performed a complete study of one of the benchmark suites featured in
this project (PARSEC) and presented our results in a poster session at an international conference.

We have demonstrated that performance is highly affected by the choice of the interconnect
in 64-core systems. The ring topologies produce much larger execution times due the increased
number of hops it takes to traverse the network. The torus has the best performance, but with
higher power and area costs. In this case, the mesh would be the best choice. On the other hand,
for 16-core chips, differences in performances are not so big and a ring topology with 3-cycle
routers offers acceptable performance with the lowest power consumption and area requirements.

Our most significant contribution is related to the distribution of traffic on the network. We
have seen that traffic is not uniformly distributed on the network and that the tiles with higher
injection rates vary with the applications. For multiprogrammed workloads, hotspots are always
located in the memory controllers. As far as we know, there is no previous research where this
behaviour has been noted.

We should take all this conclusions into consideration for the design of interconnection
networks for new architectures.

29

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.2. Future Work
We have seen that the number of hops messages need to traverse the network has a large

impact on performance. We need to reduce the hop count but we cannot do it at the expense of
power costs. Increasing the number of resources will not lead to optimal configurations, since
congestion in the interconnect is not an issue. We will test the performance with concentrated
topologies, that is, connecting each router to more than one processing core. This will make
routers more complex, with a higher number of inputs and outputs, but reduce the total number
of routers needed and the hop count.

Also, there are many topologies between the minimal ring and the common mesh that still
remain unexplored. It has already been detected that a ring topology with some random added
links brings big performance gains with little power overhead, but they did not test the effect
this new topology would have on overall system performance [25].

We intend to study the fairness for multiprogrammed workloads, which was not included
in this work due to lack of time. We want to check if, when running independent applications,
some of them progress more than others and monopolize the use of the interconnect. We will
also analyse if the configuration of the network has an effect on fairness.

We have already discussed the importance of a careful codesign of all the elements of the
system. That is why we plan to incorporate our knowledge of the behaviour of the memory
subsystem into the design of the interconnect. For example, we know that every request will
be followed by a reply, so we could send the head flit even before the cache produces the data
to reserve the resources along the way. If we were using power-saving techniques that switched
off part of the network when it was not being used, this head flit could also be used to switch it on.

We have also seen that the injection of packets is not done uniformly by all cores in both
parallel and multiprogrammed workloads. We could build an heterogeneous topology and move
threads that need more resources to the areas that have them.

30

Bibliography

[1] N. Agarwal, T. Krishna, Li-Shiuan Peh, and N.K. Jha. Garnet: A detailed on-chip network
model inside a full-system simulator. In Performance Analysis of Systems and Software,
2009. ISPASS 2009. IEEE International Symposium on, pages 33 –42, 2009.

[2] Niket Agarwal, Li-Shiuan Peh, and Niraj K. Jha. In-network coherence filtering: snoopy
coherence without broadcasts. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, pages 232–243, New York, NY, USA, 2009.
ACM.

[3] James Balfour and William J. Dally. Design tradeoffs for tiled cmp on-chip networks. In
Proceedings of the 20th annual international conference on Supercomputing, ICS ’06, pages
187–198, New York, NY, USA, 2006. ACM.

[4] Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas Nowatzyk, Shaz
Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Verghese. Piranha: a scalable
architecture based on single-chip multiprocessing. In Proceedings of the 27th annual inter-
national symposium on Computer architecture, ISCA ’00, pages 282–293, New York, NY,
USA, 2000. ACM.

[5] Nick Barrow-Williams, Christian Fensch, and Simon Moore. A communication character-
ization of splash-2 and parsec. In Proceedings of the 2009 International Symposium on
Workload Characterization, October 2009.

[6] George B. P. Bezerra, Stephanie Forrest, and Payman Zarkesh-Ha. Reducing energy and
increasing performance with traffic optimization in many-core systems. In Proceedings of
the System Level Interconnect Prediction Workshop, SLIP ’11, pages 3:1–3:7, Piscataway,
NJ, USA, 2011. IEEE Press.

[7] Major Bhadauria, Vincent M. Weaver, and Sally A. McKee. Understanding parsec per-
formance on contemporary cmps. In Proceedings of the 2009 International Symposium on
Workload Characterization, October 2009.

[8] C. Bienia and Kai Li. Fidelity and scaling of the parsec benchmark inputs. In Workload
Characterization (IISWC), 2010 IEEE International Symposium on, pages 1 –10, dec. 2010.

[9] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
January 2011.

[10] Christian Bienia, Sanjeev Kumar, and Kai Li. Parsec vs. splash-2: A quantitative comparison
of two multithreaded benchmark suites on chip-multiprocessors. In Proceedings of the 2008
International Symposium on Workload Characterization, September 2008.

31

BIBLIOGRAPHY

[11] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark
suite: characterization and architectural implications. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, PACT ’08, pages 72–81,
New York, NY, USA, 2008. ACM.

[12] Everton Carara, Fernando Moraes, and Ney Calazans. Router architecture for high-
performance nocs. In Proceedings of the 20th annual conference on Integrated circuits
and systems design, SBCCI ’07, pages 111–116, New York, NY, USA, 2007. ACM.

[13] William Dally and Brian Towles. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[14] William J. Dally and Charles L. Seitz. The torus routing chip. Distributed Computing,
1:187–196, 1986. 10.1007/BF01660031.

[15] W.J. Dally and C.L. Seitz. Deadlock-free message routing in multiprocessor interconnection
networks. Computers, IEEE Transactions on, C-36(5):547 –553, may 1987.

[16] Darryl Gove. Cpu2006 working set size. SIGARCH Comput. Archit. News, 35(1):90–96,
March 2007.

[17] D.S. Gracia, G. Dimitrakopoulos, T.M. Arnal, M.G.H. Katevenis, and V.V. Yufera. Lp-nuca:
Networks-in-cache for high-performance low-power embedded processors. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 20(8):1510 –1523, aug. 2012.

[18] John L. Henning. Spec cpu2006 memory footprint. SIGARCH Comput. Archit. News,
35(1):84–89, March 2007.

[19] Joel Hestness, Boris Grot, and Stephen W. Keckler. Netrace: dependency-driven trace-based
network-on-chip simulation. In Proceedings of the Third International Workshop on Network
on Chip Architectures, NoCArc ’10, pages 31–36, New York, NY, USA, 2010. ACM.

[20] J. Howard, S. Dighe, S.R. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla, M. Konow,
M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar, V.K. De, and R. Van
Der Wijngaart. A 48-core ia-32 processor in 45 nm cmos using on-die message-passing and
dvfs for performance and power scaling. Solid-State Circuits, IEEE Journal of, 46(1):173
–183, jan. 2011.

[21] Intel. The scc platform overview. 2012.

[22] C.-H. Jan, M. Agostinelli, M. Buehler, Z.-P. Chen, S.-J. Choi, G. Curello, H. Deshpande,
S. Gannavaram, W. Hafez, U. Jalan, M. Kang, P. Kolar, K. Komeyli, B. Landau, A. Lake,
N. Lazo, S.-H. Lee, T. Leo, J. Lin, N. Lindert, S. Ma, L. McGill, C. Meining, A. Paliwal,
J. Park, K. Phoa, I. Post, N. Pradhan, M. Prince, A. Rahman, J. Rizk, L. Rockford, G. Sacks,
A. Schmitz, H. Tashiro, C. Tsai, P. Vandervoorn, J. Xu, L. Yang, J.-Y. Yeh, J. Yip, K. Zhang,
Y. Zhang, and P. Bai. A 32nm soc platform technology with 2nd generation high-k/metal
gate transistors optimized for ultra low power, high performance, and high density product
applications. In Electron Devices Meeting (IEDM), 2009 IEEE International, pages 1 –4,
dec. 2009.

[23] A.B. Kahng, Bin Li, Li-Shiuan Peh, and K. Samadi. Orion 2.0: A power-area simulator for
interconnection networks. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 20(1):191 –196, jan. 2012.

32

BIBLIOGRAPHY

[24] Andrew B. Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. Orion 2.0: a fast and
accurate noc power and area model for early-stage design space exploration. In Proceedings
of the Conference on Design, Automation and Test in Europe, DATE ’09, pages 423–428,
3001 Leuven, Belgium, Belgium, 2009. European Design and Automation Association.

[25] Michihiro Koibuchi, Hiroki Matsutani, Hideharu Amano, D. Frank Hsu, and Henri Casanova.
A case for random shortcut topologies for hpc interconnects. In Proceedings of the 39th
International Symposium on Computer Architecture, ISCA ’12, pages 177–188, Piscataway,
NJ, USA, 2012. IEEE Press.

[26] Tushar Krishna, Li-Shiuan Peh, Bradford M. Beckmann, and Steven K. Reinhardt. Towards
the ideal on-chip fabric for 1-to-many and many-to-1 communication. In Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-44 ’11,
pages 71–82, New York, NY, USA, 2011. ACM.

[27] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections in multi-core
architectures: Understanding mechanisms, overheads and scaling. In Proceedings of the
32nd annual international symposium on Computer Architecture, ISCA ’05, pages 408–419,
Washington, DC, USA, 2005. IEEE Computer Society.

[28] Mario Lodde, Toni Roca, and José Flich. Heterogeneous network design for effective support
of invalidation-based coherency protocols. In Proceedings of the 2012 Interconnection Network
Architecture: On-Chip, Multi-Chip Workshop, INA-OCMC ’12, pages 1–4, New York, NY,
USA, 2012. ACM.

[29] E. L. Lusk and R. A. Overbeek. Use of monitors in fortran: a tutorial on the barrier,
self-scheduling do-loop, and askfor monitors. In on Parallel MIMD computation: HEP super-
computer and its applications, pages 367–411, Cambridge, MA, USA, 1985. Massachusetts
Institute of Technology.

[30] Ewing Lusk, James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ross Overbeek,
James Patterson, and Rick Stevens. Portable programs for parallel processors. Holt, Rinehart
& Winston, Austin, TX, USA, 1988.

[31] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner. Simics: A full system simulation platform.
Computer, 35(2):50 –58, feb 2002.

[32] María Villarroya Darío Suárez Víctor Viñals. Marta Ortín, Jorge Albericio. Behaviour
characterization of the parsec benchmark suite in the processor’s memory hierarchy, 2012.
Poster presented in the 7th International Conference on High-Performance and Embedded
Architectures and Compilers (HiPEAC conference) that took place in Paris 23-24 January
2012.

[33] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu,
Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood. Multifacet’s
general execution-driven multiprocessor simulator (gems) toolset. SIGARCH Comput. Archit.
News, 33:92–99, November 2005.

[34] Asit K. Mishra, N. Vijaykrishnan, and Chita R. Das. A case for heterogeneous on-chip
interconnects for cmps. In Proceedings of the 38th annual international symposium on
Computer architecture, ISCA ’11, pages 389–400, New York, NY, USA, 2011. ACM.

33

BIBLIOGRAPHY

[35] Naveen Muralimanohar and Rajeev Balasubramonian. Cacti 6.0: A tool to model large
caches.

[36] U.G. Nawathe, M. Hassan, K.C. Yen, A. Kumar, A. Ramachandran, and D. Greenhill.
Implementation of an 8-core, 64-thread, power-efficient sparc server on a chip. Solid-State
Circuits, IEEE Journal of, 43(1):6 –20, jan. 2008.

[37] Daniel Sanchez, George Michelogiannakis, and Christos Kozyrakis. An analysis of on-chip
interconnection networks for large-scale chip multiprocessors. ACM Trans. Archit. Code
Optim., 7(1):4:1–4:28, May 2010.

[38] Steve Scott and Greg Thorson. Optimized routing in the cray t3d. In Kevin Bolding and
Lawrence Snyder, editors, Parallel Computer Routing and Communication, volume 853 of
Lecture Notes in Computer Science, pages 281–294. Springer Berlin / Heidelberg, 1994.
10.1007/3-540-58429-3-44.

[39] Ciprian Seiculescu, Stavros Volos, Naser Khosro Pour, Babak Falsafi, and Giovanni
De Micheli. CCNoC: On-Chip Interconnects for Cache-Coherent Manycore Server Chips. In
Proceedings of the Workshop on Energy-Efficient Design (WEED 2011), 2011.

[40] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. Splash: Stanford parallel
applications for shared-memory. SIGARCH Comput. Archit. News, 20:5–44, March 1992.

[41] Standard Performance Evaluation Corporation (SPEC). Spec cpu2006, 2006. http://www.
spec.org/cpu2006/ (Last access september 2012).

[42] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. Power4 system microar-
chitecture. IBM Journal of Research and Development, 46(1):5 –25, jan. 2002.

[43] Tilera. Tilepro64. 2008. http://www.tilera.com/products/processors/TILEPro_
Family (Last access september 2012).

[44] Isask’har Walter, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. Access regulation to
hot-modules in wormhole nocs. In Proceedings of the First International Symposium on
Networks-on-Chip, NOCS ’07, pages 137–148, Washington, DC, USA, 2007. IEEE Computer
Society.

[45] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems Perspective.
Addison-Wesley Publishing Company, USA, 4th edition, 2010.

[46] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta. The splash-2 programs: characterization and methodological considerations. In
Proceedings of the 22nd annual international symposium on Computer architecture, ISCA
’95, pages 24–36, New York, NY, USA, 1995. ACM.

[47] Marta Ortín Obón. Directores: María Villarroya y Darío Suárez. Caracterización del
comportamiento de la suite parsec en la jerarquía de memoria del procesador, 2011. Proyecto
Fin de Carrera.

[48] Young Jin Yoon, Nicola Concer, Michele Petracca, and Luca Carloni. Virtual channels
vs. multiple physical networks: a comparative analysis. In Proceedings of the 47th Design
Automation Conference, DAC ’10, pages 162–165, New York, NY, USA, 2010. ACM.

34

http://www.spec.org/cpu2006/
http://www.spec.org/cpu2006/
http://www.tilera.com/products/processors/TILEPro_Family
http://www.tilera.com/products/processors/TILEPro_Family

BIBLIOGRAPHY

[49] Michael Zhang and Krste Asanovic. Victim replication: Maximizing capacity while hiding
wire delay in tiled chip multiprocessors. In Proceedings of the 32nd annual international
symposium on Computer Architecture, ISCA ’05, pages 336–345, Washington, DC, USA,
2005. IEEE Computer Society.

[50] Pingqiang Zhou, Jieming Yin, Antonia Zhai, and Sachin S. Sapatnekar. Noc frequency
scaling with flexible-pipeline routers. In Proceedings of the 17th IEEE/ACM international
symposium on Low-power electronics and design, ISLPED ’11, pages 403–408, Piscataway,
NJ, USA, 2011. IEEE Press.

