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Abstract 

Every year there are around 20 earthquakes of magnitude 7 or above (PREPA.R.E, 2008). 

This kind of seismic events are potentially destructive and can cause several structural 

damage, economic and human loss. In order to perform an efficient risk management and 

prevention work geophysics must be equipped with suitable software and hardware tools. 

Seismic studies comprise not only risk management but earth structure studies that are useful 

in gas and oil prospections. Vibration monitoring has also turned in a very useful scientific 

approach to deal with structural safety and maintenance. Among these devices, MEMS 

accelerometer combines great performance with low costs, characteristics that have made it 

one of the most popular devices when it comes to this task. (Santoso, 2010). 

Seismic analysis software has been developed using LabVIEW. The software decodes SAC 

data files and retrieves important seismic parameters like arrival wave times, location and 

magnitude. The precision and performance reached is acceptable for the scope of this project 

and it could be used as a domestic seismic analyser but not for its use in a professional 

seismic station. The seismic data for the system evaluation was retrieved from IRIS database. 

(IRIS, 2011) 

A vibration DAQ and monitoring module has been designed and implemented. It successfully 

measures and monitors acceleration versus time and the signal’s spectra. Zooming options 

were included in order to make easier the background noise and ambient vibration study 

(Attri R. K., 2004). An instant and maximum earthquake intensity gauge was programmed to 

give an idea of the experienced event potential danger. The user can selectively save 

acceleration time responses in LVM format. 

An analogue output was implemented. It is capable of reading acceleration versus time 

responses saved in LVM and SAC files and output them using a DAQ card analogue output 

function. This voltage can be seen in an oscilloscope or input to other devices. 

In order to acquire and save the analogue waveforms created with the previous function an 

analogue input was included as an initial objective in the Scheme of Work. However, it was 

dropped in the final implementation because it was considered that its function was too 

similar to the vibration DAQ module and it did not have enough practical application.  
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1. Introduction 

1.1 Motivation 
Last spring, on March 11th of 2011 immediately after the earth shook in Japan there were 

alarms throughout their entire east coast warning people to head towards highest places. 

Furthermore, the trains and underground of Tokyo actually stopped before the dangerous 

surface waves reached the city to prevent derailments. Meanwhile, the passengers were 

warned some seconds before the trains started to swing. Most of the buildings that compound 

Tokyo’s skyline were swaying instead of collapsing since sooner or later a large earthquake 

was expected. These preventing actions were possible thanks to a well-developed science that 

is lately making huge steps thanks to the new technologies to detect signals and store, analyse 

and monitor data efficiently so that the specialists can work fast and precisely. It is not 

necessary to go to Japan to experience earthquakes, here in Britain microseims occur every 

year and although hardly perceptible by human, they are used by the experts to study the earth 

structure (British Geological Survey, 2012).  There are no more tremors now than 100 years 

ago. Nevertheless, due to the increasing population in the globe the effects have become 

devastating and the human and structural loss unacceptable. Geophysics and structural 

engineers need modern tools to face this challenge, and this was the central stimulus to focus 

my work on this issue (Attri R. K., 2004). The analysis of seismological events also allows 

the geophysics to determine the earth structure; they perform a key role in the detection of 

cavities and therefore are essential to obtain data on oil and gas prospection. 

The acquisition of seismic data involves complex DAQ systems, proper locations, 

infrastructure and expensive sensors like seismometers, geophones or special accelerometers. 

(Turk et al, 2011).  The monitoring and assessment of the vibrations that affect structures 

during an earthquake, other events or just the study of noise level vibration are essential to 

save lives, minimize damage as well as to aid with the maintenance of a structure and detect 

possible failures. Usually, traditional instrumentation systems to monitor structure and noise 

level vibration are complex and expensive. There is an increasing demand of better and 

cheaper monitoring systems and the low cost signal-conditioned MEMS accelerometers are 

among the devices that possibilities these features in a system. (Wenzel & Pichler, 2005) 

(Santoso, 2010) 

LabVIEW is a comprehensive graphic programming language and development environment 

established by National Instruments which is loved among engineers that can see the flow of 

the data rather than text based programming. LabVIEW is industry standard software for 
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instrumentation, signal processing and control. In terms of employability LabVIEW 

knowledge is highly valued by managers because it helps to improve and accelerate 

productivity (Haugen, 2008).  

The final project is the last step before jumping into the engineering job environment, 

therefore, while selecting the requirements of the tasks there has been both functional and 

training considerations. The specifications have been selected so that at the end of the project 

usual functions of LabVIEW have been mastered and work on instrumentation, analogue 

input, signal processing and analogue output has been performed. 

1.2 Aim and objectives 

The monitoring and analysis of vibrations and Earthquake seismic signals are crucial to deal 

with structural, industrial and safety problems, as well as to tackle geological issues. 

The aim of this project was to develop a useful monitoring system to provide experts of those 

fields useful information to work with.  

To accomplish this, the objectives were: 

1. To develop a vibration monitoring system using a MEMS accelerometer 

2. To create software to analyse and monitor earthquake seismic data to display the 

main parameters of these events. 

 3. Output of voltage simulated seismic signals based on existing data. 

The software was developed using LabVIEW in a personal computer.  
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Figure 1.1: Software main structure 
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1.3 Scope  
It is obvious that in a seismological project the sense of real seismic waves would have been 

preferable. The measurement of seismic signals in Britain is extremely challenging  due both 

to its rare nature and the cost of the installation of proper sensors as seismometers, geophones 

or special accelerometers (Turk et al, 2011),far above the resources available. Taking this into 

account the measurement of general vibration was selected as more suitable. 

The device is intended to be appropriate to measure ambient vibration of ground and walls in 

a building, detecting also the potential damage of those tremors for building up to about 7 

stories (see 2.1.5 Acceleration, intensity and damage). Notice that to accurately identify large 

structures condition, several data from different points are required. The DAQ developed 

meets the requirements to categorise the condition in very small structures, a network with a 

master-slave structure is needed if the area of study is significant. It is not the purpose of this 

project to develop such network, it will be suggested as a future widening of the work though. 

Nowadays most of the seismic stations capture data in different channels. Sensors are 

distributed through different places to cover the all the axis the best way possible, some of the 

relevant parameters of a seismic event –as the important phase picking – are computed using 

several of these channels to prevent faults and improve the reliability and precision  (Havskov 

& Ottemöller, 2010). That task involves advance software that is out of the reach with the 

time and resources accessible. However, although the precision and reliability are not going 

to be the same, the earthquake parameters can be obtained from a single channel (Attri R. K., 

2005). What is more, these computations are often the first step before going beyond and 

often can be good enough to contribute with important information. Hence, the scope of the 

project is going to extract relevant information from one single channel at a time. 

The analogue output of the NI PCI-6221 DAQ card has been used to generate voltage 

simulated seismic and vibration signals based on existing data. These outputs signals can be 

for example displayed in an oscilloscope or input in other devices. For example, it could be a 

starting point to develop a shaking-table that simulates the earth movement during an event. 

The signals are not synthetic but based on existing data from seismic data bases in the 

interned or vibration data measured and recorded previously. 

To clarify the scope of the project the following table display the functions that have been 

developed:  



University of Central Lancashire. School of Computing, Engineering and Physical Sciences 

 

15 
 

 

Figure 1.2: Global software specifications 

1.4 Literature review 
The literature search and study has been very intense and important in this work in order to 

acquire the necessary background knowledge and abilities. With no previous geophysics and 

geo-instrumentation knowledge, the time prior the design start was longer than expected. The 

advanced internet searching tools and free resources available from various institutions and 

webpages had a central role to gather the required material. It is doubtful that the same results 

would have been achieved without these tools. The relevant literature for the design 

understanding is summarized in chapter 2, in this section a critical analysis about the 

information sources handled is going to be performed.  

Regarding the seismic wave origins, Havskov & Ottemöller (2010) make a very detailed 

description of the processes and elements that cause the seismic signals. The description 

presented  has been considered too exhaustive to be included in the background(Chapter 2)  

Alternative sources as  Attri R. K (2004) or the British Geological Survey (2011) have been 
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estimated as more suitable. The British institution was chosen for being a local organization, 

its significance and the clear and simple explanations that it provides.  

Routine data processing in earthquake seimology (Havskov & Ottemöller, 2010) is one of the 

key books that have been used. It offers an impresive amount of relevant information, some 

of it at advanced geo-phisical level but always oriended to readers that not necessarily  have 

previous knowledge about the topic. Its most nottable contributions were the seismic signal 

measuring and processing, data formats and seismic parameters. Although seismic data 

format descriptions were found in different sources  it was the only resource that gathered all 

them together and discussed differences and applications.  

Concerning  the data sources, the amount of websites of institutions supplying this 

information has been greater than expected but only the ones with a clear interface have been 

pre-selected [ (British Geological Survey, 2012) (European Strong-Motion Database, 2000) 

(IRIS, 2011) (NIED, 1996) (SCEDC, 2011)]. Some of these pages presented a poor and 

unclear retrieval display and explanations about the data available. Therefore, they have been 

discarded. The final data has been retrieved from IRIS and the British Geological Survey. 

However, after further analysis BGS data exhibited too much noise, probably because most of 

its sources are non-professional stations located in schools. The small magnitude of the 

earthquakes in this part of the world sure has contributed to the noisy seismograms. 

There is a lack of information about the management of earthquake signals with labVIEW, to 

deal with this kind of data there are standard specific programs and these are more used by 

the experts of this field.It is not easy to find an earthquake strong motion project developed 

with LabVIEW in the internet. The development of an analysis program using labVIEW has 

been measured interesting particularly in two points. As an standard in industry and science it 

is a key ability in the formation of an engineer so one of the aims of the project is to master 

this important tool. Also,creating an analysis program using an industry stardard like 

LabVIEW can be a good contribution to the existing tools as it will make this field more 

accesible to engineers and scientifics that are not directly related with the world of seismic 

events. 

Attri R.K(2005) offers a good approach to the single wave seismic parameters computation. 

Nevertheless, the occurrence and arrival times computation methods are barely sketched and 

it is impossible to develop the software from that information. One of his refferences (Munro 

K. , 2004) details the STA/LTA averaging method and is the thread to a couple of thesis 
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where different types of arrival pickings techniques as well as other signal processing and 

analysis procedures are described and evaluated in detail. (Munro K. A., 2005) (Han, 2010). 

Wenzel et al (2005) explain ambient vibration based methods for structure assesment. 

Nevertheless, the instrumentation used, approaches and structures assessed are beyond the 

scope of this project. The accerometers cited measure µg, no low cost accelerometers with 

that resolution were found. UCLAN discovery gave access to a convenient paper that deals 

with structural low cost vibration monitoring system (Santoso, 2010). It also provides useful 

information about MEMS accelerometers. 

The literature about specifications and usage of accelerometers in this field has been abundant. 

The most valuable information has been retrieved from practical tips in some internet 

magazines and private companies notes comprising mounting and parameter description 

(Endevco, 2006) (Barnes, 2011) (Lent, 2009).  

The US geological Survey webpage publish important educational material which has been 

handled for testing – arrival times vs distance tables. It was also the base along with another 

paper (PREPA.R.E, 2008) to retrieve the earthquake intensity and danger information that 

was later implemented in the vibration DAQ software. USGS excels giving simple but precise 

earthquake related parameter definition while the paper provides a worthwhile acceleration-

intensity relationship.  
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2. Background 

2.1 Vibration Monitoring Instrumentation Systems 

2.1.1 Introduction and applications 

Monitoring and sensing are key processes when investigating or evaluating vibration 

exposure in scientific, industrial or structural fields. The vibration is originated in the object 

of study due to its work conditions as for example a bridge while cars are crossing it or some 

equipment while working with engines attached to them. Sensors are needed to measure this 

signals. 

When the input vibration origin is not fully known the tremors are called ambient vibration 

and the study of the –mostly – noise level produced has a margin of uncertainly. Many man-

made structures have what is called a “vibration signature”, behaviour which, if appropriately 

measured and analysed, can report important data about the load-bearing or damage of a 

structure (Wenzel & Pichler, 2005). Efficient and economic systems and sensors are 

increasingly on demand to perform vibration based maintenance and safety monitoring, 

analysis and evaluation. 

2.1.2 Instrumentation Systems for Data Acquisition 

An instrumentation system for data acquisition (DAQ) that senses, conditions and translates 

to digital the measured information is needed so that the signal is properly applied to the 

processing system.  Th  e fundamentals of  DAQ can be seen in the following chart: 

 

Figure 2.1: DAQ general structure 



University of Central Lancashire. School of Computing, Engineering and Physical Sciences 

 

19 
 

 Sensors: A sensor translates a physic magnitude into an electric signal that can be 

read by the commonly used instrumentation. There are common parameters to all of 

them like range or span, accuracy, precision, tolerance and sensitivity. Linear and non-

linear sensors are available in the market; in almost all circumstances linear sensors 

are preferred because of its easy handling. Therefore, a linearization process is often 

carried out on non-linear devices. Several physic magnitudes can be sensed nowadays. 