35

36

Appendix A
Project Management

This appendix contains detail about time invested in this project and how it has been managed,
as well as some problems that we have faced.

A.1. Time Management

This project has been developed between February and September of 2012, with full-time
dedication. Figure A.1 depicts a Gantt diagram that shows how the tasks have been executed
along these months.

Figure A.1: Gantt diagram of the project.

In the following lines we include a short description of each task:

Training. This task is extended throughout the whole project. We have mainly focused on
the state of the art of interconnection networks by reading numerous papers and studying
some books. We had already used the simulator adopted for the experiments, but have
had to learn about power consumption and the tools for modeling area, power and delay.

Simulations. This is the task that has taken most of the time. A very significant amount
of hours has been invested on improving the simulator, implementing new features needed
to model the architecture and testing. We also include in this section the design of the
experiments we had to complete to get the results.

Analysis of results. In this category we include the recopilation of results and analysis
to validate or refute our hypothesis and extract conclusions.

37

APPENDIX A. PROJECT MANAGEMENT

Documentation. During the project we have been periodically writing reports to doc-
ument our progress and meetings. The writing of this report has taken most of the
documentation time.

All the planned tasks were carried out during the development of this project and all the
work was finished by the deadline.

A.2. Effort Invested in this Project

We invested a total of 883 hours on this project. Figure A.2 shows how time was distributed
among the tasks that compose the project. We can clearly see that most of the time has been
dedicated to the simulations. As we already explained in the previous section, the implementation
of new features and correct modeling of the architecture took most of this time. Apart from that,
time is more or less evenly distributed among the other tasks.

Figure A.2: Distribution of the time in the tasks that comprise the project.

Table A.1 details how many hours have been put into each one of the activities that compose
the tasks.

A.3. Problems Faced

The biggest problems we had to face were related to the correct modeling of the architecture,
specially the deadlock avoidance. Testing that it had been correctly implemented was very hard
because it entailed creating a lot of congestion in the network and this caused other unrelated
problems. Besides, when we thought that it was all working properly, we eventually found a
particular case where a simulation failed only with certain parameters after several hours of
execution. This errors took a long time to debug and delayed the development of the project.

Apart from that, we also had to face the fact that most of the simulations took several days
to complete. This forced us to avoid leaving things to the last minute and to be extremely careful
when launching new simulations because an error that involved repeating the simulations could

38

A.3. PROBLEMS FACED

Table A.1: Number of hours invested on each task of the project.

Task Number of hours
Training 218.5

Interconnection networks 134.5

Power and area 84.0

Simulations 353.0
Implementation and tests 287.5

Designing the experiments 65.5

Recopilation and analysis of results 151.0
Documentation 160.5
TOTAL NUMBER OF HOURS 883

easily entail a delay of a week.

39

40

Appendix B
CMP Architecture and Memory
Subsystem

In this appendix we describe the system we will be modeling including a general description of the
architecture and detailed description of the memory subsystem. A complete characterization of the
interconnection network can be found in Section 3.2.

B.1. General description

This study focuses on homogeneous chip multiprocessors (CMPs). The system is composed
of several tiles connected by an interconnection network. On each tile we have a core with a
private first level cache (L1) split into data and instructions and a bank of the shared second
level cache (L2). On some of the tiles the is also a memory controller that connects the cores
with the off-chip memory. We have a total of four memory controllers, uniformly distributed one
on each side at the edge of the chip. Also, on each tile there is a router to connect both the L1
and the L2 to the network. For now, we are only studying configurations with a concentration
degree of one, which means only one router is connected to each tile. Figure 3.1 depicts the chip
and a tile with memory controller and the connections between the elements in the tile and the
router. This router has two inputs and two outputs to connect the tile to other neighbouring ones.

We are modeling a system with simple Ultrasparc III Plus single-thread in-order cores. They
are running Solaris 10 operating system and execute one instruction at a time. We include
systems with 16 and 64 cores implemented in 32nm technology. Table 3.1 summarizes the key
parameters of our system.

Another option to connect the elements would be to connect the local L1 directly to the L2
bank in the same tile, and connect only the L2 bank to the router. This way, traffic between
the local L1 and L2 bank will not pollute the interconnection network. The drawback is that
we would always have to access the local L2 bank, which will probably not be the host for
the cache line we need. Since we have a shared L2, we decided to stick with our initial organization.

To model the system we looked into other architectures with similar characteristics, both
from academia research papers and commercial processors. Zhang and Asanovic̀ work with the
configurations represented in Figure B.1, which are conceived to execute multithreaded workloads
[49]. In their study, they present an architecture equivalent to ours with only four cores which
has a shared L2 cache. In this configuration, the router is placed between the L1 and the L2,
just like in our design. They also experiment with private L2 caches, in which case they use the

41

APPENDIX B. CMP ARCHITECTURE AND MEMORY SUBSYSTEM

alternative we mentioned earlier to connect the elements to the routers. This option is better
suited for architectures with a private L2 caches.

(a) Shared L2 (b) Private L2

Figure B.1: Chip architectures proposed in [49] by Zhang and Asanovic̀.

Seiculescu et al., who are focusing on interconnection network research, also include separate
ports in their routers for the L1 and L2 shared caches, which include the directory information [39].

The Piranha architecture proposed by Barroso et al. integrates eight simple cores and a
shared L2 cache on the same chip and is targeted at parallel commercial workloads [4]. The
private L1 and shared L2 caches on a die are connected by an Intra-Chip Switch which works as
a crossbar. This would be equivalent to any or our topologies where both the L1 and L2 caches
have access to the interconnect. This architecture also includes the possibility of connecting
several chips together.

Figure B.2: Block diagram of a single-chip Piranha processing node [4].

The IBM POWER4 microarchitecture was designed for high-throughput multi-tasking envi-
ronments [42]. On Figure B.3 we can see that the two processors on a chip share the three L2

42

B.2. MEMORY COHERENCE PROTOCOL

banks through a crossbar called Core Interface Unit (CIU).

Figure B.3: POWER4 chip logical view [42].

Tilera’s TILEPro64 [43] is a multicore processor with 64 cores connected by an 8x8 mesh
topology. It was to design for digital video processing, networking and cloud computing. Figure
B.4 shows the components of a tile. We can see that both the L1 and L2 caches are connected to
the router (which is called switch in the image).

In 2011, Intel proposed a multi-core processor architecture that integrates 48 cores in a
single chip called Single-chip Cloud Computer (SCC) for academic and industrial research
[20, 21]. Routers are connected in a 6x4 2D mesh, with two cores sharing each router. Cores
communicate over the network utilizing a message passing architecture that allows data shar-
ing with software maintained memory consistency. On each tile, the two L1 caches and L2
banks are connected to a Mesh Interface Unit (MIU) that sends the packets to the network router.

The Niagara2 architecture from Sun Microsystems has 8 SPARC cores, each supporting
concurrent execution of 8 threads [36]. This processor was designed for servers, to help achieve a
high throughput while maintaining low power consumption. The 8 cores are connected to the 8
banks of the L2 shared cache through a crossbar.

B.2. Memory coherence protocol

Chip multiprocessors are used to execute parallel applications (to reduce execution time)
or independent programs on each core (to maximize throughput). In both cases, we need a
memory coherence protocol. For parallel applications, it is used to maintain coherence among
shared variables. For the independent programs, to allow migration of processes between cores.
We are using a directory-based MESI coherence protocol. A MESI protocol has four states

43

APPENDIX B. CMP ARCHITECTURE AND MEMORY SUBSYSTEM

Figure B.4: Components of a tile of the TILEPro64 [43].

that depend on the coherence properties of the corresponding cache line: modified (M), ex-
clusive (E), shared (S) and invalid (I). The L1 is a copy-back cache and uses write-allocate.
Figures B.5 and B.6 present the coherence protocols for both the L1 and L2 caches. To fa-
cilitate the understanding we are omitting the intermediate states. These protocol is taken
from the GEMS memory hierarchy simulator [33], where it is called MESI_SCMP_bankdirectory.

Inside the circles that represent the states, there is a short description of each of them
indicating the state of the data contained in that cache line. In all of the states there is also a
dirty bit indicating if data is consistent with main memory. The arrows represent the change of
a cache line from one state to another. The labels in the arrows indicate the events and actions
associated with the change of state and follow the pattern:

Event: Action1, Action2...

An event might not implicate any action, only a change of state. The actions usually indicate an
event sent to another cache, with the following elements:

Destinatary(Event Sent, Parameters)

Table B.1 provides information about the nomenclature used in the diagrams. For the L1, arrows
with continuous lines represent events coming from the processor. Arrows with dashed lines
represent events coming from the L2, and include the original event that caused them in the base
of the arrow. There is one case in the L1 diagram where an arrow gets divided into two lines
that go to different states. This means that, depending on the sharing information received from
the L2, data will end up on one state or the other. In some cases, the action is L2+x. This means
that the L2 must update the data in a cache line it is already storing. Also, sometimes actions
are separated by a forward slash instead of a comma. This means that the second action will
execute after the result of the first action. In this cases, there are typically intermediate stages

44

B.2. MEMORY COHERENCE PROTOCOL

I S

M E

nL1=L2?M

1L1!=L2?M 1L1=L2?M

I

rpl

rm:H(rB,@x) sh

sh

wh

rpl:
H(rplInL1,@v)

rh, wh
rh

wh:H(in
vShar

er
s,

@
x)

rp
l:
H

(w
B

,U
)

w
m

:H
(r

B
in

v
,@

x)

rh

n>=1

(a) Events from the processor

I S

M E

nL1=L2?M

1L1!=L2?M 1L1=L2?M

inv:H(ack)

rB
in

v:
L1

i(
w

B
,x

)

rB
in

vF
ro

m
L2

:H
(w

B
,x

)

wm

rplInL2

wh

I

rB
:L2

(w
B,x)

,L1
i(w

B,x)

rm

rm

rB:H(wB,x),
 L1i(wB,x)

rBinv:L1i(wB,x)

rBinvFromL2:H(ack)

rplInL2

wm

n>=1

(b) Events from the host L2 cache

Figure B.5: L1 cache coherence protocol.

45

APPENDIX B. CMP ARCHITECTURE AND MEMORY SUBSYSTEM

NP
SS

MT M
 0L1

nL1=L2?M
n>=0

1L1?L2?M
L2?M

NPrp
l:L

1
ex

cl
(r

B
in

v
Fr

o
m

L2
,@

v
)/

d
ir

ty
>

M
(w

B
,V

)

rB
-r

B
in

v:
M

(r
B

,@
x
)/

L1
(w

B
,X

)

rpl:L1sh(inv,U),dirty>M(wB,U) rB:L1(wB,X)

rpl:M(wB,U)

in
vS

ha
re

rs
:L

1sh
(in

v,@
x)

rB
in

v:
L1

(w
B,X

),L
1sh

(in
v,@

x)

rB
:L1

ex
cl(

rB
,@

x,
i)/

L2
+

x

wB:L2+x

rB-rBinv:L1(wB,X)

rBinv:L1excl(rBinv,@x,i)

rplInL1

Figure B.6: L2 cache coherence protocol.

that have been omitted. Also, since there is also a dirty bit providing extra information, in some
cases the execution of an action depends on the value of that bit. That has been indicated by
dirty>, meaning that the ensuing action will only take place if the block is dirty. In the L2 we
do not indicate updates of the sharers list in the directory.

About replacements in L1, there might be a notification sent to L2 or not. From the modified
state, a notification is necessary because data is only up to date in the L1 and must be sent
to the L2. From the exclusive state, the replacement is notified to the L2, but not data is sent
because it not dirty. From the shared state, the replacement is silent. This means that the L2
is not notified and still thinks the L1 is storing the block. That is why the SS state in the L2
might mean that the block is not present in any L1 cache. When the L1 holds a block exclusively
(either in the exclusive or the modified state), requests for that block are forwarded from the
L2 host so that the L1 sends the data to the requestor and updates the state. When the L1 is
in the exclusive state and gets a read block event from the L2, it means that another L1 has
requested the block. So it sends the data to the requestor and moves it to a shared state. Here,
the protocol sends the data to the L2 as well, which would not be needed since it is not dirty.
This is because in the L2, data will be in state MT, where it does not know if data is consistent
with the one in L1 or not and will always expect the data to update the cache line and move
to the SS state. The sending of this data could be avoided but we have maintained it in the
diagram to be consistent with the implementation.

46

B.2. MEMORY COHERENCE PROTOCOL

The protocol includes a very basic implementation of the memory controller, which simply
manages data requests and writebacks.

Table B.1: Nomenclature used in the cache coherence protocol diagrams.

L1 States

I Invalid. The is no valid data in this cache line.

S

Shared. Data is present in this L1 cache and might also
be in other L1 caches. Data is consistent with the one
stored in the L2, and might or might not be consistent
with main memory.

E Exclusive. Data is only stored in this L1 cache and it is
consistent with its L2 copy.

M Modified. Data is only stored in this L1 cache and it is
not consistent with its L2 copy.

L2 States

NP Not Present. The is no valid data in this cache line.

SS

Shared. Data is present in 0, 1 or more L1 caches. Data
in all of them is consistent with the one stored in the L2
but might or might not be consistent with main memory.
It might be in 0 L1 caches because silent replacements in
L1 are allowed.

MT
Modified. Data is only stored in one L1 cache and data
might or might not be consistent with the L2 copy. It
also might or might not be consistent with main memory.

M Modified. Data is not stored in any L1. The L2 copy
might be consistent or not with main memory.

Events

rh Read hit

rm Read miss

wh Write hit

wm Write miss

rpl Replacement

rplInL1 Replacement in the L1 cache

rplInL2 Replacement in the L2 cache

rB Read block

rBinv Read block and invalidate

rBinvFromL2 Read block and invalidate issued by the L2

wB Write block

inv Invalidate

invSharers Invalidate sharers

ack Acknowledgement

47

APPENDIX B. CMP ARCHITECTURE AND MEMORY SUBSYSTEM

Destinataries

L1 L1 cache that performed the request

L1sh L1 caches that are sharers of the block

L1excl L1 cache that stores the block exclusively

L1i L1 cache that asked for the block

H Host, L2 cache where the block is or should be stored

M Main memory

Parameters

X Data block

@x Data address

U Victim block, block issued for replacement

@v Address of the victim block

i This is included when the destinatary needs to know which
L1 it will have to send the data to

48

Appendix C
Methodology and Experimental
Environment

This appendix contains details about the metrics, the benchmarks and the simulation environment
used to characterize the interconnection networks.