More information in 2.1.3 Vibration . 

 Signal Conditioning: In this stage, the electrical signal measured by the sensor is 

turned into a signal easier to treat, store, convert to digital or displayed on a screen. 

 A/D Conversion: The signals in the physic world are analogue, however, today 

almost all of the processing systems are digital. A circuit that performs the translations 

is required. 

 Digital Processing: Depending on the processing, the systems can be classified as 

centralised, decentralised and distributed. While centralised systems just require one 

processing stage – and hence, just one computing device – the other two involve a 

previous processing phase before sending the data to the main computational system. 

The processing hardware that can handle these includes DSP (Digital Signal 

Processors), microcontrollers, automatons and even personal computers. 

 Data Transmission: Frequently, the signal acquired by the DAQ has to be sent a 

certain distance for its process, display or storage. The common techniques include 

Electromagnetic waves (radio, infrared…), Laser (fibre optics) and Electrical signals. 

The signal can be encoded using voltage, current or frequency patterns and can be 

either digital or analogue. 

2.1.3 Vibration transducers 

There are several motion transducers (motion sensors) that are used in industry for 

mechanical vibrations measurements. This large set includes: 

 Potentiometers: Displacement transducers. The output voltage is related to the 

displacement; 𝑉0 = 𝑘𝑥. Where k is a constant and x the displacement. 

 Variable inductance transducers: They are based on the following principle. When 

a flux linkage changes within an electrical conductor a voltage is generated. If the flux 

change is caused by motion, the mechanical energy is converted into electrical energy 

and hence, motion parameters are related with electrical magnitudes. 



University of Central Lancashire. School of Computing, Engineering and Physical Sciences 

 

20 
 

 Self-induction transducers: Based on the change of self-inductance when moving a 

ferromagnetic object in a magnetic field. 

 Variable capacitance transducers: Transducers where displacement, velocity or 

acceleration depend on a capacitance. 

 Piezoelectric transducers: Uses the piezoelectric characteristic of some materials. 

These materials generate an electrical charge that implies potential difference when 

exposed to mechanical stress. 

(De Silva, 2007) 

2.1.4 Accelerometers  

Accelerometers are transducers of acceleration into a proportional voltage. 

 The most usual technologies are: 

o Piezoelectric accelerometers 

o Piezoresistive accelerometers 

o Variable capacitance accelerometers 

Except for extremely low frequency seismic measurements, piezoelectric accelerometers are 

the most popular for vibration and seismic sensing. The characteristics that make them 

suitable are a large bandwidth, high sensitivity and resolution along with their easy use. 

Among the piezoelectric accelerometers nowadays the IEPE is dominating the market. Due to 

its incorporated charge amplifier, it just requires normal wire connections without external 

components. (Lent, 2009) 

It is difficult to find a piezoelectric accelerometer for less than £100 or £200. The last decade 

advances in MEMS technology have made possible to manufacture compact low cost MEMS 

accelerometers with a great performance and accuracy (Buckari, 2000). Nowadays, this 

technology is highly on demand in order to develop high-sensitive low cost structural 

vibration monitoring systems. It is available in different types and different axes can be 

measured with the same device. (Santoso, 2010) 

2.1.5 Acceleration, intensity and damage 

A particle attached to the earth will irregularly vary its acceleration when an earthquake 

occurs on the surface. The horizontal component of this acceleration is particularly interesting 

for the topic in study as the building codes define how much horizontal force a building can 

resist. Force is related to acceleration. The peak ground acceleration (PGA) is the maximum 
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acceleration that a particle suffers during the event. PGA is associated to the earth surface 

movement and it is a suitable danger indicator for short buildings up to seven floors; hazard 

for higher buildings can be measured by other parameters like SA (Spectral Acceleration). 

PGA is quite a simple parameter while SA depends on the building structure and complicates 

calculations ( U.S. Geological Survey, 2010). While earthquake magnitude parameters are 

related to the power of an event, intensity parameters measure the effect that an earthquake 

has on buildings, persons and object. It measures the damage and varies within the affected 

zone. The Modified Mercalli Intensity Scale is the most widely used intensity scale in US. It 

is based on PGA (PREPA.R.E, 2008). 

 

Modified Mercalli Intensity Scale 

I. Not felt except by a very few under especially favorable conditions. 

II. Felt only by a few persons at rest, especially on upper floors of buildings. 

III. Felt quite noticeably by persons indoors, especially on upper floors of buildings. 

Many people do not recognize it as an earthquake. Standing motor cars may rock 

slightly. Vibrations similar to the passing of a truck. Duration estimated. 

IV. Felt indoors by many, outdoors by few during the day. At night, some awakened. 

Dishes, windows, doors disturbed; walls make cracking sound. Sensation like heavy 

truck striking building. Standing motor cars rocked noticeably. 

V. Felt by nearly everyone; many awakened. Some dishes, windows broken. Unstable 

objects overturned. Pendulum clocks may stop. 

VI. Felt by all, many frightened. Some heavy furniture moved; a few instances of 

fallen plaster. Damage slight. 

VII. Damage negligible in buildings of good design and construction; slight to 

moderate in well-built ordinary structures; considerable damage in poorly built or 

badly designed structures; some chimneys broken. 

VIII. Damage slight in specially designed structures; considerable damage in 

ordinary substantial buildings with partial collapse. Damage great in poorly built 
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structures. Fall of chimneys, factory stacks, columns, monuments, walls. Heavy 

furniture overturned. 

IX. Damage considerable in specially designed structures; well-designed frame 

structures thrown out of plumb. Damage great in substantial buildings, with partial 

collapse. Buildings shifted off foundations. 

X. Some well-built wooden structures destroyed; most masonry and frame structures 

destroyed with foundations. Rails bent. 

XI. Few, if any (masonry) structures remain standing. Bridges destroyed. Rails bent 

greatly. 

XII. Damage total. Lines of sight and level are distorted. Objects thrown into the air. 

(US Geological Sruvey, 2009) 

MOD. MERCALLI SCALE PGA(g) 

IV 0.03 and below 

V 

 

0.03 – 0.08 

VI 

 
0.08 – 0.15 

 

VII 

 

0.15 – 0.25 

VIII 0.25 – 0.45 

IX 

 

0.45 – 0.60 

X 

 

0.60 – 0.80 

XI 

 

0.80 – 0.90 

XII 

 

0.90 and above 

Table 2.1:Mercalli intensity scale relationship with PGA (PREPA.R.E, 2008) 

2.2 Seismological data analysis  

2.2.1 Introduction to earthquakes and seismic waves 

Seismic signals recorded by sensors in seismic stations have a regular pattern most of the 

time, this is called seismic noise. However, time to time there is an event; a seismic wave 

stands out of the background noise with a particular form easily recognised. The most 
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common source of seismic waves are earthquakes, these have a usual frequency between 

0.001 and 4 Hz and can be detected from a considerable long distance. However, strong 

motion signals can be produced by man as well. For example, powerful explosions, or earth 

movements caused for natural gas extractions can cause these elastic waves. Nevertheless, 

excepting nuclear explosions, the range detection of these phenomena is far smaller than the 

one of a natural earthquake. (Kennett, 2009) (Havskov & Ottemöller, 2010). 

The earthquakes are caused by the energy accumulation in the Earth’s crust due to the relative 

movement of the two sides of a fault – discontinuity in volume of rock. When the stress limit 

is reached the event can be easily triggered and the rock is fractured around the weak points 

of the fault. The accumulated energy is suddenly released as an earthquake and seismic waves 

spread out from the rupture point, if they are very large can be extremely destructing in points 

near to the epicentre. (British Geological Survey, 2011) 

 

Figure 2.2: Earthquake origin. Image by Taiwanese Central Weather Bureau ( Central Weather Bureau, 2012) 

 

The sudden movement of a fault generates different kinds of seismic waves: 

 P waves (Primary): Compressional waves. As the name indicates, they are the first to 

arrive. They feature typical speed values of 6 km/s in depths less than 15 km. 

 S waves (Shear or Secondary): Arrive after P. Typical velocity of 3.5 km/s in the same 

conditions as P waves. 
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 Surface waves: They are waves that travel through the surface. Combination of S and 

P waves (Rayleigh waves) and multiply reflected and superimposed S waves (Love 

waves). Typical velocities between 3.5-4.5 km/s although they always arrive after S 

waves. (Havskov & Ottemöller, 2010) 

 

      

Figure 2.3: P waves     Figure 2.4 S waves  

 Pictures from British Geological Survey (2011). 

2.2.2 Measuring and recording seismic data 

The seismic signals can be recorded both locally and globally by seismic instruments. The 

typical sensors used for acoustic and seismic detection are seismometers, piezoelectric 

sensors, geophones and capacitive sensors. A seismic sensor outputs voltage proportional to 

the surface motion. Usually in a seismic station there are 3 sensors, one for each of the 3 axes. 

Nowadays, the data is stored only digitally after filtering and amplification processes, the use 

of a GPS at the same time has solved the problem of a proper timing stamp of the records. 

(Havskov & Ottemöller, 2010) 

As a result of the increasing number of stations recording data around the world there is a 

good amount of this kind data in the internet. Although in most cases after formal request, 

different governments, universities and scientific organizations supply this data to whoever 

wants to use it. Examples of these organizations are: 

 IRIS (Incorporated Research Institutions for Seismology) (IRIS, 2011) 

 British Geological Survey (British Geological Survey, 2012) 

 European Strong-Motion Database (European Strong-Motion Database, 2000) 

 The Kyoshin Net (K-NET) (NIED, 1996) 

  Southern California Earthquake Data Centre (SCEDC, 2011) 

http://www.google.co.uk/url?sa=t&rct=j&q=shoutern%20californinia%20data&source=web&cd=1&ved=0CCUQFjAA&url=http%3A%2F%2Fwww.data.scec.org%2F&ei=L7axTo6ADtHU8QOK_emyAQ&usg=AFQjCNEK6h0S3a5rIc00bgqIfNEUe-p6AQ
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2.2.3 Seismic Data 

Havskov & Ottemöller(2010) state about waveform formats “Each channel of seismic 

waveform data consists of a series of samples (amplitude values of the signal) that are 

normally equally spaced in time (sample interval). Each channel of data is headed by 

information with at least the station and component name (see below for convention on 

component name), but often also network and location code (see below). The timing is 

normally given by the time of the first sample and the sample interval or more commonly, the 

sample rate. Some waveform formats (e.g. SAC) can store the timing of each sample.” 

There are several formats for strong motion data; we can classify them in three big groups 

according to the purpose:  

 Recording formats: The specific purpose of past data was just to be recorded and 

saved, these format were not very suitable for processing. Most of the data 

nowadays have to be able to be processed.  

 Processing formats: Appropriate for processing without any modification. An 

example is .SAC of which further details will be given later in 2.3.4 Seismic Data in 

LabVIEW. SAC format. 

 Data exchange formats: The data exchange formats are the most complete data 

available nowadays as all the information is included, the GSE(Group of Scientific 

Experts) and SEED (Standard for the Exchange of Earthquake Data) are examples. 

A variant of this last one seems to be becoming the standard both for exchange and 

processing, miniSEED. (Havskov & Ottemöller, 2010) 

The examples above are some of the most common type of data. However, there are a great 

amount of formats and sometimes even each institution has its own. For example CSMIP 

(California Strong Motion Instrumentation Program) or COSMOS (Consortium of 

Organisations for Strong-Motion Observation System). 

 

2.3.4 Seismic Data in LabVIEW. SAC format 

Plug--ins for the following data are available for LabVIEW 

 COSMOS  

 CSMIP  

 European Strong-Motion Database Format. 

 K-Net Strong Motion Data Format files. 
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 SAC Strong Motion Data files. 

 SMC Strong Motion Data Format files.  

(National Instruments, 2011) 

A particularly interesting format for this project development is SAC, as it is possible to 

obtain this type directly and very easily from the biggest database found, IRIS, and the local 

British Geological Survey also offers data in this format. 

IRIS website defines SAC as 

“SAC (Seismic Analysis Code), previously SAC2000, is a general-

purpose interactive program designed for the study of sequential signals, 

especially time-series data. Emphasis has been placed on analysis tools 

used by research seismologists in the detailed study of seismic events. 

Analysis capabilities include general arithmetic operations, Fourier 

transforms, three spectral estimation techniques, IIR and FIR filtering, 

signal stacking, decimation, interpolation, correlation, and seismic phase 

picking. SAC also contains an extensive graphics capability. Versions are 

available for a wide variety of computer systems. SAC was developed at 

Lawrence Livermore National Laboratory and is copyrighted by the 

University of California. It is currently begin developed and maintained 

by a small group of developers working in cooperation with IRIS.”  

(IRIS, 2011)) 

Its data format -.SAC- works in different platforms as UNIX, LINUX or MAC and the data 

can be either in binary or ASCII.  It is a processing format. (Havskov & Ottemöller, 2010). 

The amplitude of  available data in IRIS and BGS is mostly given in nm/s. 

2.3.5 Earthquake parameters computation overview 

Seismic software should include a suitable interface along with analytical software to study 

the seismic signal. The computational process starts with the retrieval of raw analogue data in 

a PC in which the parameters that are relevant to seismologist are calculated. 

The parameters that are of interest to seismologists are: 

 Timing parameters 

 Location parameters 

 Magnitude Parameters 

 Intensity parameters 
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This project is focused on the first three aspects; therefore, background information about 

them is going to be provided below. Notice that usually, to calculate location parameters, 

timing parameters are required and, to obtain magnitude, location parameters are also a 

prerequisite. 

The figure underneath describes the computational process that is usually carried out by the 

specialized software from an analogue seismological raw signal. 

 

Table 2.2 Seismic data global computation 

 

The event detection triggers when a seismic event has been detected in order to save the 

incoming data. Nowadays, the digital memory is cheap but it is not unlimited so it is 

necessary to carefully select the signal that is going to be collected. When parameters are 

retrieved, advanced software provide complex analytical tools that perform earth structure 

calculations and work with statistical data to “forecast” earthquakes. A true forecast it is not 

possible , “precise when” cannot be predicted but statistical calculations allow to forecast 

where and in which magnitude the events are going to take place establishing danger zones. 

Obviously, an advanced interface is needed to properly display this data. (Attri R. K., 2005) 

Signal sampler 
Seismic event 

detection 
algorithm 

Parameters 
computation 

•Timing parameters 

•Location parameters 

•Magnitude 
parameters 

•Intensity and energy 
parameters 

Seismic analysis 
Advanced sesismic 

prediction and 
forecast interface 

Seismic display 
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2.3.6 Processing timing parameters 

2.3.6.1 P and S arrival times 

Picking the arrival times of P and S waves has a key role in event location and recognition. 

(Munro K. , 2004). The S-P time interval is used in formulas or tables to calculate the event 

distance to the epicentre and, in some approximations, the magnitude of the seism. 

 Manual picking is sometimes imprecise and very subjective. Not to mention that it is 

impracticable when continuous huge amounts of data are processed (Han, 2010). Hence, 

several methods to automatically detect the waves have been developed. (Munro K. , 2004) 

(Attri R. K., 2005) 

These methods include time domain approaches based most of the time on signal energy 

techniques, amplitude methods, autoregressive methods and procedures based on frequency 

and S transform (Munro K. , 2004) (Han, 2010). Frequency based algorithms obtain better 

accuracy than the time domain based but they are more complex and require more 

computational resources. The project is focused on time domain methods for its easier 

implementation and because they are still popular among the seismologists (Han, 2010). 

Two of the most popular time domain methods – both based in energy theory – are: 

 STA/LTA technique 

 Modified energy ratio 

Further details about the STA/LTA technique are going to be given below as it is the method 

implemented in this project. 

STA/LTA ratio description 

The STA/ LTA averaging technique is used mostly for event triggering - occurrence, but 

correctly implemented it can also approximately calculate the arrival times (Munro K. A., 

2005). The software should implement the following equations for the incoming data.  

   =
∑            

   

  
 Short-time average 

   =
∑            

   

  
 Long-time average 

Equation 2.1: STA and LTA equations 

 (Han, 2010) (Munro K. , 2004) 
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Figure 2.5: STA LTA algorithm illustration (Han, 2010) 

 

Where L1 and L2 are the window lengths, grm(i) the discrete points of the incoming signal 

and i the testing point index. This algorithm calculates the average energies in a long time and 

short time windows. Notice that the STA is a signal intensity measurement while LTA 

measures the background noise. Hence, the STA/LTA ratio is a signal to noise level (SNR) 

indicator. When a sudden increment of that ratio occurs, implies a seismic occurrence or wave 

arrival. At the moment that value reaches a threshold, an upcoming P or S wave has arrived 

and, therefore, the time value when that happened should be saved. 

It is important to notice that L1 and L2 should be user defined; L1 is normally two or three 

times the dominant period of the signal while L2 is between 5 and 10 times L1. The threshold 

is picked up by the user too. As these parameters depend on the signal expected and the 

station among others, a calibration process is required. This means that these figures are not 

fixed, varying from one station to another. (Munro K. A., 2005) (Attri R. K., 2005) (Han, 

2010) 

There are other expressions for this technique as various modifications have been done to the 

original algorithm to improve its performance both in accuracy and noise isolation. (Han, 

2010) (Munro K. A., 2005) (Munro K. , 2004). Both of these authors apply a different one in 

their referenced works. But for this project the one above were kept for the reasons explained 

in 4.6.2.1 Algorithm selection. 

2.3.6.2 Coda Length 

The Coda length is a measurement of the duration of an event. When the earthquake started 

and how much did it take until the earth calmed down. It is an important magnitude to 

estimate the earthquake destruction power. It can be calculated by subtracting the P wave 
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arrival time to the event end time. The tremor end can be measured by comparing the signal 

level with the averaged noise level before it arrives. When signal patterns return to a level 

compared to that noise the earthquake has concluded. (Attri R. K., 2005) 

 

Figure 2.6: Coda length illustration 

2.3.7 Processing location parameters 

The hypocentre is the exact point where a seismic event happens, the epicentre is the point 

exactly above on the earth surface (Attri R. K., 2005). Nowadays, the professional stations 

use complicated computational iterative methods that process the available timing 

information in different station to, step by step, approach to the exact point where the 

earthquake was originated. However, there are easier ways –although less precise – to 

calculate the hypocentre and epicentre distance. (Havskov & Ottemöller, 2010) 

The P and S wave velocity in the earth crust is known. Hence, once the arrival times are 

identified the distance to the station is completely determined. Below are represented 

different formulas that use this principle to approximate the hypocentre distance.  

Their validity depends on the distance: 

1) From 0 to 250 km      𝛥 𝑘𝑚 =  𝑡𝑝
𝑎  − 𝑡𝑠

𝑎   
𝑣𝑝∗𝑣𝑠

𝑣𝑝−𝑣𝑠
 

  𝑠 =
 𝑝

√ 
 

  =    
𝑘𝑚

 
    =    

𝑘𝑚

 
         𝑚       𝑡 

2) From 250 km to 2222 km (20˚)   𝛥 𝑘𝑚 =  𝑡𝑝
𝑎  − 𝑡𝑠

𝑎   ∗ 10 

3) From 20˚    𝛥 ˚ = [ 𝑡𝑝
𝑎  − 𝑡𝑠

𝑎   𝑚𝑖 − 2] ∗ 10      [t] = minutes  

P arrival Earthquake end 

Coda lenght 
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Equation 2.2: Distance formulas 

Where 𝑡 
   and  𝑡 𝑠

𝑎   are P and S first arrivals respectively and Δ is the distance to the 

epicentre. (Havskov & Ottemöller, 2010) 

Notice that the expressions above can represent an approximation to the distance to the 

epicentre, especially if the tremors are not too deep.  In fact, that was the method used years 

before the new computational techniques were introduced. In order to solve the depth 

imprecision, depth dependant time-distance tables or graphs like the one below can be used 

and integrated in the software (Attri R. K., 2005). The figure also shows how the exact point 

to the epicentre can be plotted triangulating when the distance from three different stations 

have been estimated. 

 

 

 

Figure 2.7: Generic depth distance travel time dependence and epicentre plotting (Havskov & Ottemöller, 2010) 

2.3.8 Processing magnitude parameters 

The magnitude is an arbitrary number proportional to the size of an earthquake. There are 

several magnitude scales although probably the most widely known among people is the 

Richter scale. Depending on the seismic network and the distance, one or more may be used. 

Due to the different ground structure and station position in a location, great magnitude 

variation among these different stations may occur, proving that magnitude measurement is 

not an exact discipline. The final magnitude can be revised several times before coming with 

the final one. Each magnitude scale has an application range and they are suitable for 

different distances and magnitudes (Havskov & Ottemöller, 2010). 
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Size Guidance magnitude 
Large M > 8 

 

Great M = 6–8 

Medium M = 4–6 

 

Small M = 2–4 

 

Micro M < 2 

 
Table 2.3: Approximate Magnitude vs  Size equivalence  

Some of the most common scales are: 

 Local magnitude ML. Original magnitude scale, also known as Richter scale. It is 

defined as 

  =         𝛥  

       Equation 2.3: Local magnitude  

A= Maximum amplitude in a Wood-Anderson seismogram (which measures 

displacements from signals with f > 2 Hz) 

   𝛥 =Distance correction function 

Δ=Distance to the epicentre [km] 

Applicable to events of amplitude less than 6-7, distance below 1500 km and 1-20 Hz 

frequency band. 

 

The simplest way to calculate the local magnitude is using the coda Magnitude Mc  

(sometimes called duration magnitude). It is a local magnitude approximation that 

relates the coda length (event duration) to the earthquake size. It is defined as: 

  =      𝑡   𝑎       

    Equation 2.4: Coda/duration magnitude 

tcoda = coda length  

r=distance to the epicentre in km 

The a,b and c parameters try to reflect the different attenuation on the earth surface depending 

on the place, so their values differ depending on the location. The parameters used by Lee et 

at(1972)( original developers of this method) are sometimes used for locations where no local 

studies are available. However, the results are not always satisfactory. The usage of this scale 
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should be restricted to magnitude below 5 and distance below 1500 km. Havskov & 

Ottemöller in their book Routine data processing in Earthquake seismology compile an 

extremely useful table with this parameter for different localion altogether with a reference 

list.  

 

Figure 2.8: Coda Magnitude parameters in different areas of the world (Havskov & Ottemöller, 2010) 

 

 Broadband surface wave magnitude MS: Takes advantage of the fact that in shallow 

earthquakes for distances over 600-1000 km surface waves dominate over the rest. 

 

  =    (
𝑉𝑚 𝑥

2 
)  1       𝛥      

Vmax= Maximum velocity amplitude (which is usually the surface wave amplitude) 

  Δ= distance to the epicentre in deg 

It is valid for depths under 60 km, a wide range of periods (from 2 to 60 s), distance 

from 2 to 160 ˚ and magnitudes between 4 and 9. (British Geological Survey, 2011) 

There is a decent concord between MS and ML for magnitudes from around 4 to 6.5 (Havskov 

& Ottemöller, 2010). 

Standards tables are available to translate from one magnitude scale to another. 
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Figure 2.9: Magnitude scale conversion table (Havskov & Ottemöller, 2010) 
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3. Vibration Monitoring System Design 
Before giving top-level details about how the requirements have been fulfilled it is advisable 

to recall the functions that were agreed in the Scheme of work 

 

(*) Only for short buildings up to 7 stories. System based on PGA .See 2.1.5 Acceleration, 

intensity and damage. 

3.1 Hardware 

3.1.1 Accelerometer choice 

At the first stages of the project it was decided that the vibration sensor to use was going to be 

an accelerometer. This is due to the fact that recent advances have made possible high-

performance, high-accuracy, low-cost accelerometers available on a single monolithic IC  

(Bukhari, 2000). These characteristics make the technology suitable for the task regarding the 

resources available. 

As stated in the background(2.1.4 Accelerometers), the most popular accelerometer type for 

vibration and seismic signals is the piezoelectric but, with a market price of around £200 in 

some of the main online catalogues it exceeded  the budget available and, therefore ,a variable 

capacitance MEMS accelerometer was preferred. This technology provides small size, 

compact, sensitive lightweight and relatively cheap sensors perfect for the project purpose. 