C.1. Metrics
We have chosen several metrics to characterize the behaviour of the interconnection network.

Since we are interested in the impact the interconnect has in the whole system, we have also
included metrics that reflect the overall performance and the behaviour of the memory hierarchy.

The metrics included in this study are the following:

Performance. For the parallel workloads, we analyse the number of processor cycles it
takes to complete the execution of the parallel section of the applications with all the
configurations. With the multiprogrammed workloads we execute a fixed number of cycles,
so we count the number of completed instructions.

Miss rate. We study the miss rate of the applications in both levels of the memory
hierarchy for both data and instructions and relate it to the demands placed on the
interconnect.

Node throughput. We check the number of flits injected and received by each node. We
analyse the total number of flits and the average flits per cycle and node, so as to be able
to compare between configurations with different tile count. We evaluate if all the nodes
inject and even amount of packets and try to find hotspots which might be located in the
access to the memory controllers.

Link utilization. Similar to the analysis of the tile throughput, we represent the utilization
of the links in flits per cycle and look for hotspots.

Number of hops. If the average distance travelled by flits is close to the average distance
of the network, we could state that the interconnect is being used evenly. A skewed average
number of hops would indicate that there are more messages accessing nodes that are very
close or very far.

Network latency. By looking into the delay introduced by the network we can find out
if it is a critical part of the system that dominates performance results. We express this
latency in network cycles (which in our case, is equivalent to processor cycles).

49

APPENDIX C. METHODOLOGY AND EXPERIMENTAL ENVIRONMENT

Average virtual channel load. We examine the average occupancy of the virtual
channels in flits per cycle. The ideal situation is to have a balanced load across all virtual
channels.

Arbitration requests. We check the number of requests each flit has to make for virtual
channel allocation and switch allocation until the request is granted. This gives us an idea
of the contention in the network.

Energy. We measure the energy expended by the interconnect (the links and the stages of
the routers) and by the caches. As future work, we intend to compare this values to the
power needed by the processor so as to get a more general view of the whole system.

Area. We compare the area needed by the different topologies and by the memory
hierarchy.

C.2. Workloads
The chip multiprocessors we are focusing on may be used to execute parallel applications in

order to reduce execution time or for multiprogrammed workloads (execution of independent
programs on each core), to increase throughput. When choosing which applications to include
in our experiments, we are interested in the behaviour they will have on the interconnection
network which depends on characteristics such as communication and traffic. We are using a
shared-memory multicore system, so when talking about communication we refer to the memory
accesses that are used to exchange information between cores (writing a value that will be read by
another core or reading a value previously written by another core), that is, true sharing accesses
[5]. Communication accesses always involve a cache miss, but the evaluation of the parameters
has been done independently. So a benchmark could have a lot of communication compared to
the others, but still have a lower miss rate. The same thing applies to L1 and L2 misses, we may
have a high L2 miss rate with a low L1 miss rate. Traffic is a more general term that represents
movement of data to and from the caches, so it includes all the packets injected into the network.
Since data is uniformly distributed across the L2 banks, memory accesses might need to use
the network without entailing communication with other cores. Most of the traffic is due to
L1 misses, which are more frequent than L2 misses which involve access to the memory controllers.

We are using a selection of shared-memory parallel applications from PARSEC and SPLASH2
and a multiprogrammed workload made up of SPEC CPU2006 benchmarks. The performance of
these applications may be limited by the interconnection network and we intend to establish to
what extent this is actually happening. We would like to work with pressing applications that
offered a very high miss rate, a large amount of communication and traffic and good scaling. To
be fair, we tried to put together a set of applications with varying characteristics in terms of the
axes previously mentioned. In the following sections, we go into the specifics of the selection of
benchmarks for the three benchmark suites considered.

PARSEC

PARSEC is a benchmark suite composed of multithreaded programs implemented with
OpenMP and pthreads [11, 9, 10, 5, 7, 8]. It focuses on emerging workloads and was designed
to be representative of next-generation shared-memory programs for chip-multiprocessors. We
performed a complete study of this benchmark suite and presented our results in a poster session
at the HiPEAC international conference in January 2012 [32].

50

C.2. WORKLOADS

In Table C.1 we include all benchmarks from the PARSEC benchmark suite with a short
description of each of them and the characteristics that were taken into account to choose
which applications to use in our study. The benchmarks chosen are blackscholes, canneal,
fluidanimate, swaptions and x264 (they are shown with bold font in the table). They have all
been executed with the large input except for x264, for which we have used the medium input
due the large simulation time. Canneal and Swaptions have been chosen for their large amount
of traffic; x264 has been included because of the large amount of communication between cores
and blackscholes and fluidanimate are some of the benchmarks with better scaling properties.
We simulate the whole parallel region of the applications. To simplify the understanding of the
information, for most characteristics we simply describe their values verbally. This is enough to
compare the benchmarks with each other.

We got miss rates and traffic from [11, 47], scaling information from [7] and sharing data
from [5]. For raytrace, we don’t have much information because it was included in the second
version of the benchmark suite, after the papers we are referencing came out.

Table C.1: Characteristics of the PARSEC benchmark suite applications. Chosen applications appear in boldface.

Benchmark Domain L1 miss
rate

L2 miss
rate Scaling Comm Cache

Traffic

Blackscholes
Financial
Analysis Medium Low Good Low Medium

Bodytrack
Computer
Vision Medium Medium Poor Medium Medium

Canneal Engineering High High Poor High High

Dedup
Enterprise
Storage Low Medium Poor High Low

Facesim Animation Medium Medium Good High Medium

Ferret
Similarity
Search Medium Medium Average Medium Medium

Fluidanimate Animation Medium Low Good Medium Medium

Freqmine Data Mining Medium Low Average High Medium

Raytrace Rendering Low Low - - -

Streamcluster Data Mining High High Average Medium High

Swaptions
Financial
Analysis High Low Good Low High

Vips
Media
Processing Medium Medium Good Medium Medium

X264
Media
Processing Medium Medium Average High Medium

More information on number of instructions, writes, reads, barriers and locks can be found in
[11].

51

APPENDIX C. METHODOLOGY AND EXPERIMENTAL ENVIRONMENT

SPLASH2

SPLASH2 is a mature benchmark suite containing a variety of high performance computing
and graphics applications [46, 40, 10, 5]. Shared-memory parallelism is explicitly written by using
PARMACS, a library of parallel macros that allow an architecture-independent implementation
[29, 30].

As we did in the previous section, in Table C.2 we include all the applications and a brief
compilation of its characteristics. The chosen benchmarks are barnes, fmm, ocean, radiosity,
volrend and water-spatial. Ocean is the application with higher miss rates and traffic.
Water-spatial and volrend have good scaling. The latter also has a high L2 miss rate, which
means it will need to access off-chip memory frequently. Barnes, Fmm and Radiosity have been
included as examples of applications that will not pressure the interconnection network. As we
do with PARSEC, we simulate the parallel region of the applications. All the information has
been collected from [46] and [5].

Table C.2: Characteristics of the SPLASH2 benchmark suite applications. Chosen applications appear in
boldface.

Benchmark Domain L1 Miss
rate

L2 Miss
rate Scaling Comm Cache

Traffic

Barnes
n-body
Simulation Medium Low Good Medium Medium

Cholesky
Matrix Fac-
torization High High Poor Medium High

Fft
Complex 1-D
FFT High High Good High High

Fmm
Fast Multi-
pole n-body Medium Medium Average Medium Medium

Lu
Matrix Trian-
gulation Medium Low Poor High Medium

Ocean
Ocean Cur-
rent Simul. High Medium Good High High

Radiosity Graphics Low Low Poor Low Low
Radix Integer Sort Medium High Poor High Medium

Raytrace
3D Ren-
dering Low High Average Medium Low

Volrend
3D Ren-
dering Low High Good Low Low

Water-nsq.
Molecular
Dynamics Medium Medium Good Medium Medium

Water-spatial
Molecular
Dynamics Medium Medium Good Low Medium

More information on number of instructions, writes, reads, barriers and locks can be found in
[46].

52

C.2. WORKLOADS

SPEC CPU2006

SPEC CPU2006 is a benchmark suite composed of single threaded applications written in C,
C++ and Fortran [41]. We have used it to build a multiprogrammed workload in which we run
one application on each core, binding applications to cores so that no migration occurs. The
threads that are being executed in each core are independent, so the only traffic in the network
will be caused by cache misses and replacements. Since no data will be shared and no migration
is allowed, there will be no additional coherency messages.

In this case we chose the applications with the highest footprint and working set size (ac-
cording to [18, 16]) so as to determine the potential bottlenecks due to the interconnect. The
footprint is the amount of memory a program uses when it is executed. We will represent it
with the virtual size, which is the total address space the operating system has reserved for the
application. That metric is an appropriate measure of the amount of memory that an application
occupies, but do not tell us how much memory an application actually uses. The working set is
an estimate of how much memory is being actively used by an application. A larger working set
implies higher miss rates in the memory hierarchy, and therefore, more data requests and replies.

The 16 chosen applications are listed and briefly described in the Table C.3.

Table C.3: Characteristics of the SPEC CPU2006 applications used.

Benchmark Domain Virtual size
(MB)

Working set
size (MB)

400.perlbench PERL Programming Language 581 51.3
401.bzip2 Compression 856 24.4
403.gcc C Compiler 933 70.7
429.mcf Combinatorial Optimization 845 680.8
458.sjeng Artificial Intelligence: Chess 180 57.7
462.libquantum Physics: Quantum Computing 105 32.7
410.bwaves Fluid Dynamics 894 474.3
433.milc Physics: Quantum Chromodynamics 677 230.8
434.zeusmp Physics/CFD 1138 270.1
437.leslie3d Fluid Dynamics 142 75.2
447.dealII Finite Element Analysis 566 14.7
450.soplex Linear Programming, Optimization 626 201.5
450.GemsFDTD Computational Electromagnetics 850 800.0
450.lmb Fluid Dynamics 417 402.0
450.wrf Water Prediction 718 163.5
450.sphinx3 Speech Recognition 49 10.6

To build the workload for the 16-core architectures we have executed each application once,
binding each one of them to a different core. For the 64-core architectures we have used the
applications four times assigning them to the cores consecutively (this should have better been
done randomly, that is left for future work). To execute this workload, we first warm up the

53

APPENDIX C. METHODOLOGY AND EXPERIMENTAL ENVIRONMENT

caches for 200 million cycles and then execute for 500 million cycles.

C.3. Simulation Environment
We have obtained our results using simulation, which is a common resource in computer

architecture for the exploration of the design space of new computing systems. We have chosen
a set of tools used extensively in this field. Wind River Simics (usually called just Simics)
allows us to simulate the full-system and can be configured to model multiprocessors, embedded
systems, telecom switches, clusters and networks of all those items [31]. It can directly execute
operating systems and simulate real applications offering precise results. It is a commercial
simulator and it is not open source. Simics is usually used in conjunction with GEMS (General
Execution-Driven Multiprocessor Simulator), created in the University of Wisconsin [33]. It
provides modules for the study of the performance of the memory system and microprocessors.
GEMS comprises Ruby, which simulates caches, the coherence protocol and the interconnection
network, and Opal, for out of order execution. Simics behaves as a functional simulator, that is,
it is simply an interpreter that executes the instructions. It communicates with the Ruby module
from GEMS, which will manage memory accesses and provide timing information. GARNET
is a detailed interconnection network simulator integrated in Ruby that was implemented in
Princeton University [1]. Figure C.1 illustrates the previous description. The random tester and
the microbenchmark modules can also serve as a source of memory operation requests for Ruby,
but we are not using them. We are not using Opal either, since we are simulating simple in-order
processors.

Figure C.1: View of the GEMS architecture.

We are carefully modeling all the components of the system and performing full-system
simulation with simple single-threaded cores and directory-based coherence. We have had to

54

C.3. SIMULATION ENVIRONMENT

include several modifications to the Ruby module to produce the statistics and support the
topologies we wanted to study. For the power analysis we used two additional tools, CACTI and
Orion. We describe this in detail in the following sections.

New Functionalities Incorporated into the Simulator

We are first going to review the modifications needed to simulate the system with our desired
features.

We are interested in simulating three topologies: mesh, torus and ring. Garnet implements
several topologies and gives the opportunity to define any others by using a network file. In
this file we simply need to indicate which elements to include in each node (processor and
L1 cache, L2 cache and memory controller) and how to connect them. To model the mesh
topology, we use these configuration files. The torus is one of the topologies already implemented
in Garnet, but we noticed that it was only built properly if each processor was placed in a
different chip, which was not what we needed. Besides, when using a torus we introduce loops
and we need to deal with the deadlocks that might occur (see the topology description in
Chapter 3). The torus provided by Garnet does not take this into account, so we decided to
construct the torus and ring topologies with a network file and implement the deadlock avoidance.

Originally, Garnet always performed virtual channel allocation using a round-robin system.
To avoid deadlocks caused by loops in the torus and ring topologies, we implemented the naive
and balanced deadlock avoidance methods already described in Chapter 3.

When the torus and ring topologies are built from the network files, the routing table storing
the minimal paths between all nodes is created. If there are two minimal paths between two
nodes (this happens in every loop with an even number of nodes), the same one is always selected
in detriment of the other depending on which link was written first in the network file. This
causes some links to be used more frequently than others. To avoid this, we statically force
the minimal path to be only one of the two, alternating the direction the messages will follow
depending on whether the source node identifier is even or odd [38].

Additionally, we wanted our routers to have four virtual channels per input. As we explained
in Chapter 3, we need two virtual channels for deadlock avoidance and two virtual networks to
separate request and reply messages. In GEMS, the virtual networks are defined in the cache
coherence protocol and each message is assigned to one virtual network depending on its type
(request from L1 to L2, request from L2 to the memory controller,...). So we modified the pro-
tocol to assign all request messages to one virtual network and all reply messages to the other one.

We also had to solve the deadlock caused by coherence messages overtaking other previous
ones targeting the same cache line, already explained in Chapter 3. We consider acknowledge-
ments as high priority messages, because they mean there is cache line being blocked waiting for
them. The only thing the original protocol did to deal with this was to assign a single virtual
network to messages that should be prioritized and arrive sooner to their destination. This way,
those messages were more independent from messages with different types and were expected
to always arrive sooner. We implemented another version of the protocol with three virtual
networks, one exclusively dedicated to these high priority messages. This solved the problem, but
forced us to have routers with six virtual channels, which was not our desired configuration. We
also implemented a partial ordering in the interconnection network. Whenever a message is at a

55

APPENDIX C. METHODOLOGY AND EXPERIMENTAL ENVIRONMENT

router, we check if there is another message with higher priority waiting to get to same cache line.
In that case, the first message will never be granted the virtual channel or the access to the switch
it needs to continue. This also solved the problem and allowed us to keep only four virtual channels.