(Santoso, 2010)  

Once selected the technology the following parameters requirements have been taken into 

account to select the most suitable accelerometer: 

o Axes: A dual axes system for both horizontal axes measurements is going to be 

developed as the horizontal component of the PGA (Peak Ground Acceleration) is 

Specifications 
Represent acceleration vs time 

Display spectra 

Zooming features for detail study 

Show event potential danger(*) 

Graph saving options 

Interactive menu 

Hardware suitable for easy attachment 
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the standard for most building codes and hazard risks. ( U.S. Geological Survey, 

2010) An additional vertical axis for µg sensing (ambient noise) has been 

considered but discarded due to economic reasons (see 11. Future work: Potential 

improvements and modifications) 

o Frequency response: A bandwidth of 50 Hz will be enough for structural 

monitoring (Lynch, 2003). 

o Maximum acceleration: A PGA of 0.9 g causes total damage. Hence, an 

accelerometer with at least that figure as a maximum is required. (PREPA.R.E, 

2008) 

o Weight: The accelerometer weight not more than 10% of the test or mounting 

device so that the measurements are not significantly altered. 

o Ground Isolation: If the  test article is conductive and at ground potential, a 

difference in ground levels could cause measurement problems and therefore a 

common ground is required 

o Mounting: Suitable for high sensitivity, adequate attachment. 

o Sensitivity: The lower the better but according to table 2.1 tens of mg is enough to 

cover all cases. 

o Resolution: The lowest level in Mercally Scale (IV) is characterised by a 30 mg 

acceleration or below. Therefore, this will be the minimum resolution we will be 

targeting at. 

o Signal conditioning: Better if signal already conditioned to save costs both of time 

and money. 

o Power:  Standard 3 to 5 Volts preferred 

(Lent, 2009) (Aszkler, 2005) 

 

Considering the requirements and limitations, the accelerometer series that have been selected 

are the ADXL203. They are high precision, low power, dual axis accelerometers. Their 

bandwidth can be modified with capacitors to make it fit the application and the output signal 

is already conditioned. 
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ADXL203 FEATURES  

o High performance, single-/dual-axis accelerometer on  

a single IC chip  

o 1 mg resolution at 60 Hz  

o Low power: 700 μA at VS = 5 V (typical)  

o High sensitivity accuracy  

o X and Y axes aligned to within 0.1° (typical)  

o Bandwidth adjustment with a single capacitor (0.5 to 2500) 

o Single-supply operation  

o RoHS compliant  

  (Analog Devices, 2011) 

The device is commercialised in a 8 ld LCC package only ( 8 terminal ceramic Leadless Chip 

Carrier).  

3.1.2 DAQ selection 

Among the DAQ cards available the DAQ device selected was the NI6021 from National 

instruments connected to a BNC-2120 accessory.  The factors that backed up this decision 

were: 

 Available, installed and configured in the laboratories  

 Provides flexible AI and AO sample and convert timing  

 Can perform 32 bit ADC. 

 It includes a 5 V power supply, exactly the same that is needed for the accelerometer. 

It also features a driver supplying current enough. 

 Customized analogue input range. The ranges available are ±10, ±5, ±1 and ±0.2V. 

The device automatically amplifies or attenuates the signal depending on the input 

range. This feature is very valuable in order to save signal conditioning circuits. It 

maximizes the resolution as well. 

 It includes a 700 kHz low-pass filter. 

 The input channel resolution is, regardless the range used, below 500µV, which 

implies, taking into account the accelerometer sensitivity ( ≈1V/g), that a high 

resolution is available in any case. See table 3.1 

 The BNC-2120 accessory available provides user-friendly interface. 
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(National Instruments, 2008) (National Instruments, 2007) (National Instruments, 2008) 

 

Input range Nominal Resolution  
 

–10 V to 10 V 320 µV 

–5 V to 5 V 160 µV 

 

–1 V to 1 32  µV 

–200 mV to 200 mV 6.4 µV 

Table 3.1: Input range and resolution for NI 6221  

 

The device should be able to gather samples fast enough so those aliasing problems are 

avoided:  

 𝑠 𝑎 = 2 0
𝑘 

 
            ⇒  𝑠  𝑎 = 12  

𝑘 

 
                    𝑖   𝑡    

 𝑠  𝑎   2 ∗       

12 
𝑘 

 
 100    

Equation 3.1: Anti-aliasing condition 

   (Martin & Bono, 2010) 

Where fsmax is the DAQ maximum sample rate, fschan is the maximum sample rate per channel 

and f3dB  is the filter’s corner frequency. 

Hence, there are no problems regarding the aliasing. 

The NI 6021 timing resolution is 50 ns, taking this into account the signal frequency should 

be below a limit or a sample and hold circuit will be required. (National Instruments, 2007) 

Considering the signal as a sine superimposition: 

  1   2 𝑡           
1

 2   0  
            1  

                 Equation 3.2: Satisfactory conversion time demonstration 

(Martin & Bono, 2010) 

Therefore, a S&H circuit is not needed. 
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3.1.3 Data acquisition structure 

Selecting a sensor and a data acquisition device was the first step because they are essential 

hardware.  However, the design of a simple block diagram preceded any other advance in the 

hardware design. A proper structure design determines the rest of the hardware selection 

clarifying the processes that follow and minimizing modifications later on. The following 

figure is the block diagram from which the rest of the hardware was built up.   

 

                                                                       Figure 3.1: Hardware block diagram 

 

Notice that D GND is the same electrical point as AI GND. The type of AI connection selected 

is reasoned in the next section. 

Considering the electronic nature of the device, the next step was a schematic hardware 

design. Due to the System simplicity, it does not differ much from the block diagram. 
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                                                                                    Figure 3.2: Schematics design 

As it can be seen, excepting the capacitors C2 and C3 there is not additional signal 

conditioning. This will be explained with detail in the following subchapter. C1 filters the 

supply (details on EMI/EMC section).Observe that the computers in the laboratory used 

already integrate the DAQ card. 

3.1.4 Signal conditioning 

Amplification and signal levels 

The ADXL203 MEMS accelerometer has a typical Zero g bias level of 2.5 V. This offset can 

be eliminated using software which simplifies considerably the hardware design. The DAQ 

card used – NI6021 – allows the selection of a customized analogue input range which 

determines the system resolution. The ranges available are ±10, ±5, ±1 and ±0.2V. In order to 

maximize the resolution of the vibration monitoring system the most suitable choice is ±1 V 

as the accelerometer resolution is 1000 mV/g. A building structural vibration caused by an 

earthquake will rarely exceed 1 g, and if it does, the high value of the acceleration assures that 

the event is potentially destructive so the danger selection is already clear. To achieve this 

objective a suitable band pass filtering could be used to eliminate the offset and adapt the 

signal to the input limitations of +-1 but, is that input resolution needed? Setting the ±5 range, 

the resolution will be 160 µV, which implies an acceleration of 160 µg. This resolution is 
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unreachable for our hardware as the data sheet specifies that the typical noise floor is 110 

µg/√Hz .Hence, the ±5 range has been selected as the performance is not negatively affected 

compared to the ideal case of ±1 and it has a key advantage, it allows to software filter the 

offset instead of adding an additional circuit.  

Bandwidth selection and Noise filtering 

A bandwidth of 50 Hz is enough for structural seismic and vibration monitoring (Lynch, 

2003).To avoid aliasing problems the more we limit our bandwidth to this value the better. 

The DAQ includes a low pass filter of 700 kHz, which is evidently not enough for our 

purposes. Fortunately, the ADXL203 provides a band limiting function just adding capacitors 

to the X and Y outputs. These characteristic permits to avoid aliasing problems and easily 

filter the noise signals that can be encountered without adding an additional filter. According 

to the data sheet: 

    =
   

 
 

 
   =

   
 
 

 0   
  

 = 100      

 Equation 3.3: Cut-off frequency and added capacitors relationship (Analog Devices, 2011) 

 Notice that the added capacitors purpose is to set the frequency response of the device but 

also determine the noise filtered, the noise is higher if the frequency response is increased. 

Therefore, a trade-off between bandwidth and noise should be reached. The intrinsic noise of 

the accelerometer, as specified by the manufacturer, will be white Gaussian noise affecting 

equally to all the frequencies the following way. 

                                     rmsNoise=(110µg/√Hz)*(√(BW*1.6) 

Equation 3.4: Accelerometer noise 

 

Hence, the bandwidth has been limited to 50 Hz, enough to the purposes and to limit the 

performance disturbing noise. The noise that will be suffered for the 50 Hz bandwidth  that is 

going to be handled will be  rmsNoise=1 mg, completely negligible as the acceleration levels 

are going to be classified in ranges of magnitude and destruction power being the  lower 

range from 0 to 30mg. 



University of Central Lancashire. School of Computing, Engineering and Physical Sciences 

 

42 
 

Connection Schemes 

The AI ground terminal- or terminals that are connected to the same electric point- will be 

used as reference. The 5 V supply provided by the DAQ is suitable and no external supplies 

are required. Thus, the most appropriate connection configuration for the accelerometer X and 

Y terminal will be a referenced single ended mode-RSE since the input signals are single 

ended and AI ground referenced.  

 

             Figure 3.3: Connection scheme used 

Nevertheless, the DAQ has been used through a BNC-2120 connector accessory which 

provides its own connection schemes. Since the acquisition card has been used as the supply 

and no other reference but AI GND was applied, the required AI input channels switch should 

be in FS mode. Despite the configuration name –floating source – the signal was already 

referenced to AI GND and the actual configuration is RSE as that is the type of signal the 

DAQ receives. The following diagrams illustrate the FS mode suitability. The FS mode is 

intended to floating signals; however, it is the optimal scheme if the signals are referenced to 

AI GND. 

  

             Figure 3.4: BNC 2120 GS input                                                                                                             
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3.1.5 ADXL203EB Evaluation board 

Analog Devices commercialises an Evaluation Board with everything needed to perform tests 

and build a prototype with the ADXL203- ADXL203EB. It was decided to purchase this 

product in order to boost the project and focus earlier on the main topics. The board comes 

with different holes and pins to attach the accelerometer to the object on test. 

 

Figure 3.5: ADXL Evaluation board 

Notice that the evaluation board is intended to be used with SMD component only.  

3.1.6 Enclosure and mounting 

The system has obviously a dynamic purpose. Especially in this kind of devices is 

recommended to select a proper enclosure and mounting system. The enclosure protects the 

device from possible damage providing at the same time a better handling and a professional 

appearance and the mounting maximises the vibration transmissibility.  

As stated in the accelerometer selection consideration, the accelerometer should weigh no 

more than the 10 % of the mounting device (the enclosure in this case) for more accuracy in 

its measurements, therefore, the use of a proper case that increases the weigh helps to 

accomplish this requisite. 

It is clear then that a proper enclosure is needed, the selection criteria have been: 

 Preferable Plastic: Because of its light weigh, besides, in a prototype like this, some 

cuts are needed so that we can have access from outside to the different connectors. 

Obviously, a malleable material like polymers makes this task much easier. 

 Simplicity and pragmatism: As long as it carries out the tasks stated, the design and 

other issues are negligible. 
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 Measures: It had to feature a minimum height of 16 mm as that is the Evaluation 

Board + header height. Regarding the depth and width, the smaller the better, taking 

into account that all the components had to fit. Although the components were not 

specifically ordered an approximation of their measurements was known. A security 

margin was applied for possible manufacture mismatches and predicting that the input 

and supply connectors may be bigger. 

 Price: Taking into account the budget, the cheapest enclosure that fitted the provisions 

was selected. 

The enclosure chosen was a 1591XXMS model from Hammond Manufacturing
TM

 . 

 

                Figure 3.6:1591XXMS Dimensions 

 

                   Figure 3.7:1591XXMS 3D model 
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Figure 3.8:PCB artwork 

 

In regard to the mounting system, a double-sided adhesive tape was selected. An adhesive 

mounting is often required, especially in small surfaces and PC board. In this case, the surface 

to attach the system is not fixed so an easily removable adhesive tape was suitable. The 

preferable adhesive is cyanoacrylate mainly because the reason specified above. Before 

attaching the tape, it is highly recommended to clean the surface with a hydrocarbon solvent. 

A thin tape is preferable as the adhesive thickness may play a critical role in the frequency 

response performance. (Endevco, 2006) (Lent, 2009) 

3.1.8 PCB 

The circuit to implement is simple so the possibility of using a simple veroboard has been 

weighted up. Nevertheless, the veroboard had to be adapted to the enclosure including 

borders and holes. In the end, the design of a Printed Circuit Board was resolved as there was 

a real risk that the time saved not doing the design would have been employed later on 

properly fit the veroboard. This test board borders are not designed to be easily shaped at will 

being impossible to accurately place the edges and pierce the holes. 

The figure below shows the PCB design plan.  

               Notes: 

 Notice that some of the holes are positioned 

near the edges so that the input and output pins are 

accessible from the outside. 

 Some of the holes have to lodge square or 

rectangular pins; the diameter of those holes is the 

diagonal of those pins.  

 A power plane has been added to avoid EMI and 

noise problems. 
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                                                                              Figure 3.9: PCB 3D model 

3.1.9 EMI/EMC considerations 

National Instruments, as the accelerometer manufacturer, has to uphold the European 

regulations regarding EMI in order to commercialise the device. Hence, the possibility of the 

ADXL203 emitting disturbing electromagnetic signals is highly improbable. As no additional 

high frequency switching hardware has been inserted, the system it is going to follow the 

European normative in regard to emissions. (Barnes, 2011) 

Although the system developed is not intended to work in an adverse EMI environment. 

Standard precautions have been taken for non-expected incoming EMI. BNC coaxial cables 

are going to be used to avoid the coupling effect between the noise and the signal. (Turkel, 

2000)  

Concerning the supply, a 0.1 µF capacitor has been placed in order to prevent noise or ripples 

in the supply that can affect to the output. This capacitor is usually enough but when the noise 

is present at 140 kHz or any harmonic thereof additional actions may be needed. For example, 

another parallel capacitor up to 2µF or ferrite beads could be added. Moreover, 50 Hz low 

past filters are allocated in each output.( (Analog Devices, 2011) 
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3.2 Software 

3.2.1 Global software framework 

 

 

Figure 3.10: Vibration DAQ software framework 

3.2.2 DAQ 

The data acquisition rate is going to be controlled by the user so that the software can be 

adapted to different requirements and the processing power of different computers. However, 

it should be taken into account that in order to avoid aliasing problems, as stated before (3.1.2 

DAQ selection): 

   2 ∗         100   𝑚       

Where    is the sampling frequency and     the upper corner frequency of the accelerometer 

outputs filters, that is, more less the maximum signal frequency (50 Hz  in this case). 

 

3.2.3 Axis calibration 

The band pass filtering hardware was no implemented. A 2.5 volts offset is present in the 

input. This offset is going to be eliminated using software. A calibration subroutine will be 

developed. It will calculate the signals DC value and subtract it from them in real time. The 

signals without the offset will be output. The voltage values have a reasonable good 

coincidence with the gs experienced (≈1V/g) so no conversion is needed. 
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Figure 3.11: Calibration subroutine flowchart 

3.2.4 Earthquake intensity and danger 

 

 

Figure 3.12: Magnitude and danger calculator subroutine 

Waveforms input 

Calculate DC values 

Subtract Dc values 

Output signal w/o DC 

BEGIN 

END 
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The PGA and the intensity are related (PREPA.R.E, 2008). The detailed relation can be seen 

in 2.1.5 Acceleration, intensity and damage. The subroutine should recognise the acceleration 

range of each of the axes and identify the Mercalli intensity in real time. The axis with the 

higher intensity determines the final result. 

3.2.5 Display characteristics and saving options 

The display should have a proper zooming or autoscalling options to study the input signals in 

detail. Absolute time axis would be suitable. The danger indicator will indicate the Mercalli 

intensity scale danger in real time. For each execution another indicator should display what 

was the maximum intensity experienced during the current run. The user will select whether 

and when to capture the waveform data that is being displayed by clicking a saving button. 
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4. Seismological data analysis software design 

4.1 Introduction and Specifications  
The objective of this part of the project is to develop software that performs the tasks below. 

 

Figure 4.1 Seismic analysis software specifications 

An important portion of this section consists of high-level flowcharts, as well as notes if 

necessary. LabVIEW is a really high-level programming language as so they are the 

flowcharts. There is no need to enter into low-level programming when the software has those 

processes automatized. This section aim is to briefly describe and justify the design options 

adopted. 

4.2 Data format selection 

When analysing the project requisites, the first problem that was encountered was what 

seismic data format to use and whether it was freely distributed or needed to be requested to 

the proper institutions. An important research work needed to be made in order to gather 

information about seismic data and sources. A good amount of this information is available in 

the seismic background section.  

Although the SEED and miniSEED data formats are probably the most popular types, the 

SEED format is an exchange format, what is to say, it stores absolutely all the data of the 

event (Havskov & Ottemöller, 2010). According to the purposes and scope of the project, a 

waveform (or processing) data type is more than enough; it was not recommendable to add 

complications until the basic requirements were completed. In any case, although miniSEED 

Specifications 
Decode seismic data from a standard format 

Display waveform 

Calculate relevant parameters: S-P arrival time, 
magnitude, epicentral distance, coda length. 
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Manual and automatic phase picking 

Optional filtering 

Display frequency response 

Interactive menu 
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is part of that group, National Instruments does not provide a plug-in in their support website. 

National instruments do provide numerous strong motion data plug-ins, including another 

standard for a processing format; the SAC data format (National Instruments, 2011). Hence, 

SAC format was used to process the data in this project as it is possible to obtain this type 

directly and very easily from the biggest database found, IRIS.  Not only that, the British 

Geological Survey offers its earthquake data in this format too. This is particularly useful 

because it allows the retrieval of local data. (British Geological Survey, 2012) 

4.3 Global software framework 

 
Figure 4.2: Global computation framework (Attri R. K., 2005) 

The figure above represents the software structure. The process is controlled by the user, 

deciding in which step should be picked up. Some phases need data from previous processes 

so the user should be careful and know what it is being done. In any case, indications will be 

included to help users not familiarized with seismic analysis. As we are using recorded digital 

data, obviously a triggering process is not necessary. 

4.4 Reading SAC files 
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Figure 4.3: Read data flowchart 
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The plug-in has to carry out the decoding. The SAC files, as explained in the background, 

include a waveform and headers with properties as the event date or the name of the seismic 

station. Those also need to be retrieved to be displayed.  

4.5 Frequency analysis and optional filtering 

Sometimes it may be necessary to filter the seismograms, for example for a better phase 

arrival timing (Havskov & Ottemöller, 2010).The software should include an option to filter 

the waveform. Havskov et al (2010) recommends 4 order Butterworth filters. In order to 

properly select the cut-off frequencies a tool to display the spectra would be really useful. The 

seismic events have a typical low frequency so in this case a logarithm frequency scale is not 

necessary. 

4.6 Arrival times 

4.6.1 Introduction 

A system to automatically detect the wave arrivals is going to be developed due to the 

importance of these parameters – described in seismic background (2.3.6.1 P and S arrival 

times). One of the algorithms available to perform this task need to be applied but also a 

manual picking tool is necessary. 

4.6.2 Automatic picking  

4.6.2.1 Algorithm selection 

Among the available algorithms, the time domain energy based algorithms appeared to 

simplify the tasks, featuring an acceptable accuracy. The STA/ LTA ratio method was 

selected because of its simplicity and popularity (Han, 2010). Refer to STA/LTA ratio 

description in the seismic background to see the algorithm detailed description. 

   =
∑            

   

  
 Short-term average 

   =
∑            

   

  
 Long term average 

STA LTA ratio =STA/LTA 

Equation 4.1: STA/LTA ratio equations 
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As it is explained in the background there are different expressions for this method. The 

expressions above present these advantages: 

1) They can be calculated using data from one station only. Recall that a SAC data 

file only incudes one waveform. 

2) The expressions do not include square-roots as other do. The calculations have to 

be performed, sometimes, in thousands of points. Eliminating one of the 

operations can results in a significant improvement on performance. 

In contrast, it does not have the precision of other algorithms (Han, 2010). Nevertheless, 

considering the scope of the project it is far enough.  

4.5.2.2 Flowcharts 

If there is a proper preprogramed VI in among the available in LabVIEW to perform the 

calculation it will be used, in any case the following diagram represents the programming 

structure designed for its later LabVIEW implementation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Automatic Arrival time picking global flowchart 
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Figure 4.5: STA/LTA ratio implementation subroutine flowchart 
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4.6.3 Manual picking 

It was stated in the STA/LTA ratio description that the automatic picking has a great 

dependence on the station and type of event sensed. If there is not data available or there is 

not enough time to proceed with that calibration, the automatic picking is useless. Sometimes, 

the seismograms available contain too much noise in the same bandwidth than the signal, 

making difficult the correct functionality of modest automatic picking software like in this 

case. These problems are common even in advanced professional software and sometimes are 

compensated averaging the timing information of several channels available in the same 

station (Munro K. A., 2005). However, in this project only one waveform is available. The 

distance and magnitude calculations depend on the timing parameters so an alternative 

method is required so that the analysis does not reach a dead-end. The software should allow 

easy manual pickings using a cursor or similar techniques. 

4.7 Coda length 
This parameter has significance enough to develop a subroutine that performs the task. The 

method followed to design that subroutine is showed in the next page. 

Beginning 

Initialisation: 
-Retrieve user defined parameters 
-Retrieve signal data 

 

Detect points over threshold 

 

 

P time=first point 
S time=second point 

 

 

S-P 
 

Save & display data 
 

End 

Figure 4.7: Pick arrival times subroutine 

Figure 4.6: STA/LTA one sample subroutine flowchart 
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The P arrival time indicates the earthquake start. The software has to determine when the 

event is finished, when the earth has calmed down (Attri R. K., 2005). It is known that LTA 

values characterise a measurement of the noise level (Munro K. A., 2005). Therefore, it can 

be used to determine an event conclusion. This happens when the current LTA levels are 

compared with an average value before an event was triggered. If current LTA ≤ LTA 

(averaged before P), the noise level is back to what it was before there was an earthquake. 

The duration or coda length can be calculated with a simple subtraction. 

          𝑡 =      𝑖    𝑡𝑖𝑚 −     𝑡       𝑖   𝑡𝑖𝑚  

Equation 4.2:Coda length 

4.8 Distance to the epicentre 

The habitual computational location methods used in professional stations around the world - 

iterative approaches - are far over the scope of this project, not only because of the difficulty 

of the implementation but because data from more than one station is required. Recall that 

this project aim is to retrieve information from one seismogram at a time only. Moreover, the 

task is to calculate the distance from the epicentre not locate the exact coordinates in 3D as 

the mentioned approaches are able to do. (Havskov & Ottemöller, 2010). 

Beginning 

Initialisation: 

-Retrieve P arrival time 

-Retrieve LTA data 

 

Pre-event LTA waveform 
average=threshold 

 

Cut out LTA waveform 

from P arrival time 

Save Coda and final time 
 

End 

First value below 
time=final time 

 

P arrival time-Final 
time=Coda length 

 

Gather values 
below threshold  

 

Figure 4.8: Coda lengthy subroutine flowchart 
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In order to calculate this distance with a single seismogram there are two options. Using 

lookup tables or approximation algorithms. (Attri R. K., 2005)A priori the incorporation of 

these tables in the software looks like the most precise way to realise the software. However, 

the integration of these tables in the software could represent an important amount of time 

and even more if depth wants to be taken into account in order to make the most of this 

procedure. Prior the programing of these tables the approximation equations have been tested 

manually resulting in an error range of less than 1 ˚ in most of the cases up to a distance of 

100 ˚. For events in a 2000 km range the inaccuracy was often around 0.1˚.The precision has 

been considered acceptable for the objectives of the project. This approach saves lots of hours 

of programing and table lookups in the internet. 

Recall that the equations implemented, depending on the distance, are 

1) From 0 to 250 km      𝛥 𝑘𝑚 =  𝑡𝑝
𝑎  − 𝑡𝑠

𝑎   
𝑣𝑝∗𝑣𝑠

𝑣𝑝−𝑣𝑠
 

  𝑠 =
 𝑝

√ 
 

  =    
𝑘𝑚

 
    =    

𝑘𝑚

 
         𝑚       𝑡 

2) From 250 km to 2222 km (20˚)   𝛥 𝑘𝑚 =  𝑡𝑝
𝑎  − 𝑡𝑠

𝑎   ∗ 10 

3) From 20˚    𝛥 ˚ = [ 𝑡𝑝
𝑎  − 𝑡𝑠

𝑎   𝑚𝑖 − 2] ∗ 10      [t] = minutes  

 
 

Where 𝑡𝑝
𝑎  and  𝑡 𝑠

𝑎   are P and S first arrivals respectively and Δ is the distance to the 

epicentre. 

Notice that from 9˚ to 20˚ and over 100˚ theoretically the algorithm is not valid. In the 

evaluation section the magnitude of the probable inaccuracies will be tested. (Havskov & 

Ottemöller, 2010) 

The software will be based on the following structure: 
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4.9 Magnitude 

Among the several magnitude scales it was decided to use Mc and MS. Mc is an 

approximation of ML (known as Richter scale) but the application is much simpler. Both Mc 

and ML are local Magnitude scales so the programing of another magnitude that extends the 

application range it is appropriate. Although, only for swallow events, Ms expands this range 

up to 160 ˚ for magnitudes from 2 to 9 (Havskov & Ottemöller, 2010). Its application in 

LabVIEW looks a priori simple because it only requires a filter and a peak detector, it has one 

of the highest application ranges among the scales available and, moreover, it is 

recommended by the BGS (British Geological Survey, 2011). For detailed Magnitude scale 

range limitations see background. 