We are working with the fixed pipeline offered by Garnet, which means every hop in our
network takes five cycles (four in the router and one in the link, see Figure 3.4). We wanted to
have the possibility of experimenting with routers with a lower latency, as explained in Chapter
3. Garnet also includes a flexible pipeline model, but everything we had already implemented
was working only for the pipeline with a fixed number of stages. To solve this, we included
the option of reconfiguring the router pipeline by combining consecutive stages so that they
were executed on the same network cycle. This allows us end up with a one-cycle router. To
implement this, we had to include the possibility of scheduling an event (the wake up of the next
stage) for the current cycle, not only for a future cycle. This minor modification usually has
side effects which cause further problems difficult to detect. For example, we noticed that we
were sometimes scheduling the waking up of a stage for the current cycle but it had already
woken up. Since a stage can’t be executed twice in the same cycle, that stage never got executed,
leading to a deadlock. The general problem was that all the events scheduled for a particular
cycle were serviced in no particular order. To avoid this we included an ordering of the events
in the pipeline so that they were executed backwards except for those stages that had to be
executed in the same cycle.

We also needed to implement the computation of new statistics. Garnet already offers average
link utilization, virtual channel load and network latency.

We have implemented a count of injected and received messages per network interface (each
L1, L2 block and memory controller). This way, we can see how many messages and flits each
node has injected and received. We also get this count per message type.

We print more detailed information about the utilization of each link. This will allow us to
detect hotspots in the network.

We have included the count of occurrences for message latency and hop count. Later, we will
be able to use that information to get the average, variance or quartiles to represent the data as
we see fit.

The count of accesses and misses in the L1 and L2 originally implemented in Ruby was not
working properly. We fixed it and reduced the granularity to get the information divided into
message types. This accurate information was later used to calculate the energy expended by the
memory hierarchy. We also included a count of messages sent by caches and memory controllers
broken into coherence types.

To check if the network is overloaded we have included a count of the number of times virtual
channel and switch allocation are requested but arbitration fails.

Power and Area Analysis

To get the area and the energy expended by the network we used a circuit modeling tool
called Orion 2.0 [23, 24]. The version of Orion included in Garnet was 1.0, which didn’t give

56

C.4. ESTIMATING THE ENERGY EXPENDED BY CACHES

accurate results compared to the new version. The first thing we did was to integrate the new
version in our Ruby module. Orion 2.0 gives us information about the area, leakage and dynamic
power for the links, the router stages (input, virtual channel allocation, switch allocation and
crossbar traversal) and the propagation of the clock.

For the area and energy expended by the memory hierarchy we used CACTI 6.5, which is
another circuit modeling tool for estimating access time, cycle time, area, leakage, and dynamic
power [35]. We get into further detail about the estimation of the energy expended by the caches
in the next section.

The technology files in both tools have been matched so as to be able to compare the results
obtain from the two models. Some parameters have been taken from the work of Gracia et al.
[17] and accuracy has been further improved by approximating our values to the ones used in
INTEL architectures [22].

C.4. Estimating the Energy Expended by Caches
In this section we explain how to calculate the energy expended by the L1 and L2 caches with

a MESI protocol (in particular, the MESI_SCMP protocol on GEMS) using the information
obtained from CACTI 6.5 [35]. It can help us to better understand the performance tradeoffs
inherent in memory system organizations.

To calculate power we may apply the following formula

Power = DynamicPower + LeakagePower
Power = C ∗ V 2

dd ∗ f ∗ α+ Ileak ∗ Vdd

where C is the capacitance, Vdd is the supply voltage, f is the frequency, α is the activity
factor and Ileak is the leakage current. To get the energy expended we only need to multiply the
power by the time our system has been running.

Alternatively, we can compute the dynamic energy by counting all the switching events and
multiplying them by their respective energy consumptions. This is the way we proceeded in our
power analysis.

Static Energy

CACTI gives us the leakage of the caches, which we consider to be the same as the static
energy since the contribution of its other components is negligible. To get the total energy
expended, we need to multiply that by the total time, which is the number of cycles the caches
were used divided by the processor frequency.

Dynamic Energy

CACTI tells us how much energy the cache consumes when performing a switching event,
such as a tag read (TR), tag write (TW), data read (DR) and data write (DW). We then have
to count the events that take place in the cache when we run the program (read hit, read miss,
replacement...) and multiply them by their consumption. In our configuration, the tag array
contains extra bits for storing the cache line state and the valid, dirty and pseudo-LRU bits.

57

APPENDIX C. METHODOLOGY AND EXPERIMENTAL ENVIRONMENT

In a cache, the tag and data arrays can be accessed sequentially or in parallel. Usually,
the L1 supports parallel access to allow a faster response, and the L2 is accessed sequentially.
Independently of the access mode, writes must be performed sequentially checking the tag first
and writing the data afterwards if we have experienced a hit. For the write to be performed in
one cycle, we can store the data in a write buffer and write in the cache later.

As an example, we are going to explain the operations performed when accessing a parallel
cache for a couple of events.

Read miss (rm). We perform a first access in which we notice the line is not in the cache,
so we have a miss. In a second access, after receiving the line from wherever it is, we do
the data refill. We have two options depending on when we decide which line we are going
to evict: eager victim selection (we choose which line to replace during the first access)
and lazy victim selection (in the first access we just realize the block is not in the cache, so
we have to choose the victim in the second access). We also have to remember to add the
energy expended when replacing the victim block in case it is dirty. For each of the two
options, the operations performed are the following:

• Eager victim selection. In the first access we will have TR+DR. The DR is not needed
because in this access we discover that the line is not in the cache, but it is always
performed in parallel. In that first access we have also chosen what the victim line
will be and invalidated it. In the second access we will just have to insert the new line
(TW+DW). This is the method used in our cache configurations.
• Lazy victim selection. We start again by performing TR+DR. We notice it is a misfs,
and forward the request, but the cache line is remains available until we receive the
data. Now, in the second access we need to start with a reading access again to choose
the victim so the operations would be (TR+DR)+(TW+DW).

Write hit (wh). In this case, the operations will be TR+DW+TW*0.2. The tag write
included corresponds to the update of the dirty bit and state when the line was in a shared
or exclusive state. We assume that every time we modify some of the extra bits contained
in the tag array, it will consume a 20% of the total energy for a tag write, since we are not
rewriting all the bits. If we were in the modified state, that tag write would not be needed.

For simplicity, we will not distinguish the reading or writing of a whole cache line from the
reading or writing of a single byte or word.

L1 cache. Parallel Access

In Table C.4 we explain the operations performed in the L1 cache for each event and directly
connect them to the states and event names used by GEMS for the coherence protocol. We
assume the L1 will have a parallel access to the tag and data. Table C.6 contains the meaning of
the acronyms used in the power analysis.

L2 cache. Sequential Access

In Table C.5 we explain the operations performed in the L2 cache for each event and directly
connect them to the states and event names used by GEMS for the coherence protocol. In this
case, we assume the L2 will have a sequential access to the tag and data. Again, the acronyms
used can be found in Table C.6.

58

C.4. ESTIMATING THE ENERGY EXPENDED BY CACHES

Table C.4: Operations performed in the L1 cache for each event

Event Protocol
event

Current
State Operations Comments

rh Load, Ifetch S, E, M TR+DR

rm Load, Ifetch NP, I TR+DR+TW+DW

We read tag and data in
parallel before knowing it’s a
miss. We assume eager victim

selection.

wh Store S, E TR+DW+TW*0.2 We update only the state and
the dirty bit.

wh Store M TR+DW
We are already in a modified
state, so no need to update

the tag.
wm Store NP, I TR+TW+DW

rpl L1Repl S, E TR+TW*0.2
Look for the line and update
the state. Since it is clean,
there’s no need to copy it.

rpl L1Repl M TR+TW*0.2+DR

In this case, the block has
been modified so we need to
read the data (writeback to

L2).

inv inv S, E TR+TW*0.2 We need to find the block and
update the state.

inv inv M TR+TW*0.2+DR
We might be the ones who

have the block updated, so we
need to send it.

req
from
L2

Fwd GETS,
GETX,

GETINSTR
E, M TR+TW*0.2+DR

We need to find the block,
update the state and send the

data.

59

APPENDIX C. METHODOLOGY AND EXPERIMENTAL ENVIRONMENT

Table C.5: Operations performed in the L2 cache for each event

Event Protocol
event

Current
State Operations Comments

rh GETS,
GETINSTR SS TR+DR+TW*0.1

Send the block to another L1.
We also update the sharers in

the tag.

rh GETS,
GETINSTR M TR+DR+TW*0.1

Send the block to another L1
and update the state (in the
M state no L1 can have the

block) and sharers.

rh GETS,
GETINSTR MT TR+TW*0.1

We have the block but it
might be clean only in the L1,
so we forward the request to
the owner (L1). Update the

sharers.

rh GETX SS, M TR+DR+TW*0.1

Another L1 wants to read the
block and write on it, so we
send the block and change the

state and sharers.

rh GETX MT TR+TW*0.1

Another L1 wants to read the
block and write on it, but an
L1 has it exclusively. We just
forward the request to the

owner and modify the sharers.

rm
GETS,

GETINSTR,
GETX

NP TR+TW+DW

wh L1upgrade SS TR+TW*0.1
The block just needs to
change its state to be

exclusive.

wb PUTX MT TR+TW*0.1+DW
This is a write back. We

change the state and copy the
data.

rpl L2rpl SS TR+TW*0.1+DR The block is dirty so I have to
write back to memory.

rpl L2rpl clean SS TR+TW*0.1 No writeback needed.
rpl L2rpl M TR+TW*0.1+DR
rpl L2rpl clean M TR+TW*0.1

rpl L2rpl, L2rpl
clean MT TR+TW*0.1

I forward the request to the
owner (L1), so I do not have

to read the data here.

60

C.4. ESTIMATING THE ENERGY EXPENDED BY CACHES

Table C.6: Meaning of the acronyms used for power analysis.

Acronym Meaning
TR, TW Tag read, tag write
DR, DW Data read, data write
rh, rm Read hit, read miss
wh, wm Write hit, write miss
rpl Replacement
inv Invalidation
req from L2 Request forwarded from L2
wb Writeback
Ifetch Instruction fetch
L1Repl Replacement in the L1 hline
GETS Get shared data. It is a data request for a read access
GETX Get exclusive data. It is a data request for a write access
GETINSTR Get instruction
Fwd GETS,
GETX,
GETINSTR

Forwarded requests from L2 to L1

L1upgrade Upgrade data from being shared to being exclusive due a write access
PUTX Writeback
L2repl Replacement in the L2
L2repl clean Replacement in the L2 but no data sent because it has not been modified
S, E, M, NP, I L1 states: Shared, Exclusive, Modified, Not Present and Invalid

SS, M, MT, NP

L2 states: Shared (Data is present in 0 or more L1 caches and has not
been modified), Modified (Data is only in the L2 and might have been
modified), Modified (Data is in one L1 and might have been modified),
Not Present.

61

62

Appendix D
Results

This appendix contains the results of our analysis for 16 and 64-core architectures, simulating
both parallel and multiprogrammed workloads. We focus on the comparison of performance, traffic
distribution, power and area for the mesh, torus and ring topologies. We include a ring with increased
bandwidth and one with 3-cycle routers. We conclude by indicating which topology should be used
for the 16 and 64-core systems.

D.1. Performance

Our objective is to compare the behaviour of the ring, mesh and torus topologies. The ring
a simple topology that is expected to have worse performance but less power and area costs.
The torus is the most complex topology out of all three. It has more links that provide lower
communication latency but suffers from higher energy consumption. The mesh is an intermediate
option used very frequently due to its regularity. To benefit from the small area of the original
ring topology, two additional rings have been included: one with higher bandwidth where flits
are 24 bytes long (instead of the original 16 bytes), and one with 3-cycle routers (instead of
4-cycle routers).

To compare the impact of the network configurations on performance, we are studying the
number of processor cycles it takes for the parallel workloads to complete the parallel section.
For the multiprogrammed workloads, we check how many instructions get executed in 500 million
cycles. Figure 5.1 shows these values normalized to the mesh topology. We can see that we
achieve the best performance with the torus topology, closely followed by the mesh. In 16-core
architectures differences between topologies are much smaller, with the ring with 3-cycle routers
being very similar to the mesh for some applications. In 64-core applications, the performance of
the ring topologies drops significantly. The ring with higher bandwidth (with 24B flits and links,
as opposed to the standard 16B) performs only slightly better than the original ring, which does
not compensate for the increase in area and power. The ring with 3-cycle routers instead of
4-cycle ones also performs better than the original ring, but is still much worse than the mesh
and torus.

The differences in performance are a direct consequence of the number of hops it takes a
message to go from its source to its destination. In Figure D.1 we present candle sticks for the
aggregate hop count for the 16 and the 64-core architectures. Intuitively, we could consider that
we are executing all the applications one after the other on each system configuration. The
differences among the workloads are extremely small. Both the median and the variability of the
hop count are much bigger for the ring topologies, especially with 64 cores, which is where we

63

APPENDIX D. RESULTS

saw more pronounced performance drops. Hop count for the ring topologies is the same in all
cases. The difference in performance for the ring with 24B-flits is because data messages will be
only three flits long instead of five, which will reduce the serialization latency.

 0

 2

 4

 6

 8

 10

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

C
y
c
le

s

(a) 16 cores

 0

 5

 10

 15

 20

 25

 30

 35

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

C
y
c
le

s

(b) 64 cores

Figure D.1: Average hop count for 16 and 64 cores. All applications have been considered together, as if they
were executed back to back. There are no differences between parallel and multipgorammed workloads, so results
are combined. We present candlesticks, where we can see the minium and maximum values and the three quartiles.
Note that scales are different

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

N
u
m

b
e
r

o
f
c
y
c
le

s

(a) 16 cores

 0

 20

 40

 60

 80

 100

 120

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

Base_latency
Blocking_latency

(b) 64 cores

Figure D.2: Average network latency in number of cycles broken down into base and blocking latency for 16 and
64 cores. All applications have been considered together, as if they were executed one after the other. There are
no differences between parallel and multipgorammed workloads, so results are presented combined.

Performance could also drop because congestion on the network is holding messages on the
network. However, that is not the case. We have checked that, although it takes long to traverse
the network, resources are idle most of the time. Figure D.3 shows average link utilization in
flits per cycle. We can see that each link is being used, in average, no more 10 times every 100
cycles, which means the network is not being highly used. Figure D.2 represents the network
latency split in the base latency (cycles it would take packets to traverse the network without
contention) and blocking latency (extra time due to contention). We can clearly see that the

64

D.2. NON UNIFORM TRAFFIC DISTRIBUTION

blocking latency is a small percentage of the total latency. We also detect the differences in
latency that were mentioned in the previous paragraph and are responsible for the performance
variances between the ring topologies. Figure D.4 depicts the number of times each flit had to
request virtual channel allocation and switch allocation until it was granted. Virtual channel
allocation is only performed by the head flit of each message. The ideal situation would be
have one request per flit, meaning they got the resources in the first try. The graph shows that
flits need to request allocation always less than 1.2 times, which means requests are frequently
granted. There are no significant differences between topologies. The ring topologies have slightly
more non-granted requests because, since there are less links and less virtual channels, the same
amount of traffic needs to compete for less resources. The torus has more arbitration failures
than the mesh because it condenses the same amount of traffic in a shorter execution time. VC
allocation fails more frequently than SW allocation, which is logical since some flits are turned
back at VC allocation and, therefore, there are less flits contending for the crossbar. Again, this
points out the low congestion of the network. There still could be congestion burstiness that
is not showing up because we are considering temporal averages of the metrics. It is left for
future work to check if there are localized congestion bursts in certain moments of the simulations.

These results ratify the conclusions of Sanchez et al., which point out that the number of
hops is the most critical parameter of the network [37].

D.2. Non uniform traffic distribution

We have already seen that the interconnection network is not heavily used, but it is also
important to notice that the use is not uniform. Traffic is unevenly distributed in the interconnect,
which means that some resources will be needed more often than others. In this section, we are
only presenting results for blackscholes among all the parallel applications. We have results for
all the other applications but we will omit them due to space constraints. The same conclusions
are extracted from all parallel applications. We will also be focusing on results for a 64-core chip,
since results are more interesting with a higher core count. Conclusions still hold for 16-core
configurations.

Figures 5.3 and 5.4 depict a heat map of injected flits per cycle for each node and link
utilization for blackscholes executed on 64 cores. The distribution of injection flits is the same
regardless of the topology. Values are usually smaller for the rings because a very similar amount
of flits gets injected in a much longer period of time. Besides, for the ring with higher bandwidth
(24B flits), flits are bigger so we need less flits to send the same amount of information. We
can clearly see that some nodes inject more flits than others. Parallel workloads usually have
a master thread that drives the execution and distributes work to other threads, which might
not be used uniformly. In this case, judging from the heatmaps, we could say that the master
thread is located in the bottom left corner of the chip. We can also see that link utilization is
higher around the nodes with higher injection rates. Also, link utilization is higher in the ring
topologies, since there are less links to transport the same amount of information. The torus
wastes more resources since it is the topology where the highest number of flits get injected
per cycle, but still has the lowest link usage. Even though we see different patterns in other
applications, the conclusions we draw from them are exactly the same.

Figures 5.5 and 5.6 show the same plots for the execution of a multiprogrammed workload. In
this case, we see four clear hotspots in the injection pattern in the edges of the chip. Those are the
tiles where the memory controllers are located. Apart from that, the rest of ideas we introduced

65

APPENDIX D. RESULTS

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Blackscholes

C
anneal

Fluidanim
ate

Sw
aptions

X264

Barnes

Fm
m

O
cean

R
adiosity

Volrend

W
ater−spatial

fl
it
s
/c

y
c
le

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Multi

fl
it
s
/c

y
c
le

MESH
TORUS

RING
RING_FLIT24B

RING_3CYCLE_ROUTER

(a) 16 cores

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Blackscholes

C
anneal

Fluidanim
ate

Sw
aptions

X264

Barnes

Fm
m

O
cean

R
adiosity

Volrend

W
ater−spatial

fl
it
s
/c

y
c
le

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Multi

fl
it
s
/c

y
c
le

MESH
TORUS

RING
RING_FLIT24B

RING_3CYCLE_ROUTER

(b) 64 cores

Figure D.3: Average link utilization in flits/cycle for 16 and 64 cores. We distinguish parallel applications (left)
and multipgrogrammed workloads (right).

0.00

0.20

0.40

0.60

0.80

1.00

1.20

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

re
q
u
e
s
ts

 /
 f
lit

(a) 16 cores

0.00

0.20

0.40

0.60

0.80

1.00

1.20

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

re
q
u
e
s
ts

 /
 f
lit

VC_allocation SW_allocation

(b) 64 cores

Figure D.4: Requests per flit for VC allocation and switch allocation for 14 and 64 cores. The ideal value is 1
request per flit, which means messages did not get stalled.

66

D.2. NON UNIFORM TRAFFIC DISTRIBUTION

for parallel workloads are still valid. In the mesh topology we can also see that links are more
used in the center of the chip, which is the characteristic behaviour for this topology with uni-
form traffic. Probably, the memory controller location increases link usage in the center of the chip.

We also noticed that, although average congestion is very low, there are some routers that are
highly congested and some others that are not congested at all. In Figures D.5 and D.6 we can see
the average number of times each flit had to request virtual channel allocation at each router for
blackscholes and the multiprogrammed workload, respectively. We clearly see that arbitration
fails much more often in certain parts of the chip, coinciding with the injection and link utiliza-
tion hotspots. The differences are especially big for blackscholes, where flits need to repeat
requests an average of 3 or 4 times in the ring topologies, but they still appear in all the other ex-
ecutions. Again, we see that differences are much larger for the rings, since there are less resources.

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

re
q
u
e
s
ts

 /
 f
lit

(a) Mesh
 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

re
q
u
e
s
ts

 /
 f
lit

(b) Torus
 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

re
q
u
e
s
ts

 /
 f
lit

(c) Ring

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

re
q
u
e
s
ts

 /
 f
lit

(d) Ring, 24B flits
 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

re
q
u
e
s
ts

 /
 f
lit

(e) Ring, 3-cycle routers

Figure D.5: Virtual channel allocation requests per flit for the blackscholes application simulated on 64 cores.
Note that scales are different.

These results point out that the network is not being uniformly used. We could have an
heterogeneous network where some tiles had more resources and move the threads that need
them to those locations. That way, we would be saving power in the lighter parts of the chip
and would not waste so many resources. Mishra et al. already introduce this idea, but they
only apply it statically knowing that the center of the chip is usually used more often in mesh
topologies [34]. As we have seen, this is not always the case.

67

APPENDIX D. RESULTS

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

1.00

1.05

1.10

1.15

1.20

1.25

1.30

re
q
u
e
s
ts

 /
 f
lit

(a) Mesh
 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

1.00

1.10

1.20

1.30

1.40

1.50

1.60

re
q
u
e
s
ts

 /
 f
lit

(b) Torus
 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

1.00

1.20

1.40

1.60

1.80

2.00

re
q
u
e
s
ts

 /
 f
lit

(c) Ring

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

1.00

1.20

1.40

1.60

1.80

2.00

re
q
u
e
s
ts

 /
 f
lit

(d) Ring, 24B flits
 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

1.00

1.20

1.40

1.60

1.80

2.00

re
q
u
e
s
ts

 /
 f
lit

(e) Ring, 3-cycle routers

Figure D.6: Virtual channel allocation requests per flit for the multiprogrammed workload simulated on 64 cores.
Note that scales are different.

D.3. Type of Traffic Traversing the Network

There are different types of messages traversing the network. We need to send control
messages, which are one flit long, and data messages, which are five flits long (or three in our
ring with higher bandwidth). Traffic can also be classified in requests and replies. Usually,
requests are control messages (except for writebacks) and replies are data messages (except for
acknowledgements). Figure D.7 shows the use of each virtual network in flits per cycle per node.
As we explained in Chapter 3, virtual channels 0 and 1 compose a virtual network used for
requests and virtual channels 2 and 3 compose another virtual network used for replies. We see
that VN0 is used much less than VN1. That is because messages travelling on VN0 are mostly
made up of a single flit, while the ones in VN1 usually have 5 flits. This agrees with Seiculescu et
al. and Lodde et al., that based on this idea proposed architectures with two separate dedicated
networks tuned for the necessities of the traffic they would be used for [39, 28]. We can also see
that there is a balanced use of the virtual channels that compose each virtual network, regardless
of the topology. This shows that the load balancing we implemented in our deadlock avoidance
method introduced in Chapter 3 is working properly.

The virtual channels in the ring are usually used more frequently than in the other topologies
because the same number fo flits have to flow through less links and virtual channels, increasing
the router congestion. For the ring with 24B flits, the number of flits is smaller because they are
bigger and, therefore, we need less filts per message. The cases where the virtual channels in the
torus are used more frequently are due to the same amount of traffic traversing the network in a

68

D.3. TYPE OF TRAFFIC TRAVERSING THE NETWORK

smaller number of cycles. The multiprogrammed workloads consistently use the virtual channel
buffers more than the parallel applications. This is in line with their higher injection rate.

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

fl
it
s
/c

y
c
le

/n
o

d
e

VC0
VC1
VC2
VC3

MultiWater−spatialVolrendRadiosityOceanFmmBarnesX264SwaptionsFluidanimateCannealBlackscholes

(a) 16 cores

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

fl
it
s
/c

y
c
le

/n
o
d
e

VC0
VC1
VC2
VC3

MultiWater−spatialVolrendRadiosityOceanFmmBarnesX264SwaptionsFluidanimateCannealBlackscholes

(b) 64 cores

Figure D.7: Average virtual channel load for 16 and 64 cores. Values are represented in flits per cycle per node,
in order to compare between the 16 and 64-core architectures. Bars are broken into the load for each of the
four virtual channels. The rightmost bars correspond to the multiprogrammed workloads; the rest are parallel
applications.

There are also different types of traffic depending on the elements that are communicating:
two L1 caches, an L1 and an L2 or an L2 with a memory controller. The number of messages
that traverse the network is an effect of the cache miss rates. Figure D.8 shows the number of
messages that traverse the network distinguishing the type of communication. Traffic between
L1 caches happens rarely, only when an L1 needs to send its private data to another L1. The
most common type of traffic happens between the L1 and L2 caches, which happens with every
L1 cache miss and writebacks. Communication between the L2 and main memory happens due
to L2 cache misses and writebacks of dirty lines from L2. For the multiprogrammed workloads,
there is more traffic between the L2 cache and main memory than in parallel workloads, which is
consistent with the higher congestion on the tiles with memory controllers we saw in the previous
section. In the multiprogrammed workloads, especially for 64 cores, we can see big differences in

69

APPENDIX D. RESULTS

the number of messages exchanged. This is because we are executing a fixed number of cycles.
Since the ring topologies are slower, less amount of work gets done in the same time and less
messages are sent into the network.

It is interesting to study the differences between the 16-core the 64-core architectures for the
parallel applications. In this case, the same amount of work is executed for every application,
though it takes longer with some network configurations. The L2 cache is four times bigger
with 64 cores, which means there will be less replacements and, therefore, less communication
with main memory. This can be checked with canneal and fluidanimate, where the number of
messages exchanged between the L2 and memory gets divided by four when going from 16 to 64
cores. The amount of traffic between the L1 and L2 is slightly bigger in 64 processors. We also
have more L1 cache total space, but we also have more cores that will need to communicate with
each other.

With most applications, there are no significant differences between topologies in the number
of messages exchanged. However, in fluidanimate, x264 and ocean there are significant
variations in the amount of traffic between L1 and l2, especially in the 64-core configurations.
Faster topologies, like mesh and torus, have the side effect of increasing the messages between
first and second level caches. We have noted that the difference comes from a much higher
number replacements in the L1, which is probabily due to the use of synchronization. Different
communication latencies may originate modifications in the ordering of the coherence messages
in synchronization phases of the applications. We will analyse this in more detail as part of our
future work.

D.4. Area and Power

Figure D.9 represents the area needed by the interconnection network and the L1 and L2
caches. For the interconnect, we show the area for each one of the topologies, which was obtained
with Orion. It is broken down into router and link area. The link area is an upper bound for the
real value, since we have accounted for wires and repeaters and part of the wires may be router
over logic. The torus is the topology with larger area requirements and the ring the one with
the lowest. The ring with higher bandwidth was designed so that routers would have the same
area as the torus routers. The area for the ring with 3-stage routers is the same as the area for
the original ring. If we compare the area used by the interconnect and the area used by all the
caches, also depicted in Figure D.9, we see that they are in the same range, which shows that
the impact of the interconnect on the chip area is as important as that of the L1 caches. This
can be seen more clearly in the piecharts of Figure D.10. For the interconnect, we have used the
area of the mesh toplogy, since it was between the values for the ring and torus.

Figure D.11 depicts the energy expended by the interconnect for 16 and 64 cores. These
values are calculated with Orion based on the use of the interconnect recorded during simulations.
We notice that the ring with increased bandwidth expends much more energy than the original
one, and even more than the torus. The consumption of the mesh and torus is quite similar. For
16 cores, the original ring and the one with 3-cycle routers need less energy because routers are
simpler and there are less links. In the 64-core architecture, there are some parallel applications
for which all the ring topologies expend more energy. This is due to the much larger execution
time and higher contention in the interconnect. If parallel applications had perfect scaling, static
energy would stay constant when going from 16 to 64 processors because we would multiply
by four the number of resources but divide execution time by four. Dynamic energy should

70

D.4. AREA AND POWER

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

M
e
s
s
a
g

e
s
 (

in
 m

ill
io

n
s
)

Between L1 and L2
Between L1 caches

Between L2 and memory

MultiWater−spatialVolrendRadiosityOceanFmmBarnesSwaptionsFluidanimateCannealBlackscholes

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

X264

(a) 16 cores

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

M
e
s
s
a
g
e
s
 (

in
 m

ill
io

n
s
)

Between L1 and L2
Between L1 caches

Between L2 and memory

MultiWater−spatialVolrendRadiosityOceanFmmBarnesFluidanimateCannealBlackscholes

 0

 50

 100

 150

 200

 250

X264Swaptions

(b) 64 cores

Figure D.8: Traffic between each type of element of the memory subsystem for 16 and 64 cores, meassured in
total number of messages (note that some messages are one flit long and others are divided in five or three flits).
Note that applications have been rearranged to adapt the scales for better visualization. The rightmost bars of the
big plots correspond to the multiprogrammed workloads; the rest are parallel applications.

stay constant. As we can see, energy increases with the number of processors, which means the
applications do not scale very well. For the multiprogrammed workloads, where simulation time
is constant, we see that both static and dynamic energy are multiplied by four when moving up
to 64-core architectures.