 

 

Beginning 

Initialisation: 
-Retrieve S-P time interval 

 

Equation 1 
 

NO 

End 

Equation 2 
 

Equation 3 

YES 

YES 

NO 

Save distance 
(degrees and km) 

 

Δ≥250 
km OR 
Δ≥20 ˚ 

 

Δ≤20 ˚ 
 

Figure 4.9: Epicentre distance subroutine flowchart 
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Figure 4.10: Magnitude calculations flowchart 
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-Retrieve seismogram 
-Retrieve coda length  
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    Mc calculation 

 

Seismogram filtering   
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Calculate MS(nm/s) 
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5. Analogue output design 

 

Figure 5.1: Analogue output specifications 

 
 

Figure 5.2: Analogue output flowchart 

A subroutine to read the data will be developed; the one created for the seismic analysis may 

be reusable. A user controlled linear scaling is going to be included. The fact that is 

controlled by the user implies that the operator should be aware of the output voltage 

limitations but, on the other hand, the real amplitude is always known, something that doesn’t 

happen if the system automatically scales to eh maximum values. This program is meant to 

display both acceleration and velocity waveforms so the operator should indicate what unit is 

using. The output should be able to be paused and restarted at any time. Output pre-sets 

subroutine has to retrieve critical parameters for the signal output as the output rate, buffer or 

maximum and minimum voltage values.   

Analogue output 

Read and decode real seismic data 

Analogue output of the data 

BEGIN 

Read file 

Display data 

Waveform output 

END 

Output pre-sets 

Linear scaling 
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6. Vibration monitoring system construction and implementation 

6.1 Hardware 
Preliminary tests have been performed using the ADXL203 evaluation board and 

oscilloscopes. Once the PCB was manufactured, the different connectors, a header and a 

switch have been manually soldered. When the tracks connections were tested the 

accelerometer was included 

.  

 

Figure 6.1 Vibration sensor device without the lid and header on which the evaluation board is mounted  

The header inclusion possibilities the accelerometer substitution in case of failure. The header 

connections were confirmed to be loose, slightly moving when the device is shacked, this 

involves performance problems because the system is meant to be a high sensitive vibration 

system. Hence, the accelerometer was placed and attached on the 4mm banana sockets using 

easily removable adhesive in order to provide stability. 

The PCB is fastened to the enclosure with instant adhesive to guarantee a satisfactory 

vibration wave transmission. Holes have been cut out from the enclosure so that the supply 

and input signal jacks can be connected. The already mentioned double-sided tape has been 

applied. 

 
Figure 6.2: Complete vibration sensor module. 
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6.2 Software 
The user should select the data acquisition sample rate and buffer size, the data acquisition is 

made by the DAQ assistant in order to save time as long as its limitations doesn’t bound the 

design requisites. Acquire and pause buttons control the running. Big differences between the 

sample rate and buffer size may cause issues so the operator should be careful. Too big 

buffers can provoke excessive memory usage and crash. Do not exceed DAQ card sample 

rate capabilities.  The axes calibration VI filters the axes offset values, it requires separate 

axes input so the DAQ dynamic data should be previously unbundled.  

 

Figure 6.3 code section comprising DAQ assistant and calibration VI 

 

 

Figure 6.4: Vibration DAQ front panel 
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Spectra and acceleration time response are displayed in real-time for each of the axes. A chart 

instead of a graph was believed to be more suitable for the time response. The VI displays the 

instant and maximum Modified Mercalli intensity scale. The maximum intensity is saved 

during execution but it initialises to 4 in each run. When considered appropriate, the operator 

can decide whether to save the axes acceleration vs. time. The data format will be LVM and 

the file is overwritten if there is previous data. LabVIEW graphs allow taking function 

snapshots when running. 

The Intensity and danger Display VI uses the axes absolute acceleration values and 

determines to what intensity range the acceleration corresponds. The axis with the maximum 

intensity determines the earthquake intensity final value. 

 

 

Figure 6.5: "Intensity and danger Display" VI in the vibration DAQ main code 

For more information, the complete code can be found in Appendix B. 
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7. Seismological data analysis software implementation 

In this section general comments about the main LabVIEW structures used are going to be 

made. The Appendix A contains the whole code with more detailed explanations.  

 

Figure 7.1Seismic analysis VI front panel 

In order to read and decode the data files, a subVI called ReadSAC has been developed. It 

retrieves the SAC file waveform and properties.  The Open Data Storage express VI allows 

opening external types of files when the data plug-in is available, once it is installed, it can be 

selected in its dialog box. After the decoding, the file can be read with Read Data in channel 

mode returning the seismogram waveform as dynamic data. To obtain the properties was 

more problematic and it required the creation of another SubVI called RetrieveProperties. It 

is based on the Get properties VI example available in the Labview 2010 data base (National 

Instruments, 2010) and it uses For loops and the Get Properties VI to obtain metadata from 

the file, channel groups and groups. Waveform and data are displayed in the seismic analysis 

front panel. Notice that most of the data obtained does not inform in the properties about the 

amplitude units so it is impossible to programmatically display them. The unit information 

depends on the source and, therefore, a selector has been built-in so that the operator selects 

the units of the waveform that has read .It is usually nm/s or µm/s (IRIS, 2011) (British 

Geological Survey, 2012). With respect to the calculations this selections only affects to MS. 
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Figure 7.2Code sections where the mentioned SubVIs are used                          

A subVI was created to calculate and show the seismogram vs. spectra. A dialog box opens 

showing both graphs in a window separated from the seismic main controls and indicators. 

Spectra magnitude is linear so that it can be compared in a better way with the seismogram, 

the usually low bandwidth of typical earthquakes advices a linear frequency axis scale. 

 

Figure 7.3 Seismogram and its spectra 

The operator can define the low and upper cut-off frequencies of a band-pass filter. The 

resulting filtered waveform is saved in a shift register so all the analysis operations can be 

performed to the filtered signal. The LabVIEW filter VI can be set to use a 4 order 
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Butterworth as recommended by Havskov et al. (Havskov & Ottemöller, 2010). Notice that if 

the cut-ff frequencies do not fulfil the Nyquist criterion the software will return an error. 

 

Figure 7.4 Filtering options in the seismic analysis front panel 

In order to calculate the STA/LTA ratio, a proper pre-programmed VI was searched among 

the VI’s available in LabVIEW. However, it was not possible to implement it in a satisfactory 

way. It was considered that the development of an own subVI could save time and effort.  

The subVI STA LTA wave (SNR) provides the STA/LTA ratio using window lengths selected 

by the operator while Pick arrival times VI uses this ratio along with a user defined threshold 

to automatically pick the P and S arrival timing. 

 

Figure 7.5 : STA LTA ratio and Pick arrival times VIs in the main seismic code 

 

The STA/LTA wave SubVI is set up in dialog mode so that a new window with its front panel 

pops up when the automatic picking control is pressed. The use of different windows was 

considered an appropriate way to expand the information showed in screen and to show the 

user the state of the SNR calculations, as it take some seconds until it is completed. 
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Figure 7.6 STA/LTA ratio VI front panel. The figure shows an earthquake seismogram, the STA/LTA ratio and the STA and 
LTA waves for  specific L1 and L2 window lengths 

The SNR calculations are performed sample by sample by a VI called STA LTA one sample. 

Basically, the STA LTA ratio VI function is to control the running of that other subVI, 

window lengths and to put together the waveform. The Pick arrival times VI takes advantage 

of the fact that the first two values that surpass the threshold value are, respectively, the P and 

S arrival times. Arrival time values are actualised when STA LTA ratio dialog box is closed. 

Detailed comments are written in Appendix A. 

The manual picking has been carried out using three vertical cursors which display the time 

axis values. To use this tool the user should manually identify and introduce the correct P and 

S arrival time values as well as the end of the event time in the proper controls before 

proceeding with further automatic calculations. The subtractions required to determine S-P 

time and coda length are automatically performed.  
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Figure 7.7 Cursors and controls for manual picking in the seismic analysis VI front panel(left) and the loop that  actualises 
coda length and S-P when the use modifies arrival times. 

A coda length meter VI was developed in order to retrieve this magnitude. It performs the 

actions described in the design section. It uses the LTA waveform and the P wave arrival time 

to obtain the coda length and the event end time. In this case only the event end time is 

retrieved as the final subtraction to calculate the coda ( P arrival time – event end time) is 

performed in the main seismic analysis VI in order to allow the user to manually change the 

event end time at any time (manual picking). The automatic coda results are actualised at the 

same time that the arrival times.  A subVI called Gathering Signal Values below a Threshold 

value is used. This design  is a modification of Gathering Signal Values passed Threshold 

value VI developed by one of the NI Instructors in the NI developer zone. It is  available to 

public (NI Instructors, 2011). Detailed description in appendix A. 

 

Figure 7.8 "Coda length" VI in the main seismic code 

The Distance to the epicentre VI uses the P and S arrival times – previously calculated or 

manually typed - and the already known P and S wave speed - in a normal crust – to 

determine the station distance to the epicentre in km and degrees. Empirical formulas are used. 

Notice that the algorithm should change depending on the event distance; this is achieved 

with a case structure. Values are returned and displayed in the main seismic menu; no dialog 

box is opened when running. 
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Figure 7.9: Distance to the epicentre subVI placed in the seismic analysis code. 

When Calculate magnitude button is pressed in the front panel, the system processes the 

seismogram, coda length and distance to the epicentre parameters – that should be previously 

settled – to calculate the MS and Mc magnitude.  To calculate Mc , a, b and c parameters 

should be input by the user and a coda length value has to be available. MS requires previous 

bandpass filtering (2 to 60s) as indicated in the background. The maximum value of the 

filtered signal, as well as the epicentral distance in deg, is used to compute this magnitude 

scale. The user can select the signal units so that the formula rearranges for correct calculation. 

The block diagram can be seen in the Appendix A.  

 

Figure  7.10: Magnitude controls and indicators in the front panel 

8. Analogue output software implementation 

An analogue output VI has been developed. The software is able to read LVM files, 

containing acceleration time response, and SAC files, it auto detects the input format. There is 

a user controlled linear scaling. The output start and pause is user managed. When scaling, 

the output must be within the configured max and min voltage. In this case +-10 V.  As 

different type of data may be read, the user should manually indicate the amplitude units. The 

DAQmx auto start function should be on to avoid overwriting errors (-200279) when starting 

the output after stopped (National Instruments, 2012).Output presets VI defines the output 

task characteristics, in this case, outputs the signal at 50 kHz using a 10 samples buffer. High 

buffers may cause errors. 
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Figure 8.1: Analogue output VI front panel 

9. Dataflow and Interface 
The interface and data flow has been managed using mainly the event structure. The events 

are usually buttons pressed. When that happens the program jumps to different running 

points. Shift registers save event common data while the VIs is running, like the seismogram 

or errors. Although they are a resource many times avoided, local variable have been required 

so that controls can be changed both automatically and manually by the user, for example, the 

P arrival time control can be set by the user but when it is calculated automatically the new 

value actualises the control through a local variable. SubVIs have been created to perform 

tasks in a more organized way. Generally, SubVIs were created after processes that were 

considered important and independent enough to be called subroutines in the design chapter. 
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Figure 9.1: Example of the event structure continuously used in the software. The External loop keeps it running. The 
shift registers and local variables can be seen. 

 

Figure 9.2: Main menu interface 

All the front panels used as interface front panels are included in the Appendixes along with 

the VIs block diagrams. The Appendix D comprises some usage instructions. 
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10. System evaluation and results 

10.1 Vibration DAQ evaluation 
The figure below shows the hardware configuration in the tests performed. Note the BNC 

input connected to the vibration module and the analogue output connected to the 

oscilloscope trough a BNC coaxial wire. 

 

Figure 10.1: Hardware system distribution for vibration DAQ and output testing 

 

Prior to the insertion of the accelerometer analogue outputs into the NI2120 they were tested 

in an oscilloscope to ensure that de device is not defective.  

 

Figure 10.2: Accelerometer voltage outputs when tilted so that the two axes support different accelerations 

The vibration DAQ has been tried for different vibration conditions using a 12 kS/s sample 

rate and a 1000 samples buffer size. Previously, the intensity indicator was tried out with 

simulated signals to assure that it indicates the correct level. The tests were carried out 
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attaching the vibration module to a table and applying different magnitude vibrations, hits, 

and shakings.  

 

Figure 10.3: DAQ front panel when running 

 

Figure 10.4: Light table hitting (Y axis) time and frequency responses 
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Figure 10.5: Strong enclosure hitting (X axis) time responses 

 

 

Figure 10.6: Strong shaking time and frequency responses 
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Figure 10.7: Heavy shaking time and frequency responses 

The saved files were successfully opened using the analogue output VI that is going to be 

later analysed. 

It appears that the system is working well showing coherent responses to the different 

excitations. It proved to be really sensitive, responding to really light finger tapings. More 

exhaustive analysis may be needed in the future. 