Figure D.12 depicts the energy expended by the L1 caches, which have parallel access (this
was described in Appendix B). Figure D.13 shows the energy for the L2 caches, which have
sequential access. We notice that applications with higher network energy consumption are the
same as applications with higher cache energy consumption, because the use of both resources is
correlated. The L2 expends less dynamic energy than the L1 caches, since it is used less often,
but more static energy, because it is larger.

Figure D.14 includes pie charts with the energy consumption share of the network and the
caches, for 16 and 64 processors. For the network energy, the mesh topology has been used. Also,

71

APPENDIX D. RESULTS

 0

 2

 4

 6

 8

 10

 12

 14

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

A
re

a
 (

m
m

^2
)

 0

 5

 10

 15

 20

 25

 30

 35

 40

L1_cache

L2_cache

(a) 16 cores

 0

 10

 20

 30

 40

 50

 60

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

A
re

a
 (

m
m

^2
)

Router Link

 0

 20

 40

 60

 80

 100

 120

 140

 160

L1_cache

L2_cache

Data
Tag

(b) 64 cores

Figure D.9: Network and cache area in mm2 for 16 and 64 cores. They are aggregated values for all the
components of the network and all the caches in the chip. Link area includes both wires and repeaters, so it is an
upper bound for the real value, since part of the wires may be router over logic.

Network
17.0%

L1 Cache

19.0%

L2 Cache

64.0%

(a) 16 cores

Network
19.0%

L1 Cache

19.0%

L2 Cache

62.0%

(b) 64 cores

Figure D.10: Pie charts comparing network and cache area for 16 and 64 cores. For the network area, the mesh
topology has been used.

the energy expended in clock propagation in the network has been removed to make a more
accurate comparison, because the results for the cache did not include it. In parallel workloads,
the energy used by the interconnect is approximately the same as the energy used by the L1 and
L2 caches combined. For the multiprogrammed workloads, the share of the network is higher,
which can be explained by the larger amount of accesses to main memory we already discussed
in Sections D.2 and D.3. This results ratify the important share the interconnection network has
in the total power consumption of the system.

Figure D.15 shows the energy expended at each component of the router and the links. We
can see that the distribution of the energy among the components does not change with different
topologies or type of workload. The propagation of the clock consumes most of the energy,
followed by the links, the input buffers and the crossbar. The consumption of the allocators is
negligible.

72

D.5. TOPOLOGY SELECTION

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

J
u
le

s
 (

J
)

Dynamic Energy
Static Energy

MultiVolrendRadiosityOceanFmmBarnesSwaptionsFluidanimateCannealBlackscholes

 0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

16.0

Water−spatialX216

(a) 16 cores

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

 5.0

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

J
u
le

s
 (

J
)

Dynamic Energy
Static Energy

MultiVolrendRadiosityOceanFmmBarnesFluidanimateCannealBlackscholes

 0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

Water−spatialX264Swaptions

(b) 64 cores

Figure D.11: Energy expended by the interconnection network for 16 and 64 cores, expressed in jules. Bars are
broken into dynamic and static energy. Note that applications have been rearranged to adapt the scales for better
visualization.

D.5. Topology Selection

When making design choices for future architectures we need to consider performance, power
and area. When executing parallel applications on a multicore architecture, we are interested in re-
ducing latency. Therefore, we are calculating energy-delay, which is commonly used to account for
both energy consumption and performance improvements. This allows us to visualize the tradeoff
and decide if the performance increase we are getting is worth the higher consumption. Using chip
multiprocessors to run multiprogrammed workloads, we want to increase our throughput. For
that reason, we are going to use energy per instruction (EPI), which indicates the quality of the
system in terms of throughput by modeling how much energy is needed for the execution of each
instruction. For these workloads, we ran the simulations for a fixed number of cycles (as we ex-
plained in Chapter 4, so the energy-delay metric would not be representative. We are considering
only the energy expended by the interconnection network since it is the part of the system we are
comparing and we already saw that cache energy does not vary among interconnect configurations.

73

APPENDIX D. RESULTS

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LES_R

ju
le

s
 (

J
)

Dynamic energy
Static energy

MultiVolrendRadiosityOceanFmmBarnesX264SwaptionsFluidanimateCannealBlackscholes

(a) 16 cores

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LES_R

ju
le

s
 (

J
)

Dynamic energy
Static energy

MultiVolrendRadiosityOceanFmmBarnesX264SwaptionsFluidanimateCannealBlackscholes

(b) 64 cores

Figure D.12: Energy expended by the L1 cache with 16 and 64 processors, broken into dynamic and static
energy. Water-spatial has been left out of this graph because the counters used for the calculation of cache energy
overflowed due to large execution time. The rightmost bars of the big plots correspond to the multiprogrammed
workloads; the rest are parallel applications.

Figure D.16 includes both metrics explained above for 16 and 64-core architectures. When
using 16 cores, we are getting the best results with the ring topology with 3-cycle routers, which
is similar to the original ring topology for some applications and close to the mesh in most cases.
However, if we focus on our 64-core architecture, we most often get the best results with the
torus, very closely followed by the mesh. This is because, as we saw in Section D.1, performance
drops much more significantly for the ring topologies when we have a higher core count due to
the number of hops. In those cases, the increase in energy consumption is justified by the large
benefits we get in performance.

In Figure 5.2 we represent area versus energy-delay or EPI, so as to make a decision based
on the three main aspects we should consider. For parallel workloads, we are adding up the
energy-delay values of all the applications as if they were all executed back to back. We would
like to have a configuration with small area and small energy-delay, that is, be in the bottom left
corner of the graphs. For the 16-core system, we would clearly choose the ring topology with

74

D.6. CONCLUSIONS

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

ju
le

s
 (

J
)

Dynamic energy
Static energy

MultiVolrendRadiosityOceanFmmBarnesX264SwaptionsFluidanimateCannealBlackscholes

(a) 16 cores

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

ju
le

s
 (

J
)

Dynamic energy
Static energy

MultiVolrendRadiosityOceanFmmBarnesX264SwaptionsFluidanimateCannealBlackscholes

(b) 64 cores

Figure D.13: Energy expended by the L2 cache with 16 and 64 processors, broken into dynamic and static
energy. Water-spatial has been left out of this graph because the counters used for the calculation of cache energy
overflowed due to large execution time. The rightmost bars of the big plots correspond to the multiprogrammed
workloads; the rest are parallel applications. Note that scales are different.

3-cycle routers, which gave us the best energy-delay values and has a very small area. With 64
cores, With 64 cores, we could draw a line between the 3-cycle router ring and the mesh topology
to represent the Pareto optimal points. Anything above that line would be suboptimal. We see
mesh and torus very close with the lowest energy-delay values, but the torus needs a much larger
area. Ring topologies still have smaller area, but performance has dropped considerably. In this
case, we would choose the mesh topology to get the best tradeoffs. Conclusions are applicable to
both parallel and multiprogrammed workloads.

D.6. Conclusions

Firstly, we have seen that a ring topology with 3-cycle routers performs well enough for
16-core chips, while having the least power consumption and area requirements. For 64-core
architectures, a ring performs much worse than a mesh and a torus due to the large number of

75

APPENDIX D. RESULTS

Network

52.3%

L1 Cache

19.6%

L2 Cache

28.1%

(a) 16 cores, parallel applications

Network

69.0%

L1 Cache

9.1% L2 Cache
21.9%

(b) 16 cores, multiprogrammed work-
load

Network

50.0%

L1 Cache
18.5%

L2 Cache

31.5%

(c) 64 cores, parallel applications

Network

65.2%

L1 Cache

16.7% L2 Cache
18.1%

(d) 64 cores, multiprogrammed work-
load

Figure D.14: Pie charts comparing network and cache energy for 16 and 64 cores, distinguishing between parallel
and multiprogrammed workloads. We have added up the energy expended by each application, as if they were all
executed back to back. For the network energy, the mesh topology has been used. The energy expended in clock
propagation in the network has been removed because the results for the cache did not include it.

hops needed to traverse the network. The torus has the best performance, but the mesh would
be the best choice considering area and energy costs. We have verified the results presented in
previous work that state that performance depends mostly on the number of hops messages need
to traverse the network. We have also ratified that the network is not congested at all, in fact,
there are parts of the network that are idle most of the time.

Our most significant contribution is related to the distribution of traffic on the network. We
have seen that traffic is not uniformly distributed on the network and that the tiles with higher
injection rates vary with the applications. As far as we know, there is no previous research where
this behaviour has been noted.

We have also explained that there are different types of traffic traversing the network and
how they influence the way resources are used. We have seen that, in some cases, the topology
has an effect on the number of messages injected into the network.

76

D.6. CONCLUSIONS

 0

 5

 10

 15

 20

 25

 30

M
ESH

TO
R
U
S

R
IN

G

FLIT24B

3C
YC

LE_R

ju
le

s
 (

J
)

Parallel

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

ju
le

s
 (

J
)

Multiprogrammed

(a) 16 cores

 0

 20

 40

 60

 80

 100

 120

ju
le

s
 (

J
)

Parallel

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

ju
le

s
 (

J
)

Link
Input

Crossbar
VCalloc

SWalloc
Clock

Multiprogrammed

(b) 64 cores

Figure D.15: Network energy expended by the interconnect for 16 and 64 cores, broken into each one of its
components. We sepparate parallel and multiprogrammed workloads. Note that scales are different.

0.0⋅10
0

2.0⋅10
6

4.0⋅10
6

6.0⋅10
6

8.0⋅10
6

1.0⋅10
7

1.2⋅10
7

O
cean

R
adiosity

Volrend

E
n
e
rg

y
−

d
e
la

y
 (

J
u
le

s
 *

 E
x
e
c
u
ti
o
n
 T

im
e
)

0.0⋅10
0

5.0⋅10
8

1.0⋅10
9

1.5⋅10
9

2.0⋅10
9

2.5⋅10
9

3.0⋅10
9

3.5⋅10
9

4.0⋅10
9

4.5⋅10
9

5.0⋅10
9

Blackscholes

C
anneal

Fluidanim
ate

Sw
aptions

Barnes

Fm
m

0.0⋅10
0

5.0⋅10
10

1.0⋅10
11

1.5⋅10
11

2.0⋅10
11

2.5⋅10
11

X264

W
ater−spatial

0.0⋅10
0

1.0⋅10
−10

2.0⋅10
−10

3.0⋅10
−10

4.0⋅10
−10

5.0⋅10
−10

6.0⋅10
−10

7.0⋅10
−10

8.0⋅10
−10

Multi

E
n
e
rg

y
 p

e
r

in
s
tr

u
c
ti
o
n
 (

J
u
le

s
 /
 I
n
s
tr

)

MESH
TORUS

RING
RING−FLIT24B

RING−3CYCLE−ROUTER

(a) 16 cores

0.0⋅10
0

5.0⋅10
6

1.0⋅10
7

1.5⋅10
7

2.0⋅10
7

2.5⋅10
7

O
cean

R
adiosity

Volrend

E
n
e
rg

y
−

d
e
la

y
 (

J
u
le

s
 *

 E
x
e
c
u
ti
o
n
 T

im
e
)

0.0⋅10
0

1.0⋅10
9

2.0⋅10
9

3.0⋅10
9

4.0⋅10
9

5.0⋅10
9

6.0⋅10
9

7.0⋅10
9

8.0⋅10
9

9.0⋅10
9

Blackscholes

C
anneal

Fluidanim
ate

Barnes

Fm
m

0.0⋅10
0

2.0⋅10
11

4.0⋅10
11

6.0⋅10
11

8.0⋅10
11

1.0⋅10
12

1.2⋅10
12

1.4⋅10
12

1.6⋅10
12

Sw
aptions

X264

W
ater−spatial

0.0⋅10
0

5.0⋅10
−11

1.0⋅10
−10

1.5⋅10
−10

2.0⋅10
−10

2.5⋅10
−10

3.0⋅10
−10

3.5⋅10
−10

4.0⋅10
−10

Multi

E
n
e
rg

y
 p

e
r

in
s
tr

u
c
ti
o
n
 (

J
u
le

s
 /
 I
n
s
tr

)

MESH
TORUS

RING
RING−FLIT24B

RING−3CYCLE−ROUTER

(b) 64 cores

Figure D.16: Tradeoffs between energy and performance. Energy-delay is used for parallel applications and energy
per instruction, for multiprogrammed workloads. In both cases, the lower, the better. Note that applications have
been rearranged to adapt the scales for better visualization. The rightmost plots correspond to the multiprogrammed
workloads; the rest are parallel applications.

77

78

Appendix E
Research paper: Characterization of
Interconnection Networks in CMPs
Using Full-System Simulation

This appendix presents a paper that sumarizes this work and will be submitted to the Intercon-
nection Workshop on Network Architectures: On-Chip, Multi-Chip. The workshop will be co-located
with the HIPEAC conference that will take place in 2013 in Berlin.

79

Characterization of Interconnection Networks in CMPs
Using Full-System Simulation

ABSTRACT
In modern computer architecture systems, chips are com-
posed of several processors and a significant amount of mem-
ory. The importance of the interconnect is growing as the
number of nodes integrated in a chip increases, because
communication among nodes can become a bottleneck and
slow down performance improvement. It also contributes
with a substantial share to power consumption and chip
area. We compare the behaviour of three topologies: bidirec-
tional ring, mesh and torus, and include two aditional ring
topologies: one with increased bandwidth and another with
reduced-pipeline routers. We carefully model all the compo-
nents of the system mentioned earlier using full-system sim-
ulation. We demonstrate that a ring topology with 3-cycle
routers performs well enough for 16-core chips. For 64-core
architectures, rings perform much worse than the mesh and
torus due to the large number of hops needed to traverse
the network. The torus has the best performance, but the
mesh would be the best choice considering area and energy
costs. Congestion in the network is not an issue and traffic
is highly unbalanced, causing some parts of the network to
be idle most of the time.

Keywords
Computer architecture, chip multiprocessor, interconnection
networks, topologies

1. INTRODUCTION
Nowadays, chips are composed of several processors and a
significant amount of memory. A popular trend in the orga-
nization of general purpose chips consist on interconnecting
several nodes (usually called tiles), each of them with a pro-
cessor (core) and one or more levels of shared and/or private
memory caches. Nodes communicate through an intercon-
nection network that allows any pair of nodes to exchange
information. If the current trend continues, the scale of in-
tegration, along with the emergent 3D stacking technology,
will allow us to exponentially increase the number of nodes
in a chip, reaching hundreds or even thousands of cores in
less than ten years. So that this technology evolution can be
translated into an improvement on performance, the capac-
ity of communication among tiles should scale in the same
proportion.

At these time, there are very few studies that model in detail
the set of processors, interconnection network and memory
hierarchy. Besides, analysis that focus on interconnection

networks are usually performed simulating synthetic traffic
or application traces that do not capture the behaviour of
a real execution. We analyse the behaviour of real applica-
tions on the network, carefully modeling all the components
mentioned earlier. This allows us to study the effect of the
interconnection network configuration on the whole system
and the interactions between the memory subsystem and
the interconnect. Specifically, we compare the performance
of three topologies (bidirectional ring, mesh and torus), sim-
ulating a chip multi-processor (CMP) with 16 and 64 cores.
Our aim is to extract meaningful conclusions that will guide
future research on this field.

The remainder of this document is organized as follows: sec-
tion 2 presents the state of the art in interconnection net-
work research; section 3 describes the architecture of our
system; section 4 explains the methodology; 5 summarizes
our results and section 6 concludes the report.

2. RELATED WORK
There are many papers that propose alternatives to the
most commonly used router architectures, topologies and
flow control methods, but none of them model the impact
of their contributions by running real programs on a full
system. Among that research, we highlight the following:
Mishra et. al. propose an heterogeneous on-chip inter-
connect that allocates more resources for routers suffering
higher traffic but they only get good results with a mesh
topology [19]; Koibuchi et. al. detect that adding random
links to a ring topology results in big performance gains, al-
though they only experiment with a network simulator [14].

It is worth mentioning another approach to network on chip
research. Instead of dealing with classical network issues,
there is previous work that tries to improve performance
based on the known behaviour of the memory subsystem
and the coherence protocol. A selection of recent papers
follows. Seiculescu et. al. propose to use two dedicated
networks, one for requests and one for replies [23]. Agarwal
et. al. propose embedding small in-network coherence filters
inside on-chip routers to dynamically track sharing patterns
and eliminate broadcast messages [2]. Krishna et. al. pro-
pose a system to improve the frequent 1-to-many and many-
to-1 communication by forking and aggregating packets to
avoid the increment in the amount of traffic when scaling
the number of nodes [15]. These studies try to improve the
performance of the most commonly used networks, but do
not venture with less conventional topologies.

Table 1: Main characteristics of the CMP system.

Cores 16 and 64 cores, Ultrasparc III Plus, in order, 1 instr/cycle, single threaded, 2GHz frequency
Coherence protocol Directory-based, MESI, directory distributed among L2 cache banks
Consistency model Sequential
L1 cache 32KB data and instruction caches, 4-way set associative, 2-cycle hit access time, 64B line size

Pseudo-LRU replacement policy
L2 cache Distributed, 1 bank/tile, 1MB per bank, 16-way set associative, 7-cycle hit access time, 64B line size

Pseudo-LRU replacement policy
shared, inclusive, interleaved by line address

Memory 4 memory controllers, distributed in the edges of the chip (both for 16 and 64-core architectures)
160-cycle latency

There are very few papers which focus on the comparison of
interconnection network configurations. Balfour and Dally
present an analysis of how different topologies affect perfor-
mance, area and energy efficiency [3]. However, they do not
model the memory subsystem, they only use synthetic traffic
patterns and they fail to include a simpler topology like the
ring. Sanchez et. al. explore the implications of intercon-
nection network design for CMPs, but they focus on more
complex topologies, such as the fat three and the flattened
butterfly [22]. Their main results point out that the main
parameter that influences performance is the number of hops
the messages will need to get from one tile to another in the
network. They also highlight the need of a careful codesign
of the interconnection network and the cache hierarchy. This
necessity has also been noted by Kumar et. al., but their
research does not go above 16 cores [16].

In this work we present an analysis of three topologies with
varying degrees of complexity, performance and power and
area costs. We perform full-system simulation of real work-
loads and carefully model both the memory subsystem and
the interconnect. Our aim is to extract meaningful conclu-
sions that will indicate the weaknesses of current configura-
tions and guide our future research.

3. CMP ARCHITECTURE FRAMEWORK
This section presents the architecture of the chip multipro-
cessor we are modeling, including a more detailed descrip-
tion of the interconnection network.

3.1 General description of the architecture
This study focuses on homogeneous chip multiprocessors
(CMPs). The system is composed of several tiles connected
by an interconnection network. On each tile we have a core
with a private first level cache (L1) split into data and in-
structions, a bank of the shared second level cache (L2), a
router and we may also have a memory controller. Table
1 summarizes the key parameters of our system. To model
the architecture we based our design in other systems with
similar characteristics, both from academia research [28, 23,
4] papers and commercial processors such as IBM Power4
[25], Tilera’s TILEPro64 [26], Intel 48-core processor [9, 10]
and Sun Microsystems’ Niagara2 [21].

We are using a directory-based MESI coherence protocol.
All the traffic that traverses the interconnection network is
a direct consequence of the memory activity, either to move
cache lines (instructions or data) to the tile that needs them
or for coherence management. That is why it is important to

model the caches realistically, even though our main interest
is the interconnect [16, 22].

3.2 Interconnection network
We are going to compare three different topologies: mesh,
torus and ring. The 2D mesh is a widespread choice for
large-scale CMPs due to its regularity. A torus is a mesh in
which we add wraparound links so as to reduce the average
number of hops between tiles. This topology is the one that
will need more resources in area and power. In contrast, we
have included a bidirectional ring. So as to keep the same
organization of the chip following a matrix layout, the ring
is built as a hamiltonian cycle. Table 2 summarizes the main
characteristics of the three topologies.

The network has packet-switched wormhole credit-based flow
control, dimension order routing. We use a pipelined router
with four stages: input buffering and routing, virtual chan-
nel allocation, switch allocation and switch traversal. So
every hop takes a total of five network cycles, including link
traversal. Further information about the characteristics of
the network can be found in Table 3.

In the ring topology, the number of inputs/outputs to the
outside of the tile is reduced to two (as opposed to the four
used in mesh and tours), which results in a smaller num-
ber of buffers and simpler allocators and crossbar. For that
reason, the routers in the ring topology will need a much
smaller area. To make use of this idle space, we have also
tested a configuration in which we increase the link band-
width keeping the router area in the ring slightly under the
one for the mesh and torus topologies. This has allowed
us to have flits of 24 bytes, which will reduce the number of
flits needed per message and, therefore, the network latency.
Following the same idea, since the complexity of the crossbar
is considerably reduced, we have also included tests merging
the switch allocation and switch traversal stages, resulting
in a 3-cycle router.

4. METHODOLOGY
In this section we introduce the metrics, workloads and sim-
ulation environment used in the project.

4.1 Metrics
Our study focuses on the comparison of interconnection net-
work topologies, therefore, we are using several tradditional
interconnect-centric metrics. We study node throughput,
link utilization, hop count, latency, virtual channel load and

Table 2: Qualitative comparison of the three topologies for a CMP system with N tiles (we assume that N will always be a
perfect square). The number of inputs\outputs does not consider tiles with a memory controller, where routers would have
one more input and output, or the tiles in the edges of the mesh, where some ports would be left unused. W is the link
bandwidth and L is the wire length.

Topology inputs/ outputs Bisection BW Max. hops Avg. hops Link length

2D mesh 6/6 2W
√
N 2

√
N 2/3

√
N + 1 L

Torus 6/6 8W
√
N

√
N + 2 1/2

√
N + 2 L

√
2

Ring 4/4 4W N/2 + 2 N/4 L

Table 3: Main characteristics of the interconnection network.

General Two virtual networks (requests and replies)

Routers 4-stage pipeline: routing and input buffering, VC allocation, switch allocation and switch traversal

Round-robin 2-phase VC/switch allocators

2 VCs per virtual network

5-flit buffers per virtual channel, enough to store a whole message (3-flits per buffer in ring

with higher bandwidth)

Links 16-byte flit size (we also include a ring with higher bandwidth with 24B flit size)

1-cycle latency

Technology 32nm, 2GHz frequency, Vdd = 1V

the number of arbitration requests. These metrics help us
gain insight on how each topology behaves with the work-
loads.

Power consumption is a key factor in the design of new ar-
chitectures. We include the energy and area costs of the
interconnect and compare them to those of the memory sub-
system.

We are modeling all the components of the architecture and
we want to examine the impact the different network con-
figurations have on the whole system, so we include metrics
that that reflect the overall performance and the behaviour
of the memory hierarchy. We analyse the execution time
of every application with all the configurations to see which
one leads to better performance. We also include miss rate
results, which are a determinant factor in the pressure im-
posed on the interconnect.

4.2 Workloads
The chip multiprocessors we are focusing on may be used
to execute parallel applications in order to reduce execution
time or for multiprogrammed workloads (execution of in-
dependent programs on each core), to increase throughput.
We are using a selection of shared-memory parallel appli-
cations from PARSEC [5] and SPLASH2 [27] and a multi-
programmed workload made up of SPEC2K6 benchmarks
[24]. To be fair, we tried to put together a set of appli-
cations with varying characteristics in terms of miss rate,
communication, traffic and scaling. We are using blacksc-

holes, canneal, fluidanimate, swaptions and x264 from
the PARSEC benchmark suite (with the large input except
for x264, for which we used medium due to the large simula-
tion time) and barnes, fmm, ocean, radiosity, volrend and
water-spatial from SPLASH2. For SPEC2K6, we chose
16 applications with high footprint and working set size (ac-
cording to [8] and [6]). To build the workload for the 16-core
architectures we have executed each application once, bind-

ing each one of them to a different core so that no migration
occurs. For the 64-core architectures we have used the appli-
cations four times. To execute this workload, we first warm
up the caches for 200 million cycles and then execute for 500
million cycles.

4.3 Simulation environment
We are using Simics full-system simulator [17] and GEMS
[18]. We use a modified version of GARNET, which was
tuned to produce the statistics and support the topologies
we needed [1]. We carefully model all the components of
the system and perform full-system simulation with simple
single-threaded cores and directory-based coherence.

To get the area and energy expended by the network we used
the circuit modeling tool Orion 2.0 [12, 13]. For the memory
hierarchy we used CACTI 6.5 [20]. The technology files in
both tools have been matched so as to be able to compare
the results obtain from the two models. Some parameters
have been taken from the work of Gracia et. al. [7] and
accuracy has been further improved by approximating our
values to the ones used in INTEL architectures [11].

5. RESULTS
This section summarizes the main contributions of our anal-
ysis for 16 and 64-core architectures

5.1 Network topology comparison
To compare the impact of the network configurations on per-
formance, we are studying the number of processor cycles
it takes for the parallel workloads to complete the paral-
lel section. For the multiprogrammed workloads, we check
how many instructions get executed in 500 million cycles.
When making design choices for future architectures we need
to consider performance, power and area. When executing
parallel applications on a multicore architecture, we are in-

terested in reducing latency. Therefore, we are calculating
energy-delay, which is commonly used to account for both
energy consumption and performance improvements. This
allows us to visualize the tradeoff and decide if the perfor-
mance increase we are getting is worth the higher consump-
tion. Using chip multi to run multiprogrammed workloads,
we want to increase our throughput. For that reason, we are
going to use energy per instruction (EPI), which indicates
the quality of the system in terms of throughput by mod-
eling how much energy is needed for the execution of each
instruction.

2.0⋅10
11

2.2⋅10
11

2.4⋅10
11

2.6⋅10
11

2.8⋅10
11

3.0⋅10
11

3.2⋅10
11

 6 7 8 9 10 11 12 13 14 15

E
n
e

rg
y
−

d
e

la
y
 (

J
u
le

s
 *

 E
x
e
c
u
ti
o

n
 T

im
e

)

Network area (mm2)

MESH

TORUS

RING

FLIT24B

3CYCLE−R

5.5⋅10
−10

6.0⋅10
−10

6.5⋅10
−10

7.0⋅10
−10

7.5⋅10
−10

8.0⋅10
−10

 6 7 8 9 10 11 12 13 14 15

E
n

e
rg

y
 p

e
r

in
s
tr

u
c
ti
o

n
 (

J
u
le

s
 /
 I

n
s
tr

u
c
ti
o

n
)

Network area (mm2)

MESH

TORUS

RING

FLIT24B

3CYCLE−R

(a) Parallel applications (left) and multiprogrammed
workloads (right) executed on 16 cores

5.0⋅10
10

1.0⋅10
11

1.5⋅10
11

2.0⋅10
11

2.5⋅10
11

3.0⋅10
11

 20 25 30 35 40 45 50 55

E
n
e
rg

y
−

d
e
la

y
 (

J
u
le

s
 *

 E
x
e
c
u
ti
o

n
 T

im
e

)

Network area (mm2)

MESH TORUS

RING

FLIT24B

3CYCLE−R

2.2⋅10
−10

2.4⋅10
−10

2.6⋅10
−10

2.8⋅10
−10

3.0⋅10
−10

3.2⋅10
−10

3.4⋅10
−10

3.6⋅10
−10

3.8⋅10
−10

 20 25 30 35 40 45 50 55

E
n
e
rg

y
 p

e
r

in
s
tr

u
c
ti
o
n
 (

J
u
le

s
 /
 I

n
s
tr

u
c
ti
o

n
)

Network area (mm2)

MESH

TORUS

RING

FLIT24B

3CYCLE−R

(b) Parallel applications (left) and multiprogrammed
workloads (right) executed on 64 cores

Figure 1: Area versus energy-delay or energy per instruction
for 16 and 64 cores. We also distinguish between parallel
applications (left) and multiprogrammed workloads (right).
For the parallel applications, they have all been considered
together, as if they were executed back to back.

Figure 1 represents area versus energy-delay or EPI for 16
and 64-core architectures, which will help us to make a de-
cision based on the three main aspects we should consider.
First, we are going to focus only on the vertical axe, which
is representing the energy-delay or EPI. For parallel work-
loads, we are adding up the energy-delay values of all the
applications as if they were all executed back to back. When
using 16 cores, we are getting the best results with the ring
topology with 3-cycle routers, which is similar to the original
ring topology for some applications and close to the mesh
in most cases. However, if we focus on our 64-core architec-
ture, we most often get the best results with the torus, very
closely followed by the mesh. This is because, as we saw in
Section ??, performance drops much more significantly for
the ring topologies when we have a higher core count due to
the number of hops. In those cases, the increase in energy
consumption is justified by the large benefits we get in per-
formance.