10.2 Seismic analysis evaluation 

The software successfully decodes and reads SAC data. The seismogram waveform was 

displayed successfully in a 100% of the tried data. The property reading varies depending of 

the data source; some sources provide parameters that other don’t. A failure in National 

Instrument’s plug-in has been detected as some of the dates are not displayed correctly. The 

software successfully reads the metadata that has been considered appropriate and that is 

commonly present in main providers’ files (see Seismic analysis implementation). Critical 
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parameters for the software development like the time delta or total samples are not always 

included in the metadata, therefore, the program obtains them analysing the characteristics of 

the incoming data. The station coordinates are either not included or the plug-in is unable to 

acquire them, this represent a major inconvenience because it limits the possibility of 

calculating and plotting the earthquake epicentre coordinates if seismograms from 3 different 

stations were available (Attri R. K., 2005).  

As it can be appreciated, the data properties displayed in my software match the ones in the 

data file viewer VI provided by LabVIEW.  

Figure 10.8: Properties in Data file viewer  

 

The epicentre distance algorithm has been tested using the travel time tables provided by the 

US geological survey. These tables, often presented as graphs, relate the S-P time interval to 

the distance of the event in degrees or km. The figure below compares the distance calculated 

for an established S-P time interval with the distance in the chart for the same time interval. 

Recall that the relation between S-P time and distance depends on the depth. The table study 

33 km depth events and, although the software implemented is a good approximation, 

supposes surface events, consequently, the shallower the earthquake the more precision it 

provides.  

   

Figure 10.9:  Data 
properties in seismic 
software 
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Figure 10.8 Software distance calculations compared to USGS Distance vs S-P time table 

The results surpass the theoretical strength of the algorithm used. Notice that, between 1000 

km (9˚) and 20˚, there was a gap where there was not a proper algorithm available. In view of 

the situation, the equation used from 250 km to 1000 km was extended to that breach with 

satisfactory results. As expected, over 100 ˚ there is a worse performance. However; in most 

of the cases below that distance the divergence rarely exceeds 3˚.  

To test the software magnitude calculations, the results have been compared with the ones 

provided by IRIS (IRIS, 2011). They are represented in the figure below along with some 

other values related to the software limitations. There was a preference for local data, 

however, most of the data from the British Geological Survey page comes from non-

professional networks and it was difficult to find clean seismograms with an acceptable SNR 

in the professional networks available (British Geological Survey, 2012).  Therefore, the 

alternative chosen has been the Japan Meteorological Agency Seismic Network because it 

provides extensive and varied earthquake data due to the region activity. Besides, the signal’s 

SNR is usually high allowing an ideal study of the signals. Its data is available from IRIS 

using the WILBER II tool for seismic data downloading. 
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Event Depth(km) Distance(˚) Magnitude(IRIS) Mc MS 

2011/09/15 08:00:07.1    

NEAR EAST COAST OF 

HONSHU, JAPAN(JHJ2) 

10 3.4 6.3 5.65 5.63 

2012/03/14 09:08:37.5  OFF 

EAST COAST OF HONSHU, 

JAPAN(JHJ2) 

26.60 8.56 6.8 8.4 6.9 

2011/10/21 

08:02:38.1  HOKKAIDO, 

JAPAN REGION(JHJ2) 

188.20 10.35 5.8 7.7 5.7 

2011/06/26 

09:19:48.2  MARIANA 

ISLANDS (CBIJ) 

99.90 8.38 5.7 7.07 5.07 

2011/08/20 

18:19:21.0  VANUATU 

ISLANDS(YOJ) 

2 65.5 7 30.59 7.06 

2012/01/10 18:37:01.2  OFF 

W COAST OF NORTHERN 

SUMATERA 

29.10 38 7.3 20.4 6.96 

2011/09/18 

12:40:48.1  SIKKIM, INDIA 

20.7 46.09 6.8 23.59 6.86 

 2007/08/15 23:40:56.8  NEAR 

COAST OF PERU 

30.20 207.32 8 
86.28 

8.22 

Table 10.1 Software magnitude  calculations evaluation. Comparison with  magnitude of different data retrieved from 
ISIS. 

The manual picking function has been used to determine the arrivals. The equation 

parameters selected for the Coda Magnitude determination are the ones determined by the US 

Geological Survey in 1972 (W.H.K Lee et al, 1972). It was not possible to find these 
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particular parameters for the Japan region. Nevertheless, some references indicated that the 

parameters are still used nowadays for the detection of earthquakes in places where there are 

not coda magnitude studies or they cannot be found (Havskov & Ottemöller, 2010) (Kayal, 

2008). 

From these results it can be stated that: 

 MS is a good approximation for relatively shallow earthquakes  

 In really short and long distance events generally MS lacks accuracy 

 Really deep events also reduce MS accuracy. 

 It shows why the coda magnitude is discredited (Havskov & Ottemöller, 2010), it is an 

approximation to Richter magnitude in local events but as it can be seen, it is not 

working properly. For long distance earthquakes it is not even close. 

The results match with the theoretical specification that was known when implemented. MS 

works well with events in a distance range from 2˚ to 160˚ and less than 60 km depth. Mc is 

an approximation for local events but it didn’t work well in this case. It is not a good method 

when using manual picking because of its critical dependence on coda length. Also, the 

generic expression by Lee et al has been used because a particularization for the expression 

has not been found for Japan, probably that contributed to its bad performance in the studied 

cases. 

In order to confirm this aspect a test has been performed using data from the Oregon 

University Network and Coda Magnitude parameters for the adjacent California. 

Event Depth(km) Distance(˚) Magnitude(IRIS) Mc 

2011/09/09 19:41:35.0 

VANCOUVER ISLAND 

REGION 

25.90 5.8 6.7 6.9 

Table 10.2 Coda magnitude characteristics verification 

The result corroborates a great improvement compared to the previous coda Magnitude 

values.  

 

The system successfully displays the LTA, STA and its ratio, therefore, a SNR measurement 

is available for its study. The graphs built show a ratio growth when there is an incoming 

signal - P and S wave respectively. Occasionally there may be other peaks due to the 
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incoming surface waves or particularly intense noise. Notice that this happens often in far 

events due to the wave speed difference which tend to separate surface waves from S signals. 

 

 

 

 

The software was intended to use this information to automatically calculate the P and S 

waves arrival times – in this text sometimes denoted as automatic phase picking. Before the 

performance of this part can be evaluated, a process of calibration must be performed. The 

threshold that determines the wave arrival has to be defined depending on the station that 

makes the measurements. These calibration processes are made taking into account the station 

history (Attri R. K., 2005), however, for obvious reasons the one that is included in this report 

doesn’t cover that extension. The threshold values have been calculated averaging 16 different 

thresholds from 8 different events. 

 

 

 

Figure 10.9: STA/LTA ratio VI front panel 



University of Central Lancashire. School of Computing, Engineering and Physical Sciences 

 

81 
 

 

The process followed comprised these steps for each of the events: 

1) Manual picking 

2) Selecting L1 an L2 windows depending on the signal frequency response.           

L1 = 3*expected signal period; L2=10*L1.Frequency analysis performed with the 

previously developed software function. 

3) SNR study, pick the threshold value that provides an arrival time that matches with the 

manual picking. For both P and S waves. 

A history chart was made and averaged to obtain a proper threshold value. 

 

Probably, trimming could be performed by statistically adjusting L1 and L2 for each event 

based on the manual pickings (Munro K. , 2004) but is out of reach with the available time. 

The calibration has been made for the station JHJ2 based in Hachijojima Island belonging to 

the Japan Meteorological Agency Seismic Network. Again, the reason is the amount of events 

to choose from after the March 11 earthquake and the clarity of the seismograms available. 

 

EVENT MAN(P)[s] MAN(S)[s] L1 L2 Tp Ts 

1) 2012 02 14 NEAR EAST COAST 

OF HONSHU JAPAN 
84.54 123.98 3 30 3.1 3.1 

2) 2011 10 21 HOKKAIDO, JAPAN 

REGION 
96 209.35 3.75 37.5 2.6 2.4 

3) 2011 12 09 SEA OF OKHOTSK 89.12 245.58 3 30 2.9 3.7 

4) 2011 08 01 NEAR S. COAST OF 

HONSHU, JAPAN 
84.54 109.59 6 60 2.9 5.5 

5) 2011 07 23 NEAR EAST COAST 

OF HONSHU, JAPAN 
84.55 143.8 7 70 2.7 2.1 

6) 2011 04 01  EASTERN       

HONSHU, JAPAN 
86.46 151 6 60 3.2 2.2 

7) 2011 04 07 NEAR EAST COAST 

OF HONSHU, JAPAN 
90.56 149.56 7.5 75 3.2 1.8 

8) 2011 04 28 NEAR EAST COAST 

OF HONSHU, JAPAN 
85.73 134.33 7.5 75 1 1.7 

Table 10.3Threshold determination for different earthquakes 

 

 

 



University of Central Lancashire. School of Computing, Engineering and Physical Sciences 

 

82 
 

The following chart displays different threshold values and averages them. 

 

 

Figure 10.10: Averaged threshold 

The average value T=2.775 was used to test the automatic phase picking software. The 

automatic arrival values are compared with the manual picking ones. L1 and L2 are the same 

indicated in the previous table. 

EVENT MAN(P)[s] AUT(P)[s] MAN(S)[s] AUT(S)[s] 

1) 2012 02 14 NEAR EAST COAST 

OF HONSHU JAPAN 
84.54 84.1 123.98 123.6 

2) 2011 10 21 HOKKAIDO, JAPAN 

REGION 
96 96.05 209.35 209.65 

3) 2011 12 09 SEA OF OKHOTSK 89.12 89 245.58 245.35 

4) 2011 08 01 NEAR S. COAST OF 

HONSHU, JAPAN 
84.54 84.5 109.59 - 

5) 2011 07 23 NEAR EAST COAST 

OF HONSHU, JAPAN 
84.55 84.65 143.8 144.55 

6) 2011 04 01  EASTERN       

HONSHU, JAPAN 
86.46 85.6 151 151.7 

7) 2011 04 07 NEAR EAST COAST 

OF HONSHU, JAPAN 
90.56 90.55 149.56 151.35 

8) 2011 04 28 NEAR EAST COAST 

OF HONSHU, JAPAN 
85.73 7.5 134.33 136.5 

Table 10.4: Automatic and manual picking comparrison 
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The results are mostly satisfactory for the number of arrival threshold that have been 

averaged, the error rarely exceed 0.5 seconds. Number 7 and 8 S wave arrival appears to be 

problematic probably due to the number of averaged sampled. However, number 8 is a really 

noisy seismogram, there is apparently a bad influence of background noise in picking that this 

algorithm is not able to solve. The generalized threshold – for both P and S picking – appear 

to have also a negative effect compared to other studies found (Munro K. , 2004) reducing the 

precision that could have been reached if using different values. In events with P and S waves 

arrivals really close in time doesn’t work properly – earthquake 4. 

This algorithm seem to be a good qualitative method to calculate approximated arrival times 

with a precision of around 0.5 seconds –probably much less with the appropriate history 

study. Nevertheless, fails to be the ultimate method to provide timings precisely with real 

data. Kim Munro concludes the same in her study Automatic event detection and picking of 

P-wave arrivals (Munro K. , 2004). An algorithm modification for improvement was 

presented in her later Thesis Analysis of microseismic event picking with applications to 

landslide and oil-field monitoring settings (Munro K. A., 2005). 

The first STA/LTA software programmed had serious performance problems as the 

processing of data comprising around 15’000 samples took between 40 and 50 seconds (Intel 

Core i5 processor 2.3 GHz). By substituting express VIs and modifying the algorithm, that 

time has been reduced to half. It is not a brilliant performance though. Performing the 

window calculations point by point to such amount of data requires processing power. 

However, it is considered that in the future a reduction in processing time is still possible with 

the current implementation, especially regarding the resetting. In the current state it is not 

recommendable to use the automatic picking with data over the samples indicated above. The 

SNR ratio front panel pops up when using the automatic picking allowing the user to see the 

calculation progress. 

The coda length calculator present problems related to the algorithm, from the several test 

performed only few gave satisfactory results. It is important to notice that the evaluation of 

this piece of software was extremely difficult due to the subjectivity of the magnitude to 

measure (Havskov & Ottemöller, 2010). The automatic detector is far more sensible than the 

manual picking so it is was sometimes difficult to say if the problem was the user ability to 

choose a proper coda or the software performance. However, the poor execution was evident 
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with a naked eye due to some impossible results. The problem was identified and described 

below. 