We are now going to consider the area requirements for each
topology. The torus is the topology with larger area require-

ments and the ring the one with the lowest. The ring with
higher bandwidth was designed so that routers would have
the same area as the torus routers. The area for the ring
with 3-cycle routers is the same as the area for the original
ring.

If we look at all the parameters included in the graph, we
would like to have a configuration with small area and small
energy-delay, that is, be in the bottom left corner of the
graphs. For the 16-core system, we would clearly choose the
ring topology with 3-cycle routers, which gave us the high
energy-delay values and has only very small area. With
64 cores, we see mesh and torus very close with the lowest
energy-delay values, but the torus needs a much larger area.
Ring topologies still have smaller area, but performance has
dropped considerably. In this case, we would choose the
mesh topology to get the best tradeoffs. Conclusions are
applicable to both parallel and multiprogrammed workloads.

5.2 Non uniform traffic distribution
We have analysed the number of injected flits and the link
utilization for all our architecture configurations and work-
loads. We have noted that traffic is unevenly distributed in
the interconnect, which means that some resources will be
needed more often than others. In this section, we are only
presenting results for blackscholes among all the parallel
applications. We have results for all the other applications,
but we will omit them due to space constraints. The same
conclusions are extracted from all parallel applications. We
will also be focusing on results for a 64-core chip, since re-
sults are more interesting with a higher core count. Conclu-
sions still hold for 16-core configurations.

Figure 2 depicts a heat map of injected flits per cycle for
each node and link utilization for blackscholes executed
on 64 cores. The distribution of injection flits is the same
regardless of the topology. Values are smaller for the ring
topologies because a very similar amount of flits gets in-
jected in a much longer period of time. Besides, for the ring
with higher bandwidth (24B flits), flits are bigger so we need
less flits to send the same amount of information. We can
clearly see that some nodes inject many more flits than oth-
ers. Parallel workloads usually have a master thread that
drives the execution and distributes work to other threads,
which might not be used uniformly. In this case, judging
from the heatmaps, we could say that the master thread is
located in the bottom left corner of the chip. We can also see
that link utilization is higher around the nodes with higher
injection rates. Also, links are much more used in the rings,
since there are less links to transport the same amount of
information. The torus wastes more resources since it is the
topology where the highest number of flits get injected per
cycle, but still has lowest link usage. Even though we see
different patterns in other applications, the conclusions we
draw from them are exactly the same.

Figure 3 shows the same plots, but for the execution of a
multiprogrammed workload. In this case, we see four clear
hotspots in the injection pattern in the edges of the chip.

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.000

0.050

0.100

0.150

0.200

fl
it
s
/c

y
c
le

(a) Mesh

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.000

0.050

0.100

0.150

0.200

fl
it
s
/c

y
c
le

(b) Torus

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.000

0.100

0.200

0.300

0.400

0.500

fl
it
s
/c

y
c
le

(c) Ring

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.000

0.100

0.200

0.300

0.400

0.500

fl
it
s
/c

y
c
le

(d) Ring, 24B flits

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.000

0.100

0.200

0.300

0.400

0.500

fl
it
s
/c

y
c
le

(e) Ring, 3-cycle routers

Figure 2: Injected flits per node (left) and link utiliza-
tion (right) for the blackscholes application executed in
64 cores. For link utilization, each line is the combination
of two links, one in each direction. Note that the scale has
been kept constant among topologies for injection figures,
but not for link utilization. In the torus, links that touch
the edges of the chip represent the wraparound links.

Those are the tiles where the memory controllers are located.
Apart from that, the rest of ideas we introduced for parallel
workloads are still valid. In the mesh topology we can also
see that links are more used in the center of the chip, which is
the characteristic behaviour for this topology with uniform
traffic. Probably, the memory controller location increases
link usage in the center of the chip.

These results point out that the network is not being uni-
formly used. We could have an heterogeneous network where
some tiles had more resources and move the threads that
need them to those locations. That way, we would be sav-
ing power in the lighter parts of the chip and would not
waste so many resources. Mishra et al. already introduce
this idea, but they only apply it statically knowing that the
center of the chip is usually used more often in mesh topolo-
gies [19]. As we have seen, this is not always the case. As far
as we know, there is no previous research that introuduces
the idea of non uniform traffic derived from the behaviour
of applications.

6. CONCLUSIONS
Interconnection networks have a significant influence on sys-
tem performance, area and power consumption. The actual
trend in computer architecture design consists on integrat-
ing several cores on a single chip. The network on chip is
responsible for the communication between those cores and
the caches its design is crucial for guaranteeing improve-
ments in performance.

We have compared the behaviour of three network topolo-
gies: mesh, torus and ring. We include two additional ring
configurations: one with bigger flits and one with 3-cyle
routers. We carefully model the processors, memory hierar-
chy and the network using full-system simulation and exe-
cuting real applications, including both parallel and multi-
programmed workloads. We include results for CMPs with
16 and 64 cores.

We have demonstrated that performance is highly affected
by the choice of the interconnect in 64-core systems. The
ring topologies produce much larger execution times due the
increased number of hops it takes to traverse the network.
The torus has the best performance, but with higher power
and area costs. In this case, the mesh would be the best
choice. On the other hand, for 16-core chips, differences in
performances are not so big and a ring topology with 3-cycle
routers offers acceptable performance with the lowest power
consumption and area requirements.

We have seen that traffic is not uniformly distributed on
the network and that the tiles with higher injection rates
vary with the applications. For multiprogrammed work-
loads, hotspots are always located in the memory controllers.
As far as we know, there is no previous research where this
behaviour has been noted.

7. REFERENCES
[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. Jha.

Garnet: A detailed on-chip network model inside a

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.05

0.10

0.15

0.20

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.050

0.100

0.150

0.200

0.250

0.300

fl
it
s
/c

y
c
le

(a) Mesh

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.05

0.10

0.15

0.20

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

fl
it
s
/c

y
c
le

(b) Torus

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.05

0.10

0.15

0.20

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.420

0.440

0.460

0.480

0.500

0.520

0.540

0.560

0.580

0.600

0.620

fl
it
s
/c

y
c
le

(c) Ring

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.05

0.10

0.15

0.20

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.300

0.320

0.340

0.360

0.380

0.400

0.420

0.440

fl
it
s
/c

y
c
le

(d) Ring, 24B flits

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

0.00

0.05

0.10

0.15

0.20

In
je

c
te

d
 f
lit

s
/c

y
c
le

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
0.480

0.500

0.520

0.540

0.560

0.580

0.600

0.620

0.640

0.660

0.680

fl
it
s
/c

y
c
le

(e) Ring, 3-cycle routers

Figure 3: Injected flits per node (left) and link utilization
(right) for the multiprogrammed workload application exe-
cuted in 64 cores.

full-system simulator. In Performance Analysis of
Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on, pages 33 –42, 2009.

[2] N. Agarwal, L.-S. Peh, and N. K. Jha. In-network
coherence filtering: snoopy coherence without
broadcasts. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, pages 232–243, New
York, NY, USA, 2009. ACM.

[3] J. Balfour and W. J. Dally. Design tradeoffs for tiled
cmp on-chip networks. In Proceedings of the 20th
annual international conference on Supercomputing,
ICS ’06, pages 187–198, New York, NY, USA, 2006.
ACM.

[4] L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese. Piranha: a scalable architecture
based on single-chip multiprocessing. In Proceedings of
the 27th annual international symposium on Computer
architecture, ISCA ’00, pages 282–293, New York, NY,
USA, 2000. ACM.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
parsec benchmark suite: characterization and
architectural implications. In Proceedings of the 17th
international conference on Parallel architectures and
compilation techniques, PACT ’08, pages 72–81, New
York, NY, USA, 2008. ACM.

[6] D. Gove. Cpu2006 working set size. SIGARCH
Comput. Archit. News, 35(1):90–96, Mar. 2007.

[7] D. Gracia, G. Dimitrakopoulos, T. Arnal,
M. Katevenis, and V. Yufera. Lp-nuca:
Networks-in-cache for high-performance low-power
embedded processors. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 20(8):1510
–1523, aug. 2012.

[8] J. L. Henning. Spec cpu2006 memory footprint.
SIGARCH Comput. Archit. News, 35(1):84–89, Mar.
2007.

[9] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar,
S. Jain, V. Erraguntla, M. Konow, M. Riepen,
M. Gries, G. Droege, T. Lund-Larsen, S. Steibl,
S. Borkar, V. De, and R. Van Der Wijngaart. A
48-core ia-32 processor in 45 nm cmos using on-die
message-passing and dvfs for performance and power
scaling. Solid-State Circuits, IEEE Journal of,
46(1):173 –183, jan. 2011.

[10] Intel. The scc platform overview. 2012.

[11] C.-H. Jan, M. Agostinelli, M. Buehler, Z.-P. Chen,
S.-J. Choi, G. Curello, H. Deshpande, S. Gannavaram,
W. Hafez, U. Jalan, M. Kang, P. Kolar, K. Komeyli,
B. Landau, A. Lake, N. Lazo, S.-H. Lee, T. Leo,
J. Lin, N. Lindert, S. Ma, L. McGill, C. Meining,
A. Paliwal, J. Park, K. Phoa, I. Post, N. Pradhan,
M. Prince, A. Rahman, J. Rizk, L. Rockford,
G. Sacks, A. Schmitz, H. Tashiro, C. Tsai,
P. Vandervoorn, J. Xu, L. Yang, J.-Y. Yeh, J. Yip,
K. Zhang, Y. Zhang, and P. Bai. A 32nm soc platform
technology with 2nd generation high-k/metal gate
transistors optimized for ultra low power, high
performance, and high density product applications.
In Electron Devices Meeting (IEDM), 2009 IEEE
International, pages 1 –4, dec. 2009.

[12] A. Kahng, B. Li, L.-S. Peh, and K. Samadi. Orion 2.0:
A power-area simulator for interconnection networks.
Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 20(1):191 –196, jan. 2012.

[13] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. Orion
2.0: a fast and accurate noc power and area model for
early-stage design space exploration. In Proceedings of
the Conference on Design, Automation and Test in
Europe, DATE ’09, pages 423–428, 3001 Leuven,
Belgium, Belgium, 2009. European Design and
Automation Association.

[14] M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu,
and H. Casanova. A case for random shortcut
topologies for hpc interconnects. In Proceedings of the
39th International Symposium on Computer
Architecture, ISCA ’12, pages 177–188, Piscataway,
NJ, USA, 2012. IEEE Press.

[15] T. Krishna, L.-S. Peh, B. M. Beckmann, and S. K.
Reinhardt. Towards the ideal on-chip fabric for
1-to-many and many-to-1 communication. In
Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO-44 ’11, pages 71–82, New York, NY, USA,
2011. ACM.

[16] R. Kumar, V. Zyuban, and D. M. Tullsen.
Interconnections in multi-core architectures:
Understanding mechanisms, overheads and scaling. In
Proceedings of the 32nd annual international
symposium on Computer Architecture, ISCA ’05,
pages 408–419, Washington, DC, USA, 2005. IEEE
Computer Society.

[17] P. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50 –58, feb 2002.

[18] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News, 33:92–99,
November 2005.

[19] A. K. Mishra, N. Vijaykrishnan, and C. R. Das. A
case for heterogeneous on-chip interconnects for cmps.
In Proceedings of the 38th annual international
symposium on Computer architecture, ISCA ’11, pages
389–400, New York, NY, USA, 2011. ACM.

[20] N. Muralimanohar and R. Balasubramonian. Cacti
6.0: A tool to model large caches.

[21] U. Nawathe, M. Hassan, K. Yen, A. Kumar,
A. Ramachandran, and D. Greenhill. Implementation
of an 8-core, 64-thread, power-efficient sparc server on
a chip. Solid-State Circuits, IEEE Journal of, 43(1):6
–20, jan. 2008.

[22] D. Sanchez, G. Michelogiannakis, and C. Kozyrakis.
An analysis of on-chip interconnection networks for
large-scale chip multiprocessors. ACM Trans. Archit.
Code Optim., 7(1):4:1–4:28, May 2010.

[23] C. Seiculescu, S. Volos, N. Khosro Pour, B. Falsafi,
and G. De Micheli. CCNoC: On-Chip Interconnects
for Cache-Coherent Manycore Server Chips. In
Proceedings of the Workshop on Energy-Efficient
Design (WEED 2011), 2011.

[24] S. P. E. C. (SPEC). Spec cpu2006, 2006.

[25] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and
B. Sinharoy. Power4 system microarchitecture. IBM
Journal of Research and Development, 46(1):5 –25,
jan. 2002.

[26] Tilera. Tilepro64. 2008.

[27] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The splash-2 programs: characterization
and methodological considerations. In Proceedings of
the 22nd annual international symposium on
Computer architecture, ISCA ’95, pages 24–36, New
York, NY, USA, 1995. ACM.

[28] M. Zhang and K. Asanovic. Victim replication:
Maximizing capacity while hiding wire delay in tiled
chip multiprocessors. In Proceedings of the 32nd
annual international symposium on Computer
Architecture, ISCA ’05, pages 336–345, Washington,
DC, USA, 2005. IEEE Computer Society.

	List of figures
	List of tables
	Introduction
	Introduction
	Project Development
	Goals of the Masters Thesis

	Introduction
	Organization of the Report

	State of the Art
	CMP Architecture Framework
	General Description of the Architecture

	CMP Architecture Framework
	Interconnection Network
	Topologies

	CMP Architecture Framework
	Interconnection Network
	Router Architecture

	CMP Architecture Framework
	Interconnection Network
	Deadlock Avoidance

	Methodology
	Metrics
	Workloads

	Methodology
	Simulation Environment

	Main Results
	Network Topology Comparison
	Performance

	Main Results
	Network Topology Comparison
	Energy-Delay versus Area

	Main Results
	Non Uniform Traffic Distribution

	Conclusions and future work
	Conclusions

	Conclusions and future work
	Future Work

	Project Management
	Time Management

	Project Management
	Effort Invested in this Project
	Problems Faced

	CMP Architecture and Memory Subsystem
	General description

	CMP Architecture and Memory Subsystem
	Memory coherence protocol

	Methodology and Experimental Environment
	Metrics

	Methodology and Experimental Environment
	Workloads

	Methodology and Experimental Environment
	Simulation Environment

	Methodology and Experimental Environment
	Estimating the Energy Expended by Caches

	Results
	Performance

	Results
	Non uniform traffic distribution

	Results
	Type of Traffic Traversing the Network

	Results
	Area and Power

	Results
	Topology Selection

	Results
	Conclusions

	Research paper: Characterization of Interconnection Networks in CMPs Using Full-System Simulation