 

 

 

 

Figure 10.11: Coda length calculator problem 

 

The detection extremely depends on the correct P wave time arrival detection. The figure 

above represents the LTA wave, the background noise. If the P wave timing is slightly 

imprecise the VI “cuts out” the waveform before it was supposed. The remaining waveforms 

values are later compared with a typical noise value before the earthquake arrival, notice that 

if the remaining values contain pre-event noise levels the event end time picked is going to be 

incorrect, far before than when it was supposed. As explained above, it is impossible to assure 

a perfect automatic P or S arrival picking with the available resources, and the precision 

required for the algorithm above may be tens of milliseconds- few samples make the 

difference. This issue improvement will be one of the future works suggested. It is also 

important to highlight that the data analysed has to include the samples where the earth is 

settled down. This is not trivial, good amount of data samples available in the internet do not 

include this information, they are cut out before, the waveform never returns to the pre-event 

levels and, hence, the analysis always returns wrong values. 

Wrong P arrival time 

The software “cuts-out” the waveform from 

here to perform a comparing task with the 

remaining values. If P timing is wrong, the 

remaining waveform contains pre-event 

noise levels. 

Wrong end time 
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Other additional functions as the frequency analysis or the band pass filtering are working 

correctly. The following charts correspond to a 2012 event near the east coast of Honshu. 

 

Figure 10.12: Non- filtered seismogram 

 

Figure 10.13: Seismogram spectra 

 

Figure 10.14:  Filtered seismogram. Low cut-off = 0. 01 Hz. High cut-off =1 Hz 

 

 By the time this report is being typed, some user interface issues are not still polished 

causing occasional crashes but allowing the evaluation of the different VI’s developed. It is 

expected that this issues are solved before the demonstration. 
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10.3 Analogue output evaluation  

The analogue output software successfully reads and outputs LVM files containing X or Y 

axes acceleration recorded with Vibration DAQ VI and the designed hardware module. It also 

works well with the SAC files (velocity) downloaded from the IRIS database. The stop, 

refresh and scaling options don’t show problems if the operator works within the restrictions 

stated in the implementation section. 

 

Figure 10.15: Analogue output front panel running and reading a SAC file. 

 

 

Figure 10.16: LVM vibration file reading and analogue output 
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Figure 10.17: SAC file reading and  analogue output 

11. Future work: Potential improvements and modifications 
The project accomplishes most of the objectives that were set. However, when designing and 

implementing the work, alternative development procedures and improvement ideas came up. 

Unfortunately, as always, time and resources were limited and they had to be abandoned or at 

least postposed in order to deal with the main objectives. Some of them are going to be 

proposed in this section: 

 In order to monitor ambient noise in some structures as bridges a µg resolution is 

required (Wenzel & Pichler, 2005). The addition of a second accelerometer that 

measures acceleration in another axis may be a useful approach to improve the 

hardware module so that can be used for that purpose. 

 An aisled vibration DAQ module has been developed. In order to study the large 

structures vibration behaviour a good amount of them, distributed in strategic 

locations, are needed (Wenzel & Pichler, 2005). The development of a decentralised 
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networking system that uses, for example, microcontrollers would be suitable to 

perform this task.  

  The seismic analysis VI analyses one seismogram at a time and the location 

parameter that returns is the distance to the epicentre. It is possible to plot the 

location when the distance from at least three different seismic stations is known.  A 

logical work continuation is the development of software that processes that 

distance values and uses a graphic interface to plot the location on a world map. 

 The use of tables instead of formulas to calculate the distance to the epicentre 

would improve that parameter precision. 

 The calculation of the magnitude using more scales would save the user time as 

there would be no need to use conversion graphs (Havskov & Ottemöller, 2010). 

 Better algorithms for arrival time detection using wavelet transform or frequency 

analysis among others could be integrated in the software (Han, 2010). 

 Coda length algorithm improvement to avoid the errors detected in its evaluation 

 STA/LTA average performance optimization. Another approach for its development 

or an improvement of the existing one (the collector VI appears to be the cause of a 

lot of this issue) is required. 

 In order to gather samples to shape a waveform only the collector VI has found 

among the LabVIEW library. That VI is not only slow but also has the collected 

samples limited. The development of a fast sample collecting VI without pre-

established sample number limitation would boost the improvement of the 

STA/LTA average calculation performance. 

 Because of the time limitations, the main menu (event structure) that should have 

joint the access to the three main software functions (DAQ, seismic analysis and 

output) in a common interface could not be completed. Also, some bugs in the 

seismic interface as occasional crashes without apparent reason were noticed. It is 

expected that this issues are solved by the time of the demonstration. 
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12. Conclusion 
 

Monitoring and analysis of seismic signals have become a fundamental discipline when 

trying to minimize the human and economic loss that earthquakes cause every year. To deal 

with this menace, geologist need to be supplied with analytical tools that help with the 

arduous work of determining the seismic event characteristics in order to take preventing 

actions, establish patterns or study the earth structure. Preventing work has to be made in 

building structures as well, cheap maintenance and failure detecting systems are highly on 

demand and it is there where MEMS accelerometers plays a fundamental role.  

The seismic analysis software developed manages to successfully retrieve timing, location 

and magnitude parameters with an acceptable precision according to the scope of the project. 

The precision achieved is probably not suitable for the accurate calculations of professional 

seismic stations. However, taking into account the resources and time available and that the 

geo-instrumentation and LabVIEW knowledge was acquired as part of the project, it 

represents a good approach and prototype from which build up a more complex software 

using this popular graphic programming language. It is important to highlight that the 

software has performance issues when computing SNR analysis and automatic timing 

parameters detection and that improve this in the future is essential. The coda length software 

needs also polishing or algorithm reconsideration to avoid some calculations errors. The event 

date that can be retrieved from the SAC_SM plugging does not match with the source date 

too often; this might point out a problem with either the plug-in or the seismic data source. 

The vibration DAQ effectively performs acceleration versus time and spectra measuring and 

monitoring. It manages to translate the incoming acceleration into earthquake intensity rank 

in accordance with the Modified Mercalli scale. Saving and zooming options are properly 

working and the enclosure and double sided tape using for attachment fits very well the 

specifications marked at the beginning of the development. Nevertheless, the user should be 

careful with the sample rate and buffer selection as a wrong selection may cause conflicts 

with the hardware. The system is a good starting point to develop a networked system for 

structural monitoring. 

The software manages to output vibration and seismic signals based on real data without 

problems. This analogue output may be used to be read in an oscilloscope or to excite a 

shaking table in order to simulate history-based earthquakes. 
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Although an initial objective, the usefulness and practical applications of an analogue input 

that acquires the analogue output commented above has been questioned. Especially when 

digital data can be easily found in the internet and vibrations were already acquired with the 

vibration DAQ. It could be interesting to simulate the real acquisition process that occurs in 

professional seismic stations but, taking into account that the project is already branched in 

different areas and the lack of time available it was decided to focus in the ones that looked 

more valuable.  

As a whole, the project reasonably accomplishes the objectives initially set, but it is evident 

that the fields studied have a lot of potential and room for improvement .Complex and 

valuable applications can be developed taking this work as a starting point. 
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Appendix A: Detailed Seismic analysis software 
 

 

Figure A. 1: Seismic analysis VI front panel 

 

Figure A. 2: Seismic analysis VI global structure. Timeout event. 
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Figure A. 3: Seismic analysis VI. Read file event 

 

Figure A.4 Seismic analysis VI. Automatic picking event 
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Figure A. 5: Seismic analysis VI .Frequency analysis event 

 

Figure A. 6:Seismic analysis VI.Filter event 
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Figure A.7: Seismic analysis  VI. Calculate distance event 

 

Figure A.8: Seismic analysis VI. Calculate magnitude event 
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Figure A..9: Seismic analysis VI. Stop event. 
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Figure A.10: Read SAC VI icon  

 

 

 

 

Figure A.11: ReadSAC VI block diagram 
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Figure A.12: Retrieve properties Icon 

 

 

 

 

FigureA.11: Retrieve properties VI block diagram 
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Figure A.3: STA LTA ratio icon 

 

 

 

 

 

Figure A.12: STA LTA ratio front panel 
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Figure A..13: STA LTA ratio VI Start event and global VI structure 

 

 

FigureA.14:STA LTA ratio VI BACK event 
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FigureA.15: STA LTA one sample VI icon  

 

 

 

 

Figure A.16:STA LTA one sample block diagram 
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Figure A.17: Pick arrival times VI icon 

 
 
 
 
 

 
 
 

 

Figure A.18: Pick arrival times VI block diagram 
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FigureA.19: Frequency analysis VI icon 

 

 

 

 

FigureA.20: Frequency analysis VI front panel 
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FigureA.21: Frequency analysis VI block diagram 

 

 

Figure A.22: Distance to the epicentre icon 

 

Figure A.23: Distance to the epicentre block diagram 
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Figure A.24: Distance to the epicentre case structures 

 

 

Figure A.25 Coda length meter 

 

 

FigureA.26: Coda length meter VI block diagram 
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Figure A.27: Gather signals below a threshold VI icon 

 

 

 

 

Figure A.28: Gather signals below a threshold block diagram (NI Instructors, 2011) . 
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Appendix B: Detailed Vibration DAQ software 
 

 

Figure B.1: Vibration DAQ VI front panel 

 

 

Figure B.2: Vibration DAQ event structure. Timeout. 
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Figure B.3: Vibration DAQ VI. Acquire event 

 

FigureB.4: Vibration DAQ VI Main menu event 
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FigureB.5: Vibration DAQ VI pause event 

 

 

FigureB.6: Axes calibration VI icon 

 

FigureB.7: Axes calibration VI block diagram 
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FigureB.8: Intensity and danger display VI icon 

 

 

 

 

Figure B0.9: Intensity and danger display VI front panel 
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Appendix C: Detailed analogue output software 
 

 

FigureC.1: Analogue output VI front panel 

 

FigureC.2: Analogue output VI .Timeout event 
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Figure C.3: Analogue output VI. Read file event. 
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Figure C.4: Analogue output VI. Start output event. 

 

Figure C. 5: Analogue output VI. Back event 
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Appendix D:  Brief Instructions for use  

 

 

Figure D.1: Seismic analysis main window instructions 

 

Reads or 

actualises data Opens frequency 

analysis window 

Band pass filter. The 

user should select the 

cut –off frequencies 
Returns to 

main menu 

Selects file 

to analyse 

Cursors for 

manual picking. 

Use as a 

reference to 

identify arrival 

and end times. 

Automatically 

calculates timing 

parameters. L1, 

L2 and threshold 

required. 

Prior to calculate the 

distance, timing 

parameters should 

have been manually 

or automatically 

identified. 

Coda magnitude 

requires a, b and c 

parameters. The 

seismogram units 

affect Ms calculations. 

Previous distance data 

required. 

Graph 

tools 
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Figure D.2: STA LTA ratio VI front panel instructions 

 

 

 

Press to start SNR 

analysis. L1,L2  can be 

redefined 
Return to menu Seismogram display 

STA/LTA ratio waveform 

display. Signal to noise 

ratio 

STA & LTA display. 

Signal and noise 

respectively 
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Figure D.3: Vibration DAQ VI instructions 

 

 

Start/continue 

samples 

acquisition 

Pause 

acquisition 
Return to main menu 

Save time 

response 

Modify rate and 

buffer 

Intensity and danger 

indicators. Instant danger 

(left). Maximum danger 

(right) 
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Figure D.4: Analogue output VI instructions 

 

 

 

 

Select file to 

output. LVM 

and SAC format 

are admitted 

Read or 

refresh the 

file 

Start/continue 

output 

Pause/stop 

output 

Return to 

Main menu 

Select 

amplitude 

units 

Linear scaling 

factor 
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Appendix E : Planning documents 

Gantt Diagram

 

 

Figure D.1: Gantt diagram 
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Risk register 

 

Figure D.2: Risk register 
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                     Appendix F: DAQ Circuit and PCB plans 
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Appendix G: DAQ hardware components list 
 

Description Manufacturer Package Quantity 

Capacitor(100nF) Multicomp 0805 2 

Capacitor (0.1µF) Multicomp 0805 1 

ADXL203 MEMS 

accelerometer 

Analogue Devices 5mm x 5mm x 

2mm LCC 

1 

ADXL203EB 

Evaluation Board 

Analogue Devices - 1 

C1553ATNAE 

Switch 

 

Archoelectric 

switches 

- 1 

2.1 DC Jack Dongguan 

HaoyuElectronics 

- 1 

MP-205 2.1 DC plug 

 

Multicomp - 1 

4mm Banana jack Multicomp - 2 

NI 6021DAQ card National Instruments - 1 

BNC 2120 

Connector socket 

National Instruments - 1 

PCB UCLAN - 1 

1591XXMS General 

purpose enclosure 

Hammond 

Manufacturing 

 1 

BNC Lead(BNC 

plug-4mm banana 

plug) 

- - 2 

5 way  2.54 mm 

header 

- - 1 

Double sided tape - - 1 

Superglue - - 1 

 

Table G.1 DAQ hardware component list 
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